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Abstract

The main aim of this study was to assess remote sensing applications for detecting and
mapping the spatial distribution of gully erosion in the communal lands of Okhombe Valley,
Drakensberg, South Africa. The study first sought to review the progressofersensing

by examining its usage and users over the years. The findings showed that the application of
remote sensing for soil erosion studies has significantly increased by 45% since the 1960s.
Although remote sensing is becoming widely accepted byowigg number of scientific
disciplines, there is paucity in African lead authors and this call for more collaborative
research and knowledge transfer. Literature further shows that Landsat series data is a
popular remote sensing system used for soil enosionitoring and mapping, mainly due to

its multispectral bands and archival data. Although, commercial high resolution satellites
have been demonstrated to accurately map small soil erosion features; their high acquisition
costs remains a challenge, esp#y in resource constrained regions. Therefore, this allows

for the exploration of the freely available new generation sensors for gully erosion mapping
at regional scales. The second objective of the study was to evaluate the potential of the
Sentinel2 MSI sensoin detecting and mapping the spatial distribution of gullies. The study
further investigated environmental variables (i.e. slope, vegetation cover, TWI anith&P1)

may have a potential influence on gully initiation and developnidrg.studyevaluated the
effectiveness of the Sentin2lspectral bands in discriminating gullies from other land cover
types using the Support Vector Machine. The overall classification accuracy achieved for
gully discrimination was 77% and all 10 Senti@e$pectal bands were selected as the ideal
variables for discriminating gullies from other land cover types. Additionally, the findings of
the study indicated that there is no significdiferencebetween the environmental variables
across different gully volues and that all the measured variables have a weak influence on
the volume of soil loss (i.e. Slope{R 0.02); Vegetation cover (R 0.01); TWI (R = 0.11)

and SPI (R =0.02) despite an observable trend of influence. Overall, Setirrels
demonstrated its usefulness in detecting and mapping gullies and it is therefore recommended
that future studies explore the use of the freely availableosém monitoring mappingoil

erosion at regional scales.
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CHAPTER ONE

General Introduction

1.1.Background

Land degradation in the form of soil erosion by water has been significantly documented
around the world as a critical driver of environmental chajdgenda and Herath, 2003;
Poeseret al, 2003; Lal,2001;, Valentin, Poesen and L2005) Gully erosion isone of the

most severe forms of water erosion and has received a great deal of gteunditm its
destructive nature. Gully erosion is associated with negativeitefind orsite effectssuch

as causing a decline in soil productivity and qualRymentel and Burges2013) thereby
affecting agricultural production and sedimentation of rivers and reseffRoesen2011)
consequently reducing water holding capacity and quality. For example, it has been reported
that gullies are increasingly affeatimgricultural lands and account for an estimated soil loss
rangeof 124823 400 million tons per year from 78
cultivated fields across Ethiop@awando, 2001Pabaet al, 2003) In South Africa,De

Villiers and Basson (2007)eportedthat sedimentation had reduced the Welbedacht Dam

storage capacity to approximately 90% over a period of 30 years.

Althoughgully erosioni s a natur al process shaping the e
it has been observedatit is accelerated by unsustainable human activiesh as land use
practices(Kakembo and Rowntre€003 Sonneveldet al, 2005; Smolska2007) In South

Africa, gully erosion is largely a product of heavy rains and highly erodible solorzetdic
dispersivesoils (Laker, 2003) The communal lands of northern KwaZdNatal are one of

the most severely affected parts of South Africa by gully erpsioa to steep topography

and a history of land use chan@i& Rouxet al, 2008; Mararakanye and Le Rou2012)

This increasingly causes a concern for catchment instability and water resource management.
However, despite this information, little is still known about the extent of erosion and
possible contributing environmental factors to gully initiatiord atevelopment in South

Africa as field methods are expensive and time consuming. Assessing the spatial distribution
of gullies and quantifying possible gully influencing factors has thus become a requirement
for cost effective conservation planning, faeiling the decision making process for suitable
prevention and control measures especially at municipal and provincial (Mealakanye

and Le Roux2012).



To effectively address the problem of gully erositre assessment and monitoringtioé
spatialdistributionof gulliesis essentialln this context the use of remote sensing technology
has the potential to provide a synoptic and timely analysis of the severity of soil erosion.
Remote sensing is a robust tool that offers meaningful spatialfatatae assessment and
monitoring of spatigemporal variationof soil erosion over large aredblathieu et al,

1997; Dwivediet al, 1997;Haboudanet al, 2002;King et al, 2005 Vrieling, 2006;Liberti

et al, 2009, Le Roux and Sumn&012) Remotesensing offers cost and time effective tools

to accurately map erosion which often overcome the limitations of traditional soil erosion
assessment method¥rieling, 2006; Lu et al, 2007; Liberti et al, 2009) Gully erosion

maps, produced quickly andedply from readilyavailable data, are a useful tool in regional
planning for erosion contrdllaruvinga,2009). Therefore, developing a robust, reliable and
accurate means of mapping gullies is a current focus of this study. Literature shows that
traditional mapping techniques through the manual digitization of aerial photographs and
satellite imagery have been extensively used for the mapping and monitoring of gully erosion
(e.g. Jones and Keech, 1966; Morgeinal, 1997; Fadulet al, 1999. Howeverthese
techniques are time consuming and the datasets rarely provide sufficient information for gully
mapping and monitoring as they are restricted tallsetale (e.g. Jones and Keech, 1966;
Servenay and Prat, 2003; Poesz01,1).

Remote sensing advancents have provided tremendous capabilities for mapping gully
erosion as fine resolution sensomuch as QuickBird, IKONOS and Worldview are
increasingly becoming popular. Although these datasets have been documented to provide
accurate results for gully apping (e.g. Shruthet al, 2011; Rangat al, 2015; Le Roux and
Marakanye 2012), their application at a larger scale is limited due to their small swath width
and high acquisition costs, which become a challenge for resource constrained regions. These
shortcomings have shifteattentiontowards theapplication offreely available multispectral
sensorsuch as Landsat datasets, characterisealddgbal footprint andcontinualcoverage

(Dube and Mutanga2015) and more recently launched Senti@eMSI products. For
example, Seutloali et al (2017) demonstrated the usefulness of the freely available
multispectral Landsat 8 OLI sensor in mapping the spatial variations of soil erosion at
regional scale wherextersive field-work remains limited On the other hand, the recently
launched Sentine? MSI sensor offers improved spatial and spectral capabilities for repeated
regional scale mapping and monitoring of soil erosion. For instance, alsti#puru and

Dube @018) demonstrated the effectiveness of Senfinal mapping spatial distribution of



eroded area, achieving an overall classification accuracy of 81,90%. The study concluded that

the SentineR MS | sensoré6s 5 day tempordahbnideald 10m
primary data source for cost effective and practical soil erosion mapping and monitoring at
regional scaleespecially for resource constrained regions. Therefore, the current study aims

to evaluate remote sensing applications for mapping thgasmlistribution of gullies in

Okhombe valley, Drakensberg, South Africa.

1.2. Aims and objectives

The overall purpose of the study was to evaluate remote sensing applications for mapping the
spatial distribution of gullies in the communal landscape ofo@ite Valley, Drakensberg.

The following objectives were set:

1 To review the progress and identify gaps in remote sensing applicatiosl
erosion mapping using multispectral remotely sensed data

1 To evaluate the potential of the recently launched fraefjlable medium resolution
Sentinel2 MSI sensor in detecting and mapping gullies

1 To investigate the possible environmental factors that influence the spatial distribution
of gullies in Okhombe Valley.

1.3.General structure of the thesis

This thesisis presented in four chapters. The first chapter provides an outline of the study,
drawing attention to the need for assessing the spatial distribution of gullies as a prerequisite
for effective implementation of erosion control and rehabilitation measOhapter 2 of the

study reviewshe progress of remote sensing usage and usea! erosion assessment at
varying scales. The chapter highlights the progress of remote sensing applications for soll
erosion studies through analysing the publicationailietincluding author affiliation,
geographic location and scale of study and remote sensing systems and methods used.
Chapter three evaluates the potential of the freely available multispectral S2nktgl

sensor for mapping the spatial distributiongoilies in Okhombe valley, Drakensberg. The
study examined the effectiveness of the Sentnedlw bands in discriminating gullies from

other land cover types as well as investigate the possible environmental variables that

influence gully initiation andlevelopment of the estimated soil loss for the identified gully.

3



The last chapter of thihesisreviews the research objectives and provides limitations and

major findings of the study.



CHAPTER TWO
Remote Sensing of Soil Erosion: A literaturgeview.
This Chapter is based on:

Makaya, N. P., Mutanga, O. & Dube, T. 2018. Remote Sensing of Soil Erosion: A literature
review.South African Geographical JourndRSAG20180054 (Submitted).

Abstract

Soil erosion is widely recognised as a ladefradation problem that poses a threat to the
environment. To develop effective and robust soil erosion control mechanisms, regional scale
assessment is a prequisite. However, this is being limited by the lack of data availability.
Despite these limitions, researchers have made tremendous progress in soil erosion
mapping and monitoring. Unfortunately, this information is poorly documented and to
determine future research direction, there is a need to provide an overview on the progress to
date. The an of this work therefore was to investigate how the application of remote sensing
for soil erosion analysis has developed over the years. The paper evaluates the usage and the
users of remote sensing by focusing on three aspects of the material (10évmeed
articles): publication details (year of publication, scientific discipline of journals and author
national affiliation), geographic information (location and spatial scale of study) and data
usage (application of remote sensing systems, methods nmeabures for accuracy
assessments). Three key results were obtained: i) the application of remote sensing for soil
erosion mapping has significantly increased since 1966 and is becoming accepted by a
increasingnumber of scientific disciplines, (ii) theontribution of African lead authors is

low, which could possibly indicate that knowledge transfer and technologies from developed
countriesis imbalanced, (iii) Landsat is the most commonly used remote sensing system and
although its spatial resolution is a limitation, its multispectral bands and archival data make it
ideal for soil erosion detection and monitoring. Therefore, this literagwiew emphasises

the need for collaborative research that could possibly explore the potential and further
enhance the usefulness of satellite technology in answering pertinent geomorphology and soil

conservation research questions.

Key words: runoff, il erosion, remote sensing, monitorjisgitellite data



2.1.Introduction

Water erosion is widely recognized as a critical land degradation problem that increasingly
impacts terrestrial and aquatic systems globélidemanet al, 1991) For instance, soil
erosion accounts for an estimated 85% of global land degrad@tagima et al, 2003)

While soil erosion is a natural process, anthropogenic activities have significantly contributed
to the acceleration of the process, consequemtbylting in a dramatic decline of land
resourceqLal, 2001) Environmental challenges caused by the acceleration of soil erosion
are attributable to drastic changes of land use patterns. For instance, clearing of vegetation
cover by over grazing, inappmogte farming techniques that cause soil crusting and
compaction, as well as infrastructural development, such as roads generate high amounts of
runoff consequently leading to soil erosi@®imente] 2006) Furthermore, onsite effects of

soil erosion furtkr cause negative downstream effects, such as sedimentation of dams and

rivers, subsequently degrading water quality and qua(htityet al, 2007;Morgan 2009)

Given the high spatial variability of soil erosion, it is vital to obtain spatial datataeptbe
severity of soil erosion, as well as understanding the dynamics that contribute to soil erosion
for the implementation of soil conservation, planning and mitigation measures. Controlling
and preventing soil erosion requires the implementatiomphlysical measures often at field

or catchment scale anttieling (2006)argues that obtaining such data at regional s¢elss

been challengingjue to data scarcity. Field surveys, time constraints and challenging terrain
provide a limitation for datavailability and quality(Mather and Tsp2016) Nonetheless,
numerous studies that have mapped soil erosion risk at different scales across the world are
often constructed using erosion mod@tegahanret al, 2001;Ma et al, 2003;Rahman et

al., 2009) However,Stroosnijder (2005)eiterates the challenge of data quality, noting that it

is difficult to validate computed erosion rates due to the costly and strenuous nature of

conducting accurate field measurements.

Remote sensing technologies on theeothand offer cheaper, continual and accurate large
scale data for soil erosion assessment thereby overcoming the challenges associated with field
methods (Vrieling 2006). The emergence of remote sensing technologies gained popularity in
the exploration othe potential remote sensing products to facilitate in soil erosion research
(Pickup and Nelsqrl984;Pickup and Chewingd988;Huete and Liu1994;Dwivedi et al,

1997; Sujathaet al, 2000;Ma r t -Easasrovas2003; Guangluet al, 2004) There is a
plethora of optical and radar remote sensing technologies characterized with different



spectral, spatial and temporal resolutions that have been applied in soil erosion related studies
(see Table 2), including the commonly used Landsat s#aias Remote sensing technologies

are continuously being improved for better optimization, such as the recently launched
European Space Agency (ESA) open access Sentinel satellite pri¢aitsnet al, 2014)

The advantages offered by open access daieigs and lowcost software have provided a
platform for a wide range of users to make use of remote sensing appli¢Kamenet al,

2014)

Four scientific literature reviews discussing the progress of remote sensing applications for
soil erosionstudies, providing an overview of the technological and methodological strengths
and weaknesses were identified. For instance, a revieRidhop et al. (2012)evaluated
studies carried out for deriving information on water and wind erosion using sataliite

While Vrieling (2006)reviewed different methods including validation techniques applied for
water erosion assessment using satellite data and concluded that there is a paucity of
validation data for soil erosion mappingayr et al. (2016)on the ¢her hand provide an
overview of issues related to the application of remote sensing technologies for the
identification and mapping of land degradation features, focusing on Latin America and
Caribbean regiorKaramiet al. (2015)provide a critical anabis of remote sensing methods

for detecting soil degradation, including soil erosion by runoff reflecting on the importance of

improving wide regional detection.

In contrast to the studies presented above, this current literature review provides a
guantiative analysis of the progress of remote sensing applications for soil erosion
assessment over a period of 50 ye®¥ster erosion occurs in various forms however the
focus of this literature review is only on sheet, rill and gully erosion, thus exddgsides

and floodplain erosion. The objective of this literature review therefore is to provide a
comprehensive overview of the usages and users of remote sensing to study soil erosion
processes. The literature review analysis further examine reseandt®etsave used remote
sensing applications in soil erosion studies. Publication details (year of publication, scientific
discipline of journals and author national affiliation), geographic information (location and
spatial scale of study) and data usagmplfaation of remote sensing systems and procedures
for accuracy assessments) for each research article were examined. This will facilitate in
identifying trends and gaps in the usage and users of remote sensing and subsequently
determine areas that reqaiprioritising(Karlson and Ostwald2016) and thus improving the

effectiveness of remote sensing for soil erosion monitoring.



2.2.Erosion controlling factors

Soil erosion is a complex process that is controlled by various interrelated environmental
parameters i.e. bedrock type, soil, climate, vegetation, topography and land use.
Understanding the dynamics driving soil erosion facilitates in determining thefreltange

and period required to update soil erosion m@frgeling, 2006) The detection of eroded

areas and erosion features together with the assessment of controlling factors can be studied
through the integration of spatial data, topographic magekl furveys, aerial photographs

and satellite imageryLawrence and Ripplel998) Remote sensing applications for soil
erosion studies often evaluate erosion controlling factors, in addition to the detection of
erosion features and eroded ar@as Roux 2011) For instance, satellite data are used to
derive soil conditions, vegetation cover, and topography and land use characteristics that are
often used in soil erosion models. However, only studies that use remotely sensed data to

assess these erosiomtributing factors are discussed in this section.

A few studies use satellite applications for the assessment of rainfall characteristics in soill
erosion studies. For exampW\giieling et al (2008)performed a regional erosion risk analysis
using large sale Moderate Resolution Imaging Spectroradiomet®ODIS) derived
Normalized Difference Vegetation Index (NDVI) and TRMM to estimate rainfall erosion
periods. The study compared the NDVI time series vegetation signatures with rainfall data
from Tropical Rainfall Measuring MissionTTRMM) and was able to determine the most
critical periods for erosion risk. Althougioarse resolution data such as MODIgr high
spectraland temporakesolutionfor soil erosion riskassessmentsuch large scale coarse
resolution data present challenges for erosion mapping. For instance, not only is it
challenging to detect erosion features at field scale due to its low spatial resolution of 1KM,
MODIS also presents implications of low image @sdion particularly for tropical regions

owing to its low availability of cloudree data.



2.2.1. Topography

One topographic feature that typically contributes to the erosion process is the degree of slope
where a steeper slope results in increased velocityrafff thereby initiating erosiofJain

and Goel 2002;Valentinet al, 2005) For instance, a study l8eutloaliet al (2016)found

that soil erosion occurs on steeper slopes that are greateOtnamZontrastGuangluet al

(2004) found that shadw gullies that are 012 m deep generally occur on the lower and

middle areas of the slope and rill erosion in the upper/ middle areas.

Spatial erosion models often require a Digital Elevation Model (DEM) to extract topographic
data, such as slope chetexistics. Traditionally, DEMs are constructed using contour lines
from topographic maps or from aerial photographs stereo (Bétts and DeRosel999;

Ma r t -Easasrovas2003; GarciaRuiz, 2010) and more recently from higtesolution
digital aerial magery. For example, a study Hyete (1988)nonitored soil surface change of
rangeland erosion using a DEM obtained from a negolution aerial imagery and
successfully identified surface elevation change. The advancement of remote sensing
technologiesset precedence for satellite data to offer good quality DEM of less than 20m
resolution provided by the SPOT stereo optical imagerfdwanced Spaceborne Thermal
Emission and Reflection RadiometehSTER) (Toutin and Cheng2002) For example,
Haboudaneet al (2002) generated slope and topographic curvature fro8atellite Pour
I'Observation de la Terre High Resolution Visib&QOT HR\) derived DEM whileCyr et

al. (1995)also used a DEM derived from SPOT HRYV for the visual interpretation analysis of

erosion features.

On the other hand, interferometric Synthetic Aperture Radar (SAR) imagery with spatial
resolution of 30m, such ake European Remote Sensisgtellite (ERS, Environmental
Satellite ENVISAT), and TerraSARX have also been used for emsidetection. For
example, Nanni et al (2012) were able to study erosion processes by performing a
morphometric analysis based on slope aspect, flow accumulation, stream network and
lithology derived from the ERS SAR interferometric DEM of 2@ouaziz,et al. (2011)on

the other hand, recently used geomorphologic factors derivedShamtle Radar Topography
Mission SRTM) and ASTER DEMSs to describe the geomorphologic setting and shapes of
gullies. The study found that ASTER derived DEM of 15 m improvesl dccuracy in
identifying gullies over small scales as opposed to the 90m SRTM data DEM. Hence, the use



of remote sensing demonstrates the feasibility of providing information for soil erosion

vulnerability.
2.2.2. Soll

Soil erosion is influenced by a rangesdfil propertiessuch as texture, structure, moisture,
roughness, and organic matter content that determine the soils aggregate @talglibg,

2006) These soil properties can be determined using infrared and visible sensors, often
examined by visdanterpretation and image classification. Differences in soil erodibility can
be studied by analysing the spectral behaviour of soils provided by the satellite imagery
(Reusinget al, 2000) For example, a study Byanget al (2003)successfully mappette

spatial distribution of soil erodibility using extrapolated erodibility values assigned in the
field and Landsat TM band &ingh et al. (2004) on the other hand, found significant
relationships between soil colours defined by the Munsell system andisadiasatellite

i magery. Mor eover, the soil d6s spectral ref
characteristics such as soil colour, iron oxides, moisture conten(Tetatin and Cheng

2002) For exampleNanniet al (2012)were able to determe and discriminate soil classes
using discriminant analysis of spectral data derived from Landsat imagery. The results of the
study confirmed the practicability of identifying individual soil classes using spectra data

obtained from the surface for solassification.

Mathieu, et al, (1997) notad that although topsoil characteristics can be a limitation for
determining one specific property, they can however be effective in determining soil crusting

as the removal of topsoil by soil erosion causesciirdeof organic matter and iron oxides,
consequently uncovering subs@ide Jonget al, 1999) For exampleSingh et al (2006)

assessed the level of soil degradation by estimating soil colour from NOAA/AVHRR satellite

data. Soil colour was determined using various vegetation indices, such as NDVI and MSAVI

and a correlation was found between soil colour and vegetation indice® 8iosive
processes alter the soil bés physical and cher
studying soil colour from satellite data can be beneficial in monitoring soil erosion processes
Singhet al (2006)

Optical satellite data howevear present a limitation in measuring topsoil reflectance due
the vegetation interferenqéawrence and Ripp|el998) Radar satellite data on the other
hand can overcome this challenge as they provide spectral information beyond vegetation and

soil surfacdn instances where soil erosion is exacerbated by surface cr(Mtialing et al,
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2008; Wulf et al, 2014) Soil surface roughness initiates and accelerates erakierto the

high runoff volumes that collects downsloféalentin et al, 2005, Kinget al., 2005) SAR

data can provide useful information on erosion processes radar satellites are sensitive to soil
roughness and moisture. For example, a studBdghdadiet al (2002)investigated the
potential of SAR data derived from ERS and RADARSATsses for determining possible
runoff and soil erosion in northern France. The study found that the SAR data could
determine the influence of soil roughness on soil erosion, thereby successfully discriminating
and mapping various surface roughness classesodth, medium and rough) over

agricultural fields.

2.2.2 Vegetation cover

Vegetation cover is considered as one of the most important factors controlling soil erosion
and can considerably decrease soil ,lakse to its ability to bind soil particles, thereby
protecting the soil(Jain and Goel2002; Lawrence and Ripplel1998) Remote sensing
facilitates in identifying and studying land cover features based on their spectral
characteristicy(Vrieling, 2006) Healthy vegetation and dry bare soil have significantly
different spectral characteristics in the visible and 4r&aared regions of the
electromagnetic spectrum, where the latter is generally indicated by a stable reflectance in
both regiongVrieling, 2006) The classification and mapping of vegetation is therefore an
essential step towards an understanding of vegetation cover and its relationship with soil

conditions.

Vegetation indices have been widely used to study vegetation and soil conditioasiam e
studies and provide a quick and simple technique for erosion feature ext(daitmeu et

al., 1997;Del Valle et al, 1998; Botha and Fouche2000, Alatorre and Begueri2009;
Meusburgeret al, 2010;Xue and Su2017;Rangaet al, 2012) Vegdation indices are
derived from satellite data to discriminate vegetation and bare bgilmaximizing on a

linear relationship between the red and rieftared bandgTaruvinga 2009) NDVI is a

popular vegetation index in soil erosion studies. For elanapstudy byNadaltRomeroet al.
(2012)performed an analysis of various spectral indices in assessing badyawadsics. The

results of the study indicated a clear distinction between vegetated and eroded areas and the
study recommended using the simplest and most commonly used spectral Index (NDVI).

However, despite its wide recognition, studies have documeh&drawbacks of NDVI
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such as its the oweaturation in high density biomass, sensitivity to soil brightness, soill
colour, cloud and cloud shado{Cyr et al, 1995; Purevdorjet al, 1998; Mutanga and
Skidmore 2004Govaerts and Verhulst2010) This congsquently led to various
modifications in efforts to overcome this disadvantage by reducing the solil effects of sparsely

vegetated areas or bare 4@ile and Su2017)

The Soil Adjusted Vegetation Index (SAVI) and Soil and Atmospherically Resistant
Vegettion Index (SARVI) are one of most commonly used modifications of NDVI in soil
erosion studiegPhinzi and NgetaR017) Indices such as the SAVI, Modified Soil Adjusted

Index (MSAVI) and Transformed Soil Adjusted Vegetation Index (TSAVI) were estalllishe

in efforts to improve the detection of erosion features in areas with low vegetation
(Taruvinga 2009). For example?hinzi and Ngetar (2014sed Landsat derived vegetation

indices to compare the accuracy of NDVI, SAVI and SARVI in mapping soil erosion

di stribution in South Africa. The study Vyi e
Accuracy of 77. 5%, a Usero6s Accuracy of 79,
Similarly, Taruvinga (2009) assessed the utility of Landesived vegetation gices namely

NDVI, TSAVI and in mapping gullies at catchment level. The results of the study found that
NDVI produced the highest accuracy for mapping gullies atcstithment level, whilst

TSAVI successfully mapgd gullies at catchment level.

2.3. Materials and Methods

This study was conducted based on a systematic quantitative literature review method which
was adapted frorKarlson and Ostwald (2016 he relevant articles that were identified were

categorised and critically examined tmling the stepshown in Fig. 2L.

2.3.1. Literature search

The literature searched included peeviewed articles published from 1966 up to fyehr

2017 that focused on the applications of remote sensing for soil erosion studies. These
articles were systematically searched scholarly electronic databases including Google
Scholar, SCOPUS, Science Direct, EBSCOhost, and Web of Science and were additionally
identified in relevant literature reviews and citation lists. The selection criteria included i)
publication in a scierfic journal, ii) geographical location of research conducted globally

including the spatial scale and iii) the use of remote sensing data for water erosion analysis.
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This literature review was limited only to literature concerning remote sensing of water

& 0osi on (specifically sheet|, ril |l and gul |y
erosiono, Al and degradationo, Asoil degr ada
Asatellite datao and fAwater erosiono.

2.3.2. Literature analysis

Each article wagxamined and categorised based on the following information which was
recorded in a Microsoft Excel database: 1) publication details consisted of the year of
publicati on, scientific journal (based on a
geogaphical location included study location and the scale of each which as was examined
based on four categories i.e. i) regional, ii) catchment, iii) local; 3) data usage was examined
based on the type of remote sensing instrument and method used. Idororatvhether

each study performed accuracy assessment or not was recorded including validation applied
for each study.
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1) Publication details » 2) Geographic Information
iy R ottt cmon 11 S
L _ea—r-I I Journal I 1 National affiliation 1 L ocation _p_ \al scale 1
I.---.l-___l L----I----l 1 [
Geography Europe Country Local
GIS North America Catchment
Interdisciplinary South America Regional
Land Management Asia
Remote Sensing Africa
Soil Science Australia
#  3) Data usage
P ——————— | o mmm—m—— I  mmmmem—m————— 1
: Remote Sensing system : :_"“_"Ethﬂ_jd_ _! :_AEcEra_C\iassEss_n’i_eEtJ
l ! [
Aerial photography Visual Interpretation Yes/No
High resolution Supervised classification 1
Medium resolution Spectral response Analysis Reference data
Course resolution Indices l
Radar Spectral Mixture Analysis In Situ
Object-based Analysis Remote Sensing
Other

Fig. 2.1: Flowchart describing the literature analysis process where the broken boxes
indicate the categories used for examining the articles and the solid boxes indicate the sub
categories (Adapted from Karlson and Ostw@id19).
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2.4. Results
2.4.1. Publication details

The review analysis reveals that remote sensing for soil erosion research gained more
recognition from 1996, although the first publication occurred in E866hown in Fig. 2.

Only two papers were identified from 196875 which mainly focused on mapg gully
erosion. Since then the use of remote sensing for soil erosion mapping and monitoring has
progressively increased, reaching 104 published articles by 201%emuid A relative
increase in publications can be observed from 19@5 where 8 resedr papers were
identified and since then a significant increase of publication can be observed from 1996
onwards where 37 research papers were identified and 53 were identified from 2006 up to
2017 midyear as shown in Fi@.2. In the recent 11 years (286Q017), most studies have
focused on gully erosion highlighting the increase of this erosion phenomena and its impact

on water resources and food security.

Number of Research Papers (n= 104)

50

40 |-

20

No. of published papers
V%]
o
T

10

0 I I . I - I L |

1966-1975 1976-1985 1986-1995 1996-2005 2006-mid 2017

Year of publication

Fig. 2.2: Temporal development of published articles wheraote sensing has been used

for soil erosion assessment.

Moreover, Table2.1 indicates the distribution of research papers published in different
journal categories over the years. The reviewed articles were published in 48 different

scientific journas where both remote sensing and interdisciplinary journals published 36% of
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papers each by migear 2017. It can be observed that the 1966 up to 2005 research papers
were mostly published in strictly remote sensing journals while the rest of the journal
caegories (i.e. Geography, GIS, Interdisciplinary, Land Management and Soil Science) were
under represented. The use of remote sensing for soil erosion studies significantly increased
from 2006 onwards, marking a change of interdisciplinary work. Integbgtiit can be
observed that the application of remote sensing became widely accepted by other scientific
disciplines as shown in Tabl2.1l having 49% of papers published in interdisciplinary

journals.

Table 2.1: Temporal development of articles published in journal categol

2006
2017
1966 1976 1986 1996 mid-
Journal category 1975 1985 19% 2005 year Total
No % No % No % No % No % No %
Geography 2 25 4 11 11 21 17 16
GIS 1 2 1 10
Interdisciplinary 2 50 8 22 26 49 36 34
Land Management 1 13 7 18 3 6 11 10
Remote Sensing 2 100 5 63 1 25 16 43 12 23 36 34
Soil Science 1 25 2 6 3 2
10
Total no. 2 8 4 37 53 4

2.4.2. Geographicalnformation

Fig. 23 illustrates the geographic spatial distribution of research papers that have applied
remote sensing for the assessment of soil erosion. It can be observed that 12% of the studies
were conducted in the semiid Mediterranean region$ Burope, mostly Spain, 10% of the
studies were mostly conducted in Africa specifically South Africa and 9% of the studies were
conducted in southern Asia (i.e. Ingdi&ig. 2.3 illustrates the application of remote sensing
across different spatial scales.large proportion studies (85 studies) published from 2006

onwards were conducted at catchment scale while 16 papers were conducted at local scale
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and only 3 studies were conducted at regional/national scale as shéwg 2. It can be
observed thatuthors who are affiliated with European institutions mostly in Spain and
Belgium published large portions of the stwdi@4 papers) as shown in Fig5 while
authors affiliated with African institutions published 23 papers (mostly South Africa and

Nigeria).

-

Percent of Articles (%)
N | 0 2250 4500 9,000 13‘522‘

0 1.2 3.5 6.7 8.12

Fig. 2.3: Percentage of published articles in each country.

)]
o
1

M Regional

u
o
T

B Catchment

M Local

No. of published papers
o w S
o o o
T T T

=
o
T

0 I I - I [ I I |

1966-1975 1976-1985 1986-1995 1996-2005 2006-mid
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Year of publication

Fig. 2.4: Temporal development of the spatial scale of each study.
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Australia

South
America

North

America Africa

Fig. 2.5: National affiliation of lead author.

2.4.3. Data Usage

Table 23 below shows an overview of optical and microwave radar satellite systems
characteristics that have been used in erosion research while Rigurtustrates the
reviewed 104 papers that have used different remote sensing systems for the mapping and
monitoring of soil erosion. A wide range of optical and radar satellite systems characterized
by different spatial resolutions were used for assessinged areas. The literature review
analysis showed that 41% of the studies used optical medium resolution satellite imagery (i.e.
Landsat) while 35% of the studies used aerial photographs, 12% used high resatatiba s
imagery (mostly QuickBircandIKONOS) and only 9% used radar satellite imagery (mostly
RADARSAT and JERS SAR).
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NOAA-AVHRR NigeriaSat Cartosat

MODIS

Google Earth

High resolution

Aerial photographs

Fig. 2.6: Remote sensing systems used to assess soil erosion.

Moreover, a range of processing techniques i.e. visual interpretatiparvised Maximum
Likelihood Classifier (MLC), objeebased analysis etc. were used for the mappireyaxfed

areas as shown in Fig.7. 43 studies assessed areas affected by soil erosion using visual
interpretation, while the MLC was the most commamdged traditional classification method

and only 2 studies used the objbeised method as shown in F2g7. It was further observed

that validation of results was assessed using an independent reference dataset where 63% of
the reviewed studies validatédeir results by in situ and remotely sensed data while 37%
studies did not validate their results (Tabl8).

19



Visual interpretation
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Other
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Method

Minimum Distance Classifer
Spectral Mixture Analysis

Support Vector Machine
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Fig. 2.7: Remote sensing methods used for the detection and mapping of soil erosion.

Table 2.2: Accuracy assessment performed for each study.

Accuracy assessment No. of studies Percentage of papers (%)
Yes 65 63

Reference data type

In situdata 32

Remote sensing 33

No 39 37
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Table 2.3: Overview of remote sensing systems used in soil erosion studies.

Satellite Sensor  Operation Spatial Temporal Spectral Bands
time Resolution Resolution

OPTICAL

Landsati 1, 2, MSS 19727 1983 80m 18 days 4

3

Landsafi 4,5 TM 1982- 1999 30m, 120m 16 days 6,1

Landsati 7 ETM 19997 present 15m, 30m, 60m 16 days 1,6,1

Landsat 8 OLlI 20137 present 15m, 30m, 100m 16 days 1,8,2

SPOTi 1,2,3 HRV 19861 present 10m, 20m 26 days 1,3

SPOT-4 HRVIR  1998i present 10m, 20m 26 days 1,4

SPOTI 5 Pan 2002- 2015 2.5m-5m 26 days 2
MS 10m 4

IRST 1A, 1B LISS1 1988- 1999 73m 4/5 days 4
LISS-2 36m 4

IRST 1C, 1D Pan 199571 present 5.8m 4/5 days 1
LISS-3 23.5m, 70m 3,1

Terra ASTER 19997 present 15m, 30m, 90m 16 days 3,6,5

NOAA/TIROS AVHRR 1978i present 1.1 Km 1 day 5

IKONOS Pan 19997 present 1.0m 3 days 1
MS 4.0m 4

Quick bird Pan 20017 present 0.61m 1-4 days 1
MS 2.44m 4

RADAR

ERST 1,2 1991- 2011 30m 1-2 days C-band

JERSI 1 19927 1998  18m 24 days L-band

RADARSAT i 19957 2013 10mi 100m 3 days C-band

1

ENVISAT 20021 2011 30m, 150m, 1Km 35 days C-band
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2.5. Discussion

The advancements in remote sensing technologies have offered improved capabilities for
mapping soil erosionThe aim of thiscurrent workwas to examingéhe usage and users of
remote sensing soil erosion researdby focusing on three aspects of the pahedmaterial
namelyi) publication detailsii) geographic informatiomnd iii) data usagelhe analysis on

these three aspects facilitated in identifying trends and gaps in thearmshgser®f remote

sensing.

The application of remote sensing foil ®osion mapping and monitoring has a long history
dating back to the 1960s where the first research papdoihgs and Keech (1968)as
published. Since then, an increase in the number of publication was observed from 1976
which could be attributed tdé¢ launch of the first ever satellite systénhandsat in 1972
(Karale et al, 1976; Proffiit, 1983, Frazieret al, 1983; Pickup and Nelsqgn1984) The

launch of Landsat set precedent for soil erosion mapping and monitoring (Taruvinga, 2009).
It can be eplained that the increase in the number of publications over the years has been
attributed to the progression of remote sensing technologies with its capabilities to provide

timely and cheaper alternative to mapping and monitoring soil erosion.

In the reent years, literature shows that most studies focused on assessing and mapping gully
erosion at catchment and regional sc@lageling et al, 2007;lgbokweet al, 2008;Ndomba

et al, 2009;Bouazizet al, 2011;Shruthiet al, 2011;Franklet al, 2013, d'OleireOltmanns

et al, 2014;Le Roux and SumneR012, Mararakanye and Sumn2017) This trend shows

that remote sensing has made tremendous strides in providing accurate information of soil
erosion assessment that has been of benefit to lamhgears and policy makers as field
methods often limit regional scale assessment. Furthermore, this trend is also reflected in the
journal categories that have published the reviewed studies. A substantial growth of papers
published in strictly specializetemote sensing journals to more interdisciplinary journals
was observed from 2006 onwards. Interdisciplinary journals facilitate in knowledge and
research dissemination across the diverse research commydéeehs and Henderson
2012) thus this trendndicates that remote sensing technology has become widely accepted

across the scientific community.

Moreover, literature shows that remote sensing applications for soil erosion have mostly been
applied in the semarid regions such as Spain, South Afracad India(lyer, 1974, Kumaret
al., 1996;Dwivedi et al, 1997;Wesselst al, 2004;Le Roux and SumnegR012;Seutloaliet
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al., 2016;Kumar et al, 1997)drawing attention to the environmental vulnerability of these
regions. Interestingly, the LoessaRau of China is one of the most severely eroded regions
however only 4 studies were identifida et al, 2003;Wanget al, 2007;Chenet al, 2011;

Wang et al, 2016) Most studies in this region mainly use GIS techniques to model and
guantifying soil loss. Similarly, according to the soil degradation world mapltéégmanet

al. (1991) countriessuch as Nigeria, Ethiopia and Sudan are classified as one of the most
severely eroded; however, a limited number of studies were identified from these countries
(Fadulet al, 1999;lgbokweet al, 2008;Tahir et al, 2010;Frankl et al, 2013;Okerekeet

al., 2012)

It is interesting to note that although remote sensingbban an effective tool used globally,
reaching broader scientific domains, the origin of first authors for the published papers shows
rather a disproportionate observation. It was observed that authors who are affiliated with
European institutiongTahir et al., 2010;Frankl et al, 2013;Rangaet al, 2015) published
studies conducted in developing countrissch as India, Sudan, Ethiopia, Morocco etc.
Innovative knowledge is mainly generated in developed countries where research funding is
available (Chan and Costa2005) For instance, the reviewed studies conducted in the
aforementioned developing countries were funded by European foreign institutions such as
the Norwegian Research Council (NFR) program from Norway and Erasmus Mundus
External Progma window 13 from Belgium. According t8han and Costa (200%)ere is a
limited capacity for research infrastructure and knowledge in developing countries, resulting
in a shortage of scientific output and further undevelopment, further widening the Nlor

and South knowledge gap. Karlson and Ostwald (2016) argue that joint efforts to increase the
capacity of local researchers and institutions for conducting research using the new

generation of remote sensing datasets are necessary to achieve thigeobjecti

Moreover, literature also shows that a wide range of remote sensing systems have been used
at different scales for mapping and monitoring soil erodidhile high resolution sensors are
important forthe accurate detectiaf erosion features, the uséthese sensors is restricted

by availability and costHoqueet al, 2017) Numerous studies have used medium resolution
Landsat sensorglue to its open access archival data and spectral resolution, offering the
potential for soil erosion monitoringingh, 1977;Metternicht and Fermoni1998;Sujathaet

al., 2000; Okerekeet al, 2012; Dube et al, 2017) Although these studies highlight the
incapabilityof Landsat to detect small erosion features due to its cbanselium resolution,

nonethelesslandsat offers the potential to map soil erosion at regional scales with
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reasonable accuracy due to its large swattth of 185km On the other hand, sensossch

as Quickbird, IKONOS and Worldview provide the ability to accurately map fine erosion
featues due to their fine spatial resolution. However it is not surprising that only a limited
number of studies have used these sensors as they are not freely available and access to these
datasets remains a challenge in resource constrained couyMeasbuger et al, 2010;

Shruthiet al, 2011;d'OleireOltmannset al, 2014;Uchida 2015) Similarly, it was observed

that a limited number of studies have used radar datasets for soil erosion mapping thus far
(Metternicht and Fermonf998;Navone and Palaci@004)and this opens up possibilities to

evaluate the potential of Sentirieproducts.

The review analysis further showed that traditional approackesh as the visual
interpretation and the MLC have remained popular tiveryearsn detecting and mapping

soil erosion(Symeonakist al, 2007;Vrieling et al, 2007;Le Roux and Sumng012) The

MLC however suffers from drawbacks that include its limitation in solving complex classes
that are not normally distributd@epuru and Dae, 2017) By contrastthe increase of high
resolution sensors has facilitated a shift from traditional gyasked classification to object
based image analysis (OBIA) methods (e.g. Shrethal, 2011; d'OleireOltmannset al,

2014; Mayret al, 2016) This presenting a new and accurate approach for soil erosion
mapping owing to its ability tonvolve analysing the characteristics of an object based on its

location, size, shape and spectral properties (Bishap, 2012)

2.6. A way forward

There is significant progress in the detection and mapping of soil erosion using remotely
sensed data. This review shows a considerable increase of remote sensing usage and users for
soil erosion analysis since the launch of Landsat series data datingnbh@k2. Several

studies have used Landsat for soil erosion mapping due to its archival data and open access
policy, which makes it ideal for long term soil erosion monitoring. The improving capacity

and availability of remotely sensed data is promisorgsbil erosion especially gully erosion
mapping at regional scale. A number of studies confirm the effectiveness of medium
resolutionsensos such asthat of Landsat in mapping soil erosion at regional scbilax.
instance,the recently launched Landsats8nsor offers improved spectral and radiometric
resolutionthat is ideal forregional and local soil erosion mappi(eg. Phinzi and Ngetar

2017; Dube et al, 2017; Seutloaliet al, 2017) In addition, powerful machine learning
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algorithms such as the SVM have been equally valuable for soil erosion mapping. These
algorithms can offer improved classification accuracies for soil erosion mapping, even more
so with mediurrcoarse resohion satellites (e.g. TaruvingdaP09; Bouzazet al, 2011;Chen

et al, 2011).

On the other hand, fine resolution satelliteach as the likes of SPOT, QuickBird and
IKONOS offer tremendous results for soil erosion detection and have been recommended by
several studies for accurate soil erosion mapping owontheir high quality data. These
satellites however present limitations for laggale mapping due to high data acquisition
costs and are prohibitive for developing countries (Vrieéihgl, 2008). Besides, Sepuru and
Dube (2017) argue that while SPGsTrelatively cheaper than IKONOS and QuickBird, these

satellites are still further limited by their low spectral sampling abilities.

Nonetheless, the recently launched and freely available Sentinel 2 sensor is now the new
leader in spatial resolutions angst multispectral imagery, with a spatial resolution of 10m,

a 5day revisit cycle coverage and 12 multispectral bands. The application of Sentinel 2 in
land cover mapping has been demonstrated to provide information on environmental
management. Studiesathhave applied the Sentinel 2 imagery have observed improved
results for land cover mapping. For exampBuchholz et al (2012) assessed the
effectiveness of Sentin@ data for land cover mapping and compared its performance with
Landsat5 TM and SPOT 8RG imagery. The study further used the MLC and SVM to
assess the discrimination capabilities offered by different features and revealed promising
results by Sentine?. Sentinel 2 therefore offers a great potential for soil erosion mapping
mainly for deweloping countriesvhich are often constrained by high dataquisitioncosts
(Sepuru and Duh018)

While several studies have demonstrated the ability of medium resolution satellite $ensors
discriminate soil erosion features from other land cover types, there is a paoiity
multisource image fusion meth®fbr soil erosion studies (Chet al, 2011). In addition, the
review also identified insufficient work of the application of active microwave rddta

fused with optical multispectral data for soil erosion mapping. Therefore, it is necessary for
future studies to explore the potential of robust classifiers such as the SVM, OBIA and

recently launched Sentinel products for improving the detectioraetwutracy of soil erosion

mapping.
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2.7. Conclusion

1 The use of remote sensing for soil erosion analysis has gradually increased from 1966
to present time, reaching 104 peeviewed articlesnoting the largest increase in the
last 11 years.

1 Remote sensing hasecome widely accepted as an effective tool for soil erosion
analysis as reflected in the range of interdisciplinary scientific journals.

1 The geographical distribution of the application of remote sensing for soil erosion
shows that research is mainly dorcted in semarid regions (i.e. Spain, South Africa
and India) which could possibly be driven by the prevailing environmental problems.

1 European affiliated authors generally lead research conducted in developing countries.

The review further revealediaw representation of African lead authors.
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CHAPTER THREE

Assessing the potential of Sentiné? MSI sensor in detecting and mapping the spatial

distribution of gullies in a communal grazing landscape
This chapter is based on:

Makaya, N. P., Mutanga, O., Kiala, Z. S., Dube, T. and Seutloali, K. E. 2018. Assessing the
potential of Sentine2 MSI sensor in detecting and mapping the spatial distribution of gullies
in a communal grazing landscapéhysics and Chemistry of the Eartt-26.
JPCE_2018 114. (Under review).

Abstract

In this study, we evaluate the potential of the recently launched SextM8| multispectral
sensor in mapping the spatial distribution of gullies in Okhombe valley, KwdXatal,

South Africa. The studyurther investigates possible environmental factors that contribute
towards gully initiation and development. Analysis was done using a robust machine learning
algorithm: Support Vector Machine (SVM). Additionally, possible environmental factors (i.e.
slope steepness, percent vegetation cover, Topographic Wetness Index and Stream Power
Index) that could have an influence on the extent of the gullies were also derived. An overall
land cover classification of 94% was achieved, while the overall classificaticuracy for
gullies was 77%. All 10 Sentin@l spectral bands were selected as the ideal bands in
discriminating gullies from other land cover types. Additionally, the findings of the study
indicate that there is no significant difference between théranmental variables across
different gullies volumes. The findings of the study indicated that all the measured variables
have a weak influence on the volume of soil loss (i.e. Slope (R02); Vegetation cover (R

= 0.01); TWI (R = 0.11) and SPI (R=0.02) despite an observable trend of influence.
Overall, the findings of the study demonstrate the importance of using the free and readily
available multispectral Sentingl MSI data in conjunction with robust ngarametric

Support Vector Machine clafisr in mapping the spatial distribution of gullies.

Key Words: Gully erosion, satellite imagery, communal landscape, soil loss
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3.1.Introduction

Gully erosion is a major land degradation problem that threatens both land and water resource
management in arid and searid regions across the glofitakemboet al, 2009;Rahmati

et al, 2017) Gullies are commonly defined by their channel depth, kvban range from 0.5

to 30 m and often develop into a network of active gullies that contribute a significant amount
of sediment yield in catchmen{®merica 2001; Le Roux and Sumner2012) Gullies
predominantly occur in dry regions and are exacerbayedhpid land use change due to
demographic, economic and grazing and agricultural prefBoeseret al, 2003;Chaplotet

al., 2005) This consequently results in irreversible environmental impacts, such as soll
degradation, high volumes of sediment gjeleduction of both water quality and quantity in
rivers and reservoirs, damage to agricultural fields and infrastru€fakdkenet al, 2008;
Dewitte et al, 2015) For instancel.uk (1997)reported that 85% of sediment yield in a
reservoirwere accounéd by gullies in a 0.73 Kfmcatchment, Southern China. Similarly,
Verstraeteret al (2003)conducted a survey which reported that gullies increased sediment
yield within the catchments of 22 Spanish reservoirs observing mean specific sediment yield
of 9.61 tons Hd yeaf* (n=7).

Researchers have shown a large interest on gully erosion, diserétated offsite impacts
which raise concern for water resource management at catchment (%akesonet al,

2002; Valentin et al, 2005;Poesen2011;Mararakanye and Le Rou2012) While many
studies have addressed gully erosion at local to catthswale, there is a need for a
comprehensive understanding of the spatial distribution and driving factors on gully erosion
at regional scale. Therefore, accurate and frequent monitoring of gully erosion is necessary
for the implementation of erosion cooit measures and prioritization strategies for the
allocation of scarce conservation resources and policy develofureziing, 2006;Seutloali

et al, 2016) However, the acquisition of accurate anetaydate spatial information of gully
affected areasemains a challenge, especially in stdharan Africa where data availability
and quality is often poor for regional scale mapgMgeling et al, 2006;Dubeet al, 2017)
Additionally, acquiring accurate spatial data is further hampered by the usadiional
techniques, such as digitizing and field surveys amongst ofbetse et al, 2017) Gullies

have been traditionally mapped using visual interpretation of aerial photos or satellite
imagery and this methods are spatially constrained,-¢mnsuming, labousintensive and
costly at regional scal€Vrieling, 2006; Shruthi et al, 2011; Frankl et al, 2013) The
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development in sensor technology and techniques in the recent years has seen an

improvement in the accuracy detectidrgallies at a regional scale.

Previous studies have demonstrated the effectiveness of remote sensing in enhancing an
understanding of the scale and level of soil erosion at regional scale, a previously challenging
task from conventional method&umar et al., 1996; Zinck et al, 2001; Manyatsi and
Ntshangase2008;Liberti et al, 2009;Seutloaliet al, 2016, Phinzi and Ngeta2017) For
example,lgbokweet al (2008)successfully mapped gully erosion in Seatdstern Nigeria,

using Landsat ETM, Nigerigatl and SPOT 5 anfRTM dataset. WhileBouaziz et al

(2011) mapped gully erosion in the Main Ethiopian Raft using ASTER, achieving a
maximum overall accuracy of 89%. Similarlyjararakanye and Le Roux (201&)apped

gully erosion at national scale in SbuAfrica using SPOT 5 and achieved an overall

accuracy of 90%.

A recent trend in the use of high spatial resolution sensors, such as IKONOs, QuickBird, and
GeoEye has seen a change from traditional fiiasked to objedbased techniquege.g.
Shruthietal., 2011;Rangaet al, 2016;Mayr et al, 2016) Although these sensors provide a

high spatial resolutionimage acquisition is costly arunited to both small area coverage

and spectral band3aruvinga 2009) These pose a limitation for large scalapping and
monitoring of gully erosion in resource constrained regions, such as southern Africa
(Seutloaliet al, 2016) Nonetheless, freely available medium resolution images, such as
Landsat have been widely used successfully in soil erosion reseansh tmwtheir cost
effective and temporal resolution which facilitates a large scale monitoring of soil erosion.
Moreover, the recently launched and freely available Serild81 sensor provides a more
improved spatial resolution (i.e. resolution of 10Bxgay revisit cycle coverage and 12
multispectral bands amongst multispectral imagery characterised by a spatial. Studies that
have applied Sentin@ imagery have observed improved results for land cover mapping
(Forkuoret al, 2018). The spatial and radiometric characteristics of Seffisehsor make it

ideal for mapping individual gullies at region scale. It is therefore perceived that the use of
this sensor can help soil erosion monitoring in data scarce environinentgeviously
challenging task with broadband sensors. The current study therefore a) evaluates the
potential of Sentin@ MSI in discriminating gullies from other land cover types using semi
auomatic SVM algorithm; and b) investigates possible environmemnatiables that
contribute to gully initiation and development in Okhombe valléwaZulu-Natal, South

Africa.
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3.2.Materials and Methods
3.2.1. Description of Study Area

Okhombe valley is a communal grazing land located in the upper uThukela catchment in
KwaZulu-Natal, South Africa. The study site has an area of 59.89 (R8742' S; 29°05 'E)

(Fig. 3.1). The valley is located within 10 to 20 km of the neg#tstern border of Lesotho and

is characterized by steep topography, with an elevation ranging from 1800m above sea

level. Grasslands are the main dominant vegetation cover in the area, with a few scattered
patches of woody vegetation and shrubs. Okhombe soils are red and yellow, freely drained,
structureless, highly leached and severely eroded and tldaused by the high rainfall that
typically falls between October and Marfflacavicar 1977; Schulze1997;Eversonet al,

2007) The early 1960s marked a significant change in agriculture which transformed the
settlement distribution of the Okhombe catchment, resulting in the removal of people to one
of six closer settlements at the foot slopem Maltitz and Evansl998) Communal grazing

land was designated along the steep slopes plateaux while the valley floor was designated for
cultivation (Sonneveldet al, 2005) The gazing campshatwere designed to accommodate
different types of cattle are no longer being managed as¢hdis resulted in the lack of cattle
movement contro{Sonneveldet al, 2005) Furthermore, the lack of security and theft has
resulted in cattle being kept near the homesteads and are daily moved up and down the slopes
(Sonnoveldet al, 2005). This hagaused great concern of soil erosion due to the trampling

effects.
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Fig. 3. 1. Location of Okhombe in the uThukela catchimdfwaZuluNatal, South Africa
Study Area map

3.2.2. Filed data collection

Field data were collected frothe 3F' of October to the @ of November 2016 and from the

5" to the 9" of December 2016. Data collection was done using a differentially corrected
Trimble GeoXT handheldGlobal Positioning System (GPS) receiver, with subter
accuracy. In addition, the ground truth data for gully locations and other Land Use/Land
Cover (LULC) classes, such as grassland, forest, shrubland, settlement and bare soil were
collected. Although randorsampling is considered the most favourable sampling technique,
due to its ability to remove bias, it was not appropriate specifically for the objective of the
study as gullies are not homogenously distributed across the landscape. A purposive sampling
tedhnique was therefore used to identify gully locatighsample of 83 gullies was recorded.

Gully dimensionsi.e. length, width and deptwe r e est i mat ed wusahdng a
ranging poledor the estimation of gully volume, which is equivalent te trolume of soil

lost (shown in Fig. 3.2fJungeriuset al, 2002; Seutloalet al, 2015) Gully dimensions were

measured at every 10m intervals and then averagedcount for change in topograpaty
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the cross sectioas well as the sensor spatial resioin. Gully depth was measured at the
maximum deepest point of the gully coinciding with the 10m intervals. The gully volume was

estimated using the formula expressed in equation 1.
V=LX[(Wt+Wb)/2]xD (1)

Where: V is the volume in cubic metres; L is the total length in metres; Wt is the average top
width in metres; Wb is the average bottom width in metres; D is the average depth measured

in metres.

Percentageagetation cover was visually estimated, using the methd@blopenmirg1959)

10x10m plots were demarcated to estimate the upslope percentage vegetation cover
coinciding with the identified gullies. This is of the assumption that the presence of gully
erosion is possibly attributed to the drainage area and amount of vegetatien cov
surrounding it. Vegetation cover plays a pivotal role in protecting the soil surface against

erosion(Vrieling, 2006) It is defined as the fraction or percentage of the ground surface

covered by vegetatioffiPurevdorijet al, 1998)

Fig. 3. 2. Photographsshowing some of the gullies identified in the Okhombe valley
(October 2016)
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3.2.3. Topographic variables

Various major topographic variables contribute to gully developr(ten¢ir et al, 2007)
Topography plays a pivotal role in concentrating water flow Madarakanye (2016rgues

that the role of topographic variables has not been widely reported in South Africa. A 10m
Digital Elevation Model (DEM) acquired online from the web Ilink
(http://www.csg.dla.gov.2awas processed in a GIS environment, using the spatial analyst

tools to generate slope gradient, Topographic Wetness Index (TWI) and Stream Power Index
(SPI). The slope gradient was calculatedl@grees using the formula expressed in equation
2.

SLOPEDEG= RADDEG (Atan(SLOPEPCT/100)) )

Where SLOPEDERG is the slope gradient in degrees, RADDEG is the function of converting
radians to degrees and Atan is a mathematical function used in the comverscess
(Seutloaliet al, 2016)

The Topographic Wetness Index (TWI) is a function of the specific catchment area and slope
gradient of the landscap@eng and Bajcsy 200%nd was calculated using the formula

expressed in equation 3.

TWI=In(As t an b) (3)

Where i s t he specific catchment ar e@agbandd b i s
Jennes2008)

The Stream Power Index (SPI) on the other hand indicates an estimation of the erosive power

of the terrain and was calculated using the formula expressed in equation 4.
SPI=Ast an b (4)

Wheressi s t he speci fic cat chm@visonandGalam200@)nd b i ¢

3.2.4. Image acquisition and processing

A cloud-free SentineR MSI imagery of January 2016 was freely acquired from the European

Space Agency (ESA) online catalogumtifs://scihub.copernicus.g@umlable3.1 provides an

overview of the characteristics of the SentiBellata used in this study ranging from the
visible through the neanfrared (NIR): and red edge to shortwave infrared (SWIR) at 10, 20
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and 60m spatial resolution. Band 1 (coastal aerosol), Band 9 (water vapour) and Band 10
(cirrus), acquired at 60m spatial resolution are designed mainly for detecting atmospheric
features and were therefore not included in the analisisschet al, 2012. The imagery

was atmospherically corrected, using the Sen2Cor atmospheric correction toatbhmbuilt
algorithm within the Sentinel Applications Platform (SNAP) version 5.0. All 10 bands of
varying spatial resolutions were further resampled to tOemsure that the pixel size of the
image corresponds with the identified gullies. The imagery was then used for the
classification of gullies using the ground truth data.

Table 3.1: Sentinel2 MSI Spectral and Spatial reatibns.

Spectral Bands Centre (nm) Spatial Resolution (m)
Band 1i Coastal aerosol 443 60
Band 2i Blue 490 10
Band 3i Green 560 10
Band 4i Red 665 10
Band 5i Vegetation Red Edge 705 20
Band 6- Vegetation Red Edge 740 20
Band 7- Vegetation RedEdge 783 20
Band 8i NIR 842 10
Band 8a Narrow NIR 865 20
Band 9i Water vapor 945 60
Band 10/ SWIR 1375 60
Band 11i SWIR 1375 20
Band 12- SWIR 2190 20

3.3.Data Analysis

Sentinel2 MSI imagery was used to discriminate gullies from other land cover types in
uThukela Catchment. Th®VM algorithm was used to classify the images. The SVM was
chosen, due to its ability to perform a robust discrimination of complex land casses|
such as gullies and has been previously used successfully to classify @idlieginga
2009;Le Roux and SumneR012) The algorithm is regarded as a fmarametric machine
learning algorithm first introduced b¥Boser et al (1992) The SVM detemines the
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separation of decision boundaries between different classes by directly searching for suitable
boundariegHuanget al, 2002) Thenomp ar amet ri ¢ and fAone cl ass
one class is of interest) characteristic sets the SVatdmm the rest of the conventional
classifiers (SanchezHernandezet al, 2007) and thus offers a potential for mapping
individual mediumsized gullies in South Africa. The SVM classification was performed;
using spectral reflectance signatures of dand cover type on the Sentir&imagery which

was used to train the classification of the imagery. The data was then divided into 70% and
30% training and validation, respectively, for the classification procefidelabuet al,
2013;Sibandeet al, 2015).

3.3.1. Image classification optimization

The Recursive Feature Elimination (RFE) and hypsameter tuning algorithm was used for

the Support Vector Machine model optimization. The RFE selection technique ranks features
based on the measure of their imtpace where feature importance is measured and the less
important feature is removed thereby speeding the prdGeasittoet al, 2006) This is an
essential process that determines the best parameters for the highest classification accuracy
(AbdelRahmaret al, 2014) Spectral band importance rankings were generated, using a grid
based and tenfold cross validation feature selection pr@désskeet al, 2009) A forward
selection method was then achieved to select the least number ofetfiealspands that
produced the highest overall classification accuracy, generating a new model based on the
highest ranked band¥ohavi and John1997) The use of feature selection allows for a
reduced data training time while improving classificatiortuaacy concurrently. Hyper
parameter tuning was performed on the model created from the selected bands using the
Grid-search approach.

3.3.2. Accuracy asessment

The validity and reliability of the classification results produced by the SRBF model was
assesed using the Confusion Matrix. The classification accuracy assessment is determined
by a crosdgabulation method on the contingency table where each class label is evaluated

against the corresponding ground d@taody and Mathyr2004) A confusion matK was
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produced to measure the producer accuracy (PA), user accuracy (UA) and overall accuracy

(OA) between the classification results and ground truth data.

3.3.3. Statistical analysis

To determine differences in gully volume (i.e. estimated soil loss) and within each
environmental factor, class ranges were applied as shown in 3 ablEhese variables were
categorised into three classes based on observations that informed the indiLigudly
development (Le Rou and Sumner 2012). Simple linear regression was utilised to
determine, as well as evaluate the relationship between the environmental factors and gully
volumes and hence the coefficients of determinatiofy (Rere reported. The Onegay
analysis of variance (ANOVA) at 95% confidence level (P < 0.05) was then conducted to
determine whether there were any significant differences between environmental factors (i.e.
vegetation cover, slope, topographic wetnesexn@WI) and Stream Power Index (SPI))

and the estimated soil loss.

Table 3.2: Classes ranges of environmental variables.

Biophysical variable Class Name Class Range
Slope (°) Flat- Gentle <11
Gentlei Moderate 11-17
Steep Very Steep >17
Vegetation cover (%) Bare- Low <38
Low i Moderate 3848
Moderate- High >48
Topographic  Wetness  Inde Low <3.5
(TWI) Moderate 3.5155
High >15.5
Stream Power Index (SPI) Low <0.19
Moderate 0.200.49
High >0.49
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3.4.Results
3.4.1. Gully spectral profile

Fig. 3.3 illustrates the average spectral response profile of individual gullies and two other
land cover classes (i.e. grasslands and bare soil) that have been observed to be similar to the
gullies. It can be observedahthe general reflectance of gullies is low compared to bare soil,
which remained relatively high, while there is a similarity of signatures between gullies and

grassland for Band 8 and Band.8A
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Fig. 3. 3: Spectralsignatures of gullies, grassland and bare soil derived from SeatM&ll

imagery (error bars signifying level of separability).

3.4.2. Major land cover types

Land cover classification results obtained using Ser8nélSI| spectral bands as an
independent daset are shown in Tab®3. The results indicate that the use of the freely
available medium resolution Sentif2IMSI spectral bands produced good classification
results, achieving an OA of 94%. Of all the five classes, shrubland achieved the highest
producer accuracy of 100% whilerest achieved the highest user accuracy of 100%.
Moreover, the Senitnéd MSI imagery yielded good classification results in discriminating
gullies from other land cover types producing a Producer Accuracy of 78%, Usaaégccu
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of 76% and arDverall Accuracy of 77%. Fig.4 (a) illustrates land cover typesthin the
catchment while Fig3.4 (b) illustrates the widespread spatial distribution of gullies within
the catchment. It is important to note that some of the affssesl by gullies include more

than one gully, especially where several small gullies are located in close proximity with each
other often forming a network. It can be observed that areas affected by gullies are largely

distributed across the valley.

Table 3.3: Sentinel2 MSI accuracies (%) for land cover classes including gully location.

Land Cover type Producer User Overall
Accuracy (%) Accuracy (%) Accuracy (%)

Grassland 94 95 95
Forest 93 100 96
Shrubs 100 99 99
Bare land 95 95 95
Gully location 78 76 77
Burnt grass 90 86 93

Overall Accuracy (%) 94
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Fig. 3. 4: Derived gully maps in relation with surrounding land cover types in uThukela catchment wisti@va) the derived land cover

classification and b) shows the derived gully distribution.
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3.4.3. Evaluating the relationship between gully volumes and environmental variables

Fig. 3.5 illustrates the spatial distribution of the possible emmental variables that
influence gully development (i.e. Slope gradient, Vegetation cover, TWI and SPI). To
achieve a clearer understanding, the possible environmental variables were classified into
threecategories as shown in Fig.5. The slope steepnesvithin the catchment ranges from

flat to very steep (i.e. 3°to 60°). The estimated percent vegetation cover within the catchment
ranges from 7% to 90% which has been classified as fairly bare to high percentaggoreget
cover as shown in Fig.5. Themajority of gully locations were mainly identified in areas

with fairly bare to low vegetation cover, while a few gullies were identified in areas with high
vegetation. TWI values within the catchment range frdi& to 86, while the SPI values

within the @atchment range from approximateg/to 2.

Fig. 3.6Illustrates a summary of the relationship between the estimated mean gully volumes
and the classes of possible environmental variables (i.e. Slope, vegetation cover, TWI and
SPI) for gully development.fe results indicate that higher mean gully volumes of about 530

m® were associated with flat to gentle slope gradients (slopes less than 11°) while the very
steep gradients had lower mean gully volume of about 212 Im addition, higher mean

gully volumes of about 450 fhwere associated with low vegetation cover (vegetation cover
less than 38%) while moderate to high vegetation cover (greater than 50%) were associated
with lower mean gully volumes of 268*nSimilarly, higher mean gully volumes of 578 m

were also associated with high TWI values (greater than 16.30) indicating possible gully
development on the high zones of saturation on fairly flat area. Similarly, higher SPI values

(greater than 0.51) were associated with higher gully volumes of at@ut®32
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contributing to gully development.
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Fig. 3. 6: The relationship between mean gully voluara (a) slope; (b) vegetation cover;
(c) TWI; and (d) SPI.

Fig. 3.7illustrates the relationship between mean gully volume and environmental variables.
Although there seems to be a discernible pattern of the possible environmental variables and
gully volumes, however based on the 95% confidence intetiralyesults show that none of

the environmental variables (i.e. slope, percent vegetation cover, aRnd/ISPI) had a
significant influence on gully volumes (ANOVA; F(0.048) = 0.0953, p = 0.05; F (0.695) =
0.0502, p = 0.05); F (0.702) = 0.499, p = 0.05); (F (0.455)063®B, p = 0.05). Additionally,

Fig. 3.7 further depicts the correlation between the estimated gully volumes and
environmental factors (i.e. slope, percent vegetation cover, TWI and SPI). The estimated
gully volumes had weak correlations with slope (R2 = 0.02), percent vegetation cover (R2 =
0.01) and SP(R2 = 0.02) respectively. TWI showed a slightly higher positive correlation
(R2 = 0.11) as compared to the other variables.
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Fig. 3. 7: Relationship between the estimated gully volumé) (amd a) slope; b) percent

vegetatiorcover; ¢) TWI and d) SPI.

3.5.Discussion

The recent proliferation of gully erosion research and advances in remote sensing
technologies have facilitated in evaluating cheaper methods to provide accurate and timely
spatial data for a better understandinglarid degradation at catchment scale. Accurate
identification of areas affected by gully erosion is paramount for effective soil and water
resource management strategies. The current study sought to i) explore the feasibility of the
recently launched Sen&l2 MSI sensor in discriminating and mapping the spatial
distribution and extent of gully erosion in a communal grazing landscape and ii) determine
the environmental variables that could possibly explain the spatial variation of the gully
locations and @lumes. The results of this study showed the ability of the niawiyched
Sentinel2 MSI in detecting and mapping individual gullies with an overall classification
accuracy of 77%. Standard spectral bands of the SegtinEl sensor were used to

accuratéy discriminate gullies from other land cover types.
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The observed performance of the Senth@lISI in the overall classification is mainly
attributed to the presence of more spectral bands, improving the spectral separability of
gullies (e.g. Sepuru andube 2018). In this study, all 10 spectral bands wienend to be
valuable in providing information on spectral separability between gulliesotred land

cover types. This observation indicates the advantage of higher spectral resolution offered by
Sentinel2 for land cover mapping. For instance, in a studySeypuru and Dube (2018)
Sertinel-2 MSI and Landsat 8 OLI were compared in discriminagngded surfaces from

other land cover types. The study found Sentth@®lSI bands located in the NIR (0.7185
0.900 &m), iOe.d7 8ebd geem)( Oa n6@@.83 O Re Ml . @85i ons tcC
optimal for discriminating degraded soils from other landecaypes. The study further
found that the lack of information of the red edge band in Landsat 8 OLI could possibly
explain the unsatisfactory results when compared to Ses2iNS|. The red edge bands have
been proven to improve classification accuradyere studies byKorhonen, Packalen and
Rautiainen (2017andForkuoret al, (2018)confirmed that the absence of red edge bands in
most multispectral sensors becomes a disadvantage for the potential mapping of Land
Use/land Cover.

The classification redts of the mapped gullies drew attention to the spectral complexity of
gullies and the distinction with its surroundings which often pose a challenge to the
classification techniquée.g. Kinget al, 2005; Servenay and Pra003; Vrieling et al,

2007; Torkashvand and Alipou2009) For instance, difficulties were faced when trying to
discriminate the gullies between natural river bed, gullies between landslides, gullies with
vegetation cover, gullies embedded in bare soil and other forms of erosioasssicket and

rill which might have resulted in mixed pixels, thereby reducing classification accuracy. The
low spectral reflectance of the gullies in the visible regions could possibly be attributed to the
presence of vegetation within the gullies, simiijabetween gullies and river bed, as well as
gully depth. These findings are similar to thatLdferti et al (2009)who used supervised
classification to map eroded areas and found that there was low spectral separability from
RGB band combinations dfandsat imagery with high levels of misclassification between

river bed and eroded areas.

Furthermore, a study byaruvinga (2009)evealed that the classification process is affected
by spectral reflectance of vegetation which differs withivelength andalso by the plant
leaves pigment that strongly absorb red and blue wavelengths but reflect green wavelengths.

Moreover,since a significant portion of gullies is bare soil, the low spectral reflectance can
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be attributed to moisture content, organic matmmtent, texture, structure and iron oxide
content(Aggarwal 2004; Vrielinget al, 2005) as well as the shadow factor caused by the
gully depth and the irregular surface, trapping incoming light thereby reducing reflectance
(Metternicht and Zinck1998) Nonetheless, the SVM algorithm proved to be a good method
for discriminating gullies from other land cover types in the study area despite challenges of

pixel mixing and given the size of the gullies.

The results of this study have further showattgully development varies with different
environmental factors (i.e. slope, vegetation cover, TWI and SPI). Although no statistically
significant differences were found between gully volumes (i.e. soil loss) for different the
environmental variables, tiend is observable. Studies around the world report that gully
erosion mainly occurs on steep slopes; however the results of this study indicate that gullies
with the associated high soil loss occur on gentle slopes. These findings are supported by
Kakemlto et al (2009) Le Roux and Sumner (20%12Yanjoro et al (2012)and Seutloaliet

al. (2016)who also found that gullies in South Africa mainly occur on gentle slopes of less
than 10°. This was attributed to the concentration of overland flow on genjessl
Although this study did not assess the nature of soils, another plausible reason for gully
initiation occurring on gentle slopes could be the dispersive nature of the soils in the area. It
is highly likely that gully initiation is influenced by dupisoils. The study by Sonnovet al

(2005) confirmed that gully initiation in Okhombe is caused by strong textural breaks at
around 20 cm depth with an increase in clay of 10 per cent which result in soil pipes and
tunnels. Sonnovel@t al (2005) obsemd many signs of subsurface water seepage in the
gully sidewalls at 20cm depth and concluded that soil piping is likely the cause of gully
initiation in the study area.

Moreover, studies have reported the interdependence of land use change and lowivegetat
cover as drivers of gully developmefet.g. Kakembo and Rowntre2003;Valentin et al,
2005;Boardman and Foste2008) This problem is predominant in South African communal
landscapes owing to historical environmental and political neglect. Thitsre$ this study
confirm this trend and indicate that the occurrence of gullies with the associated high soil loss
is attributed to low vegetation cover (e.g. Le Roux and Sun2@dr2; Marakanye2016).
Livestock grazing is a major land use in the stadya and degraded grasslands and cattle
pathways were observed along lowgérpeduring field data collectiorDegraded grasslands

are characterised by areas with disturbed soils, possibly due to overgrazing and trampling

effects as witnessed in other parts of South Africa (e.g. Kakembo and Rqv2@0&e Le
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Roux and Sumner, 2012). A study bagmeneet al (2006)found that gully erosion favours

lower slopes with low vegetation cover as they are more accessible to livestock and human
disturbances than steep slopes. However, despite the noticeable trend between gully
occurrence and the surrounding vegetation cower,results of the study indicate a poor
correlation between soil loss and vegetation cover. While some studies generally find positive
relationship between soil loss and low vegetation cover, this observation could suggest that
the role of vegetation cowés masked as the estimated soil loss was measuredpiresent

day gully volumes.

Gullies in the study area were observed along drainage lines which were formed in a network
of gullies extending upslope. TWI and SPI are associated with upslope ctingribrea and

these areas are characterised by a convergence zone where planform curvature is concave
thereby initiating gullies, due to the increased runoff volume downglbjathis 2007,
Marakanye and Sumne2017) The results of this study indicateaththe occurrence of
gullies and hence higher soil loss to favour areas with high TWI values mainly on gentle
slopes. This is caused by the high moisture content and thus the soils become too weak to
hold togetherlLe Roux and Sumnef012) The results ofhis study are supported by the
studies ofKakemboet al (2009)and Kheir et al (2007)who reported that gullies mainly

occur on gentle slopes where the upslope contributing area is high and is associated with high
TWI values. For instance, Kheet al (2007) found that gully initiation predominately
occurred in areas with high TWI values (>0.4). This represents zones of saturation with high
runoff along drainage paths where critical drainage areas are high and slope is low. Likewise,
the results of ta SPI in this study are consistent with those of Kakeetbal (2009) and
Mararakanye and Sumner (202who found high SPI values to be associated with gully

initiation, due to the high energy potential available to transport sediments.

3.6.Conclusion

In this study, the potential of Sentir2IMSI in mapping the spatial distribution of gullies in
Okhombe, Drakensberg, South Africa was assessed. The findings of this study have shown
that the freely and readily available data offered by Ser#ndBl is efective in providing
accurate information on the spatial distribution of gullies, achieving an overall classification
accuracy of 77%. The study further showed that gully erosion varies with different
environmental variables. Although the were no significhfierences between the estimated
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gully volumes and environmental variables, the study found that gully erosion with the
associated soil loss favours gentle slopes contrary to the argument that steep slopes favour
gully erosion around the world. Additialty, it was also found that low vegetation, areas
with high TWI and SPI values favour gully erosion as this is where drainage lines converge
and surface runoff is increased. Overall, the findings of this study should inform land
managers and policy makeo$ the areas in need of rehabilitation and management. Future
research should, therefore, aim to use SenfinBISI as it provides a great potential for
mapping and monitoring gully erosion at regional scale. The freely and readily available data
makes itan ideal alternative for mapping soil erosion in the resource constrain€&hbkaban

Africa for accurate mapping of soil erosion for monitoring and providing remedies of
environmental problems (Sepuru and DuB@18). Future studies should also inveggga
other possible environmental variables that could lead to gully development as gully erosion

is a complex phenomenon influenced by various environmental variables.

47



CHAPTER FOUR
Objectives reviewed and Conclusion

4 .1.Introduction

The primary focus of this research was to assess remote sensing applications for detecting
and mapping the spatial distribution of gully erosion in a communal landscape of Okhombe
Valley, Drakensberg, South Africa. In this chapter, the aim and objeqiresented in
Chapter 1 are reviewed against findings. Furthermore, the chapter also highlights the major

conclusions and recommends for potential prospects for soil erosion research.

4.2.Reviewing objectives

4.2.1. Reviewing the progress of remote sensing users wagabe for soil erosion

monitoring

Although remotesensing has made great progress in soil erosion monitovielgthe years,
existing information on the usage and users of remote seissimgprly documented. This
literature review therefore evaluatee thisage and the users of remote sensing by focusing on
three aspects of the material: publication details, geographic information and data usage. The
findings of the study show a significant increase in the number of publications of remote
sensing for soilerosion research and further revealed that remote sensing is becoming
accepted by a growing number of scientific disciplines, indicating the effectiveness of remote
sensing as a tool for soil erosion monitoring. Furthermore, literature also shows thétlymaj

of studies are conducted in seamid regions such as Spain, South Africa and India.
However, despite the considerable increase in publications, majority of the studies were
conducted by authors affiliated with European institutions, while theibation of African

lead authors is low. This possibly indicates an imbalance of knowledge transfer and
technologies from developed cotes, drawing attention to the challenges faced by resource
constrained regions. Notwithstanding the aforementionedtcgimings, remote sensing
advancements have allowed for timely and continuous monitoring of soil erosion at larger
scales. Landsat is the most commonly used remote sensing system and although its spatial
resolution is a limitation, its multispectral bandsdaarchival data make it ideal for soil
erosion detection and monitoring, overcoming the challenges presented by high resolution
satellites such as high acquisition costs and limited spectral resolution. The review shows the

need for more collaborative search with developing regions and emphasises the need to
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evaluate the potential of the new generation of satellites in detecting soil erosion features,

especially for resource constrained regions.

4.2.2. Assessing the potential of Senti@geMSI sensor in deténg and mapping the spatial

distribution of gullies

Gullies have been reported to be significant sediment sources and pose a threat for catchment
water resource management. For effective implementation of soil and water resource
conservation, the assessnt and monitoring of gully erosion is essential. Freely available
satellite data have offered a cheaper and accurate alternative for regional soil erosion
assessment. Although, high resolution sensors have been effective in detecting small erosion
featues, these sensors are restricted to a smaller scale, and have high acquisition costs and
thus represent challenges for resotronstrained regions. This study therefore evaluated the
potential of the freely available Sentif2IMSI sensor in detecting amdapping the spatial
distribution of gullies. Despite the spectral complexities of gullies, the findings of the study
indicated that the performance of SentiReMSI sensor can be attributed to the sensor
characteristics, achieving an overall classifmatiaccuracy of 77%. The SentireIMSI

sensor several bands and more specifically, the red edge bands presented improved mapping
accuracy capabilities that other multispectral satellite sensors lack which boosted the
sensitivity of the sensor, combined lwithe robust capabilities of the Support Vector
Machine classifier. The study further investigated environmental variables (i.e. slope,
vegetation cover, TWI and SPI) that could possibly have an influence on the initiation and
development of the identifiegullies. The findings of the study indicate that TWI had the
most influence on gully initiation and volume of soil loss while slope, vegetation cover and
SPI had weak influence on the volume of soil loss despite an observable trend of influence.
Overall, the findings of the study demonstrate the importance of using the free and readily
available multispectral Sentingl MSI data in conjunction with robust ngarametric

Support Vector Machine classifier in mapping the spatial distribution of gullies.effumtine,

these results reiterated the importance of investigating environmental variables in
understanding the imitation and development of gullies which facilitates in decision making

and implementation of control measures.
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4.3.Conclusion

Satellite datshas become an important and effective tool in providing information on the
spatial distribution of gully erosion. In this study, SentReSI sensor was used to assess
and map the spatial distribution of gullies in a communal landscape combined withsa ro
semiautomatic Support Vector Machine classifier. Given the spectral complexity of gullies,
this study has demonstrated the effectiveness of the freely available multispectral sensor for
mapping the spatial distribution of gullies. The performanceeritinel2 can be attributed to

its multispectral resolution particularly the redge bands which gave room for mepectral
separability. Sentin 6s 5 day tempor al resolution furth
continuous monitoring of gully eston at regional scale especially in resowzoastrained
regions. Moreover, the investigated environmental variables were found to be useful in
understanding of the contributing factors for the spatial distribution of gullies in the study
area. The impleentation of erosion control measures and rehabilitation requires an
understanding of the underlying contribution factors therefore, the investigated environmental
factors in this study, will be beneficial for land managers to for the prioritization afotont

and rehabilitation measures.

4.4.Limitations and recommendations

1 Although the current study successfully mapped the spatial distribution of gullies, due
to the spatial resolution of the Senti#2elMSI sensor some gullies could not be
detected by the sear as they were smaller than 10m. Additionally, future studies
should investigate combining Sentiieland Sentine? sensors for improving
mapping accuracy as SAR data is very sensitive to soil roughness and moisture and
could potentially increase thetdetion of erosion features.

1 The spectral complexity of gullies antheir surroundings also proved to be
challenging, resulting in mixed pixeldue to the similarity of spectral signatures of
unvegetated and vegetated areas thus affecting the classifigarocess. Future
studies should explore incorporating vegetation indices for improving accuracy.

1 Although the environmental variables information proved to be beneficial in
providing an understanding of the spatial distribution of gullies, futudkestishould
incorporate other topography variables that could improve the understanding the

influence of topography on the radiation of features (TaruyiB@@9). For example,
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information on soil moisture and other properties would be beneficial ingimenty
data process by identifying the most informative training samples (Mathur and Foody,
2008).
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