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Abstract 

The main aim of this study was to assess remote sensing applications for detecting and 

mapping the spatial distribution of gully erosion in the communal lands of Okhombe Valley, 

Drakensberg, South Africa. The study first sought to review the progress of remote sensing 

by examining its usage and users over the years. The findings showed that the application of 

remote sensing for soil erosion studies has significantly increased by 45% since the 1960s. 

Although remote sensing is becoming widely accepted by a growing number of scientific 

disciplines, there is paucity in African lead authors and this call for more collaborative 

research and knowledge transfer. Literature further shows that Landsat series data is a 

popular remote sensing system used for soil erosion monitoring and mapping, mainly due to 

its multispectral bands and archival data. Although, commercial high resolution satellites 

have been demonstrated to accurately map small soil erosion features; their high acquisition 

costs remains a challenge, especially in resource constrained regions. Therefore, this allows 

for the exploration of the freely available new generation sensors for gully erosion mapping 

at regional scales. The second objective of the study was to evaluate the potential of the 

Sentinel-2 MSI sensor in detecting and mapping the spatial distribution of gullies. The study 

further investigated environmental variables (i.e. slope, vegetation cover, TWI and SPI) that 

may have a potential influence on gully initiation and development. The study evaluated the 

effectiveness of the Sentinel-2 spectral bands in discriminating gullies from other land cover 

types using the Support Vector Machine. The overall classification accuracy achieved for 

gully discrimination was 77% and all 10 Sentinel-2 spectral bands were selected as the ideal 

variables for discriminating gullies from other land cover types. Additionally, the findings of 

the study indicated that there is no significant difference between the environmental variables 

across different gully volumes and that all the measured variables have a weak influence on 

the volume of soil loss (i.e. Slope (R
2
 = 0.02); Vegetation cover (R

2
 = 0.01); TWI (R

2
 = 0.11) 

and SPI (R
2
 =0.02) despite an observable trend of influence. Overall, Sentinel-2 has 

demonstrated its usefulness in detecting and mapping gullies and it is therefore recommended 

that future studies explore the use of the freely available sensor in monitoring mapping soil 

erosion at regional scales.  
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CHAPTER ONE 

General Introduction  

 

1.1. Background  

Land degradation in the form of soil erosion by water has been significantly documented 

around the world as a critical driver of environmental change (Ananda and Herath, 2003; 

Poesen et al., 2003; Lal, 2001; Valentin, Poesen and Li, 2005). Gully erosion is one of the 

most severe forms of water erosion and has received a great deal of attention, due to its 

destructive nature. Gully erosion is associated with negative off-site and on-site effects, such 

as causing a decline in soil productivity and quality (Pimentel and Burgess, 2013) thereby 

affecting agricultural production and sedimentation of rivers and reservoirs (Poesen, 2011) 

consequently reducing water holding capacity and quality. For example, it has been reported 

that gullies are increasingly affecting agricultural lands and account for an estimated soil loss 

range of 1248ï23 400 million tons per year from 78 million ha of pasture, rangelands and 

cultivated fields across Ethiopia (Hawando, 2001; Daba et al., 2003). In South Africa, De 

Villiers and Basson (2007) reported that sedimentation had reduced the Welbedacht Dam 

storage capacity to approximately 90% over a period of 30 years.  

Although gully erosion is a natural process shaping the earthôs landscape, in many countries, 

it has been observed that it is accelerated by unsustainable human activities, such as land use 

practices (Kakembo and Rowntree, 2003; Sonneveld et al., 2005; Smolska, 2007). In South 

Africa, gully erosion is largely a product of heavy rains and highly erodible solonetzic and 

dispersive soils (Laker, 2003). The communal lands of northern KwaZulu-Natal are one of 

the most severely affected parts of South Africa by gully erosion, due to steep topography 

and a history of land use change (Le Roux et al., 2008; Mararakanye and Le Roux, 2012). 

This increasingly causes a concern for catchment instability and water resource management. 

However, despite this information, little is still known about the extent of erosion and 

possible contributing environmental factors to gully initiation and development in South 

Africa as field methods are expensive and time consuming. Assessing the spatial distribution 

of gullies and quantifying possible gully influencing factors has thus become a requirement 

for cost effective conservation planning, facilitating the decision making process for suitable 

prevention and control measures especially at municipal and provincial levels (Marakanye 

and Le Roux, 2012).  
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To effectively address the problem of gully erosion, the assessment and monitoring of the 

spatial distribution of gullies is essential. In this context the use of remote sensing technology 

has the potential to provide a synoptic and timely analysis of the severity of soil erosion. 

Remote sensing is a robust tool that offers meaningful spatial data for the assessment and 

monitoring of spatio-temporal variations of soil erosion over large areas (Mathieu et al., 

1997; Dwivedi et al., 1997; Haboudane et al., 2002; King et al., 2005, Vrieling, 2006; Liberti 

et al., 2009, Le Roux and Sumner, 2012). Remote sensing offers cost and time effective tools 

to accurately map erosion which often overcome the limitations of traditional soil erosion 

assessment methods (Vrieling, 2006; Lu et al., 2007; Liberti et al., 2009). Gully erosion 

maps, produced quickly and cheaply from readily-available data, are a useful tool in regional 

planning for erosion control (Taruvinga, 2009). Therefore, developing a robust, reliable and 

accurate means of mapping gullies is a current focus of this study. Literature shows that 

traditional mapping techniques through the manual digitization of aerial photographs and 

satellite imagery have been extensively used for the mapping and monitoring of gully erosion 

(e.g. Jones and Keech, 1966; Morgan et al., 1997; Fadul et al., 1999). However these 

techniques are time consuming and the datasets rarely provide sufficient information for gully 

mapping and monitoring as they are restricted to small scale (e.g. Jones and Keech, 1966; 

Servenay and Prat, 2003; Poesen, 2011).   

Remote sensing advancements have provided tremendous capabilities for mapping gully 

erosion as fine resolution sensors, such as QuickBird, IKONOS and Worldview are 

increasingly becoming popular. Although these datasets have been documented to provide 

accurate results for gully mapping (e.g. Shruthi et al., 2011; Ranga et al., 2015; Le Roux and 

Marakanye, 2012), their application at a larger scale is limited due to their small swath width 

and high acquisition costs, which become a challenge for resource constrained regions. These 

shortcomings have shifted attention towards the application of freely available multispectral 

sensors such as Landsat datasets, characterised by a global footprint and continual coverage 

(Dube and Mutanga, 2015) and more recently launched Sentinel-2 MSI products. For 

example, Seutloali et al. (2017) demonstrated the usefulness of the freely available 

multispectral Landsat 8 OLI sensor in mapping the spatial variations of soil erosion at 

regional scale where extensive field-work remains limited. On the other hand, the recently 

launched Sentinel-2 MSI sensor offers improved spatial and spectral capabilities for repeated 

regional scale mapping and monitoring of soil erosion. For instance, a study by Sepuru and 

Dube (2018) demonstrated the effectiveness of Sentinel-2 in mapping spatial distribution of 
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eroded area, achieving an overall classification accuracy of 81,90%. The study concluded that 

the Sentinel-2 MSI sensorôs 5 day temporal and 10m spatial resolution make it an ideal 

primary data source for cost effective and practical soil erosion mapping and monitoring at 

regional scale, especially for resource constrained regions. Therefore, the current study aims 

to evaluate remote sensing applications for mapping the spatial distribution of gullies in 

Okhombe valley, Drakensberg, South Africa.  

 

1.2. Aims and objectives 

The overall purpose of the study was to evaluate remote sensing applications for mapping the 

spatial distribution of gullies in the communal landscape of Okhombe Valley, Drakensberg. 

The following objectives were set: 

¶ To review the progress and identify gaps in remote sensing applications in soil 

erosion mapping using multispectral remotely sensed data 

¶ To evaluate the potential of the recently launched freely available medium resolution 

Sentinel-2 MSI sensor in detecting and mapping gullies  

¶ To investigate the possible environmental factors that influence the spatial distribution 

of gullies in Okhombe Valley.  

 

1.3. General structure of the thesis 

This thesis is presented in four chapters. The first chapter provides an outline of the study, 

drawing attention to the need for assessing the spatial distribution of gullies as a prerequisite 

for effective implementation of erosion control and rehabilitation measures. Chapter 2 of the 

study reviews the progress of remote sensing usage and users in soil erosion assessment at 

varying scales. The chapter highlights the progress of remote sensing applications for soil 

erosion studies through analysing the publication details including author affiliation, 

geographic location and scale of study and remote sensing systems and methods used. 

Chapter three evaluates the potential of the freely available multispectral Sentinel-2 MSI 

sensor for mapping the spatial distribution of gullies in Okhombe valley, Drakensberg. The 

study examined the effectiveness of the Sentinel-2 raw bands in discriminating gullies from 

other land cover types as well as investigate the possible environmental variables that 

influence gully initiation and development of the estimated soil loss for the identified gully. 



4 
 

The last chapter of the thesis reviews the research objectives and provides limitations and 

major findings of the study. 
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CHAPTER TWO  

Remote Sensing of Soil Erosion: A literature review.  

This Chapter is based on:  

Makaya, N. P., Mutanga, O. & Dube, T. 2018. Remote Sensing of Soil Erosion: A literature 

review. South African Geographical Journal. RSAG-2018-0054 (Submitted).  

 

Abstract  

Soil erosion is widely recognised as a land degradation problem that poses a threat to the 

environment. To develop effective and robust soil erosion control mechanisms, regional scale 

assessment is a pre-requisite. However, this is being limited by the lack of data availability. 

Despite these limitations, researchers have made tremendous progress in soil erosion 

mapping and monitoring. Unfortunately, this information is poorly documented and to 

determine future research direction, there is a need to provide an overview on the progress to 

date. The aim of this work therefore was to investigate how the application of remote sensing 

for soil erosion analysis has developed over the years. The paper evaluates the usage and the 

users of remote sensing by focusing on three aspects of the material (104 peer-reviewed 

articles): publication details (year of publication, scientific discipline of journals and author 

national affiliation), geographic information (location and spatial scale of study) and data 

usage (application of remote sensing systems, methods and measures for accuracy 

assessments). Three key results were obtained: i) the application of remote sensing for soil 

erosion mapping has significantly increased since 1966 and is becoming accepted by an 

increasing number of scientific disciplines, (ii) the contribution of African lead authors is 

low, which could possibly indicate that knowledge transfer and technologies from developed 

countries is imbalanced, (iii) Landsat is the most commonly used remote sensing system and 

although its spatial resolution is a limitation, its multispectral bands and archival data make it 

ideal for soil erosion detection and monitoring. Therefore, this literature review emphasises 

the need for collaborative research that could possibly explore the potential and further 

enhance the usefulness of satellite technology in answering pertinent geomorphology and soil 

conservation research questions. 

 

Key words: runoff, soil erosion, remote sensing, monitoring, satellite data.  
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2.1. Introduction   

Water erosion is widely recognized as a critical land degradation problem that increasingly 

impacts terrestrial and aquatic systems globally (Oldeman et al., 1991). For instance, soil 

erosion accounts for an estimated 85% of global land degradation (Angima et al., 2003). 

While soil erosion is a natural process, anthropogenic activities have significantly contributed 

to the acceleration of the process, consequently resulting in a dramatic decline of land 

resources (Lal, 2001). Environmental challenges caused by the acceleration of soil erosion 

are attributable to drastic changes of land use patterns. For instance, clearing of vegetation 

cover by over grazing, inappropriate farming techniques that cause soil crusting and 

compaction, as well as infrastructural development, such as roads generate high amounts of 

runoff consequently leading to soil erosion (Pimentel, 2006). Furthermore, onsite effects of 

soil erosion further cause negative downstream effects, such as sedimentation of dams and 

rivers, subsequently degrading water quality and quantity (Lu et al., 2007; Morgan, 2009).  

Given the high spatial variability of soil erosion, it is vital to obtain spatial data depicting the 

severity of soil erosion, as well as understanding the dynamics that contribute to soil erosion 

for the implementation of soil conservation, planning and mitigation measures. Controlling 

and preventing soil erosion requires the implementation of biophysical measures often at field 

or catchment scale and Vrieling (2006) argues that obtaining such data at regional scales has 

been challenging, due to data scarcity. Field surveys, time constraints and challenging terrain 

provide a limitation for data availability and quality (Mather and Tso, 2016). Nonetheless, 

numerous studies that have mapped soil erosion risk at different scales across the world are 

often constructed using erosion models (Megahan et al., 2001; Ma et al., 2003; Rahman  et 

al., 2009). However, Stroosnijder (2005) reiterates the challenge of data quality, noting that it 

is difficult to validate computed erosion rates due to the costly and strenuous nature of 

conducting accurate field measurements.   

Remote sensing technologies on the other hand offer cheaper, continual and accurate large 

scale data for soil erosion assessment thereby overcoming the challenges associated with field 

methods (Vrieling 2006). The emergence of remote sensing technologies gained popularity in 

the exploration of the potential remote sensing products to facilitate in soil erosion research 

(Pickup and Nelson, 1984; Pickup and Chewings, 1988; Huete and Liu, 1994; Dwivedi et al., 

1997; Sujatha et al., 2000; Martēnez-Casasnovas, 2003; Guanglu et al., 2004). There is a 

plethora of optical and radar remote sensing technologies characterized with different 
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spectral, spatial and temporal resolutions that have been applied in soil erosion related studies 

(see Table 2), including the commonly used Landsat series data. Remote sensing technologies 

are continuously being improved for better optimization, such as the recently launched 

European Space Agency (ESA) open access Sentinel satellite products (Kaplan et al., 2014). 

The advantages offered by open access data policies and low-cost software have provided a 

platform for a wide range of users to make use of remote sensing applications (Kaplan et al., 

2014).   

Four scientific literature reviews discussing the progress of remote sensing applications for 

soil erosion studies, providing an overview of the technological and methodological strengths 

and weaknesses were identified. For instance, a review by Bishop et al. (2012) evaluated 

studies carried out for deriving information on water and wind erosion using satellite data. 

While Vrieling (2006) reviewed different methods including validation techniques applied for 

water erosion assessment using satellite data and concluded that there is a paucity of 

validation data for soil erosion mapping. Mayr et al. (2016) on the other hand provide an 

overview of issues related to the application of remote sensing technologies for the 

identification and mapping of land degradation features, focusing on Latin America and 

Caribbean region. Karami et al. (2015) provide a critical analysis of remote sensing methods 

for detecting soil degradation, including soil erosion by runoff reflecting on the importance of 

improving wide regional detection.  

In contrast to the studies presented above, this current literature review provides a 

quantitative analysis of the progress of remote sensing applications for soil erosion 

assessment over a period of 50 years. Water erosion occurs in various forms however the 

focus of this literature review is only on sheet, rill and gully erosion, thus excludes landslides 

and floodplain erosion. The objective of this literature review therefore is to provide a 

comprehensive overview of the usages and users of remote sensing to study soil erosion 

processes. The literature review analysis further examine researchers who have used remote 

sensing applications in soil erosion studies. Publication details (year of publication, scientific 

discipline of journals and author national affiliation), geographic information (location and 

spatial scale of study) and data usage (application of remote sensing systems and procedures 

for accuracy assessments) for each research article were examined. This will facilitate in 

identifying trends and gaps in the usage and users of remote sensing and subsequently 

determine areas that require prioritising (Karlson and Ostwald, 2016), and thus improving the 

effectiveness of remote sensing for soil erosion monitoring.  



8 
 

2.2. Erosion controlling factors  

Soil erosion is a complex process that is controlled by various interrelated environmental 

parameters i.e. bedrock type, soil, climate, vegetation, topography and land use. 

Understanding the dynamics driving soil erosion facilitates in determining the rate of change 

and period required to update soil erosion maps (Vrieling, 2006). The detection of eroded 

areas and erosion features together with the assessment of controlling factors can be studied 

through the integration of spatial data, topographic maps, field surveys, aerial photographs 

and satellite imagery (Lawrence and Ripple, 1998). Remote sensing applications for soil 

erosion studies often evaluate erosion controlling factors, in addition to the detection of 

erosion features and eroded areas (Le Roux, 2011). For instance, satellite data are used to 

derive soil conditions, vegetation cover, and topography and land use characteristics that are 

often used in soil erosion models. However, only studies that use remotely sensed data to 

assess these erosion contributing factors are discussed in this section.  

A few studies use satellite applications for the assessment of rainfall characteristics in soil 

erosion studies. For example, Vrieling et al. (2008) performed a regional erosion risk analysis 

using large scale Moderate Resolution Imaging Spectroradiometer (MODIS) derived 

Normalized Difference Vegetation Index (NDVI) and TRMM to estimate rainfall erosion 

periods. The study compared the NDVI time series vegetation signatures with rainfall data 

from Tropical Rainfall Measuring Mission (TRMM) and was able to determine the most 

critical periods for erosion risk. Although coarse resolution data such as MODIS offer high 

spectral and temporal resolution for soil erosion risk assessment, such large scale coarse 

resolution data present challenges for erosion mapping. For instance, not only is it 

challenging to detect erosion features at field scale due to its low spatial resolution of 1KM, 

MODIS also presents implications of low image acquisition particularly for tropical regions 

owing to its low availability of cloud-free data.  
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2.2.1. Topography 

One topographic feature that typically contributes to the erosion process is the degree of slope 

where a steeper slope results in increased velocity of runoff thereby initiating erosion (Jain 

and Goel, 2002; Valentin et al., 2005). For instance, a study by Seutloali et al. (2016) found 

that soil erosion occurs on steeper slopes that are greater than 30m. In contrast, Guanglu et al. 

(2004) found that shallow gullies that are 0.3ï2 m deep generally occur on the lower and 

middle areas of the slope and rill erosion in the upper/ middle areas.  

Spatial erosion models often require a Digital Elevation Model (DEM) to extract topographic 

data, such as slope characteristics. Traditionally, DEMs are constructed using contour lines 

from topographic maps or from aerial photographs stereo pairs (Betts and DeRose, 1999; 

Martēnez-Casasnovas, 2003; García-Ruiz, 2010) and more recently from high-resolution 

digital aerial imagery. For example, a study by Huete (1988) monitored soil surface change of 

rangeland erosion using a DEM obtained from a high-resolution aerial imagery and 

successfully identified surface elevation change. The advancement of remote sensing 

technologies set precedence for satellite data to offer good quality DEM of less than 20m 

resolution provided by the SPOT stereo optical imagery or Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) (Toutin and Cheng, 2002). For example, 

Haboudane et al. (2002) generated slope and topographic curvature from a Satellite Pour 

l'Observation de la Terre High Resolution Visible (SPOT HRV) derived DEM while Cyr et 

al. (1995) also used a DEM derived from SPOT HRV for the visual interpretation analysis of 

erosion features.  

On the other hand, interferometric Synthetic Aperture Radar (SAR) imagery with spatial 

resolution of 30m, such as the European Remote Sensing satellite (ERS), Environmental 

Satellite (ENVISAT), and TerraSAR-X have also been used for erosion detection. For 

example, Nanni et al. (2012) were able to study erosion processes by performing a 

morphometric analysis based on slope aspect, flow accumulation, stream network and 

lithology derived from the ERS SAR interferometric DEM of 20m. Bouaziz, et al. (2011) on 

the other hand, recently used geomorphologic factors derived from Shuttle Radar Topography 

Mission (SRTM) and ASTER DEMs to describe the geomorphologic setting and shapes of 

gullies. The study found that ASTER derived DEM of 15 m improved the accuracy in 

identifying gullies over small scales as opposed to the 90m SRTM data DEM. Hence, the use 
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of remote sensing demonstrates the feasibility of providing information for soil erosion 

vulnerability.  

2.2.2. Soil  

Soil erosion is influenced by a range of soil properties, such as texture, structure, moisture, 

roughness, and organic matter content that determine the soils aggregate stability (Vrieling, 

2006). These soil properties can be determined using infrared and visible sensors, often 

examined by visual interpretation and image classification. Differences in soil erodibility can 

be studied by analysing the spectral behaviour of soils provided by the satellite imagery 

(Reusing et al., 2000). For example, a study by Wang et al. (2003) successfully mapped the 

spatial distribution of soil erodibility using extrapolated erodibility values assigned in the 

field and Landsat TM band 7. Singh et al. (2004) on the other hand, found significant 

relationships between soil colours defined by the Munsell system and Landsat satellite 

imagery. Moreover, the soilôs spectral reflectance is significantly influence by topsoil 

characteristics such as soil colour, iron oxides, moisture content etc. (Toutin and Cheng, 

2002). For example, Nanni et al. (2012) were able to determine and discriminate soil classes 

using discriminant analysis of spectral data derived from Landsat imagery. The results of the 

study confirmed the practicability of identifying individual soil classes using spectra data 

obtained from the surface for soil classification.   

Mathieu, et al., (1997) noted that although topsoil characteristics can be a limitation for 

determining one specific property, they can however be effective in determining soil crusting 

as the removal of topsoil by soil erosion causes a decline of organic matter and iron oxides, 

consequently uncovering subsoil (De Jong et al., 1999). For example, Singh et al. (2006) 

assessed the level of soil degradation by estimating soil colour from NOAA/AVHRR satellite 

data. Soil colour was determined using various vegetation indices, such as NDVI and MSAVI 

and a correlation was found between soil colour and vegetation indices. Since erosive 

processes alter the soilôs physical and chemical properties subsequently changing the colour, 

studying soil colour from satellite data can be beneficial in monitoring soil erosion processes 

Singh et al. (2006).  

Optical satellite data however can present a limitation in measuring topsoil reflectance due 

the vegetation interference (Lawrence and Ripple, 1998). Radar satellite data on the other 

hand can overcome this challenge as they provide spectral information beyond vegetation and 

soil surface in instances where soil erosion is exacerbated by surface crusting (Vrieling et al., 
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2008; Wulf et al., 2014). Soil surface roughness initiates and accelerates erosion, due to the 

high runoff volumes that collects downslope (Valentin et al., 2005, King et al., 2005). SAR 

data can provide useful information on erosion processes radar satellites are sensitive to soil 

roughness and moisture. For example, a study by Baghdadi et al. (2002) investigated the 

potential of SAR data derived from ERS and RADARSAT sensors for determining possible 

runoff and soil erosion in northern France. The study found that the SAR data could 

determine the influence of soil roughness on soil erosion, thereby successfully discriminating 

and mapping various surface roughness classes (smooth, medium and rough) over 

agricultural fields.  

 

2.2.2. Vegetation cover 

Vegetation cover is considered as one of the most important factors controlling soil erosion 

and can considerably decrease soil loss, due to its ability to bind soil particles, thereby 

protecting the soil (Jain and Goel, 2002; Lawrence and Ripple, 1998). Remote sensing 

facilitates in identifying and studying land cover features based on their spectral 

characteristics (Vrieling, 2006). Healthy vegetation and dry bare soil have significantly 

different spectral characteristics in the visible and near-infrared regions of the 

electromagnetic spectrum, where the latter is generally indicated by a stable reflectance in 

both regions (Vrieling, 2006). The classification and mapping of vegetation is therefore an 

essential step towards an understanding of vegetation cover and its relationship with soil 

conditions.  

Vegetation indices have been widely used to study vegetation and soil conditions in erosion 

studies and provide a quick and simple technique for erosion feature extraction (Mathieu et 

al., 1997; Del Valle et al., 1998; Botha and Fouche, 2000, Alatorre and Beguería, 2009; 

Meusburger et al.,  2010; Xue and Su, 2017; Ranga et al., 2012). Vegetation indices are 

derived from satellite data to discriminate vegetation and bare soils by maximizing on a 

linear relationship between the red and near-infrared bands (Taruvinga, 2009). NDVI is a 

popular vegetation index in soil erosion studies. For example, a study by Nadal-Romero et al. 

(2012) performed an analysis of various spectral indices in assessing badlands dynamics. The 

results of the study indicated a clear distinction between vegetated and eroded areas and the 

study recommended using the simplest and most commonly used spectral Index (NDVI). 

However, despite its wide recognition, studies have documented the drawbacks of NDVI, 
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such as its the over-saturation in high density biomass, sensitivity to soil brightness, soil 

colour, cloud and cloud shadow (Cyr et al., 1995; Purevdorj et al., 1998; Mutanga and 

Skidmore, 2004;Govaerts and Verhulst, 2010). This consequently led to various 

modifications in efforts to overcome this disadvantage by reducing the soil effects of sparsely 

vegetated areas or bare soil (Xue and Su, 2017).  

The Soil Adjusted Vegetation Index (SAVI) and Soil and Atmospherically Resistant 

Vegetation Index (SARVI) are one of most commonly used modifications of NDVI in soil 

erosion studies (Phinzi and Ngetar, 2017). Indices such as the SAVI, Modified Soil Adjusted 

Index (MSAVI) and Transformed Soil Adjusted Vegetation Index (TSAVI) were established 

in efforts to improve the detection of erosion features in areas with low vegetation 

(Taruvinga, 2009). For example, Phinzi and Ngetar (2017) used Landsat derived vegetation 

indices to compare the accuracy of NDVI, SAVI and SARVI in mapping soil erosion 

distribution in South Africa. The study yielded good accuracy results with a Producerôs 

Accuracy of 77.5%, a Userôs Accuracy of 79.5% and a Kappa statistical accuracy of 64%. 

Similarly, Taruvinga (2009) assessed the utility of Landsat-derived vegetation indices namely 

NDVI, TSAVI and in mapping gullies at catchment level. The results of the study found that 

NDVI produced the highest accuracy for mapping gullies at sub-catchment level, whilst 

TSAVI successfully mapped gullies at catchment level.  

 

2.3. Materials and Methods  

This study was conducted based on a systematic quantitative literature review method which 

was adapted from Karlson and Ostwald (2016). The relevant articles that were identified were 

categorised and critically examined following the steps shown in Fig. 2.1.  

2.3.1. Literature search 

The literature searched included peer-reviewed articles published from 1966 up to mid-year 

2017 that focused on the applications of remote sensing for soil erosion studies. These 

articles were systematically searched in scholarly electronic databases including Google 

Scholar, SCOPUS, Science Direct, EBSCOhost, and Web of Science and were additionally 

identified in relevant literature reviews and citation lists. The selection criteria included i) 

publication in a scientific journal, ii) geographical location of research conducted globally 

including the spatial scale and iii) the use of remote sensing data for water erosion analysis. 
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This literature review was limited only to literature concerning remote sensing of water 

erosion (specifically sheet, rill and gully erosion). The keywords used included ñsoil 

erosionò, ñland degradationò, ñsoil degradationò, ñremote sensingò, and ñgully erosionò, 

ñsatellite dataò and ñwater erosionò.   

 

2.3.2. Literature analysis    

Each article was examined and categorised based on the following information which was 

recorded in a Microsoft Excel database: 1) publication details consisted of the year of 

publication, scientific journal (based on aim of scope) and authorôs national affiliation; 2) 

geographical location included study location and the scale of each which as was examined 

based on four categories i.e. i) regional, ii) catchment, iii) local; 3) data usage was examined 

based on the type of remote sensing instrument and method used. Information on whether 

each study performed accuracy assessment or not was recorded including validation applied 

for each study. 
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Fig. 2. 1: Flowchart describing the literature analysis process where the broken boxes 

indicate the categories used for examining the articles and the solid boxes indicate the sub-

categories (Adapted from Karlson and Ostwald (2016)).  

 

 

  



15 
 

2.4. Results  

2.4.1. Publication details  

The review analysis reveals that remote sensing for soil erosion research gained more 

recognition from 1996, although the first publication occurred in 1966 as shown in Fig. 2.2. 

Only two papers were identified from 1966-1975 which mainly focused on mapping gully 

erosion. Since then the use of remote sensing for soil erosion mapping and monitoring has 

progressively increased, reaching 104 published articles by 2017 mid-year. A relative 

increase in publications can be observed from 1976-1985 where 8 research papers were 

identified and since then a significant increase of publication can be observed from 1996 

onwards where 37 research papers were identified and 53 were identified from 2006 up to 

2017 mid-year as shown in Fig. 2.2. In the recent 11 years (2006-2017), most studies have 

focused on gully erosion highlighting the increase of this erosion phenomena and its impact 

on water resources and food security.  

 

 

 

 

 

 

 

 

 

Fig. 2. 2: Temporal development of published articles where remote sensing has been used 

for soil erosion assessment.   

 

Moreover, Table 2.1 indicates the distribution of research papers published in different 

journal categories over the years. The reviewed articles were published in 48 different 

scientific journals where both remote sensing and interdisciplinary journals published 36% of 
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papers each by mid-year 2017. It can be observed that the 1966 up to 2005 research papers 

were mostly published in strictly remote sensing journals while the rest of the journal 

categories (i.e. Geography, GIS, Interdisciplinary, Land Management and Soil Science) were 

under represented. The use of remote sensing for soil erosion studies significantly increased 

from 2006 onwards, marking a change of interdisciplinary work. Interestingly, it can be 

observed that the application of remote sensing became widely accepted by other scientific 

disciplines as shown in Table 2.1 having 49% of papers published in interdisciplinary 

journals.  

 

 

 

2.4.2. Geographical Information  

Fig. 2.3 illustrates the geographic spatial distribution of research papers that have applied 

remote sensing for the assessment of soil erosion. It can be observed that 12% of the studies 

were conducted in the semi-arid Mediterranean regions of Europe, mostly Spain, 10% of the 

studies were mostly conducted in Africa specifically South Africa and 9% of the studies were 

conducted in southern Asia (i.e. India). Fig. 2.3 illustrates the application of remote sensing 

across different spatial scales. A large proportion studies (85 studies) published from 2006 

onwards were conducted at catchment scale while 16 papers were conducted at local scale 

  Journal category 

1966- 

1975   

1976-

1985   

1986-

1995   

1996-

2005   

2006-

2017 

mid-

year   Total 

  No %   No %   No %   No %   No %   No % 

Geography       2 25         4 11   11 21   17 16 

GIS                         1 2   1 10 

Interdisciplinary             2 50   8 22   26 49   36 34 

Land Management       1 13         7 18   3 6   11 10 

Remote Sensing 2 100   5 63   1 25   16 43   12 23   36 34 

Soil Science             1 25   2 6         3 2 

Total no. 2     8     4     37     53     

10

4  

 Table 2. 1: Temporal development of articles published in journal categories. 
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and only 3 studies were conducted at regional/national scale as shown in Fig. 2.4. It can be 

observed that authors who are affiliated with European institutions mostly in Spain and 

Belgium published large portions of the studies (34 papers) as shown in Fig. 2.5 while 

authors affiliated with African institutions published 23 papers (mostly South Africa and 

Nigeria). 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 3: Percentage of published articles in each country.  

 

 

Fig. 2. 4: Temporal development of the spatial scale of each study. 
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Fig. 2. 5: National affiliation of lead author.  

 

2.4.3. Data Usage  

Table 2.3 below shows an overview of optical and microwave radar satellite systems 

characteristics that have been used in erosion research while Figure 2.6 illustrates the 

reviewed 104 papers that have used different remote sensing systems for the mapping and 

monitoring of soil erosion.  A wide range of optical and radar satellite systems characterized 

by different spatial resolutions were used for assessing eroded areas. The literature review 

analysis showed that 41% of the studies used optical medium resolution satellite imagery (i.e. 

Landsat) while 35% of the studies used aerial photographs, 12% used high resolution satellite 

imagery (mostly QuickBird and IKONOS) and only 9% used radar satellite imagery (mostly 

RADARSAT and JERS SAR).  
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Fig. 2. 6: Remote sensing systems used to assess soil erosion.  

 

Moreover, a range of processing techniques i.e. visual interpretation, supervised Maximum 

Likelihood Classifier (MLC), object-based analysis etc. were used for the mapping of eroded 

areas as shown in Fig. 2.7. 43 studies assessed areas affected by soil erosion using visual 

interpretation, while the MLC was the most commonly used traditional classification method 

and only 2 studies used the object-based method as shown in Fig. 2.7. It was further observed 

that validation of results was assessed using an independent reference dataset where 63% of 

the reviewed studies validated their results by in situ and remotely sensed data while 37% 

studies did not validate their results (Table 2.2).  
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Fig. 2. 7: Remote sensing methods used for the detection and mapping of soil erosion.   

 

Table 2. 2: Accuracy assessment performed for each study. 

Accuracy assessment  No. of studies  Percentage of papers (%) 

Yes 65 63 

Reference data type   

In situ data 32  

Remote sensing 33  

No 39 37 
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Table 2. 3: Overview of remote sensing systems used in soil erosion studies. 

Satellite Sensor Operation 

time 

Spatial 

Resolution  

Temporal 

Resolution 

Spectral Bands 

OPTICAL  

Landsat ï 1, 2, 

3 

MSS 1972 ï 1983 80m 18 days 4 

Landsat ï 4, 5 TM 1982 - 1999 30m, 120m 16 days 6, 1 

 

Landsat ï 7 ETM 1999 ï present 15m, 30m, 60m 16 days 1, 6, 1 

 

Landsat - 8 OLI 2013 ï present 15m, 30m, 100m 16 days 1, 8, 2 

 

SPOT ï 1, 2, 3 HRV 1986 ï present 10m, 20m 26 days 1, 3 

 

SPOT - 4 HRVIR 1998 ï present 10m, 20m 26 days 1, 4 

 

SPOT ï 5 Pan 2002 - 2015 2.5m - 5m 26 days 2 

 MS  10m  4 

 

IRS ï 1A, 1B LISS-1 1988 - 1999 73m 4/5 days 4 

 LISS-2  36m 

 

 4 

IRS ï 1C, 1D Pan 1995 ï present 5.8m 4/5 days 1 

 LISS-3  23.5m, 70m  

 

3,1 

Terra ASTER 1999 ï present 15m, 30m, 90m 16 days  

 

3, 6, 5 

NOAA/TIROS AVHRR 1978 ï present 1.1 Km 1 day 

 

5 

IKONOS Pan 1999 ï present 1.0m 3 days  1 

 MS  4.0m  

 

4 

Quick bird Pan 2001 ï present 0.61m 1-4 days  1 

 MS  2.44m  4 

RADAR  

ERS ï 1, 2  1991 - 2011 30m 1-2 days  C-band 

JERS ï 1  1992 ï 1998 18m 24 days L-band 

RADARSAT ï 

1 

 1995 ï 2013 10m ï 100m 3 days  C-band 

ENVISAT  2002 ï 2011 30m, 150m, 1Km 35 days  C-band 
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2.5. Discussion 

The advancements in remote sensing technologies have offered improved capabilities for 

mapping soil erosion. The aim of this current work was to examine the usage and users of 

remote sensing in soil erosion research by focusing on three aspects of the published material 

namely i) publication details, ii) geographic information and iii) data usage. The analysis on 

these three aspects facilitated in identifying trends and gaps in the usage and users of remote 

sensing.  

The application of remote sensing for soil erosion mapping and monitoring has a long history 

dating back to the 1960s where the first research paper by Jones and Keech (1966) was 

published. Since then, an increase in the number of publication was observed from 1976 

which could be attributed to the launch of the first ever satellite system ï Landsat in 1972 

(Karale et al., 1976; Proffiit, 1983, Frazier et al., 1983; Pickup and Nelson, 1984). The 

launch of Landsat set precedent for soil erosion mapping and monitoring (Taruvinga, 2009). 

It can be explained that the increase in the number of publications over the years has been 

attributed to the progression of remote sensing technologies with its capabilities to provide 

timely and cheaper alternative to mapping and monitoring soil erosion.  

In the recent years, literature shows that most studies focused on assessing and mapping gully 

erosion at catchment and regional scales (Vrieling et al., 2007; Igbokwe et al., 2008; Ndomba 

et al., 2009; Bouaziz et al., 2011; Shruthi et al., 2011; Frankl et al., 2013, d'Oleire-Oltmanns 

et al., 2014; Le Roux and Sumner, 2012, Mararakanye and Sumner, 2017). This trend shows 

that remote sensing has made tremendous strides in providing accurate information of soil 

erosion assessment that has been of benefit to land managers and policy makers as field 

methods often limit regional scale assessment. Furthermore, this trend is also reflected in the 

journal categories that have published the reviewed studies. A substantial growth of papers 

published in strictly specialized remote sensing journals to more interdisciplinary journals 

was observed from 2006 onwards. Interdisciplinary journals facilitate in knowledge and 

research dissemination across the diverse research communities (Jacobs and Henderson, 

2012), thus this trend indicates that remote sensing technology has become widely accepted 

across the scientific community.  

Moreover, literature shows that remote sensing applications for soil erosion have mostly been 

applied in the semi-arid regions such as Spain, South Africa and India (Iyer, 1974, Kumar et 

al., 1996; Dwivedi et al., 1997; Wessels et al., 2004; Le Roux and Sumner, 2012; Seutloali et 
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al., 2016; Kumar et al., 1997) drawing attention to the environmental vulnerability of these 

regions. Interestingly, the Loess Plateau of China is one of the most severely eroded regions 

however only 4 studies were identified (Ma et al., 2003; Wang et al., 2007; Chen et al., 2011; 

Wang et al., 2016). Most studies in this region mainly use GIS techniques to model and 

quantifying soil loss. Similarly, according to the soil degradation world map by Oldeman et 

al. (1991), countries, such as Nigeria, Ethiopia and Sudan are classified as one of the most 

severely eroded; however, a limited number of studies were identified from these countries 

(Fadul et al., 1999; Igbokwe et al., 2008; Tahir et al., 2010; Frankl et al., 2013; Okereke et 

al., 2012).  

It is interesting to note that although remote sensing has been an effective tool used globally, 

reaching broader scientific domains, the origin of first authors for the published papers shows 

rather a disproportionate observation. It was observed that authors who are affiliated with 

European institutions (Tahir et al., 2010; Frankl et al., 2013; Ranga et al., 2015) published 

studies conducted in developing countries, such as India, Sudan, Ethiopia, Morocco etc. 

Innovative knowledge is mainly generated in developed countries where research funding is 

available (Chan and Costa, 2005). For instance, the reviewed studies conducted in the 

aforementioned developing countries were funded by European foreign institutions such as 

the Norwegian Research Council (NFR) program from Norway and Erasmus Mundus 

External Program window 13 from Belgium. According to Chan and Costa (2005) there is a 

limited capacity for research infrastructure and knowledge in developing countries, resulting 

in a shortage of scientific output and further under-development, further widening the North 

and South knowledge gap. Karlson and Ostwald (2016) argue that joint efforts to increase the 

capacity of local researchers and institutions for conducting research using the new 

generation of remote sensing datasets are necessary to achieve this objective.  

Moreover, literature also shows that a wide range of remote sensing systems have been used 

at different scales for mapping and monitoring soil erosion. While high resolution sensors are 

important for the accurate detection of erosion features, the use of these sensors is restricted 

by availability and cost (Hoque et al., 2017). Numerous studies have used medium resolution 

Landsat sensors, due to its open access archival data and spectral resolution, offering the 

potential for soil erosion monitoring (Singh, 1977; Metternicht and Fermont, 1998; Sujatha et 

al., 2000; Okereke et al., 2012; Dube et al., 2017). Although these studies highlight the 

incapability of Landsat to detect small erosion features due to its coarse ï medium resolution, 

nonetheless, Landsat offers the potential to map soil erosion at regional scales with 
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reasonable accuracy due to its large swath-width of 185km. On the other hand, sensors, such 

as Quickbird, IKONOS and Worldview provide the ability to accurately map fine erosion 

features due to their fine spatial resolution. However it is not surprising that only a limited 

number of studies have used these sensors as they are not freely available and access to these 

datasets remains a challenge in resource constrained countries (Meusburger et al., 2010; 

Shruthi et al., 2011; d'Oleire-Oltmanns et al., 2014; Uchida 2015). Similarly, it was observed 

that a limited number of studies have used radar datasets for soil erosion mapping thus far 

(Metternicht and Fermont, 1998; Navone and Palacín, 2004) and this opens up possibilities to 

evaluate the potential of Sentinel-1 products.  

The review analysis further showed that traditional approaches, such as the visual 

interpretation and the MLC have remained popular over the years in detecting and mapping 

soil erosion (Symeonakis et al., 2007; Vrieling et al., 2007; Le Roux and Sumner, 2012). The 

MLC however suffers from drawbacks that include its limitation in solving complex classes 

that are not normally distributed (Sepuru and Dube, 2017). By contrast, the increase of high-

resolution sensors has facilitated a shift from traditional pixel-based classification to object-

based image analysis (OBIA) methods (e.g. Shruthi et al., 2011; d'Oleire-Oltmanns et al., 

2014; Mayr et al., 2016). This presenting a new and accurate approach for soil erosion 

mapping owing to its ability to involve analysing the characteristics of an object based on its 

location, size, shape and spectral properties (Bishop et al., 2012).  

 

2.6. A way forward  

There is significant progress in the detection and mapping of soil erosion using remotely 

sensed data. This review shows a considerable increase of remote sensing usage and users for 

soil erosion analysis since the launch of Landsat series data dating back in 1972. Several 

studies have used Landsat for soil erosion mapping due to its archival data and open access 

policy, which makes it ideal for long term soil erosion monitoring. The improving capacity 

and availability of remotely sensed data is promising for soil erosion especially gully erosion 

mapping at regional scale. A number of studies confirm the effectiveness of medium 

resolution sensors such as that of Landsat in mapping soil erosion at regional scale. For 

instance, the recently launched Landsat 8 sensor offers improved spectral and radiometric 

resolution that is ideal for regional and local soil erosion mapping (e.g. Phinzi and Ngetar, 

2017; Dube et al., 2017; Seutloali et al., 2017). In addition, powerful machine learning 
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algorithms, such as the SVM have been equally valuable for soil erosion mapping. These 

algorithms can offer improved classification accuracies for soil erosion mapping, even more 

so with medium-coarse resolution satellites (e.g. Taruvinga, 2009; Bouzazi et al., 2011; Chen 

et al., 2011).   

On the other hand, fine resolution satellites, such as the likes of SPOT, QuickBird and 

IKONOS offer tremendous results for soil erosion detection and have been recommended by 

several studies for accurate soil erosion mapping owing to their high quality data. These 

satellites however present limitations for large-scale mapping due to high data acquisition 

costs and are prohibitive for developing countries (Vrieling et al., 2008). Besides, Sepuru and 

Dube (2017) argue that while SPOT is relatively cheaper than IKONOS and QuickBird, these 

satellites are still further limited by their low spectral sampling abilities. 

Nonetheless, the recently launched and freely available Sentinel 2 sensor is now the new 

leader in spatial resolutions amongst multispectral imagery, with a spatial resolution of 10m, 

a 5-day revisit cycle coverage and 12 multispectral bands. The application of Sentinel 2 in 

land cover mapping has been demonstrated to provide information on environmental 

management. Studies that have applied the Sentinel 2 imagery have observed improved 

results for land cover mapping. For example, Buchholz et al. (2012) assessed the 

effectiveness of Sentinel-2 data for land cover mapping and compared its performance with 

Landsat-5 TM and SPOT 5-HRG imagery. The study further used the MLC and SVM to 

assess the discrimination capabilities offered by different features and revealed promising 

results by Sentinel-2. Sentinel 2 therefore offers a great potential for soil erosion mapping 

mainly for developing countries which are often constrained by high data acquisition costs 

(Sepuru and Dube, 2018).  

While several studies have demonstrated the ability of medium resolution satellite sensors to 

discriminate soil erosion features from other land cover types, there is a paucity of 

multisource image fusion methods for soil erosion studies (Chen et al., 2011). In addition, the 

review also identified insufficient work of the application of active microwave radar data 

fused with optical multispectral data for soil erosion mapping. Therefore, it is necessary for 

future studies to explore the potential of robust classifiers such as the SVM, OBIA and 

recently launched Sentinel products for improving the detection and accuracy of soil erosion 

mapping.  
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2.7. Conclusion 

¶ The use of remote sensing for soil erosion analysis has gradually increased from 1966 

to present time, reaching 104 peer-reviewed articles; noting the largest increase in the 

last 11 years. 

¶ Remote sensing has become widely accepted as an effective tool for soil erosion 

analysis as reflected in the range of interdisciplinary scientific journals.  

¶ The geographical distribution of the application of remote sensing for soil erosion 

shows that research is mainly conducted in semi-arid regions (i.e. Spain, South Africa 

and India) which could possibly be driven by the prevailing environmental problems.  

¶ European affiliated authors generally lead research conducted in developing countries. 

The review further revealed a low representation of African lead authors.  
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CHAPTER THREE  

Assessing the potential of Sentinel-2 MSI sensor in detecting and mapping the spatial 

distribution of gullies in a communal grazing landscape 

This chapter is based on:  

Makaya, N. P., Mutanga, O., Kiala, Z. S., Dube, T. and Seutloali, K. E. 2018. Assessing the 

potential of Sentinel-2 MSI sensor in detecting and mapping the spatial distribution of gullies 

in a communal grazing landscape. Physics and Chemistry of the Earth. 1-26. 

JPCE_2018_114. (Under review).  

 

Abstract  

In this study, we evaluate the potential of the recently launched Sentinel-2 MSI multispectral 

sensor in mapping the spatial distribution of gullies in Okhombe valley, KwaZulu-Natal, 

South Africa. The study further investigates possible environmental factors that contribute 

towards gully initiation and development. Analysis was done using a robust machine learning 

algorithm: Support Vector Machine (SVM). Additionally, possible environmental factors (i.e. 

slope steepness, percent vegetation cover, Topographic Wetness Index and Stream Power 

Index) that could have an influence on the extent of the gullies were also derived. An overall 

land cover classification of 94% was achieved, while the overall classification accuracy for 

gullies was 77%.  All 10 Sentinel-2 spectral bands were selected as the ideal bands in 

discriminating gullies from other land cover types. Additionally, the findings of the study 

indicate that there is no significant difference between the environmental variables across 

different gullies volumes. The findings of the study indicated that all the measured variables 

have a weak influence on the volume of soil loss (i.e. Slope (R
2
 = 0.02); Vegetation cover (R

2
 

= 0.01); TWI (R
2
 = 0.11) and SPI (R

2 
=0.02) despite an observable trend of influence. 

Overall, the findings of the study demonstrate the importance of using the free and readily 

available multispectral Sentinel-2 MSI data in conjunction with robust non-parametric 

Support Vector Machine classifier in mapping the spatial distribution of gullies. 

 

Key Words: Gully erosion, satellite imagery, communal landscape, soil loss 
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3.1. Introduction  

Gully erosion is a major land degradation problem that threatens both land and water resource 

management in arid and semi-arid regions across the globe (Kakembo et al.,  2009; Rahmati 

et al., 2017). Gullies are commonly defined by their channel depth, which can range from 0.5 

to 30 m and often develop into a network of active gullies that contribute a significant amount 

of sediment yield in catchments (America, 2001; Le Roux and Sumner, 2012). Gullies 

predominantly occur in dry regions and are exacerbated by rapid land use change due to 

demographic, economic and grazing and agricultural pressure (Poesen et al., 2003; Chaplot et 

al., 2005). This consequently results in irreversible environmental impacts, such as soil 

degradation, high volumes of sediment yield, reduction of both water quality and quantity in 

rivers and reservoirs, damage to agricultural fields and infrastructure (Takken et al., 2008; 

Dewitte et al., 2015). For instance, Luk (1997) reported that 85% of sediment yield in a 

reservoir were accounted by gullies in a 0.73 Km
2
 catchment, Southern China. Similarly, 

Verstraeten et al. (2003) conducted a survey which reported that gullies increased sediment 

yield within the catchments of 22 Spanish reservoirs observing mean specific sediment yield 

of 9.61 tons ha
ī1

 year
ī1

 (n=7). 

Researchers have shown a large interest on gully erosion, due to its related offsite impacts 

which raise concern for water resource management at catchment scales (Wasson et al., 

2002; Valentin et al., 2005; Poesen, 2011; Mararakanye and Le Roux, 2012). While many 

studies have addressed gully erosion at local to catchment scale, there is a need for a 

comprehensive understanding of the spatial distribution and driving factors on gully erosion 

at regional scale. Therefore, accurate and frequent monitoring of gully erosion is necessary 

for the implementation of erosion control measures and prioritization strategies for the 

allocation of scarce conservation resources and policy development (Vrieling, 2006; Seutloali 

et al., 2016).  However, the acquisition of accurate and up-to-date spatial information of gully 

affected areas remains a challenge, especially in sub-Saharan Africa where data availability 

and quality is often poor for regional scale mapping (Vrieling et al., 2006; Dube et al., 2017). 

Additionally, acquiring accurate spatial data is further hampered by the use of traditional 

techniques, such as digitizing and field surveys amongst others (Dube et al., 2017). Gullies 

have been traditionally mapped using visual interpretation of aerial photos or satellite 

imagery and this methods are spatially constrained, time-consuming, labour-intensive and 

costly at regional scale (Vrieling, 2006; Shruthi et al., 2011; Frankl et al., 2013). The 
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development in sensor technology and techniques in the recent years has seen an 

improvement in the accuracy detection of gullies at a regional scale.  

Previous studies have demonstrated the effectiveness of remote sensing in enhancing an 

understanding of the scale and level of soil erosion at regional scale, a previously challenging 

task from conventional methods (Kumar et al., 1996; Zinck et al., 2001; Manyatsi and 

Ntshangase, 2008; Liberti et al., 2009; Seutloali et al., 2016, Phinzi and Ngetar, 2017). For 

example, Igbokwe et al. (2008) successfully mapped gully erosion in South-eastern Nigeria, 

using Landsat ETM, Nigeria-sat1 and SPOT 5 and SRTM dataset. While Bouaziz et al. 

(2011) mapped gully erosion in the Main Ethiopian Raft using ASTER, achieving a 

maximum overall accuracy of 89%. Similarly, Mararakanye and Le Roux (2012) mapped 

gully erosion at national scale in South Africa using SPOT 5 and achieved an overall 

accuracy of 90%.  

A recent trend in the use of high spatial resolution sensors, such as IKONOs, QuickBird, and 

GeoEye has seen a change from traditional pixel-based to object-based techniques (e.g. 

Shruthi et al., 2011; Ranga et al., 2016; Mayr et al., 2016). Although these sensors provide a 

high spatial resolution, image acquisition is costly and limited to both small area coverage 

and spectral bands (Taruvinga, 2009). These pose a limitation for large scale mapping and 

monitoring of gully erosion in resource constrained regions, such as southern Africa 

(Seutloali et al., 2016). Nonetheless, freely available medium resolution images, such as 

Landsat have been widely used successfully in soil erosion research owing to their cost 

effective and temporal resolution which facilitates a large scale monitoring of soil erosion. 

Moreover, the recently launched and freely available Sentinel-2 MSI sensor provides a more 

improved spatial resolution (i.e. resolution of 10m, 5-day revisit cycle coverage and 12 

multispectral bands amongst multispectral imagery characterised by a spatial. Studies that 

have applied Sentinel-2 imagery have observed improved results for land cover mapping 

(Forkuor et al., 2018). The spatial and radiometric characteristics of Sentinel-2 sensor make it 

ideal for mapping individual gullies at region scale.  It is therefore perceived that the use of 

this sensor can help soil erosion monitoring in data scarce environments ï a previously 

challenging task with broadband sensors. The current study therefore a) evaluates the 

potential of Sentine-2 MSI in discriminating gullies from other land cover types using semi-

automatic SVM algorithm; and b) investigates possible environmental variables that 

contribute to gully initiation and development in Okhombe valley, KwaZulu-Natal, South 

Africa.  
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3.2. Materials and Methods   

3.2.1. Description of Study Area 

Okhombe valley is a communal grazing land located in the upper uThukela catchment in 

KwaZulu-Natal, South Africa. The study site has an area of 59.89 Km
2
 (28°42' S; 29°05 'E) 

(Fig. 3.1). The valley is located within 10 to 20 km of the north-eastern border of Lesotho and 

is characterized by steep topography, with an elevation ranging from 1200 - 1800m above sea 

level. Grasslands are the main dominant vegetation cover in the area, with a few scattered 

patches of woody vegetation and shrubs. Okhombe soils are red and yellow, freely drained, 

structure-less, highly leached and severely eroded and this is caused by the high rainfall that 

typically falls between October and March (Macavicar, 1977; Schulze, 1997; Everson et al., 

2007). The early 1960s marked a significant change in agriculture which transformed the 

settlement distribution of the Okhombe catchment, resulting in the removal of people to one 

of six closer settlements at the foot slopes (von Maltitz and Evans, 1998). Communal grazing 

land was designated along the steep slopes plateaux while the valley floor was designated for 

cultivation (Sonneveld et al., 2005). The grazing camps that were designed to accommodate 

different types of cattle are no longer being managed and this has resulted in the lack of cattle 

movement control (Sonneveld et al., 2005). Furthermore, the lack of security and theft has 

resulted in cattle being kept near the homesteads and are daily moved up and down the slopes 

(Sonnoveld et al., 2005). This has caused great concern of soil erosion due to the trampling 

effects.  
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Fig. 3. 1: Location of Okhombe in the uThukela catchment, KwaZulu-Natal, South Africa 

Study Area map 

 

3.2.2. Filed data collection  

Field data were collected from the 31
st
 of October to the 4

th
 of November 2016 and from the 

5
th
 to the 9

th
 of December 2016. Data collection was done using a differentially corrected 

Trimble GeoXT handheld Global Positioning System (GPS) receiver, with sub-meter 

accuracy. In addition, the ground truth data for gully locations and other Land Use/Land 

Cover (LULC) classes, such as grassland, forest, shrubland, settlement and bare soil were 

collected. Although random sampling is considered the most favourable sampling technique, 

due to its ability to remove bias, it was not appropriate specifically for the objective of the 

study as gullies are not homogenously distributed across the landscape. A purposive sampling 

technique was therefore used to identify gully locations. A sample of 83 gullies was recorded. 

Gully dimensions i.e. length, width and depth were estimated using a surveyorôs tape and 

ranging poles for the estimation of gully volume, which is equivalent to the volume of soil 

lost (shown in Fig. 3.2) (Jungerius et al., 2002; Seutloali et al., 2015). Gully dimensions were 

measured at every 10m intervals and then averaged to account for change in topography at 
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the cross section as well as the sensor spatial resolution. Gully depth was measured at the 

maximum deepest point of the gully coinciding with the 10m intervals. The gully volume was 

estimated using the formula expressed in equation 1.  

V = L x [( Wt + Wb ) / 2 ] x D                                                                                   (1) 

Where: V is the volume in cubic metres; L is the total length in metres; Wt is the average top 

width in metres; Wb is the average bottom width in metres; D is the average depth measured 

in metres.   

Percentage vegetation cover was visually estimated, using the method by Daubenmire (1959). 

10x10m plots were demarcated to estimate the upslope percentage vegetation cover 

coinciding with the identified gullies. This is of the assumption that the presence of gully 

erosion is possibly attributed to the drainage area and amount of vegetation cover 

surrounding it. Vegetation cover plays a pivotal role in protecting the soil surface against 

erosion (Vrieling, 2006). It is defined as the fraction or percentage of the ground surface 

covered by vegetation (Purevdorj et al., 1998).  

 

 

Fig. 3. 2: Photographs showing some of the gullies identified in the Okhombe valley 

(October 2016) 
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3.2.3. Topographic variables 

Various major topographic variables contribute to gully development (Kheir et al., 2007). 

Topography plays a pivotal role in concentrating water flow and Mararakanye (2016) argues 

that the role of topographic variables has not been widely reported in South Africa. A 10m 

Digital Elevation Model (DEM) acquired online from the web link 

(http://www.csg.dla.gov.za) was processed in a GIS environment, using the spatial analyst 

tools to generate slope gradient, Topographic Wetness Index (TWI) and Stream Power Index 

(SPI). The slope gradient was calculated in degrees using the formula expressed in equation 

2.  

SLOPEDEG= RADDEG (Atan(SLOPEPCT/100)) (2) 

Where SLOPEDEG is the slope gradient in degrees, RADDEG is the function of converting 

radians to degrees and Atan is a mathematical function used in the conversion process 

(Seutloali et al., 2016). 

The Topographic Wetness Index (TWI) is a function of the specific catchment area and slope 

gradient of the landscape (Feng and Bajcsy 2005) and was calculated using the formula 

expressed in equation 3.  

Where As is the specific catchment area and ɓ is the upslope gradient in degrees (Tagil and 

Jenness, 2008).   

The Stream Power Index (SPI) on the other hand indicates an estimation of the erosive power 

of the terrain and was calculated using the formula expressed in equation 4.  

SPI= As tan ɓ (4) 

Where As is the specific catchment areas and ɓ is the local slope (Wilson and Gallant, 2000).  

 

3.2.4.  Image acquisition and processing 

A cloud-free Sentinel-2 MSI imagery of January 2016 was freely acquired from the European 

Space Agency (ESA) online catalogue (https://scihub.copernicus.eu/). Table 3.1 provides an 

overview of the characteristics of the Sentinel-2 data used in this study ranging from the 

visible through the near-infrared (NIR): and red edge to shortwave infrared (SWIR) at 10, 20 

        TWI= ln (As/tan ɓ)  (3) 

http://www.csg.dla.gov.za/
https://scihub.copernicus.eu/
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and 60m spatial resolution. Band 1 (coastal aerosol), Band 9 (water vapour) and Band 10 

(cirrus), acquired at 60m spatial resolution are designed mainly for detecting atmospheric 

features and were therefore not included in the analysis (Drusch et al., 2012). The imagery 

was atmospherically corrected, using the Sen2Cor atmospheric correction toolbox ï an inbuilt 

algorithm within the Sentinel Applications Platform (SNAP) version 5.0. All 10 bands of 

varying spatial resolutions were further resampled to 10m
 
to ensure that the pixel size of the 

image corresponds with the identified gullies. The imagery was then used for the 

classification of gullies using the ground truth data.  

 

   Table 3. 1: Sentinel-2 MSI Spectral and Spatial resolutions. 

Spectral Bands Centre (nm) Spatial Resolution (m) 

Band 1 ï Coastal aerosol 443 60 

Band 2 ï Blue 490 10 

Band 3 ï Green 560 10 

Band 4 ï Red 665 10 

Band 5 ï Vegetation Red Edge 705 20 

Band 6 - Vegetation Red Edge 740 20 

Band 7 - Vegetation Red Edge 783 20 

Band 8 ï NIR 842 10 

Band 8a ï Narrow NIR 865 20 

Band 9 ï Water vapor 945 60 

Band 10 ï SWIR 1375 60 

Band 11 ï SWIR 1375 20 

Band 12 - SWIR 2190 20 

 

 

3.3. Data Analysis  

Sentinel-2 MSI imagery was used to discriminate gullies from other land cover types in 

uThukela Catchment. The SVM algorithm was used to classify the images. The SVM was 

chosen, due to its ability to perform a robust discrimination of complex land cover classes, 

such as gullies and has been previously used successfully to classify gullies (Taruvinga, 

2009; Le Roux and Sumner, 2012). The algorithm is regarded as a non-parametric machine 

learning algorithm first introduced by Boser et al. (1992). The SVM determines the 
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separation of decision boundaries between different classes by directly searching for suitable 

boundaries (Huang et al., 2002). The non-parametric and ñone class classificationò (i.e. when 

one class is of interest) characteristic sets the SVM apart from the rest of the conventional 

classifiers (Sanchez-Hernandez et al., 2007) and thus offers a potential for mapping 

individual medium-sized gullies in South Africa. The SVM classification was performed; 

using spectral reflectance signatures of each land cover type on the Sentinel-2 imagery which 

was used to train the classification of the imagery. The data was then divided into 70% and 

30% training and validation, respectively, for the classification procedure (Adelabu et al., 

2013; Sibanda et al., 2015). 

 

3.3.1. Image classification optimization  

The Recursive Feature Elimination (RFE) and hyper-parameter tuning algorithm was used for 

the Support Vector Machine model optimization. The RFE selection technique ranks features 

based on the measure of their importance where feature importance is measured and the less 

important feature is removed thereby speeding the process (Granitto et al., 2006). This is an 

essential process that determines the best parameters for the highest classification accuracy 

(Abdel-Rahman et al., 2014). Spectral band importance rankings were generated, using a grid 

based and tenfold cross validation feature selection process (Waske et al., 2009). A forward 

selection method was then achieved to select the least number of the spectral bands that 

produced the highest overall classification accuracy, generating a new model based on the 

highest ranked bands (Kohavi and John, 1997). The use of feature selection allows for a 

reduced data training time while improving classification accuracy concurrently. Hyper 

parameter tuning was performed on the model created from the selected bands using the 

Grid-search approach.  

 

3.3.2. Accuracy assessment  

The validity and reliability of the classification results produced by the SVM-REF model was 

assessed using the Confusion Matrix. The classification accuracy assessment is determined 

by a cross-tabulation method on the contingency table where each class label is evaluated 

against the corresponding ground data (Foody and Mathur, 2004). A confusion matrix was 
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produced to measure the producer accuracy (PA), user accuracy (UA) and overall accuracy 

(OA) between the classification results and ground truth data.  

 

3.3.3. Statistical analysis 

To determine differences in gully volume (i.e. estimated soil loss) and within each 

environmental factor, class ranges were applied as shown in Table 3.2. These variables were 

categorised into three classes based on observations that informed the influence of gully 

development (Le Roux and Sumner, 2012). Simple linear regression was utilised to 

determine, as well as evaluate the relationship between the environmental factors and gully 

volumes and hence the coefficients of determination (R
2
) were reported. The One-way 

analysis of variance (ANOVA) at 95% confidence level (P < 0.05) was then conducted to 

determine whether there were any significant differences between environmental factors (i.e. 

vegetation cover, slope, topographic wetness index (TWI) and Stream Power Index (SPI)) 

and the estimated soil loss.  

 

Table 3. 2: Classes ranges of environmental variables. 

Biophysical variable  Class Name Class Range 

Slope  (°) Flat - Gentle  <11 

Gentle ï Moderate  11-17 

Steep ï Very Steep >17 

Vegetation cover (%) Bare - Low <38 

Low ï Moderate  38-48 

Moderate - High >48 

Topographic Wetness Index 

(TWI) 

Low <3.5 

Moderate  3.5-15.5 

High >15.5 

Stream Power Index (SPI) Low <0.19 

Moderate 0.20-0.49 

High >0.49 

 

  



37 
 

3.4. Results  

3.4.1. Gully spectral profile  

Fig. 3.3 illustrates the average spectral response profile of individual gullies and two other 

land cover classes (i.e. grasslands and bare soil) that have been observed to be similar to the 

gullies. It can be observed that the general reflectance of gullies is low compared to bare soil, 

which remained relatively high, while there is a similarity of signatures between gullies and 

grassland for Band 8 and Band 8A. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 3: Spectral signatures of gullies, grassland and bare soil derived from Sentinel-2 MSI 

imagery (error bars signifying level of separability).  

 

3.4.2. Major land cover types   

Land cover classification results obtained using Sentinel-2 MSI spectral bands as an 

independent dataset are shown in Table 3.3. The results indicate that the use of the freely 

available medium resolution Sentinel-2 MSI spectral bands produced good classification 

results, achieving an OA of 94%. Of all the five classes, shrubland achieved the highest 

producer accuracy of 100% while forest achieved the highest user accuracy of 100%. 

Moreover, the Senitnel-2 MSI imagery yielded good classification results in discriminating 

gullies from other land cover types producing a Producer Accuracy of 78%, User Accuracy 
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of 76% and an Overall Accuracy of 77%.  Fig. 3.4 (a) illustrates land cover types within the 

catchment while Fig. 3.4 (b) illustrates the widespread spatial distribution of gullies within 

the catchment. It is important to note that some of the areas affected by gullies include more 

than one gully, especially where several small gullies are located in close proximity with each 

other often forming a network. It can be observed that areas affected by gullies are largely 

distributed across the valley.  

 

Table 3. 3: Sentinel-2 MSI accuracies (%) for land cover classes including gully location. 

Land Cover type  Producer  

Accuracy (%) 

User  

Accuracy (%) 

 Overall  

Accuracy (%) 

Grassland 94 95  95 

Forest 93 100  96 

Shrubs 100 99  99 

Bare land 95 95  95 

Gully location 78 76  77 

Burnt grass 90 86  93 

Overall Accuracy (%)  94   
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Fig. 3. 4: Derived gully maps in relation with surrounding land cover types in uThukela catchment where a) shows the derived land cover 

classification and b) shows the derived gully distribution. 
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3.4.3. Evaluating the relationship between gully volumes and environmental variables  

Fig. 3.5 illustrates the spatial distribution of the possible environmental variables that 

influence gully development (i.e. Slope gradient, Vegetation cover, TWI and SPI). To 

achieve a clearer understanding, the possible environmental variables were classified into 

three categories as shown in Fig. 3.5. The slope steepness within the catchment ranges from 

flat to very steep (i.e. 3°to 60°). The estimated percent vegetation cover within the catchment 

ranges from 7% to 90% which has been classified as fairly bare to high percentage vegetation 

cover as shown in Fig. 3.5. The majority of gully locations were mainly identified in areas 

with fairly bare to low vegetation cover, while a few gullies were identified in areas with high 

vegetation. TWI values within the catchment range from -42 to 86, while the SPI values 

within the catchment range from approximately -3 to 2.  

Fig. 3.6 illustrates a summary of the relationship between the estimated mean gully volumes 

and the classes of possible environmental variables (i.e. Slope, vegetation cover, TWI and 

SPI) for gully development. The results indicate that higher mean gully volumes of about 530 

m
3
 were associated with flat to gentle slope gradients (slopes less than 11°) while the very 

steep gradients had lower mean gully volume of about 212 m
3
.  In addition, higher mean 

gully volumes of about 450 m
3
 were associated with low vegetation cover (vegetation cover 

less than 38%) while moderate to high vegetation cover (greater than 50%) were associated 

with lower mean gully volumes of 268 m
3
. Similarly, higher mean gully volumes of 578 m

3 

were also associated with high TWI values (greater than 16.30) indicating possible gully 

development on the high zones of saturation on fairly flat area. Similarly, higher SPI values 

(greater than 0.51) were associated with higher gully volumes of about 329 m
3
.  
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Fig. 3. 5: The spatial distribution of (a) Slope; (b) vegetation cover; (c) TWI; and (d) SPI) 

contributing to gully development. 
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Fig. 3. 6: The relationship between mean gully volume and (a) slope; (b) vegetation cover; 

(c) TWI; and (d) SPI.  

 

Fig. 3.7 illustrates the relationship between mean gully volume and environmental variables. 

Although there seems to be a discernible pattern of the possible environmental variables and 

gully volumes, however based on the 95% confidence interval,  the results show that none of 

the environmental variables (i.e. slope, percent vegetation cover, TWI and SPI) had a 

significant influence on gully volumes (ANOVA; F(0.048)  = 0.0953, p = 0.05; F (0.695) = 

0.0502, p = 0.05); F (0.702) = 0.499, p = 0.05); (F (0.455) = 0.0636, p = 0.05). Additionally, 

Fig. 3.7 further depicts the correlation between the estimated gully volumes and 

environmental factors (i.e. slope, percent vegetation cover, TWI and SPI). The estimated 

gully volumes had weak correlations with slope (R2 = 0.02), percent vegetation cover (R2 = 

0.01) and SPI (R2 = 0.02) respectively. TWI showed a slightly higher positive correlation 

(R2 = 0.11) as compared to the other variables.  
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Fig. 3. 7: Relationship between the estimated gully volume (m
3
) and a) slope; b) percent 

vegetation cover; c) TWI and d) SPI. 

 

3.5. Discussion  

The recent proliferation of gully erosion research and advances in remote sensing 

technologies have facilitated in evaluating cheaper methods to provide accurate and timely 

spatial data for a better understanding of land degradation at catchment scale. Accurate 

identification of areas affected by gully erosion is paramount for effective soil and water 

resource management strategies. The current study sought to i) explore the feasibility of the 

recently launched Sentinel-2 MSI sensor in discriminating and mapping the spatial 

distribution and extent of gully erosion in a communal grazing landscape and ii) determine 

the environmental variables that could possibly explain the spatial variation of the gully 

locations and volumes. The results of this study showed the ability of the newly-launched 

Sentinel-2 MSI in detecting and mapping individual gullies with an overall classification 

accuracy of 77%. Standard spectral bands of the Sentinel-2 MSI sensor were used to 

accurately discriminate gullies from other land cover types.   
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The observed performance of the Sentinel-2 MSI in the overall classification is mainly 

attributed to the presence of more spectral bands, improving the spectral separability of 

gullies (e.g. Sepuru and Dube, 2018). In this study, all 10 spectral bands were found to be 

valuable in providing information on spectral separability between gullies and other land 

cover types. This observation indicates the advantage of higher spectral resolution offered by 

Sentinel-2 for land cover mapping. For instance, in a study by Sepuru and Dube (2018) 

Sentinel-2 MSI and Landsat 8 OLI were compared in discriminating eroded surfaces from 

other land cover types. The study found Sentinel-2 MSI bands located in the NIR (0.785ï

0.900 ɛm), red edge (0.698ï0.785 ɛm) and SWIR (1.565ï2.280 ɛm) regions to be the most 

optimal for discriminating degraded soils from other land cover types. The study further 

found that the lack of information of the red edge band in Landsat 8 OLI could possibly 

explain the unsatisfactory results when compared to Sentinel-2 MSI. The red edge bands have 

been proven to improve classification accuracy where studies by Korhonen, Packalen and 

Rautiainen (2017) and Forkuor et al., (2018) confirmed that the absence of red edge bands in 

most multispectral sensors becomes a disadvantage for the potential mapping of Land 

Use/land Cover.  

The classification results of the mapped gullies drew attention to the spectral complexity of 

gullies and the distinction with its surroundings which often pose a challenge to the 

classification technique (e.g. King et al., 2005; Servenay and Prat, 2003; Vrieling et al., 

2007; Torkashvand and Alipour, 2009). For instance, difficulties were faced when trying to 

discriminate the gullies between natural river bed, gullies between landslides, gullies with 

vegetation cover, gullies embedded in bare soil and other forms of erosion such as sheet and 

rill which might have resulted in mixed pixels, thereby reducing classification accuracy. The 

low spectral reflectance of the gullies in the visible regions could possibly be attributed to the 

presence of vegetation within the gullies, similarity between gullies and river bed, as well as 

gully depth. These findings are similar to that of Liberti et al. (2009) who used supervised 

classification to map eroded areas and found that there was low spectral separability from 

RGB band combinations of Landsat imagery with high levels of misclassification between 

river bed and eroded areas.  

Furthermore, a study by Taruvinga (2009) revealed that the classification process is affected 

by spectral reflectance of vegetation which differs with wavelength and also by the plant 

leaves pigment that strongly absorb red and blue wavelengths but reflect green wavelengths. 

Moreover, since a significant portion of gullies is bare soil, the low spectral reflectance can 
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be attributed to moisture content, organic matter content, texture, structure and iron oxide 

content (Aggarwal, 2004; Vrieling et al., 2005), as well as the shadow factor caused by the 

gully depth and the irregular surface, trapping incoming light thereby reducing reflectance 

(Metternicht and Zinck, 1998). Nonetheless, the SVM algorithm proved to be a good method 

for discriminating gullies from other land cover types in the study area despite challenges of 

pixel mixing and given the size of the gullies.  

The results of this study have further shown that gully development varies with different 

environmental factors (i.e. slope, vegetation cover, TWI and SPI). Although no statistically 

significant differences were found between gully volumes (i.e. soil loss) for different the 

environmental variables, a trend is observable. Studies around the world report that gully 

erosion mainly occurs on steep slopes; however the results of this study indicate that gullies 

with the associated high soil loss occur on gentle slopes. These findings are supported by 

Kakembo et al. (2009); Le Roux and Sumner (2012); Manjoro et al. (2012) and Seutloali et 

al. (2016) who also found that gullies in South Africa mainly occur on gentle slopes of less 

than 10°. This was attributed to the concentration of overland flow on gentle slopes. 

Although this study did not assess the nature of soils, another plausible reason for gully 

initiation occurring on gentle slopes could be the dispersive nature of the soils in the area. It 

is highly likely that gully initiation is influenced by duplex soils. The study by Sonnovel et al. 

(2005) confirmed that gully initiation in Okhombe is caused by strong textural breaks at 

around 20 cm depth with an increase in clay of 10 per cent which result in soil pipes and 

tunnels. Sonnoveld et al. (2005) observed many signs of subsurface water seepage in the 

gully sidewalls at 20cm depth and concluded that soil piping is likely the cause of gully 

initiation in the study area.  

Moreover, studies have reported the interdependence of land use change and low vegetation 

cover as drivers of gully development (e.g. Kakembo and Rowntree, 2003; Valentin et al., 

2005; Boardman and Foster, 2008). This problem is predominant in South African communal 

landscapes owing to historical environmental and political neglect. The results of this study 

confirm this trend and indicate that the occurrence of gullies with the associated high soil loss 

is attributed to low vegetation cover (e.g. Le Roux and Sumner, 2012; Marakanye, 2016). 

Livestock grazing is a major land use in the study area and degraded grasslands and cattle 

pathways were observed along lower slope during field data collection. Degraded grasslands 

are characterised by areas with disturbed soils, possibly due to overgrazing and trampling 

effects as witnessed in other parts of South Africa (e.g. Kakembo and Rowntree, 2003; Le 
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Roux and Sumner, 2012). A study by Tamene et al. (2006) found that gully erosion favours 

lower slopes with low vegetation cover as they are more accessible to livestock and human 

disturbances than steep slopes. However, despite the noticeable trend between gully 

occurrence and the surrounding vegetation cover, the results of the study indicate a poor 

correlation between soil loss and vegetation cover. While some studies generally find positive 

relationship between soil loss and low vegetation cover, this observation could suggest that 

the role of vegetation cover is masked as the estimated soil loss was measured from present 

day gully volumes.   

Gullies in the study area were observed along drainage lines which were formed in a network 

of gullies extending upslope. TWI and SPI are associated with upslope contributing area and 

these areas are characterised by a convergence zone where planform curvature is concave 

thereby initiating gullies, due to the increased runoff volume downslope (Mathis, 2007; 

Marakanye and Sumner, 2017). The results of this study indicate that the occurrence of 

gullies and hence higher soil loss to favour areas with high TWI values mainly on gentle 

slopes. This is caused by the high moisture content and thus the soils become too weak to 

hold together (Le Roux and Sumner, 2012). The results of this study are supported by the 

studies of Kakembo et al. (2009) and Kheir et al. (2007) who reported that gullies mainly 

occur on gentle slopes where the upslope contributing area is high and is associated with high 

TWI values. For instance, Kheir et al. (2007) found that gully initiation predominately 

occurred in areas with high TWI values (>0.4). This represents zones of saturation with high 

runoff along drainage paths where critical drainage areas are high and slope is low. Likewise, 

the results of the SPI in this study are consistent with those of Kakembo et al. (2009) and 

Mararakanye and Sumner (2017) who found high SPI values to be associated with gully 

initiation, due to the high energy potential available to transport sediments.  

 

3.6. Conclusion  

In this study, the potential of Sentinel-2 MSI in mapping the spatial distribution of gullies in 

Okhombe, Drakensberg, South Africa was assessed. The findings of this study have shown 

that the freely and readily available data offered by Sentinel-2 MSI is effective in providing 

accurate information on the spatial distribution of gullies, achieving an overall classification 

accuracy of 77%. The study further showed that gully erosion varies with different 

environmental variables. Although the were no significant differences between the estimated 
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gully volumes and environmental variables, the study found that gully erosion with the 

associated soil loss favours gentle slopes contrary to the argument that steep slopes favour 

gully erosion around the world. Additionally, it was also found that low vegetation, areas 

with high TWI and SPI values favour gully erosion as this is where drainage lines converge 

and surface runoff is increased. Overall, the findings of this study should inform land 

managers and policy makers of the areas in need of rehabilitation and management. Future 

research should, therefore, aim to use Sentinel-2 MSI as it provides a great potential for 

mapping and monitoring gully erosion at regional scale. The freely and readily available data 

makes it an ideal alternative for mapping soil erosion in the resource constrained sub-Saharan 

Africa for accurate mapping of soil erosion for monitoring and providing remedies of 

environmental problems (Sepuru and Dube, 2018). Future studies should also investigate 

other possible environmental variables that could lead to gully development as gully erosion 

is a complex phenomenon influenced by various environmental variables.  
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CHAPTER FOUR 

Objectives reviewed and Conclusion  

4.1. Introduction   

The primary focus of this research was to assess remote sensing applications for detecting 

and mapping the spatial distribution of gully erosion in a communal landscape of Okhombe 

Valley, Drakensberg, South Africa.  In this chapter, the aim and objectives presented in 

Chapter 1 are reviewed against findings. Furthermore, the chapter also highlights the major 

conclusions and recommends for potential prospects for soil erosion research.  

4.2. Reviewing objectives 

4.2.1. Reviewing the progress of remote sensing users and usage for soil erosion 

monitoring. 

Although remote sensing has made great progress in soil erosion monitoring over the years, 

existing information on the usage and users of remote sensing is poorly documented. This 

literature review therefore evaluated the usage and the users of remote sensing by focusing on 

three aspects of the material: publication details, geographic information and data usage. The 

findings of the study show a significant increase in the number of publications of remote 

sensing for soil erosion research and further revealed that remote sensing is becoming 

accepted by a growing number of scientific disciplines, indicating the effectiveness of remote 

sensing as a tool for soil erosion monitoring. Furthermore, literature also shows that majority 

of studies are conducted in semi-arid regions, such as Spain, South Africa and India. 

However, despite the considerable increase in publications, majority of the studies were 

conducted by authors affiliated with European institutions, while the contribution of African 

lead authors is low. This possibly indicates an imbalance of knowledge transfer and 

technologies from developed countries, drawing attention to the challenges faced by resource 

constrained regions. Notwithstanding the aforementioned shortcomings, remote sensing 

advancements have allowed for timely and continuous monitoring of soil erosion at larger 

scales. Landsat is the most commonly used remote sensing system and although its spatial 

resolution is a limitation, its multispectral bands and archival data make it ideal for soil 

erosion detection and monitoring, overcoming the challenges presented by high resolution 

satellites, such as high acquisition costs and limited spectral resolution. The review shows the 

need for more collaborative research with developing regions and emphasises the need to 
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evaluate the potential of the new generation of satellites in detecting soil erosion features, 

especially for resource constrained regions.  

4.2.2. Assessing the potential of Sentinel-2 MSI sensor in detecting and mapping the spatial 

distribution of gullies.  

Gullies have been reported to be significant sediment sources and pose a threat for catchment 

water resource management. For effective implementation of soil and water resource 

conservation, the assessment and monitoring of gully erosion is essential. Freely available 

satellite data have offered a cheaper and accurate alternative for regional soil erosion 

assessment. Although, high resolution sensors have been effective in detecting small erosion 

features, these sensors are restricted to a smaller scale, and have high acquisition costs and 

thus represent challenges for resource-constrained regions. This study therefore evaluated the 

potential of the freely available Sentinel-2 MSI sensor in detecting and mapping the spatial 

distribution of gullies. Despite the spectral complexities of gullies, the findings of the study 

indicated that the performance of Sentinel-2 MSI sensor can be attributed to the sensor 

characteristics, achieving an overall classification accuracy of 77%. The Sentinel-2 MSI 

sensor several bands and more specifically, the red edge bands presented improved mapping 

accuracy capabilities that other multispectral satellite sensors lack which boosted the 

sensitivity of the sensor, combined with the robust capabilities of the Support Vector 

Machine classifier. The study further investigated environmental variables (i.e. slope, 

vegetation cover, TWI and SPI) that could possibly have an influence on the initiation and 

development of the identified gullies. The findings of the study indicate that TWI had the 

most influence on gully initiation and volume of soil loss while slope, vegetation cover and 

SPI had weak influence on the volume of soil loss despite an observable trend of influence. 

Overall, the findings of the study demonstrate the importance of using the free and readily 

available multispectral Sentinel-2 MSI data in conjunction with robust non-parametric 

Support Vector Machine classifier in mapping the spatial distribution of gullies. Furthermore, 

these results reiterated the importance of investigating environmental variables in 

understanding the imitation and development of gullies which facilitates in decision making 

and implementation of control measures.    
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4.3. Conclusion  

Satellite data has become an important and effective tool in providing information on the 

spatial distribution of gully erosion. In this study, Sentinel-2 MSI sensor was used to assess 

and map the spatial distribution of gullies in a communal landscape combined with a robust 

semi-automatic Support Vector Machine classifier. Given the spectral complexity of gullies, 

this study has demonstrated the effectiveness of the freely available multispectral sensor for 

mapping the spatial distribution of gullies. The performance of Sentinel-2 can be attributed to 

its multispectral resolution particularly the red-edge bands which gave room for more spectral 

separability. Sentinel-2ôs 5 day temporal resolution further makes it an ideal data source for 

continuous monitoring of gully erosion at regional scale especially in resource-constrained 

regions. Moreover, the investigated environmental variables were found to be useful in 

understanding of the contributing factors for the spatial distribution of gullies in the study 

area. The implementation of erosion control measures and rehabilitation requires an 

understanding of the underlying contribution factors therefore, the investigated environmental 

factors in this study, will be beneficial for land managers to for the prioritization of control 

and rehabilitation measures.  

 

4.4. Limitations and recommendations 

¶ Although the current study successfully mapped the spatial distribution of gullies, due 

to the spatial resolution of the Sentinel-2 MSI sensor some gullies could not be 

detected by the sensor as they were smaller than 10m. Additionally, future studies 

should investigate combining Sentinel-1 and Sentinel-2 sensors for improving 

mapping accuracy as SAR data is very sensitive to soil roughness and moisture and 

could potentially increase the detection of erosion features.  

¶ The spectral complexity of gullies and their surroundings also proved to be 

challenging, resulting in mixed pixels, due to the similarity of spectral signatures of 

un-vegetated and vegetated areas thus affecting the classification process. Future 

studies should explore incorporating vegetation indices for improving accuracy.   

¶ Although the environmental variables information proved to be beneficial in 

providing an understanding of the spatial distribution of gullies, future studies should 

incorporate other topography variables that could improve the understanding the 

influence of topography on the radiation of features (Taruvinga, 2009). For example, 
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information on soil moisture and other properties would be beneficial in the training 

data process by identifying the most informative training samples (Mathur and Foody, 

2008). 
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