Browsing by Author "Titshall, Louis William."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item The characterisation of some South African water treatment residues and glasshouse pot experiments to investigate the potential of two residues for land disposal.(2003) Titshall, Louis William.; Hughes, Jeffrey Colin.Water treatment residues (WTRs) are the by-product from the production of potable water. They consist mainly of the precipitated hydrous oxides of the treatment chemicals, and materials removed from the raw water. This study investigated the range of treatment processes and residues produced in South Africa, and two WTRs were selected for testing on selected soils and mine materials. A questionnaire was developed and sent to water treatment authorities across South Africa. Information on the treatment chemicals, dosages, volumes and current disposal practices, and a sample of WTR from each treatment plant were requested. Eleven, of 21 authorities, returned completed questionnaires, representing 37 water treatment facilities. Organic polymers were the most commonly used treatment chemical, with most plants also using lime. Other less frequently used chemicals and additives were A12(SO4)3.14H2O, Fe2(SO4)3, FeC1), sodium aluminate, activated silica, activated charcoal, CO2 and bentonite. Information given regarding residue thickening and disposal was poor. Samples from Rand Water, Umgeni Water (Midmar), Midvaal Water Company, Amatola Water and Cape Metropolitan Council (Faure) were received or collected. An additional sample from Faure was also received, representing a change in the treatment process. These samples were analysed for a range of chemical and physical characteristics. These analyses showed that the WTRs had the potential to supply some plant nutrients (Ca, Mg, Fe, S) but that metal toxicity may be a problem, in particular Mn in the Faure WTR, and that P adsorption may be severe. The samples selected to test the potential for land disposal were from Rand Water and Faure. A pot experiment tested the growth of Eragrostis teff, Cenchrus ciliaris and Digitaria eriantha in mixtures of Rand WTR and material from a coal mine i.e., a sandy soil material, spoil material and coal combustion ash, at rates of 0, 50, 100, 200 and 400 g kg-1 with a uniform fertiliser treatment applied to all mixtures. The grass was harvested on three occasions and the mean total yield (dry mass) determined, as well as nutrient uptake. The pots were leached after each harvest and the pH and electrical conductivity determined. The soil, spoil and ash were characterised and pH, EC and water retention characteristics of the mixtures determined. Growth of the grasses in the ash treatments was poor and these were terminated. Eragrostis teff grown in the soil showed a decrease in mean total yield with increasing WTR application rate, but yield was good up to the 200 g kg-1 treatment at the first harvest, declining substantially by the second harvest. In general C. ciliaris and D. eriantha grown in the soil showed a decrease in mean total yield for all harvests with increasing WTR application. The yield of E. teff, grown in the spoil, increased up to 100 g kg-1 WTR addition, but decreased thereafter. Digitaria eriantha showed a decrease in yield, and C.ciliaris an increase, with increasing WTR application rate, but for all treatments the differences were non-significant. The pH and EC of the leachates generally increased with increasing WTR addition. The concentration of nutrients in the grasses did not indicate any deficiencies or toxicities. As the growth of grass was poor in the ash treatments, another pot experiment was established to test the growth of two creeping grass species grown in the Rand WTR as a cover over the ash material. Cynodon dactylon and Stenotaphrum secundatum were grown in 20, 40 and 60 mm layers of Rand WTR, with and without a fertiliser treatment. Both species performed best in the 60 mm layer with fertiliser, and C. dactylon performed better than S. secundatum. The former species was more tolerant of the high pH, but both have potential as cover vegetation on the ash dumps when these are covered with Rand WTR. A further glasshouse study investigated the effect of Faure WTR mixed with a nutrient poor sandy soil on the nutrient uptake and seed yield of common dry beans (Phaseolus vulgaris). The WTR was added to the soil at 0, 50, 100, 200 and 400 g kg-1 each with five levels of fertiliser (0, 25, 50, 100 (recommended optimum) and 150 %). Bean pods were harvested once the plants had senesced. The number of pods and mass and number of seeds per treatment were determined. The seeds were analysed for nutrient uptake. Interveinal chlorosis and necrotic lesions were evident on cotylendonous and new leaves in the WTR treated soils, the severity of the symptoms increasing with increasing rate of WTR. Additional pots were established at the 400 g kg-1 rate (without fertiliser) and leaf material collected for chemical analysis. This showed that Mn toxicity was the cause, with leaf concentrations about 12 times the recommended 100 mg kg-1 upper limit. However, mass of bean seed was highest in the 400 g kg-1 Faure WTR treatment with 150 % fertiliser. Nutrient translocation to the seed seemed to be relatively consistent regardless of treatment, with little accumulation of Mn. The data collected illustrated the range of conditions and types of WTRs produced in South Africa, and that in some instances these residues have favourable characteristics for land application. The use of the Rand WTR showed that it could be applied to the spoil medium at relatively high concentrations without severely negatively impacting on grass growth, but that more caution should be used when applying this material to the soil medium. While the grass did not grow in the ash treatments, it would seem that with suitable species the Rand WTR could be beneficially applied to ash material as a cover layer. The use of the Faure WTR on a sandy soil seemed to potentially improve the yield of the indicator crop, but caution should be exercised due to the possibility of Mn toxicity. The use of additional fertiliser would seem to be essential. Further research would require that field scale investigation of both WTRs be conducted, as well as further studies of application rates and techniques in laboratory and glasshouse investigations.Item A comparative study of the BCR sequential and batch extractions for wastes and waste-amended soil.(2010) Elephant, Dimpho Elvis.; Bester, H. Christopher.; Titshall, Louis William.The use of standard soil tests to assess waste materials has become a common practice in waste management. However, the suitability of using standard soil tests on waste materials is questionable. Therefore, this investigation was undertaken to compare commonly used chemical extraction methods for their ability to extract elements from soil, waste, and soil-waste mixtures. This was carried out by: · Assessing the effects of extraction time on the extractability of Al,Ca, Co, Cu, Fe, Mg, Mn, Ni, Pb, S, Si, and Zn; · Assessing the comparability between single and sequential extraction. Two manganese rich wastes namely electro-winning waste (EW) and silicate-rich smelter slag (SS) and an acid soil (Inanda, Ia) were used for this study. Waste amended soils were obtained by incubating the EW and SS with Ia soil at field capacity at a rate of 20 g kg-1 and 120 g kg-1 soil respectively, and were sampled at day 0, 7, 28, 56, and 140. The effect of extraction time was assessed on the EW, SS, and Ia soil with carbonated water used in the acid rain test conducted at 16, 20, 30, and 50 hours. The equilibration time was different for different materials and elements. The concentration of Al and Zn did not change appreciably with increasing extraction time in the EW. Similar results were found for Mg, S, and Si in the SS and S in the Ia soil. This was attributed to ‘equilibrium’ being reached before 16 hours. The equilibration time of 20 hours which would release the exchangeable and specifically adsorbed elements was obtained for Co, Mg, Si, S, and Mn in the EW. The concentration of Ca decreased with extraction time in the EW and was attributed to readsorption. The concentration of Ca and Mn in the SS and Al, Fe, and Si in the Ia soil increased with extraction time and the ‘equilibrium’ was not reached even after 50 hours. This was attributed to the release of elements due to dissolution of minerals. In the comparison between Community Bureau of Reference (BCR) sequential and batch extraction, the concentrations of Ca, Co, Mg, Mn, and S were higher in batch extraction than in sequential extraction, particularly for the EW and the EW treated soils. This was possibly caused by the readsorption of released elements during water extraction. On the contrary, sequential extraction had higher concentration of Al and Fe compared to batch extraction for the EW, Ia soil, SS treated soils, and EW treated soils. These were attributed to a continued desorption of elements and dissolution of minerals due to exposed surfaces which occurs in sequential extraction. The comparison between single and sequential extraction for the BCR sequential extraction showed that hydroxylammonium chloride (HAC) applied in sequential extraction had higher concentration of Al, Co, Fe, Pb, and Zn than the single HAC extraction. This was probably due to incomplete dissolution of minerals, precipitation of amorphous minerals, and readsorption of released elements occurring for a single HAC extraction. These were minimised for hydrogen peroxide (H2O2) extraction and hence comparability between single and sequential H2O2 extraction was observed. This was probably due to the presence of complexing agent in the extracting reagent which would minimise the formation of secondary precipitates and hence, improved dissolution of minerals was obtained. Similarly, the concentrations of elements were comparable between single and sequential aqua regia extraction. These results indicated that comparability is improved between single and sequential extraction when aggressive conditions are used. The results from this investigation indicated that when chemical extraction methods are applied to wastes, the effects of the waste properties on the results of extraction need to be well understood. Consequently, when the chemical extraction methods are used in waste management scenarios certain modifications might have to be made. These modifications include the use of a high solution:solid ratio and an extracting solution which has high complexing abilityItem A comparison of the effects of tillage on soil physical properties and microbial acitivity at different levels of nitrogen fertilizer at Gourton Farm, Loskop, KwaZulu-Natal.(2010) Bassett, Terri Storm.; Titshall, Louis William.Long-term food security and environmental quality are closely linked to maintaining soil quality. Therefore, the assessment of the effect of agricultural management practices on soil chemical, physical and biological parameters provide fundamental information about sustainability. An agricultural management practice which has received much attention in the last decade is tillage. The loss of topsoil due to erosion and a reduction of soil organic matter under conventional tillage practices, together with escalating fuel prices, have lead to the increased implementation of conservation tillage practices. However, the response of soil to a reduction in tillage is dependent on the inherent soil properties, environmental conditions, crop type and the land management practices. The successful implementation of conservation tillage practices is thus site specific. Furthermore, the effect of fertilizer application on soil quality is affected by tillage regime and therefore has important implications for recommendations of fertilizer application rates. The objectives of this study were to investigate the effect of tillage regime at three rates of nitrogen fertilization on soil microbial activity and selected soil physical properties in the Loskop area of KwaZulu-Natal, South Africa. Based on the outcomes of these investigations, recommendations regarding sustainable tillage practice and nitrogen fertilizer application rate are made. A field trial was initiated in 2003 on Gourton Farm in the Loskop area of KwaZulu-Natal on an area that was previously under annual conventional tillage and is currently planted to dry-land maize. The trial was arranged as a split plot experimental design with tillage regime (whole plots) replicated three times, and fertilizer type and application rate forming randomized subplots within the whole plots. The trial was on a clay loam soil type (Hutton soil form). The effects of annual conventional tillage (CT1) and no-till (NT) at three rates of nitrogen (N) fertilizer (as limestone ammonium nitrate (LAN)) applied at rates of 0 kg N ha-1 annum-1 (0N), 100 kg N ha-1 annum-1 (100N) and 200 kg N ha-1 annum-1 (200N) were evaluated for their effects on soil organic carbon (SOC), microbial activity, bulk density (ñb), water retention characteristics, saturated hydraulic conductivity (Ks), micro-aggregate stability and soil penetration resistance. Undisturbed soil cores were taken from three inter-rows in triplicate from each sub-plot for the A horizon (0 to 20 cm) and from three inter-rows in duplicate for the B horizon (20 to 40 cm). These undisturbed soil cores were used to determine the ñb, water retention characteristics and Ks. Bulk soil samples were collected from three inter-rows in triplicate from each sub-plot for the A (0 to 20 cm) and B (20 to 40 cm) horizons. The bulk samples from each horizon in each sub-plot were thoroughly mixed and halved. One half was used to determine microbial activity as measured by the hydrolytic and cellulolytic activity and the other half was used to determine SOC content, particle size distribution and aggregate stability. Penetration resistance was taken in duplicate in three rows in each sub-plot at 1 cm increments to a depth of 50 cm or until an instrument limiting penetration resistance of 5000 kPa was reached. Tillage regime and N application rate considerably affected soil microbial and physical properties in the A horizon (0 to 20 cm). The SOC, hydrolytic activity and ñb are significantly greater (P 0.05) effect on the soil microbial activity and physical properties except for Ks, where the Ks is significantly (P 0.05) in the B horizon on the measured soil microbial activity and physical properties except for the penetration resistance. Increasing levels of fertilizer resulted in increased penetration resistance throughout the soil profile under NT. Under CT1, this same trend is evident from below the plough layer. These results indicate that the microbial activity, as measured by hydrolytic and cellulolytic activity, is improved under NT compared to CT1. Furthermore, the soil under NT retains more plant available water (PAW) and although the ñb and penetration resistance are greater there was no obvious adverse effect on maize growth. In addition, a high rate of LAN fertilizer adversely affected soil microbial and physical properties, especially under NT. Therefore, it is proposed that NT is the preferred tillage practice in providing long-term sustainability and soil health without causing negative soil structural properties for crop productivity in the short-term. In addition, it is recommended that although increased levels of nitrogen fertilizer results in higher yielding maize plants it is unsustainable to apply high applications of LAN due to the negative effect on the soil microbial and physical properties and thus there is a need to re-evaluate the sustainability of using high rates of LAN to increase crop yields, especially under NT systems.Item The effects of burning or mulching of harvest residues on selected soil properties in a Eucalyptus plantation in Northern KwaZulu-Natal.(2014) Madikizela, Siphamandla.; Hughes, Jeffrey Colin.; Titshall, Louis William.; Rietz, Diana Nicolle.; Podwojewski, Pascal.The sustainable management of commercial forest resources is required to ensure long-term soil fertility and the productivity of later rotations; this includes soil nutrient retention and the protection of soil structure. A major factor in the protection of soil structure is the distribution of soil organic carbon (SOC) and nutrients, as well as the stability of soil aggregates. These are influenced by forest harvest residue management practices such as the removal, displacement on the soil surface, or burning of residues. Soil aggregate stability is an important soil property that gives a reliable estimation of the ability of soils to respond to external forces such as rainfall, wind, and land management. The objectives of the study were to investigate the effect of forestry residue management methods on selected soil properties and their effect on soil structural stability under the previous stump-line and in the current inter-row. The results obtained from the study will contribute to understanding the effects of forest harvest residue management on some soil properties. The study site was near Paulpietersburg, northern KwaZulu-Natal, South Africa. A trial was established by the Institute for Commercial Forestry Research (ICFR) in 2010 to investigate the effect of tree harvest residue management, soil compaction and its amelioration through ripping, on the growth of Eucalyptus dunnii grown on a Magwa soil form. This trial has a factorial treatment design and consists of three soil disturbance treatments (no compaction, compaction, and compaction with amelioration) and two residue management practices (burning and residue mulching), with four replicates (24 treatment plots). The effect of burning and mulching harvest residue on selected soil properties and soil aggregation in relation to other soil properties was studied two years after the treatments were established. For the purposes of the present study, the no-compaction treatment and both residue management treatments (burning and mulching) were used (eight plots). Bulk samples, 192 in total, were collected from each of the eight plots, from both the current inter-row and the old stump-line, at a depth of 0 to 0.1 m and 0.1 to 0.2 m using a spade. Samples were air dried and sieved to collect soil aggregates between 2 and 8.5 mm for soil aggregate stability determinations by determination of the mean weight diameter (MWD). Some of the bulk sample was analysed for SOC, pH, exchangeable bases (Ca2+, Mg2+, K+, and Na+), and particle size distribution. Statistical analyses were carried out using Genstat and the results were regarded as significant if p < 0.05 (or 5%). Residue management had no significant (p ≥ 0.05) effect on exchangeable Mg2+, K+, and Na+, soil pH, exchangeable acidity, effective cation exchange capacity and texture. There was, however, a significant effect of residue management on SOC and exchangeable Ca2 Ca2+. Under the mulched plot treatment, SOC at the 0 to 0.1 m depth was significantly higher in soils when compared to the burned plot treatment. Under the burned plot treatment, exchangeable Ca2+ concentrations were significantly higher than the mulched treatment. Furthermore, under the burned plot treatment; exchangeable Ca2+ and Mg2+ concentrations were significantly higher in the 0 to 0.1 m depth than at the 0.1 to 0.2 m depth. Neither residue management strategy had any significant effect on MWD. However, there was a significant effect on MWD relating to soil depth and sampling position. Under both treatments, the MWD was higher at 0 to 0.1 m than at the 0.1 to 0.2 m depth, in both inter-row and stump-line samples. The average MWD of 2.45 mm (with a standard error of 0.04) and values that ranged between 0.8 and 3.5 mm was indicative of stable aggregates. Thus, surprisingly, no significant correlation was found between SOC and MWD. However, it was concluded that changes in residue management may alter SOC, thus impacting on the productivity of the soil. Furthermore, it was suggested that soil aggregate stability was driven by exchangeable Ca2+ and Mg2+.Item The effects of land use and management practices on soil microbial diversity as determined by PCR-DGGE and CLPP.(2011) Wallis, Patricia Dawn.; Titshall, Louis William.; Hunter, Charles Haig.; Morris, Craig Duncan.The environmental impact of anthropogenic disturbances such as agriculture, on the soil ecosystem, and particularly on soil microbial structural and functional diversity, is of great importance to soil health, conservation and remediation. Therefore, this study assessed the effects of various land use and management practices on both the structural (genetic) and functional (catabolic) diversity of the soil bacterial and fungal communities, at two long-term sites in KwaZulu-Natal. The first site is situated at Baynesfield Estate, and the second at Mount Edgecombe Sugarcane Research Institute. At site 1, the land uses investigated included soils under pre-harvest burnt sugarcane (Saccharum officinarum, Linn.) (SC); maize (Zea mays, Linn.) under conventional tillage (M); permanent kikuyu (Pennisetum clandestinum, Chiov) pasture (KIK); pine (Pinus patula, Schiede) plantation (PF); and wattle (Acacia mearnsii, De Wild) plantation (W), all fertilized; and undisturbed native grassland (NAT) that had never been cultivated or fertilized. At site 2, a sugarcane (Saccharum officinarum × S. spontaneum var. N27) pre-harvest burning and crop residue retention trial was investigated. The treatments studied included conventional pre-harvest burning of sugarcane with the tops removed (Bto), and green cane harvesting with retention of crop residues on the soil surface as a trash blanket (T). Each of these treatments was either fertilized (F) or unfertilized (Fo). The polymerase chain reaction (PCR), followed by denaturing gradient gel electrophoresis (DGGE) were used to determine the structural diversity, and community level physiological profiling (CLPP) using BIOLOG plates, the catabolic diversity. In addition, the soils were analysed with respect to selected physicochemical variables, and the effects of these on the soil microbial communities were determined. Replicate soil samples (0–5 cm) were randomly collected from three independent locations within each land use and management, at both sites. Soil suspensions for the CLPP analyses were prepared from fresh soil subsamples (within 24 h of collection) for the bacterial community analyses, and from 8-day-old soil subsamples (incubated at 4°C to allow for spore germination) for the fungal community analyses. BIOLOG EcoPlates™ were used for the bacterial CLPP study and SF-N2 MicroPlates™ for the fungal analysis, the protocols being adapted and optimized for local conditions. This data was log [X+1]-transformed and analysed by principal component analysis (PCA) and redundancy analysis (RDA). For PCRDGGE, total genomic DNA was isolated directly from each soil subsample, and purified using the MO BIO UltraClean™ soil DNA Isolation kit. Protocols were developed and optimized, and fragments of 16S rDNA from soil bacterial communities were PCR-amplified, using the universal bacterial primer pair 341fGC/534r. Different size 18S rDNA sequences were amplified from soil fungal communities, using the universal fungus-specific primer pairs NS1/FR1GC and FF390/FR1GC. Amplicons from both the bacterial and fungal communities were fingerprinted by DGGE, and bands in the fungal DGGE gels were excised and sequenced. The DGGE profiles were analysed by Bio-Rad Quantity One™ Image analysis software, with respect to band number, position, and relative intensity. Statistical analyses of this data then followed. Soil properties [organic C; pH (KCl); exchangeable acidity; total cations (ECEC); exchangeable K, Ca and Mg; and extractable P] were determined by PCA and were shown to have affected the structural and catabolic diversity of the resident microbial communities. At Baynesfield, canonical correspondence analysis (CCA) relating the selected soil variables to bacterial community structural diversity, indicated that ECEC, K, P and acidity were correlated with CCA1, accounting for 33.3% of the variance, whereas Mg and organic C were correlated with CCA2 and accounted for 22.9% of the variance. In the fungal structural diversity study, pH was correlated with CCA1, accounting for 43.8% of the variance, whereas P, ECEC and organic C were correlated with CCA2, and accounted for 30.4% of the variance. The RDA of the catabolic diversity data showed that the same soil variables affecting fungal structural diversity (organic C, P, ECEC and pH) had influenced both the bacterial and fungal catabolic diversity. In both the bacterial and fungal RDAs, organic C, P and ECEC were aligned with RDA1, and pH with RDA2. However in the bacterial analysis, RDA1 accounted for 46.0%, and RDA2 for 27.5% of the variance, whereas in the fungal RDA, RDA1 accounted for only 21.7%, and RDA2 for only 15.0% of the variance. The higher extractable P and exchangeable K concentrations under SC and M, were important in differentiating the structural diversity of these soil bacterial and fungal communities from those under the other land uses. High P concentrations under M were also associated with bacterial catabolic diversity and to a lesser extent with that of the soil fungal communities under M. Similarly, the higher organic C and exchangeable Mg concentrations under KIK and NAT, possibly contributed to the differentiation of these soil bacterial and fungal communities from those under the other land uses, whereas under PF, the high exchangeable acidity and low pH were possibly influencing factors. Under W, low concentrations of P and K were noted. Other factors, such as the presence/absence and frequency of tillage and irrigation, and the diversity of organic inputs due to the diversity of the above-ground plant community, (in NAT, for example) were considered potentially important influences on the nature and diversity of the various land use bacterial and fungal communities. At Mount Edgecombe, CCA showed that organic C and Mg had a significant effect on soil bacterial structural diversity. Organic C was closely correlated with CCA1, accounting for 58.7% of the variance, whereas Mg was associated with CCA2, and accounted for 41.3% of the variance. In the fungal structural diversity study, ECEC and pH were strongly correlated with CCA1 and accounted for 49.1% of the variance, while organic C was associated with CCA2, accounting for 29.6% of the variance. In the functional diversity studies, RDA showed that both bacterial and fungal community catabolic diversity was influenced by soil organic C, pH, and ECEC. In the bacterial analysis, RDA1 was associated with organic C and pH, and accounted for 43.1% of the variance, whereas ECEC was correlated with RDA2, accounting for 36.9% of the variance. In the fungal analysis, RDA1 was correlated with ECEC and accounted for 47.1% of the variance, while RDA2 was associated with pH and organic C, accounting for 35.8% of the variance. The retention of sugarcane harvest residues on the soil surface in the trashed treatments caused an accumulation of organic matter in the surface soil, which did not occur in the pre-harvest burnt sugarcane. This difference in organic C content was a factor in differentiating both bacterial and fungal communities between the trashed and the burnt treatments. Soil acidification under long-term N fertilizer applications caused an increase in exchangeable acidity and a loss of exchangeable Mg and Ca. Thus, as shown by CCA, a considerably lower exchangeable Mg concentration under F compared to Fo plots resulted, which was influential in differentiating the bacterial and fungal communities under these two treatments. In the structural diversity study at Baynesfield, differences were found in bacterial community species richness and diversity but not in evenness, whereas in the fungal analysis, differences in community species richness, evenness and diversity were shown. The soil bacterial and fungal communities associated with each land use were clearly differentiated. Trends for bacterial and fungal diversity followed the same order, namely: M < SC < KIK < NAT < PF < W. At Mount Edgecombe, no significant difference (p > 0.05) in bacterial structural diversity was found with oneway analysis of variance (ANOVA), but two-way ANOVA showed a slight significant difference in bacterial community species richness (p = 0.05), as an effect of fertilizer applications. A significant difference in fungal species richness (p = 0.02) as a result of management effects was detected, with the highest values recorded for the burnt/fertilized plots and the lowest for the burnt/unfertilized treatments. No significant difference was shown in species evenness, or diversity (p > 0.05), in either the bacterial or the fungal communities. In the catabolic diversity study at site 1, the non-parametric Kruskal-Wallis ANOVA showed that land use had not affected bacterial catabolic richness, evenness, or diversity. In contrast, while fungal catabolic richness had not been affected by land use, the soil fungal community catabolic evenness and diversity had. At site 2, the land treatments had a significant effect on soil bacterial community catabolic richness (p = 0.046), but not on evenness (p = 0.74) or diversity (p = 0.135). In the fungal study, land management had no significant effect on the catabolic richness (p = 0.706), evenness (p = 0.536) or diversity (p = 0.826). It was concluded, that the microbial communities under the different land use and trash management regimes had been successfully differentiated, using the optimized protocols for the PCR-DGGE of 16S rDNA (bacteria) and 18S rDNA (fungi). Sequencing bands produced in the 18S rDNA DGGE, enabled some of the soil fungal communities to be identified. CLPP of the soil microbial communities using BIOLOG plates showed that, on the basis of C substrate utilization, the soil bacterial and fungal communities’ catabolic profiles differed markedly. Thus, it was shown that the different land use and management practices had indeed influenced the structural and catabolic diversity of both the bacterial and fungal populations in the soil.Item Erosion dynamics at the catchment level : spatial and temporal variations of sediment mobilization, storage and delivery.(2011) Oakes, Ernest Gene Martin.; Chaplot, Vincent A. M.; Lorentz, Simon Antony.; Titshall, Louis William.Soil material exported from river catchments by soil erosion is a key issue in environmental sustainability. Although soil erosion processes have been thoroughly investigated, their dynamics, specifically the continuity of erosion processes and sediment source locality, are less studied. The aim of this investigation was to evaluate the changes in the fluxes and characteristics of sediments during their downslope and downstream transport. The study was conducted in a 1000 ha catchment of the Drakensberg foothills, South Africa. Sediment fluxes were monitored at nested scales during the 2009-2011 rainy seasons using 1×1m and 2×5 m erosion plots and H-flumes coupled to automatic samplers from 23 ha, 100 ha catchments. In addition, soil texture, colour and total organic carbon and nitrogen contents in sediments exported from the nested scales and a 1000 ha catchment were compared to in-situ surface and sub-surface soil horizons in a 23 ha catchment river bank and hillslope soils and fluvial sediments. There was a sharp increase of sediment fluxes with increasing slope length (846±201 gm-1y-1 for 1 m2 vs 6820±1714 gm-1y-1 for 10 m2), revealing a limited contribution of splash erosion compared to rain-impacted flow erosion. Sediment fluxes decreased to 500±100 gm-1y-1 and 100±10 gm-1y-1 at the 23 ha and 100 ha catchments respectively, indicating the occurrence of sedimentation during sediment downslope and downstream transport. A principal component analysis (PCA) suggested that rain impacted flow erosion efficiency at the 10 m2 scale was significantly correlated with soil bulk density, clay content and antecedent rainfall (P<0.05). Moreover, strong correlations existed between runoff, sediment concentration and soil loss and selected soil surface and environmental variables at the plot scales. Correlations became weaker at the catchment scales due to increasing landscape heterogeneity and the complexity of soil erosion dynamics. An additional PCA suggested that stream bank erosion contributed to 63% of the soil loss from the 23 ha catchment. During their downstream transport, sediments were discriminated by the second PCA axis, which correlated with the clay and fine silt content, 100 ha sediments showed negative coordinates to this axis while 1000 ha catchment sediment had positive coordinates.Item Improving phosphorus uptake by cassava (Manihot esculanata Crantz) using Arbuscular Mycorrhizal Fungi (AMF)(2014) Poku, Emmanuel Adu.; Titshall, Louis William.Phosphorus uptake cassava (Manihot esculanta Crantz) were tested using on thirty-six plants per plot under dryland conditions at four different sites selected Bioresource group 1 (BRG 1) of northern KwaZulu-Natal of South Africa, which is described as Moist, Coastal Forest, Thorn and Palm veld, exhibiting sub-tropical characteristics. Soils in this region are very low in Phosphorus (P) due to high fixation by iron and aluminium oxides. With its high root yields coupled with efficient nutrients miner, cassava removes large quantities of N, P, K and Mg. With the ever-increasing prices of P fertilizer, which impact on the socio-economic livelihood of smallscale farmers, there is the need to look into improving the P uptake by the crop by alternative means apart from using mineral fertilizers. The objective of this study was to investigate the use of Arbuscular Mycorrhizal Fungi (AMF) to improve P uptake by cassava in agricultural soils. Laboratory studies were conducted at Soil Fertility and Analytical Services in Cedara (Pietermaritzburg). A Latin Square design (LSD) was used. Four treatments used were Untreated (Control), P-fertilizer, AMF, and P + AMF. Correlation and path-coefficient (probabilities) were computed. The P + AMF were significantly (p<0.05) taller than those in P-fertilizer treatment plots but were significantly (p<0.05) similar to those in Control and AMF-treated plots. Percent leaf P was statistically similar at the four sites with grand mean of 0.4%. Adding AMF and P+AMF to the soil substantially increased leaf P concentration to 0.5%. Tubers collected from P+AMF-treated plots were significantly (p<0.05) the longest, while those from Control plots were the shortest. P, and AMF-treated plots increased tuber length relative to the Control. All soil treatments significantly (p<0.05) increased tuber yields over the Control-treatment plots. However, AMF and P+AMF treated plots were significantly higher than P and control plots. This study suggests that using AMF or P+AMF can improve cassava yield as compared P alone or control – untreated cassava plants. Cassava producers in northern KwaZulu- Natal should consider using AMF or P+AMF to optimize tuber yield. A further study into the economic implications of the use of AMF is recommended.Item Long-term fertilizer and sugarcane residue management effects on structural stability of two soil types in South Africa.(2017) Mthimkhulu, Sandile Siphesihle.; Titshall, Louis William.; Podwojewski, Pascal.; Van Antwerpen, Rianto.; Hughes, Jeffrey Colin.Abstract available in PDF file.Item Phosphorus sorption behaviour of some South African water treatment residues.(2009) Norris, Matthew.; Titshall, Louis William.Water treatment residues (WTRs), which are by-products from the production of potable water, are chemically benign, inorganic materials which are suitable for disposal by land application. Their high phosphorus (P) sorption capacities have, however, generated some concern in an agronomic context where P is recognised as a growth limiting plant nutrient. The extent to which labile P pools are reduced or enhanced by WTR amendments is, therefore, a central issue with respect to their disposal by land application. Therefore, the aim of this study was, through the use of empirical adsorption isotherm equations and chemical fractionation of P within the residues, to investigate the chemical processes responsible for the retention and release of P from 15 South African WTRs. Chemical characterisation revealed considerable variation in residue properties relevant to P sorption-desorption processes. pH, exchangeable Ca and organic carbon content ranged from 4.77 to 8.37, 238 to 8 980 mg kg-1 and 0.50 to 11.6 %, respectively. Dithionate, oxalate and pyrophosphate extractable Al fractions ranged from 741 to 96 375, 1 980 to 82 947 and 130 to 37 200 mg kg-1, respectively. Dithionate, oxalate and pyrophosphate extractable Fe ranged from 441 to 15 288, 3 865 to 140 569 and 230 to 90 000 mg kg-1 respectively. Therefore mechanisms of retention were hypothesised to be residue specific, being dependent on the unique chemical properties of the sorbent. Elevated Ca and amorphous Al and Fe concentrations did, nevertheless, suggest that all residues had the capacity to adsorb high amounts of P and to retain this P in forms unavailable for plant uptake. These arguments were confirmed by the sorption study where labile P was, for all residues, found to constitute a small fraction of total applied P even at high application concentrations (128 mg P L-1). Sequential P fractionation revealed that most of the inherent P (which ranged from 1 149 to 1 727 mg P kg-1) and applied P were retained in highly resistant mineral phases or fixed within the organic component. Thus P replenishment capacities were restricted even though residual P concentrations were often within adequate ranges for plant growth. Phosphorus adsorption data was described by four empirical adsorption isotherm equations in an effort to determine possible mechanisms of retention. Sorption data was, for most of the WTRs, described by the Temkin isotherm while the Freundlich and linear models fitted data for two residues each. A key finding was that the distribution coefficient (Kd) tended to increase with the quantity of P adsorbed (S) as opposed to decrease or remain constant in accordance with model assumptions. Therefore, the models could not be used for mechanistic interpretation, even though they provided excellent descriptions of the data. The direct relationship between Kd and S suggested a mechanism of retention involving the activation of sorption sites. This notion was supported by the fractionation study which showed that P addition results in the transfer of an increasing quantity of organically bound P to resistant residual forms. Model affinity parameters were strongly correlated to dithionate and pyrophosphate extractable Al and Fe which suggested that P was adsorbed primarily through ligand exchange mechanisms. The mobility of P bound to organic fractions did indicate that P was retained through weaker forces of attraction such as monodentate ligand exchange, charge neutralisation or proton transfer. Evidence to support the notion that P is immobilised through the formation of Ca phosphates was lacking. Based on P fractionation data, it was suggested that strong chemisorption mechanisms and the diffusion of P into WTR micropores were largely responsible for the minimal quantity of P desorbed by disequilibria desorption processes. A greater quantity of P was desorbed in the presence of oxalate and citrate which suggested that plants may increase bio-available pools through the release of organic ligands. Phosphorus desorbed in the presence of these ligands did, however, decline with P addition which confirmed that the affinity of the WTR surface for P increases with P application. Therefore, it was concluded that the application of P to WTRs is an uneconomical process unless sorption sites are already saturated or immobilisation processes are inhibited. In light of these findings, it was suggested that the absence of plant P deficiencies under the field application of WTRs is due primarily to inhibited sorption.Item Revegetation and phytoremediation of tailings from a lead/zinc mine and land disposal of two manganese-rich wastes.(2007) Titshall, Louis William.; Hughes, Jeffrey Colin.The original aims of this project were to investigate the potential for phytoremediation, with emphasis on metal accumulation, of three contrasting industrial processing wastes. These were tailings material (PT) from the decommissioned Pering Pb/Zn Mine (Reivilo, North West Province, South Africa (SA)), smelter slag (SS) from the Samancor Mnsmelter (Meyerton, Gauteng, SA) and electro-winning waste (EW) from MMC (Nelspruit, Mpumalanga, SA). It became evident, however, early in the project, that the use of metal hyperaccumulating plants was not a viable technology for these wastes. The project objectives were thus adapted to investigate alternative remedial technologies. The use of endemic and adapted grass species was investigated to revegetate the PT. In addition, chemically-enhanced phytoremediation was investigated to induce metal hyperaccumulation by grasses grown in the PT (Part 1). Revegetation of the SS and EW were not considered feasible, thus land disposal of these two Mn-rich processing wastes was investigated (Part 2). Part 1 - Revegetation of tailings from Pering Mine The PT was found to be alkaline (pH > 8.0), and consisted mainly of finely crushed dolomite. It was generally nutrient poor with high amounts of readily extractable Zn. It also had a very high P-sorption capacity. Seven grass species (Andropogon eucomus Nees; Cenchrus ciliaris L.; Cymbopogon plurinodis Stapf ex Burtt Davy; Digitaria eriantha Steud; Eragrostis superba Peyr; Eragrostis tef (Zucc.) Trotter and Fingeruthia africana Lehm) were grown in PT treated with different rates of inorganic fertiliser under glasshouse conditions. The fertiliser was applied at rates equivalent to 100 kg N, 150 kg P and 100 kg K ha-1 (full), half the full rate (half) and no fertiliser (0). Seed of C. ciliaris, C. plurinodis, D. eriantha, E. superba and F. africana were collected from Pering Mine. Seed of A. eucomus was collected from the tailings dam of an abandoned chrysotile asbestos mine. These were germinated in seedling trays and replanted into the pots. A commercial variety of E. tef was tested, but due to poor survival this species was subsequently excluded. The foliage and root biomass of the grasses and concentrations of Ca, Cu, Fe, K, Mg, Mn, Pb and Zn in the foliage were determined. The yield of all the grasses increased with an increase in fertiliser rate, with a significant species by fertiliser interaction (p = 0.002). The highest yield was measured for C ciliaris, followed by D. eriantha (4.02 and 3.43 g porI, respectively), at the full fertiliser application rate. Cymbopogon plurinodis was the third highest yielding species, while the yields of E. superba and F. africana were similar. There were positive linear correlations between foliage yield and fertiliser application rate for all grasses. The root biomass of the grasses also increased with an increase in fertiliser application rate. The interaction between grass species and fertiliser level had a non-significant (p = 0.085) effect on the yield of grasses, though there were significant individual effects of species (p < 0.001) and fertiliser (p < 0.001). Digitaria eriantha had the highest root biomass at each fertiliser application rate, followed by C plurinodis and C ciliaris. Similarly to foliage yield, there were positive linear correlations between root biomass and fertiliser application level. Positive, linear correlations were found between foliage yield and root biomass, though the strength of these varied. The weakest correlation was found for D. eriantha (R2 = 0.42) but this was attributed to a moderately high variance in foliage yield and roots becoming potbound. Generally, nutrient concentrations were within adequacy ranges reported in the literature, except for P concentrations. This was attributed to the high P-sorption capacity of the PT. Zinc concentrations were higher than the recommended range for grasses, and also increased with an increase in fertiliser application rate. This was attributed to the high available Zn concentrations in the PT and improved growth of the grasses at higher fertiliser application rates. It was recommended that C ciliaris and D. eriantha be used for revegetation due to high biomass production and that E. superba be used because of rapid growth rate and high self-propagation potential. Both C plurinodis and F. africana can also be used but are slower to establish, while A. eucomus was not a suitable species for revegetation of the PT. Inorganic fertiliser improved the growth of all these species and is recommended for the initial establishment of the grasses. An experiment was conducted to investigate the potential of inducing metal hyperaccumulation in three grass species (C ciliaris, D. eriantha and E. superba) grown in the PT. Grasses were grown in fertilised tailings for six weeks, then either ethylenediaminetetraacetic acid (EDTA) or diethylentriaminepentaacetic acid (DTPA) was added to the pots at rates of 0, 0.25, 0.5, 1 and 2 g kg-I. Grasses were allowed to grow for an additional week before harvesting. The concentrations of Cu, Pb and Zn were determined in the foliage. The interactive effect of species and chelating agent on the uptake of Cu was marginally significant (p = 0.042) and non-significant for Pb and Zn (p = 0.14 and 0.73, respectively). While the addition of the chelating agents resulted in an increase in Pb uptake by the grasses, it did not induce metal hyperaccumulation in the grasses. This was attributed to the ineffectiveness of the chelating agents in the PT in the presence of competing base cations (mainly Ca). The use of this technology was not recommended. Part 2 - Land disposal of Mn-rich processing wastes Chemical characterisation of the SS showed that it was an alkaline (pH > 9.5), Mn-rich silicate (glaucochroite), that generally·had low amounts of soluble and readily extractable metals. Acidic extractants removed high amounts of Mn, Ca and Mg, attributed to the dissolution of the silicate mineral. The EW was highly saline (saturated paste EC = 6 780 mS m,l) with a near-neutral pH. It had high amounts of soluble Mu, NHt+, S, Mg, Ca and Co. The primary minerals were magnetite, jacobsite (MnFe204) and gypsum. The effect of SS and EW on selected chemical properties of six soils was investigated by means of an incubation experiment, and their effect on the yield and element uptake by ryegrass was investigated in selected soils under glasshouse conditions. Five A-horizons (Bonheim (Ba), Hutton (Hu), lnanda (la), Shortlands (Sd) and Valsrivier (Va» and an Ehorizon (Longlands (Lo» were treated with SS at rates of 30, 60, 120,240 and 480 g kg'l and EW at rates of20, 40,80,160 and 320 g kg'l. Soils were incubated at field capacity at 24 QC and sampled periodically over 252 days. The soil pH, both immediately and over time, increased, while exchangeable acidity decreased after the addition of SS to the soils. The pH at the high rates of SS tended to be very high (about 8). The electrical conductivity (EC) of the soils also increased with an increase in SS application rates and over time. The most marked changes tended to occur in the more acidic soils (e.g. la). In the soils treated with EW, there was generally an increase in the pH of the acid soils (e.g. la) while in the more alkaline soils the pH tended to decrease (e.g. Va), immediately after waste application. There was a general decrease in pH over time, with a concurrent increase in exchangeable acidity, due to nitrification processes. The EC of all the soils increased sharply with an increase in EW application rate, attributed to the very saline nature of the EW. Water-soluble Mn concentrations in the soils treated with SS tended to be below measurable limits, except in the acid la. Iron concentrations decreased with an increase in SS application rate and over time for all soils. The water-soluble concentrations of Mn, Ca, Mg and S increased sharply with an increase in EW application rate in all soils. There was also a general increase in Mn concentrations over time. Iron concentrations tended to be low in the EW-treated soils, while Co concentrations increased as EW application rate increased. Exchangeable (EX, 0.05 M CaCh-extractable) concentrations of Fe, Co, Cu, Zn and Ni were low in the SS-treated soils. The concentrations of EX-Mn tended to increase with an increase in SS application rate in the la soil, but generally decreased in the other soils. There was also a decrease over time, attributed to the high pH leading to immobilisation of Mn. The EX-metal concentrations of the EW-treated soils were generally low, except for Mn. The concentrations of EX-Mn increased sharply as EW application rate increased. The contribution of EX-Mn was calculated to range from 209 to 3 340 mg Mn for EW rates of 20 to 320 g kg-I, respectively. In the Lo soil the expected amount of Mn was extracted at the different EW application rates. In the other soils the EX-Mn concentrations were typically higher than expected. This was attributed primarily to the dissolution ofMn from the EW due to the interaction between soil organic matter and the EW. There was generally an increase in EX-Mn concentrations over time, attributed to the decrease in pH of the soils treated with EW. The above-ground biomass production of ryegrass grown in Lo and Hu soils treated with SS increased at low application rates, but decreased again at the highest rates. The reduction in yield was attributed to an increase in soil pH leading to trace nutrient deficiencies. At the lower SS application rates, nutrient concentrations of the ryegrass tended to be within typical adequate ranges reported in the literature. Of concern was the elevated Mn concentration in the ryegrass foliage, though no toxicity symptoms were seen. This was attributed to the dissolution of the silicate mineral due to soil acidification processes and the possible ameliorating effect of high Ca and Si concentrations on Mn toxicity. The growth of ryegrass was generally poor in the Hu soil treated with EW and it did not survive beyond germination in the Lo soil treated with EW. In the Hu soil plants grew well in the 20 and 40 g kg-I EW treatments, but died at the higher rates. In both cases mortality was thought to be due to the high salinity that resulted in toxicity and osmotic stress in the newly germinated seedlings. The improved growth at the lower rates ofEW, in the Hu soil, was attributed mainly to increased N availability. The concentrations of Mn in the foliage were elevated in the soils treated with EW. A pot experiment was conducted to test the effect of applying either humic acid (HA) or compost (at a rate of 20 g kg-I) with lime (at rates of 0, 5 and 10 Mg ha-I) on the growth and nutrient uptake of ryegrass grown in the Hu soil treated with EW at rates of 0, 10, 20 and 40 g kg-I. A basal P-fertiliser was also applied in this experiment. The highest yields were measured in the treatments receiving either HA or compost at the highest application rate ofEW. The addition oflime did not improve the yield of the HA treatments, but did in the compost treatments. Generally, nutrient concentrations were adequate. The Mn concentrations were markedly lower than expected, and this was attributed to the formation of insoluble Mn-P compounds due to the addition of fertiliser. The effect of either HA or compost on Mn concentrations was not marked, but lime reduced Mn uptake. A leaching column experiment showed that, generally, the Mn was not readily leached through a simulated soil profile, though the addition of compost may enhance mobility. There was also evidence to indicate an increase in salinity and that Co concentrations of the leachate may be a problem. These data suggest that soil organic matter may be a very important factor in determining the release of Mn from the wastes, notably the EW. The land disposal of the SS and EW was not recommended at the rates investigated here, as both showed the potential for Mn accumulation in above-ground foliage, even at low application rates, while high application rates negatively impacted on plant growth. It appears that P-compounds may be beneficial in reducing Mn availability in the EW, but further testing is required.Item Some mineralogical, physical and chemical properties of volcanically affected soils under irrigated sugarcane in Tanzania.(2013) Taylor, Terri Storm.; Hughes, Jeffrey Colin.; Titshall, Louis William.TPC is a 16 000 hectare estate located in Moshi, Tanzania and is currently planted under 8 800 hectares of sugarcane and produces over 60 000 tons of sugar per annum. The influence of volcanic parent material and volcanic ash over TPC, together with the alluvial nature of many of the soils, has imparted a unique combination of soil mineralogical, physical and chemical properties. Furthermore, irrigation with poor quality water has led to sodicity problems on the estate. Understanding the mineralogy and sodicity effects on soil hydraulic properties across the estate can lead to better irrigation management where it is important to prevent the build-up of salts due to over-irrigation. In response to this need, a study was carried out with the aim of characterising the mineralogical, physical and chemical properties in the five management areas of the estate (North, East, West, South and Kahe), in order to determine the relationships between various measured parameters. A total of 70 fields across TPC, as well as four sites outside the estate and two ash layers, were chosen for sampling. Undisturbed soil cores and bulk samples were collected from the A and B horizons from 45 of these fields and the four sites outside. Selected fields were sampled at more than one site to assess field variability, and where cane growth was patchy selected fields were sampled in a patch of poorly growing cane and an adjacent patch of better cane growth. Bulk soil samples were collected from the remaining fields and the two ash layers. Double ring infiltration measurements were carried out on 25 of the selected fields. X-ray diffraction, transmission electron microscopy and aluminium, iron and silica extractions were carried out to determine the mineralogy. Physical and chemical measurements included water retentivity, saturated hydraulic conductivity, bulk density, particle size distribution, organic carbon, pH (H2O), electrical conductivity, water soluble and exchangeable cations (Ca, Mg, K and Na), cation exchange capacity and clay specific surface area. The particle size distribution showed that the soils were mainly loams and sandy loams. Organic carbon values were generally greater in the A horizon compared to the B horizon and varied between 0.4 and 2.5 % in the topsoil and 0.3 and 2.1 % (with the exception of field 11 which had an organic carbon of 4.0 %) in the subsoil. X-ray diffraction patterns of sand and silt fractions were dominated by sanidine while clay patterns were weak and had high backgrounds and very broad peaks, suggesting the presence of poorly ordered material in the clay fraction. The Al and Fe extraction methods and electron micrographs indicated that this poorly ordered material was allophane. However, the dominant clay mineral across the estate was halloysite, in both tubular and spheroidal form, as well as very small (<< 0.5 μm) kaolinite particles. There was also gibbsite in some of the samples analysed. The combination of allophane, halloysite, kaolinite and gibbsite indicated that the primary volcanic minerals have weathered to various degrees across the estate. This is reflected in the alluvial nature of the soils where less weathered material has been periodically deposited onto older, more weathered material over some parts of the estate. The south and west areas had a slightly higher Alo + ½ Feo ratio than the other areas in both the topsoil (1.07 and 0.95, respectively) and the subsoil (1.16 and 1.06, respectively), a possible consequence of less weathered alluvial material that was deposited in these areas. Although the concentration of allophane was low (< 5 %), even in the south and west areas, its presence greatly increased the clay specific surface area (up to 145.94 m2 g-1) and consequently had a significant influence on the soil physical and chemical properties. Water retention across TPC was high, particularly at the lower matric potentials (between 0.13 and 0.45, and 0.09 and 0.24 m3 m-3 at -33 kPa and -1500 kPa, respectively). The high water retention is a result of allophane which gives the soils a high adsorption capacity and a porosity that is dominated by micro-pores. Generally, the south area had the highest water retention at the various measured matric potentials which corresponds to the higher allophane content. Variability in water retentivity across areas and within fields limited further interpretation and correlation with the mineralogical results. Infiltration rate was lowest in the south (60.85 mm hr-1) and highest in the Kahe area (171.20 mm hr-1). The main factor influencing the final infiltration rate was the concentration of sodium in the soil, with higher concentrations causing soil dispersion and blockage of soil pores. Clay dispersion has led to the development of calcareous surface crusts and reduced porosity, thus reducing the infiltration rate. Sodium concentration in the soil is likely to have had a dominating effect over the mineralogical composition of the soil. Poor cane growth in the south and west areas corresponded to higher pH (up to 10.32), electrical conductivity (up to 614 mS m-1), sodium absorption ratio (up to 20.63) and water soluble and exchangeable sodium (up to 53.20 mmolc l-1 and 14.87 cmolc kg-1 soil, respectively) in these areas. The soils are thus more dispersive and the combination of sodicity and allophane has resulted in “fluffy” soils with small particles clogging soil pores and thus surface crusts have formed easily. The combined effect of mineralogy and sodicity in the south is further complicated by the presence of perched water tables. High adsorption capacities and the dominance of micro-pores allow the occurrence of significant capillary rise which brings salts to the soil surface, further exacerbating the sodicity problem. Therefore, over-irrigation should be avoided where soils are prone to sodicity from a combination of irrigation with poor quality water, perched water tables and strong capillary rise action. Fields which are currently experiencing the negative effects of high sodicity, require irrigation with good quality water and adequate sub-surface drainage to ensure the leaching of salts. Further studies with specific focus on the south and west areas would be beneficial in accounting for the variability and in drawing correlations between the mineralogy and sodium content of the soils with the other measured properties. Fields which are prone to increased sodicity through over-irrigation with poor quality water, have strong capillary rise from perched water tables and which require remediation through sub-surface drains can thus be distinguished and the factors influencing sugarcane growth can be more clearly understood. Growth depends on the combination of these soil’s unique mineralogy and sodium content and the influence they have on the infiltration rate, adsorption capacity, micro-porosity and capillary rise from the water table. For future work, water movement modelling to predict saturated and unsaturated flow, as well as in situ measures of unsaturated flow, will lead to further understanding of the soil hydraulic properties and aid in improved irrigation management.