Horticultural Science
Permanent URI for this communityhttps://hdl.handle.net/10413/6545
Browse
Browsing Horticultural Science by Title
Now showing 1 - 20 of 95
- Results Per Page
- Sort Options
Item Abscisic acid metabolism in a Citrus Sinensis flavedo enzyme system.(1998) Kalala, Maloji.; Cowan, Ashton Keith.This research project had its major objective the unequivocal demonstration that the plant growth regulator, abscisic acid could be produced in vitro from labelled precursors. In addition, this project was intended to demonstrate the metabolic relationship between β, β-xanthophyll turnover and ABA biosynthesis. Finally attempts were made to isolate the enzyme responsible for the cleavage of the immediate xanthophyll precursor to ABA, 9'-cis-neoxanthin. This was achieved using a cell-free system developed from Citrus flavedo which demonstrated formation of xanthoxal and abscisic acid from zeaxanthin, antheraxanthin, violaxanthin and neoxanthin. In addition product abscisic acid was shown to incorporate label from mevalonic acid lactone establishing the terpenoid origin of this plant growth regulator. 9'-cis-neoxanthin cleavage enzyme was present in the Citrus cell-free system, partially purified, and separated from lipoxygenase activity and shown to convert 9'-cis-neoxanthin into xanthoxal and related but unidentified neutral products.Item Antioxidants composition of moringa (moringa oleifera lam) in different plant organs.(2015) Mohammed, Fatima Abdelkarim Abdelrahman.; Tesfay, Samson Zeray.Moringa oleifera Lam. is a versatile plant with various benefits; different parts of the plant have different pharmacological activity such as flavonoid, alkaloids, phenol, and carotenoids. The aim of the seed study was to investigate phytochemicals composition change and their utilization during seed and seedling germination. Seeds were germinated using three different temperature regimes (30/20 °C, 25/15 °C and 20/10 °C). Spectrophotometric determination of proline and phenols was carried out, while sugars were analyzed using HPLC-RID. The data were collected and analyzed using statistical software GenStat 14.1. Results of seed showed significant differences on speed of seed germination at temperature of 30/20°C followed by 25/15°C and 20/10°C respectively. Seed carbohydrates composition changes were observed with germination hours sucrose concentrations peaked within 24h (16 mg/g DW) and the same sugar showed sharp decrease for 96h (6.4 mg/g DW). Glucose and fructose concentrations also increased for 96h (2-6 mg/g DW). Also temperature had significantly influenced the biosynthesis and accumulation of biochemical compounds in the seeds especially 30/20°C. Temperature 30/20°C, increased seed phenols and proline concentration. Phenols and proline started to accumulate at 72h, after seed germination presumed within 48h. Results of leaves showed that Temperature also had significant effect on phenols the proline concentration particularly, 35/18°C, followed by 30/15°C, 25/12°C. The antioxidant levels of post germination phase was investigated, the result showed significant differences in antioxidant concentrations and sugar distribution in various parts of Moringa seedling. The leaf was recorded the highest antioxidant concentration (1.7 mg g-1). Moringa leaf also recorded the highest total phenols. The highest sugar concentration was found in root (258.9 mg g-1), and stem (245.72mg g-1) followed by root and seed. The highest concentration of total crude protein (110.4mg g-1) and vitamin E (28.57 μg g-1) was found in seed. The carotenoids concentration was the highest in the root (29 mg g-1). The result also showed different nutrients at various concentrations on different parts of Moringa tree. High phosphorous accumulated in leaf and seed; Potassium accumulation was found in root, stem, and seed coat. It is concluded that temperature treatments of Moringa seed and leaves resulted in significant differences in the rate of germination and biochemical compounds. Furthermore, the present study showed that Temperature plays an important role in germination seed and development of M. oleifera and antioxidants, phenolic, proline and carbohydrates contents. Further research on the effect of temperature on germination of M. oleifera and biochemical compound is therefore recommended.Item Aspects of avocado fruit growth and development : towards understanding the 'Hass' small fruit syndrome.(1997) Moore-Gordon, Clive Scott.; Cowan, Ashton Keith.; Wolstenholme, B. Nigel.Persea americana Mill. cv. Hass is predisposed towards producing a high proportion of undersized fruit. Reasons for phenotypically small 'Hass' fruit are obscure, but it does appear to be aggravated by adverse growing conditions. A detailed study of the metabolic control of avocado fruit growth was carried out to determine the underlying physiological reasons for the appearance of the 'Hass' small fruit phenotype. Furthermore, the application of a mulch was evaluated as a possible management strategy to increase 'Hass' fruit size. Anatomical and morphological comparisons were made between normal and small 'Hass' fruit in an attempt to characterise the 'Hass' small fruit phenotype. Small fruit always contained a degenerate seed coat and fruit size was closely correlated with seed size. Kinetic analysis of changes in cell number and size during fruit development revealed that growth was limited by cell number in phenotypically small fruit. Analysis of endogenous isopentenyladenine (iP) and abscisic acid (ABA) revealed that ABA concentration was negatively correlated with size of similarly aged fruit. Calculation of the iP:ABA ratio showed a linear relationship with increasing fruit size. Qualitative and quantitative differences in mesocarp sterol composition were observed between normal and phenotypically small fruit. Both the normal and small-fruit phenotypes were used to probe the interaction between end-products of isoprenoid biosynthesis and activity of mesocarp 3-hydroxy-3- methylglutaryl coenzyme A reductase (HMGR) in the metabolic control of avocado fruit growth. In phenotypically small fruit, a 70% reduction in microsomal HMGR activity was associated with a substantial rise in mesocarp ABA concentration at all stages of development. Application of mevastatin, a competitive inhibitor of HMGR, via the pedicel reduced growth of phenotypically normal fruit and increased mesocarp ABA concentration. These effects were reversed by co-treatment of fruit with either mevalonate, iP or the synthetic cytokinin (CK) analogue, N-(2-chloro-4-pyridyl)-N-phenylurea, but were unaffected by gibberellic acid. Likewise, in vivo application of ABA reduced fruit growth and HMGR activity, and accelerated abscission at all stages of development, effects that were reversed by co-treatment with iP. In contrast, the effect of sterols on mevastatin-induced inhibition of fruit growth was temporally different. Application of either stigmasterol or cholesterol during phase I caused a decline in growth, accelerated fruit abscission and exacerbated the effects of mevastatin whereas during phase II and III, stigmasterol reversed inhibition of fruit growth. Stigmasterol did not however, reverse the inhibitory effect of mevastatin on HMGR activity - presumably as a result of mevastatin-induced increased endogenous ABA. It was therefore concluded that ABA accumulation downregulates mesocarp HMGR activity and that in situ CK biosynthesis modulates the effect of ABA during phase I of fruit growth whereas, both CK and sterols perform this function during the later stages to sustain the developmental programme. The effect of an altered CK:ABA ratio on solute allocation, cell-to-cell communication and plasmodesmatal structure was investigated in 'Hass' avocado fruits to determine the relationship between a change in hormone balance and expression of phenotypically small fruit. Exogenous application of ABA induced early seed coat senescence and retarded fruit growth, and these effects were negated in fruit co-injected with ABA and iP. The underlying physiological mechanisms associated with ABA-induced retardation of 'Hass' avocado fruit growth included: diminution of mesocarp and seed coat plasmodesmatal branching; gating of mesocarp and seed coat plasmodesmata by deposition of apparently proteinaceous material in the neck region; abolishment of the electrochemical gradient between mesocarp and seed coat parenchyma; and arrest of cell-to-cell chemical communication. In addition, solute allocation in ABA-treated fruit resembled closely that of phenotypically small fruit confirming that elevated ABA concentration had contributed to the decline in postphloem symplastic continuity. In a field trial in the KwaZulu-Natal midlands, root growth was substantially increased throughout three seasons by the application of a coarse composted pinebark mulch. Mulching resulted in a significant 6.6% increase in mean fruit mass, in spite of 14.7% more fruits per tree. The combined effect was a 22.6% increase in overall yield. Differences in productivity between treatments closely correlated to levels of bark carbohydrate reserves. Data collated during this study to suggest that mulching at least partly ameliorated tree stress included: a reduction in the incidence of premature seed coat senescence and pedicel ring-neck, both of which are considered to be advanced symptoms of the stress syndrome; a lowering of mean foliage temperatures; and a reduction in the degree of photoinhibition during the heat of the day.Item Aspects of improving cold hardiness of tomato (Lycopersicon esculentum) var. Rossol.(2004) Ghebretinsae, Amanuel Ghebrehiwet.; Bertling, Isa.; Bower, John Patrick.Tomatoes, particularly those of the determinate type, are one of the most popular vegetables in the East African country Eritrea. The crop is a source of income to small farm operators as well as commercial growers, and plays an important role in the nutritional supply of the population. Nonetheless, tomato production is limited during the cool season resulting - on the one hand - in a reduced nutritional supply during this period and - on the other hand - in an increased economic potential of the crop. Although performance of tomato plants under low temperature conditions is genetically influenced, prevailing temperatures as well as management practices also affect growth and development. In order to understand the long-term effects of a cold spell on tomato plants, experiments were carried out to determine the effect of a cold spell on plant vegetative and reproductive characteristics of determinate type ''Rossol'' tomatoes. Plants were moved for two to five subsequent nights from a tunnel to a cold room (4°C). The fruit set stage of "Rossol" tomatoes was found to be most sensitive to cold temperature, followed by the flowering stage. The juvenile stage was, of all the developmental stages examined, the least sensitive to cold. Furthermore, subjecting tomato plants for five subsequent nights (cumulative 60hrs) to 4°C resulted in a significant retardation of growth and development and in yield reduction. However, tomatoes exposed to a two-night cold spell during either the vegetative or the flowering stage recovered quickly and, ultimately, performed well. Furthermore, trials were carried out under tunnel and field conditions to investigate the impact of potassium application as well as mulching on cold tolerance of "Rossol" tomatoes. Under low temperature conditions, increasing the level of potassium to up to 150% of the recommended level (157.5kg*ha-1 ) resulted in quicker ontogenetic development and increased yields significantly. On the other hand, supplying tomato plants with 50% and 200% of the recommended potassium level reduced growth, delayed development and decreased yield and yield attributes. Using black plastic mulch also increased plant growth and speeded up plant development. Maize stover mulch, however, retarded plant growth and development so that certain stages ofthe phenological cycle were reached later than by non-mulched plants. However, yield and yield attributes increased significantly using stover mulch. Therefore, the management practises potassium fertilization and mulching provide excellent tools to increase the tolerance of tomato plants to low temperature conditions. Furthermore, organic mulches can be used to delay crop development and time maturity to achieve high retail process of the commodity in the cool winter months.Item Assessing gaseous ozone and edible coatings as postharvest treatments for mango (mangifera indica L.) fruit.(2021) Bambalele, Nonjabulo Lynne.; Mditshwa, Asanda.; Magwaza, Lembe Samukelo.; Tesfay, Samson Zeray.This research examines the potential of gaseous ozone and edible coatings in preserving postharvest quality and extending the shelf-life of ‘Keitt’ mango fruit. A critical review of the literature focused on the recent postharvest technologies used to preserve the quality of mango fruit. The prospects of using non-chemical postharvest treatments such as gaseous ozone and edible coatings were also reviewed. A screening study was conducted to determine the optimum ozone (O3) application time for effectively maintaining fruit quality and extending shelf-life. Mango fruit were intermittently exposed to gaseous ozone for twelve, twenty-four, thirty-six, or forty-eight hours, and the control fruit were untreated. Fruit were stored at 10℃ for twenty-one days and seven days shelf-life at ambient temperature. The findings showed that the O3 treatment should be applied at the pre-climacteric stage to achieve optimum results. Ozone treatment for 24 or 36 hours effectively maintained firmness and carotenoids content, delayed color changes, decay incidence, and mass loss. Therefore, an ozone exposure time of 24 and 36 hours was adopted for the study. These exposure times were incorporated into edible coatings (moringa leaf extract and carboxymethyl cellulose) for further investigation. The study on the effect of gaseous O3 incorporated with edible coatings on sensory attributes and physicochemical parameters showed that EC and EC + O3 (36 h) were more effective in delaying the ripening process and maintaining the postharvest quality. Overall, consumers preferred the fruit coated with EC due to its attractive color, smell, and sweetness. The study on the postharvest effect of gaseous O3 and EC on antioxidants and the biochemical properties of mango fruit is discussed in Chapter Five. The findings of this study demonstrated that the treatment combination of EC and gaseous O3 (36 h) effectively maintained antioxidants, membrane integrity and enhanced the quality of mango fruit during storage. The effect of gaseous O3 and EC on postharvest diseases of mango fruit, specifically Colletotrichum gloeosporioides (anthracnose) and Lasiodiplodia theobromae (stem-end rot), was also investigated. This study revealed that EC + O3 (24 h) effectively controlled stem-end rot and anthracnose in mango fruit. The treatment combination of EC and O3 (36 h) reduced the mycelial growth and disease incidence of Lasiodiplodia theobromae and Colletotrichum gloeosporioides. The study of EC and O3 in the volatile compounds of mango fruit is discussed in Chapter Seven. The fruit treated with EC had a high content of volatile compounds compared to other treatments. The treatment combination of EC + O3 (24 h) was not effective in maintaining the volatile compounds of mango fruit during storage. The findings of the current study suggest that EC + O3 (36 h) can be used as postharvest treatment of mango fruit. Additional research is required to gain more insights in understanding the EC+ O3 mode of action in maintaining volatile compounds and controlling mango postharvest diseases.Item Avocado seed physiology aspects.(2021) Abdalla, Mamoun Ahmed Arabi.; Bertling, Isa.The avocado seeds/seedling is needed as rootstock for other economic trees and loss of tress stand in orchids after establishment is of great commercial loss in avocado orchids around the worldwide and South Africa. The aim of this study was to evaluate and compare avocado seeds development of various seeds ages by investigating seeds germination percentage over three generations, as there is little information on avocado seeds growth and development, despite the importance of the seeds in avocado propagation. Seed harvesting was carried out over various developmental stages, from early fruit development to two-year-old seeds (Generation 1, 24 to 29 months after full bloom MAFB). Seed from current season (Generation 2, 12 to 17 MAFB) and newest seeds (Generation 3, 0 to 5 MAFB) of two cultivars (‘Hass’ and ‘Fuerte’) was analysed. Seed of three generations were analysed: ‘Hass’ Generation 1seed (seed from the oldest, commercially over-mature, fruit full bloom in July/ August 2017); Generation 2 (full bloom in July/ August 2018) and Generation 3 (full bloom in July/August 2019). Similarly, ‘Fuerte’ fruit of three generations were compared: from the avocado fruit, (Generation 1, full bloom in June/July 2017), to Generation 2 (full bloom in June/July 2018) to Generation 3 (full bloom in June/July 2019). Seed were extracted from fruit to determine seed parameters, such as germination percentage, seed viability, seed moisture content and seed respiration rate. Further, seed physiological parameters, such as cotyledonal sugars and starch concentrations, seed coat phenolic compound concentrations and polyphenol oxidase (PPO) concentrations were determined. Anatomical features of the seed coat, such as seed coat thickness and seed coat ultrastructure were also observed. In both cultivars, the germination percentage was higher in Generation 2, 12 to 18 MAFB), than in Generation 1, 24 to 29 MAFB) seed from June to September. From October to November Generation 3 (0 to 5 MAFB) had a higher germination percentage than Generation 2. Seed viability was higher in Generation 2 of both cultivars and lower for the Generation 1; similar results were found for the germination percentage, with seed from Generation 2 having a higher germination rate than seed from the Generation 1. Seed viability differed significantly between seed age, and the interaction between generations and months was statistically significant (P ˂ 0.001). The seed collected from fruit of the Generation 2 of both cultivars had a slightly higher moisture content and a higher germination percentage than the Generation 1. Seed moisture content ranged between 54.5 and 62.1 % in ‘Hass’ (Generation 2 seed age 12 to 15 MAFB), harvested in June to September, while the Generation 1 seed age 23 MAFB) seed had a lower moisture percentage (39.2%) in June. ‘Hass’ seed of (Generation 3 seed age 4 MAFB) harvested from October to November had a higher seed moisture than seed from (Generation 2,15 MAFB). ‘Fuerte’ seed showed a similar pattern with the highest moisture percentage (60.5%) in July and the lowest in June (33.2%). (Generation 2’ seed age 13MAFB seed had higher moisture percentages than Generation 1 from June to September, and (Generation 3, 3 MAFB) had higher moisture percentage than Generation 2. Seeds respiration rate, determined following fruit harvest, decreased over the time. Generally, Generation 2 respired more than the Generation 1, from June to September. From October to November 2019 the Generation 3 respired more than Generation 2 seed. The respiration rate of seed extracted from June to September 2018 Generation 2 declined rapidly. The Generation 3 (collected October to November 2019, seed age 4 to 5 MAFB) were characterized by a higher respiration rate than seed of Generation 2, seed age 16 to 17 MAFB; therefore, younger seeds generations respired more than older ones. It is concluded that the contribution of seeds respiration rate to avocado whole fruit respiration decreases with development over the time. The ability of the avocado seed to germinate quickly and produce seedlings is dependent on the carbohydrate reserves in the cotyledons, which make up the bulk of the avocado seed. In seed coats of both cultivars, phenolic concentrations inhibited seed germination of Generation 1, probably due to the higher level of phenolic concentrations in older seed coats. Seed coats generally contained high amounts of phenolics (2.3 mg GAE*g-1 DM for ‘Hass’ and 2.02 mg GAE* g-1 DM for ‘Fuerte’). Seed extracted from Generation 1 fruit in June to September 2018, had a higher amount of seed coat phenolics than those from Generation 2 fruit. In fruit from October to November 2019 the Generation 3 seed coat had lower phenolic concentrations than Generation 2 seed coats, confirming that older seed coats contain more phenolics than younger seed coats. Germination percentages of Generation 3 seed were higher than those of Generation 2 seed. The high phenolic concentration in the seed coats seems to be aligned with the seed turning dark brown upon maturation, probably due to sufficient oxygen present in the fruit to allow phenolic oxidation of the seed coat; the seed coat becoming entirely brown and very thin, could, therefore, be used as an indication that the fruit has reached physiological maturity. Seed at this stage of maturation are, however, characterized by a low germination percentage, possibly due to the seed coat phenolic compounds interfering with germination. This is supported by the positive correlation between lower seed coat phenolic compound concentration and higher seed germination rate for both cultivars (r = 0.11, P ˂ 0.61). Seed coat thickness of Generation 1 (24 to 28 MAFB) and Generation 2 (12 to 16 MAFB) ‘Hass’ seed coats differed, with the younger seed generation displaying thicker seed coats than the older ones (0.51 versus 0.11 mm, respectively). In ‘Fuerte’, in June and July older seed coats Generation 1, 24 to 25 MAFB, respectively) were thicker than Generation 2 (12 to 13 MAFB) (0.46 and 0.15 mm, respectively. There was, however, negative relationship between seed coat thickness and germination percentage (r = -0.11). Polyphenol oxidase (PPO) and phenolic concentrations of avocado seed coats were also investigated in the seed coat of Generation 1and Generation 2 ‘Hass’ and ‘Fuerte’ seed. Polyphenol oxidase (PPO) and phenolic concentrations of the avocado seed coats of the two avocado cultivars of Generation 1, 27 to 26 MAFB) and Generation 2, 15 to 14 MAFB) respectively, seed coats were investigated. During the colder (winter) season (June-August), Generation 1, fully mature ‘Hass’ seed coats showed higher polyphenol oxidase (PPO) concentrations than seed coats from the Generation 2. From October to November the Generation 3 seed coat also had a lower PPO concentration than those of Generation 2. Generation 2 ‘Hass’ seed coats had relatively low PPO concentrations in June /July, when fruit were 12 to 14 MAFB, but PPO concentrations increased thereafter and remained at a higher-level until October/ November. Generation 1 ‘Fuerte’ seed coat had a similar PPO concentration during all investigated months. Phenolic compounds were present in seed coats of both avocado cultivars, with seed coats of older seeds containing a much higher phenolic concentrations than the seed coats of the newer generation. The seed (cotyledons plus embryo) sugar profile was dominated by the C7 sugar perseitol, followed by the C6 sugar, sucrose, while mannoheptulose and glucose were present in very small amounts. Perseitol was present in in both cultivars with 14 months-old ‘Hass’ (September) cotyledons containing 9.8 mg*g-1 DM and 15-months-old ‘Fuerte (September) containing 10.3 mg*g-1 DM. Avocado cotyledons were found to also be a large starch source, probably providing carbohydrates for seed development and germination. The Generation 2, 14 to 15 MAFB) of ‘Fuerte’ and ‘Hass’ had a higher starch concentration than the Generation 1, 26 to 27 MAFB) and similarly, Generation 3, 4 to 5 MAFB, respectively, had higher starch concentration than Generation 2 for both cultivars, indicating the use of this carbohydrate reserve to sustain embryo development. The highest concentration of starch in ‘Hass’ seeds was detected in August as 88.8% of seed DM (Generation 2, seed age 13 MAFB), while for ‘Fuerte’ seed the highest starch concentration was in August at 90.5% of seed DM (Generation 2, 14 MAFB). Starch seems, therefore, more related to avocado seed development than to avocado fruit growth and development. Delaying fruit harvest to October (seed age 16 to 18 MAFB) allows seed to fully mature and to continue accumulating sugars and starch. To improve percentage and velocity of germination, seeds were soaked in various concentrations of aqueous moringa leaf extract (MLE, 0, 2.5, 5.0 and 7.5 % w/v) over different periods (0, 10, 30 or 120 minutes). Younger seed were stronger affected by the increasing MLE concentration. Soaking in 2.5% MLE tended to enhance the germination percentage more so than the other MLE concentrations. The lowest germination percentage was determined for seeds soaked in 7.5% MLE for 120 minutes, indicating that younger seed (from10 to 12 months after fruit set ‘Fuerte’ fruit harvested April to June) should be used as ‘nurse seed’. Overall, this study revealed that avocado seed germination and development do not coincide with the commercial fruit harvesting period, the avocado fruit needs 15 to 18 months to change from its flowering blooming period to a full harvest, and seed age12 MAFB can germinate for both cultivars. The study further confirmed perseitol as the dominant free storage sugar that assists in seed development, while starch is also an important energy provider for the developing embryo.Item Banana (Musa AAA; Cavendish sub-group) cultivar/density trials in three bioclimatic groups on the north coast of KwaZulu-Natal.(1997) Lagerwall, Gary Brian.; Wolstenholme, B. Nigel.The North Coast of KwaZulu-Natal is a relatively new banana production area, for which there is an absence of local norms, specifically for choice of cultivar and population density. Three cooperative split-plot banana cultivar/density trials were established in December 1991, January 1992 and February 1992 on farms at Eshowe, Nkwaleni and Mposa, respectively. These sites represent Phillips' (1973) Bioclimatic Groups 2,10 and 1 respectively, and have widely divergent climatic potential, ranging from cool, to warm, to hot subtropical. Each randomised trial block, 0.92 ha in extent, comprised five replications of five cultivar main plots, each of which was split into three density sub-plots. The five cultivars planted represent those registered at the time of planting, viz. 'Dwarf Cavendish', 'Williams', 'Grand Nain', 'Valery' and 'Chinese Cavendish'. Sub-plots were planted at 1 666, 2 105 and 2 500 plants ha(-1) and tissue culture plants were used to establish all three trials. The field trials were evaluated over three full cropping cycles and culminated in October 1996. Morphological differences such as pseudostem height and circumference, leaf length and width, number of functional leaves at flowering and harvest, as well as phenological differences such as monthly leaf emergence rates, emergence-to-harvest intervals and harvest cycles, were evaluated. The yield component data comprised measurements of bunch mass, number of hands per bunch and number, length and mass of fingers on the third hand. Productivity was expressed as tonnes per hectare per annum (t ha(-1) an(-1). Each cultivar and density treatment was evaluated independently. However, it was the evaluation of the cultivar/density interaction which formed the basis of the recommendations for the three different Bioclimatic Groups. At the relatively cool Eshowe site, 'Williams' proved to be the most productive cultivar (471 ha(-1) an(-1) over all densities. The highest production (49.8 t ha(-1) an(-1) was achieved from a density of 2 500 plants ha(-1), but due to lower costs per hectare, the intermediate density of 2 105 plants ha(-1) generated the highest gross margin. When the cultivar/density interaction was evaluated, the combination producing the highest gross margin was 'Williams' at 2 105 plants ha(-1). This substantiated the independent evaluations and is consequently the recommended combination for Bioclimatic Group 2. However, the faster cycling of 'Chinese Cavendish' could conceivably result in this cultivar outperforming 'Williams' in future ratoons. At the warmer Nkwaleni site, 'Grand Nain' (57.8 t ha(-1) an(-1) proved to be the most productive cultivar. The density of 2 500 plants ha(-1) was the most productive (64 t ha(-1) an(-1) and also generated the highest gross margin. However, the cultivar/density interaction indicated that 'Williams' at 2 500 plants ha(-1), was the highest producing combination yielding the highest gross margin, and is consequently the recommended combination for Bioclimatic Group 10. At the hot Mposa site, 'Chinese Cavendish' (54.21 ha(-1) an(-1) proved to be the most productive cultivar. The density of 2 500 plants ha(-1) outproduced (57.4 t ha(-1) an(-1) the lower densities and also generated the highest economic returns. However, when the cultivar/density interaction was evaluated, 'Chinese Cavendish' at the lower density of 2 105 plants ha(-1) realised the highest gross margin and is consequently the recommended combination for Bioclimatic Group 1.Item The biochemical basis of colour as an aesthetic quality in Citrus sinensis.(2001) Oberholster, Renate.; Cowan, Ashton Keith.The development of fruit colour in the sweet orange (Citrus sinensis) is a cultivar characteristic affected by climate and environment. Although external colour is not always an indication of internal quality or maturity, it is probably the most important factor determining consumer acceptance. In the present investigation, efforts were made to determine the biochemical basis of colour as an aesthetic quality in C. sinensis 'Navel' and 'Valencia'. Furthermore, the changes in pigment content and composition during the period of colour development were recorded. Finally, in an attempt to manipulate citrus colour, the effect of dehydrating agents (alcohols), plant hormones, micro-nutrients and low temperature on flavedo carotenoid content was determined. Saponification of the two major colour-imparting components resolved by thin layer chromatography, followed by reversed-phase high performance liquid chromatography revealed that the principal colour-imparting pigments in C. sinensis flavedo are the yellow-coloured xanthophyll 9-Z-violaxanthin and the red C(30) apocarotenoid β-citraurin. Both pigments occur in the flavedo in esterified form. Identification of the chromophores was based on co-chromatography and online spectral analysis. The colour quality of mature fruit was dependant on the content and relative amounts of 9-Z-violaxanthin and Pcitraurin. Quantitative results revealed that increased colour intensity of citrus flavedo was associated with a decline in the 9-Z-violaxanthin : β-citraurin ratio from greater than 50 to below 10, and an increase in 9-Z-violaxanthin and β-citraurin content. Measurement of the mass and ratio of these pigments can be used to accurately colour-grade orange fruit for local and export markets. These parameters will also aid in the evaluation of colour manipulatory techniques. Visual colour break in C. sinensis appears to be associated with a minimum in total pigment as well as total carotenoid content. The period prior to colour break is characterised by a reduction in chlorophylls, carotenes and free xanthophylls usually associated with photosynthetic activity. Following colour break, a massive increase in xanthophyll acyl esters (particularly 9-Z-violaxanthin) is observed. Efforts were made to manipulate carotenoid content of citrus flavedo in vivo, with a view to manipulate fruit colour commercially. It was shown that the micro-nutrients tungsten and molybdenum, and the plant hormones abscisic acid and jasmonic acid increased carotenoid content of flavedo discs; whereas the plant hormone gibberellic acid decreased carotenoid levels. The dehydrating agents ethanol and butanol increased carotenoid content in whole fruit flavedo and flavedo discs. Optimum concentrations were shown to be 20-30% (v/v) for ethanol and 5-10% (v/v) for butanol.Item Biosynthetic origin of abscisic acid in ripening avocado fruit.(2000) Guillaume Maurel, J. C.; Cowan, Ashton Keith.Mesocarp of ripening avocado fruit incorporated label from [2-(14)C]mevalonolactone, [1-(14)C] acetic acid, [1-(14)C] glucose and [1 -(14)C] pyruvate into ABA, although incorporation from mevalonolactone was significantly higher. Inhibition of the mevalonate pathway at the HMGR level using mevastatin reduced incorporation from acetate and MVL, while increasing incorporation from pyruvate and glucose. The carotenoid biosynthesis inhibitors AMO 1618 (inhibitor of lycopene cyclase) and fluridone (inhibitor of phytoene desaturase) both decreased incorporation of MVL into ABA, while the plant growth regulators ancymidol (inhibitor of GA synthesis and cytochrome P450) and jasmonic acid (senescence stimulator reducing the carotenoid content of plants) both increased incorporation of MVL into ABA. Tungstate was found to reduce incorporation from all four substrates into ABA, although more significantly from MVL and acetate. Further investigation revealed that the tungstate induced decrease in MVL incorporation into ABA occurred concomitantly with increased label incorporation into XAN. Cobalt, an inhibitor of ACC oxidase and therefore of ethylene production, increased incorporation of MVL into ABA. Nickel had a similar effect. Analysis of the methyl ester of ABA extracted from avocado mesocarp supplied with either [1-(13)C] acetic acid or [1-(13)C] glucose revealed incorporation of label from acetate consistent with formation of ABA via the acetate/mevalonate pathway whereas glucose was incorporated via the triose phosphate pathway of isopentenyl pyrophosphate formation. Methane, positive ion-chemical ionisation-mass spectrometry of the cis, trans and all- trans isomers of ABA indicated more intense labelling of trans, trans-ABA, irrespective of substrate used. These results indicate that trans, trans- and cis, trans-ABA are derived by different pathways and that ABA is formed in avocado by both the mevalonate and non-mevalonate pathways of isopentenyl diphosphate synthesis.Item Bowen ratio and surface temperature techniques for measuring evaporation from cabbages.(1997) Lukangu, Gastao.; Savage, Michael John.; Johnston, M. A.Good irrigation water management requires accurate, automated, non-destructive and simple techniques to measure crop water consumption. The actual evaporation from a cabbage crop was measured using the Bowen ratio energy balance technique (BREB), the surface temperature technique and the Penman-monteith method. All models used the shortened energy balance equation to estimate latent heat in which the advected energy is assumed to be negligible. Four irrigations were applied and 17 rainfall events were recorded during the experiment. The soil at the experimental field was a clay loam. An attempt to detect and reduce measurement error that could result from using inaccurate sensors was performed by calibrating the sensors. Data from inaccurate sensors were not used to compute the latent heat. Error and sensitivity analyse were performed, and the integrity of the weather data using the estimates of weather data from an appropriate model were checked. In addition, a comparative study showed that, for daily totals, there was a very small error in the latent heat calculations when fixed "constants" (density of air, specific heat capacity of air, psychrometric constant, slope of the saturation water vapour pressure vs temperature relationship and specific heat capacity of soil) were used instead of calculated ones. The Bowen ratio (β), a fundamental input of the BREB technique, was estimated accepting the Similarity Principle and excluding nighttime data. However, an error in β was also observed during the daytime measurement of the profiles entities because the sensors were wet and the stability condition was different from neutral conditions under which the Similarity Principle could not be observed. Negative values of β were observed when there were strong winds advecting sensible heat into the field under study. Data were rejected during mornings, and during strong advection periods. Data were also rejected when the sensors were wet because of rain or irrigation. In this experiment, only 35 % of data were valid for determining latent and sensible heat estimated using the BREB technique. Comparative analysis showed that the BREB technique overestimated the latent heat by 17 % compared to the Penman-Monteith method. However, both the Penman-Monteith method and BREB technique could not be trusted because of the presence of advection, a component of the energy balance equation normally assumed to be negligible. Either the surface to air temperature differential or the aerodynamic resistance, or both, were the source of overestimation of latent heat using the surface temperature technique. The surface to air temperature differential was large in magnitude when there were high wind speeds and drier conditions in the upwind field . It was small with lighter wind speeds and wetter surface conditions. An error of less than 5 % was attributed to the use of fixed air density and specific heat capacity and acceptance of 2 % and 20 % error in measuring the net irradiance and soil heat flux density, respectively. A comparative study showed that the surface temperature latent heat was overestimated in relation to the Penman-Monteith and BREB latent heat. Generally, the technique has been reported to overestimate evaporation, although to a lesser extent than the 57 % error reported in this experiment when compared to the BREB technique. An analysis of the energy balance closure, taking the Penman-Monteith and BREB as standards, suggested that the surface temperature technique overestimated the consumption of sensible heat from the air. This observation was also confirmed when the eddy correlation technique was used to compare sensible heat estimated using the surface temperature technique. The effect of placement height of air temperature sensors suggested that the consumption of sensible heat would be overestimated if the sensor was placed far from the crop surface. This overestimation in consumption of sensible heat resulted in an overestimation of latent heat. Irrigation water management was analysed using the crop water stress index (CWSI). The CWSI was calculated using the actual to potential evaporation ratio estimated using the Penman-Monteith method and the surface temperature techniques. The estimated and measured actual surface to air temperature differential, and the estimated potential and non-transpiring surface to air temperature differential were also used to estimate the CWSI using the Penman-Monteith method, the surface temperature technique and empirical method. The estimates of the CWSI using these techniques were inaccurate because of the poor correlation between the surface to air temperature differential and the water vapour pressure deficit (or water vapour pressure deficit and net irradiance). However, use of the CWSI estimated using the actual to potential evaporation ratio (CWSI = 1 - λ(a)/ λE(p) compared well to the standard CWSI determined using the Penman-Monteith approach. The actual canopy resistance was estimated using an empirical equation based on the potential canopy resistance, solar irradiance, soil water content and the shelter factor. A value of 50 s m(-1) was estimated for potential (minimum) canopy resistance of the cabbage crop. The soil water content was poorly correlated to CWSI, while the canopy resistance was well correlated. Comparative analysis showed that the estimated soil water content using the soil water balance equation was underestimated in relation to the soil water content measured using the ThetaProbe (frequency domain reflectometry technique) when the evaporation component was overestimated, and vice versa. Soil water content was underestimated throughout the experiment when evaporation from the surface temperature technique was used. There was an underestimation of soil water content in the early stages and overestimation in later stages of the experiment when the BREB and Penman-Monteith evaporation were used. Use of the estimated soil water content using the soil water balance with the overestimated evaporation would result in an early date of irrigation application, an unnecessarily large irrigation amount and frequent irrigations. More research is needed to find the cause of overestimation of evaporation using the surface temperature technique. The robustness of the equipment allowed a long period of measurement without frequent maintenance, as was required when using the BREB technique. The technique can monitor evaporation and irrigation management aspects at a regional scale. A combination of the Penman-Monteith, surface temperature and empirical method can assist the estimation of the crop water requirement by determining the CWSI. Future research would focus on quantification of sensible and latent heat advection, and analysis of additional resistances to water vapour flow from the surface to the atmosphere. The equipment for the BREB should be refined so that it measures actual latent heat under adverse weather conditions for a protracted period. A precise use of the soil water balance equation for water management should take into consideration runoff, vertical flow of soil water through a profile, intercepted water on plant surfaces and an accurately determined evaporation.Item Can plant extracts enhance growth and development, yield and simultaneously sustaining the post-harvest quality and shelf-life of potatoes (solanum tuberosum L.)?(2023) Mbuyisa, Siphokuhle.; Bertling, Isa.; Ngcobo, Bonga Lewis.Abstract available in PDF.Item The cascade of physiological events leading to chilling injury : the effect of post-harvest hot water and molybdenum applications to lemon (citrus limon) fruit.(2012) Mathaba, Nhlanhla.; Bertling, Isa.; Bower, John Patrick.New emerging markets such as Japan and the United States require cold sterilisation of South African citrus fruit as a phytosanitary standard against fruit fly. However, citrus fruit are chilling susceptible, with lemons being the second-most chilling susceptible after grapefruit. Chilling injury is a physiological rind disorder; the occurrence of which is despite its prevalence in horticultural commodities, not well understood. Therefore, the aim of this study was to investigate physiological compounds regulating chilling susceptibility or resistance in citrus fruit, with special emphasis on lemons. Furthermore, the potential of hot water dips or “molybdenum soaks” to maintain a certain level of physiological compounds which determine manifestation of chilling injury symptoms in citrus fruit was investigated. Moreover, it was attempted to create an understanding of the order in which physiological compounds mitigate chilling injury. Lemon fruit from different farms known to be chilling susceptible or resistant were obtained during the 2007 and 2008 harvest season. Thereafter, fruit were treated by soaking for 30 min in 1μM NaMo04.2H20 solution followed by a 2 min HWD 47 or 53°C. Treated fruit were waxed, weighed and stored at -0.5°C for up to 28 days and sampled for chilling injury evaluation 7, 14, 21, or 28 days into cold storage. A second evaluation was carried out five days after withdrawal from cold storage to allow development of chilling injury symptoms as a shelf-life simulation. After the second evaluation fruit were peeled, peel freeze-dried, milled using mortar and pestle and stored at -21°C for further physiological analysis. Freeze-dried peel was analysed for soluble sugars (glucose, fructose, sucrose), vitamin C (ascorbic acid), vitamin E (α-tocopherol), β-carotene, polyamines (putrescine, spermine, spermidine), specific flavanones (naringin and hesperidin) using HPLC-UV-Vis detector and proline, total antioxidant assays (FRAP, ABTS, DPPH), total phenolics, total flavonoids, lipid peroxidation using spectrophotometry, as well as for the heat shock protein (HSP70) using electrophoresis and silver-staining. Chilling susceptibility of lemon fruit varied with fruit source; those sourced from Ukulinga and Eston Estates were chilling resistant, while fruit from Sun Valley Estates showed chilling injury symptoms after 28 days of cold storage plus five days shelf-life. Furthermore, hot water dips (HW) 53°C, 1 μM Molybdenum (Mo) and 10 μM Mo plus HW 53°C significantly reduced chilling injury symptoms compared with the control and HW 47°C. In addition, Sun Valley Estates fruit also showed higher fruit weight loss compared with non-chilling resistant lemons. The alignment of higher fruit weight loss during storage with chilling susceptibility ascertains the use of weight loss as a non-destructive parameter for chilling susceptibility. With respect to flavedo sugars, glucose was found to be the dominant soluble sugar with multi-functional roles during cold storage. This plays a significant role in mitigating cellular stress. Chilling susceptible lemons from Sun Valley Estates had low flavedo glucose concentrations and, therefore, little conversion of glucose to ascorbic acid was possible resulting in a low antioxidant capacity. However, treatments with HW 53°C and Mo soaks seemed to enhance the enzymatic conversion of glucose to ascorbic acid leading to a higher antioxidant capacity in the flavedo of such treated fruit. Furthermore, glucose also feeds into the pentose phosphate pathway which is coupled with the shikimate pathway synthesizing secondary metabolites, especially of the phenolics group. The decrease in glucose was aligned to the levels of total phenolics, but not to that of β-carotene, naringin and hesperidin through 28 days into cold storage period. Moreover, as glucose also feeds into shikimate pathway, simultaneously an increase in proline flavedo concentration was observed. Proline is an antioxidant synthesized from glutamate; as cellular glucose decreases so does the total antioxidant capacity during cold storage. Ascorbic acid is a dominant and potent antioxidant in lemon flavedo as proven with the FRAP, ABTS and DPPH assays. Chilling resistant fruit have significantly higher ascorbic acid conversion. Furthermore, ascorbic acid also acts to generate the α-tocopheroxy radical to further important membrane-bound antioxidant, vitamin E (α-tocopherol equivalent). Furthermore, the DPPH assay was found to be effective in quantifying total antioxidants in lemon flavedo since it detects both lipophilic and hydrophilic antioxidants compared with the ABTS and FRAP assays which are bias to the estimation of liphophilic or hydrophilic antioxidants, respectively. The hot water and molybdenum treatments increased total antioxidants (DPPH assay) with reduced lipid peroxidation 7 days into cold storage and therefore, reduced chilling symptoms in fruit from Sun Valley Estates. The capacity of antioxidant to scavenge reactive oxygen species (ROS) was increased during cold storage and membrane stability significantly improved. Furthermore, putrescine as low valency polyamine was reduced as such compound acted as precursor to the synthesis of the high valency polyamines, spermine and spermidine. Chilling susceptible lemons from Sun Valley Estates showed increased soluble-conjugated polyamines as a response to stress. Furthermore, HW 53°C, 1 μM Mo and 10 μM Mo plus HW 53°C significantly increased the protein concentration and, therefore, likely also the occurrence of proteins with 70kDa (as estimator of HSP70). Additionally, the concentration of conjugated high valency polyamines was also increased, resulting in reduced chilling injury symptoms. The effect of ROS has only been viewed as damaging, while recently their role has also been viewed as stress acclamatory signalling compounds when produced concentrations below critical damaging threshold. Therefore, hot water dips seems to signals synthesis of total protein which include HSPs which then act throughout cold stress to protect other protein and channel other damaged proteins towards proteolysis. While molybdenum increased ROS production below damaging critical threshold, with ROS signalling stress acclimation by further signalling production of bioactive compound with antioxidant properties.Item Characterisation of ganoderma species using morphological, molecular and biochemical markers and evaluation of substrate enhancement influence on their development and biochemical profile.(2024) Sihlangu, Sydwell Mcebo.; Magwaza, Lembe Samukelo.; Mditshwa, Asanda.; Tesfay, Samson Zeray.; Ramachela, Khosi.; Mbili, Nokwazi CarolGanoderma, also known as Reishi mushroom, is used for its potential health benefits in several countries. The current study characterised Ganoderma species using molecular and biochemical markers and evaluated the substrate enhancement influence on its development and biochemical profile. The overall research study consisted of four objectives. The first objective focused on the isolation and characterisation of fifteen fungal specimens collected from the three provinces of South Africa, namely, Mpumalanga, KwaZulu-Natal, and North- West. Five fungal specimens were collected in each province and growth media potato dextrose agar (PDA), malt extract agar (MEA), and sabouraud dextrose agar (SDA) were used to grow sample isolates. After 8 days of incubation, MEA recorded the highest mycelial diameter followed by PDA and SDA. Samples were identified using comparative morphology traits and supported by internal transcribed spacer region (ITS) and phylogenetic analyses. Based on the ITS of ribosomal DNA, fungal samples KG3SY219 and MG1SY119 were found to be closely related to Ganoderma resinaceum and Ganoderma austroafricanum, respectively. The species were further characterised by biochemical compounds, including antioxidants, proteins, essential elements, and heavy metals. The antioxidant capacity exhibited a higher radical scavenging activity in G. austroafricanum compared to G. resinaceum. The concentrations of total phenolics, flavonoids, proteins, essential elements and heavy metals were more abundant in G. austroafricanum compared to G. resinaceum. This study also evaluated the effect of different growth conditions on mycelial growth and development of Ganoderma austroafricanum and Ganoderma resinaceum. The experimental treatments included three levels of pH (4, 6 & 8), temperature (20, 25 & 30 °C), and different types of plant residues namely; beech sawdust (BS), sugarcane bagasse (SB), and buffalo grass (BG). Three independent in vitro experiments were conducted, PDA and MEA were used as standard growth media to grow each fungal species. Mycelial growth and development were measured over 9 days where they reached maximum growth. The culture media pH results demonstrated that the maximum growth for mycelia was reached on day 9 for both species. Typically, G. resinaceum showed the highest mycelial growth for both cultures except for days 6 and 9 where the mycelial growth of the species was decreased by low levels (pH 4) and high levels (pH 8), respectively. The addition of BG to the growth media delayed the mycelial growth of G. resinaceum for both growth media (PD+MEA). Experiment three investigated the effect of different substrates on the development, total biomass, and biochemical profile of Ganoderma species. The experiment involved growing G. austroafricanum (GA) and G. resinaceum (GR) on different substrates; beech sawdust (BS), sugarcane bagasse (SB), and buffalo grass (BG), and suspension of all substrates (BSSBBG). The growth parameters such as pileus size, weight, total biomass, and biological efficiency were measured. Additionally, each substrate was analysed for biochemical composition. The biochemical composition of the harvested samples was also analysed to determine the levels of biochemical compounds such as minerals, antioxidants, and protein. The substrate pH levels demonstrated that all substrates were within the optimal growth pH range (5-6). SB exhibited greater levels in the majority of essential elements such as Zn and K, also, heavy metals Pb and Hg. The results on the development and total biomass production of Ganoderma species revealed significant variations across different substrates. In terms of development, GRBS was faster to reach the 100% rate of all production parameters in 40-52 days after inoculation. However, GASB exhibited higher quantities in total yield and biological efficiency. In addition, pileus from GASB demonstrated higher concentrations of all evaluated biochemical compounds. GASB also yielded higher levels of DPPH, phenolic compounds, flavonoids, and protein. Experiment four examined the impact of substrate fortified with essential elements on the development, total biomass, and biochemical compounds of Ganoderma species. The experiment involved growing G. austroafricanum (GA) and G. resinaceum (GR) on beech enhanced with elements; no element (Control), Zn(NO3)2.6H2O (Zn), Fe2SO4 7H2O (Fe), Na2SeO3 (Se), and suspension of all essential elements (ZnFeSe). The growth parameters such as the pileus size, weight, total biomass, and biological efficiency were measured. In addition, the biochemical profile of Ganoderma spp. was analysed to evaluate the concentration of compounds. The development and total biomass production findings for the substrate fortified with essential elements exhibited significant differences. GRZn developed expeditious, reaching 100% of all production parameters in 52 days after inoculation. In comparison to all treatments, GAFe showed larger quantities in total yield and biological efficiency. The substrate enhancement with Zn had a significant increase in the majority of minerals. GAZn exhibited higher concentrations of essential elements such as Zn, K, and Mg. Higher levels of heavy metals such as Cd, Pb, and As were recorded from GAControl. GASe produced higher levels of DPPH, phenolic compounds, flavonoids, and protein reading. These findings demonstrate the variability of morphological characteristics, biochemical compounds, and growth conditions requirements between Ganoderma species. These findings provide valuable insights into the diversity, taxonomy, and potential therapeutic applications of Ganoderma species in South Africa. Further investigation is required to identify Ganoderma species and its pharmaceutical properties.Item The combined effects of daylength and temperature on onion bulb when grown under greenhouse environment.(2017) Mpanza, Felicia Nobuhle.; Tesfay, Samson Zeray.Abstract available in PDF file.Item A comparative study of antioxidant potentials of some leafy vegetables : emphasis on African leafy vegetable and exotic vegetables.(2014) Mathe, Sakhile.; Tesfay, Samson Zeray.Due to malnutrition and food insecurity problem around the globe, mainly in developing countries, cheap nutritional food sources are required. In South Africa, a large proportion of the population is considered “poor” and with limited resources. However, South Africa as a whole is rich in indigenous leafy vegetables which have the capacity to help mitigate the problem of malnutrition and food insecurity. Amaranthus hybridus, an African indigenous leafy vegetable was tested for seed quality and potential essential antioxidants. Exotic (to Africa) leafy vegetables (Brassica oleracea and Brassica oleracea var. capitata f. rubra) were used as references for potential antioxidants. Amaranthus hybridus seed quality was tested using two different coloured seeds, red and white gold. Seed viability and vigor were tested using germination, electrolyte leakage and antioxidant content. Data recorded indicated better seed quality for red seeds than white gold seeds; therefore red coloured seeds were planted along with purchased Brassica oleracea and Brassica oleracea var. capitata f. rubra for quantifying antioxidant content. Selected antioxidant types were measured on weekly harvests of the studied vegetables. From the results it was evident that the indigenous leafy vegetable amaranth with total antioxidants [FRAP(3174.91 mmol Fe2 SO4 100g-1 DW) and DPPH(8.3 mmol trollox 100g-1)], proteins (6.88 mg.g-1 DW), total phenols ( 345 mg 100g-1 DW), flavonoids (79 mg 100g-1 DW), Chlorophyll and carotenoids (2.8 mg 100g-1 DW), ascorbic acid (86 mg 100g-1 DW) and soluble sugars (1.07 Brix %), could be used in conjunction with available commercial leafy vegetables to combat malnutrition and food security problems. Further, these results indicate that in resource limited regions this vegetable can act as a main source of nutrients and a supplement in resource abundant regions of the country and/or continent. Further, analysis of selected enzymatic antioxidants was carried-out on leaf material of the studied vegetable to evaluate the capability of indigenous leafy vegetables to protect themselves against oxidative damage. Indigenous leafy vegetables exhibited high antioxidant activity against lipid peroxidation at early stages of growth and high antioxidant enzyme activity at similar stages thus high capability of mitigating ROS effect. Data obtained from the study indicated that indigenous vegetables are a good source of essential antioxidants which are beneficial to human health; therefore the intensity of their use needs to be increased, especially in areas of high prevalence of malnutrition and diseases.Item A comparative study on carbohydrates and antioxidants of indigenous crop black jack (Bidens pilosa L.) and selected commercial vegetable crops.(2014) Mbokazi, Nelani Simon.; Tesfay, Samson Zeray.The adequate consumption of African leafy vegetables has been closely associated with a strong reduction of chronically disease such as cancer, diabetes and cardiovascular diseases. The health benefits provided by African leafy vegetables are due to the presence of various primary and secondary metabolites. However, most of the epidemiological studies have indicated that very little is known about the antioxidant activity of African leafy vegetables, which is believed to be responsible for their therapeutic effect. In this present study the physiochemical and antioxidant properties were examined, in relation to other Asteraceae, commercial vegetables (lettuce and chicory). Firstly, the study investigated the physicochemical and antioxidant compounds during seed germination in black jack. Secondly examined the non-enzymatic and enzymatic antioxidants in black jack and compared them with lettuce and chicory. In seed germination test, physicochemical seed quality properties for African leafy vegetable, black jack antioxidants accumulation during seed imbibition were reported. The results revealed that soaking of black jack seeds in water before sowing, induces germination. In this study black jack seeds that were soaked for 15 hours before germinating, showed a highest percentage of germination (72 %) in 5 days. The seeds also showed high considerable total antioxidants capacity of antioxidants (DPPH) and phenols (0.69±0.44 mg/g and 56.45±0.08 mg/g DW). The protein content was also high on the seeds (0.328±0.17 mg/g DW). However, there were high amounts of anti-nutritional factors noticed on the seeds, where the total tannins content was (416.36±1.14 mg/g DW). The results further revealed that African leafy vegetable, black jack contained significant amount of non-enzymatic antioxidants at the early stages of growth than other leafy vegetables. The plant biomass per plant increased with the number of harvests. The plant DPPH antioxidant assay recorded black jack (0.73 ± 0.13mg/g DW - 0.29±0.083mg/g DW), lettuce (0.10±0.64mg/g DW - 0.29±0.03mg/g DW) and chicory (0.35±0.72 - 0.20±0.11mg/g DW). The plant phenolic content recorded black jack (155.46±0.07mg/g DW - 73.11±0.02mg/g DW) for lettuce it was found to be (13.24±0.05mg/g DW - 44.92±0.07mg/g DW) and for chicory (97.09±0.37mg/g DW - 17.88±0.22mg/g DW). However, as black jack all of the secondary metabolites were decreasing drastically when it was reaching maturity, while the phenols were increasing. For carbohydrates, black jack had the lowest concentration of the soluble sugars (glucose, sucrose and fructose). The enzymatic antioxidants of black jack were the lowest for most of enzymes, but SOD activity was higher. Although it decreased as the plant approaches maturity. In conclusion, black jack accumulates different types of antioxidants and their concentration varied over plant developmental stages. The key findings of this study are; the African leafy vegetables have different antioxidant production trends compared to exotic vegetables. Depending on leaf positions and leaf stage, preferably young leaves of the ALVs, there might be sequential harvests, increases the food access for extended period for household consumption. The ALVs also experience higher SOD, CAT, POD activities during early growth stage. These plants have also displayed the highest antioxidant capacity during the early plant development, early stage high accumulation of the studied antioxidants most likely contribute to this antioxidant strength. Furthermore there adaptation to wild environment, exposed to various harsh conditions, their tolerance to survive to this condition probably attributed to plants’ antioxidant production characteristics.Item Development of a sulphur free litchi storage protocol using sealed polypropylene bags.(2006) Archibald, Alison Joy.; Bower, John Patrick.; Bertling, Isa.The use of sulphur as a method of postharvest disease control and colour retention in litchis is soon to be restricted by the European Union. It is therefore essential that new postharvest treatments and packaging techniques be developed in order to retain internal and external fruit qualities and thus allow for export. Good litchi quality is not only important for the export market but also for use on the local market. In this study, alternative methods for postharvest quality control were investigated with the aim of extending the litchi storage life to 40 days under modified storage. Packaging the fruit in polypropylene bags significantly decreased fruit water loss and resulted in an increase in shelf life, as determined by red colour and overall rind appearance. There was no distinct advantage of amodified atmosphere. The use of a punnet, lined with absorbent sheeting and placed within the sealed polypropylene bag, further improved the shelf life. The absorbent sheeting reduced the amount of free water and resulted in little pathogen infection, while the punnet was effective in protecting the fruit from damage. It was notable that most water loss occurred within the first 10 days of storage and that the majority would actually take place during the cooling phase. A hydrocooling technique was therefore investigated and was found to not significantly decrease water loss, possibly due to not hydrocooling the fruit for a long enough period of time. Temperature management was extremely important for both colour retention and pathogen control. It was found that treatments stored at 5.5QC showed better colour retention after the 40 days storage than the 1QC storage treatment. The higher storage temperature, however, enhances the potential for postharvest diseases. Three compounds, namely ISR 2000, 'Biosave' and F10, were tested for pathogen control. 'Biosave' showed the best results with the most effective concentration being 100 mill water and good pathogen control occurred when storage was at 10 C. Polyphenol oxidase (PPO) activity in the litchi rind was evaluated as it is thought to be closely related to browning of litchi fruit, probably due to the degradation of phenolics by PPO. Brown fruit had a high PPO activity whilst red fruit had much lower activity. It was also shown that PPO activity decrease over storage time, possibly due to product inhibition of the enzyme. The internal quality of the fruit was determined using the T88: acid ratio of the pulp, as it is well correlated to mean eating quality. For fruit to have excellent taste, it must have a T88: acid ratio of between 31:1 and 60:1. All the fruit had a ratio that met this criterion and would therefore ensure good eating quality.Item The development of indigenous marula (sclerocarya birrea) fruit leather : effect of drying temperature and sugar concentration on the drying characteristics, physico-chemical and consumer sensory properties of marula fruit leathers.(2016) Ndlovu, Phindile Faith.; Tesfay, Samson Zeray.; Ngcobo, Mduduzi Elijah Khulekani.Fruits indigenous to African countries are highly recognised and valued by rural communities for food security purposes. An examples of such fruits include but not limited to marula fruits (Sclerocarya birrea), which is indigenous to many parts of Southern Africa. In some parts of the continent, the role and usefulness of indigenous fruit species still receives little attention in agricultural research. Amongst others, this results from the magnitude postharvest quality losses due to the high moisture content characteristic of these fruits and a lack of access to required postharvest infrastructure by small-scale farmers. The processing of high moisture content commodities offers a convenient way of preserving their quality. The main aim of this research was to develop fruit leathers from the indigenous marula fruits as means of quality preservation. The development of new products from indigenous fruit crops as a means of preserving the fruits quality (nutrients) has a potential of enabling farmers, particularly small-scale farmers, to diversify on their on-farm business and farming activities. It also has the potential of improving the nutrition security and economy of the rural communities. Marula fruit are normally processed and conserved into various product forms (e.g. jams, juice, flavoured water, sweets, essential oils, traditional beer and world exported beverages such as Amarula Cream) which are readily available in the market. The production of such products from the indigenous fruits involves different processing techniques and these techniques ranges from highly sophisticated processes to simple traditional ones. The choice of the processing technique used is dependent on the characteristics of the intended product. Drying is one of the techniques that have not been widely applied in the processing of indigenous fruits. The application of this technique offers the potential to produce healthy, nutritious and flavourful ready to eat snack from the indigenous fruits such as fruit energy bars and fruit rolls which can be accessible and available throughout the year. Very little information have been reported on product development of indigenous marula fruit in previous years. The study conducted independent drying experiments to evaluate the effects of different drying temperature (50, 60 and 70 °C) and different added sugar concentrations (0, 5 and 10% w/w) on the drying kinetics of the marula fruits pulp. Moisture loss from the fruits’ pulp and different drying models in explaining the heat and mass transfer processes and for predicting the drying behaviour of the fruit leathers during drying were assessed. The textural, colour and consumer sensory attributes of the dried fruit leathers were also evaluated. The moisture loss and drying behaviour of the marula fruit leathers were significantly (p ≤ 0.05) affected by the drying temperature and added sugar content. During the evaluation of the colour properties, the drying temperature and the added sugar content increased significantly (p ≤ 0.05) the colour of the fruit leathers. However, the colour properties of fruit leathers with high added sugar concentration for each drying temperature were significantly (p ≤ 0.05) reduced. The texture attributes of the marula fruit leather significantly (p ≤ 0.05) increased with drying temperature (50 and 60 °C) and sugar concentration (0, 5 and 10% w/w), but significantly decreased at 70 °C for 10% w/w treated fruit leathers. The consumer sensory evaluation was also conducted to assess the acceptability of the fruit leathers. In general, all fruit leathers were accepted by panellists, and this demonstrated that marula fruit leather would form an acceptable new product. The sensory analysis showed that the mostly liked and preferred fruit leathers by the panellists were the ones prepared at 50 °C with 10% w/w added sugar.Item Ecophysiological studies and tree manipulation for maximisation of yield potential in avocado (Persea americana Mill.)(1994) Whiley, Anthony W.; Wolstenholme, B. Nigel.; Schaffer, B.Tree fruit crops generally consist of scion and rootstock components, which through interactive synergism affect tree performance. Coupled with tree architecture, sink/source relationships (both spatial and temporal), genotypic responses to environments, and carry-over seasonal effects present a high level of complexity which often confounds research results. The development, description and use of pheno/physiological models as research and crop management tools is a new holistic approach to reduce complexity and improve understanding of the critical factors which influence crop productivity. A pheno/physiological model is described for cv. Hass avocado growing in a cool, mesic subtropical environment in S.E. Queensland, Australia. Seasonal shoot and root growth had bimodal periodicity with root growth offset and delayed with respect to shoot growth. The priority sink strength of developing shoots compared with roots was confirmed with 14(C) studies. Root growth in summer extended through until late winter when there was a substantial decline following anthesis - a critical time in fruit development with competition between reproductive and vegetative sinks for limited resources. Delayed harvesting of fruit over several seasons resulted in alternate bearing patterns, while removal of fruit at the minimum legal maturity of 21 to 24% dry matter sustained successive high yields. With cv. Hass, production was directly related to starch concentrations in trunks or shoots in July (midwinter) immediately prior to anthesis. However, seasonal starch concentration fluxes in trunks were much lower in coastal subtropical Australia compared with those previously reported from interior areas in more southerly latitudes (7.5% vs. 18% maximum). Current assimilate from over-wintered leaves was necessary to bridge the gap in early spring between the depletion of starch reserves by new reproductive and vegetative shoot growth, and the sink/source transition of the spring shoot growth. Net CO2 assimilation of summer grown leaves reached ca. 17 µmol CO2 m(-2) s(-1), approximately twice as high as previously reported rates on container-grown plants or trees in minimum temperatures were < 10⁰C for 50 days, this being the first report of this phenomenon in field-grown avocado trees. Partial recovery occurred prior to senescence of previous season's leaves in spring after minimum temperatures increased above 10⁰C. The plasticity of the light response was high with the compensation point for net CO2 assimilation at 30 µmol quanta m(-2) s(-1) and the light saturation point at 1270 µmol quanta m(-2) s(-1). Net CO2 fixation from fruit photosynthesis was always less than losses through respiration but was highest during the first few weeks of ontogeny, perhaps contributing to the fruit's own carbon economy at a time when competition for assimilates was greatest. In general, CO2 assimilation studies with current technology applied to orchard trees in non-restrictive soils have elucidated efficiencies more akin to deciduous than evergreen trees - thereby compensating for short-lived leaves and energy expensive fruits. Pheno/physiology models were used to substantiate the most effective timing for trunk injection of ambimobile phosphonate fungicides for the control of Phytophthora root rot, a serious disease of avocados, viz. at the completion of the leaf expansion phases when leaves were strong net exporters. Preliminary studies demonstrated potential yield increases when the assimilation efficiency of photoinhibited over-wintered leaves was improved through increased nitrogen concentration, and spring shoot growth was partially suppressed with foliar sprays of the growth retardant paclobutrazol.Item Effect of canopy position and non-detructive determination of rind biochemical properties of citrus fruit during postharvest non-chilling cold storage.(2017) Olarewaju, Olaoluwa Omoniyi.; Magwaza, Lembe Samukelo.; Tesfay, Samson Zeray.; Fawole, Olaniyi Amos.; Opara, Umezuruike L.No abstract provided.