Doctoral Degrees (Mathematics and Computer Science Education)
Permanent URI for this collectionhttps://hdl.handle.net/10413/7140
Browse
Browsing Doctoral Degrees (Mathematics and Computer Science Education) by Date Accessioned
Now showing 1 - 20 of 80
- Results Per Page
- Sort Options
Item A simulation modeling approach to aid research into the control of a stalk-borer in the South African Sugar Industry.(2008) Horton, Petrovious Mitchell.; Sibanda, Precious.; Hearne, John W.; Conlong, Desmond Edward.; Apaloo, Joseph.The control of the African stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) in sugarcane fields of KwaZulu-Natal, South Africa has proved problematical. Researchers at the South African Sugarcane Research Institute (SASRI) have since 1974 been intensively investigating various means of controlling the pest. Among the methods of control currently being investigated are biological control, chemical control, production of more resistant varieties and crop management. These investigations, however, require many years of experimentation before any conclusions can be made. In order to aid the research currently being carried out in the Entomology Department at SASRI (to investigate biological control strategies, insecticide application strategies and the carry-over decision), a simulation model of E. saccharina growth in sugarcane has been formulated. The model is cohort-based and includes the effect of temperature on the physiological development of individuals in each life-stage of the insect. It also takes into account the effect of the condition of sugarcane on the rate of E. saccharina infestation, by making use of output from the sugarcane growth model CANEGRO. Further, a crop damage index is defined that gives an indication of the history of E. saccharina infestation levels during the sugarcane’s growth period. It is linked to the physiological activity of the borer during the period spent feeding on the stalk tissue. The damage index can further be translated into length of stalks bored and hence the percentage of the stalk length bored can be calculated at each point in the simulation using the total length of stalks calculated in the CANEGRO model. Using an industry accepted relationship between percent stalks damaged and reduction in sucrose content of the crop, reductions in losses in the relative value of the crop when the various control measures are implemented can be compared. Relationships between the reduction in percent stalk length bored (and hence gains in the relative value of the crop) and the various control strategies are obtained.Item Realistic charged stellar models(2007) Komathiraj, Kalikkuddy.; Maharaj, Sunil Dutt.In this thesis we seek exact solutions to the isotropic Einstien-Maxwell system that model the interior of relativistic stars. The field equations are transformed to a simpler form using the transformation of Durgapal and Bannerji (1983); the integration of the system is reduced to solving the condition of pressure isotropy. This condition is a recurrence relation with variable rational coe±cients which can be solved in general. New classes of solutions of linearly independent functions are obtained in terms of special functions and elementary functions for different spatial geometries. Our results contain models found previously including the superdense Tikekar (1990) neutron star model, the uncharged isotropic Maharaj and Leach (1996) solutions, the Finch and Skea (1989) model and the Durgapal and Bannerji (1983) superdense neutron star. Our general class of solutions also contain charged relativistic spheres found previously, including the model of Hansraj and Maharaj (2006) and the model of Thirukkanesh and Maharaj (2006). In addition, two exact analytical solutions describing the interior of a charged strange quark star are obtained by applying the MIT bag equation of state. We regain the Mak and Harko (2004) solution for a charged quark star as a special case.Item Coagulation-fragmentation dynamics in size and position structured population models.(2008) Noutchie, Suares Cloves Oukouomi.; Banasiak, Jacek.One of the most interesting features of fragmentation models is a possibility to breachItem New analytical stellar models in general relativity.(2009) Thirukkanesh, Suntharalingam.; Maharaj, Sunil Dutt.We present new exact solutions to the Einstein and Einstein-Maxwell field equations that model the interior of neutral, charged and radiating stars. Several new classes of solutions in static spherically symmetric interior spacetimes are found in the presence of charge. These correspond to isotropic matter with a specified electric field intensity. Our solutions are found by choosing different rational forms for one of the gravitational potentials and a particular form for the electric field. The models generated contain results found previously including Finch and Skea (1989) neutron stars, Durgapal and Bannerji (1983) dense stars, Tikekar (1990) superdense stars in the limit of vanishing charge. Then we study the general situation of a compact relativistic object with anisotropic pressures in the presence of the electromagnetic field. We assume the equation of state is linear so that the model may be applied to strange stars with quark matter and dark energy stars. Several new classes of exact solutions are found, and we show that the densities and masses are consistent with real stars. We regain as special cases the Lobo (2006) dark energy stars, the Sharma and Maharaj (2007) strange stars and the realistic isothermal universes of Saslaw et al (1996). In addition, we consider relativistic radiating stars undergoing gravitational collapse when the fluid particles are in geodesic motion. We transform the governing equation into Bernoulli, Riccati and confluent hypergeometric equations. These admit an infinite family of solutions in terms of simple elementary functions and special functions. Particular models contain the Minkowski spacetime and the Friedmann dust spacetime as limiting cases. Finally, we model the radiating star with shear, acceleration and expansion in the presence of anisotropic pressures. We obtain several classes of new solutions in terms of arbitrary functions in temporal and radial coordinates by rewriting the junction condition in the form of a Riccati equation. A brief physical analysis indicates that these models are physically reasonable.Item On the logics of algebra.(2008) Barbour, Graham.; Amery, Gareth.; Raftery, James Gordon.We present and consider a number of logics that arise naturally from universal algebraic considerations, but which are ‘inherently unalgebraizable’ in the sense of [BP89a], essentially because they have no theo- rems. Of particular interest is the membership logic of a quasivariety, which is determined by its theorems, which are the relative congruence classes of the term algebra together with the empty-set in the case that the quasivariety is non-trivial. The membership logic arises by a more general technique developed in this text, for inducing deductive systems from closed systems on the free algebras of quasivarieties. In order to formalize this technique, we develop a theory of logics over constructs, where constructs are concrete categories. With this theory in place, we are able to view a closed system over an algebra as a logic, and in particular a structural logic, structural with respect to a suitable construct, typically the construct con- sisting of all algebras in a quasivariety and all algebra homomorphisms between these algebras. Of course, in such a case, none of these logics are generally sentential (i.e., structural and finitary deductive systems in the sense of [BP89a]), since the formulae of sentential logics arise from the terms of the absolutely free term algebra, which is generally not a member of the quasivariety under interest. In such cases, where the term algebra is not a member of a quasivariety, the free algebra of the quasivariety on denumerably countable free generators takes on the role played by the term algebra in sentential logics. Many of the logics that we encounter in this text arise most naturally as finitary logics on this free algebra of the quasivariety and generally are structural with respect to the quasivariety. We call such logics canons, and show how such structural canons induce sentential calculi, which we call the induced ideal ; the filters of the ideal on the free algebra are precisely the theories of the canon. The membership logic is the ideal of the cannon whose theories are the relative congruence classes on the free algebra. The primary aim of this thesis is to provide a unifying framework for logics of this type which extends the Blok-Pigozzi theory of elementarily algebraizable (and protoalgebraic) deductive systems. In this extension there are two parameters: a set of formulae and a variable. When the former is empty or consists of theorems, the Blok-Pigozzi theory is recovered, and the variable is redundant. For the membership logic, the appropriate variant of equivalent algebraic semantics encompasses the relatively congruence regular quasivarieties. These results have appeared in [BR03]. The secondary aim of this thesis is to analyse our theory of parameterized algebraization from a non- parameterized perspective. To this end, we develop a theory of protoalgebraic logics over constructs and equivalence between logics from different constructs, which we then use to explain the results we obtained in our parameterized theories of protoalgebraicity, algebraic semantics and equivalent algebraic semantics. We relate this theory to the theory of deductively equivalent -institutions [Vou03], and as a consequence obtain a number of improved and new results in the field of categorical abstract algebraic logic. We also use our theory of protoalgebraic logics over constructs to obtain a new and simpler characterization of structural finitary n-deductive systems, which we then use to close the program begun in [BR99], by extending those results for 1-deductive systems to n-deductive systems, and in particular characterizing the protoalgebraicity of the sentential n-deductive system Sn(K,N), which is the natural extension of the 1-deductive system S(K, ) introduce in [BR99], in terms of the quasivariety K having hK,Ni-coherent N-classes (we cannot see how to obtain this result from the standard characterization of protoalgebraic n- deductive systems of [Pal03], which is very complex). With respect to this program of completing [BR99], we also show that a quasivariety K is an equivalent algebraic semantics for a n-deductive system with defining equations N iff K is hK,Ni-regular; a notion of regularity that we introduce and characterize by a quasi-Mal’cev condition. The third aim of this text is to unify as many disparate arguments and notions in algebraic logic under the banner of continuous translations between closed systems, where our use of the term continuous is in the topological sense rather than in the order-theoretic sense, and, where possible, to give elementary, i.e. first order, definitions and proofs. To this end, we show that closed systems, closure operators and conse- quence relations can all be characterized elementarily over orders, and put into one-to-one correspondence that reflects exactly, the standard correspondences between the well-known concrete notions with the same name. We show that when the order is the complete power order over a set, then these elementary structures coincide with their well-known counterparts with the same name. We also introduce two other elementary structures over orders, namely the closed equivalence relation and something we term the proto-Leibniz relation; these elementary structures are also in one-to-one correspondence with the earlier mentioned structures; we have not seen concrete versions of these structures. We then characterize the structure homomorphisms between these structures, as well as considering galois relations between them; galois relations are pairs of order-preserving function in opposite directions; we call these translations, and they are elementary notions. We demonstrate how notions as disparate as structurality, semantics, algebraic semantics, the filter correspondence property, filters, models, semantic consequence, protoalge- braicity and even the logic S(K, ) of [BR99] and our logic Sn(K,N), all fall within this framework, as does much of our parameterized theory and much of the theory of -institutions. A brief summary of the standard theory of deductive systems and their algebraization is provided for the reader unfamiliar with algebraic logics, as well as the necessary background material, including construct and category theory, the theory of structures and algebras, and the model theory of structures with and without equality.Item Embedding theorems and finiteness properties for residuated structures and substructural logics(2008) Hsieh, Ai-Ni.; Raftery, James Gordon.Paper 1. This paper establishes several algebraic embedding theorems, each of which asserts that a certain kind of residuated structure can be embedded into a richer one. In almost all cases, the original structure has a compatible involution, which must be preserved by the embedding. The results, in conjunction with previous findings, yield separative axiomatizations of the deducibility relations of various substructural formal systems having double negation and contraposition axioms. The separation theorems go somewhat further than earlier ones in the literature, which either treated fewer subsignatures or focussed on the conservation of theorems only. Paper 2. It is proved that the variety of relevant disjunction lattices has the finite embeddability property (FEP). It follows that Avron’s relevance logic RMImin has a strong form of the finite model property, so it has a solvable deducibility problem. This strengthens Avron’s result that RMImin is decidable. Paper 3. An idempotent residuated po-monoid is semiconic if it is a subdirect product of algebras in which the monoid identity t is comparable with all other elements. It is proved that the quasivariety SCIP of all semiconic idempotent commutative residuated po-monoids is locally finite. The lattice-ordered members of this class form a variety SCIL, which is not locally finite, but it is proved that SCIL has the FEP. More generally, for every relative subvariety K of SCIP, the lattice-ordered members of K have the FEP. This gives a unified explanation of the strong finite model property for a range of logical systems. It is also proved that SCIL has continuously many semisimple subvarieties, and that the involutive algebras in SCIL are subdirect products of chains. Paper 4. Anderson and Belnap’s implicational system RMO can be extended conservatively by the usual axioms for fusion and for the Ackermann truth constant t. The resulting system RMO is algebraized by the quasivariety IP of all idempotent commutative residuated po-monoids. Thus, the axiomatic extensions of RMO are in one-to-one correspondence with the relative subvarieties of IP. It is proved here that a relative subvariety of IP consists of semiconic algebras if and only if it satisfies x (x t) x. Since the semiconic algebras in IP are locally finite, it follows that when an axiomatic extension of RMO has ((p t) p) p among its theorems, then it is locally tabular. In particular, such an extension is strongly decidable, provided that it is finitely axiomatized.Item Exact models for radiating relativistic stars.(2007) Rajah, Suryakumari Surversperi.; Maharaj, Sunil Dutt.In this thesis, we seek exact solutions for the interior of a radiating relativistic star undergoing gravitational collapse. The spherically symmetric interior spacetime, when matched with the exterior radiating Vaidya spacetime, at the boundary of the star, yields the governing equation describing the gravitational behaviour of the collapsing star. The investigation of the model hinges on the solution of the governing equation at the boundary. We first examine shear-free models which are conformally flat. The boundary condition is transformed to an Abel equation and several new solutions are generated. We then study collapse with shear in geodesic motion. Two classes of solutions are generated which are regular at the stellar centre. Our treatment extends the results of Naidu et al (2006) which had the undesirable feature of a singularity at the centre of the star. In an attempt to find more general models, we transform the fundamental equation to a Riccati equation. Two general classes of solution are found and are used to study the thermal evolution in the causal theory of thermodynamics. These solutions are shown to reduce to the Friedmann dust solution in the absence of heat flow. Furthermore, we obtain new categories of solutions for the case of gravitational collapse with expansion, shear and acceleration of the stellar fluid. This is achieved by transforming the boundary condition into a Riccati equation. In special cases the Bernoulli equation is regained. The solutions are given in terms of elementary functions and they permit the investigation of the physical features of radiative stellar collapse.Item Fischer-Clifford matrices of the generalized symmetric group and some associated groups.(2005) Zimba, Kenneth.; Moori, Jamshid.With the classification of finite simple groups having been completed in 1981, recent work in group theory has involved the study of the structures of simple groups. The character tables of maximal subgroups of simple groups give substantive information about these groups. Most of the maximal subgroups of simple groups are of extension type. Some of the maximal subgroups of simple groups contain constituents of the generalized symmetric groups. Here we shall be interested in discussing such groups which we may call groups associated with the generalized symmetric groups. There are several well developed methods for calculating the character tables of group extensions. However Fischer [17] has given an effective method for calculating the character tables of some group extensions including the generalized symmetric group B (m, n). Actually work on the characters of wreath products with permutation groups dates back to Specht's work [61], through the works of Osima [49] and Kerber [33]. And more recently other people have worked on characters of wreath products with symmetric groups, these amongst others include Darafshesh and Iranmanesh [14], List and Mahmoud [36], Puttaswamiah [52], Read [55, 56], Saeed-Ul-Islam [59] and Stembridge [64]. It is well known that the character table of the generalized symmetric group B(m, n), where m and n are positive integers, can be constructed in GAP [22] with B(m, n) considered as the wreath product of the cyclic group Zm of order m with the symmetric group Sn' For example Pfeiffer [50] has given programmes which compute the character tables of wreath products with symmetric groups in GAP. However it may be necessary to obtain the partial character table of a group in hand rather than its complete character table. Further due to limited workspace in GAP, the wreath product method can only be used to compute character tables of B(m, n) for small values of m and n. It is for these reasons amongst others that Fischer's method is sometimes used to construct the character tables of such groups. groups B(2, 6) and B(3, 5) of orders 46080 and 29160 is done here. We have also used Programme 5.2.4 to construct the Fischer-Clifford matrices of the groups B(2, 12) and B(4, 5) of orders 222 x 35 X 52 X 7 x 11 and 213 x 3 x 5 respectively. Due to lack of space here we have given the Fischer-Clifford matrices of B(2, 12) and B(4,5) on the compact disk submitted with this thesis. However note that these matrices are the equivalent form of the Fischer-Clifford matrices of B(2, 12) and B(4,5). In [35] R.J. List has presented a method for constructing the Fischer-Clifford matrices of group extensions of an irreducible constituent of the elementary abelian group 2n by a symmetric group. The other aim of our work is to adapt the combinatorial method in [5] to the construction of the Fischer-Clifford matrices of some group extensions associated with B(m, n), using a similar method as the one used in [35]. Examples are given on the application of this adaptation to some groups associated with the groups B(2, 6), B(3,3) and B(3, 5). In this thesis we have constructed the character tables of the groups B(2, 6) and B(3,5) and some group extensions associated with these two groups and B(3, 3). We have also constructed the character tables of the groups B(2, 12) and B(4, 5) in our work, these character tables are given on the compact disk submitted with this thesis. The correctness of all the character tables constructed in this thesis has been tested in GAP. The main working programmes (Programme 2.2.3, Programme 3.1.9, Programme 3.1.10, Programme 5.2.1, Programme 5.2.4 and Programme 5.2.2) are given on the compact disk submitted with this thesis. It is anticipated that with further improvements, a number of the programmes given here will be incorporated into GAP. Indeed with further research work the programmes given here should lead to an alternative programme for computing the character table of B(m, n).Item Stratification and domination in graphs.(2006) Maritz, J. E.; Henning, Michael Anthony.In a recent manuscript (Stratification and domination in graphs. Discrete Math. 272 (2003), 171-185) a new mathematical framework for studying domination is presented. It is shown that the domination number and many domination related parameters can be interpreted as restricted 2-stratifications or 2-colorings. This framework places the domination number in a new perspective and suggests many other parameters of a graph which are related in some way to the domination number. In this thesis, we continue this study of domination and stratification in graphs. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at the blue vertex v. An F-coloring of a graph G is a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F (not necessarily induced in G) rooted at v. The F-domination number yF(GQ of G is the minimum number of red vertices of G in an F-coloring of G. Chapter 1 is an introduction to the chapters that follow. In Chapter 2, we investigate the X-domination number of prisms when X is a 2-stratified 4-cycle rooted at a blue vertex where a prism is the cartesian product Cn x K2, n > 3, of a cycle Cn and a K2. In Chapter 3 we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the F3 and is adjacent to a blue vertex and with the remaining vertex colored red. In particular, we show that for a tree of diameter at least three this parameter is at most two-thirds its order and we characterize the trees attaining this bound. (ii) We also investigate the F-domination number when F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex. We show that if G is a connected graph of order n in which every edge is in a triangle, then for n sufficiently large this parameter is at most (n — /n)/2 and this bound is sharp. In Chapter 4, we further investigate the F-domination number when F is a 2- stratified path P3 on three vertices rooted at a blue vertex which is an end-vertex of the P3 and is adjacent to a blue vertex with the remaining vertex colored red. We show that for a connected graph of order n with minimum degree at least two this parameter is bounded above by (n —1)/2 with the exception of five graphs (one each of orders four, five and six and two of order eight). For n > 9, we characterize those graphs that achieve the upper bound of (n — l)/2. In Chapter 5, we define an f-coloring of a graph to be a red-blue coloring of the vertices such that every blue vertex is adjacent to a blue vertex and to a red vertex, with the red vertex itself adjacent to some other red vertex. The f-domination number yz{G) of a graph G is the minimum number of red vertices of G in an f-coloring of G. Let G be a connected graph of order n > 4 with minimum degree at least 2. We prove that (i) if G has maximum degree A where A 4 with maximum degree A where A 5 with maximum degree A where 3Item Fischer-Clifford theory for split and non-split group extensions.(2001) Ali, Faryad.; Moori, Jamshid.The character table of a finite group provides considerable amount of information about the group, and hence is of great importance in Mathematics as well as in Physical Sciences. Most of the maximal subgroups of the finite simple groups and their automorphisms are of extensions of elementary abelian groups, so methods have been developed for calculating the character tables of extensions of elementary abelian groups. Character tables of finite groups can be constructed using various techniques. However Bernd Fischer presented a powerful and interesting technique for calculating the character tables of group extensions. This technique, which is known as the technique of the Fischer-Clifford matrices, derives its fundamentals from the Clifford theory. If G=N.G is an appropriate extension of N by G, the method involves the construction of a nonsingular matrix for each conjugacy class of G/N~G. The character table of G can then be determined from these Fischer-Clifford matrices and the character table of certain subgroups of G, called inertia factor groups. In this dissertation, we described the Fischer-Clifford theory and apply it to both split and non-split group extensions. First we apply the technique to the split extensions 2,7:Sp6(2) and 2,8:SP6(2) which are maximal subgroups of Sp8(2) and 2,8:08+(2) respectively. This technique has also been discussed and used by many other researchers, but applied only to split extensions or to the case when every irreducible character of N can be extended to an irreducible character of its inertia group in G. However the same method can not be used to construct character tables of certain non-split group extensions. In particular, it can not be applied to the non-split extensions of the forms 3,7.07(3) and 3,7.(0,7(3):2) which are maximal subgroups of Fischer's largest sporadic simple group Fi~24 and its automorphism group Fi24 respectively. In an attempt to generalize these methods to such type of non-split group extensions, we need to consider the projective representations and characters. We have shown that how the technique of Fischer-Clifford matrices can be applied to any such type of non-split extensions. However in order to apply this technique, the projective characters of the inertia factors must be known and these can be difficult to determine for some groups. We successfully applied the technique of Fischer-Clifford matrices and determined the Fischer-Clifford matrices and hence the character tables of the non-split extensions 3,7.0,7(3) and 3,7.(0,7(3):2). The character tables computed in this thesis have been accepted for incorporation into GAP and will be available in the latest versions.Item Optimal designs for linear mixed models.(2004) Debusho, Legesse Kassa.; Haines, Linda Margaret.; Haines, Linda M.The research of this thesis deals with the derivation of optimum designs for linear mixed models. The problem of constructing optimal designs for linear mixed models is very broad. Thus the thesis is mainly focused on the design theory for random coefficient regression models which are a special case of the linear mixed model. Specifically, the major objective of the thesis is to construct optimal designs for the simple linear and the quadratic regression models with a random intercept algebraically. A second objective is to investigate the nature of optimal designs for the simple linear random coefficient regression model numerically. In all models time is considered as an explanatory variable and its values are assumed to belong the set {a, 1, ... , k}. Two sets of individual designs, designs with non-repeated time points comprising up to k + 1 distinct time points and designs with repeated time points comprising up to k + 1 time points not necessarily distinct, are used in the thesis. In the first case there are 2k+ - 1 individual designs while in the second case there are ( 2 2k k+ 1 ) - 1 such designs. The problems of constructing population designs, which allocate weights to the individual designs in such a way that the information associated with the model parameters is in some sense maximized and the variances associated with the mean responses at a given vector of time points are in some sense minimized, are addressed. In particular D- and V-optimal designs are discussed. A geometric approach is introduced to confirm the global optimality of D- and V-optimal designs for the simple linear regression model with a random intercept. It is shown that for the simple linear regression model with a random intercept these optimal designs are robust to the choice of the variance ratio. A comparison of these optimal designs over the sets of individual designs with repeated and non-repeated points for that model is also made and indicates that the D- and V-optimal iii population designs based on the individual designs with repeated points are more efficient than the corresponding optimal population designs with non-repeated points. Except for the one-point case, D- and V-optimal population designs change with the values of the variance ratio for the quadratic regression model with a random intercept. Further numerical results show that the D-optimal designs for the random coefficient models are dependent on the choice of variance components.Item A new approach to ill-posed evolution equations : C-regularized and B- bounded semigroups.(2001) Singh, Virath Sewnath.; Banasiak, Jacek.The theory of semigroups of linear operators forms an integral part of Functional Analysis with substantial applications to many fields of the natural sciences. In this study we are concerned with the application to equations of mathematical physics. The theory of semigroups of bounded linear operators is closely related to the solvability of evolution equations in Banach spaces that model time dependent processes in nature. Well-posed evolution problems give rise to a semigroup of bounded linear operators. However, in many important and interesting cases the problem is ill-posed making it inaccessible to the classical semigroup theory. One way of dealing with this problem is to generalize the theory of semigroups. In this thesis we give an outline of the theory of two such generalizations, namely, C-regularized semigroups and B-bounded semigroups, with the inter-relations between them and show a number of applications to ill-posed problems.Item An algebraic study of residuated ordered monoids and logics without exchange and contraction.(1998) Van Alten, Clint Johann.; Raftery, James Gordon.Please refer to the thesis for the abstract.Item On the status of the geodesic law in general relativity.(1998) Nevin, Jennifer Margaret.; Maharaj, Sunil Dutt.The geodesic law for test particles is one of the fundamental principles of general relativity and is extensively used. It is thought to be a consequence of the field laws but no rigorous proof exists. This thesis is concerned with a precise formulation of the geodesic law for test particles and with the extent of its validity. It will be shown to be true in certain cases but not in others. A rigorous version of the Infeld/Schild theorem is presented. Several explicit examples of both geodesic and non-geodesic motion of singularities are given. In the case of a test particle derived from a test body with a regular internal stress-energy tensor, a proof of the geodesic law for an ideal fluid test particle under plausible, explicitly stated conditions is given. It is also shown that the geodesic law is not generally true, even for weak fields and slow motion, unless the stress-energy tensor satisfies certain conditions. An explicit example using post-Newtonian theory is given showing how the geodesic law can be violated if these conditions are not satisfied.Item Anisotropic stars in general relativity.(2004) Chaisi, Mosa.; Maharaj, Sunil Dutt.In this thesis we seek new solutions to the anisotropic Einstein field equations which are important in the study of highly dense stellar structures. We first adopt the approach used by Maharaj & Maartens (1989) to obtain an exact anisotropic solution in terms of elementary functions for a particular choice of the energy density. This class of solution contains the Maharaj & Maartens (1989) and Gokhroo & Mehra (1994) models as special cases. In addition, we obtain six other new solutions following the same approach for different choices of the energy density. All the solutions in this section reduce to one with the energy density profile f-L ex r-2 . Two new algorithms are generated, Algorithm A and Algorithm B, which produce a new anisotropic solution to the Einstein field equations from a given isotropic solution. For any new anisotropic solution generated with the help of these algorithms, the original isotropic seed solution is regained as a special case. Two examples of known isotropic solutions are used to demonstrate how Algorithm A and Algorithm B work, and to obtain new anisotropic solutions for the Einstein and de Sitter models. Anisotropic isot~ermal sphere models are generated given the corresponding isotropic (f-L ex r-2 ) solution of the Einstein field equations. Also, anisotropic interior Schwarzschild sphere models are found given the corresponding isotropic (f-L ex constant) solution of the field equations. The exact solutions and line elements are given in each case for both Algorithm A and Algorithm B. Note that the solutions have a simple form and are all expressible in terms of elementary functions. Plots for the anisotropic factor S = J3(Pr - pJJ/2 (where Pr and Pl. are radial and tangential pressure respectively) are generated and these point to physically viable models.Item A modelling approach for determining the freshwater requirements of estuarine macrophytes.(1998) Wortmann, Joanne.; Hearne, John W.Increased abstraction of water in the catchment results in a reduced or altered pattern of river flow and this holds serious consequences for the downstream estuarine ecosystem. In South Africa this is a serious concern because freshwater is in limited supply and the demand for freshwater can be expected to increase in the future. A large multi-disciplinary consortium of South African scientists are working on projects to determine the freshwater requirements of estuarine ecosystems. As part of this, this thesis reports on research undertaken to develop mathematical models to determine the freshwater requirements of estuarine macrophytes. Three key macrophytes are selected. The macrophytes are Zostera capensis Setchell, Ruppia cirrhosa Grande, and Phragmites australis. They are common macrophytes in South African estuaries. Zostera and Ruppia are submerged macrophytes and Phragmites is an emergent macrophyte. They have different freshwater environments and therefore respond differently to alterations in freshwater flow. A first order differential equation model is used to determine the effect of different combinations of open and closed mouth conditions of the estuary on Zostera and Ruppia. The scenarios are selected to determine whether achieving a switch in states from a Zostera-dominated estuary to a Ruppia-dominated estuary is possible. To predict encroachment rates and colonisation patterns, a cellular automaton of the vegetative spread of existing Zostera beds is developed. After analysing various scenarios accounting for both an increase and a decrease in freshwater supply, the cellular automaton is extended to include interactions between Ruppia and Phragmites. The multi-species model is applied to the Kromme estuary, South Africa and the Great Brak estuary, South Africa. Various freshwater scenarios are examined from the natural runoff condition to the situation of no freshwater inflow. A sensitivity analysis of the spatial model with Zostera, Ruppia and Phragmites is conducted.Item Spherically symmetric cosmological solutions.(1996) Govender, Jagathesan.; Maharaj, Sunil Dutt.This thesis examines the role of shear in inhomogeneous spherically symmetric spacetimes in the field of general relativity. The Einstein field equations are derived for a perfect fluid source in comoving coordinates. By assuming a barotropic equation of state, two classes of nonaccelerating solutions are obtained for the Einstein field equations. The first class has equation of state p = ⅓µ and the second class, with equation of state p = µ, generalises the models of Van den Bergh and Wils (1985). For a particular choice of a metric potential a new class of solutions is found which is expressible in terms of elliptic functions of the first and third kind in general. A class of nonexpanding cosmological models is briefly studied. The method of Lie symmetries of differential equations generates a self-similar variable which reduces the field and conservation equations to a system of ordinary differential equations. The behaviour of the gravitational field in this case is governed by a Riccati equation which is solved in general. Another class of solutions is obtained by making an ad hoc choice for one of the gravitational potentials. It is demonstrated that for a stiff fluid a particular case of the generalised Emden-Fowler equation arises.Item Amplitude-shape method for the numerical solution of ordinary differential equations.(1997) Parumasur, Nabendra.; Banasiak, Jacek.; Mika, Janusz R.In this work, we present an amplitude-shape method for solving evolution problems described by partial differential equations. The method is capable of recognizing the special structure of many evolution problems. In particular, the stiff system of ordinary differential equations resulting from the semi-discretization of partial differential equations is considered. The method involves transforming the system so that only a few equations are stiff and the majority of the equations remain non-stiff. The system is treated with a mixed explicit-implicit scheme with a built-in error control mechanism. This approach proved to be very effective for the solution of stiff systems of equations describing spatially dependent chemical kinetics.Item Polynomial approximations to functions of operators.(1994) Singh, Pravin.; Mika, Janusz R.To solve the linear equation Ax = f, where f is an element of Hilbert space H and A is a positive definite operator such that the spectrum (T (A) ( [m,M] , we approximate -1 the inverse operator A by an operator V which is a polynomial in A. Using the spectral theory of bounded normal operators the problem is reduced to that of approximating a function of the real variable by polynomials of best uniform approximation. We apply two different techniques of evaluating A-1 so that the operator V is chosen either as a polynomial P (A) when P (A) approximates the n n function 1/A on the interval [m,M] or a polynomial Qn (A) when 1 - A Qn (A) approximates the function zero on [m,M]. The polynomials Pn (A) and Qn (A) satisfy three point recurrence relations, thus the approximate solution vectors P (A)f n and Q (A)f can be evaluated iteratively. We compare the procedures involving n Pn (A)f and Qn (A)f by solving matrix vector systems where A is positive definite. We also show that the technique can be applied to an operator which is not selfadjoint, but close, in the sense of operator norm, to a selfadjoint operator. The iterative techniques we develop are used to solve linear systems arising from the discretization of Freedholm integral equations of the second kind. Both smooth and weakly singular kernels are considered. We show that earlier work done on the approximation of linear functionals < x,g > , where 9 EH, involve a zero order approximation to the inverse operator and are thus special cases of a general result involving an approximation of arbitrary degree to A -1 .Item Aspects of distance and domination in graphs.(1995) Smithdorf, Vivienne.; Swart, Hendrika Cornelia Scott.; Dankelmann, Peter A.The first half of this thesis deals with an aspect of domination; more specifically, we investigate the vertex integrity of n-distance-domination in a graph, i.e., the extent to which n-distance-domination properties of a graph are preserved by the deletion of vertices, as well as the following: Let G be a connected graph of order p and let oi- S s;:; V(G). An S-n-distance-dominating set in G is a set D s;:; V(G) such that each vertex in S is n-distance-dominated by a vertex in D. The size of a smallest S-n-dominating set in G is denoted by I'n(S, G). If S satisfies I'n(S, G) = I'n(G), then S is called an n-distance-domination-forcing set of G, and the cardinality of a smallest n-distance-domination-forcing set of G is denoted by On(G). We investigate the value of On(G) for various graphs G, and we characterize graphs G for which On(G) achieves its lowest value, namely, I'n(G), and, for n = 1, its highest value, namely, p(G). A corresponding parameter, 1](G), defined by replacing the concept of n-distance-domination of vertices (above) by the concept of the covering of edges is also investigated. For k E {a, 1, ... ,rad(G)}, the set S is said to be a k-radius-forcing set if, for each v E V(G), there exists Vi E S with dG(v, Vi) ~ k. The cardinality of a smallest k-radius-forcing set of G is called the k-radius-forcing number of G and is denoted by Pk(G). We investigate the value of Prad(G) for various classes of graphs G, and we characterize graphs G for which Prad(G) and Pk(G) achieve specified values. We show that the problem of determining Pk(G) is NP-complete, study the sequences (Po(G),Pl(G),P2(G), ... ,Prad(G)(G)), and we investigate the relationship between Prad(G)(G) and Prad(G)(G + e), and between Prad(G)(G + e) and the connectivity of G, for an edge e of the complement of G. Finally, we characterize integral triples representing realizable values of the triples b,i,p), b,l't,i), b,l'c,p), b,l't,p) and b,l't,l'c) for a graph.