Browsing by Author "Little, Keith MacMillan."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item The effect of genetic improvement, fertilisation, weed control and regeneration method on the establishment and performance of Eucalyptus macarthurii and Eucalyptus nitens.(2005) Van den Berg, Gerhardus Johannes.; Zwolinski, Janusz.; Little, Keith MacMillan.Eucalyptus grandis was introduced into South Africa in the 19th century, and has since become the most important of the hardwood plantation tree species grown for pulp. Until the late 1980's E. grandis was virtually the only eucalypt species grown. In order to meet the increasing demand for pulpwood in South Africa, forestry companies need to increase their timber output from an existing land base (Brown and Hillis, 1984; Kimmins, 1994 and Little and Gardner, 2003), or alternatively extend the planting of favourable alternative tree species into areas previously considered unsuitable for forestry due to unfavourable climatic conditions. From 1984 the major timber companies expanded their plantation forestry into the colder, frost-prone highland areas of western KwaZulu-Natal, the northeastern Cape and southeastern Mpumalanga Highveld. As E. grandis was not tolerant to severe frost, E. macarthurii amd E. nitens were planted in these areas as alternatives (Schonau and Gardner, 1991). As much of the earlier research had been centered around the development of silvicultural standards for E. grandis, it became necessary to test these for the different eucalypt species. Two trials were therefore established to E. marcarthurii and E. nitens with the following objectives: - to extend current recommendations to include different species, - to determine the degree of interaction between different silvicultural standards (genetic improvement, fertilisation and weed control), - to determine the effects of weeds, fertilisation, genotype and regeneration method (seedling vs coppicing) on the initial and long term growth, uniformity, tree straightness and survival of cold tolerant eucalypts, - cost effectiveness of various methods for re-establishing E. nitens and E. macarthurii. Genetic improvement played an important role in the establishment and initial growth of E. macarthurii and E. nitens. The improved treatments outperformed the unimproved treatments in terms of tree growth until canopy closure. At the last measured date when the trees were six years of age, the E. nitens improved seedlings were still significantly better in terms of basal area when compared to unimproved seedlings. The initial positive effect of genetic improvement of E. macarthurii seedling however, was not sustained. Genetic improvement of E. macarthurii and E. nitens also had a positive effect on tree straightness and survival when the trees were assessed at five years of age. The genetic improvement of both species also showed to be a viable option to produce an optimum timber output at a lower cost when regeneration is carried out by means of replanting with seedlings. Fertilisation also showed positive effects in terms of the establishment and initial growth of E. macarthurii and E. nitens. At six years after planting, the basal area of E. macarthurii seedlings without fertiliser was still significantly lower than any one of the other treatments. However, the initial positive effect fertiliser had on the growth of E. nitens seedlings decreased to a non-significant level at six years after planting. Fertilisation of E. macarthurii and E. nitens had a positive effect on tree straightness and survival when the trees were assessed at five years of age. The fertilisation of E. macarthurii seedlings also produced an adequate amount of timber at a relatively low cost. The controlling of weeds did not have an impact on tree performance initially or after canopy closure for either E. macarthurii or E. nitens. This is due to the lack of weed growth at these high altitudes at which the sites were planted. Little and Schumann (1996) found that eucalypts could tolerate an aboveground weed biomass of up to 2000 kg ha (-1) before there were any severe losses in growth due to competition. At both these trials, the weed load did not reach these levels in order to compete with the trees. No significant interactions between any of the treatments were detected at both these sites at any stage. At the last measured date, there were no significant differences in terms of tree growth between the coppice and seedling treatments for either E. macarthurii or E. nitens. Regeneration by means of E. macarthurii and E. nitens coppice had a positive effect on tree straightness and survival when the trees were assessed at five years of age. Re-establishment by means of coppice for both E. macarthurii and E. nitens was also shown to be by far the most cost-effective way at present to produce an adequate amount of timber. Coppicing was shown to be the least costly way to produce a m2 ha(-1) of timber provided the right species are coppiced, and optimum density levels are obtained.Item The influence of vegetation control on the growth and pulping properties of a eucalyptus grandis x camaldulensis hybrid clone.(1999) Little, Keith MacMillan.; Van Staden, Johannes.; Clarke, G. Peter Y.; Roberts, Peter J. T.; Beckett, Richard Peter.In order to determine if weed control as practised during the establishment phase of tree growth had a beneficial and long term (over a six to eight year rotation) impact on tree performance, a Eucalyptus hybrid clone (GC304) was planted in a field trial in 1990. The trial was situated in the coastal Zululand region near the KwaZulu-Natal town of Mtunzini. Nine different vegetation management treatments were imposed from establishment. These included a weedy control, a manually weeded treatment, a chemically weeded treatment, a 1.2 m row and 1.2 m inter-row weeding, a 0.5 m radius ring weeding, a complete weeding except for a 0.5 m radius ring around the tree, and the use of two legume cover-crops, Mucuna puriens (cowpea) and Vigna sinensis (velvet bean). Initial improvements in tree performance from these competition control treatments were detected from 60 days after planting, and were maintained over seven growing seasons. This occurred despite the absence of competitive vegetation after the first growing season due to reduced light, following crown canopy closure. There were strong indications that initial competition was mainly for moisture and possibly also for nutrients, rather than competition for light. Initially those trees that had weeds within their immediate vicinity were most affected (weedy control, inter-row weeding and the complete weeding except for a 0.5 m radius around the tree). With time, tree performance was more closely related to an increase in the percentage of the area kept free of weeds. The best performing treatment at felling, the manually weeded control, produced 17.1 % and 38.5 % more merchantable timber than the 1.2 m row weeding and the weedy control, at an increased profit of 8 % and 27 %, respectively. Two forms of competition (interspecific and intraspecific competition) were evident in the weedy control at different stages of tree development in contrast to the one (intraspecific competition) in the manually weeded treatment. Interspecific competition resulted in greater variability between the trees in the weedy control by the time canopy closure had occurred. This differentiation in tree size was further enhanced by asymmetric intraspecific competition once the trees had become established. The onset of intraspecific competition was first detected 995 days after planting for the manually weeded treatment and 1641 days after planting for the weedy control. Of the various competition indices that were tested in order to try and explain this differential growth in terms of individual tree performance, none was able to do so to complete satisfaction. The growth rates of different tree size classes were therefore compared for the weedy control and manually weeded treatment. The diverging slopes of the different stem area classes indicated that the larger trees were growing at the expense of the smaller trees. This type of competition is known as asymmetric intraspecific competition. In addition, a comparison was made between the slopes for the weedy and weedfree treatments for similar stem area classes. No significant difference was detected, indicating that similar size classes in these two treatments grew at similar rates. Trees from three treatments were selected (manually weeded treatment, 1.2 m row weeding treatment and the weedy control) and tested for the wood and pulping properties of density, active alkali consumption, extractable content, screened pulp yield, pulp yield per hectare and fibre length and coarseness. The use of Canonical Variate Analysis to determine if there were differences between the three treatments for the variates measured, indicated that they were significantly different. There was a significantly positive trend of an increase in density, extractable content and active alkali consumption with increased weed control. A possible explanation for this could be that the larger trees of the manually weeded treatment were under more stress (from increased intraspecific competition) during the latter phase of their growth. This was demonstrated by comparing the growth rates for these three treatments. The smaller trees of the 1.2 m row weeding treatment and the weedy control exhibited a lower rate of decline. As no significant difference was detected for screened pulp yield between the treatments, any differences in the pulp yield per hectare values could be attributed to differences in the merchantable volume. There was a 22.6 % and 40.8 % increase in the pulp yield per hectare for the manually weeded treatment in comparison to the 1.2 m row weeding treatment and the weedy control. The planting of cover-crops, although beneficial in terms of weed suppression, caused significant tree suppression. This occurred despite the fact that their initial biomass accumulation was slower than that of the natural weed population. Of the two cover-crops, the use of the velvet bean was not considered suitable due to its vigorous vining habit which affected the growth form of the trees. Subsequent work suggests that if the beneficial qualities of cowpeas are to be realised (that of weed suppression, erosion control and nitrogen fixation), a delay in their planting by three months after establishment of the trees should alleviate any negative impacts on tree growth.Item The physiology of pinus patula seedlings in response to water stress and the implications for plantation regeneration in South Africa.(2008) Rolando, Carol Ann.; Little, Keith MacMillan.; Pammenter, Norman William.Pinus patula Schiede ex Schlect. & Cham. is the most widely planted softwood species for both pulpwood and saw timber in the South African forestry industry. High mortality of this species, often in excess of 20%, following planting is currently of major concern and has the potential to limit future deployment for commercial timber. Water stress is often reported to be a cause of mortality during regeneration in commercial forestry plantations yet, prior to 2007, there was no published research on the water relations of P. patula during regeneration in South Africa. This, together with questions raised by the industry as to the role of using water in the planting operation, initiated the series of studies conducted for this thesis. Water planting (application of water into the planting hole at the time of planting) of P. patula seedlings has been used commercially to reduce post-planting water stress and buffer against potentially extreme weather conditions immediately after planting. However, the primary role of the water, as well as its success in increasing survival following planting, has never been critically assessed. Since the use of water in the planting operation is expensive, it was essential that the benefits to using water were quantified, in terms of survival and growth, and justified, in terms of any monetary investment. In addition, there was a lack of local studies investigating the physiological characteristics of P. patula seedlings, particularly their tolerance to low soil water availability. To understand the role of water during the regeneration of P. patula in terms of plantation management and seedling physiology, a variety of research methodologies were used that included: applied field trials, multivariate methods (a retrospective investigation), pot trials and the development of a simple financial model. Four field trials were implemented to test the response in P. patula survival to water applied at planting. Two trials each were situated in the KwaZulu-Natal (KZN) Midlands and Mpumalanga Escarpment. The first trial at each site was planted in spring (October) and the second in summer (February). Watering treatments consisted of different quantities of water used in the planting operation and included 0.5 litres, 2 litres, 4 litres and no water (dry plant). Only at the spring planted trial in the KZN Midlands was survival of the dry planted seedlings significantly lower than that of the seedlings planted with water, at 90 days after planting. This may have been due to low rainfall during the week before and two weeks after planting, or the small size of the seedlings used in the trial. Application of 0.5 litres of water to the planting pit was sufficient to increase survival to a level equivalent to that where 2 or 4 litres of water was used, yet only increased soil moisture in the area immediately surrounding the seedling. This suggested that the role of the water applied during planting was increased root to soil contact. Overall, these four trials indicated that planting with water had the potential to increase survival only when soil water availability was low and rainfall sporadic. There was no effect of water applied at planting on early tree growth. While the results of the four field trials provided an indication of the effect of planting with water on subsequent survival of P. patula seedlings, there was concern that the results of the four trials may not be a true reflection of a dynamic situation. Survival in response to water applied at planting may vary from year to year and across forestry regions due to the unpredictable nature of rainfall and high air temperatures during the planting season, as well as the wide range of forestry sites across which P. patula seedlings are planted. To improve our understanding, a database of 58 trials was compiled where water and dry planting had been carried out. In this way it was possible to investigate whether the results from the four field trials were reflected in a range of previously conducted field trials implemented across time and space. The trials incorporated into the dataset were all planted to P. patula between 1990 and 2005 in the summer rainfall region of southern Africa. Data related to the climate, local weather, physiography and site management at each trial were also included. Summary statistics, linear correlation and multiple regression were used to determine if site-associated variables were related to an increase in survival in the water relative to the dry planted treatments. The analyses indicated that for all 58 trials, survival was lowest during the summer months, regardless of planting treatment. Planting with water was most likely to increase survival when used during spring, autumn and winter planting, although (as with the four applied field trials) there was no overall significant relationship between water planting and survival. Based on these results it was anticipated that an understanding of the water stress physiology of P. patula seedlings was required to explain the observed trends from a more fundamental perspective; if planting with water did not always increase survival, why not? Three pot trials were conducted to increase the understanding of the water relations of P. patula seedlings. These trials were also used to provide benchmark physiological data related to stressed (water) and unstressed seedlings. The first pot trial highlighted the importance of root plug moisture at the time of planting for increasing subsequent survival. The subsequent two pot trials were aimed at investigating the interaction between planting stock quality (as determined by measures of size) and soil water availability and the effect on survival, growth and physiology of P. patula seedlings. These results indicated that P. patula seedlings were not as sensitive to high air and soil temperatures (above 30°C) and low soil water availability (below -1.5 MPa) as previously thought. The seedlings were able to tolerate low soil water availability for several weeks and, following rewatering, were able to recover from moderate and severe water stress (a shoot water potential of below -1.5 MPa). This data supported the results from the four applied field trials and retrospective study of 58 trials, where the application of water to the seedlings at planting did not substantially increase survival. In the pot trials, stomatal conductance started to decrease when shoot water potential approached -0.8 to -0.9 MPa. Stomatal closure occurred at a shoot water potential between -1.2 MPa to -1.5 MPa. Mortality due to water stress occurred only in response to extended periods of low soil water and was associated with a shoot water potential of below -3.0 MPa. There was variability between seedlings in their potential for survival and growth. Inherently bigger seedlings had a greater capacity for new root growth following planting. New root growth, as well as a greater mass of new roots, was associated with higher shoot water potentials and higher rates of transpiration under conditions of low soil water availability. This indicated that seedling quality, as determined by size, may play a role in sensitivity to water stress. The field trials, retrospective study and pot trials indicated that the practice of planting with water was not always critical to the survival of P. patula seedlings. A simple financial model was developed to estimate whether planting with water represented a cost that could be used as a decision criterion, given certain growth parameters and management scenarios. The data projected by the model were also compared to actual research data for water versus dry planting (and the inclusion of an insecticide in the water). While these comparisons were specific to the parameters included in the model for this study, as well as the results of the research trials used in the benchmarking exercises, the model indicated that; 1) costs for planting with water were likely to be recovered only when no blanking (replacing of dead trees) was carried out, with capital invested at a low return rate (3%), 2) including an insecticide in the water increased the likelihood of cost recovery, and 3) site quality had an impact on the increase in survival required to recover planting method costs, with a greater percentage increase in survival required on lower quality sites. Lower quality sites often have a lower mean annual precipitation (associated with higher rainfall variability), or shallow soils (associated with lower soil water availability) and therefore are also likely to be sites where foresters may want to use water to reduce (drought related) mortality. The impact of site quality is thus also an important factor to include in any decisions regarding planting methods (i.e. using water) and their costs. Further investigations should be aimed at examining; 1) the interaction of root plug size (as determined by container type) and soil water availability on growth and physiology of P. patula seedlings, 2) the methods of grading seedlings within a population to select those that have a high potential for survival and growth, and 3) the effects of soil water availability on the physiology, survival and growth of P. patula cuttings, as well as other pine species and hybrids grown in South Africa, such as P. elliottii, P. elliottii x P. caribaea and P. patula x P. tecunumanii. It is likely that the proportion of forestry regions planted to these hybrids will increase in the future.