Munyai, Thinandavha Caswell.Foord, Stefan Hendrik.Mkhungo, S'phesihle.2024-08-212024-08-2120222022https://hdl.handle.net/10413/23240Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.Land-use change is a major threat to global biodiversity. The rapid growth of the human population has resulted in increased landscape modifications and habitat loss. The impact includes reduced species diversity, ecosystem instability, altered species interactions and altered food webs. Land-use has increased drastically in mountainous areas, mainly through agriculture and human settlements. Mountains support approximately one-third of the terrestrial diversity and host half of the global biodiversity hotspots. The high variation in habitat structure and microclimates, within short distances allows mountains to support high species diversity. This study aimed to investigate the impact of increasing land-use change, elevation, and season on selected arthropod diversity, and community composition along the Western Soutpansberg mountain range in Limpopo province of South Africa. The objectives of the study were to determine spider and ant diversity patterns along the mountain. Secondly, to determine the role of land-use, elevation, and season in structuring the diversity of both taxa. Lastly, to compare the composition of spider and ant assemblages across the various sites and identify indicator species for monitoring land-use change in the study area. A standardized pitfall trap survey was used to sample ants and spiders along an elevational transect that stretches across the southern and northern aspects of the mountain. The elevational transect (800 m a. s. l – 1700 m a. s. l) was made up of 18 sites, some of which have undergone human transformation mainly through agriculture and settlements. Sampling took place during the dry season (September 2019) and wet season (January 2020). Generalized linear mixed models with Poisson error distributions were used to determine the impact of land-use, elevation, season on spider and ant species richness and activity. Community composition was analyzed using NMDS (non-metric multidimensional scaling), PERMANOVA and ANOSIM analyses. Land-use had a positive effect on spider and ant diversity as the transformed sites had significantly higher species richness and activity for both taxa, particularly the agricultural sites and human settlement. However, species evenness was significantly lower in the transformed sites and higher in the natural sites. Species richness and activities for both taxa were highest at the low elevations. Spider diversity was higher in the dry season, but ants peaked in the wet season. Spider and ant assemblages were highly distinct between the land-use types and elevations. Ant assemblages remained similar between the seasons, while spider composition was slightly different across the two seasons. Spider and ant assemblages in the transformed sites were highly uneven which indicates a large disproportion in the number of individuals within the species found in transformed sites. It also indicates high species dominance, which is driven by the disturbance-tolerant species. One spider species, Copa flavoplumosa, was identified as an indicator species for the Eucalyptus plantations. All land-use types had an ant indicator species, which was either Monomorium damarense and/or Lepisiota sp.02 (spinosior gp.). High species dominance displayed by spider and ant assemblages in the modified habitats might have adverse effects on native and endemic communities. Because dominant and disturbance-tolerant species are likely to increase if more natural land is converted. This study was the first to investigate the impact of land-use changes at the Soutpansberg mountain range. The results indicate that landuse change had a positive effect on arthropod species richness and activity. However, species evenness was negatively affected. Although the land-use changes at Soutpansberg can increase the diversity of certain species, the potential to sustain the populations over the long term is unknown. Therefore, further assessments and monitoring of diversity in the region is recommended to understand the long-term impact of land-use and for informed decision making and strategy in conservation efforts.enLand-use change.Biodiversity.Arthropod diversity.Elevation.Habitat transformation.The impact of land-use change on arthropod diversity along an arid elevational gradient.Thesis