## Heat and energy exchange above different surfaces using surface renewal.

##### Abstract

The demand for the world’s increasingly scarce water supply is rising rapidly, challenging its availability for agriculture and other environmental uses, especially in water scarce countries, such as South Africa, with mean annual rainfall is well below the world’s average. The implementation of effective and sustainable water resources management strategies is then imperative, to meet these increasingly growing demands for water. Accurate assessment of evaporation is therefore crucial in agriculture and water resources management. Evaporation may be estimated using different micrometeorological methods, such as eddy covariance (EC), Bowen ratio energy balance (BR), surface renewal (SR), flux variance (FV), and surface layer scintillometry (SLS) methods. Despite the availability of different methods for estimating evaporation, each method has advantages and disadvantages, in terms of accuracy, simplicity, spatial representation, robustness, fetch, and cost. Invoking the shortened surface energy balance equation for which advection and stored canopy heat fluxes are neglected, the measurement of net irradiance, soil heat flux, and sensible heat flux allows the latent energy flux and hence the total evaporation amount to be estimated. The SR method for estimating sensible heat, latent energy, and other scalars has the advantage over other micrometeorological methods since it requires only measurement of the scalar of interest at one point. The SR analysis for estimating sensible heat flux from canopies involves high frequency air temperature measurements (typically 2 to 10 Hz) using 25 to 75 ìm diameter fine-wire thermocouples. The SR method is based on the idea that parcel of air near a surface is renewed by an air parcel from above. The SR method uses the square, cube, and fifth order of two consecutive air temperature differences from different time lags to determine sensible heat flux. Currently, there are three SR analysis approaches: an ideal SR analysis model based on structure function analysis; an SR analysis model with finite micro-front period; and an empirical SR analysis model based on similarity theory. The SR method based on structure function analysis must be calibrated against another standard method, such as the eddy covariance method to determine a weighting factor á which accounts for unequal heating of air parcels below the air temperature sensor height. The SR analysis model based on the finite micro-front time and the empirical SR analysis model based on similarity theory need the additional measurement of wind speed to estimate friction velocity. The weighting factor á depends on measurement height, canopy structure, thermocouple size, and the structure function air temperature lag. For this study, á for various canopy surfaces is determined by plotting the SR sensible heat flux SR H against eddy covariance EC H estimates with a linear fit forced through the origin. This study presents the use of the SR method, previously untested in South Africa, to estimate sensible heat flux density over a variety of surfaces: grassland; Triffid weed (Chromolaena odorata); Outeniqua Yellow wood (Podocarpus Falcatus) forest; heterogeneous surface (Jatropha curcas); and open water surface. The sensible heat flux estimates from the SR method are compared with measurements of sensible heat flux obtained using eddy covariance, Bowen ratio, flux variance, and surface layer scintillometer methods, to investigate the accuracy of the estimates. For all methods used except the Bowen ratio method, evaporation is estimated as a residual using the shortened energy balance from the measured sensible heat and from the additional measurements of net irradiance and soil heat flux density. Sensible heat flux SR H estimated using the SR analysis method based on air temperature structure functions at a height of 0.5 m above a grass canopy with a time lag r = 0.5 s, and á =1 showed very good agreement with the eddy covariance EC H , surface layer scintillometer SLS H , and Bowen ratio BR H estimates. The half-hourly latent energy flux estimates obtained using the SR method SR ë E at 0.5 m above the grass canopy for a time lag r = 0.5 s also showed very good agreement with EC ë E and SLS ë E . The 20-minute averages of SR ë E compared well with Bowen ratio BR ë E estimates. Sensible heat and latent energy fluxes over an alien invasive plant, Triffid weed (C. odorata) were estimated using SR , EC , FV and SLS methods. The performance of the three SR analysis approaches were evaluated for unstable conditions using four time lags r = 0.1, 0.4, 0.5, and 1.0 s. The best results were obtained using the empirical SR method with regression slopes of 0.89 and root mean square error (RMSE) values less than 30 W m-2 at measurement height z = 2.85 and 3.60 m above the soil surface for time lag r = 1.0 s. Half-hourly SR H estimates using r = 1.0 s showed very good agreement with the FV and SLS estimates. The SR latent energy flux, estimated as a residual of the energy balance ë ESR , using time lag r = 1.0 s provided good estimates of EC ë E , FV ë E , and SLS ë E for z = 2.85 and 3.60 m. The performance of the three SR analysis approaches for estimating sensible heat flux above an Outeniqua Yellow wood stand, were evaluated for stable and unstable conditions. Under stable conditions, the SR analysis approach using the micro-front time produced more accurate estimates of SR H than the other two SR analysis approaches. For unstable conditions, the SR analysis approach based on structure functions, corrected for á using EC comparisons produced superior estimates of SR H . An average value of 0.60 is found for á for this study for measurements made in the roughness sublayer. The SR latent energy flux density estimates SR ë E using SR H based on structure function analysis gave very good estimates compared with eddy covariance ( EC ë E ) estimates, with slopes near 1.0 and RMSE values in the range of 30 W m-2. The SR ë E estimates computed using the SR analysis approach using the micro-front time also gave good estimates comparable to EC ë E . The SR and EC methods were used to estimate long-term sensible heat and latent energy flux over a fetch-limited heterogeneous surface (J. curcas). The results show that it is possible to estimate long-term sensible heat and latent energy fluxes using the SR and EC methods over J. curcas. Continuous measurements of canopy height and leaf area index measurements are needed to determine á . The weighting factor á was approximately 1 for placement heights between 0.2 and 0.6 m above the Jatropha tree canopy. The daily sensible heat and latent energy flux estimates using the SR analysis gave excellent estimates of daily EC sensible heat and latent energy fluxes. Measurements of sensible heat and estimates of the latent energy fluxes were made for a small reservoir, using the SR and EC methods. The SR sensible heat flux SR H estimates were evaluated using two air temperature time lags r = 0.4 and 0.8 s at 1.0, 1.3, 1.9, 2.5 m above the water surface. An average á value of 0.175 for time lag r = 0.4 s and 0.188 for r = 0.8 s was obtained. The SR H and EC H estimates were small (-40 to 40 W m-2). The heat stored in water was larger in magnitude (-200 to 200 W m-2) compared to the sensible heat flux. The SR and EC latent energy fluxes were almost the same in magnitude as the available energy, due to the small values of the sensible heat fluxes. The daily evaporation rate ranged between 2.0 and 3.5 mm during the measurement period. The SR method can be used for routine estimation of sensible heat and latent energy fluxes with a reliable accuracy, over a variety of surfaces: short canopies, tall canopies, heterogeneous surface, and open water surface, if the weighting factor á is determined. Alternatively, the SR method can be used to estimate sensible heat flux which is exempt from calibration using the other two SR analysis approaches, with additional measurement of wind speed for estimating friction velocity iteratively. The advantages of the SR method over other micrometeorological methods are the relatively low cost, easy installation and maintenance, relatively low cost for replicate measurements. These investigations may pave the way for the creation of evaporation stations from which real-time and sub-hourly estimates of total evaporation may be obtained relatively inexpensively.