Browsing by Author "Davrajh, Shaniel."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item An automated apparatus for non-contact inspecting of mass produced custom products.(2009) Davrajh, Shaniel.; Bright, Glen.The evolution of the manufacturing industry may be viewed as proceeding from Dedicated Manufacturing Systems (DMS) to Reconfigurable Manufacturing Systems (RMS). Customer requirements change unpredictably, and so DMS are no longer able to meet modern manufacturing requirements. RMS are designed with the focus of providing rapid response to a change in product design, within specified part families. The movement from DMS to RMS facilitates mass-production of custom products. Custom parts require inspection routines that can facilitate variations in product parameters such as dimensions, shape, and throughputs. Quality control and part inspection are key processes in the lifecycle of a product. These processes are able to verify product quality; and can provide essential feedback for enhancing other processes. Mass-producing custom parts requires more complex and frequent quality control and inspection routines, than were implemented previously. Complex, and higher frequencies of inspection negatively impact inspection times, and inherently, production rates. For manufacturers to successfully mass-produce custom parts, processes which can perform complex and varying quality control operations need to be employed. Furthermore, such processes should perform inspections without significantly impacting production rates. A method of reducing the impact of high frequency inspection of customized parts on production rates is needed. This dissertation focuses on the research, design, construction, assembly, and testing of a Non- Contact Automated Inspection System (NCAIS). The NCAIS was focused on performing quality control operations whilst maintaining the maximum production rate of a particular Computer Integrated Manufacturing (CIM) cell. The CIM cell formed part of a research project in the School of Mechanical Engineering, University of KwaZulu-Natal; and was used to simulate mass-production of custom parts. Two methods of maintaining the maximum production rate were explored. The first method was the automated visual inspection of moving custom parts. The second method was to inspect only specified Regions of Interest (ROIs). Mechatronic engineering principles were used to integrate sensor articulation, image acquisition, and image processing systems. A specified maximum production rate was maintained during inspection, without stoppage of parts along the production line occurring. The results obtained may be expanded to specific manufacturing industries.Item Bio-mechatronic implementation of a portable upper limb rehabilitative exoskeleton.(2011) Naidu, Dasheek.; Stopforth, Riaan.; Bright, Glen.; Davrajh, Shaniel.The rationale behind this research originates from the lack of public health care in South Africa. There is an escalation in the number of stroke victims which is a consequence of the increase in hypertension in this urbanising society. This increase results in a growing need for physiotherapists and occupational therapists in this country which is further hindered by the division between urban and rural areas. The exoskeleton device has been formulated to encapsulate methodologies that enable the anthropomorphic integration between a biological and mechatronic limb. The physiotherapeutic mechanism was designed to be portable and adjustable, without limiting the spherical motion and workspace of the human arm. The exoskeleton was portable in the sense that it could be transported geographically and is a complete device allowing for motion in the shoulder, elbow, wrist and hand joints. The avoidance of singularities in the workspace required the implementation of non-orthogonal joints which produces extensive forward kinematics. Traditional geometric or analytical derivations of the inverse kinematics are complicated by the nonorthogonal layout. This hindrance was resolved iteratively via the Damped Least Squares method. The electronic and computer system allowed for professional personnel, such as an occupational therapist or a physiotherapist, to either change an individual joint or a combination of joints angles. A ramp PI controller was established to provide a smooth response in order to simulate the passive therapy motion.Item Investigation into inspection system utilisation for advanced manufacturing systems.(2017) Naidoo, Trishen.; Bright, Glen.; Davrajh, Shaniel.; Walker, Anthony John.Varied inspection is an aperiodic inspection utilisation methodology that was developed for advanced manufacturing systems. The inspection scheme was created as a solution to improve manufacturing performance where inspection hinders production, such as cases where inspection time is significantly larger than machining time. Frequent inspection impedes production cycles which result in undesirable blocking, starving, low machine utilisation, increased lead time and work-in-process. The aim of the inspection strategy was to aid manufacturing metrics by adjusting inspection utilisation through multiple control methods. The novelty of the research lies in using an inspection strategy for improved manufacturing performance. Quality control was traditionally viewed as an unintegrated aspect of production. As such, quality control was only used as a tool for ensuring certain standards of products, rather than being used as a tool to aid production. The problem was solved by using the amount of inspection performed as a variable, and changing that variable based on the needs of the manufacturing process. “Inspection intensity” was defined as the amount of inspection performed on a part stream and was based on inputs such as part quality, required production rates, work-in-process requirements among other factors. Varied inspection was executed using a two-level control architecture of fuzzy controllers. Lower level controllers performed varied inspection while an upper level supervisory controller measured overall system performance and made adjustments to lower level controllers to meet system requirements. The research was constrained to simulation results to test the effects of varied inspection on different manufacturing models. Simulation software was used to model advanced manufacturing systems to test the effects of varied inspection against traditional quality control schemes. Matlab’s SimEvents® was used for discrete-event simulation and Fuzzy Logic Toolbox® was used for the controller design. Through simulation, varied inspection was used to meet production needs such as reduced manufacturing lead time, reduced work-in-process, reduced starvation and blockage, and reduced appraisal costs. Machine utilisation was increased. The contribution of the research was that quality control could be used to aid manufacturing systems instead of slowing it down. Varied inspection can be used as a flexible form of inspection. The research can be used as a control methodology to improve the usage of inspection systems to enhance manufacturing performance.