• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Life Sciences
    • Biotechnology
    • Genetics
    • Masters Degrees (Genetics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Life Sciences
    • Biotechnology
    • Genetics
    • Masters Degrees (Genetics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genetic characterization of resistance and virulence genes in Enterococcus species from animal isolates in Durban.

    Thumbnail
    View/Open
    Eberechi_Phoebe_Nnah_2018.pdf (1.209Mb)
    Date
    2018
    Author
    Eberechi, Phoebe Nnah.
    Metadata
    Show full item record
    Abstract
    Misuse of antimicrobials in animal agriculture has given rise to strains of bacteria that are resistant to multiple antibiotics. Enterococci bacteria have emerged among such antibiotic-resistant strains of bacteria and infections due to antibiotic-resistant bacteria is one of the world’s critical health challenge. Enterococci are gut commensal bacteria but are currently confirmed pathogenic bacteria responsible for so many hospital-acquired infections like urinary tract infections. The aim of this research was to detect the occurrence of Enterococcus species in chickens, cats, and dogs; their phenotypic and genotypic resistance to antibiotic drugs and virulence genes. Isolation of Enterococcus species was done using microbiological culture methods and confirmed using specific primers through Polymerase Chain Reaction (PCR). Presumptive Enterococcus growth on bile esculin agar was positive for 94% of all the isolates. Overall, 77.3% of the isolates were positive for Tuf gene (Enterococcus genus-specific gene). Enterococcus faecalis was detected at a higher frequency (40.4%; P <0.05) compared to Enterococcus faecium (8.5%). All the Enterococcus isolates were susceptible to High-Level Gentamicin on antimicrobial susceptibility test. Enterococcus species in chickens exhibited higher resistance to the antibiotics than the pets. Highest resistance was observed in Quinupristin/Dalfopristin (89.4%) followed by Vancomycin (87.9%), Rifampicin (85%), Ampicillin (76.6%), Erythromycin (72.3%), and Tetracycline (64.5%). Chloramphenicol (24.8%), High-Level Streptomycin Resistance (24.1%), and Ciprofloxacin (14.2%). Eighty-four percent (84%) of the Enterococcus isolates expressed multidrug resistance (MDR). Three of the four resistance genes screened were detected: 21.3%, 7.8% and 4.3% for Kanamycin, Streptomycin, and Vancomycin resistance genes respectively. Gentamicin resistance gene was absent in all the isolates. PCR detection of virulence gene showed highest prevalence in EfaA gene at 88.7% frequency followed by GelE (82.3%), ccf (81.6%), Esp (26.2%) and CylA (25.5%). All E. faecalis and E. faecium detected harbored multiple virulence genes. These findings show that chickens, cats, and dogs can be colonized by pathogenic Enterococci which harbor resistance and virulence genes and are multidrug resistant. It is therefore important that antibiotics are used prudently in animal husbandry to mitigate emergence and transfer of Enterococci pathogens to humans via food chain and direct contact of pets by their owners.
    URI
    https://researchspace.ukzn.ac.za/handle/10413/18016
    Collections
    • Masters Degrees (Genetics) [61]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV