Doctoral Degrees (Biochemistry)
Permanent URI for this collectionhttps://hdl.handle.net/10413/8003
Browse
Browsing Doctoral Degrees (Biochemistry) by Date Accessioned
Now showing 1 - 20 of 80
- Results Per Page
- Sort Options
Item Biochemistry students' difficulties with the symbolic and visual language used in molecular biology.(2007) Gupthar, Abindra Supersad.; Anderson, Trevor Ryan.This study reports on recurring difficulties experienced by undergraduate students with respect to understanding and interpretation of certain symbolism, nomenclature, terminology, shorthand notation, models and other visual representations employed in the field of Molecular Biology to communicate information. Based on teaching experience and guidelines set out by a four-level methodological framework, data on various topic-related difficulties was obtained by inductive analyses of students’ written responses to specifically designed, free-response and focused probes. In addition, interviews, think-aloud exercises and student-generated diagrams were also used to collect information. Both unanticipated and recurring difficulties were compared with scientifically correct propositional knowledge, categorized and subsequently classified. Students were adept at providing the meaning of the symbol “Δ” in various scientific contexts; however, some failed to recognize its use to depict the deletion of a leucine biosynthesis gene in the form, Δ leu. “Hazard to leucine”, “change to leucine” and “abbreviation for isoleucine” were some of the erroneous interpretations of this polysemic symbol. Investigations on these definitions suggest a constructivist approach to knowledge construction and the inappropriate transfer of knowledge from prior mental schemata. The symbol, “::”, was poorly differentiated by students in its use to indicate gene integration or transposition and in tandem gene fusion. Idiosyncratic perceptions emerged suggesting that it is, for example, a proteinaceous component linking genes in a chromosome or the centromere itself associated with the mitotic spindle or “electrons” between genes in the same way that it is symbolically shown in Lewis dot diagrams which illustrate covalent bonding between atoms. In an oligonucleotide shorthand notation, some students used valency to differentiate the phosphite trivalent form of the phosphorus atom from the pentavalent phosphodiester group, yet the concept of valency was poorly understood. By virtue of the visual form of a shorthand notation of the 3,5 phosphodiester link in DNA, the valency was incorrectly read. VSEPR theory and the Octet Rule were misunderstood or forgotten when trying to explain the valency of the phosphorus atom in synthetic oligonucleotide intermediates. Plasmid functional domains were generally well-understood although restriction mapping appeared to be a cognitively demanding task. Rote learning and substitution of definitions were evident in the explanation of promoter and operator functions. The concept of gene expression posed difficulties to many students who believed that genes contain the entity they encode. Transcription and translation of in tandem gene fusions were poorly explained by some students as was the effect of plasmid conformation on transformation and gene expression. With regard to the selection of transformants or the hybridoma, some students could not engage in reasoning or lateral thinking as protoconcepts and domain-specific information were poorly understood. A failure to integrate and reason with factual information on phenotypic traits, media components and biochemical pathways were evident in written and oral presentations. DNA-strand nomenclature and associated function were problematic to some students as they failed to differentiate coding strand from template strand and were prone to interchange the labelling of these. A substitution of labels with those characterizing DNA replication intermediates demonstrated erroneous information transfer. DNA replication models posed difficulties integrating molecular mechanisms and detail with line drawings, coupled with inaccurate illustrations of sequential replication features. Finally, a remediation model is presented, demonstrating a shift in assessment score dispersion from a range of 0 - 4.5 to 4 - 9 when learners are guided metacognitively to work with domain-specific or critical knowledge from an information bank. The present work shows that varied forms of symbolism can present students with complex learning difficulties as the underlying information depicted by these is understood in a superficial way. It is imperative that future studies be focused on the standardization of symbol use, perhaps governed by convention that determines the manner in which threshold information is disseminated on symbol use, coupled by innovative teaching strategies which facilitate an improved understanding of the use of symbolic representations in Molecular Biology. As Molecular Biology advances, it is likely that experts will continue to use new and diverse forms of symbolic representations to explain their findings. The explanation of futuristic Science is likely to develop a symbolic language that will impose great teaching challenges and unimaginable learning difficulties to new generation teachers and learners, respectively.Item Using student difficulties to identify and model factors influencing the ability to interpret external representations of IgG-antigen binding.(2005) Schonborn, Konrad Janek.; Anderson, Trevor Ryan.; Grayson, Diane J.Scientific external representations (ERs), such as diagrams, images, pictures, graphs and animations are considered to be powerful teaching and learning tools, because they assist learners in constructing mental models of phenomena, which allows for the comprehension and integration of scientific concepts. Sometimes, however, students experience difficulties with the interpretation of ERs, which· has a negative effect on their learning of science, including biochemistry. Unfortunately, many educators are not aware of such student difficulties and make the wrong assumption that what they, as experts, consider to be an educationally sound ER will necessarily promote sound learning and understanding among novices. On the contrary, research has shown that learners who engage in the molecular biosciences can experience considerable problems interpreting, visualising, reasoning and learning with ERs of biochemical structures and processes, which are both abstract and often represented by confusing computer-generated symbols and man-made markings. The aim of this study was three-fold. Firstly, to identify and classify students' conceptual and reasoning difficulties with a selection of textbook ERs representing· IgG structure and function. Secondly, to use these difficulties to identify sources of the difficulties and, therefore, factors influencing students' ability to interpret the ERs. Thirdly, to develop a model of these factors and investigate the practical applications of the model, including guidelines for improving ER design and the teaching and learning with ERs. The study was conducted at the University of KwaZulu-Natal, South Africa and involved a total of 166 second and third-year biochemistry students. The research aims were addressed using a postpositivistic approach consisting of inductive and qualitative research methods. Data was collected from students by means of written probes, audio- and video-taped clinical interviews, and student-generated diagrams. Analysis of the data revealed three general categories of student difficulties, with the interpretation of three textbook ERs depicting antibody structure and interaction with antigen, termed the process-type (P), the structural-type (S) and DNA-related (D) difficulties. Included in the three general categories of difficulty were seventeen sub-categories that were each classified on the four-level research framework of Grayson et al. (2001) according to how much information we had about the nature of each difficulty and, therefore, whether they required further research. The incidences of the classified difficulties ranged from 3 to 70%, across the student populations and across all three ERs. Based on the evidence of the difficulties, potential sources of the classified difficulties were isolated. Consideration of the nature of the sources of the exposed difficulties indicated that at least three factors play a major role in students' ability to interpret ERs in biochemistry. The three factors are: students' ability to reason with an ER and with their own conceptual knowledge (R), students' understanding (or lack thereof) of the concepts of relevance to the ER (C), and the mode in which the desired phenomenon is represented by the ER (M). A novel three-phase single interview technique (3P-SIT) was designed to explicitly investigate the nature of the above three factors. Application of 3P-SIT to a range of abstract to realistic ERs of antibody structure and interaction with antigen revealed that the instrument was extremely useful for generating data corresponding to the three factors. In addition analysis of the 3P-SIT data showed evidence for the influence of one factor on another during students' ER interpretation, leading to the identification of a further four interactive factors, namely the reasoning-mode (R-M), reasoning conceptual (R-C), conceptual-mode (C-M) and conceptual-reasoning-mode (C-R-M) factors. The Justi and Gilbert (2002) modelling process was employed to develop a model of the seven identified factors. Empirical data generated using 3P-SIT allowed the formulation and validation of operational definitions for the seven factors and the expression of the model as a Venn diagram. Consideration of the implications of the model yielded at least seven practical applications of the model, including its use for: establishing whether sound or unsound interpretation, learning and visualisation of an ER has occurred; identifying the nature and source of any difficulties; determining which of the factors of the model are positively or negatively influencing interpretation; establishing what approaches to ER design and teaching and learning with ERs will optimise the interpretation and learning process; and, generally framing and guiding researchers', educators' and authors' thinking about the nature of students' difficulties with the interpretation of both static and animated ERs in any scientific context. In addition, the study demonstrated how each factor of the expressed model can be used to inform the design of strategies for remediating or preventing students' difficulties with the interpretation of scientific ERs, a target for future research.Item Changes in endosome-lysosome pH accompanying pre-malignant transformation.(2005) Jackson, Jennifer Gouws.; Elliott, Edith.The mechanisms by which altered processing, distribution and secretion of proteolytic enzymes occur, facilitating degradation of the extracellular matrix in invasive and metastatic cells, are not fully understood. Studies on the MCF-10 A breast epithelial cell line and its premalignant, c-Ha-ras-transfected MCF-10AneoT counterpart have shown that the ras-transfected cell line has a more alkaline pH. The objective of this study was to determine which organelles of the endosome-lysosome route were alkalinized and shifted to the cell periphery after ras-transfection. Antibodies to the hapten 2,4-dinitrophenyl (DNP), required for pH studies, were raised in rabbits and chickens using DNP-ovalbumin (DNP-OVA) as immunogen. Cationised DNP-OVA (DNP-catOVA) was also inoculated to increase antibody titres. Anti-hapten and carrier antibody titres were assessed. In rabbits, cationisation seems useful to increase anti-DNP titres if a non-self carrier protein (OVA) is used. In chickens, cationisation of DNP-OVA seems necessary to produce a sustained anti-OVA (anti-self) response (implying a potential strategy for cancer immunotherapy). Oregon Green® 488 dextran pulse-chase uptake and fluorescent microscopy, and (2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP) uptake, immunolabelling for DNP (a component of DAMP) and unique markers for the early endosome (early endosome antigen-I, EEAI), the late endosome (cation-independent mannose-6-phosphate receptor, CI-MPR) and the lysosome (small electron dense morphology and lysosome-associated membrane protein-2, LAMP-2) and electron mlcroscopy was performed. The pH of late endosomes and lysosomes in the ras-transfected MCF-10AneoT cell line were found to be relatively alkalinised and Iysosomes shifted toward the cell periphery. The acidic pH of late endosomes is required to release precursor cysteine and aspartic proteases from their receptors (e.g. CI-MPR), process the precursors to active proteases and to allow receptor recycling. The more alkaline pH observed potentially explains the altered processing of proteases in rastransfected cells. Alkalinisation ofthe cytosol may affect the cytoskeleton responsible for, among other things, the positioning and trafficking of various organelles, causing relocation of Iysosomes toward the cell periphery and actin depolymerisation. This may enable fusion of Iysosomes with the plasma membrane and the release of proteolytic enzymes, facilitating the observed invasive phenotype.Item The presentation and interpretation of arrow symbolism in biology diagrams at secondary-level.(2006) Du Plessis, Lynn.; Anderson, Trevor Ryan.The literature contains conflicting ideas about the effectiveness of diagrams, and their constituent symbolism as teaching and learning tools. In addition, only limited research has been specifically conducted on the presentation and interpretation of arrow symbolism used in biology diagrams, let alone on the nature, source and remediation of student difficulties caused by arrows. On the basis of this limited research and 30 years of experience of teaching biology at secondary-level, the author suspected that students might have difficulties interpreting arrow symbolism in diagrams used as explanatory tools and decided to thoroughly investigate this issue. The hypothesis, 'Secondary-level students have difficulty with the use of arrow symbolism in biology diagrams' was formulated and the following broad research questions defined to address the hypothesis: 1. How much of a problem is arrow symbolism in diagrams? 2. How effectively is arrow symbolism used in diagrams to promote the communication of intended ideas? 3. To what extent does the design of arrow symbolism in diagrams influence students ' interpretation and difficulties? 4. How can the emerging empirical data and ideas from literature be combined to illustrate the process of interpretation of arrow symbolism? 5. What measures can be suggested for improving the presentation and interpretation of arrow symbolism in biology diagrams at secondary-level? To address Research question 1, a content analysis of all arrow symbolism in seven popular secondary-level biology textbooks was undertaken. This revealed a wide diversity of arrow styles, spatial organisations, purposes and meanings that could be confusing to students. These results suggested the need for an evaluation of the effectiveness of arrow symbolism (Research question 2). As there was no definitive set of guidelines available for specifically evaluating arrows, general guidelines from the literature on diagrams were used to develop a set of 10 criteria, to evaluate the syntactic, semantic and pragmatic dimensions of arrow symbolism, which were validated by selected educators, students and a graphic design expert. Application of the criteria (which constituted expert opinion) to the arrow symbolism used in 614 realistic, stylised and abstract diagram types, revealed a relatively high incidence (30%) of inappropriately presented arrow designs that could mislead students. To establish whether this problem could be the cause of student difficulties, and to thereby address Research question 3, a stylised and an abstract diagram were selected and evaluated according to the criteria. The results of the evaluation were compared to the responses given by 174 students to a range of written and interview probes and student modified diagrams. In this way, student performance was correlated with expert opinion. The results confirmed that students experience a wide range of difficulties (26 categories) when interpreting arrow symbolism, with some (12 categories) being attributable to inappropriately presented arrow symbolism and others (14 categories) to student-related processing skills and strategies at both surface- and deeper-levels of reasoning. To address question 4, the emerging empirical data from the evaluation and student studies was combined with a wide range of literature, to inform the development of a 3-level, non-tiered model of the process of interpretation of arrow symbolism in diagrams. As this model emphasised the importance of both arrow presentation in diagrams and arrow interpretation by students, it could be used as an effective explanatory tool as well as a predictive tool to identify sources of difficulty with the use of arrow symbolism. This model was, in turn, used to inform the compilation of a range of guidelines for improving the presentation and interpretation of arrow symbolism, and so target Research question 5. These, and other guidelines grounded in the data and relevant literature, were suggested for all role players, including students, educators, textbook writers, graphic artists and researchers, to use as remedial tools. Future research should focus on the implementation of these guidelines and studying their effectiveness for improving the presentation and interpretation of diagrams with arrow and other types of symbolism.Item Endolysosomal proteolysis and its regulation.(2003) Pillay, Che Sobashkar.; Dennison, Clive.The endolysosomal system is a multifunctional system and is involved in catabolism, antigen presentation and regulation of hormones. The descriptions of, and functions assigned to organelles within the system are often applied using different criteria. Further, the properties of the hydrolases within the system, and the organelles that house them are usually studied in isolation from one another. Considering that the endolysosomal system may be extremely dynamic, an understanding of the system as an integrated whole is a necessary first step. Thus, a review of the endolysosomal system was undertaken. It was determined that the enzymes within the endolysosomal system are probably subject to 'organelle-dependent' regulation, i.e. the organelles create the appropriate luminal conditions for these enzymes to work. It is also likely that the effectors of these luminal conditions are regulated in a manner that is related to GTPase networks that control much of the cell's functions. The organisation of the endolysosomal system may be hierarchical, with proteases being downstream effectors of a system that is regulated at the whole body level. The main endoprotease class within the endolysosomal system are cysteine proteases. A literature review suggested that these enzymes may not be redox regulated within the endolysosomal system. However, the lysosomal endoprotease cathepsin B has been implicated in many pathologies where it is operating in pH and redox conditions different from the endolysosomal system. To study this, cathepsin B was isolated from bovine livers using a novel procedure that exploits the ability of tertiary butanol to temporarily inhibit protease interactions in tissue homogenates. This would prevent artefactual, as well as protease-inhibitor interactions. This novel procedure resulted in increased yields of cathepsin B. Cathepsin D, an aspartic protease, was isolated using established methods. In order to test the hypothesis that cathepsin B may be redox regulated in vivo, cathepsin B activity and stability were measured in cysteine and/or cystine-containing redox buffers. Cathepsin B activity in cysteine-containing buffers was similar at pH 6.0 and pH 7.0, over all thiol concentrations tested. In contrast, the stability of the enzyme was greater at pH 6.0 than at pH 7.0. This suggests that the enzyme's operational pH in vivo may be < pH 7.0. The activity of the enzyme was depressed in glutathione-containing buffers. When assessed in cysteine:cystine redox buffers (pH 6.0 - 7.0) cathepsin B was active over a broad redox potential range, suggesting that cathepsin B activity may not be redox regulated.Item Quantitative imaging of tyrosine kinase-drug interactions in cells.(2012) Chuntharpursat, Eulashini.; Elliott, Edith.; Bastiaens, Philippe I. H.Kinases play a crucial role in regulating cellular signaling cascades, making them therapeutic targets for several human diseases. In human cancers, mis-regulation and mutations of kinases such as EGFR (epidermal growth factor receptor) have been found to drive malignant transformation. Due to the conserved structural elements of protein kinases, the majority of kinase inhibitors available have a tendency to inhibit multiple targets. The biological impact of this promiscuity is insufficiently defined and the prevalence of cellular compensatory mechanisms additionally varies the clinical responses to drug treatment. In order to understand the relationship between selectivity and efficacy, prior to clinical trials, it is essential to characterize how inhibitors interact with the kinome within a cellular context. Monitoring inhibitor-target interactions generally involves in vitro assaying with purified proteins or protein domains, which compromises the native integrity of the kinases. Cellbased assays either gain outcomes from bulk populations that average out cell variance or phenotypic assays that lack molecular resolution. To obtain information on drug interactions on a single cell level, we have developed a method to measure the direct binding of kinase inhibitors to their targets in situ and in vivo. Kinase inhibitors are chemically tagged with fluorophores that serve as acceptors to genetically tagged donor fluorophores on the enzyme and the interaction is measured using FRET-FLIM. With epidermal growth factor receptor (EGFR) and irreversible EGFR inhibitors as the model system, this approach has been applied to image inhibitor-kinase interactions in live and fixed cells. Using this method, a small panel of tyrosine kinase targets, and labeled inhibitors, we were able to investigate the cross-specificity within the panel. Additionally it was found that the specificity of inhibitors for specific kinase conformations enables the distinction between EGFR in the active and inactive conformation by the inhibitor-probes.Item Gene disruption of TcoCATL (Congopain) and oligopeptidase B, pathogenic factors of African trypanosomes.(2011) Kangethe, Richard Thiga.; Coetzer, Theresa Helen Taillefer.African trypanosomosis is a parasitic disease in man and animals caused by protozoan parasites of the genus Trypanosoma. T. congolense, T. vivax and T. brucei brucei cause nagana in cattle. The variable nature of the parasite surface coat has hindered the development of an effective vaccine. An option for developing vaccines and chemotherapeutic agents against trypanosomosis is to target pathogenic factors released by the parasite during infection, namely an “anti-disease” approach. Two pathogenic factors released during infection are oligopeptidase B (OPB) and TcoCATL (congopain). TcoCATL, a major lysosomal cysteine peptidase, is a member of the papain family C1 cysteine peptidases. RNA interference (RNAi) was used to down-regulate the expression of TcoCATL in T. congolense IL3000 TRUM183:29-13 parasites in vivo during mouse infections. TcoCATL RNAi was monitored in infected mouse blood by comparing the hydrolysis of Z-Phe-Arg-AMC and parasitaemia between mice in which RNAi was induced and control mice. Mice infected with parasites induced for TcoCATL RNAi had lower parasitaemia when compared to control mice. An attempt was also made at deleting the entire CATL gene array in both T. congolense IL3000 and T. brucei 427 Lister strains. The second pathogenic factor studied, OPB, is a cytosolic trypanosomal peptidase that hydrolyses peptides smaller than 30 amino acid residues, C-terminal to basic residues. In order to evaluate the role that OPB play during disease, RNAi was also applied to knock-down the expression levels of OPB in T. brucei T7T and T. congolense IL3000 TRUM183:29-13 strains (TbOPB and TcoOPB respectively). Oligopeptidase B null mutant strains (Δopb) were also generated in T. brucei brucei Lister 427. An attempt was also made to generate OPB null mutants in T. congolense IL3000 parasites. Western blot analysis of the knock-down experiments using chicken anti-TcoOPB peptide IgY showed that only TbOPB levels were reduced in T. brucei T7T parasites induced for RNAi when compared to TcoOPB RNAi induced cultures. Quantitative assessment of a fourteen day induction experiment for OPB RNAi in T. brucei showed an 87% reduction in TbOPB levels when compared to levels on day one. There was no growth effect observed in T. brucei parasites cultured in vitro and induced for TbOPB RNAi. It was concluded that TbOPB is not necessary for the in vitro survival of T. brucei parasites, thus making the generation of OPB null mutants possible. Δopb T. brucei parasites were successfully generated and grew normally in vitro and were as virulent as wild type strains during infection in mice. Immunohistopatholgy of infected mouse testes revealed Δopb parasites in extra vascular regions showing that T. brucei OPB (TbOPB) is not involved in assisting T. brucei parasites to cross microvascular endothelial cells. Gelatin gel analysis of Δopb null mutants and wild type strains showed an increase in cysteine peptidase activity. Enzymatic activity assays were carried out to identify how closely related oligopeptidases are affected by knocking out TbOPB, and a significant increase of T. brucei prolyl oligopeptidase (TbPOP) activity was observed. However, western blot analysis did not show any increase of TbPOP protein levels in Δopb parasites, suggesting that either TbOPB is responsible for generating an endogenous inhibitor for TbPOP or that another POP-like enzyme might compensate for a loss in OPB activity in Δopb null mutants. This study made a significant contribution to an understanding of the interplay between different trypanosomal peptidases that are important pathogenic factors in trypanosomosis. It highlights the need to simultaneously target several trypanosomal peptidases to develop an effective vaccine or chemotherapeutic agents for African animal trypanosomosis.Item Trypanopain : a possible target for anti-trypanosomal agents?(1997) Troeberg, Linda.; Coetzer, Theresa Helen Taillefer.; Lonsdale-Eccles, John David.The protozoan parasite Trypanosoma brucei brucei causes nagana in cattle and is a widely used model for human sleeping sickness. The major lysosomal cysteine proteinases (trypanopains) of African trypanosomes may contribute to pathogenesis by degrading proteins in the mammalian bloodstream and also appear to be essential for the viability of T. cruzi and T. congolense. This study describes the first purification to electrophoretic homogeneity of trypanopain-Tb from T. b. brucei and the first reported characterisation of its enzymatic properties. Trypanopain-Tb was purified from bloodstream forms of T. b. brucei by a combination of three phase partitioning (between ammonium sulfate and tertiary butanol), and chromatography on quaternary amine or pepstatin A-Sepharose resins. Trypanopain-Tb was found to be a typical cysteine proteinase, in that it is inhibited by typical cysteine proteinase inhibitors and requires reducing agents for full activity. Trypanopain has cathepsin L-like specificity for synthetic substrates and readily degrades various proteins. In vitro analysis of the kinetics of trypanopain interaction with cystatins suggested that these are likely to inhibit any trypanopain released into the mammalian bloodstream. Furthermore, no trypanopain-like activity was detectable in the blood of infected hosts, so it appears that trypanopain is unlikely to contribute directly to pathogenesis by degrading bloodstream host proteins. Antibodies against a peptide corresponding to a region of the trypanopain active site were produced in rabbits and chickens. Both enzyme activity-enhancing and enzyme activity inhibiting antibodies were produced and these effects varied with the substrate tested. Thus, the in vivo effects of anti-trypanopain antibodies will only become clearly understood once the physiological substrates of trypanopain have been identified. Various cysteine proteinase inhibitors, including peptidyl diazomethylketones, killed cultured bloodstream forms of T. b. brucei. Use of biotinylated derivatives of peptidyl diazomethylketone and fluoromethylketone inhibitors suggested that trypanopain is the likely intracellular target of these inhibitors, indicating that the enzyme is essential for parasite viability. Furthermore, chalcones (a class of reversible cysteine proteinase inhibitors) killed in vitro cultured parasites and also prolonged the life of T. b. brucei-infected mice. Thus, trypanopain-Tb seems to be a possible target for new anti-trypanosomal drugs.Item The extracellular matrix regulates myoblast migration during wound healing.(2012) Goetsch, Kyle Peter.; Niesler, Carola Ulrike.; Myburgh, Kathryn Helen.Mammalian skeletal muscle can regenerate after injury and this response is primarily mediated by the satellite cell, a muscle stem cell. Following injury, satellite cells are activated to myoblasts, undergo rapid proliferation, migrate towards the injury site, and subsequently differentiate into myotubes in order to facilitate functional muscle repair. Fibrosis, caused by the secretion of structural extracellular matrix (ECM) proteins such as collagen I and fibronectin, by fibroblasts, impairs complete functional repair of the muscle. In this study, the role of the microenvironment during wound conditions was assessed by analysing the effect of specific extracellular matrix and growth factors on myoblast migration. The role of the Rho/ROCK pathway as a possible mechanism in mediating the effects seen was investigated. In order to analyse wound repair in an in vitro setting, we optimised and improved a wound healing model specifically designed for skeletal muscle repair. To this end we also developed a co-culture assay using primary myoblasts and fibroblasts isolated from the same animal. The studies showed that collagen I and fibronectin both increased myoblast migration in a dose-dependent manner. Decorin displayed opposing effects on cellular movement, significantly increasing collagen I-stimulated, but not fibronectin-stimulated, migration of myoblasts. ROCK inhibitor studies revealed a significant increase in migration on uncoated plates following inhibition with Y-27632 compared to untreated control. When cells were cultured on ECM components (Matrigel, collagen I, or fibronectin), the inhibitory effect of Y-27632 on migration was reduced. Analysis of ROCK and vinculin expression, and localization at the leading front, showed that ROCK inhibition resulted in loosely packed focal adhesion complexes (matrix dependent). A reduced adhesion to the ECM could explain the increased migration rates observed upon inhibition with Y-27632. We also investigated the role of TGF-β and decorin during wound repair, as TGF-β is a known pro-fibrotic agent. TGF-β treatment decreased wound closure rates; however, the addition of decorin with TGF-β significantly increased wound closure. The addition of ECM components, Matrigel and collagen I enhanced the effect seen in response to TGF-β and decorin; however, fibronectin negated this effect, with no increase in migration seen compared to the controls. In conclusion, the importance of extracellular matrix components in regulating myoblast migration and therefore skeletal muscle wound repair was demonstrated. We emphasize that, in order to gain a better understanding of skeletal muscle wound repair, the combination of ECM and growth factors released during wounding need to be utilised in assays which mimic the in vivo environment more closely.Item A study of proteinases of invasive cells using cryoultramicrotomy and immunogold labelling.(1993) Elliott, Edith.; Dennison, Clive.This study forms part of an investigation into the possible relevance of the lysosomal proteinases, cathepsins B, H, Land D, in cancer cell invasion. In this study, the main technique adopted was the Tokuyasu "cryo" method, in which the tissues were fixed, frozen and sectioned and labelled using the relevant antibodies, which were detected with protein A gold probes. In order to implement the Tokuyasu technique, it was necessary to rebuild a knife maker, for the production of adequately sharp glass knives, and to modify a sputter-coater into a glow-discharger, for rendering carbon-coated grids hydrophilic, to promote adhesion of hydrated sections. This study was directed towards human tissues and peptide antibodies were investigated as a means of avoiding isolation of proteins from scarce human tissue, and as a means of obtaining antibodies that will target specific regions of proteins of interest. Peptide antibodies were also considered promising for studies of proteinase trafficking and as immunoinhibiting agents, potentially useful in cancer therapy. Various prediction programmes were investigated for their effectiveness in predicting whether a given peptide sequence will elicit antibodies that will react with the native protein. Successful prediction would increase the success rate of peptide antibody production and thus lower the cost. Leucocytes were studied as a model of an invasive cell, since they are more readily available than tumour cells and serve the purpose during the development of methods. In the course of these studies, an optimal protocol for the fixation of PMNs was developed, involving lateral fixation of cut sections, that should be useful for future studies on these cells. Elastase and cathepsins D and G were found on the surface of activated PMNs and could thus play a role in the invasive properties of these cells. Studies on MCF-10A "normal" breast epithelial cells and their ras-transformed Neo-T counterparts revealed that upon transformation, lysosomes shift from a perinuclear position, to a more peripheral position. None of the cathepsins studied was found on the cell surface of either the normal or ras-transfected cells, suggesting that surface distribution of these enzymes may not be a requirement for invasiveness. These studies suggest that immunocytochemical investigation of cells, in the process of invading through a barrier membrane, might be profitable in elucidating the role of proteinases in invasive cancer.Item Type IV collagenase and cathepsins L and H : proteinases involved in tumour invasion.(1992) Coetzer, Theresa Helen Taillefer.; Dennison, Clive.The collagenolytic proteinases, type IV collagenase and cathepsins Land H, have been implicated in tumour invasion and metastasis, by virtue of their degradative action on the extracellular matrix barriers traversed by migrating tumour cells. Type IV collagenase was isolated from human leucocytes using anti-peptide antibody immunoaffinity chromatography. The highly specific targeting of both native and denatured forms of human type IV collagenase by these anti-peptide antibodies holds much promise for immunolocalisation studies in human tumour tissue. Cathepsin L was purified in both a free; single-chain form from sheep liver, and as complexes with the endogenous cysteine proteinase inhibitor, stefin B. These complexes comprised mixtures of the usual tight-binding non-covalent, inhibitory complexes, and novel, proteolytically active, covalent cathepsin L/stefin B complexes. The latter form spontaneously in a pH-dependent manner in vitro from purified, active constituents. The primary structures of these complexing moieties from sheep liver are reported here for the first time, and showed a high degree of sequence homology with their human counterparts. Single-chain cathepsin L, both in the free, and novel, covalently complexed forms, manifested stability and increased activity at neutral pH, thus suggesting a role in extracellular tissue destruction. This potential involvement in tumour invasion was strengthened by demonstrating that the single-chain form of the enzyme, and similar covalent complexes, active under physiological conditions, could be isolated from liver tissue homogenates of higher primates, baboon (Papio ursinus) and man. A battery of versatile polyclonal anti-sheep cathepsin L and anti-human cathepsins L and H peptide antibodies were raised in chickens and rabbits. The chicken egg yolk antibodies were often of a higher titre than the corresponding rabbit serum antibodies, and additionally manifested unique immunoinhibitory properties. In the case of the polyclonal chicken anti-sheep cathepsin L antibodies, this was derived from their ability to target a peptide located in the active site of cathepsin L. The chicken anti-human cathepsins L and H peptide antibodies constitute the immunological probes of choice for immunolocalisation and in vitro tumour invasion studies to elucidate the relative contributions of these collagenolytic cathepsins to tumour invasion, and could ultimately find application in tumour immunotherapy.Item The development of assays for atractyloside and its localisation in rat tissue.(1991) Bye, Sandra Noel.; Dutton, Michael Francis.; Anderson, Trevor Ryan.An extract of the tuber of Callilepis laureola is regarded as the source of a powerful therapeutic agent, known as Impila. Its use is associated with fatal hepatic and renal necrosis, the renal toxin being atractyloside (ATR). The aims of this study were threefold. Firstly, to generate a model set of biological specimens (urine, serum, liver and kidney) from rats dosed with 5-25 mg ATR/kg bwt. Secondly, to develop a competitive ELISA and HPLC method for the diagnosis of ATR poisoning employing the model specimens as test samples. Thirdly, to localise the target organs, cells and organelles of ATR, in vivo. The HPLC method necessitated the systematic development of the derivatisation of ATR with 9-anthryldiazomethane, sample clean up employing hexane, methanolic hydrochloric acid and a silica minicolumn, as well as the chromatographic conditions. Optimal resolution was obtained with a 3.9 x 150 mm NovaPak reverse phase column, fluorescence detection (excitation = 365 nm, emission = 425 nm) and a solvent system of MeOH:1M ammonium acetate:1M glacial acetic acid:water (38:2:2:58). This method has a detection limit of 0.001 ng ATR, shows a mean recovery of 89% and detected approximately 6.7 ug ATR/g wet weight of tuber tissue. The toxin was also detected in some of the urine samples at levels of about 200 pg/ml, but not in the serum. The production of antibodies to ATR for use in the ELISA and immunocytochemical investigations required the investigation of the conjugation procedure, carrier type, host species and immunization protocol. Optimal antibody yield, specificity and affinity was obtained with an acid-treated Salmonella minnesota bacterial carrier conjugated to ATR by carbodiimide, although there were indications of class switch inhibition and Tlymphocyte suppression by ATR. The development of the ELISA yielded a protocol involving the coating with a bovine serum albumin-ATR conjugate, blocking with bovine serum albumin, incubating the primary antibody at 4°C and detection with a secondary antibody-alkaline phosphate conjugate. This method detected ATR in both urine and serum from ATR-dosed rats and shows a detection limit of 10 ng. Since the less sensitive ELISA detected ATR in samples where the HPLC did not, this suggested that ATR is biotransformed in vivo, such that its retention time on a reverse phase column is affected, but not its epitope determinants. The results of the organ function assays demonstrated that, when administered intra-peritoneally, ATR is not hepatotoxic, but is a powerful nephrotoxin, targeting for the microvilli of the brush border of the proximal tubules, and compromising glomerular permselectivity and distal tubular function. In addition, this toxin inhibits proline transport in the proximal tubule, and therefore probably affects protein biosynthesis. Renal regeneration is noted 3 days post-dosing, as demonstrated by calcium excretion. Immunocytochemistry was optimised on tuber tissue and necessitated the intracellular fixation of the toxin, using carbodiimide, to prevent leaching out of the ATR. The toxin was encapsulated in vesicles in the tuber tissue. Atractyloside was also located in the kidney of ATR-treated rats, up to 72 hours after exposure, targeting the microvilli of the proximal tubule brush border, the mitochondrial cristae and specific sites on the Golgi apparatus membrane. Microvilli disruption and mitochondrial swelling was noted within 24 hours after exposure to the toxin while after 72 hours, loss of mitochondrial integrity was observed. The development of these diagnostic assays for ATR have provided the means to monitor the levels of this toxin in plant extracts and mammalian body fluids. Future work should include the identification of the hepatotoxin associated with Impila, the effects of the route of administration on the toxicity of this remedy and furthermore, the identification of a suitable antidote, which could include the use of duramycin and stevioside. The association between compounds blocking the ADP/ATP antiporter in the c-state and Reye's syndrome should also provide an interesting area of research.Item A study of the proteinase, cathepsin L, in the context of tumour invasion.(1990) Pike, Robert Neil.; Dennison, Clive.The proteinase, cathepsin L, has been strongly implicated in the processes of tumour invasion and metastasis. A new purification method, three-phase partitioning, characterised in terms of the parameters which affected its fractionation of proteins, was found to simplify the purification of cathepsin L from sheep liver. This method, together with a novel cation-exchange step on S-Sepharose and molecular exclusion chromatography, enabled the enzyme to be purified to homogeneity, in a single-chain form. A further enzyme fraction was isolated as a proteolytically active complex with the endogenous inhibitor of cysteine proteinases, cystatin. Studies on the proteolytically active complex revealed that approximately 60% of it was covalently bound and proteolytically active, while the other 40% was non-covalently bound and proteolytically inactive, in the manner normally found for the binding of cystatin to cysteine proteinases. A cystatin fraction from sheep liver containing variants of cystatin B, was shown to be able to form complexes with free cathepsin L in vitro in a pH-dependent, rapid process, which was mildly stimulated by a reducing agent. Cathepsin L was also isolated from human spleen, but only as a protcolytically inactive complex, presumably also with cystatin(s). The complexed and free cathepsin L from sheep liver were analysed for their pH-dependent characteristics, and it was found that both forms of the enzyme were more active and stable at, or near, neutral pH, than would have been expected from published values. Specific polyclonal antibodies to pure sheep cathepsin L were raised in rabbits and chickens. The chicken egg yolk antibodies were of a much higher titre and were immunoinhibitory towards the enzyme, which the rabbit antibodies were not. Anti-peptide antibodies, raised in rabbits against a peptide sequence selected from the active site of human cathepsin L, were highly specific for cathepsin L and immunoinhibitory towards the enzyme. Together with the polyclonal anti-cathepsin L antibodies, they show promise for immunoinhibitory and immunocytochemical studies on the enzyme, and as potential anti-tumour drugs.Item A biochemical and immunological comparison of the Jaagsiekte and two related retroviruses.(1987) York, Denis Francis.; Verwoerd, D. W.; Dennison, Clive.Jaagsiekte is a contagious cancer affecting the lungs of sheep. Although the etiological agent is Jaagsiekte retrovirus (JSRV), two other retroviruses viz South African maedi visna virus ( SA - OMVV) and a novel Bovine retrovirus (BRV) have been associated with or implicated in the jaagsiekte disease complex. JSRV was sufficiently purified from lung rinse material using a Freon extraction, Percoll density gradient centrifugation and chranatography on a Sephacryl column, its polypeptide composition was studied by gel electrophoresis and its morphology observed electron microscopically. Monoclonal antibodies were made against purified preparations of the virus. Two hybridomas were isolated that produced MAbs which appear to be tumour cell specific. A third hybridoma, called 4A1O, produces antibodies considered to be viral specific. These MAbs have been used in the development of JS specific immunoassays. A cross reaction between JSRV and a polyclonal serum against Mason Pfizer monkey virus (MPMV) was confirmed and used in a Western blot technique to identify, monitor and differentiate JSRV from other viruses. During the study of JSRV it became apparent that another retrovirus was often present in JS infected lungs. This virus, referred to as SA - OM1V I, is a novel South African isolate of maedi visna virus (MVV). As SA - OM1V I has physicochemical characteristics similar to JSRV, it was often found in purified JSRV preparations. Being a retrovirus it is also detected by the reverse transcriptase assay which was the only method used to assay and monitor for JSRV during the early stages of our work. Using a Westen blot technique and sera against MVV and MPMV it was possible to simultaneously detect and differentiate JSRV from SA - OMVV I. A method was also developed whereby the two viruses could be separated from each other during purification. The information gained and techniques developed whilst studyiing JSRV were also used to isolate and characterize BRV. This novel virus originated from bovine cells that had been co-cultivated with white blood cells from an ox suffering from malignant catarrhal fever. Three out of four sheep inoculated with BRV developed JS. It therefore had to be· ascertained whether this virus was related to JSRV or not. The comparative study revealed that BRV was biochemically and morphologically quite different fran JSRV. Interestingly, it was shown that serum against MPMV cross reacted with a 32 kd protein of BRV indicating a serological relationship between JSRV, MPMV and BRV. The possible role of BRV in the etiology of jaagsiekte remains to be elucidated.Item Assessment of lysine damage during food processing.(1985) Anderson, Trevor Ryan.; Quicke, George Venn.The fluorodinitrobenzene (FONB), succinic anhydride (SA), dansyl chloride (DAN), dye-binding lysine (OBL), total lysine (TL), ninhydrin (NIN) and Tetrahymena lysine (TET) methods were compared for their ability to assess available lysine in soyaprotein heated in the absence or presence of glucose, lactose or xylose and in formaldehyde-treated lactalbumin. The reactive lysine methods showed comparable sensitivity to lysine damage in soyaprotein heated in the absence of sugar, the results indicating the presence of acid labile isopeptides and unidentified acid stable derivatives. Results for soyaprotein heated with glucose, lactose or xylose showed that the type of sugar and the extent of heat treatment has a strong influence on the progress of the Maillard reaction. Furthermore since fructoselysine (F-L) and lactulosyl-lysine (L-L) are colourless up to 30% loss of available lysine can occur without any change in product colour. The FONB method is the most sensitive for mildly damaged glucose-soya samples followed by DAN or OBL, SA and TL whereas for mildly damaged lactose-soya samples the order is OBL, FONB, SA, TL and DAN. For severely damaged samples the DAN or SA methods were the most sensitive followed by OBL, FONB and TL. Formylation of lactalbumin occurred more readily at higher formaldehyde concentrations. Exposure time had less effect while pH (5 and 9) had no effect. Methylene derivatives reached maximum levels sooner than the methylol compounds. Lysine and tyrosine but not histidine formed methylene bridges while tyrosine was found to condense with free formaldehyde during acid hydrolysis raising questions as to the interpretation of similar studies reported in the literature. The FONB, OBL and DAN methods were all very sensitive to this type of damage with the NIN and TL methods being less sensitive and the SA method being completely unsuitable. The TET assay is unsuitable for 'early' Maillard damage since at low sample-N levels growth is stimulated by its ability to utilise unavailable F-L and L-L while at higher N-levels growth is inhibited. No single method is most suitable for all types of damage. Furthermore, all except DAN and DBL are either too long, rather complicated, require expensive equipment or involve the use of dangerous chemicals. The DAN method appears promising but the problem of converting arbitrary fluorescence units to lysine values needs to be overcome. The DBL is recommended for routine analysis since it is simple, economical and highly sensitive to all lysine damage provided care is taken to optimise dye-binding for each type of material analysed.Item Effect of nitrate upon the digestibility of kikuyu grass (Pennisetum clandestinum)(1985) Marais, Johan Pieter.; Dennison, Clive.The factors affecting the accumulation of nitrate in kikuyu grass pastures and the effect of elevated nitrate levels upon digestion in the ruminant were investigated. A high potassium level in the soil seems to be the major factor stimulating the accumulation of excessive amounts of nitrate in kikuyu grass, when the nitrate content of the soil is also high. The continuous elongation of kikuyu grass tillers allows constant exposure of high nitrate containing stem tissue to the grazing ruminant. Digestibility studies in vitro showed that nitrite, formed during the assimilatory reduction of nitrate to ammonia, reduces cellulose digestion, but the degree of reduction also depends upon the presence of readily available carbohydrates and protein in the digest. Studies in vivo showed that the microbial population can adapt to metabolise high concentrations of nitrate (500 mg% N, m/m) in fresh kikuyu grass, without the accumulation of nitrite in the rumen. However, introduction into the rumen of nitrite in excess of the capacity of the nitrite reducing microbes, causes nitrite accumulation. Nitrite has no direct effect upon rumen cellulase activity. Due to the affinity of rumen carbohydrases for the substrate, attempts to isolate these enzymes by means of isoelectric focusing and other separation techniques met with limited success. Nitrite strongly reduces the xylanolytic, total and cellulolytic microbial numbers with a concomitant decrease in xylanase and cellulase activity of the digest. Decreased microbial numbers could not be .attributed to a less negative redox potential of the digest in the presence of nitrite, nor could the effect upon the cellulolytic microbes be attributed to an effect of nitrite on branched chain fatty acid synthesis required for cellulolytic microbial growth. A study of the effect of nitrite upon the specific growth rate of pure cultures of the major cellulolytic bacteria, Ruminococcus flavefaciens strain FDI, Butyrivibrio fibrisolvens strain Ce 51, Bacteroides succinogenes strain S 85 and Ruminococcus albus strain 22.08.6A and the non-cellulolytic bacterium Selenomonas ruminantium strain ATCC 19205 revealed the extreme sensitivity to nitrite of some of these bacteria and the relative insensitivity of others. Growth inhibition seems to depend primarily upon the extent to which these microbes derive their energy from electron transport-mediated processes.Item The occurrence of mycotoxins in feedstuffs in Natal and aspects of their metabolism in the rumen.(1985) Westlake, Kenneth.; Quicke, George Venn.The fluorodinitrobenzene (FONB), succinic anhydride (SA), dansyl chloride (DAN), dye-binding lysine (OBL), total lysine (TL), ninhydrin (NIN) and Tetrahymena lysine (TET) methods were compared for their ability to assess available lysine in soyaprotein heated in the absence or presence of glucose, lactose or xylose and in formaldehyde-treated lactalbumin. The reactive lysine methods showed comparable sensitivity to lysine damage in soyaprotein heated in the absence of sugar, the results indicating the presence of acid labile isopeptides and unidentified acid stable derivatives. Results for soyaprotein heated with glucose, lactose or xylose showed that the type of sugar and the extent of heat treatment has a strong influence on the progress of the Maillard reaction. Furthermore since fructoselysine (F-L) and lactulosyl-lysine (L-L) are colourless up to 30% loss of available lysine can occur without any change in product colour. The FONB method is the most sensitive for mildly damaged glucose-soya samples followed by DAN or OBL, SA and TL whereas for mildly damaged lactose-soya samples the order is OBL, FONB, SA, TL and DAN. For severely damaged samples the DAN or SA methods were the most sensitive followed by OBL, FONB and TL. Formylation of lactalbumin occurred more readily at higher formaldehyde concentrations. Exposure time had less effect while pH (5 and 9) had no effect. Methylene derivatives reached maximum levels sooner than the methylol compounds. Lysine and tyrosine but not histidine formed methylene bridges while tyrosine was found to condense with free formaldehyde during acid hydrolysis raising questions as to the interpretation of similar studies reported in the literature. The FONB, OBL and DAN methods were all very sensitive to this type of damage with the NIN and TL methods being less sensitive and the SA method being completely unsuitable. The TET assay is unsuitable for 'early' Maillard damage since at low sample-N levels growth is stimulated by its ability to utilise unavailable F-L and L-L while at higher N-levels growth is inhibited. No single method is most suitable for all types of damage. Furthermore, all except DAN and DBL are either too long, rather complicated, require expensive equipment or involve the use of dangerous chemicals. The DAN method appears promising but the problem of converting arbitrary fluorescence units to lysine values needs to be overcome. The DBL is recommended for routine analysis since it is simple, economical and highly sensitive to all lysine damage provided care is taken to optimise dye-binding for each type of material analysed.Item A contribution to the biochemistry of Erwinia chrysanthemi.(1985) Gray, James Steward Sanders.; Dutton, Michael Francis.No abstract available.Item Studies on the coupling of DNA to low density lipoproteins (LDL) and the interaction of these complexes with eukaryotic cells.(1987) Khan, Zainub.; Hawtrey, Arthur O.; Ariatti, Mario.The application of Molecular Biochemistry for transfection studies in eukaryotic systems is well documented. Of the numerous methods employed for the introduction of foreign DNA into eukaryotic cells, the use of low density lipoproteins (LDL) as carriers of DNA into cells has not been reported. LDL was isolated, characterized with respect to its protein and lipid components, and then variously modified in an attempt to enhance its affinity for DNA. It was found that both unmodified and modified LDL could interact with DNA, at physiological pH. The carbodiimide modified LDL (ECDI - LDL) showed the greatest affinity for DNA. LDL and ECDI - LDL were used to study LDL receptor binding in skin fibroblasts. This was followed by a study of receptor binding activities of both unmodified LDL and ECDI - LDL complexed to DNA (pBR322). Although the extent of binding of ECDI - LDL and ECDI - LDL - DNA complexes to plasma membranes was greater, the internalization and degradation of both modified and unmodified LDL complexes were equivalent. This additional binding was attributed to non - receptor - specific affinity of the carbodiimide modified complexes for the plasma membrane. The transfection of foreign DNA into eukaryotic cells in culture was monitored by assaying for the expression of the cloning vector, pSV2cat, complexed to LDL or ECDI - LDL and introduced into the cells by LDL receptor - mediated endocytosis. Of the cell lines in which the expression of the pSV2cat recombinant DNA was monitored, the human lung fibroblasts showed the greatest activity of the expressed chloramphenicol acetyl transferase enzyme. Although transfection efficiency was lower than that of the calcium phosphate - DNA coprecipitation procedure, the LDL receptor - mediated transfection of eukaryotic cells was carried out under physiological conditions and may be applicable in vivo.Item Making sense of mixtures : chromatographic separations of plant, insect and microbial biomolecules.(1996) Brand, John Morgan.; Quicke, George Venn.No abstract available.