Doctoral Degrees (Pure Mathematics)
Permanent URI for this collectionhttps://hdl.handle.net/10413/7120
Browse
Browsing Doctoral Degrees (Pure Mathematics) by Subject "Differential equations."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Algebraic properties of ordinary differential equations.(1995) Leach, Peter Gavin Lawrence.In Chapter One the theoretical basis for infinitesimal transformations is presented with particular emphasis on the central theme of this thesis which is the invariance of ordinary differential equations, and their first integrals, under infinitesimal transformations. The differential operators associated with these infinitesimal transformations constitute an algebra under the operation of taking the Lie Bracket. Some of the major results of Lie's work are recalled. The way to use the generators of symmetries to reduce the order of a differential equation and/or to find its first integrals is explained. The chapter concludes with a summary of the state of the art in the mid-seventies just before the work described here was initiated. Chapter Two describes the growing awareness of the algebraic properties of the paradigms of differential equations. This essentially ad hoc period demonstrated that there was value in studying the Lie method of extended groups for finding first integrals and so solutions of equations and systems of equations. This value was emphasised by the application of the method to a class of nonautonomous anharmonic equations which did not belong to the then pantheon of paradigms. The generalised Emden-Fowler equation provided a route to major development in the area of the theory of the conditions for the linearisation of second order equations. This was in addition to its own interest. The stage was now set to establish broad theoretical results and retreat from the particularism of the seventies. Chapters Three and Four deal with the linearisation theorems for second order equations and the classification of intrinsically nonlinear equations according to their algebras. The rather meagre results for systems of second order equations are recorded. In the fifth chapter the investigation is extended to higher order equations for which there are some major departures away from the pattern established at the second order level and reinforced by the central role played by these equations in a world still dominated by Newton. The classification of third order equations by their algebras is presented, but it must be admitted that the story of higher order equations is still very much incomplete. In the sixth chapter the relationships between first integrals and their algebras is explored for both first order integrals and those of higher orders. Again the peculiar position of second order equations is revealed. In the seventh chapter the generalised Emden-Fowler equation is given a more modern and complete treatment. The final chapter looks at one of the fundamental algebras associated with ordinary differential equations, the three element 8£(2, R), which is found in all higher order equations of maximal symmetry, is a fundamental feature of the Pinney equation which has played so prominent a role in the study of nonautonomous Hamiltonian systems in Physics and is the signature of Ermakov systems and their generalisations.Item Complete symmetry groups : a connection between some ordinary differential equations and partial differential equations.(2008) Myeni, Senzosenkosi Mandlakayise.; Leach, Peter Gavin Lawrence.; O’Hara, J. G.The concept of complete symmetry groups has been known for some time in applications to ordinary differential equations. In this Thesis we apply this concept to partial differential equations. For any 1+1 linear evolution equation of Lie’s type (Lie S (1881) Uber die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung Archiv fur Mathematik og Naturvidenskab 6 328-368 (translation into English by Ibragimov NH in CRC Handbook of Lie Group Analysis of Differential Equations 2 473-508) containing three and five exceptional point symmetries and a nonlinear equation admitting a finite number of Lie point symmetries, the representation of the complete symmetry group has been found to be a six-dimensional algebra isomorphic to sl(2,R) s A3,1, where the second subalgebra is commonly known as the Heisenberg-Weyl algebra. More generally the number of symmetries required to specify any partial differential equations has been found to equal the number of independent variables of a general function on which symmetries are to be acted. In the absence of a sufficient number of point symmetries which are not solution symmetries one must look to generalized or nonlocal symmetries to remove the deficiency. This is true whether the evolution equation be linear or not. We report Ans¨ atze which provide a route to the determination of the required nonlocal symmetry or symmetries necessary to supplement the point symmetries for the complete specification of the equations. Furthermore we examine the connection of ordinary differential equations to partial differential equations through a common realisation of complete symmetry group. Lastly we revisit the notion of complete symmetry groups and further extend it so that it refers to those groups that uniquely specify classes of equations or systems. This is based on some recent developments pertaining to the properties and the behaviour of such groups in differential equations under the current definition, particularly their representations and realisations for Lie remarkable equations. The results seem to be quite astonishing.Item Lie group analysis of exotic options.(2013) Okelola, Michael.; Govinder, Keshlan Sathasiva.; O'Hara, John Gerard.Exotic options are derivatives which have features that makes them more complex than vanilla traded products. Thus, finding their fair value is not always an easy task. We look at a particular example of the exotic options - the power option - whose payoffs are nonlinear functions of the underlying asset price. Previous analyses of the power option have only obtained solutions using probability methods for the case of the constant stock volatility and interest rate. Using Lie symmetry analysis we obtain an optimal system of the Lie point symmetries of the power option PDE and demonstrate an algorithmic method for finding solutions to the equation. In addition, we find a new analytical solution to the asymmetric type of the power option. We also focus on the more practical and realistic case of time dependent parameters: volatility and interest rate. Utilizing Lie symmetries, we are able to provide a new exact solution for the terminal pay off case. We also consider the power parameter of the option as a time dependent factor. A new solution is once again obtained for this scenario.Item A numerical study of entropy generation, heat and mass transfer in boundary layer flows.(2018) Almakki, Mohammed Hassan Mohammed.; Sibanda, Precious.This study lies at the interface between mathematical modelling of fluid flows and numerical methods for differential equations. It is an investigation, through modelling techniques, of entropy generation in Newtonian and non-Newtonian fluid flows with special focus on nanofluids. We seek to enhance our current understanding of entropy generation mechanisms in fluid flows by investigating the impact of a range of physical and chemical parameters on entropy generation in fluid flows under different geometrical settings and various boundary conditions. We therefore seek to analyse and quantify the contribution of each source of irreversibilities on the total entropy generation. Nanofluids have gained increasing academic and practical importance with uses in many industrial and engineering applications. Entropy generation is also a key factor responsible for energy losses in thermal and engineering systems. Thus minimizing entropy generation is important in optimizing the thermodynamic performance of engineering systems. The entropy generation is analysed through modelling the flow of the fluids of interest using systems of differential equations with high nonlinearity. These equations provide an accurate mathematical description of the fluid flows with various boundary conditions and in different geometries. Due to the complexity of the systems, closed form solutions are not available, and so recent spectral schemes are used to solve the equations. The methods of interest are the spectral relaxation method, spectral quasilinearization method, spectral local linearization method and the bivariate spectral quasilinearization method. In using these methods, we also check and confirm various aspects such as the accuracy, convergence, computational burden and the ease of deployment of the method. The numerical solutions provide useful insights about the physical and chemical characteristics of nanofluids. Additionally, the numerical solutions give insights into the sources of irreversibilities that increases entropy generation and the disorder of the systems leading to energy loss and thermodynamic imperfection. In Chapters 2 and 3 we investigate entropy generation in unsteady fluid flows described by partial differential equations. The partial differential equations are reduced to ordinary differential equations and solved numerically using the spectral quasilinearization method and the bivariate spectral quasilinearization method. In the subsequent chapters we study entropy generation in steady fluid flows that are described using ordinary differential equations. The differential equations are solved numerically using the spectral quasilinearization and the spectral local linearization methods.Item Singularity and symmetry analysis of differential sequences.(2009) Maharaj, Adhir.; Leach, Peter Gavin Lawrence.; Euler, Marianna.We introduce the notion of differential sequences generated by generators of sequences. We discuss the Riccati sequence in terms of symmetry analysis, singularity analysis and identification of the complete symmetry group for each member of the sequence. We provide their invariants and first integrals. We propose a generalisation of the Riccati sequence and investigate its properties in terms of singularity analysis. We find that the coefficients of the leading-order terms and the resonances obey certain structural rules. We also demonstrate the uniqueness of the Riccati sequence up to an equivalence class. We discuss the properties of the differential sequence based upon the equation ww''−2w12 = 0 in terms of symmetry and singularity analyses. The alternate sequence is also discussed. When we analyse the generalised equation ww'' − (1 − c)w12 = 0, we find that the symmetry properties of the generalised sequence are the same as for the original sequence and that the singularity properties are similar. Finally we discuss the Emden-Fowler sequence in terms of its singularity and symmetry properties.