Masters Degrees (Horticultural Science)
Permanent URI for this collectionhttps://hdl.handle.net/10413/6628
Browse
Browsing Masters Degrees (Horticultural Science) by Subject "Avocado--Ripening."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Biosynthetic origin of abscisic acid in ripening avocado fruit.(2000) Guillaume Maurel, J. C.; Cowan, Ashton Keith.Mesocarp of ripening avocado fruit incorporated label from [2-(14)C]mevalonolactone, [1-(14)C] acetic acid, [1-(14)C] glucose and [1 -(14)C] pyruvate into ABA, although incorporation from mevalonolactone was significantly higher. Inhibition of the mevalonate pathway at the HMGR level using mevastatin reduced incorporation from acetate and MVL, while increasing incorporation from pyruvate and glucose. The carotenoid biosynthesis inhibitors AMO 1618 (inhibitor of lycopene cyclase) and fluridone (inhibitor of phytoene desaturase) both decreased incorporation of MVL into ABA, while the plant growth regulators ancymidol (inhibitor of GA synthesis and cytochrome P450) and jasmonic acid (senescence stimulator reducing the carotenoid content of plants) both increased incorporation of MVL into ABA. Tungstate was found to reduce incorporation from all four substrates into ABA, although more significantly from MVL and acetate. Further investigation revealed that the tungstate induced decrease in MVL incorporation into ABA occurred concomitantly with increased label incorporation into XAN. Cobalt, an inhibitor of ACC oxidase and therefore of ethylene production, increased incorporation of MVL into ABA. Nickel had a similar effect. Analysis of the methyl ester of ABA extracted from avocado mesocarp supplied with either [1-(13)C] acetic acid or [1-(13)C] glucose revealed incorporation of label from acetate consistent with formation of ABA via the acetate/mevalonate pathway whereas glucose was incorporated via the triose phosphate pathway of isopentenyl pyrophosphate formation. Methane, positive ion-chemical ionisation-mass spectrometry of the cis, trans and all- trans isomers of ABA indicated more intense labelling of trans, trans-ABA, irrespective of substrate used. These results indicate that trans, trans- and cis, trans-ABA are derived by different pathways and that ABA is formed in avocado by both the mevalonate and non-mevalonate pathways of isopentenyl diphosphate synthesis.Item Effect of postharvest silicon application on 'hass' avocado (Persea americana Mill.) fruit quality.(2010) Kaluwa, Kamukota.; Bertling, Isa.The South African avocado industry is export-orientated with forty percent of total production sold overseas. The avocado fruit is a highly perishable product with a relatively high rate of respiration which results in the quick deterioration of fruit quality. Good phytosanitary procedures are a necessity in ensuring good product quality. Due to the threat of pests and diseases becoming resistant to the conventional chemicals currently used to control them, there has been a great need to diversify from their usage. Silicon (Si), being the second most abundant element (28%) in the earth’s crust after oxygen, is a major constituent of many soils and has been associated with disease resistance in plants for a long time. It has been used in a number of crop species to provide resistance against pathogenic agents. In some horticultural crops Si has been found to offer protection against fungal infections by strengthening cell walls, thus making it more difficult for the fungi to penetrate and colonize the plant. The aim of this research was to investigate the effects of postharvest silicon application on the quality of ‘Hass’ avocado fruit. The specific objectives included investigating the effect of silicon on the ripening pattern as well as the metabolic physiology of the avocado fruit. Avocado fruit were obtained from two locations in the KZN Midlands (Everdon Estate in Howick and Cooling Estate in Wartburg). Fruit were treated with different forms of Si (potassium silicate (KSil), calcium silicate (CaSil), sodium silicate (NaSil) and Nontox-silica® (NTS)) at concentrations ranging from 160 ppm to 2940 ppm. After dipping for 30 minutes in the silicon treatments, the fruit were stored at -0.5°C, 1°C, 5°C or at room temperature (25°C). Energy dispersive x-ray (EDAX) analysis was then conducted on the exocarp and mesocarp tissues to determine the extent of silicon infiltration within each treatment. Firmness measurements, ethylene evolution and CO2 production were recorded as fruit approached ripening. The CO2 production of fruit that were stored at room temperature was analysed daily until they had fully ripened, while fruit from cold storage were removed weekly to measure respiration. Mesocarp tissue from each fruit was extracted using a cork borer and subsequently freeze-dried and stored for physiological analysis. The freeze-dried mesocarp tissue was then finely ground and later analysed for sugar content, total anti-oxidant capacity (TAOC), total phenolic (TP) content and phenylalanine ammonia lyase (PAL) activity using their respective assays. Statistical analyses were carried out using GenStat® version 11 ANOVA. Treatment and storage temperature means were separated using least significant differences (LSD) at 5% (P = 0.05). The experimental design in this study was a split-plot design with the main effect being storage temperature and the sub-effect being treatments. Each replication was represented by a single fruit. EDAX analysis revealed that Si passed through the exocarp into the mesocarp tissue in fruit treated with high concentrations of silicon, i.e., KSil 2940 ppm. Significant differences (P < 0.001) were observed in temperature means with regards to firmness. Fruit treated with KSil and NTS only and stored at 5°C were firmer than fruit stored at other temperatures. Fruits treated with Si in the form of KSil 2940 produced the least amount of CO2, while non-treated fruits (Air) had the highest respiration rate. Fruit stored at room temperature (25°C) produced significantly higher amounts of CO2 and peaked much earlier than fruit stored at other temperatures. Ethylene results showed that there were differences (P < 0.05) between temperature means with the highest net ethylene being produced by fruit stored at 25°C. There were also significant differences amongst treatment means (P < 0.001), with fruits treated with KSil 2940 ppm producing the least ethylene. There were significant differences (P < 0.001) in temperature means with regards to the total phenolic concentration with fruits stored at 1°C having the highest TP concentration (26.4 mg L-1 gallic acid). Fruit treated with KSil 2940 ppm had the highest total phenolic concentration whilst the control fruit (Air and Water) had the lowest. There were also differences (P < 0.05) in storage temperature means with respect to the total antioxidant capacity. Fruit stored at -0.5°C had the highest TAOC (52.53 μmol FeSO4.7H2O g-1 DW). There were no significant differences in TAOC (P > 0.05) with regards to treatment means although fruit treated with KSil 2940 ppm and stored at -0.5°C showed the highest TAOC of 57.58 μmol FeSO4.7H2O g-1 DW. With regards to the concentration of major sugars in avocado, mannoheptulose and perseitol (mg g-1), no significant differences (P > 0.05) were observed in temperature means. However, fruit stored at -0.5°C had the highest concentration of these C7 sugars compared with fruit stored at other temperatures. There were significant differences in treatment means (P < 0.001) showing that fruit treated with KSil 2940 ppm had the highest concentration of both mannoheptulose (18.92 mg g-1) and perseitol (15.93 mg g-1) in the mesocarp tissue. Biochemical analyses showed differences (P < 0.05) in storage temperature means with respect to PAL enzymatic activity. Fruit stored at 5°C had the highest PAL activity (18.61 mmol cinnamic acid g-1 DW h-1) in the mesocarp tissue compared with fruit stored at other temperatures. There were significant differences in treatment means (P < 0.001) with regard to PAL activity. Fruit treated with KSil 2940 ppm had the highest PAL activity (23.34 mmol cinnamic acid g-1 DW h-1). This research has demonstrated the beneficial effects, particularly applications of 2940 ppm Si in the form of KSil. This treatment successfully suppressed the respiration rate of avocado fruit. Biochemical analyses of total antioxidants, total phenolics and PAL activity in the mesocarp tissue have shown the usefulness of Si in improving the fruit’s metabolic processes. The C7 sugars (D-mannoheptulose and perseitol) also seem to be more prevalent in avocado fruit treated with Si (particularly KSil 2940 ppm) than in non-treated fruit. This suggests that an application of Si to avocado fruit can aid in the retention of vital antioxidants (C7 sugars).