THE ROLE OF SOLUBLE E-SELECTIN AND THROMBOSPONDIN-2

IN

HIV ASSOCIATED PREECLAMPSIA

By

GIRIJA NAIDOO

Submitted in partial fulfilment for the degree of

MASTER OF MEDICAL SCIENCE

in the

Discipline of Optics and Imaging

Doris Duke Medical Research Institute

College of Health Sciences

University of KwaZulu-Natal

Durban, South Africa

2019
PREFACE

This study represents original work by the author and has not been submitted in any other form to another University. Where use was made of the work of others, it has been duly acknowledged in the text.

The research described in this dissertation was carried out in the Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa under the supervision of Professor T Naicker.

__________________________ __________________________
Girija Naidoo Professor Thajasvarie Naicker

(Student number: 215028434) (Supervisor)
DECLARATION

I, Girija Naidoo declare that:

i. The research reported in this dissertation, except where otherwise indicated is my original work.

ii. This dissertation has not been submitted for any degree or examination at any other university.

iii. This dissertation does not contain other person’s data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.

iv. This dissertation does not contain other persons writing, unless specifically acknowledged as being sourced from other researchers. Where other sources have been quoted, then:
 a. Their words have been rewritten but the general information attributed by them has been referenced.
 b. Where their exact words have been used their writing has been placed inside quotation marks and referenced.

v. Where I have reproduced a publication of which I am the author, co-author, I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications.

vi. This dissertation does not contain text, graphics, or tables copied and pasted from the internet, unless specifically acknowledged and the source being detailed in the dissertation and the reference sections.

Signed: __________________________ Date:

iii
DEDICATION

To my mother Meryl for her continuous love, support, motivation and selfless sacrifice

To my father Karun for all his patience, love, care and constant encouragement

To my Most Revered Sri Venkateswara Swamy of Tirumala Hills, Tirupati, without whom,
this thesis would not be possible.
ACKNOWLEDGEMENTS

- Professor T Naicker (Supervisor) for her invaluable guidance, advice, motivation and endless support.

- Optics and Imaging Centre, Doris Duke Medical Research Institute (DDMRI), College of Health Sciences.

- Placental Group for the use of their samples.

- Dr C Connolly, UKZN Biostatistician for advice and statistical contributions.

- Miss Y Pillay, Mrs OP Khaliq, Miss S Padayachee, Mrs S Thakoordeen-Reddy, Miss L Nandlal and Miss D Varaden for their guidance and assistance.

- Mr Sibusiso Magwaza and Mr Siyabonga Nxumalo for their kind assistance in language translation.

- My parents, Karun and Meryl Naidoo and my brother, Rishy Naidoo for their patience, unconditional love, support and encouragement.

- Sadhguru Sri Sharavana Baba for his spiritual guidance and knowledge.

- Lastly and most importantly, All Praise and Glory to God for always standing beside me, guiding me and being an infinite source of strength and courage in my life.
FUNDING

This study was funded by the

- College of Health Sciences, UKZN (Masters Scholarship 2019)
- Productivity Unit Award of Professor T Naicker
PUBLICATIONS

TABLE OF CONTENTS

PREFACE .. ii
DECLARATION .. iii
DEDICATION ... iv
ACKNOWLEDGEMENTS ... v
FUNDING ... vi
PUBLICATIONS ... vii
LIST OF FIGURES ... x
LIST OF TABLES .. xi
LIST OF ABBREVIATIONS .. xii
ABSTRACT ... xiii
ABSTRACT (ISIZULU) .. xv
CHAPTER 1 ... 1

INTRODUCTION

1.1 Problem statement .. 2

1.2 Human Immunodeficiency Virus (HIV) ... 2

1.3 Preeclampsia ... 3

1.3.1 Preeclampsia Classification .. 3

1.3.2 Epidemiology .. 3

1.3.3 Aetiology of preeclampsia .. 3

1.3.4 Pathogenesis of preeclampsia ... 4

1.3.5 Immune maladaptation ... 5

1.3.6 Angiogenesis ... 7

1.3.7 Gene expression and preeclampsia .. 7

1.3.8 Preeclampsia risk factors ... 8

1.3.9 Complications of preeclampsia .. 9

1.4 HIV-associated preeclampsia .. 10

1.5 Selectins .. 11

1.6 The function of soluble E-selectin .. 12

1.7 Thrombospondins ... 14

1.7.1 Thrombospondin-1 and -2 .. 15

1.7.2 The function of Thrombospondin-2 .. 15
1.8 Aim and objectives of this study ... 16
CHAPTER 2 .. 19
CHAPTER 3 .. 44
CHAPTER 4 .. 72
 4.1 SYNTHESIS .. 72
 4.2 CONCLUSION .. 76
 4.3 FUTURE RESEARCH ... 77
CHAPTER 5 .. 79
REFERENCES ... 80
APPENDICES ... 88
APPENDIX 1 ... 89
APPENDIX 2 ... 91
LIST OF FIGURES

CHAPTER 1

Figure 1: The stages of progression in preeclampsia 4
Figure 2: Mechanisms of the immune system in preeclampsia 5
Figure 3: The process of angiogenesis 6
Figure 4: Proposed algorithm for the management of preeclampsia 8
Figure 5: Structural components of selectin family members 10
Figure 6: Leukocyte recruitment and migration 11
Figure 7: Modular structures of Thrombospondin (THBS) family members 13

CHAPTER 2

Figure 1A-C: Serum concentrations of TSP-2 (ng/ml) 32-33

CHAPTER 3

Figure 1: (a) Serum concentrations of sE-selectin (ng/ml): Normotensive (N) and Preeclampsia (PE) groups. 54
Figure 1: (b) Serum concentrations of sE-selectin (ng/ml): HIV-negative (HIV-) and HIV-positive (HIV+) groups. 54
Figure 2: (a) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-negative (PE-) and Normotensive HIV-negative (N-) groups. 55
Figure 2: (b) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-positive (PE+) and Normotensive HIV-positive (N+) groups. 55
Figure 2: (c) Serum concentrations of sE-selectin (ng/ml): Normotensive HIV-negative (N-) and Normotensive HIV-positive (N+) groups. 56
Figure 2: (d) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-negative (PE-) and Preeclamptic HIV-positive (PE+) groups. 56
Figure 2: (e) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-positive (PE+) and Normotensive HIV-negative (N-) groups. 57
LIST OF TABLES

CHAPTER 1

Table 1: Predisposing risk factors associated with preeclampsia development 7

CHAPTER 2

Table 1: Patient demographic and clinical characteristics across study groups 30
Table 2: Serum concentrations (ng/ml) of TSP-2 across all study groups 31

CHAPTER 3

Table 1: Patient demographics in normotensive HIV negative, normotensive HIV positive, preeclamptic HIV negative and preeclamptic HIV positive pregnant women 52
Table 2: Serum concentrations (ng/ml) of sE-selectin Across All Groups 53
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Adhesion Molecules</td>
<td>CAMs</td>
</tr>
<tr>
<td>Early onset Preeclampsia</td>
<td>EOPE</td>
</tr>
<tr>
<td>Haemolysis, Elevated Liver enzymes, Low Platelet count</td>
<td>HELLP</td>
</tr>
<tr>
<td>Highly Active Antiretroviral Therapy</td>
<td>HAART</td>
</tr>
<tr>
<td>Human Immunodeficiency Virus</td>
<td>HIV</td>
</tr>
<tr>
<td>Interleukin-1</td>
<td>IL-1</td>
</tr>
<tr>
<td>Messenger RNA</td>
<td>mRNA</td>
</tr>
<tr>
<td>MicroRNAs</td>
<td>miRNAs</td>
</tr>
<tr>
<td>Placental Growth Factor</td>
<td>PI GF</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td>PE</td>
</tr>
<tr>
<td>Soluble Endoglin</td>
<td>sEng</td>
</tr>
<tr>
<td>Soluble E-selectin</td>
<td>sE-selectin</td>
</tr>
<tr>
<td>Soluble Fms-like Tyrosine Kinase 1</td>
<td>sFlt1</td>
</tr>
<tr>
<td>South Africa</td>
<td>SA</td>
</tr>
<tr>
<td>Thrombospondin</td>
<td>TSP</td>
</tr>
<tr>
<td>Thrombospondin-2</td>
<td>TSP-2</td>
</tr>
<tr>
<td>Tumour Necrosis Factor-α</td>
<td>TNF-α</td>
</tr>
<tr>
<td>Vascular Endothelial Growth Factor</td>
<td>VEGF</td>
</tr>
</tbody>
</table>
ABSTRACT

Objective: HIV infection and hypertensive disorders of pregnancy are common causes of maternal mortality in South Africa. Preeclampsia (PE) is a pregnancy-specific disorder that contributes to the majority of maternal deaths caused by hypertension in pregnancy. Reduced placentation, endothelial dysfunction of multiple organs and inflammation occur during PE. Endothelial cells express the adhesion molecule soluble E-selectin (sE-selectin) in response to inflammation. This molecule facilitates the cohesion of leukocytes to endothelial cells.

In PE, endothelial cell activation and dysfunction cause endothelial cells to secrete the glycoprotein thrombospondin-2 (TSP-2). TSP-2 affects cellular functions, plays a regulatory role in the extracellular matrix and is an inhibitor of angiogenesis. In PE, an imbalance of angiogenic and anti-angiogenic factors result in dysregulation of angiogenesis.

Considering the high rate of maternal mortality in South Africa due to HIV infection and PE, the aim of this study was to investigate the role of sE-selectin and TSP-2 in HIV-associated preeclamptic and normotensive pregnancies.

Method: The study population (n = 72) comprised of normotensive pregnant (n = 36) and preeclamptic (n = 36) groups. These groups were further stratified by HIV status (negative vs. positive). The Bio-Plex immunoassay technique was used to measure serum concentrations of sE-selectin and TSP-2.

Results: There was a statistical difference observed in gestational age, systolic blood pressure, diastolic blood pressure and baby weight across the study groups (p < 0.0001).

sE-selectin: Based on pregnancy type and HIV status, levels of serum sE-selectin were significantly increased in preeclamptic HIV-negative compared to normotensive HIV-negative groups (p = 0.0070).

TSP-2: Regardless of HIV status and based on pregnancy type, TSP-2 levels were significantly elevated (p = 0.0429) in preeclamptic compared to normotensive groups. Based on HIV status, a significant upregulation (p = 0.0095) of TSP-2 was noted in HIV-positive compared to HIV-negative groups. Furthermore, based on pregnancy type and HIV status, levels of TSP-2 were statistically significant across all study groups (p = 0.0229).
Conclusion: This study highlights the role of sE-selectin and TSP-2 in preeclamptic women compromised by HIV infection and demonstrates the potential biomarker value of sE-selectin and TSP-2 in the early diagnosis of preeclampsia.
ABSTRACT (ISIZULU)

Uma une-PE, ukusebenza nokungasebenzi kwezicubu zamaphaphu kwenza ukuthi lezi zicubu zikhqiqize uketshezi olulimaza amaphrotheni i-thrombospondin-2 (TSP-2). I-TSP-2 iphazamisa ukusebenza kwezicubu zamaphaphu, idlale indima ekuphazamisekeni kokwakheka kwezicubu zamaphaphu futhi icindezela uketshezi olusiza ukuvuselela izicubu zamaphaphu, i-angiogenesis. Uma une-PE, ukungahambisani ngendlela kokwakhela nokungakheki kwezicubu ezintsha emaphashini kuholela ekutheni i-angiogenesis ingabe isasebenza ngendlela.

Ngokubona amazinga aphezulu okushona kwabantu bebeletha eNingizimu Afrika ngenxa yokuhaqwa yiHIV nePE, inhloso yalolu cwaningweni (n = 72) bahlanganise amaqoqo abantu abakhulelwe abangenawo umfutho wegazi ophezulu nabangahaqekile (n = 36). Lawa maqoqo aphinde ahlukaniswa ngesimo sawo seHIV (abahaqekile nabangahaqekile). Kusetshenziswe uhlelo lokubheka isibalo samasosha omzimba Iwe-Bio-Plex ukuze kubhekwe ubungako be-sE-selectin ne-TSP-2 egazini kwababambe iqhaza.

Imiphumela: Ngokwemininingwane eeqoqiwe ubonakele umehluko uma kuqhathaniswa izikhathi zokukhulelwa, umfutho wegazi odalwa yizicubu nalowo odalwa wukusebenza kwemithambo kanjalo nesisindo sengane kuwona wonke amaqoqo abeyingxenye yocwaning (p < 0.0001).
Isiphetho: Lolu cwaningo lugqamisa iqhaza le-sE-selectin ne-TSP-2 kwabiesifazane abanenkinga yomfutho wegazi ophezulu abaphinde bahaqwe yiSandulela-ngculazi futhi luvuza namathuba okuthi kube nendlela eqondile yokuthola ubungako be-sE-selectin ne-TSP-2 ekuhlolweni kwe-PE uma isaqala.
CHAPTER 1
INTRODUCTION

1.1 Problem statement

Currently in South Africa, there is a high prevalence of maternal deaths due to HIV infection and hypertensive disorders in pregnancy. Additionally, it has also been suggested that immunosuppressive conditions such as HIV infection may impact on certain pregnancy related complications (Kalumba et al., 2013). Preeclampsia (PE) is a pregnancy specific condition that results in endothelial dysfunction, excessive inflammation and dysfunction of multiple organs (Gupte and Wagh, 2014). The only effective treatment for PE is expulsion of the fetus and placenta via delivery (Pillay et al., 2019). Therefore, research into the duality of HIV infection and PE is of immense importance and warrants immediate attention in view of the high incidence of maternal deaths in South Africa.

1.2 Human Immunodeficiency Virus (HIV)

HIV is a global health concern with approximately 36.9 million people living with HIV infection. Africa is one of the more severely affected regions in the world with an estimated 25.7 million people being infected (WHO, 2018). In South Africa (SA) the prevalence of HIV infection is exceedingly high with 7.97 million people being infected (StatsSA, 2019). Furthermore, a serious dilemma to gynaecologists is the fact that in 2019, one-fifth of women in the reproductive ages of 15 to 49 years are HIV positive (StatsSA, 2019). In pregnancy, HIV infection and hypertensive disorders are the commonest sources of maternal mortality and morbidity (Kalumba et al., 2013).

The Human Immunodeficiency Virus (HIV) utilizes a variety of mechanisms to counteract and evade the immune system thereby developing into a later stage of disease known as the acquired immune deficiency syndrome (AIDS) (Naif, 2013). Immune cells are specifically targeted and attacked by HIV within the immune system; thereby impairing their function (WHO, 2018). HIV infects and destroys T cells by binding to CD4+ proteins on the cell surface (Naif, 2013). The resulting immunodeficiency weakens the immune system and increases susceptibility to infections, diseases and certain cancers (WHO, 2018).
1.3 Preeclampsia

1.3.1 Preeclampsia Classification

Preeclampsia is a hypertensive disorder of pregnancy (Padayachee et al., 2019). The clinical stages of this disorder are characterised by new-onset high blood pressure (systolic blood pressure ≥140mmHg or diastolic blood pressure ≥90mmHg) and proteinuria (urinary protein ≥300mg per 24 hours) with such characteristics developing at or after 20 weeks of gestation (Brown, 2018). Preeclampsia may be classified by gestational age into two main subtypes known as early-onset preeclampsia (EOPE) and late-onset preeclampsia, with early-onset preeclampsia being a major cause of maternal and neonatal mortality and morbidity (Gathiram and Moodley, 2016).

1.3.2 Epidemiology

Preeclampsia is a primary obstetric concern affecting approximately 2-8% of pregnancies globally (Salimi et al., 2019). In South Africa, maternal deaths due to hypertension in pregnancy are 14.8%, of which 83% are attributed to preeclampsia (NCCEMD, 2018). Specifically, the prevalence of preeclampsia in KwaZulu-Natal is 12% (NCCEMD, 2018).

1.3.3 Aetiology of preeclampsia

During normal, uncomplicated pregnancies, cytrophoblasts invade the myometrium of the uterus and remodel the spiral arteries (Uzan et al., 2011). Spiral arteries become modified into low-resistance, high capacity vessels due to the replacement of the media muscle fibers with a fibrinoid type material (Uzan et al., 2011). These flaccid, large-bore vessels then decrease resistance to maternal blood flow thus allowing the efficient supply of blood (containing oxygen and nutrients) to the fetus, during a process referred to as placentation (Naicker et al., 2013; Geldenhuys et al., 2018; Armaly et al., 2018).

The placenta creates an appropriate fetal environment (Salimi et al., 2019) which is crucial for growth and development of the fetus within the uterus (Peixoto et al., 2018). During pregnancy, the maternal blood supply is utilised by the placenta to enable the growth of the fetus by facilitating gaseous exchange, uptake of nutrients and elimination of waste (Belkacemi et al., 2015).
Abnormal placentation or impairment of placentation may result in restriction of fetal growth, as well as preeclampsia (Peixoto et al., 2018). In preeclampsia, cytotrophoblast invasion is decreased and the physiological transformations of spiral arteries are limited to the decidua (Naicker et al., 2003). Early-onset preeclampsia in particular, adversely affects both the mother and fetus where growth within the uterus is restricted due to a dysfunctional placenta (Peixoto et al., 2018). Mechanisms such as spiral artery thrombosis and oxidative stress within the placenta are also suggested to be involved in the pathogenesis of preeclampsia (Salimi et al., 2019).

1.3.4 Pathogenesis of preeclampsia

In EOPE, cytotrophoblasts are unable to invade the lining of the uterus (Geldenhuys et al., 2018) and the remodelling of myometrial spiral arteries is defective (Gathiram and Moodley, 2016). Late-onset preeclampsia arises due to placental ischaemia with the resultant increase in oxidative stress (Geldenhuys et al., 2018). The ischaemic placenta causes increased trophoblast microparticle release, resulting in enhanced pro-inflammatory cytokine induction (Raghupathy, 2013). The ‘systemic’ stage of preeclampsia ensues as a result of endothelial dysfunction (Figure 1) (Raghupathy, 2013).
1.3.5 **Immune maladaptation**

Paternal, fetal, as well as placental antigens, are foreign to the immune system of the mother during pregnancy. Therefore, the regulation of immunological processes prevents fetal rejection and also defends the mother against infection (Geldenhuys *et al.*, 2018). The immune system of the mother permits fetal exposure to cellular as well as humoral components, thus playing an important role during pregnancy (Lokki *et al.*, 2018).

Usually Th2 polarisation occurs during pregnancy, where the balance between Th1 and Th2 phenotypes shift toward a Th2 immune response (Rana *et al.*, 2019). However, during preeclamptic pregnancies, there is an abnormal shift from the Th2 phenotype to Th1 (Rana *et al.*, 2019). Since downregulation of this Th1 immune response does not occur, there is an increase in Th1 pro-inflammatory cytokines such as interleukin-18 and tumour necrosis factor-alpha (TNF-α) (Geldenhuys *et al.*, 2018). These cytokines cause trophoblast cells to undergo apoptosis which leads to inadequate invasion of trophoblast cells (Geldenhuys *et al.*, 2018).
2018; Rana et al., 2019). This pro-inflammatory state affects immune tolerance and leads to dysregulation of the immune system in preeclampsia (Geldenhuys et al., 2018).

The complement system plays a vital role in maintaining immune tolerance; this involves activation as well as regulation of proteins which enable differentiation between self and foreign cells (Lokki et al., 2018). The complement system is also involved in the elimination of pathogens and removal of debris by facilitating phagocytosis however, activation of this system can result in destruction of tissues, cell death and inflammation (Figure 2) (Lokki et al., 2018).

Figure 2: Mechanisms of the immune system in preeclampsia. In preeclampsia, mechanisms of the immune system play a role in both the initial and advanced pregnancy stages. Trophoblast cell invasion occurs at the bed of the placenta or within spiral arteries of the uterus. The inability of the complement system to identify these trophoblasts can result in shallow placentation and also compromise remodelling of maternal spiral arteries. During advanced stages of pregnancy, activating the complement system enables clearing of additional debris from syncytiotrophoblasts by phagocytosis.
and may also lead to placental inflammation being induced. Activation of the immune system can also worsen dysfunction of the endothelium, along with a disturbance in the function of coagulation, thus causing a shift from Th2- to Th1- cells. Adapted from (Lokki et al., 2018).

1.3.6 Angiogenesis

During a healthy pregnancy, angiogenesis plays a vital role in meeting the increasing fetal metabolic requirements as well as supporting growth and overall health of the fetus (Murthi et al., 2014). The process of angiogenesis involves modification of differentiated endothelial cells leading to the formation of new blood vessels from pre-existing vessels (Figure 3) (Belkacemi et al., 2015). The process of angiogenesis is controlled by pathways in which the expression of genes and proteins occur; dysregulation of this expression is suggested to be associated with preeclampsia development (Peixoto et al., 2018).

![Angiogenic Process](image)

Figure 3: The process of angiogenesis. Adapted from (Belkacemi et al., 2015).

1.3.7 Gene expression and preeclampsia

MicroRNAs (miRNAs) are regulatory molecules that have the ability to suppress and upregulate gene expression within various gene networks (Nejad et al., 2019). These small non-coding molecules of RNA bind to a target via incomplete attachment which is complementary (Salimi et al., 2019) (Nejad et al., 2019). The miRNAs target messenger RNA (mRNA) in order to regulate the expression of genes (Salimi et al., 2019), where each mRNA is targeted by a number of different miRNAs (Nejad et al., 2019). Due to their regulation of
gene expression, miRNAs play a vital role during the process of inflammation, angiogenesis and apoptosis, which are dysfunctional in preeclampsia (Salimi et al., 2019).

Placental processes, like the invasion of trophoblast cells, as well as immune activation, are regulated by miRNAs (Salimi et al., 2019). During the gestation period, the placenta expresses miRNAs. The expression of these miRNAs is altered during the different pregnancy stages (Salimi et al., 2019). Modified miRNA levels have also been detected within the placenta of preeclamptic individuals (Salimi et al., 2019). Preeclampsia is a multi-gene, polygenic disorder of pregnancy (Peixoto et al., 2018). Hence, the pathogenesis of preeclampsia may be affected by genetic alterations (Salimi et al., 2019).

1.3.8 Preeclampsia risk factors

There are multiple predisposing risk factors which increase the possibility of developing preeclampsia (Table 1) (Armaly et al., 2018). Conditions like antiphospholipid syndrome, chronic renal disease and previous preeclampsia are some of the risk factors associated with preeclampsia (Armaly et al., 2018). Another factor is obesity which results in inflammation, insulin resistance and increased risk of developing preeclampsia (Lokki et al., 2018). Furthermore, studies have shown that the onset of preeclampsia is higher in women that have fathers born from preeclamptic pregnancies (Salimi et al., 2019).

Table 1: Predisposing risk factors associated with preeclampsia development. CI = confidence interval; OR = odds ratio; RR = relative risk. Adapted from (Armaly et al., 2018).
1.3.9 Complications of preeclampsia

Common maternal complications associated with severe cases of preeclampsia include placental abruption, acute kidney injury, pulmonary edema and the HELLP (haemolysis, elevated liver enzymes, low platelet count) syndrome (Machado et al., 2012). The HELLP syndrome is also suggested to have similar mechanisms to preeclampsia, such as a decrease of pro-angiogenic factors, as well as an elevation of anti-angiogenic factors (Machado et al., 2012). Restriction of fetal growth, neural damage caused by hypoxia and neonatal death are some of the fetal complications associated with severe cases of preeclampsia (Machado et al., 2012). The management of preeclampsia includes discontinuance of pregnancy (< 24 weeks), expectant management (24-32 weeks) or delivery (≥ 32 weeks) (Figure 4) (Machado et al., 2012).
1.4 HIV-associated preeclampsia

Both HIV infection and preeclampsia are common causes of maternal mortality (Moodley et al., 2013). During normal pregnancy, an altered immune sensitivity arises, thus permitting foetal tolerance as well as maternal resistance to infection, while preeclampsia exhibits an...
immune response which is exaggerated (Thakoordeen et al., 2017). This exaggerated immune response is presumed to be neutralised by the decreased immune activity and lowered immune response associated with HIV infection (Thakoordeen et al., 2017).

The correct use of antiretroviral therapy inhibits replication of HIV, improves the function of the immune system and decreases the risk of developing complications associated with AIDS (Deeks et al., 2013). It is a standard of care practice in SA to receive highly active antiretroviral therapy (HAART) to treat HIV infection during pregnancy (Phoswa et al., 2018). HAART has the ability to decrease replication of HIV in the mother, along with reducing HIV transmission from mother to offspring (Pillay et al., 2019).

The link between HIV infection, the effect of HAART and the development of preeclampsia is conflicting (Pillay et al., 2019). The administration of HAART induces reconstitution of the immune system, restoring the maternal immune response, which as a result, makes women more susceptible to developing preeclampsia (Moodley et al., 2013). The risk of developing preeclampsia is supposedly higher in HIV-infected women compared to women that do not have HIV (Phoswa et al., 2018). Preeclampsia is also purported to be more prevalent in HIV-infected patients on HAART compared to untreated HIV-infected patients due to reconstitution of the immune system initiated by HAART (Phoswa et al., 2018).

1.5 Selectins

Selectins are a family of calcium-dependent glycoproteins which bind to a carbohydrate ligand and facilitate the movement of leukocytes from blood vessels into tissue (Feng, 2017). The selectin family consists of L-selectin, E-selectin and P-selectin (Vestweber, 1999). L-selectin is expressed by leukocytes and plays an essential role in the rolling of lymphocytes, while E-selectin and P-selectin are expressed by activated platelets and endothelial cells, respectively (Feng, 2017). The shared structural components of these selectins include a lectin-like domain at the NH2-terminus, an epidermal growth factor-like domain (EGF), various short consensus repeat domains (CRs), a single transmembrane region and a C-terminal cytoplasmic domain (Figure 5) (Feng, 2017) (Silva et al., 2018). Soluble E-selectin (sE-selectin) in specific, is a cleavage form of E-selectin that is membrane-bound, hence the transmembrane domain and cytoplasmic domain are absent (Oh, 2007).
Figure 5: Structural components of selectin family members. The structural domains include a C-type lectin domain, an epidermal growth factor-like domain (EGF), a varying number of short consensus repeats, a transmembrane region and a cytoplasmic domain. Adapted from (Silva et al., 2018).

1.6 The function of soluble E-selectin

The function of adhesion molecules includes the regulation of leukocyte migration into the perivascular tissue as well as the attachment of leukocytes to endothelial cells (Carty et al., 2012). Interaction between leukocytes and the endothelium is facilitated by sE-selectin during leukocyte recruitment (Figure 6) (Hoffman et al., 2018; Silva et al., 2018).
Figure 6: Leukocyte recruitment and migration. E-selectin expressed on the endothelial cell surface binds to the E-selectin ligand on the surface of leukocytes (Step 1- Tethering/Rolling). Chemokines (released by macrophages) bind to chemokine receptors found on the surface of leukocytes, resulting in the activation of integrins (Step 2- Integrin Activation). Active integrins bind to integrin ligands on the surface of leukocytes which results in adhesion of the leukocyte to the endothelium (Step 3- Firm Adhesion). The leukocyte then migrates across the endothelial barrier towards surrounding tissue (Step 4- Extravasation). EC-endothelial cell. Adapted from (Silva et al., 2018).

The endothelium also regulates the activation and adhesion of neutrophils via cell adhesion molecule expression. One of the cell adhesion molecules (CAMs) that facilitate the adhesion of neutrophils to the endothelium is sE-selectin (Lyall and Greer, 1996). Neutrophil activation in many diseases including preeclampsia is associated with elevated CAM expression (Lyall and Greer, 1996). It is therefore plausible that CAMs may play a role in the activation of neutrophils which arises during preeclampsia. Since sE-selectin is an adhesion molecule it is predictable that its concentration would be higher in preeclamptic women compared to non-pregnant women (Lyall and Greer, 1996).

Cytokines such as interleukin-1 (IL-1) or TNF-α, as well as lipopolysaccharide, trigger the expression of sE-selectin (Vestweber, 1999), resulting in increased levels of this glycoprotein possibly due to the activation and damage of endothelial cells (Carty et al., 2012). The anti-inflammatory cytokine interleukin-10 suppresses pro-inflammatory cytokines like TNF-α (Raghupathy, 2013). The expression of sE-selectin also can be inhibited by interleukin-4.
while transforming growth factor-β and glucocorticoids have the ability to counteract sE-selectin expression induced by cytokines (Vestweber, 1999).

1.7 Thrombospondins

The thrombospondin (TSP) family are a group of extracellular glycoproteins which include TSP-1, -2, -3, -4 and -5 (Lawler, 2000). These proteins aid in intercellular communication as well as communication between cells and the extracellular matrix (Lawler, 2000). They also play a role in the remodelling of vasculature, as well as cardiac remodelling (Mirochnik et al., 2008). Thrombospondin-1 and 2 have similar structural domains (Mirochnik et al., 2008) that comprise of an N-terminal domain (THBS-N), an oligomerization domain, a von Willebrand Factor type C (VWC) domain, three thrombospondin repeats (TSRs), and a signature domain comprising three epidermal growth factor (EGF)-like repeats, a calcium-binding wire and a lectin-like C-terminal globe (Figure 7) (Carlson et al., 2008).

Figure 7: Modular structures of Thrombospondin (THBS) family members. THBS-1 and -2 comprise Group A and form trimers. THBS-3, -4, and -5 comprise Group B and form pentamers. The modules are coloured as follows: THBS-N (red), oligomerization coiled-coil (orange), VWC (yellow), TSR1–3 (shades of green), EGF-like repeats (shades of blue-green, with predicted or known calcium-binding repeats coloured in the darkest shade), calcium-binding wire (blue), lectin-like module (purple). The N- and C-termini are labelled. Adapted from (Carlson et al., 2008).
1.7.1 Thrombospondin-1 and -2

Thrombospondin-1, which is located in the extracellular space stimulates vascular smooth muscle cell migration while also suppressing endothelial cell motility as well as chemotaxis (Mirochnik et al., 2008). Thrombospondin-1 promotes apoptosis in T cells and endothelial cells (Mirochnik et al., 2008). This glycoprotein also has the ability to interact and bind to receptors including CD47, CD36 and certain integrins (Krady et al., 2008).

In addition to TSP-1 and -2 sharing structural similarities, they also have functional homology (Mirochnik et al., 2008). One such function is the ability of both TSP-1 and -2 to interact with the low-density lipoprotein receptor, which leads to the inhibition of microvascular endothelial cell division (Krady et al., 2008). Thrombospondin-1 was first recognised as an angiogenesis inhibitor; however, TSP-2 also inhibits angiogenesis (Krady et al., 2008) by affecting proliferation and causing endothelial cells to undergo apoptosis (Stenczer et al., 2011). While TSP-1 and -2 display anti-angiogenic properties which aid in the regulation of angiogenesis, studies have suggested that these proteins also regulate tumour angiogenesis (Krady et al., 2008).

1.7.2 The function of Thrombospondin-2

Thrombospondin-2 is secreted mainly by endothelial cells. This glycoprotein plays a regulatory role in the extracellular matrix and the process of angiogenesis (Mirochnik et al., 2008). Angiogenesis facilitates placental development by enhancing circulation and flow of blood within the placenta, which contributes to effective placentation (Geldenhuys et al., 2018).

However, in preeclampsia, an imbalance of angiogenic and anti-angiogenic placental factors exists. More specifically, an increase in anti-angiogenic proteins such as soluble Fms-like Tyrosine Kinase 1 (sFlt1) and soluble Endoglin (sEng) is evident with a concomitant downregulation of vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) (Govender et al., 2015; Ngene et al., 2019).

The expression of sFlt1 occurs on endothelial, inflammatory and trophoblast cells (Lokki et al., 2018). Cells of the placenta also secrete sFlt1 (Geldenhuys et al., 2018). In order to fulfil its anti-angiogenic role, the sFlt1 protein blocks PIGF and VEGF signalling, therefore dysregulating angiogenesis. Adapted from (Nejad et al., 2019).
Although TSP-2 plays a role in angiogenesis regulation, healing of wounds and haemostasis, its anti-angiogenic properties affect platelet aggregation, stimulate endothelial cell apoptosis and restrict proliferation (Stenczer et al., 2011; Krady et al., 2008). Thrombospondin-2 also displays anti-inflammatory properties by stimulating anti-inflammatory regulatory T-cells which aid in the suppression of inflammation (Nakao and Morita, 2019).

1.8 Aim and objectives of this study

HIV infection and PE have a substantial impact on the high prevalence rate of maternal mortality and morbidity in South Africa. There is a dire paucity of data on the effect of sE-selectin and TSP-2 in the duality of HIV infection and PE hence the aim of this study was to determine the role of soluble E-selectin and thrombospondin-2 in the duality of HIV associated preeclampsia.

Objectives of the study include:

- To determine the effect of pregnancy type (normotensive versus preeclampsia) on the concentration of sE-selectin, irrespective of HIV status.
- To determine the effect of pregnancy type (normotensive versus preeclampsia) on the concentration of thrombospondin-2, irrespective of HIV status.
- To determine the effect of HIV status (HIV positive versus HIV negative) on the concentration of sE-selectin, irrespective of pregnancy type.
- To determine the effect of HIV status (HIV positive versus HIV negative) on the concentration of thrombospondin-2, irrespective of pregnancy type.
- To compare and contrast the concentration of sE-selectin across the study population.
- To compare and contrast the concentration of thrombospondin-2 across the study population.
To correlate maternal clinical and demographic findings with sE-selectin and thrombospondin-2 across the study population.
CHAPTER 2
Original Article: The role of thrombospondin-2 (TSP-2) in HIV-associated preeclampsia

Chapter 2 is an original article submitted to European Journal of Obstetrics & Gynecology and Reproductive Biology, which is a DOHET accredited international journal. It investigates the role of thrombospondin-2 (TSP-2) in HIV-associated preeclampsia. This study revealed a significant elevation of TSP-2 in preeclamptic and HIV positive pregnancies. Also, a significant upregulation of TSP-2 was found in HIV-associated preeclampsia.

Thank you for your submission to European Journal of Obstetrics and Gynecology and Reproductive Biology

EJOGRB <eeserver@eemall.elsevier.com>
Fri 11/22/2019 12:34 PM
Giza Naidoo (215020454) ▶

*** Automated email sent by the system ***

Dear Miss Naidoo,

Thank you for sending your manuscript The role of thrombospondin-2 (TSP-2) in HIV-associated pre eclampsia for consideration to European Journal of Obstetrics and Gynecology and Reproductive Biology. Please accept this message as confirmation of your submission.

When should I expect to receive the Editor's decision?

We publicly share the average editorial times for European Journal of Obstetrics and Gynecology and Reproductive Biology to give you an indication of when you can expect to receive the Editor's decision. These can be viewed here:
http://journalinsights.elsevier.com/journals/0301-2115/review.speed

What happens next?

Here are the steps that you can expect as your manuscript progresses through the editorial process in the Elsevier Editorial System (EES).

1. First, your manuscript will be assigned to an Editor and you will be sent a unique reference number that you can use to track it throughout the process. During this stage, the status in EES will be “With Editor”.

2. If your manuscript matches the scope and satisfies the criteria of European Journal of Obstetrics and Gynecology and Reproductive Biology, the Editor will identify and contact reviewers who are acknowledged experts in the field. Since peer review is a voluntary service, it can take some time but please be assured that the Editor will regularly remind reviewers if they do not reply in a timely manner. During this stage, the status will appear as “Under Review”.

Once the Editor has received the minimum number of expert reviews, the status will change to “Required Reviews Complete”.

21
Title: The role of thrombospindin-2 (TSP-2) in HIV-associated preeclampsia

Article Type: Full Length Article

Section/Category: Obstetrics

Keywords: HIV; preeclampsia; TSP-2

Abstract: Objective: TSP-2 is a glycoprotein that influences cellular activities such as proliferation, motility, and apoptosis. Additionally, it is a regulator of the extracellular matrix, inflammation and angiogenesis. In preeclampsia, angiogenesis is dysregulated due to an imbalance of angiogenic and anti-angiogenic placental factors. In light of the high rate of HIV infection in South Africa, this study determined the serum concentration of thrombospindin-2 (TSP-2) in HIV-associated preeclampsia.

Study design: This study utilised retrospectively collected serum samples from normotensive pregnant (n = 36) and pre-eclamptic (n = 36) groups. The latter groups were subdivided into HIV positive and HIV negative women. TSP-2 levels were measured using the Bio-Plex immunoassay technique.

Results: A statistical difference was noted across the study groups for gestational age, systolic blood pressure, diastolic blood pressure and baby weight (p < 0.0001). Based on pregnancy type, a significant elevation (p = 0.0429) of TSP-2 was observed in preeclamptic (median = 25.35 ng/ml; 95% CI: 34.88-28.47) compared to normotensive pregnant (median = 24.80 ng/ml; 95% CI: 27.36-23.83) women. Regardless of pregnancy type and based on HIV status, a significant increase of TSP-2 levels (p = 0.0085) was observed in HIV positive (median = 28.99 ng/ml; 95% CI: 37.41-28.98) compared to HIV negative (median = 24.80 ng/ml; 95% CI: 28.88-21.26) women. Additionally, based on pregnancy type and HIV status, TSP-2 levels were statistically significant across all groups (p = 0.0229).

Conclusion: Our findings demonstrate a significant elevation of TSP-2 levels in preeclamptic compared to normotensive pregnancies, regardless of HIV status. This upregulation may account for the defective trophoblast cell invasion in preeclampsia. Furthermore, based on HIV status, a significant upregulation of TSP-2 levels was noted and this may
be attributed to the action of tat protein. TSP-2 may be utilised as a biomarker for the early detection of preeclampsia.

Suggested Reviewers: N C Ngene
University of the Witwatersrand, Johannesburg
ngenenc@gmail.com
Research expertise lie in the field of obstetrics and gynecology.

Margaret Alese
Ekiti State University
margaret.alese@eksu.edu.ng
Basic scientist in preeclampsia research.

Opposed Reviewers: Jagidesa Moodley
jmog@ukzn.ac.za
Conflict of interest.
The role of thrombospondin-2 (TSP-2) in HIV-associated preeclampsia

Girija Naidooa Louansa Nandlala and Thajasvarie Naickera

Affiliation

aOptics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa

Corresponding author:

Girija Naidoo

Postal address: Private Bag 7, Congella, 4013, South Africa

Telephone No: +27 (0)31 260 4435

Fax No: +27 (0)31 260 4311

Email address: 215028434@stu.ukzn.ac.za; naickera@ukzn.ac.za
ABSTRACT

Objective: TSP-2 is a glycoprotein that influences cellular activities such as proliferation, motility, and apoptosis. Additionally, it is a regulator of the extracellular matrix, inflammation and angiogenesis. In preeclampsia, angiogenesis is dysregulated due to an imbalance of angiogenic and anti-angiogenic placental factors. In light of the high rate of HIV infection in South Africa, this study determined the serum concentration of thrombospondin-2 (TSP-2) in HIV-associated preeclampsia.

Study design: This study utilised retrospectively collected serum samples from normotensive pregnant (n = 36) and preeclamptic (n = 36) groups. The latter group was subdivided into HIV positive and HIV negative women. TSP-2 levels were measured using the Bio-Plex immunoassay technique.

Results: A statistical difference was noted across the study groups for gestational age, systolic blood pressure, diastolic blood pressure and baby weight (p < 0.0001). Based on pregnancy type, a significant elevation (p = 0.0429) of TSP-2 was observed in preeclamptic (median = 25.35 ng/ml; 95% CI: 34.88-28.47) compared to normotensive pregnant (median = 24.80 ng/ml; 95% CI: 27.36-23.83) women. Regardless of pregnancy type and based on HIV status, a significant increase of TSP-2 levels (p = 0.0095) was observed in HIV positive (median = 28.99 ng/ml; 95% CI: 37.41-26.98) compared to HIV negative (median = 24.80 ng/ml; 95% CI: 28.88-21.26) women. Additionally, based on pregnancy type and HIV status, TSP-2 levels were statistically significant across all groups (p = 0.0229).
Conclusion: Our findings reveal a significant elevation of TSP-2 levels in preeclamptic compared to normotensive pregnancies, regardless of HIV status. This upregulation may account for the defective trophoblast cell invasion in preeclampsia. Furthermore, based on HIV status, a significant upregulation of TSP-2 levels was noted, and this may be attributed to the action of tat protein. TSP-2 may be utilised as a biomarker for the early detection of preeclampsia.

KEYWORDS

HIV; preeclampsia; TSP-2
INTRODUCTION

Maternal mortality in South Africa is high due to HIV and other related infections, haemorrhage and hypertension in pregnancy (1). HIV infection affects 13.5% of the total South African population, 20% of whom are in their reproductive age (2). Preeclampsia accounts for the majority of deaths emanating from hypertension in pregnancy (1). Due to the high prevalence of these medical conditions, research into this duality is imperative.

The systemic endothelial cell activation and dysfunction in preeclampsia, causes endothelial cells to secrete thrombospondin-2 (TSP-2) (3, 4). The thrombospondin family are a group of calcium-binding glycoproteins which include TSP-1, -2, -3, -4 and -5 (5). Each isomer has distinct roles emanating from the regulation of its genetic transcription (6). Thrombospondins are a major component of platelets and the extracellular matrix (6, 7). TSP 1 and 2 have similar cohesive functions in apoptosis, platelet aggregation and inflammation (7). TSP-2 is also involved in the assembly of connective tissue components (8). Moreover, TSP-2 is highly expressed in developing blood vessels (9). TSP-2 is an inhibitor of angiogenesis which may arise from its TGF-β independent activity localised on its properdin type 1 modules (9). Angiogenesis is essential for effective placentation during pregnancy (10). However, in preeclampsia, an imbalance of angiogenic factors is evident with a decrease in pro-angiogenic factors and a concomitant elevation of anti-angiogenic factors (11). In HIV infection angiogenesis is dysregulated (12). Therefore, in light of the anti-angiogenic role of TSP-2, this study aimed to investigate, the role of TSP-2 in HIV-associated preeclamptic versus normotensive pregnancies.
METHODS AND MATERIALS

Ethical approval- Institutional ethical permission for this study (BCA338/17) was obtained from the Biomedical Research Ethics Committee, University of KwaZulu-Natal.

Study population- Post informed consent, the study population consisted of normotensive pregnant ($n = 36$) and preeclamptic ($n = 36$) participants. Both groups were further stratified by HIV status into normotensive HIV negative ($n = 14$), normotensive HIV positive ($n = 22$), preeclamptic HIV negative ($n = 18$) and preeclamptic HIV positive ($n = 18$) pregnant women. Preeclampsia was defined as a new-onset high blood pressure (systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg) together with one or more of the following conditions: proteinuria (urinary protein ≥ 300mg per 24 hours), maternal organ dysfunction or uteroplacental dysfunction, with such characteristics developing at or after 20 weeks of gestation (13). The exclusion criteria for the latter group was polycystic ovarian syndrome, eclampsia, chronic hypertension, intrauterine death, abruptio placentae, pre-gestational or gestational diabetes, chronic diabetes, systemic lupus erythematosus, chronic renal disease, sickle cell disease, thyroid disease, antiphospholipid antibody syndrome, cardiac disease, pre-existing seizure disorders, active asthma that required medication during the gestation period, unknown HIV status as well as patients that were not booked into the hospital.

Sample type- This study utilised retrospectively collected serum samples from women who attended a large regional hospital in Durban, South Africa.
Milliplex multiplex method- The concentration of TSP-2 was quantified using the MilliPlex Human Angiogenesis Magnetic Bead Panel 2 kit according to the manufacturer’s instructions (MILLIPLEX® MAP Human Angiogenesis Panel 2, catalogue no: HANG2MAG-12K). Assay buffer (200μl) was added to a 96-well plate. Thereafter, 25μl of standards, controls, assay buffer, serum matrix solution, serum samples and antibody-immobilized beads were added to the appropriate wells. The plate was then incubated with agitation at 2-8°C overnight. After incubation, 200μl of wash buffer was used to wash the plate 3 times; detection antibodies were dispensed into each well, followed by incubation with agitation at room temperature for 1 hour. The reporter conjugate Streptavidin-Phycocerythrin was added to each well and incubated with agitation at room temperature for 30 minutes. Lastly, the plate was washed with wash buffer three times and Sheath fluid was added to each well. The Bio-Plex® MAGPIX™ Multiplex Reader (Bio-Rad Laboratories Inc., USA) was used to read the plate and the Bio-Plex Manager™ analysis software version 4.1 was used to analyse the data.

Statistical analysis- All statistical analysis was completed using GraphPad Prism version 5.00 (GraphPad Software, San Diego, California, USA). The Kolmogorov Smirnov normality test was used to determine that the data were non-parametrically distributed. A Mann-Whitney U test was to determine significance based on pregnancy type (normotensive vs preeclamptic) and HIV status (negative vs positive). One-way ANOVA analysis of variance test along with Dunn’s post hoc test (for multiple comparisons) was used to determine statistical significance across all study groups. The non-parametric data were presented as median and interquartile range. A value of $p < 0.05$ was considered statistically significant.
RESULTS

Patient demographic and clinical characteristics- Table 1 displays the demographical data and clinical characteristics of patients across the study groups. Gestational age, systolic blood pressure, diastolic blood pressure and baby weight were statistically different across the study groups ($p < 0.0001$). Gestational age was lower in preeclamptic women than in normotensive women. The systolic and diastolic blood pressures were higher in the preeclamptic group compared to the normotensive group. Baby weight was lower in the preeclamptic group compared to the normotensive group. Maternal age, maternal weight, parity and gravidity did not exhibit any statistical difference. Maternal age varied from 18 to 43 years. Maternal weight was higher in the preeclamptic HIV negative group compared to the rest of the study groups. The preeclamptic HIV positive group consisted of a twin pregnancy.

Serum concentrations of TSP-2

Pregnancy type- As shown in Figure 1A, regardless of HIV status and based on pregnancy type (normotensive vs. preeclamptic) a significant difference was observed in the levels of TSP-2 ($p = 0.0429$). An upregulation trend in the concentration of TSP-2 was noted in the preeclamptic (median = 25.35 ng/ml; 95% CI: 34.88-28.47) compared to the normotensive group (median = 24.80 ng/ml; 95% CI: 27.36-23.83).

HIV status- Regardless of pregnancy type, a significant difference was observed in TSP-2 ($p = 0.0095$) levels based on HIV status (negative vs. positive). A significant increase in the concentration of TSP-2 was noted in the HIV positive group (median = 28.99 ng/ml; 95% CI: 37.41-26.98) compared to the HIV negative group (median = 24.80 ng/ml; 95% CI: 28.88-21.26; Figure 1B).
Across all groups- Based on pregnancy type and HIV status, TSP-2 levels were statistically significant across all groups ($p = 0.0229$). The concentration of TSP-2 was higher in the preeclamptic HIV positive group (median = 37.49 ng/ml; 95% CI: 47.19-28.83) compared to the preeclamptic HIV negative group (median = 25.34 ng/ml; 95% CI: 31.72-18.96) (Table 2 and Figure 1C). The concentration of TSP-2 was also elevated in the normotensive HIV positive group (median = 26.38 ng/ml; 95% CI: 30.88-21.89) compared to the normotensive HIV negative group (median = 24.80 ng/ml; 95% CI: 29.54-20.06). Additionally, the concentration of TSP-2 was statistically significant between the normotensive HIV negative group and the preeclamptic HIV positive group ($p = 0.0290$). The concentration of TSP-2 was also statistically significant between the preeclamptic HIV negative group and the preeclamptic HIV positive group ($p = 0.0094$).
Table 1. Patient demographic and clinical characteristics across study groups ($n = 72$).

<table>
<thead>
<tr>
<th></th>
<th>Normotensive HIV negative (n=14)</th>
<th>Normotensive HIV positive (n=22)</th>
<th>Preeclamptic HIV negative (n=18)</th>
<th>Preeclamptic HIV positive (n=18)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years)</td>
<td>24.50 (29.25-21)</td>
<td>24.50 (29-22)</td>
<td>27.50 (36.50-21.00)</td>
<td>27 (38.50-22)</td>
<td>0.5869</td>
</tr>
<tr>
<td>Maternal weight (kg)</td>
<td>70.10 (76-54.83)</td>
<td>70.35 (79.45-60.75)</td>
<td>87 (95-65)</td>
<td>74 (86.70-66.50)</td>
<td>0.0784</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>38 (40.25-37)</td>
<td>37.50 (38.25-37)</td>
<td>30 (33.50-27.25)</td>
<td>30.50 (32.25-28)</td>
<td>< 0.0001***</td>
</tr>
<tr>
<td>Parity</td>
<td>1 (1.250-0)</td>
<td>1 (2-0)</td>
<td>1 (2.250-1)</td>
<td>1 (2-0)</td>
<td>0.4408</td>
</tr>
<tr>
<td>Gravidity</td>
<td>2 (2.250-1)</td>
<td>2 (3-1)</td>
<td>2 (3.250-2)</td>
<td>2 (3-1)</td>
<td>0.4317</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>105.5 (115.5-102)</td>
<td>108.5 (115-100.8)</td>
<td>154 (165-148.5)</td>
<td>157.5 (169.3-146.5)</td>
<td>< 0.0001***</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>68.50 (74.75-62.50)</td>
<td>71.50 (75-64.75)</td>
<td>102 (109-95.25)</td>
<td>99.50 (106.5-97)</td>
<td>< 0.0001***</td>
</tr>
<tr>
<td>Baby weight (kg)</td>
<td>3.340 (3.870-3.000)</td>
<td>3.00 (3.730-3.038)</td>
<td>1.880 (2.908-1.478)</td>
<td>2.175 (2.693-1.335)</td>
<td>< 0.0001***</td>
</tr>
</tbody>
</table>

Data represented as median (interquartile range); *** $p < 0.001$.
Table 2. Serum concentrations (ng/ml) of TSP-2 across all study groups.

<table>
<thead>
<tr>
<th></th>
<th>Normotensive HIV negative (n=14)</th>
<th>Normotensive HIV positive (n=22)</th>
<th>Preeclamptic HIV negative (n=18)</th>
<th>Preeclamptic HIV positive (n=18)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-2</td>
<td>24.80 (27.36-18.55)</td>
<td>26.38 (30.88-19.46)</td>
<td>25.34 (29.11-16.74)</td>
<td>37.49 (39.56-23.99)</td>
<td>0.0229*</td>
</tr>
</tbody>
</table>

Data represented as median (interquartile range); * p < 0.05.
Figure 1. Serum concentrations of TSP-2 (ng/ml): (A) Normotensive (N) vs Preeclamptic (PE) groups. *Serum concentrations of TSP-2 are statistically different between the normotensive and preeclamptic group, $p = 0.0429$. (B) HIV-negative (HIV-) vs HIV-positive (HIV+) groups. **Serum concentrations of TSP-2 are statistically different between the HIV-negative and HIV-positive group, $p = 0.0095$. (C) Normotensive HIV-negative (N-); Normotensive HIV-positive (N+); Preeclamptic HIV-negative (PE-) and Preeclamptic HIV-positive (PE+) groups. *Serum concentrations of TSP-2 are statistically different between the normotensive HIV-negative group and the preeclamptic HIV-positive group, $p = 0.0290$. **Serum concentrations of TSP-2 are statistically different between the preeclamptic HIV-negative group and the preeclamptic HIV-positive group, $p = 0.0094$.
DISCUSSION

To the best of our knowledge, this is the first study to report upregulation of serum concentration of TSP-2 in an HIV positive preeclamptic cohort. We report a significant difference in serum TSP-2 concentration based on pregnancy type, irrespective of HIV status. TSP-2 is a calcium-binding glycoprotein that is involved in cellular activities such as apoptosis, angiogenesis and aids in communication between cells and the extracellular matrix, affecting cellular functions such as proliferation and invasion (4, 14, 15). Additionally, TSP-2 also plays a role in the remodelling of the vasculature (3, 5, 16). It is therefore plausible that TSP-2 may account for the dysfunctional invasion of trophoblast cells in preeclampsia. Preeclampsia is associated with defective trophoblast cell invasion that culminates in inhibition of myometrial spiral artery remodelling (17). Since TSP-2 regulates the bioavailability of proteases, it would regulate cell migration as well as the physiological transformation of the spiral artery (8, 18).

Notably, integrins have a vital role in regulating cell behaviour, proliferation and migration (19). Specifically, α4β1 integrins are receptors for TSP-2 (20) therefore, the dysregulation of TSP-2 noted in our study may emanate from an aberrant integrin expression that influences trophoblast cell invasion (21).
Moreover, microRNAs play an essential role in regulating migration and invasion of trophoblasts. Recently, the overexpression of miR-221-3p was shown to stimulate the growth of trophoblasts, migration as well as invasion. In contrast, miR-221-3p knockout has an opposing effect (22). This study reported that the mRNA expression of TSP-2 was elevated in preeclampsia and was negatively correlated with miR-221-3p. These findings corroborate our findings of an up-regulation of serum TSP-2 in preeclampsia and highlight the role of TSP-2 in trophoblast cell migration.

The expression of TSP-2 is modulated by hypoxia (3). Verma et al. (2018) reported elevated expression of HIF-1α in preeclampsia compared to normotensive pregnancies (23). Therefore, the ischaemic microenvironment of preeclampsia could contribute to the upregulation of TSP-2 in preeclampsia, as observed in our study.

Preeclampsia is characterised by a dysfunctional endothelium and endotheliosis (24). It is also widely accepted that in preeclampsia the anti-angiogenic proteins, sFlt1 and sEng are upregulated with a concurrent decline in VEGF and PI GF (25, 26).

A study conducted by Govender et al. (2013) reported that the levels of anti-angiogenic soluble Fms-like Tyrosine Kinase 1 (sFlt1) are higher in HIV negative pregnancies (preeclamptic and normotensive) than in HIV positive pregnancies and suggests neutralisation of the exaggerated immune response in preeclampsia (27). sFlt1 works by blocking pro-angiogenic proteins such as placental growth factor and vascular endothelial growth factor, thus dysregulating angiogenesis (28).
TSP-2 has been demonstrated to be anti-angiogenic, pro-apoptotic and immunomodulatory (3). In our study, the elevated serum TSP-2 levels may be due to the systemic endothelial damage emanating from its angiogenic inhibitory role. The anti-angiogenic function of TSP-2 is reliant on its interaction with the CD36 receptor (29). Structurally, TSP-2 contains type 1 repeats which bind to CD36 on the membrane of endothelial cells; this binding inhibits angiogenesis by inducing endothelial cell apoptosis (30, 31).

Subsequent to the damage of tissue, thrombospondins regulate remodelling and inflammation (32). The expression of TSP-2 is elevated during the remodelling of tissue which is associated with inflammation (33). Park et al. (2004) showed that during an autoimmune disease such as rheumatoid arthritis, TSP-2, a constituent of the synovial microenvironment, regulates tissue inflammation (34). TSP-2 causes suppression of inflammation by activating regulatory anti-inflammatory T-cells (35). The elevated TSP-2 observed in our study reflects the hyper-inflammatory environment of preeclampsia.

In this study, TSP-2 was significantly different by HIV status with an increasing level in HIV positive women. The antiviral property of TSP-2 observed in our study is corroborated by a number of other studies (36, 37). The mechanism of action involves the binding of tat protein (the transactivator of HIV-1) to TSP-2 (37). Tat is a potent angiogenic factor due to its similar arginine and lysine-rich sequence to VEGF (38). Therefore, in our study, it is plausible that the binding of the tat protein to TSP-2 promotes an antagonistic angiogenic activity in HIV infection.
Additionally, the upregulation of TSP-2 observed in the HIV positive group in our study may be attributed to the binding affinity of TSP-2 to gp120 of HIV-1 via CD36 (36). More specifically, the conserved regions flanking the V3 loop of gp120 provide the antiviral property for direct HIV-1 inhibitory activity of TSP.

It is important to note that the HIV positive group in this study received dual antiretroviral therapy (HAART + Nevirapine). It has been previously demonstrated that HAART may influence the HIV-1 matrix protein p17 to induce the secretion of TSP-1 (39).

Our results demonstrate significant upregulation of TSP-2 in HIV-associated preeclampsia. The effect of TSP-2 in the hypoxic, inflammatory microenvironment of preeclampsia combined with the anti-angiogenic effect of TSP-2 reduces its bioavailability for VEGF binding.

CONCLUSION

In conclusion, this study demonstrates significant upregulation of TSP-2 in preeclamptic vs normotensive pregnancies as well as when stratified by HIV status. Additionally, a significant elevation of TSP-2 in HIV-associated preeclampsia was also noted. TSP-2 has predictor test value in the early diagnosis of preeclampsia due to its role in the remodelling of vasculature, angiogenesis regulation, apoptosis and inflammation. Finally, further large scale studies are required to confirm its biomarker value for preeclampsia development.

CONFLICT OF INTEREST
There are no conflicts of interest.

ACKNOWLEDGEMENTS

The authors express thanks to the College of Health Sciences, University of KwaZulu-Natal for the funding received.

REFERENCES

CHAPTER 3
Original Article: The role of soluble E-selectin (sE-selectin) in HIV-associated preeclampsia

Chapter 3 is an original article submitted to Archives of Gynecology and Obstetrics, which is a DOHET accredited international journal. It investigates the role of soluble E-selectin (sE-selectin) in HIV-associated preeclampsia. This study revealed a significant elevation of sE-selectin in HIV-negative preeclamptic pregnancies compared to HIV-negative normotensive groups.

Citation: Naidoo G., Khaliq OP., Moodley J., Naicker T. (2019). The role of soluble E-selectin (sE-selectin) in HIV associated preeclampsia. Submitted to Archives of Gynecology and Obstetrics, Manuscript ID: ARCH-D-19-02075
ARCH-D-19-02075 - Submission Confirmation

☐ Getting too much email? Unsubscribe
☐ Flag for follow up.

em.arch.0.678dfb.266bf9e9@editorialmanager.com on behalf of
Archives of Gynecology and Obstetrics (ARCH) <em@editorialmanager.com>

Wed 11/27/2019 5:41 PM
Girja Naidoo (21202444) v

Dear Miss Naidoo,

Thank you for submitting your manuscript, “The Role of soluble E-selectin (sE-selectin) in HIV Associated Preeclampsia”, to Archives of Gynecology and Obstetrics.

The submission ID is: ARCH-D-19-02075
Please refer to this number in any future correspondence.

During the review process, you can keep track of the status of your manuscript by accessing the following website:

https://www.editorialmanager.com/arch/

Your username is: Girja Naidoo
If you forgot your password, you can click the ‘Send Login Details’ link on the EM Login page at https://www.editorialmanager.com/arch/

If your manuscript is accepted for publication in Archives of Gynecology and Obstetrics, you may elect to submit it to the Open Choice program. For information about the Open Choice program, please access the following URL: http://www.springer.com/openchoice

Kind regards,
Editorial Office
Archives of Gynecology and Obstetrics
Archives of Gynecology and Obstetrics

The Role of soluble E-selectin (sE-selectin) in HIV Associated Preeclampsia

Manuscript Draft

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Title:</th>
<th>The Role of soluble E-selectin (sE-selectin) in HIV Associated Preeclampsia</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Article Type:</th>
<th>Original Article</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section/Category:</th>
<th>Maternal-Fetal Medicine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Keywords:</th>
<th>HIV; preeclampsia; sE-selectin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Corresponding Author:</th>
<th>Girija Naidoo</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of KwaZulu-Natal College of Health Sciences</td>
<td>Durban, SOUTH AFRICA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corresponding Author's Institution:</th>
<th>University of KwaZulu-Natal College of Health Sciences</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>First Author:</th>
<th>Girija Naidoo</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>First Author Secondary Information:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Order of Authors:</th>
<th>Girija Naidoo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive P Khalil</td>
<td></td>
</tr>
<tr>
<td>Jagidesa Moodley</td>
<td></td>
</tr>
<tr>
<td>Thajasvarie Naicker</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order of Authors Secondary Information:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Funding Information:</th>
<th>Inyuvu Yakwazulu-Natali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miss Girija Naidoo</td>
<td>Thajasvarie Naicker</td>
</tr>
</tbody>
</table>

Abstract:

ABSTRACT

Purpose: To determine the serum concentration of soluble E-selectin (sE-selectin) in HIV associated preeclampsia.

Methods: The study population (n = 72) consisted of normotensive pregnant (n = 36) and preeclamptic (n = 36) women stratified by HIV status (negative vs. positive). Serum concentrations of sE-selectin were quantified using the Bio-Plex immunoassay.

Results: Based on pregnancy type and HIV status, serum sE-selectin levels were elevated in the preeclamptic HIV-negative group compared to the normotensive HIV-negative group (p = 0.0070). Gestational age, systolic blood pressure, diastolic blood pressure and baby weight were statistically different across the study groups (p < 0.0001).

Conclusion: This study demonstrates an elevation of sE-selectin in preeclamptic HIV-negative compared to the normotensive HIV-negative group. However, based on HIV status, there was no significant difference observed in preeclamptic HIV-positive and normotensive HIV-positive groups. Therefore, sE-selectin may be used as a biomarker or an early identifier of preeclampsia.

<table>
<thead>
<tr>
<th>Other Authors:</th>
<th>Olive P Khalil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jagidesa Moodley</td>
<td></td>
</tr>
<tr>
<td>Thajasvarie Naicker</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order of Authors (with Contributor Roles):</th>
<th>Girija Naidoo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive P Khalil</td>
<td></td>
</tr>
<tr>
<td>Jagidesa Moodley</td>
<td></td>
</tr>
</tbody>
</table>
The Role of soluble E-selectin (sE-selectin) in HIV Associated Preeclampsia

Girija Naidooa, Olive P Khaliqa Jagidesa Moodleyb and Thajasvarie Naickera

aOptics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa

bDepartment of Obstetrics and Gynecology and Women’s Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, South Africa.

Corresponding author: Girija Naidoo

Address: Optics and Imaging Centre,
Doris Duke Medical Research Institute,
College of Health Sciences,
University of KwaZulu-Natal,
719 Umbilo Road, Durban,
KwaZulu-Natal, South Africa

Email address: 215028434@stu.ukzn.ac.za; naickera@ukzn.ac.za

Telephone number: (+27) 31 260 4435
ABSTRACT

Purpose: To determine the serum concentration of soluble E-selectin (sE-selectin) in HIV associated preeclampsia.

Methods: The study population \((n = 72)\) consisted of normotensive pregnant \((n = 36)\) and preeclamptic \((n = 36)\) women stratified by HIV status (negative vs. positive). Serum concentrations of sE-selectin were quantified using the Bio-Plex immunoassay.

Results: Based on pregnancy type and HIV status, serum sE-selectin levels were elevated in the preeclamptic HIV-negative group compared to the normotensive HIV-negative group \((p = 0.0070)\). Gestational age, systolic blood pressure, diastolic blood pressure and baby weight were statistically different across the study groups \((p < 0.0001)\).

Conclusion: This study demonstrates an elevation of sE-selectin in preeclamptic HIV-negative compared to the normotensive HIV-negative group. However, based on HIV status, there was no significant difference observed in preeclamptic HIV-positive and normotensive HIV-positive groups. Therefore, sE-selectin may be used as a biomarker or an early identifier of preeclampsia.

KEYWORDS

HIV; preeclampsia; sE-selectin
Introduction

The Human Immunodeficiency Virus (HIV) infection is a global health concern, with sub-Saharan Africa being the region most affected by the epidemic [1]. In South Africa (SA), the prevalence of HIV infection is exceedingly high, with 7.5 million people being infected [2]. The epicentre of this epidemic is the province of KwaZulu-Natal where the prevalence of HIV infection during pregnancy is approximately 41.1% [3]. In 2018, one-fifth of women in SA, in the reproductive ages between 15 to 49 years were HIV positive; hence, this presents a sombre quandary for health care professionals [2]. Furthermore, both HIV infection and preeclampsia are common causes of maternal mortality [4].

Preeclampsia (PE) is a major obstetric concern affecting approximately 2-8% of pregnancies globally, while in SA maternal deaths caused by hypertensive disorders of pregnancy is 14.8% [5, 6]. In order for PE to be effectively treated, both the fetus and placenta require urgent delivery [7]. The placenta is crucial for the growth and development of the fetus as it continually develops and adapts to meet increasing fetal metabolic requirements [8, 9]. Maternal structural modifications also occur during healthy pregnancies where cytotrophoblasts invade the decidua and myometrium of the uterus and remodel the spiral arteries [10]. The above is necessary for efficient supply of blood (containing oxygen and nutrients) to the fetus [11]. In PE, however, cytotrophoblast invasion is limited resulting in the incomplete physiological conversion of the myometrial spiral arteries [11, 12]. The maladaptation of the uterine spiral arterioles leads to placental hypoxia/stress from reduced blood flow and physiological assessment indicates endothelial dysfunction, vasospasm, a systemic inflammatory response and widespread multi-organ involvement [13].
The circulating adhesion molecule soluble E-selectin (sE-selectin), expressed on endothelial cells, is activated by inflammation or stress [14]. This adhesion molecule plays a vital role in transporting immune cells to areas of inflammation and facilitates interaction between circulating leukocytes and the endothelium. Ligands found on the surface of endothelial cells bind to sE-selectin resulting in leukocytes being recruited to the endothelium [14-16]. Since endotheliosis is a pathognomonic lesion of PE, levels of sE-selectin are altered in this disorder [16]. The activation and damage of endothelial cells contribute to the increasing sE-selectin levels [16]. The release of cytokines like tumour necrosis factor-alpha (TNF-α) upregulates the expression of sE-selectin [15].

Cytokines can also be categorised as T helper 1 (Th1) cytokines and T helper 2 (Th2) cytokines, where Th1 cytokines have the ability to induce inflammatory and cytotoxic reactions while Th2 cytokines are associated with humoral immunity [17]. These cytokines are involved in HIV infection pathogenesis where HIV positive individuals display a shift from Th1 immune response to Th2 immune response [18].

Activation of the immune system and release of inflammatory cytokines are associated with HIV infection [19]. The regulatory HIV protein Tat activates pro-inflammatory cytokine production and induces an elevation in mediators of inflammation such as sE-selectin [20]. HIV infection influences soluble adhesion molecule expression and in serum, leads to abnormal adhesion molecule levels [21].

In view of the altered sE-selectin expression in PE, there is a possibility that this protein may have value as a predictive biomarker of PE development. The identification of predictive biomarkers is a challenge as the development of PE commences in the first trimester of pregnancy, prior to the appearance of clinical symptoms [12]. Hence, further research is required in order to identify potential biomarkers that may be utilised as early indicators of PE development. Therefore, the aim of this study was to compare, for the first time, the role of sE-selectin in preeclamptic and normotensive pregnancies compromised by HIV infection.

Methods and materials
Study population

Institutional ethical approval (BCA338/17) was obtained. The study utilised serum samples retrospectively collected from women who attended a large regional hospital in Durban, South Africa. The study population (n = 72) consisted of normotensive pregnant (n = 36) and preeclamptic (n = 36) women. Both these groups were further stratified by HIV status. Patients unable to provide informed consent were excluded. Women with a history of other co-existing medical disorders and infections other than PE and HIV were excluded from the study. Normotensive primigravid and multigravid women constituted the control group. PE is a pregnancy-specific condition characterised by new-onset high blood pressure (systolic blood pressure ≥140mmHg or diastolic blood pressure ≥90mmHg) together with one or more of the following conditions: without proteinuria or with proteinuria (urinary protein ≥300 mg per 24 hours), maternal organ dysfunction, liver and renal injury or intra-uterine growth restriction, with such characteristics developing at or after 20 weeks of gestation [22].

Milliplex multiplex method

The MilliPlex Human Angiogenesis Magnetic Bead Panel 2 kit was used to quantify the concentration of sE-selectin according to the manufacturer’s instructions (MILLIPLEX® MAP Human Angiogenesis Panel 2, catalogue no: HANG2MAG-12K). The bead-based flow cytometric mechanism of this immunoassay enabled multiplex analyses. The assay included the incubation of the antigen sample, i.e., sE-selectin, with the capture of antibody-coupled beads. Subsequent to washing, which ensured the removal of unbound substances, an additional incubation with biotinylated detection antibodies was carried out. The plate was thereafter washed to remove any unbound biotinylated detection antibodies and the beads were incubated with streptavidin-phycoerythrin (SA-PE) which is a reporter conjugate. Following a third and final wash to clear the plate of excess SA-PE, the beads flowed through an array reader which determined the fluorescence emitted from bound SA-PE. The Bio-Plex® MAGPIX™ Multiplex Reader (Bio-Rad Laboratories Inc., USA) was used to read the samples and the data obtained was analysed using Bio-Plex Manager™ analysis software (version 4.1).
Statistical analysis

GraphPad Prism version 5.00 (GraphPad Software, San Diego, California, USA) was used for all statistical analysis. The data was non-parametrically distributed. Descriptive statistics were used to summarise the data and non-parametric data was presented as median and interquartile range. A Mann-Whitney U test was used to determine statistical significance based on pregnancy type (normotensive vs. preeclamptic) and HIV status (negative vs. positive). One-way ANOVA, i.e., a Kruskal-Wallis test as well as the Dunn’s post hoc test (for multiple comparisons) were performed in order to determine statistical significance among all study groups. A value of $p < 0.05$ was considered to be of statistical significance.

Results

Clinical characteristics

Table 1 displays patient demographics across all study groups. Gestational age, systolic and diastolic blood pressure, as well as baby weight, were statistically significant across the study groups ($p < 0.0001$). A lower gestational age was observed in the PE group compared to the normotensive group ($p = < 0.0001$). A lower baby weight was also observed in the preeclamptic group compared to the normotensive group ($p = < 0.0001$). There was no statistical significance observed in maternal age, maternal weight, parity and gravidity (table 1).

Serum concentrations of sE-selectin

Pregnancy type

Based on pregnancy type, normotensive (mean = 110.6 ng/ml; 95% CI: 125.5-95.69) vs. preeclamptic (mean = 123.6 ng/ml; 95% CI: 140.4-106.7), there were no significant difference in the levels of sE-selectin ($p = 0.0708$) irrespective of HIV status as shown in Table 2 and Fig. 1a. However, an upward trend in sE-selectin level, albeit non-significant, was noted between the preeclamptic compared to the normotensive group.

HIV status
As shown in Table 2 and Fig. 1b, based on HIV status, negative (mean = 114.7 ng/ml; 95% CI: 129.8-99.65) vs. positive (mean = 119.4 ng/ml; 95% CI: 136.3-102.5), there was no significant difference in sE-selectin levels ($p = 0.7227$) regardless of pregnancy type. However, an increase in the concentration of sE-selectin was noted in the HIV-positive group compared to the HIV-negative group.

Pregnancy type and HIV status

Based on pregnancy type and HIV status, the concentration of sE-selectin was statistically significant between the normotensive HIV-negative and preeclamptic HIV-negative group ($p = 0.0070^{**}$) (Table 2 and Fig. 2a). Furthermore, as displayed in Table 2 and Fig. 2b-e, no significant difference was observed in normotensive HIV-positive group and the preeclamptic HIV-positive group ($p = 0.5495$), the normotensive HIV-negative and normotensive HIV-positive group ($p = 0.0557$), the preeclamptic HIV-negative and preeclamptic HIV-positive group ($p = 0.1835$) as well as normotensive HIV-negative group and the preeclamptic HIV-positive ($p = 0.0888$).
Table 1 Patient demographics in normotensive HIV negative; normotensive HIV positive; preeclamptic HIV negative and preeclamptic HIV positive pregnant women (n = 72)

<table>
<thead>
<tr>
<th></th>
<th>Normotensive HIV negative (n=14)</th>
<th>Normotensive HIV positive (n=22)</th>
<th>Preeclamptic HIV negative (n=18)</th>
<th>Preeclamptic HIV positive (n=18)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years)</td>
<td>24.50 (29.25-21)</td>
<td>24.50 (29-22)</td>
<td>27.50 (36.50-21.00)</td>
<td>27 (38.50-22)</td>
<td>0.5869</td>
</tr>
<tr>
<td>Maternal weight (kg)</td>
<td>70.10 (76-54.83)</td>
<td>70.35 (79.45-60.75)</td>
<td>87 (95-65)</td>
<td>74 (86.70-66.50)</td>
<td>0.0784</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>38 (40.25-37)</td>
<td>37.50 (38.25-37)</td>
<td>30 (33.50-27.25)</td>
<td>30.50(32.25-28)</td>
<td>< 0.0001***</td>
</tr>
<tr>
<td>Parity</td>
<td>1 (1.250-0)</td>
<td>1 (2-0)</td>
<td>1 (2.250-1)</td>
<td>1 (2-0)</td>
<td>0.4408</td>
</tr>
<tr>
<td>Gravidity</td>
<td>2 (2.250-1)</td>
<td>2 (3-1)</td>
<td>2 (3.250-2)</td>
<td>2 (3-1)</td>
<td>0.4317</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>105.5 (115.5-102)</td>
<td>108.5 (115-100.8)</td>
<td>154 (165-148.5)</td>
<td>157.5 (169.3-146.5)</td>
<td>< 0.0001***</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>68.50 (74.75-62.50)</td>
<td>71.50 (75-64.75)</td>
<td>102 (109-95.25)</td>
<td>99.50 (106.5-97)</td>
<td>< 0.0001***</td>
</tr>
<tr>
<td>Baby weight (kg)</td>
<td>3.340 (3.870-3.000)</td>
<td>3.00 (3.730-3.038)</td>
<td>1.880 (2.908-1.478)</td>
<td>2.175 (2.693-1.335)</td>
<td>< 0.0001***</td>
</tr>
</tbody>
</table>

Data represented as median (interquartile range); *** p < 0.001
<table>
<thead>
<tr>
<th></th>
<th>sE-selectin</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N vs PE</td>
<td>98.06 (128.4-76.78)</td>
<td>124.6 (140.1-90.56)</td>
</tr>
<tr>
<td>HIV- vs HIV+</td>
<td>99.24 (131.8-77.36)</td>
<td>116.8 (136.7-85.61)</td>
</tr>
<tr>
<td>PE- vs N-</td>
<td>131.8 (142.4-91.59)</td>
<td>94.62 (106.4-61.34)</td>
</tr>
<tr>
<td>PE+ vs N+</td>
<td>107.1 (138.2-80.37)</td>
<td>123.5 (139.0-85.46)</td>
</tr>
<tr>
<td>N- vs N+</td>
<td>94.62 (106.4-61.34)</td>
<td>123.5 (139.0-85.46)</td>
</tr>
<tr>
<td>PE- vs PE+</td>
<td>131.8 (142.4-91.59)</td>
<td>107.1 (138.2-80.37)</td>
</tr>
<tr>
<td>PE+ vs N-</td>
<td>107.1 (138.2-80.37)</td>
<td>94.62 (106.4-61.34)</td>
</tr>
</tbody>
</table>

N = Normotensive, PE = Preeclampsia, HIV = Human Immunodeficiency Virus, - = HIV negative, + = HIV positive
Data represented as median (interquartile range); **p < 0.05
Figure a shows the sE-selectin concentration (ng/ml) for different pregnancy types. The concentration is higher in pregnancies with preeclampsia (PE) compared to normal pregnancies (N).

Figure b demonstrates the sE-selectin concentration for HIV status. There is a higher concentration in HIV+ individuals compared to HIV- individuals.
Fig. 1 (a) Serum concentrations of sE-selectin (ng/ml): Normotensive (N) and Preeclampsia (PE) groups.
(b) Serum concentrations of sE-selectin (ng/ml): HIV-negative (HIV-) and HIV-positive (HIV+) groups.
Fig. 2 (a) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-negative (PE-) and Normotensive HIV-negative (N-) groups. Serum levels of sE-selectin were significantly elevated in PE-groups compared to N- groups (p=0.0070**). (b) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-positive (PE+) and Normotensive HIV-positive (N+) groups.
Fig. 2 (c) Serum concentrations of sE-selectin (ng/ml): Normotensive HIV-negative (N-) and Normotensive HIV-positive (N+) groups. (d) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-negative (PE-) and Preeclamptic HIV-positive (PE+) groups.
Fig. 2 (e) Serum concentrations of sE-selectin (ng/ml): Preeclamptic HIV-positive (PE+) and Normotensive HIV-negative (N-) groups.
Discussion

Based purely on pregnancy type, this study found no significant differences between the normotensive group (HIV positive and HIV negatives combined) and preeclamptic (HIV positive and negative combined) group. These findings are similar to others who reported no significant difference of sE-selectin in normotensive compared to PE pregnancies [23-25]. No significant difference was noted in normotensive positive pregnancies compared to PE positives; also, no statistical difference was found between normotensive negatives and PE positives.

The non-significance noted in the current study could be due to antiretroviral therapy given to HIV positive pregnant women. Kristofferson et al., (2009), investigated the effect of antiretroviral therapy in non-pregnant HIV positive patients and reported a decrease in levels of endothelial dysfunction markers in HIV positive patients [26]. Another interesting factor that comes into play is that sE-selectin has been reported to entrap itself on ligands of circulating leukocytes in order to prevent them from relocating to areas of inflammation, in this way, exaggerated inflammation is prevented [27]. This may also be the reason why this study found no significance in normotensive positive vs PE positive and normotensive negative vs PE positive groups.

Interestingly, in this study, a significant increase in levels of sE-selectin was found in preeclamptic HIV negative compared to normotensive HIV negative groups ($p=0.0070^{**}$). Carty et al., (2012) studied levels of sE-selectin in pregnancies complicated with PE alone and reported elevated levels of sE-selectin in early pregnancies that later developed into PE. The pathophysiology of PE involves poor placentation, endothelial dysfunction, inflammation and oxidative stress [16]. Soluble E-selectin is a cell adhesion molecule found on endothelial cells [16]. The main function of sE-selectin is to control leukocyte cohesion on endothelial cells and the migration of white blood cells to perivascular tissue during inflammation [14]. Therefore, upregulation of sE-selectin is an indication of endothelial dysfunction, which is one of the clinical features of PE.
Regardless of pregnancy type, but based purely on HIV status, an upward trend was noted in normotensive positive compared to normotensive negative pregnancies albeit non-significantly. sE-selectin levels between PE negatives and PE positives showed no significant difference; however the PE positive group showed an upward trend of sE-selectin compared to PE negatives. Levels of sE-selectin showed no significant difference between the HIV positive group and the HIV negative group, with an upward trend observed in the HIV positive group.

Our results agree with findings of Hoffman et al., (2018) who reported no significant difference in sE-selectin levels in HIV positive compared to HIV negative non-pregnant patients [14]. Hoffman et al., (2018) observed levels of sE-selectin in chronic HIV positive patients who were on treatment and discovered no correlation of the adhesion molecule with inflammation [14]. In addition, Rönsholt et al. (2013) reported a decrease in sE-selectin in patients on HIV treatment compared to untreated patients [28]. More interestingly, Graham et al., (2013) described levels of sE-selectin to be elevated in HIV positive acute patients compared to HIV positive chronic patients which may indicate that the admission of HAART may decrease levels of inflammation in HIV positive patients who have been on chronic HIV treatment [29]. In the current study, HIV positive patients showed an upward trend of sE-selectin, probably due to immune activation during infection. According to Rönsholt et al., (2013), levels of sE selectin are altered due to HIV treatment but are not regulated to normal levels noted in HIV negative patients [28].
As far as we are aware, this is the first study to report sE-selectin levels in preeclamptic patients with HIV infection. Furthermore, it is standard practice for pregnant individuals to be tested for HIV and to be treated accordingly. Our results showed no significant difference in levels of sE-selectin in preeclamptic HIV positive patients compared to preeclamptic HIV negative patients. However, an upward trend was noted in preeclamptic HIV positive patients. This may be due to inflammation triggered by cytokines such as IL-1 and the tumour necrosis factor-alpha (TNF-α). Tumour necrosis factor-alpha activates sE-selectin [15]. Furthermore, Calza et al., (2009) reported a correlation between sE-selectin, viral load and CD4+ in HIV non-pregnant positive patients [30]. In contrast, Rönsholt et al., (2013) found no correlation between sE-selectin, viral load and CD4+ in non-pregnant HIV positive patients.

The HIV protein Tat, is a protein that elevates the release of pro-inflammatory cytokines and upregulates the expression of sE-selectin by functioning as a cytokine during endothelial cell activation [31]. The Tat protein also stimulates the upregulation of the adhesion molecule ICAM-1 on endothelial cells, while also upregulating mediators of inflammation such as VCAM-1 to inhibit cell migration [31, 32], hence the upward trend noted in preeclamptic HIV positive patients in this study.

Strengths and Limitations

This study is the first to report on levels of sE-selectin in individuals with both HIV and PE. However, larger sample size is required to confirm our findings. Also important to note, the HIV patients were not grouped according to their duration and type of treatment.

Conclusion

This study demonstrates upregulation of sE-selectin in HIV negative preeclamptic compared to normotensive HIV negative pregnancies. Soluble E-selectin could possibly be used diagnostically, as an early indicator of PE development due to its role in endothelial dysfunction; however; further large scale studies are required.
Author’s contribution

G Naidoo: Project development, data analysis and manuscript writing.

OP Khaliq: Manuscript writing.

J Moodley: Manuscript writing and editing.

T Naicker: Project development and manuscript editing (Supervisor).

Funding

Funding was obtained from the College of Health Sciences, University of KwaZulu-Natal and Productivity Unit Award of Professor T Naicker.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest.

Ethical approval

Ethical approval was obtained from the Biomedical Research Ethics Committee, University of KwaZulu-Natal (reference number: BCA338/17).

Statement of human rights

This is a retrospective study; hence patient demographics were recorded from patient data forms available at the Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal.

Informed consent

Informed consent was obtained from patients; patients unable to provide informed consent were excluded from this study.
References

4.1 SYNTHESIS

HIV infection and preeclampsia are common causes of maternal mortality in SA (Saving-Mothers-Report, 2017). Preeclampsia (PE) only occurs during pregnancy with characteristic features that include impaired placentation, systemic inflammation, as well as endothelial dysfunction (Rana et al., 2019). The circulating adhesion molecule sE-selectin is a marker of endothelial dysfunction (Hoffman et al., 2018). The activation and damage of endothelial cells lead to increased levels of this adhesion molecule (Carty et al., 2012). In PE, endothelial cell activation and dysfunction results in endothelial cells secreting the glycoprotein TSP-2; this indicates a possible association between TSP-2 and PE (Stenczer et al., 2011). The development of PE begins during the early stages of pregnancy and is followed by the
manifestation of clinical symptoms (Gathiram and Moodley, 2016). This makes it difficult to identify predictor tools that can be utilised in the early diagnosis of PE. Taking into consideration the altered levels of sE-selectin and TSP-2 in PE, these analytes may have value as early indicators of PE. Therefore, the aim of this study was to investigate the role of sE-selectin and TSP-2 in HIV-associated PE.

Based solely on pregnancy type, this study reports no significant difference of sE-selectin between normotensive (HIV positive and HIV negative combined) and preeclamptic (HIV positive and HIV negative combined) pregnancies. sE-selectin is a marker of endothelial dysfunction that is elevated in conditions associated with inflammation (Raffray et al., 2017; Hoffman et al., 2018).

This study demonstrates no significant difference of sE-selectin expression between normotensive HIV-positive compared to the preeclamptic HIV-positive groups. In addition, the normotensive HIV-negative and preeclamptic HIV-positive groups also did not differ significantly. The administration of antiretroviral therapy to pregnant HIV-positive women may account for the non-significance reported in this study. While the HIV regulatory protein Tat stimulates endothelial dysfunction by binding to integrin receptors, HIV-positive patients receiving antiretroviral therapy have been reported to exhibit decreased levels of endothelial dysfunction markers (Kristoffersen et al., 2009; Anand et al., 2018). Interestingly, sE-selectin can remain attached to ligands present on the surface of circulating leukocytes thereby preventing these cells from migrating to inflammatory sites. This ability of sE-selectin prevents destructive inflammation during exaggerated leukocyte release and could explain the non-significance found in this study between the normotensive HIV-positive and preeclamptic HIV-positive groups as well as between the normotensive HIV-negative and preeclamptic HIV-positive groups (Raffray et al., 2017).

A significant elevation of sE-selectin was also observed between the preeclamptic HIV-negative group and the normotensive HIV-negative group ($p=0.0070^{**}$). The concentration of circulating adhesion molecules are elevated in PE (Lylla et al., 1999). Increased levels of sE-selectin have been reported in early pregnancies which were later complicated with PE (Carty et al., 2012). Reduced placentation, placental ischaemia with resultant increase in oxidative stress, dysfunction of the endothelium and inflammation contribute to the pathophysiology of PE (Geldenhuys et al., 2018). Soluble E-selectin is synthesised and transported to the endothelial cell surface where it facilitates the adhesion of leukocytes to endothelial cells (Kim et al., 2004; Feng, 2017). During inflammation, sE-selectin regulates the movement of white blood cells into perivascular tissue (Hoffman et al., 2018). Hence, an elevation of sE-
selectin indicates dysfunction of the endothelium, which is involved in the pathophysiology of PE.

Irrespective of pregnancy type and based solely on HIV status, this study reports no significant difference between normotensive HIV-positive and normotensive HIV-negative groups, however the normotensive HIV-positive group exhibited an upwards trend of sE-selectin compared to the normotensive HIV-negative group. Although levels of sE-selectin were non-significant between the preeclamptic HIV-negative and preeclamptic HIV-positive groups, an upwards trend of sE-selectin was observed in the preeclamptic HIV-positive compared to the preeclamptic HIV-negative group. No significant difference was observed in sE-selectin levels between the HIV-positive and HIV-negative groups, however the HIV-positive group showed an upwards trend of sE-selectin compared to the HIV-negative group.

Hoffman et al., (2018) reported that levels of sE-selectin did not differ significantly in HIV positive compared to HIV negative non-pregnant patients which is in agreement with the results reported in this study (Hoffman et al., 2018). Furthermore, decreased sE-selectin levels have been reported in HIV positive patients receiving treatment compared to patients not receiving HIV treatment (Rönsholt et al., 2013). It is also interesting to note that sE-selectin levels are reported to be elevated in patients with acute HIV compared to patients with chronic HIV (Graham et al., 2013). This could be indicative of HAART admission possibly lowering inflammation levels of patients that are on chronic HIV treatment. The immune activation that occurs during HIV infection may account for the upwards trend of sE-selectin noted in the HIV-positive group of this study. In addition, HIV treatment reportedly alters sE-selectin levels but does not regulate it to the normal levels observed in patients that are HIV-negative (Rönsholt et al., 2013).

To the best of our knowledge, this is the first study to report dysregulated levels of sE-selectin in preeclamptic patients compromised by HIV infection. Notably, during pregnancy, testing for HIV and receiving appropriate treatment regimens is standard practice. In this study, levels of sE-selectin showed no significant difference between the preeclamptic HIV-positive group and the preeclamptic HIV-negative group, with an upwards trend observed in the preeclamptic HIV-positive group. This could be explained by cytokines such as IL-1 and TNF-α eliciting an inflammatory response. Tumour necrosis factor-alpha is also responsible for the activation of sE-selectin.

Furthermore, the upwards trend of sE-selectin observed in the preeclamptic HIV-positive group in this study may be due to the HIV protein Tat. The Tat protein functions as a cytokine
during the activation of endothelial cells thereby elevating the release of pro-inflammatory cytokines and upregulating sE-selectin expression (Jiang et al., 2018). This HIV protein induces elevation of the ICAM-1 adhesion molecule on endothelial cells and also upregulates VCAM-1 which is a mediator of inflammation that inhibits cell migration (Jiang et al., 2018; Padayachee et al., 2019).

As far as we know, this is the first study to report that TSP-2 is upregulated in preeclamptic patients with HIV infection. Regardless of HIV status and based on pregnancy type, this study reports a significant difference in the serum concentration of TSP-2. TSP-2 is an extracellular glycoprotein that affects the proliferation as well as invasion of cells by aiding in communication between cells and the extracellular matrix. TSP-2 is also involved in the remodelling of vasculature and could possibly explain the defective trophoblast cell invasion of PE (Lawler, 2000; Mirochnik et al., 2008; Stenczer et al., 2011). Since the bioavailability of proteases is regulated by TSP-2, cell migration together with physiological conversion of spiral arteries would also be regulated by TSP-2 (Pellerin et al., 1994; Bornstein et al., 2000).

Additionally, microRNAs are involved in the regulation of trophoblast migration and invasion. The growth of trophoblasts, migration as well as invasion is reported to be stimulated by overexpression of miR-221-3p, while the knockout of this microRNA is shown to have the opposite effect (Yang et al., 2019). Moreover, Yang et al., (2019) discovered an elevation of TSP-2 microRNA expression in PE which was also negatively correlated with miR-221-3p (Yang et al., 2019). The findings of Yang et al., (2019) corroborate the upregulation of TSP-2 in PE observed in this study.

TSP-2 expression is regulated by hypoxia (Stenczer et al., 2011). The expression of HIF-1α is reported to be elevated in preeclamptic pregnancies (Verma et al., 2018). Hence, the TSP-2 upregulation in preeclamptic pregnancies noted in this study may be due to the ischaemic microenvironment associated with PE.

Dysfunction of the endothelium and endotheliosis are characteristic features of PE (Sani et al., 2019). In PE, there is an elevation of anti-angiogenic proteins such as sFlt1 and sEng which is accompanied by a concomitant downregulation of VEGF and PlGF (Govender et al., 2015; Ngene et al., 2019). Levels of sFlt1 are reported to be higher in HIV-negative (preeclamptic and normotensive) compared to HIV-positive pregnancies, therefore suggesting that the exaggerated immune response in PE is neutralised (Govender et al., 2013). Soluble Fms-like Tyrosine Kinase 1 (sFlt1) dysregulates angiogenesis by blocking the function of pro-angiogenic proteins such as PlGF and VEGF (Nejad et al., 2019).
The systemic endothelial damage which arises from the angiogenic inhibitory action of TSP-2 may account for the upregulation of TSP-2 reported in this study. The angiogenic nature of TSP-2 results in systemic endothelial damage. Interaction between TSP-2 and the CD36 receptor is responsible for the anti-angiogenic properties displayed by TSP-2 (Silverstein and Febbraio, 2009). The binding of TSP-2 to CD36 induces endothelial cell apoptosis and thus inhibits angiogenesis (Koch et al., 2011; Fei et al., 2017).

TSP-2 plays a role in assembling constituents of connective tissue and is upregulated during the remodelling of tissue (Bornstein et al., 2000; Bornstein et al., 2004). TSP-2 is reported to regulate tissue inflammation in rheumatoid arthritis and also has the ability to activate regulatory anti-inflammatory T-cells thereby acting as a suppressor of inflammation (Park et al., 2004; Papageorgiou et al., 2012). The elevation of serum TSP-2 noted in this study is indicative of the exaggerated inflammatory state seen in PE.

Based on HIV status, this study reports a significant upregulation of TSP-2 in HIV-positive women. TSP-2 binds to the HIV protein Tat (Rusnati et al., 2000). This protein is similar to VEGF in sequence which makes it a powerful angiogenic factor (Zhou et al., 2013). Hence, in this study it is possible that an antagonistic angiogenic activity is stimulated in HIV infection when TSP-2 binds to the Tat protein.

In addition, the inclination of TSP-2 to bind to the HIV protein gp120 via CD36 could explain the elevated levels of TSP-2 noted in the HIV-positive group of this study (Crombie, 2000). Notably, in this study, all HIV-positive women received dual antiretroviral therapy (HAART + Nevirapine). HAART also has been reported to possibly stimulate TSP-1 secretion by influencing p17 which is a matrix protein of HIV (Caccuri et al., 2014).

This study also reports a significant elevation of TSP-2 in HIV-associated PE. The bioavailability of TSP-2 for VEGF binding is reduced due to the anti-angiogenic properties displayed by TSP-2 together with its role in the hyper inflammatory, hypoxic microenvironment of PE.

4.2 CONCLUSION

To the best of our knowledge, this is the first study to report on the serum concentrations of sE-selectin and TSP-2 in HIV-associated preeclamptic and normotensive pregnancies. A
significant upregulation of sE-selectin was observed in preeclamptic HIV-negative compared to normotensive HIV-negative pregnancies. However, based on HIV status, there was no significant difference of sE-selectin expression observed between the preeclamptic HIV-positive and normotensive HIV-positive groups. Furthermore, a significant elevation of TSP-2 was demonstrated in preeclamptic compared to normotensive pregnancies, irrespective of HIV status. Based on HIV status, a significant upregulation of TSP-2 was observed in HIV-positive women and in HIV-associated PE. This study therefore reflects the biomarker value of sE-selectin and TSP-2, as early indicators of PE development.

4.3 FUTURE RESEARCH

In light of the role that sE-selectin plays during dysfunction of the endothelium, this adhesion molecule could possibly be used as an early indicator of PE. The role of TSP-2 in vasculature remodelling, inflammation and as a regulator of angiogenesis makes it suitable to be used diagnostically for the early detection of PE. Lastly, further large scale studies to confirm the biomarker value of sE-selectin and TSP-2 in PE is crucial as this will aid in developing therapeutic interventions and specialised care for affected women.
CHAPTER 5
REFERENCES

APPENDICES
APPENDIX 1
24 May 2019

Prof T Naicker
Discipline of Optics and Imaging
School of Laboratory Medicine and Medical Sciences
naicker@ukzn.ac.za

Dear Prof Naicker

Title of Project: Exploring the pathogenesis HIV associate pre-eclampsia syndrome in a homogenous South African population group.
BREC Ref No.: BCA338/17

We wish to advise that your request dated 30 April 2019 to add the studies below to the above study has been noted and approved by a sub-committee of the Biomedical Research Ethics Committee.

Studies added to the above study:

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>TITLE</th>
<th>DEGREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sake Ntsau MAfikila</td>
<td>The role of Tenascin C in HIV associated preeclampsia</td>
<td>MMedSc</td>
</tr>
<tr>
<td>Samukolethwe Sibiya</td>
<td>The role of human complement proteins C3b/C3b and C4 in HIV associated preeclampsia</td>
<td>MMedSc</td>
</tr>
<tr>
<td>Phumelele Klikine</td>
<td>The role of human complement proteins Factor B and Factor P/Prekardin in HIV associated preeclampsia</td>
<td>MMedSc</td>
</tr>
<tr>
<td>Zinhle Pretty Masiimo</td>
<td>The role of Apolipoprotein A1 and A2 in HIV associated preeclampsia</td>
<td>MMedSc</td>
</tr>
<tr>
<td>Satezial Pillyay</td>
<td>The role of VEGFR-3 in the placenta and placental bed in HIV associated preeclampsia</td>
<td>MMedSc</td>
</tr>
<tr>
<td>Girija Naladoo</td>
<td>The role of soluble E-selectin and Thrombospondin-2 in HIV associated preeclampsia</td>
<td>MMedSc</td>
</tr>
<tr>
<td>Mwuso Herald Mthembu</td>
<td>The role of Endothelin-1 in HIV associated preeclampsia</td>
<td>MMedSc</td>
</tr>
</tbody>
</table>

The committee will be notified of the above approval at its next meeting to be held on 11 June 2019.

Yours sincerely

[Signature]

Prof V Rambiditch
Chair: Biomedical Research Ethics Committee
APPENDIX 2
Standard curves of sE-selectin and TSP-2