Browsing by Author "Moodley, Kodylan."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Debugging and repair of description logic ontologies.(2010) Moodley, Kodylan.; Meyer, Thomas Andreas.; Moodley, Deshendran.; Varzinczak, Ivan.In logic-based Knowledge Representation and Reasoning (KRR), ontologies are used to represent knowledge about a particular domain of interest in a precise way. The building blocks of ontologies include concepts, relations and objects. Those can be combined to form logical sentences which explicitly describe the domain. With this explicit knowledge one can perform reasoning to derive knowledge that is implicit in the ontology. Description Logics (DLs) are a group of knowledge representation languages with such capabilities that are suitable to represent ontologies. The process of building ontologies has been greatly simpli ed with the advent of graphical ontology editors such as SWOOP, Prote ge and OntoStudio. The result of this is that there are a growing number of ontology engineers attempting to build and develop ontologies. It is frequently the case that errors are introduced while constructing the ontology resulting in undesirable pieces of implicit knowledge that follows from the ontology. As such there is a need to extend current ontology editors with tool support to aid these ontology engineers in correctly designing and debugging their ontologies. Errors such as unsatis able concepts and inconsistent ontologies frequently occur during ontology construction. Ontology Debugging and Repair is concerned with helping the ontology developer to eliminate these errors from the ontology. Much emphasis, in current tools, has been placed on giving explanations as to why these errors occur in the ontology. Less emphasis has been placed on using this information to suggest e cient ways to eliminate the errors. Furthermore, these tools focus mainly on the errors of unsatis able concepts and inconsistent ontologies. In this dissertation we ll an important gap in the area by contributing an alternative approach to ontology debugging and repair for the more general error of a list of unwanted sentences. Errors such as unsatis able concepts and inconsistent ontologies can be represented as unwanted sentences in the ontology. Our approach not only considers the explanation of the unwanted sentences but also the identi cation of repair strategies to eliminate these unwanted sentences from the ontology.Item Practical reasoning for defeasable description logics.(2016) Moodley, Kodylan.; Meyer, Thomas Andreas.Description Logics (DLs) are a family of logic-based languages for formalising ontologies. They have useful computational properties allowing the development of automated reasoning engines to infer implicit knowledge from ontologies. However, classical DLs do not tolerate exceptions to speci ed knowledge. This led to the prominent research area of nonmonotonic or defeasible reasoning for DLs, where most techniques were adapted from seminal works for propositional and rst-order logic. Despite the topic's attention in the literature, there remains no consensus on what \sensible" defeasible reasoning means for DLs. Furthermore, there are solid foundations for several approaches and yet no serious implementations and practical tools. In this thesis we address the aforementioned issues in a broad sense. We identify the preferential approach, by Kraus, Lehmann and Magidor (KLM) in propositional logic, as a suitable abstract framework for de ning and studying the precepts of sensible defeasible reasoning. We give a generalisation of KLM's precepts, and their arguments motivating them, to the DL case. We also provide several preferential algorithms for defeasible entailment in DLs; evaluate these algorithms, and the main alternatives in the literature, against the agreed upon precepts; extensively test the performance of these algorithms; and ultimately consolidate our implementation in a software tool called Defeasible-Inference Platform (DIP). We found some useful entailment regimes within the preferential context that satisfy all the KLM properties, and some that have scalable performance in real world ontologies even without extensive optimisation.