Moodley, Deshendran.Rens, Gavin Brian.Adewumi, Aderemi Oluyinka.Adeleke, Jude Adekunle.2018-10-152018-10-1520172017http://hdl.handle.net/10413/15647Doctor of Philosophy in Computer Science, University of KwaZulu-Natal, Westville, 2017.Observing and monitoring of the natural and built environments is crucial for main- taining and preserving human life. Environmental monitoring applications typically incorporate some sensor technology to continually observe specific features of inter- est in the physical environment and transmitting data emanating from these sensors to a computing system for analysis. Semantic Sensor Web technology supports se- mantic enrichment of sensor data and provides expressive analytic techniques for data fusion, situation detection and situation analysis. Despite the promising successes of the Semantic Sensor Web technology, current Semantic Sensor Web frameworks are typically focused at developing applications for detecting and reacting to situations detected from current or past observations. While these reactive applications provide a quick response to detected situations to minimize adverse effects, they are limited when it comes to anticipating future adverse situations and determining proactive control actions to prevent or mitigate these situations. Most current Semantic Sensor Web frameworks lack two essential mechanisms required to achieve proactive control, namely, mechanisms for antici- pating the future and coherent mechanisms for consistent decision processing and planning. Designing and developing proactive monitoring and control Semantic Sensor Web applications is challenging. It requires incorporating and integrating different tech- niques for supporting situation detection, situation prediction, decision making and planning in a coherent framework. This research proposes a coherent Semantic Sen- sor Web framework for proactive monitoring and control. It incorporates ontology to facilitate situation detection from streaming sensor observations, statistical ma- chine learning for situation prediction and Markov Decision Processes for decision making and planning. The efficacy and use of the framework is evaluated through the development of two different prototype applications. The first application is for proactive monitoring and control of indoor air quality to avoid poor air quality situations. The second is for proactive monitoring and control of electricity usage in blocks of residential houses to prevent strain on the national grid. These appli- cations show the effectiveness of the proposed framework for developing Semantic Sensor Web applications that proactively avert unwanted environmental situations before they occur.en-ZASensor web.Environmental monitoring.Markov process.Machine learning.A semantic sensor web framework for proactive environmental monitoring and control.Thesis