Doctoral Degrees (Chemical Engineering)
Permanent URI for this collectionhttps://hdl.handle.net/10413/6657
Browse
Browsing Doctoral Degrees (Chemical Engineering) by Author "Coquelet, Christophe."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Carbon dioxide removal from coal power plants : a review of current capture techniques and an investigation of carbon dioxide absorption using hybrid solvents.(2014) Osman, Khalid.; Ramjugernath, Deresh.; Coquelet, Christophe.The aim of this project was to identify and assess all possible solutions to reduce carbon dioxide (CO2) emissions from coal power plants in South Africa, identify the most likely solution to be implemented industrially in the short to mid-term future, and contribute towards its development through lab measurement and further research. This thesis thus contains a substantial literature review conducted on the current state of CO2 emissions in South Africa, conventional and novel coal power plant processes, modes of CO2 capture, criteria regarding the implementation of CO2 capture techniques, and the various CO2 capture techniques currently investigated with varying levels of development. The study found gas absorption using solvents to be the most likely mid-term CO2 capture technique to reach industrial implementation. However, certain challenges still need to be overcome, particularly due to numerous limitations of current solvents, to make this technique feasible for CO2 capture. In an attempt to overcome the main challenge of solvent absorption capacity, it was decided to investigate the use of ionic liquids for CO2 absorption. An in-depth review of ionic liquids was conducted, as well as a review of measurement techniques and modelling of gas absorption in alkanolamine and ionic liquid solvents. Four ionic liquids, namely methyl trioctyl ammonium bis(trifluoromethylsulfonyl)imide [MOA][Tf2N], 1-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide [Bmim][Tf2N], 1-butyl-3-methyl imidazolium tetrafluoroborate [Bmim][BF4], and 1-butyl-3-methyl imidazolium methyl sulphate [Bmim][MeSO4] were tested for CO2 and O2 absorption by measuring equilibrium Pressure-Temperature-Liquid mole fraction (P-T-x) data. Measurements were conducted using an Intelligent Gravimetric Analyser (IGA-01) at 303.15, 313.15, and 323.15 K. CO2 partial pressures of 0.05 to 1.5 MPa and O2 partial pressures of 0.05 to 0.7 MPa were investigated. Furthermore, density and refractive index measurements were conducted for all solvents. The ionic liquids were benchmarked against other ionic liquids and conventional alkanolamine solvents for CO2 absorption capacity and selectivity. The study found that ionic liquids achieved higher CO2 absorption capacity at high pressure than conventional alkanolamine solvents, but very low absorption capacity at low pressure. Of the ionic liquids studied, [Bmim][BF4] and [Bmim][Tf2N] achieved high CO2 absorption and high CO2 selectivity over O2. Therefore, these two ionic liquids were selected to be combined with conventional alkanolamine solvents, namely Monoethanolamine (MEA), Diethanolamine (DEA), and Methyl Diethanolamine (MDEA), in order to form hybrid solvents. P-T-x data was obtained for CO2 absorption in alkanolamine-ionic liquid hybrid solvents containing various compositions of the above alkanolamines and ionic liquids, by gravimetric analysis, under temperature and pressure conditions as described above. CO2 absorption in the hybrid solvents was analysed, compared, and benchmarked against absorption in pure ionic liquids and conventional alkanolamine solvents. Absorption data for pure ionic liquid systems was modelled using the Redlich-Kwong equation of state (RK-EOS), while absorption in hybrid solvents was modelled using the RK-EOS for the ionic liquid components and the Posey-Tapperson-Rochelle model for the alkanolamine components of each hybrid solvent. All modelling was programmed using MatlabTM R2012B engineering programming software. Further composition analysis was intended using Fourier transform infrared (FTIR) spectroscopy. The design and development of this apparatus is described herein. The apparatus possessed limitations in achieving the desired measurements. Recommendations are described for future modifications to make the apparatus more applicable for the systems in this work. The most important conclusion was that the hybrid solvents successfully achieved higher equilibrium CO2 absorption than conventional alkanolamine solvents and pure ionic liquids, at low pressure. Absorption increased with higher temperature, lower pressure, and alkanolamine concentrations lower than 40wt%. Modelling of CO2 absorption in hybrid solvents using the above stated model proved inadequate, with deviations nearly as high as 10% of measured data. A process of CO2 capture was simulated using the engineering software Aspen Plus V8.0. CO2 absorption in the hybrid solvent containing MEA:DEA:[Bmim][BF4] at 31.8:12.1:56.1 wt% was benchmarked against CO2 absorption in a conventional alkanolamine solvent. The simulation revealed a significant improvement in CO2 absorption using the hybrid solvent at low system pressure. However CO2 selectivity and solvent recycle heat duty results were undesirable. Finally, recommendations are listed for future research endeavours, simulation and apparatus development.Item Design of a static micro-cell for phase equilibrium measurements : measurements and modelling = Conception d'une micro-cellule pour mesures d'é́́́quilibres de phases : mesures et mod́élisation.(2011) Narasigadu, Caleb.; Ramjugernath, Deresh.; Naidoo, P.; Coquelet, Christophe.; Richon, Dominique.Vapour-Liquid Equilibrium (VLE), Liquid-Liquid Equilibrium (LLE) and Vapour-Liquid-Liquid Equilibrium (VLLE) are of special interest in chemical engineering as these types of data form the basis for the design and optimization of separation processes such as distillation and extraction, which involve phase contacting. Of recent, chemical companies/industries have required thermodynamic data (especially phase equilibrium data) for chemicals that are expensive or costly to synthesize. Phase equilibrium data for such chemicals are scarce in the open literature since most apparatus used for phase equilibrium measurements require large volumes (on average 120 cm3) of chemicals. Therefore, new techniques and equipment have to be developed to measure phase equilibrium for small volumes across reasonable temperature and pressure ranges. This study covers the design of a new apparatus that enables reliable vapour pressure and equilibria measurements for multiple liquid and vapour phases of small volumes (a maximum of 18 cm3). These phase equilibria measurements include: VLE, LLE and VLLE. The operating temperature of the apparatus ranges from 253 to 473 K and the operating pressure ranges from absolute vacuum to 1600 kPa. The sampling of the phases are accomplished using a single Rapid-OnLine-Sampler- Injector (ROLSITM) that is capable of withdrawing as little as 1μl of sample from each phase. This ensures that the equilibrium condition is not disturbed during the sampling and analysis process. As an added advantage, a short equilibrium time is generally associated with a small volume apparatus. This enables rapid measurement of multiple phase equilibria. A novel technique is used to achieve sampling for each phase. The technique made use of a metallic rod (similar in dimension to the capillary of the ROLSITM) in an arrangement to compensate for volume changes during sampling. As part of this study, vapour pressure and phase equilibrium data were measured to test the operation of the newly developed apparatus that include the following systems: • VLE for 2-methoxy-2-methylpropane + ethyl acetate at 373.17 K • LLE for methanol + heptane at 350 kPa • LLE for hexane + acetonitrile at 350 kPa • VLLE for hexane + acetonitrile at 348.20 K New experimental vapour pressure and VLE data were also measured for systems of interest to petrochemical companies. These measurements include: • VLE for methanol + butan-2-one at 383.25, 398.14 and 413.20 K ABSTRACT • VLE for ethanol + butan-2-one at 383.26, 398.23 and 413.21 K • VLE for ethanol + 2-methoxy-2-methylbutane at 398.25 and 413.19 K • VLE for ethanol + 2-methylpent-2-ene at 383.20 K These measurements were undertaken to understand the thermodynamic interactions of light alcohols and carbonyls as part of a number of distillation systems in synthetic fuel refining processes which are currently not well described. Two of these above mentioned systems include expensive chemicals: 2-methoxy-2-methylbutane and 2-methylpent-2-ene. The experimental vapour pressure data obtained were regressed using the extended Antoine and Wagner equations. The experimental VLE data measured were regressed with thermodynamic models using the direct and combined methods. For the direct method the Soave-Redlich-Kwong and Peng-Robinson equations of state were used with the temperature dependent function (α) of Mathias and Copeman (1983). For the combined method, the virial equation of state with the second virial coefficient correlation of Tsonopoulos (1974) was used together with one of the following liquid-phase activity coefficient model: TK-Wilson, NRTL and modified UNIQUAC. Thermodynamic consistency testing was also performed for all the VLE experimental data measured where almost all the systems measured showed good thermodynamic consistency for the point test of Van Ness et al. (1973) and direct test of Van Ness (1995).