• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Mechanical Engineering
    • Masters Degrees (Mechanical Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Mechanical Engineering
    • Masters Degrees (Mechanical Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A hybrid reconfigurable computer integrated manufacturing cell for mass customisation.

    Thumbnail
    View/Open
    Thesis. (4.024Mb)
    Date
    2011
    Author
    Hassan, N.
    Metadata
    Show full item record
    Abstract
    Mass producing custom products requires an innovative type of manufacturing environment. Manufacturing environments at present do not possess the flexibility to generate mass produced custom products. Manufacturers’ rapid response in producing these custom products in relation to demand, yields several beneficial results from both a customer and financial perspective. Current reconfigurable manufacturing environments are yet neither financially feasible nor viable to implement. To provide a solution to the production of mass customised products, research can facilitate the development of a distinctive hybrid manufacturing cell, composed of characteristics inherent in existing manufacturing paradigms. Distinctive hybrid manufacturing cell research and development forms an environment where Computer Integrated Manufacturing (CIM) cells operate in a Reconfigurable Manufacturing environment. The development of this Hybrid Reconfigurable Computer Integrated Manufacturing (HRCIM) cell resulted in functionalities that enabled the production of mass customised products. Manufacturing characteristics of the HRCIM cell were composed of key Reconfigurable Manufacturing System (RMS) features and CIM capabilities. This project required hardware to be used in developing an integrated HRCIM cell. The cell consisted of storage systems, material handling equipment and processing stations. Specific material handling equipment was enhanced in its functionality by incorporating RMS characteristics to its existing structure. The hardware behaviour was coordinated from software. This facilitated the autonomous HRCIM cell behaviour which was derived from the mechatronic approach. The software composed of HRCIM events that were defined by its unique programming language. Highlighted software functionalities included prioritisation scheduling that resulted from customer order input. Performance data, extracted from each type of equipment, were used to parameterise a simulated HRCIM cell. During operation, the cell was frequently introduced to an irregular flow of different product geometries, which required different processing requirements. This irregularity represented mass customisation. The simulated HRCIM cell provided detailed manufacturing results. Significant results consisted of storage times, queueing times and cycle times.
    URI
    http://hdl.handle.net/10413/5110
    Collections
    • Masters Degrees (Mechanical Engineering) [131]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV