• Login
    View Item 
    •   ResearchSpace Home
    • College of Health Sciences
    • School of Laboratory Medicine & Medical Sciences
    • Medical Microbiology
    • Masters Degrees (Medical Microbiology)
    • View Item
    •   ResearchSpace Home
    • College of Health Sciences
    • School of Laboratory Medicine & Medical Sciences
    • Medical Microbiology
    • Masters Degrees (Medical Microbiology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Light forge : a microfluidic high throughput platform for rapid and affordable detection of drug resistant strains of tuberculosis.

    Thumbnail
    View/Open
    Thesis (2.591Mb)
    Date
    2015
    Author
    Mbano, Ian Maheti.
    Metadata
    Show full item record
    Abstract
    Tuberculosis is one of the most deadly infectious diseases currently plaguing the global community. Unfortunately, lack of accessible, reliable and affordable diagnostic tools in the high disease burden, and resource poor regions such as Sub-Saharan Africa has hampered efforts to eradicate the epidemic. This study documents the development of a microfluidic platform called Light Forge, which is capable of detecting genetic drug resistance signatures in M.tuberculosis DNA. The first phase of this study involved a molecular drug susceptibility assay on 7 strains of M.tuberculosis using the high resolution melt analysis at the rpoB, katG, mab-inhA and gyrA loci with the Light Cycler96 . These findings compared with phenotypic drug susceptibility testing and Sanger sequencing. The results from the preliminary tests showed that the commercial system could detect positive strains at sensitivity estimates of 86%, 17% , 0% and 100% for rpoB, katG, mab-inhA and gyrA respectively. Detection of non-synonymous mutation in gyrA region for all test strains halted further testing. The rpoB gene was selected for on chip profiling with the Light Forge system due to the higher sensitivity. The results from the Light Forge showed that the system was capable of detecting test strains with 100% sensitivity, with modest reproducibility and correspondence with the phenotypic drug susceptibility profiles and the sequencing results. A microfluidic TB assay based on the Light Forge system is on the horizon based on the findings of the study. However, more work is required to incorporate other genes and ultimately design the best-equipped device for the clinical setting.
    URI
    http://hdl.handle.net/10413/14650
    Collections
    • Masters Degrees (Medical Microbiology) [42]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV