Doctoral Degrees (Horticultural Science)
Permanent URI for this collectionhttps://hdl.handle.net/10413/6627
Browse
Browsing Doctoral Degrees (Horticultural Science) by Subject "Antioxidants."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Assessing gaseous ozone and edible coatings as postharvest treatments for mango (mangifera indica L.) fruit.(2021) Bambalele, Nonjabulo Lynne.; Mditshwa, Asanda.; Magwaza, Lembe Samukelo.; Tesfay, Samson Zeray.This research examines the potential of gaseous ozone and edible coatings in preserving postharvest quality and extending the shelf-life of ‘Keitt’ mango fruit. A critical review of the literature focused on the recent postharvest technologies used to preserve the quality of mango fruit. The prospects of using non-chemical postharvest treatments such as gaseous ozone and edible coatings were also reviewed. A screening study was conducted to determine the optimum ozone (O3) application time for effectively maintaining fruit quality and extending shelf-life. Mango fruit were intermittently exposed to gaseous ozone for twelve, twenty-four, thirty-six, or forty-eight hours, and the control fruit were untreated. Fruit were stored at 10℃ for twenty-one days and seven days shelf-life at ambient temperature. The findings showed that the O3 treatment should be applied at the pre-climacteric stage to achieve optimum results. Ozone treatment for 24 or 36 hours effectively maintained firmness and carotenoids content, delayed color changes, decay incidence, and mass loss. Therefore, an ozone exposure time of 24 and 36 hours was adopted for the study. These exposure times were incorporated into edible coatings (moringa leaf extract and carboxymethyl cellulose) for further investigation. The study on the effect of gaseous O3 incorporated with edible coatings on sensory attributes and physicochemical parameters showed that EC and EC + O3 (36 h) were more effective in delaying the ripening process and maintaining the postharvest quality. Overall, consumers preferred the fruit coated with EC due to its attractive color, smell, and sweetness. The study on the postharvest effect of gaseous O3 and EC on antioxidants and the biochemical properties of mango fruit is discussed in Chapter Five. The findings of this study demonstrated that the treatment combination of EC and gaseous O3 (36 h) effectively maintained antioxidants, membrane integrity and enhanced the quality of mango fruit during storage. The effect of gaseous O3 and EC on postharvest diseases of mango fruit, specifically Colletotrichum gloeosporioides (anthracnose) and Lasiodiplodia theobromae (stem-end rot), was also investigated. This study revealed that EC + O3 (24 h) effectively controlled stem-end rot and anthracnose in mango fruit. The treatment combination of EC and O3 (36 h) reduced the mycelial growth and disease incidence of Lasiodiplodia theobromae and Colletotrichum gloeosporioides. The study of EC and O3 in the volatile compounds of mango fruit is discussed in Chapter Seven. The fruit treated with EC had a high content of volatile compounds compared to other treatments. The treatment combination of EC + O3 (24 h) was not effective in maintaining the volatile compounds of mango fruit during storage. The findings of the current study suggest that EC + O3 (36 h) can be used as postharvest treatment of mango fruit. Additional research is required to gain more insights in understanding the EC+ O3 mode of action in maintaining volatile compounds and controlling mango postharvest diseases.Item Efficacy of enhanced freshness formulation as a novel postharvest treatment for gold kiwifruit (actinidia chinensis)(2023) Mthembu, Sisanda Sibusiso Luyanda.; Mditshwa, Asanda.; Magwaza, Lembe Samukelo.; Tesfay, Samson Zeray .When exporting kiwifruit, the main limiting factors are excessive fruit softening and fungal decay. Furthermore, exposing kiwifruits to low temperatures induces the mechanisms involved in the softening process. In addition, kiwifruit become much more susceptible to fungal decay as they soften, which exacerbates deterioration of kiwifruit during transit. Fruit firmness is an important criterion for the market value of kiwifruit and storage life for the wholesale and retail trade. Therefore, loss in firmness is a serious problem resulting in postharvest and economic losses. Given that cold storage alone is not enough to optimise firmness retention of kiwifruit, the current study aimed to investigate the capacity of enhanced freshness formulation (EFF) to reduce kiwifruit softening. Kiwifruits were subjected to eight weeks of storage at 0 °C and 90 % relative humidity, followed by one week at ambient storage. The efficacy of EFF to regulate the mechanisms behind the softening process such as cell wall degradation, membrane deterioration and fungal infection was evaluated. Furthermore, the efficacy of EFF to preserve bioactive compounds was also evaluated to assess the effect of this treatment on these highly appreciated quality attributes. The first study evaluated the efficacy of EFF to delay softening of kiwifruit harvested at both the mid and late maturity stage. The influence of EFF on cell wall polysaccharides (CWPs) and cell wall degrading enzymes (CWDEs) was assessed. The findings showed that EFF optimised firmness retention of kiwifruit by preserving CWPs through the suppression of CWDEs which are responsible for initiating fruit softening. Furthermore, EFF maintained fruit quality and marketability, characterised by significantly lower mass loss, total soluble solids and higher titratable acidity. The second study examined the capacity of EFF to inhibit the excessive production of reactive oxygen species (ROS) which induce membrane damage, resulting in softening and senescence. EFF treatment effectively delayed the progression of kiwifruit senescence by reducing membrane deterioration and the accumulation of ROS. The mechanism by which EFF reduced membrane damage caused by ROS was attributed to its capacity to enhance the activities of antioxidant enzymes involved in neutralising ROS and suppressing Phospholipase D which destroys membrane integrity, resulting in improved storability of treated fruit. The third study assessed the efficacy of EFF to inhibit the fungal growth of Botrytis cinerea, which one of the major postharvest pathogens of kiwifruit that contribute to excessive softening. The findings show that EFF effectively suppressed the fungal growth of Botrytis cinerea in a dose -dependent manner. The results demonstrate that EFF can serve as a potential disease control strategy for kiwifruit at the postharvest stage. The mechanism by which EFF suppressed fungal decay can be attributed to the treatment’s capacity to induce disease resistance against Botrytis cinerea, by enhancing the synthesis of secondary metabolites and the action of defence-related enzymes, thus conferring greater protection against pathogen attack. The fourth study investigated the ability of EFF to retain the antioxidant quality of kiwifruit during prolonged storage. The bioactive compounds of EFF-treated kiwifruits were effectively maintained throughout the storage period. The findings of the present study further revealed that the mechanism by which EFF optimises antioxidant retention is due to its ability to regulate enzymes involved in the synthesis and oxidation of bioactive compounds. Despite the positive results, further research on transcriptome analysis is needed to elucidate how EFF regulates softening and antioxidant enzymes.