• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Agricultural, Earth and Environmental Sciences
    • Environmental Hydrology
    • Masters Degrees (Environmental Hydrology)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Agricultural, Earth and Environmental Sciences
    • Environmental Hydrology
    • Masters Degrees (Environmental Hydrology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Procedures for estimating gross irrigation water requirement from crop water requirement.

    Thumbnail
    View/Open
    Thesis. (15.76Mb)
    Date
    2001
    Author
    Ascough, Gregory William.
    Metadata
    Show full item record
    Abstract
    The goal of irrigation is to supply sufficient water for crop growth to all areas within a field. Therefore, the uniformity of application of irrigation water is of great importance. The objectives of this study were to quantify the performance of irrigation systems under field conditions using standard evaluation techniques and to investigate the use of spatial statistics to characterise the spatial variability of application. The main objective was to develop techniques to estimate gross irrigation water requirement that incorporates the uniformity of application. Different practitioners have given different definitions to the criteria used to evaluate the performance of an irrigation system. A literature review was conducted to determine the current definitions used and the factors that affect these performance criteria. The theory and application of spatial statistics was investigated in order to charaterise spatial distribution of irrigation water. The spatial distribution of irrigation water under centre pivots was determined using field measurements. A number of centre pivot, sprinkler, floppy, drip and micro-irrigation systems were evaluated using standard techniques. The results from the evaluation of spatial data show that this approach is useful to determine a map of the distribution of applied irrigation water. Due to the smoothing characteristic of the spatial statistical method employed, the maps have a uniformity that is greater than in reality. The results from the standard evaluation techniques show that quick and representative results for the performance of an irrigation system can be obtained. The distribution uniformity has an affect on the efficiency of a system and should therefore be included in the calculation of the gross irrigation water requirement. The methods for these calculations are discussed. Further research needs to be conducted to determine actual distribution uniformities and application efficiencies for irrigation systems under various field conditions. This will provide useful standards to include in the calculation of gross irrigation water requirements.
    URI
    http://hdl.handle.net/10413/5273
    Collections
    • Masters Degrees (Environmental Hydrology) [97]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV