• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Statistics
    • Masters Degrees (Statistics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Statistics
    • Masters Degrees (Statistics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting electricity demand using univariate time series volatility forecasting models : a case study of Uganda and South Africa.

    Thumbnail
    View/Open
    Thesis (1.652Mb)
    Date
    2016
    Author
    Nakiyingi, Winnie.
    Metadata
    Show full item record
    Abstract
    Different sectors of economies are significantly affected by the supply of electricity. However, with the available limited resources, supply and demand of electricity in Africa are strongly correlated. In order to efficiently improve electricity supply, its demand has to be accurately predicted. In this research, we analyse electricity demand in two cases; peak monthly electricity demand in Uganda from January 2008 to December 2013, and daily electricity demand for South Africa from 1st January 2004 to 30th June 2008, using ARIMA and ARCH/GARCH models. We use this data to forecast future demand for both countries in order to help policy makers in the electricity sector make decisions for sustainable development of both countries. GARCH models are introduced to correct the volatility found in South Africa's daily demand data. Results from the study show that; for Uganda, a seasonal ARIMA(0,0,0)(1,1,1)[12] model describes the data better, with RMSE of 4.872027 and MAPE of 2.347028, and gives better forecasts which display a continued increase in electricity demand for months ahead. For South African data, a seasonal ARIMA(1,0,1)(0,1,0)[365] describes the data better but a standard GARCH(1,1) with normally distributed error terms accommodates volatility. Therefore, a combination of the two models produces better forecast accuracy.
    URI
    http://hdl.handle.net/10413/13957
    Collections
    • Masters Degrees (Statistics) [87]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV