Grassland and Rangeland Science
Permanent URI for this communityhttps://hdl.handle.net/10413/7556
Browse
Browsing Grassland and Rangeland Science by Title
Now showing 1 - 20 of 86
- Results Per Page
- Sort Options
Item Above- and belowground competition in Savanna systems.(2008) Payne, Michelle Jennifer.; Kirkman, Kevin Peter.The structure and composition of savanna vegetation is influenced by resource availability and disturbance. Grasses, a major component of savannas, influence this resource availability by competing directly with trees for light, water and soil nutrient resources. The direct causes of bush encroachment are not always apparent, but are commonly ascribed to overgrazing and consequent decreased grass competition. The interaction, both above and belowground, between tree and grass seedlings and the surrounding grass sward is dependant on many factors, such as soil depth, seedling species and sward composition. These factors, as well as the presence or absence of defoliation, in the form of grazing or fire dictate whether the system will remain in a transition state as savanna or move towards a stable woodland state. The major competitive effects experienced by the tree seedlings were dependant on grass species and nutrient level. A. nilotica was affected by aboveground competition while A. karroo was affected by belowground competition. E. capensis caused the greatest decrease in A. karroo plant biomass. Both E. capensis and H. hirta had large competitive effects on the aboveground biomass of A. nilotica, while S. africanus had the greatest effect on belowground biomass. Increasing nutrient availability resulted in an increase in the competitive effect exerted on A. karroo, while little to no change was seen in the competitive effect exerted on A. nilotica. Soil depth constrained plant size in both tree species. The intensity of belowground interactions on tree biomass was unaffected by soil depth, while aboveground competition had a significant effect on shallow soils. Belowground competition was also of greater importance than aboveground competition in dictating tree seedling height. Grass seedlings growing on all three soil depths differed in mean mass, with E. racemosa having the least mass and T. triandra having the greatest. Simulated grazing by cutting the surrounding sward resulted in biomass increases in all three grass species. Changes in savanna composition and structure are thus likely to be influenced by initial species composition and soil depth and soil nutrient composition. While grazing creates niches for grass seedling establishment, heavy grazing has been observed to increase grass seedling mortality. Encroachment is thus more likely to occur on intensively grazed shallow and deep soils than on medium depth soils. This highlights the importance of ensuring the grass sward remains vigorous by resting and monitoring stocking rates to ensure veld is not over-utilized. It is then possible to maintain some form of tree-grass coexistence at a level where available grazing is not compromised.Item Aspects of the ecology of grass seedlings used for revegetation of degraded land.(2010) Ellis, Meghan Jane.; Kirkman, Kevin Peter.; Morris, Craig Duncan.As restoration ecology has matured as a science there has been increased interest in the relationship between species diversity and landscape health. Degraded landscapes tend to be resource poor, which limits species diversity as only species which are capable of growing and reproducing in these resource limiting environments can inhabit the area. Additionally, the established species are strong competitors for resources and will exclude, by way of inter-specific competition, weaker competitor species attempting to invade the degraded area. Several studies have demonstrated that with increased species diversity the overall productivity and functionality of the grassland increases. Seedling development and competitive interactions between grass seedlings has a significant impact on the final community structure and species diversity. It is for this reason that aspects of the ecology of grass seedlings were investigated. The growth and competitiveness of Chloris gayana, Cynodon dactylon, Digitaria eriantha, Eragrostis curvula and E. tef seedlings were determined under three environmental stimuli, namely nitrogen availability, light availability and exposure to plant-derived smoke (in the form of smoke-infused water). The primary conclusion from the competition experiments was that the species can be split into superior and inferior competitors at the seedling stage. Chloris gayana, E. curvula and E. tef were the most competitive seedlings as they had the largest negative effect on the growth of other species (high nitrogen Relative Interactive Index (RII) = -0.449, -0.203 and -0.379 respectively) and they were least affected by competition (high nitrogen RII = -0.251, -0.168 and -0.248 respectively). The calculated RII indicates the strength of the competitive interactions, the more negative the RII the stronger the competitive interaction. Nutrient availability had limited effect on the competitive hierarchy of the tested species. Chloris gayana seedlings, however, increased in competitiveness with an increase in available nutrients. In other words, there was a decreased negative response to competition in a high nutrient environment (high nitrogen RII -0.251, no nitrogen RII -0.605). When D. eriantha was grown under varying shade, nutrient and competition levels it was evident that the primary stress factor was light deficiency (p<0.001), and nutrient availability had no affect on seedling growth (p=0.069). Smoke-infused water had no consistent affect on the germination success or the seedling’s root and shoot vigour for the five grasses. These results indicate that the introduction of a “2-phase” or “multi-phase” restoration plan may be beneficial for the development of species diverse rehabilitated grasslands. Manipulating the time and space that the different species are planted, or the distribution of nutrient concentration over the area, may increase the survivorship of all the species that are introduced to a restoration site.Item An assessment of Coastcross II Bermudagrass and kikuyu for growing out young beef animals.(1983) Bransby, David Ian.; Tainton, Neil M.The immediate aim of this study was to relate herbage availability, liveweight gain and stocking rate to one another under continuous and rotational grazing so that management recommendations could be formulated for Coastcross II Bermudagrass and kikuyu. In addition, these data would be used for an economic evaluation of growing out young beef animals on these two pasture species. The broad long term goal was to use this information to persuade farmers to make more use of planted pastures and thereby reduce the stocking pressure on the veld. Besides pursuing the primary objectives, the study offered an opportunity to make an observational assessment of the put-and-take technique for use in grazing trials. In relation to fixed stocking, variable stocking appeared to have no distinct advantage in this study. This conclusion is drawn from the fact that little success was achieved in applying put-and-take at a high level of precision. It was therefore recommended that future trials should make use of fixed stocking, except when variation in herbage availability is very large and predictable. In such cases the use of put-and-take would be warranted. Liveweight gain of animals was linearly related to herbage availability. In two seasons liveweight gain of animals on Coastcross was higher for continuous grazing than for rotational grazing at equivalent herbage availability, but in other seasons there was no difference between the two methods of grazing. At equivalent levels of herbage availability liveweight gain was higher in early summer than in late summer. Herbage availability decreased linearly witilin each season and on average, rotational grazing resulted in increasingly greater herbage availability than continuous grazing, as stocking rate was increased on Coastcross. However, no difference between the two grazing methods was evident on kikuyu. Finally, the relationship between liveweight gain and stocking rate was also described by a linear function. On average, the stocking rate at which maximum liveweight gain per ha occurred (SRmax) was higher for rotational grazing than continuous grazing on Coastcross, but not on kikuyu. However, no difference was evident between the two grazing methods in each season. During the study period annual rainfall varied from 506 mm to 990 mm. This offered a unique opportunity to examine the relation between some of the pasture production parameters measured and annual rainfall. The length of the grazing season and SRmax increased, but liveweight gain of animals at SRmax declined as annual rainfall increased. This caused seasonal liveweight gain at SRmax to increase initially, but then to reach a maximum and decrease as annual rainfall increased from 500 to 1000 mm. From this information it was possible to build two models which can be used to predict liveweight gain per ha and profit per ha from stocking rate and annual rainfall. These models can either be built into farm planning programmes or used directly by agricultural advisors. In tl1is thesis they have been used to show that there is a wide range in stocking rates and levels of annual rainfall within which it is possible to make substantial profits by grazing young beef animals on dryland pastures. This study has therefore provided forceful information which can be used to persuade farmers to make more use of planted pastures, and in so doing, conserve the veld.Item An assessment of the effect of season of grazing, stocking rate and rainfall on the dynamics of an arid rangeland on the west coast of South Africa.(2005) West, James Alexander.; Kirkman, Kevin Peter.A grazing trial investigating the effect of season of grazing and stocking rate initiated at the Nortier Experimental Farm in 1988 provided an opportunity to assess the response of the veld to both grazing and environmental influences in an arid environment. The trial allowed an assessment of the relative influence of internal (equilibrium) and external (non-equilibrium) forces on the dynamics of an arid rangeland. This study involved the analysis of a nine year data set stretching from 1988 to 1996 and served to provide evidence supporting the existence of an equilibrium/non-equilibrium continuum in rangeland dynamics. The most significant implication of this result is that rangeland systems should not be classified as either equilibrial or non-equilibrial, but rather according to a continuum extending between equilibrium and non-equilibrium poles. The exact position of any system on this continuum is a function of the relative influence of internal and external forces on its species dynamics. The dynamics of the veld at the Nortier Experimental Farm showed significant response to both grazing and environmental variables suggesting conformity to both equilibrial and non-equilibrial paradigms. Both ordination and analysis of variance highlighted the importance of rainfall particularly in the fluctuations of the predominant grass species, Ehrharta calycina, which increased in abundance with rainfall. Partial ordination enabled the assessment of species variation following the removal of variation associated with rainfalL Partial ordinations revealed the gradual, directional movement of samples through multivariate space in response to grazing treatments. Individual plant species were also shown to be responding to grazing, the extent of which was influenced by season of grazing and stocking rate. Both the partial ordinations and the ANOVA showed Melothria sp., Tetragonia fruiticosa and Hermannia scordifolia as increasing and Ruschia caroli as decreasing in absolute abundance in response to grazing. Season of grazing was shown to significantly influence the abundance of H. scordifolia over time. The 'shrublherb complex', which constitutes the 'key resource' at the Nortier Experimental Farm displayed an increase in absolute abundance over the duration of the trial. This increase in absolute abundance was accompanied by an increase in the relative abundance of the palatable component of this resource. The application of medium to heavy stocking rates during spring, summer and autumn and low stocking rates during winter resulted in elevated absolute abundances of palatable plants. Furthermore, low stocking rates, when averaged across all season of grazing treatments, resulted in a significantly higher absolute abundance of unpalatable plants. These findings provide the basis for the development of management principles for the Strandveld Vegetation Type. The application of medium to heavy stocking rates within a rotational grazing system, as recommended by the literature dealing with grazing systems in the Karoo, is supported by the results of the Nortier grazing trial. Medium to heavy stocking rates should be applied during spring, summer and autumn and low stocking rates during the winter months. Furthermore, it is recommended that rests of between 12 and 14 months should be afforded to portions of the veld periodically due to the variability in growth, flowering and fruiting times ofdifferent plants in the Karoo.Item Beef production from kikuyu and Italian ryegrass.(1985) Bartholomew, Peter Edward.; Tainton, Neil M.Four grazing trials to characterise cultivated pastures, in terms of beef production, were conducted in Bioclimate 3 of Natal. Dual purpose and British beef type cows were run on kikuyu at stocking rates from 2,81 to 7,30 cows plus calves per ha. During the eight seasons of the trial the seasonal rainfall varied from 580 to 933 mm. There was a positive linear relationship between rainfall and pasture yield with maximum yield of kikuyu being recorded during February - March. Stocking rate affected pasture yields only during favourable rainfall seasons. Crude protein (CP) and crude fibre (CF) of kikuyu fluctuated markedly within and between seasons. However, CP increased and CF decreased as stocking rate increased. There were significant relationships between stocking rate and (a) calf performance, (b) calf livemass gain, (c) period required to attain maximum mass, (d) period on pasture for the cows, and (e) cow mass change: Weaners were run on irrigated Italian ryegrass at 5, 7 and 9 weaners per ha for four seasons. Stocking rate had little effect on the growth pattern of the pasture but affected dry matter yields. Reducing the stocking rate resulted in increased pasture yields and CF content but reduced CP levels of material on offer. Steers exhibited higher gains than heifers but lower carcass grades and stocking rates for maximum gain per ha (SRmax). Livemass gains of 1315 and 1224 kg per ha can be expected at SRmax of 6,85 and 9,54 for steers and heifers respectively. Yearling heifers run at four stocking rates on kikuyu for one season showed a negative linear relationship between stocking rate and gain and a positive linear relationship between pasture height and gain. A SRmax of 8,85 allows for a livemass gain of 1 040 kg per ha. The effect of feeding concentrates on foggaged kikuyu was evaluated. Foggaged kikuyu can be used as a source of roughage for fattening steers. However, as the steers became adapted to the concentrate the intake of kikuyu declined from 39 to 19% of their daily intake. Regressions derived from the characterisation trials allow for developing beef systems for different situations.Item The bioeconomic implications of various stocking strategies in the semi- arid savanna of Natal.(1994) Hatch, Grant Peter.; Tainton, Neil M.; Ortmann, Gerald Friedel.Climatic and market uncertainty present major challenges to livestock producers in arid and semi-arid environments. Range managers require detailed information on biological and economic components of the system in order to formulate stocking strategies which maximise short-term financial risk and minimise long-term ecological risk. Computer-based simulation models may provide useful tools to assist in this decision process. This thesis outlines the development of a bioeconomic stocking model for the semi-arid savanna of Natal. Grazing trials were established at two sites (Llanwarne and Dordrecht) on Llanwarne Estates in the Magudu area of the semi-arid savanna or Lowveld of Natal. The Lowveld comprises a herbaceous layer dominated by Themeda triandra, Panicum maximum and P. coloratum and a woody layer characterised by Acacia species. The sites differed initially in range composition. Llanwarne was dominated by Themeda triandra, Panicum maximum and P. coloratum, while Dordrecht with a history of heavy stocking was dominated by Urochloa mosambicensis, Sporobolus nitens and S. iocladus. Three treatments were stocked with Brahman-cross cattle at each site to initially represent 'light'(0.17 LSU ha-'), 'intermediate' (0.23 LSU ha-') and 'heavy' (0.30 LSU ha-') stocking. Data collected at three-week intervals over seven seasons (November 1986 to June 1993 or 120 measuring periods) provided the basis for the development of a stocking model LOWBEEF - OWveid BioEconomic Efficiency Forecasting) which comprised two biological sub-models (GRASS and BEEF), based on step-wise multiple linear regression models, and an integrated economic component (ECON). The GRASS model predicted the amount of residual herbage at the end of summer (kg ha-') and the forage deficit period (days) over which forage supplementation would be required to maintain animal mass. Residual herbage mass at the end of summer (kg ha-') was significantly related (P < 0.01) to cumulative summer grazing days (LSU gd ha-'), rainfall (mm) (measured 1 July to 30 June) and range condition (indexed as the sum of the proportions of T. triandra, P. maximum and P. coloratum). The forage deficit period (days) over which herbage mass declined below a grazing cut-off of 1695 kg ha-' was significantly related (P < 0.01) to residual herbage mass at the end of summer. The BEEF model predicted the livemass gain over summer (kg ha¯¹) which was significantly related (P< 0.01) to rainfall (mm) stocking rate (LSU ha¯¹) but interestingly not to condition. The economic component (ECON) reflected the difference between gross income (R ha¯¹) and total costs, which were based on fixed and variable cost structures (using 1993 Rands), including demand-related winter costs, to reflect net returns to land management (R ha¯¹). A conceptual model of range dynamics based on three discrete states, was to developed to summarise the effects of rainfall and stocking rate in semi-arid savanna. State 1, characterised by iocladus and S. nitens, was associated with heavy stocking. Movement towards State 2, characterised by T. triandra and P. maximum, was associated with periods of above-average rainfall. Drought conditions, which comprised a major system disturbance led to stability at State 3, dominated by U. mosambicensis. Post-drought recovery was influenced by predrought composition and stocking levels where tuft numbers, basal cover and seedbank were significantly reduced by increased stocking within a sward dominated by species of low stature such as Aristida congesta subsp Urochloa mosambicensis, Sporobolus nitens, Sporobolus iocladus and Tragus racemosa. It was suggested that extensive soil loss may lead to stabilisation across an irreversible threshold at a forth state characterised by shallow species such as Tragus racemosa Aristida congesta subsp. congesta. Sensitivity of optimum economic stocking rate net return to price and interest rate fluctuations, and wage and feed cost increases were examined for various rainfall and range condition scenarios. Net return and optimum economic stocking rate increased as rainfall and range condition increased through the effect of increased residual herbage mass at the end summer, decreased forage deficit periods and reduced supplementary feed costs. Net return was highly responsive to changes beef price where an increase in beef price led to an increase in optimum economic stocking rate and net return. The effect of reduced prices may be compounded by dry where supply-driven decreases in price may occur. This suggested that for dry seasons the optimum stocking rate was the lightest within the range of economic stocking rates. Although an increase in interest rates would increase variable costs and lead to reduced returns, the influence of interest rates on enterprises will vary in relation to farm debt loads. Increased labour costs would result in a corresponding decline in net return although optimum economic stocking rate would remain unaffected. Increased supplementary feed cost had little influence on net return relative to the effect of demand-driven increases in feed costs as rainfall decreased. The distribution of net returns for stocking strategies of 0.20, 0.30 and 0.40 LSU ha¯¹ and climate-dependent stocking (where stocking levels were varied in relation to rainfall and hence forage availability) and range condition scores of 10, 50, 80 and a dynamic range model were examined for a 60 year rainfall sequence (1931-1991). While a range score of 10 would see residual herbage mass decline to below a grazing cut-off of 1695 kg ha¯¹ before the end of summer, a range score of 80 suggested that, irrespective of stocking strategy within the range investigated, herbage would not become limiting. This suggested that irrespective of stocking strategy a range score of 10, established across an irreversible soil loss threshold, would reflect accumulated losses over the 60 year period. In contrast, a range score of 80 would lead to positive accumulated returns. A dynamic range model (where range composition was related to previous seasons rainfall) and a climate-dependent stocking strategy, suggested that herbage would not become limiting by the end of summer and forage deficit periods would be restricted to an average of 88 days per year. Such an approach would yield a higher accumulated cash surplus than fixed stocking strategies. Incorporation of stochastic rainfall effects allowed the development of cumulative probability distributions based on 800-year simulations to evaluate the risk associated with various stocking strategies. Range condition played a major role in determining the risk of financial loss where decreased range condition was associated with enhanced risk. An increase in stocking rate resulted in increased variability in returns. Although the risk of forage deficits and financial losses may be reduced with lighter stocking, this may be at the cost of reduced returns during wetter seasons. Increased stocking may increase the probability of higher returns during wetter seasons although this may at the cost of increased risk of forage deficits and highly negative returns during dry seasons. Importantly, ecological risk may increase as stocking is increased. A flexible or climate-dependent strategy, where stock numbers are adjusted according to previous seasons rainfall, combine financial benefits of each approach and reduce financial risk. Although errors may carry high ecological costs where, for example, the effect of an above-average rainfall season would be to increase stock numbers into a subsequent dry season, the probability of incurring such error was low. Current livestock production systems in the semi-arid savanna of Natal based on breeding stock may not be appropriate in a highly variable environment where low rainfall may require extended periods of upplementary feeding or force the sale of breeding stock. A change in emphasis from current systems to a mixed breeding system, where the level of breeding stock would be set at the optimum economic stocking rate for drier seasons, may decrease both financial and ecological risk. Growing stock may either be retained or purchased during wetter seasons to reach the optimum economic stocking rate for such seasons. although growing stock may display a greater tolerance to restricted intake (during dry seasons) than would breeding stock, additional growing may be rapidly sold in response to declining rainfall with no influence on the breeding system. Integration of wildlife into current cattle systems may be an important means of reducing financial risk associated with variable rainfall and profitability and ecological risk associated with woody plant encroachment.Item Browse : quantity and nutritive value of evergreen and deciduous tree species in semi-arid Southern African savannas.(2012) Penderis, Caryn Anne.; Kirkman, Kevin Peter.Browse selection, intake, utilisation, palatability, quality and production are tightly linked and need to be considered together in trying to improve our understanding of browsing dynamics and the interactions between browsers and vegetation. Such an understanding is necessary in order to re-evaluate determinations of browser carrying capacities and evaluating actual and potential impacts of browsing animals on vegetation composition and diversity. Browser carrying capacity is determined by both the quantity and the nutritive value of forage. The measurement of browse quantity and nutritive value and the matching of browse supply to browser demand are central to sustainable utilisation and the monitoring of vegetation health. South African savannas are poorly studied with respect to tree canopy growth and browse production making it difficult to quantify the available browse biomass on which browsing capacity estimations are based, and consequently difficult to estimate levels of browsing that are sustainable. This study addressed these issues by investigating browse dynamics, broadly aiming to (1) explore factors affecting browse production, biomass and nutritive value; (2) develop models to assess and monitor these parameters across seasons and properties; (3) use the resultant models in improving our understanding of how to determine browser carrying capacities. More specifically, our study sought to examine the effects of plant physiognomy, forage nutritive value, canopy stratum, defoliation, temperature, rainfall and soil nutrient status on the browse production of evergreen (Carissa bispinosa, Euclea divinorum, Gymnosporia senegalensis), semi-deciduous (Spirostachys africana, Ziziphus mucronata) and deciduous (Acacia nilotica, Dichrostachys cinerea) savanna tree species from June 2003 – June 2005 in three sites along the northern Zululand coastline of KwaZulu-Natal. Available browse biomass, during the dry season, of four key savanna tree species (A. nilotica, E. divinorum, G. senegalensis, and S. africana) was estimated through the development of allometric regression equations. Non-linear regression was used to investigate the relation between the leaf dry mass (LDM) and canopy volume (CVol) of each of the four tree species. Exponential regression (y = a + brlnx) of the natural logarithm of CVol data provided the most accurate and precise description of the tree CVol – LDM relation. A study was undertaken to determine which factors may influence browse production in a southern African savanna. Regression tree models for the browse production identified that the dominant factors influencing browse production were CVol (m3), season, species and height to the lowest leaves of the tree canopy (HL) (m). The length of the growing season had a marked effect on the production potential of savanna tree species, suggesting that improved conditions for growth, i.e. greater rainfall, soil moisture content and improved soil nutrient availability result in a longer period of rapid sustained growth. Species was identified as an important contributing factor to differences in browse production rates, suggesting the need for the development of species or species group models. Mean annual browse production of evergreen trees was greater than that of deciduous and semi-deciduous trees. Mean quarterly (three monthly) browse production was highest, for all trees, during the wet season, with the greatest difference between wet and dry season production being observed in deciduous forms. Evergreen forms showed continuous growth over the whole study, with enhanced growth over the wet season. Deciduous forms, on the other hand, concentrated growth in spurts, when environmental conditions became favourable, with most production occurring during a short growing season. Browse nutritive value was found to be greatest during the wet season, when growth and photosynthesis are at their greatest. Further, browse nutritive value was greatest in deciduous species. Evergreen trees were found to have greater acid detergent fibre (ADF) concentrations than both the deciduous and semi-deciduous trees. By contrast, crude protein (CP) concentrations were greater in semi-deciduous and deciduous species than in evergreen species. The daily CP requirements for maintenance for an adult impala (45 kg) were met by all species over all three study areas and all seasons. Daily CP requirements for growth and lactation, however, were only ever met by deciduous and semi-deciduous species, though this result was not consistent over study areas and seasons. Predictive models for the production of browse on deciduous, semi-deciduous and evergreen trees in northern Zululand were developed using multivariate adaptive regression spline functions. The best predictors of growing season browse production in all three tree guilds (defined here as a group of trees having a characteristic mode of living) were primarily measurable tree dimensions, while the prevailing environmental conditions had little impact. Differences in the production, nutritive value and available browse biomass between the different tree forms and seasons have a profound effect on the determination of browser carrying capacities and need to be incorporated into any game or conservation management plan.Item Burning wetlands: the influence of fire on wetland vegetation structure and composition.(2013) Luvuno, Linda.; Kirkman, Kevin Peter.; Kotze, Donovan Charles.; Morris, Craig Duncan.Water is a very important component of the natural world and human survival but water sources (river systems and wetlands) are becoming increasingly degraded and less functional. In particular the increase of woody C3 species into wetlands is a cause for concern, as they invade wetlands which are predominantly herbaceous. Woody species use more water than herbaceous species and this impacts wetland function. In moister savannahs and grasslands woody species are influenced significantly by fire, and fire is consequently used widely as a means of reducing woody plant density. However, in wetlands there is uncertainty about the effectiveness of fire in combating woody plant encroachment and the general impact of fire. The Kwambonambi wetlands of South Africa have been recently experiencing an invasion by woody species which are both indigenous and alien. This area was historically herbaceous and experienced frequent natural fire but is now largely under timber plantation and thus fire has been mainly excluded. This has led to a continual increase of woody species into the wetland and has seen a change from mainly herbaceous to a matrix of fern, herbaceous grasses and sedges and an invasion of swamp forest species such as Macaranga capensis. This has now affected ecosystem functions and changed fire behaviour in these wetlands. A search through the literature has revealed a lack of studies which investigate the influence of fire on wetland structure and composition. This ambiguity highlights the need for more focused research that will influence management decisions. In order to develop meaningful management strategies, there needs to be a good understanding of the problem and the underlying processes contributing to the degradation and loss of the system you are trying to manage, in this case it is wetlands. This study investigates wetland changes and losses at a small spatial and temporal scale for informing management on the best use of fire on wetlands. A temporal study (a change detection analysis) reveals that the main drivers of the vegetation structure in this landscape are the land use/land cover change in the form of large scale plantation forestry coupled with fire suppression. 92.4% of the landscape has been altered with the greatest degree of change in this landscape accounted for through the change from grassland and herbaceous wetland (1519ha and 524ha loss respectively) to timber plantation and the spread of indigenous forest indicated by an increase of 70% and 11% increase respectively. The large scale plantation forestry in the landscape has led to the drying of the landscape (which affects the hydrology of the wetlands) and therefore reduces the levels of soil saturation. Simultaneously, plantation forests are fire suppression areas to avoid tree loss. These factors, together with the disturbance of converting wetlands into plantation forest and clear felling (which occurred to 7%/155ha of the wetlands in the study site), have allowed forest species such as the fern Staenoclina tenuifolia and Macaranga capensis to invade the wetland areas. Over time, the combination of fire suppression, disturbance and drying encourages the establishment of woody seedlings, turning wetlands into swamp forests/woodlands. This regime shift is more evident in wetlands which were once converted into plantation forest with insufficient woody plant species control to accompany the withdrawal of plantation. The few wetlands which have maintained their herbaceous structure and function are those maintained with fire as a management strategy. A burn experiment shows that fire does have a significant negative effect on tree density in these wetlands-especially previous disturbed wetlands. The recommendation from this study is to remove the forest species out of the wetlands and reintroduce fire (biennial burns) into the management of these wetlands. A better relationship between the forest managers and researchers is recommended to continually co-adapt to any changes occurring in these wetlands.Item Bushclump-grass interactions in a south-east African savanna : processes and responses to bush control.(1996) Jarvel, Leander Clement.; O'Connor, Timothy Gordon.The objective of this study was to investigate woody-grass interactions and the initial response of vegetation to bush control in the mesic Eastern Cape bushclump savannas. The occurrence of multi-species bushclumps, rather than single-trees, presented an interesting variation to an otherwise well-studied interaction. The effect of bushclumps on their local environment was characterized. Since all woody-grass interactions involve competition for irradiance, nutrients and moisture, a factorial experiment was designed to discriminate these individual and interactive effects. Mechanical and chemical bush control measures were investigated in a formal, replicated experiment. The herbaceous, woody and soil responses to bush control treatments, for the first two seasons, are reported. Bushclumps had a moderating effect on their microclimate when compared with the open grassland. Lower maximum and higher minimum temperatures, and higher humidity were the result of an 80-90% reduction in the irradiance regime. Soils beneath bushclumps were more fertile than grassland soils. The importance of bushclumps on sandier soils was discussed. Bushclumps were characterized by a sparse shade-tolerant herbaceous layer which contributed little to grazing capacity. An aspect effect increased grass production in the grassland on the south-facing side of bushclumps. Initial results suggest that the lateral spread of woody roots could be as far as 25 m. The factorial experiment tested the individual and interactive effects of irradiance (normal sunlight, 40% and 80% shade), nutrients (normal nutrient level, low and high nutrient addition levels) and moisture (low, normal and additional moisture levels) on the herbaceous layer. The interaction of 80% shade and high nutrients had a detrimental effect on herbaceous production. Deep shade did not affect herbaceous production, but Themeda triandra showed etiolated growth, aerial tillering, an increase in the number of leaves, and an increase in the proportion of stem under deep shade. The root mass of the herbaceous layer also decreased. This suggested that below-ground biomass production was impaired at the expense of maintaining aboveground biomass. The addition of nutrients significantly increased herbaceous production and resulted in a change in sward composition. Moisture was not an important factor in this experiment. Mechanical clearing in the bush control experiment resulted in a significant increase in herbaceous production. Panicum maximum colonized the ex-bushclump zone and contributed significantly to the increased production. Oversowing with Chloris gayana significantly increased grass yields. The two contrasting seasons revealed the importance of rainfall in affecting herbaceous production. The second season was characterized by lower soil fertility and a decline in grass quality. This was attributed to high grass production in the above-average rainfall season. A four-fold increase in woody stem density after two seasons demonstrated the coppicing ability of the woody layer once mechanically cleared. Most of the coppice occurred within the first season. Exceptional coppice growth characterized the second season. Acacia karroo recruitment was mainly from seed. Woody plants showed their susceptibility to chemical poisoning by dropping their leaves within the first season. Many of these individuals succumbed during the second season. Mortality was greatest in woody plants with a smaller basal circumference. Owing to the difficulty of accessing all woody stems in a bushclump, mortality in bushclumps was lower than that in the open grassland. Grass production in the bushclump and its periphery were significantly increased in both seasons. This was attributed to the increased productivity of mainly Panicum maximum which took advantage of the increased irradiance regime. Both the mechanical and chemical treatments displayed significantly greater grass production in the open grassland zone. This demonstrated the extent to which the woody layer had competitively dominated the herbaceous layer.Item Cattle and veld interactions at the Armoedsvlakte Research Station.(2011) Le Roux, Gustav Nic.; Du Toit, Justin Christopher Okes.; Kirkman, Kevin Peter.A long-term grazing trial was started in 1977 at Armoedsvlakte Research Station, about 10km west of Vryburg, in Tarchonanthus veld of the Ghaap’s Plateau, which is a variation of the Kalahari Thornveld veld type. The main aim of this study was to use the extensive veld condition and animal production data set to investigate the effects and interactions of stocking rate, grazing system applied and seasonal rainfall on veld condition and cattle production. The grazing trial has changed three times since its inception resulting in three different phases. The main changes in veld condition during phase one (1977-1991) was due to density independent effects (e.g. seasonal rainfall) and not density dependent effects (e.g. stocking rate). A major change occurred in 1985 following a multiple year drought. The drought resulted in adverse changes in species composition, basal cover and residual biomass of all treatments. The system did not recover from the drought during phase one, despite well above mean seasonal rainfall for a number of years after the drought. During phase two (1992-1999) and phase three (2000 to present) completely different vegetation dynamics occurred than what was experienced during phase one. Density dependent effects (e.g. stocking rate) were more important in explaining variation in veld condition during these two phases. High stocking rates resulted in adverse changes in species composition, poor basal cover and a low residual biomass production. It is however important to note that seasonal rainfall did explain a significant additional amount of variation in veld condition. This suggests that a continuum of non-equilibrium and equilibrium vegetation dynamics occurred in these two phases. The residual biomass and seasonal rainfall model for phase one indicate completely different results for the gain per animal data. In the seasonal rainfall model, stocking rate does not have a significant effect on gain per animal, but seasonal rainfall and the interaction of stocking rate with seasonal rainfall explains most of the variation in gain per animal. This suggest a continuum of non-equilibrium and equilibrium dynamics and that animal production is more sensitive to seasonal rainfall than to stocking rate, although the significant interaction of stocking rate with seasonal rainfall suggest that the seasonal rainfall effect on animal production is dependant on stocking rate. The residual biomass model however indicates that stocking rate is more important than rainfall in explaining variation in the mass gains per animal. The stocking rate effect on gain per animal was significant and indicated that as stocking rate increased, that gain per animal decreases. Seasonal rainfall and the interaction of stocking rate with seasonal rainfall had no significant effect on gain per animal. The amount of variation explained by the seasonal rainfall model was larger than the residual biomass model and this indicates that rainfall explains more variation in gain per animal, than residual biomass does. This possibly indicates that non-equilibrium effects are stronger than the equilibrium effects, but it is important to notice that stocking rate had a significant effect in some cases. The gain per hectare models (seasonal rainfall and residual biomass) for phase one indicates that stocking rate has a significant effect on gain per hectare. Increasing stocking rates resulted in higher gain per hectare, which suggests that the turning point of the typical “Jones and Sandland model” has not been reached and this might be due to light stocking rates applied during the duration of phase one. The seasonal rainfall model however has significant effects of seasonal rainfall and interactions of stocking rate with seasonal rainfall on gain per hectare. This suggests that the effect of stocking rate is dependent on seasonal rainfall and that seasonal rainfall explain an additional amount of variation in gain per hectare. In general, it appreared that the optimal stocking rate for animal production was higher than those applied during the duration of the trial, but this is due to lower than planned actual stocking rates applied during all three phases of the trial. It is very difficult to determine a generic optimal stocking rate for different rainfall volumes and it is recommended that the actual stocking rate for different ecological zones be determined based on rainfall, biomass, species compos[i]tion, basal cover and available browse and not just on the provisional recommendations. The type of grazing system applied did not show any statistically significant effects on both gain per animal and gain per hectare for the animal production data during phase one. This result is interesting and contradictive to most of the scientific literature where some authors concluded from their studies that rotational grazing systems produce higher animal production than continuous grazing systems, whereas others researchers state that continuous grazing systems produce higher animal production than rotational grazing systems. In phase two both the residual biomass and seasonal rainfall models for phase two did not show any significant effects and interactions of stocking rate, seasonal rainfall level and/or residual biomass on both gain per animal and gain per hectare. Both the residual biomass and seasonal rainfall models for phase three did not show any significant effects and interactions of stocking rate, seasonal rainfall level and/or residual biomass on animal gains per animal. The seasonal rainfall model did not show any any significant effects and interactions of stocking rate, seasonal rainfall level and/or residual biomass on animal gains per hectare. However, the residual biomass model indicated that stocking rate had a significant effect on gain per hectare and the production closely followed the Jones and Sandland (1974) model as at low stocking rates, gain per hectare increases at a rapid rate, but as stocking rates increases to high stocking rates, the rate of increase in gain per hectare declines, until it eventually reaches a turning point, where after gain per hectare declines with increasing stocking rates. Stocking rate only had a significant effect on the condition score of cows during phase two and phase three, as high stocking rates resulted in poor animal condition in both phases. No significant effects and interactions of stocking rate and seasonal rainfall were indicated on calving percentage, weaning percentage, conception rates and percentage of desirable meat produced during phase two.Item The coastal grasslands of Maputaland, South Africa : effects of fire and grazing on vegetation structure, diversity, and composition.(2007) Dalton, Brian Patrick Alexander.; Kirkman, Kevin Peter.A series of trials and investigations were implemented to address concerns surrounding the dynamics of the fire-climax wooded/edaphic grasslands within the iSimangaliso Wetland Park, northern KwaZulu-Natal, South Africa. The research problem surrounded inadequate historical evaluations of changes in vegetation structure, grasslands progressing to a woody dominated composition, and increases in Helichrysum kraussii (Curry bush). These were addressed as follows: Firstly, the recovery of vegetation in response to different periods of fire exclusion in different communities along a topographical gradient of a coastal dune area, was assessed over a two year period. Secondly, the regeneration after wildfire of the persistent, stress tolerant shrub H. kraussii, was studied on different catenal positions with differing fire exclusion periods and with and without defoliation of surrounding plant biomass in the coastal edaphic grasslands north of Manzengwenya, South Africa. Thirdly, aerial photography from 1937, 1975, and 2000 was georectified, digitised and analysed using a Geographic Information System to examine broad vegetation changes in response to different management regimes for a site on the Eastern Shores of Lake St Lucia and a site within the Tewate Wilderness Area. In the absence of fire, the coastal edaphic grasslands progressed to a closed canopied scrub forest within six years. An increase in fire exclusion period resulted in a decrease in species abundance, an increase in woody height, and a decrease in plant density. Richness increased initially but declined marginally with increased fire exclusion period. Higher lying east and west facing sites had a better veld condition index compared with bottom sites and had an increased response (vigour) to defoliation but were far more likely to succeed through to woody scrub forest. Woody plant biomass vigour was greater for west facing sites. Ordination of species composition across sites in response to fire exclusion and catenal position revealed greater similarities within exclusion periods than between. Bottom sites were more similar with similarity decreasing for east and west facing sites. Fire exclusion resulted in an initial increase in woody species and a subsequent increase in herbaceous species. iii Growth response of H. kraussii was unaffected by catenal position and fire exclusion period, whereas defoliation of surrounding grass tended to increase in size (P<0.05). Density and height for this species however increased with increasing fire exclusion. An increase in soil moisture negatively affected H. kraussii growth indicating susceptibility to high water tables. The number of other woody species establishing beneath H. kraussii may be due to changes in the transmission of light through the canopy where an increase in canopy diameter resulted in an increase of photosynthetically active radiation at the soil surface. The effects of fire on landscape change were investigated for the Eastern Shores and Tewate Wilderness Area, iSimangaliso Wetland Park, South Africa using aerial photography. Changes to historical disturbance regimes largely through active exclusion of fire resulted in the majority of the higher lying coastal grasslands changing to savanna scrub or closed canopied forest within 63 years on the Eastern Shores. The degree of fragmentation of these grasslands was greatly reduced within the Tewate Wilderness Area where disturbance regimes included greater frequencies of fire. Hygrophilous grasslands remained largely unaffected by woody encroachment but did not preclude woody species establishment indicating possible susceptibility during long drier periods. Frequent fires result in the maintained distribution of the higher grasslands. This vegetation type is a system which becomes resilient in response to fire, whereas in the absence of fire readily progresses to Dune Forest. The coastal grasslands above the high water table are therefore highly unstable and transformed easily in the absence of regular disturbance. It would appear that a threshold of approximately six years exists, after which substantial management intervention may be required to reverse the succession back to grassland. The growth of H. kraussii was unaffected by fire and remained persistent irrespective of fire exclusion period. An ability to attain size (height and canopy diameter) was limited with increased soil moisture but density was reduced through regular burning. Frequent fires are necessary to reduce density of H. kraussii and reduce the competitive advantage gained with age.Item A comparative classification of the sourish-mixed bushveld on the farm Roodeplaat (293 JR) using quadrat and point methods.(1995) Panagos, Michael David.; Westfall, Ribert Howard.; Zacharias, Peter John Kenneth.; Ellis, Roger.An area and a point-based technique were used together at each of the same 75 sampling sites (stands), on a Sourish-Mixed Bushveld farm, to collect data for the classification and mapping of the vegetation. Both sets of data were synthesized using the same computer program package and the efficacy of the resulting classifications as well as the efficiency of the two field sampling techniques was compared. Following this, a continuous 7 752 point (1 m apart) transect was carried out, traversing the farm, in order to determine the optimum scales at which to sample Sourish-Mixed Bushveld so as to increase classification efficacy and improve community boundary recognition. The results indicated that (1) the arbitrarily chosen sampling scale of 1:8 000 was too large for "farm-scale" studies; (2) the area-based method proved to be satisfactory in that the classification and vegetation map produced with this method were verified spatially and environmentally; (3) the point-based method was deficient as a classificatory and mapping tool at large scales, since too few species were recorded with this method to make any sense of the classification and mapping of the vegetation was not possible; (4) less time per species was spent using the area-based method but because more species per stand were recorded with this method, the point-based method was quicker per stand; (5) the area-based method was easier to use in dense vegetation and irregular terrain; and (6) the optimum sampling scales for Sourish-Mixed Bushveld, as indicated by the synthesis of the continuous transect data, are about 1:12 000, 1:50 000 and 1:250 000.Item A comparison of in-field techniques for estimating the feed intake of young boer goats on a Leucaena leucocephala/grass hay diet.(1997) Letty, Brigid Aileen.; Zacharias, Peter John Kenneth.; Morris, Craig Duncan.Two methods of estimating the intake of a 25% leucaena : 75% grass hay diet by young male Boer goats were assessed, (a) The purine derivative technique which uses the urinary excretion of purine derivatives (expressed relative to creatinine concentration in the same sample) as an index of feed intake, and (b) the conventional marker method, utilizing chromic oxide (Cr₂O₃) contained in gelatin capsules and dosed twice daily, as the marker. Following a prerun the two techniques were compared in three runs of an indoor experiment. In each run 10 goats were randomly allocated to five feeding levels (500 to 1100 g fodder d ¯¹ on air dried basis). A preliminary and an adaptation period during which goats were dosed with the Cr₂O₃ and fed their daily feed allowance, was followed by a 4 day collection period during which spot samples of urine were collected and analysed for allantoin and creatinine (allantoin being used instead of total PDs) and faecal samples were collected for chromium analysis and percentage dry matter determination. For the first two runs, two grab samples per day for each goat were bulked and analysed for chromium content. For the last run, the total daily faecal collection was subsampled and analysed for chromium. Work was done in metabolic crates to determine the effect of time of collection on the ratio of allantoin : creatinine (A/C) in spot urine samples and it was found to non-significant (P>0.05). Linear regressions of: (a) feed intake expressed per unit metabolic mass (g.d ¯¹.LW ¯°∙⁷⁵ (I_mmass)) against A/C ratio; (b) faecal output (g d ¯¹) against feed intake (g d ¯¹); and (c) faecal chromium concentration (mg kg ¯¹) against faecal output (g d ¯¹) were fitted to the data. During the prerun, only regression (a) was fitted and was non-significant (P>0.05), showing no trend at all. For the first true run, the regression of I_mmass against A/C ratio was significant and the correlation was high (P≤ 0.001, R² [A] 0.715, n = 10) but for the second and third runs, the correlations only became significant when the apparent outliers were discarded from the data. (Run 2: P≤ 0.001, R² [A] 0.824, n = 8; Run 3: P≤ 0.05, R² [A] 0.430, n = 9). It was concluded that the relation between I_mmass and A/C ratio is not well enough defined to be used for predictive purposes. When regression (b) was investigated, all the runs produced significant results (P≤0.001, P≤0.01, P≤ 0.001 for runs 1,2 and 3 respectively) however the correlations were not as high as expected (R² [A] being 0.714, 0.565 and 0.863 respectively). For the regression of faecal Cr concentration against faecal output (regression c), all runs showed significant relations (P< 0.001, P< 0.0001, P:s 0.001 for runs 1,2 and 3 respectively) and the correlations were high (R²[A] being 0.836, 0.837 and 0.912 respectively). The data from the three runs were pooled and single equations established for regressions (b) and (c) to allow for the prediction of intake from faecal chromium concentration. Faecal output = feed intake * 0.448 + 19.341 (P≤ 0.001, r 0.853, R² [A] 0.718, SE 25.664, n - 30) Faecal chromium concentration = faecal output * -241.547 + 1.315E+05 (Ps 0.001, r 0.904, R² [A] 0.811, SE 5603.788, n = 30). In vitro figures were determined for a range of leucaena : hay mixes but no apparent trend was found between percentage leucaena in the mix and the digestibility of the mix. These results compared favourably with in vivo results obtained for a 25% leucaena : 75% hay mix. Neither technique proved entirely satisfactory, but the external marker method was found to be more effective than the purine derivative technique. More work is required especially with respect to the latter method.Item Control of bush encroachment with fire in the arid savannas of Southeastern Africa.(1983) Trollope, Winston Smuts Watts.; Tainton, Neil M.No abstract available.Item Determinants of community composition and diversity in KwaZulu-Natal mesic grasslands : evidence from long-term field experiments and pot and plot competition experiments.(2003) Fynn, Richard Warwick Sinclair.; Kirkman, Kevin Peter.A predictive understanding of plant community response to various environmental influences (e.g. type, timing and frequency of disturbance, site productivity, fertilization, etc.) is a general goal of plant ecology. This study sought to further understanding of mesic grassland dynamics in KwaZulu-Natal using long-term field experiments (> 50 years) and short-term pot and plot competition experiments. The specific objectives were to: 1) examine the effects of long-term burning of grassland on soil organic matter content because of its potential impact on nitrogen cycling and community composition, 2) examine patterns of community composition and species richness in response to different type, timing and frequency of disturbance (burning and mowing) in a long-term grassland burning and mowing experiment and to different type and amounts of fertilizer application in a long-term grassland fertilization experiment, 3) develop hypotheses concerning the response of different species to disturbance and fertilization, and test these hypotheses using pot and plot competition experiments, and 4) provide a general synthesis of the results of the various field, pot and plot experiments that may be used to develop a predictive theoretical framework for mesic grassland dynamics. Total soil nitrogen was lowest in sites burnt annually, intermediate in sites burnt triennially and highest in sites protected from disturbance and sites mown annually in the dormant-period (spring or winter). Winter burning reduced soil organic carbon and total soil nitrogen more than spring burning. Mineralizable nitrogen was reduced by burning. The different effects of type, timing and frequency of disturbance on total soil nitrogen appeared to be an important determinant of community composition and species richness. Short-grass species (Themeda triandra, Eragrostis capensis, Heteropogon contortus, Diheteropogon amplectens and Eragrostis racemosa) were most abundant in annually burnt sites (especially winter burnt sites), whereas medium and tall-grass species (Eragrostis curvula, Cymbopogon spp., Hyparrhenia hirta and Aristida junciformis) were most abundant in triennially burnt sites, sites protected from disturbance and sites mown annually in the dormant-period, all of which had higher total soil nitrogen than annually or biennially burnt sites. Species richness and short-grass species declined with increasing levels of nitrogen fertilization in the fertilizer experiment and declined with increasing productivity and nitrogen availability in both the fertilizer and burning and mowing experiments. Thus, it was hypothesized that the type, timing and frequency of disturbance resulted in different compositional states through different effects on soil resources (especially nitrogen), which affected the competitive balance between short and tall species. The hypothesis that composition was determined by disturbance-mediated soil nitrogen availability was supported by competition experiments, which revealed that shortgrass species were most competitive in low-nutrient/low-productivity treatments and tall-grass species most competitive in high-nutrient/high-productivity treatments. The fertilizer experiment and a competition experiment revealed that tall broad-leaved species were most competitive in sites of highest productivity, fertilized with both nitrogen and phosphorus, whereas tall narrow-leaved species were most competitive in sites of intermediate productivity, fertilized with nitrogen only. It was hypothesized that summer mowing increased the abundance of short-grass species and decreased the abundance of tall-grass species in the burning and mowing experiment by increasing the competitive ability of short-grass relative to tall-grass species, rather than the tall-grass species being less tolerant of mowing. A competition experiment revealed that tall-grass species (Hyparrhenia hirta and Panicum maximum) were as tolerant of cutting as a short-grass species (Themeda triandra). Themeda triandra was shown to become extremely competitive in cutting treatments, reducing the biomass of most other species relative to their monoculture biomass, showing that its dominance of mown sites in the burning and mowing experiment was a result of its superior competitive ability rather than greater tolerance of mowing. However, many tall erect herbaceous dicots appeared to be intolerant of summer mowing, probably because their meristems are aerial and easily removed by mowing, whereas short creeping herbaceous dicots were increased by summer mowing probably because their meristems were below the mowing height. Further, these short species would be vulnerable to shading in unmown sites. Thus, species with basal meristems (hemicryptophytes) or meristems near the soil surface (geophytes) appear to be more tolerant of mowing than species with aerial meristems (phanerophytes), but the tradeoff is that a low meristem height renders them vulnerable to shading in unmown sites. Very high litter accumulation in the sites protected from disturbance appeared to have a direct influence on community composition and species richness. Species that dominated these sites (e.g. Tristachya leucothrix & Aristida junciformis) initiated tillers below-ground and had sharp erect shoots that appeared to be an adaptation for penetrating litter. Species that initiate tillers below-ground are probably less vulnerable to the effects of shading by litter because their tiller initiation is not dependent on high light availability. The fact that Aristida junciformis was shown to have very low competitive ability in two competition experiments, suggests its dominance of protected sites was through tolerance of high litter levels rather than competitive exclusion of other species. Low grass species richness in these sites was probably a result of an inability of many species to tolerate these high litter levels. This study has revealed that inherent site productivity and its interaction with the effect of disturbance on soil resources and litter levels is a major determinant of community composition and species richness. The effect of type, timing and frequency of disturbance on soil nitrogen was able to account for the principal changes in community composition. Thus, the influence of disturbance on soil nitrogen is a unifying principle in plant ecological theory that enables greater understanding of disturbance-composition relationships. However, intolerance of certain forms of disturbance (e.g. mowing) by species with aerial meristems, or intolerance of accumulating litter in the absence of disturbance by species without sharp erect shoots, may also have important influences on composition. In addition, this study has revealed that plant traits (height, leaf width, position of tiller initiation, shoot morphology and position of meristems) were well correlated with the various effects of disturbance and fertilization on community composition, indicating that a plant trait-productivity-disturbance framework has great potential for understanding and predicting species response to disturbance and multiple limiting nutrients.Item Determinants of grass production and composition in the Kruger National Park.(2003) Zambatis, Nicholas.; Zacharias, Peter John Kenneth.; Morris, Craig Duncan.; Biggs, Harry Cawood.The dynamics and complexities of climate-soil-vegetation relations in the Kruger National Park are poorly known. Although primary production and composition of the grass layer are very important components of the Park's ecosystem, equally little is known about the determinants of these parameters. A better understanding of these processes and relations will be of value to the management of this Park, as well as providing a better insight into these complex dynamics. A study was consequently undertaken covering a 14-year period to identify the most important determinants of above-ground grass production and composition. At the core of the study is the soil water balance. The use of evapotranspiration data in a study of this nature is however not absolutely essential, provided a variety of rainfall parameters are used, though it has the important advantage of providing a much more detailed and more complete insight into the relations of the grass sward with its environment. Stepwise and tree regression procedures were used to identify the important factors. It is concluded that rainfall in its various forms is the primary determinant of grass production, standing crop, and composition, the latter either as perennials or Decreasers. Secondary determinants, in varying degrees of importance, are the thickness and base status of the A horizon, distance to permanent drinking water, and competition by woody plants. Herbivore utilization is insignificant or at most, plays a relatively minor role. Herbivores appear to exert a negative influence on Decreaser abundance only when soil moisture stress exceeds a threshold level. When this is exceeded, relatively low herbivore densities are apparently sufficient to reduce Decreaser abundance. The definitions of Decreasers and Increasers consequently require revision to take into account the overriding influence of environmental factors, particularly those of soil moisture stress. The calibration of the disc pasture meter was re-evaluated. The relation between mean disc height and standing crop is non-linear. Up to a mean disc pasture meter height of 260 mm, the correlation between this parameter and above-ground standing crop is very strong (r2 = 0.95; P<0.0005). Beyond this height, the correlation is very poor (r2 =0.09; P<0.0005), apparently being strongly influenced by the structure of the grass plant, with tall grasses, or grasses with highly lignified culms resulting in a weaker correlation.Item Development and testing of a remote controlled oesophageal fistula valve for goats.(1993) Raats, Jan Gabriël.; Tainton, Neil M.; Trollope, Winston Smuts Watts.A remote control sampling technique was developed for the collection of oesophageal fistula samples from goats. Number and size of samples can be varied and collected throughout the day without disturbing the animal's normal feeding behaviour. The equipment developed and tested in this study consists of an oesophageal fistula valve which allows the fistula to be opened and closed, a rechargeable battery pack and motor to operate the valve, a portable radio and receiver to activate the valve motor, and a harness to attach the equipment to the body of the animal In addition, a closing device to effectively seal large oesophageal fistulae (> 1 050 mm²), which in turn is required to accommodate the valve, was developed. During field tests with the fistula valve, 10 % of I 027 sampling attempts failed due to blockage of the valve, and an average of 1.3 incidences of equipment failure were recorded per animal per sampling day, from an average of 9.9 extrusa collections per day. Observed feeding behaviour (grazing/browsing) as well as grass / bush ratio of fistula valve and standard fistula bag samples of four goats, formed the basis for the evaluation of this technique. In addition, extrusa recovery rates, measured under controlled conditions, were used in the evaluation of this sampling method. Differences in extrusa composition between the fistula valve and fistula bag techniques varied substantially during the browsing period within a camp and also between camps. Furthermore, during high frequencies of observed grazing, there were large differences between the fistula valve and fistula bag methods. During this study, the fistula valve technique provided a more realistic estimate (R²=.91) of the observed feeding behaviour of goats than the fistula bag technique (R²=.63). Under controlled conditions, the large oesophageal fistula, with or without the valve, enables high and consistent extrusa recovery rates (87 % recovery; SD 7.5).Item The development of cultivated dryland grass pastures for livestock production in the high rainfall areas of Rhodesia.(1979) Rodel, Malcolm George Wishart.; Booysen, Pieter de Villiers.; Elliott, R. C.No abstract available.Item The development of stocking rate models for three veld types in Natal.(1990) Turner, John Robert.; Tainton, Neil M.The overall objective was to develop stocking rate models for three veld types. namely the Lowveld. the Southern Tall Grassveld and the Natal Sour Sandveld. in Natal. Sub-objectives were to determine the 1) residual herbage mass at the end of the summer, 2) residual herbage mass at the end of winter and 3) individual animal performance under grazing conditions, and the effect of stocking rate on these three variables. Multiple linear regression component models were successfully developed to meet all three of the sub-objectives for each of the three veld types. Results show that veld condition is an extremely important factor determining animal production from veld, and that stocking rate on veld in good condition could possibly be double that on veld in poor condition. Stocking rate did not have the expected impact on individual animal performance in the summer. although it did have an important moderating influence under any particular set of environmental conditions. Stocking rate did. however. have a marked effect on herbage production and therefore on herbage availability in winter and so also on the ability to overwinter cattle without having to supply additional supplementary feed. Stocking rate in summer therefore had a major indirect effect on animal production in the winter. Carryover of residual herbage from one year to the next is probably not as important in these veld types as in some other parts of the country.Item Drivers of vegetation change in the eastern Karoo.(2019) Du Toit, Justin Christopher Okes.; Kirkman, Kevin Peter.The Nama-Karoo Biome occupies much of the western central region of South Africa and transitions into the Grassland Biome along its eastern boundary along a gradual ecotone. The area is characterised by hot summers and long, frosty winters, relatively low rainfall, peaking in mid- to late-summer, with high inter-annual variability, and botanically by a co-existence of grasses and dwarf shrubs, with grass abundance positively related to average annual rainfall that increases from west to east. Biome shifts in response to changes in rainfall pattern and grazing have been suggested but never directly examined. Major drivers of botanical composition are rainfall and grazing by livestock. Fire is rare, occurring sporadically if high rainfall allows for good grass growth. This thesis focused on understanding the influence of rainfall, grazing, low temperatures, and fire on botanical composition at Grootfontein, a site in the ecotone between the Nama-Karoo and Grassland Biomes that is home to grazing trials up to 85 years old. The following specific questions were addressed: Question 1: Over the long term, has Grootfontein shown patterns of rainfall cyclicity or experienced directional change, and how might these have influenced composition and productivity? Using data from 1888 to 2012, cyclicity in rainfall was evident for periods of approximately 20 and 60 years. Rainfall has also consistently increased since the mid-1970s, and this increase corresponds with a general pattern of increased grassiness in the eastern Karoo. Question 2: How do rainfall and grazing, alone and in interaction, influence vegetation composition in the eastern Karoo? Compositional data from the 1960s and 2010s from various treatments at two sites at Grootfontein (Camp 6 and Seligman grazing trials) show a shift from dwarf-shrub- to grass-dominated vegetation, consistent with the increased rainfall over that time. An influence of grazing, both present and historical, was evident but secondary to the effect of rainfall. In some cases, there has been a shift to grassland. Data from the Camp 6 and Seligman grazing trials from the 1940s to the 1960s further indicate a combined influence of season of grazing and of rainfall. High-intensity summer-only grazing by livestock largely extirpates grasses and allows shrubs to thrive, while summer grazing in the form of rotational grazing or continuous grazing allow for a balance of grasses and dwarf-shrubs. Severe declines in both grasses and shrubs occurred apparently in response to drought, though the exact conditions required to cause such mortality remain unclear. Plant cover data from 2008 to 2015 from the Boesmanskop grazing trial showed that consecutive years of exceptionally high rainfall increased plant cover to nearly 100%, and increased the abundance of grasses. Competitive exclusion of dwarf-shrubs by grasses was not evident. Question 3: What have been the trends in minimum temperatures, frost, and potential growth season at Grootfontein, how might these have influenced botanical composition and productivity, and is there evidence of increasing temperatures consistent with global warming? This is addressed using minimum-temperature data from 1916 to 2014. Minimum temperatures were lower than are usually reported. Variability in minimum temperatures was high, including a cooling from the 1910s to the 1950s and a warming from the 1950s to the 2010s. The length of the growing season (last frost to first frost of the subsequent season) varied considerably, and may have the potential to influence botanical composition. Question 4: What is the influence of fire in Karoo vegetation? Based on the effects of a single fire on Grootfontein, fire killed some species while most species resprouted. Grasses appeared unaffected in terms of survival, several species of dwarf shrub (notably Eriocephalus ericoides and Ruschia intricata) were killed, and will need to re-establish by seed (termed nonsprouters), while most dwarf shrub species resprouted. This resprouter/ nonsprouter dichotomy was found to be evident at a range of other fire sites in the Karoo. Heavy grazing appeared to strongly impede the recovery of burnt veld, maintaining it as a sparse grassland dominated by annual species and occasional unpalatable shrubs. Should the grassiness of the Karoo continue to increase, then fire may become more frequent thereby maintaining a grassland state. The findings allow for greater understanding of interactions among rainfall, grazing, and fire in eastern Karoo ecosystems, and these are discussed in the context of an existing state-andtransition model of eastern Karoo vegetation dynamics. The importance of long-term rainfall trends, rather than short-term variability, are highlighted. Long-term increases in rainfall will likely induce a biome shift to grassland, concomitant with a drastic reduction in dwarf-shrubs. This will likely alter both long-term carrying capacity for livestock and the type of animals that may be optimally stocked. Increased grassiness will result in the increased likelihood of fire, and if post-fire grass fuel loads remain above a critical level, a fire/grass feedback loop may be initiated whereby dwarf-shrubs are largely eliminated owing to their slow rates of growth or re-establishment. Introduction of infrequent fire will likely result in resprouter-dominated vegetation proliferating. It is demonstrated that the resilience of Karoo veld may be higher than previously thought, with severe grazing, droughts, and fire not pushing veld beyond a threshold into a state of denudation. Thus the prospects of conserving Karoo landscapes despite historical management remain high. Some key future research efforts needed to improve our understanding of Karoo ecology include the life-histories of dwarf-shrubs, the conditions of drought and herbivory under which grasses and dwarf-shrubs die, and how and when perennial dwarf-shrubs and grasses regenerate. Based on historical trends, the continued existence of long-term research trials, such as those at Grootfontein, may be under threat and should receive attention.