Browsing by Author "Pillay, Sharmini."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The development of a low-cost, handheld quantum key distribution device.(2017) Pillay, Sharmini.; Petruccione, Francesco.; Mariola, Marco.Quantum Key Distribution (QKD) is an emerging field of information security. To date, this technology has been implemented for large scale financial and voting purposes, but QKD is a versatile solution which can also be utilised to secure personal transactions. The development of low cost, portable QKD devices can further promote the use of quantum encryption in commercial security systems. Research has been done to design hand-held QKD devices for personal use with ATMs. These devices use a short-range free space channel to produce a secret key using the polarisation of single photons as qubits. Free space applications of QKD usually utilise polarisation encoding of single photons since the polarisation states do not deteriorate in the turbulent atmosphere. Recent research also shows the feasibility of using quantum coherent states with continuous variable QKD in free space. The proposed device uses the Coherent One Way (COW) protocol to exchange a secret key between the two authenticated parties. The COW protocol is a simple, practical protocol which uses the time of arrival of consecutive weak coherent pulses as the bit encoding. The security of this protocol lies in preserving the coherence between consecutive laser pulses. Should decoherence be observed in the monitoring line, the presence of an eavesdropper is inferred. An advantage of using the COW protocol is the small size and low cost of the setup. This is ideal for a hand-held device used for short-range QKD. The COW protocol is not traditionally used for a free space channel due to the fragility of coherence in a turbulent medium. Since this is a short-range device which will not encounter any turbulence, the coherence of the laser beam is not compromised. It is therefore suitable to use the COW protocol under these conditions. We present in this thesis, the design of the system, in particular, the conversion from a fibre channel to a free space channel. A low cost optical synchronisation system is presented for use in a laboratory environment and the system is characterised with respect to the efficiency of the source, synchronisation and detection components. The bit generation rate and quantum bit error rate of the system are measured and discussed. Synchronisation techniques for long range free space implementation of the COW protocol, using radio transmission, are presented with a simulation. The simulation is used to demonstrate the compensation for Doppler effects required for communication between a Low Earth Orbit satellite and a ground station.Item The implementation of polarisation encoded quantum key distribution in fibre.(2012) Pillay, Sharmini.; Petruccione, Francesco.Quantum Key Distribution (QKD) employs the laws of quantum mechanics for the purpose of cryptography. Two parties, commonly called Alice and Bob, are able to share a random key which is used to encrypt a message. Any eavesdropper trying to intercept their key will have to make measurements, thereby disturbing the system. This can be detected by Alice and Bob and they will then discard their key. Polarisation encoded QKD protocols use the polarisation of single photons as qubits to generate a cryptographic key. This can be implemented using a fibre optic link between Alice and Bob but the polarisation of light is altered when passed through a fibre due to birefringence caused by asymmetries in the fibre. This causes refractive differences for orthogonal components of the state of polarisation of light, so the polarisation is rotated as the photon is transmitted through the fibre. If the fibre is fixed, the change of polarisation will be unique and constant. This can be compensated by rotating each photon appropriately to its original state. Under typical environmental conditions, such as temperature changes and vibrations, the birefringence effects vary and should be compensated in real time. Therefore, an active polarisation controller is needed in order to maintain the state of polarisation of each qubit. An investigation was done to first track how the state of polarisation changes over time in a natural environment. Both wavelength-division multiplexing and time-division multiplexing were investigated as testing methods for the compensation system. A time-division multiplexed system was developed to compensate the changes in polarisation. Since QKD protocols such as BB84 and B92 utilise two non-orthogonal bases, two polarisation controllers are usually used for compensation. However, by using a search algorithm, one polarisation controller was able to isolate the plane on the Poincaré sphere that passes through both bases, thus compensating non-orthogonal states with one device.