Doctoral Degrees (Environmental Hydrology)
Permanent URI for this collectionhttps://hdl.handle.net/10413/6588
Browse
Browsing Doctoral Degrees (Environmental Hydrology) by Author "Jewitt, Graham Paul Wyndham."
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item An assessment of the potential impacts of climate variability on sugarcane production across Southern Africa.(2023) Ngcobo, Simphiwe Innocent.; Jewitt, Graham Paul Wyndham.; Hill, Trevor Raymond.; Archer, Emma.The scale and extent of changes to demographic, economic and environmental systems exacerbated by human activities have been rapid and pervasive enough that it has been established that a new geologic era termed the Anthropocene has already begun. One of the most critical and challenging consequences of the Anthropocene has been the accelerated release of greenhouse gases leading to global warming and, consequently, climate change (CC), which has impacted hydrological responses and available water resources by increasing surface temperatures and altering precipitation patterns across spatio-temporal scales. These changes have exacerbated the vulnerability of various systems that sustain livelihoods, placing them at high risk of collapse. One of these systems is sugarcane production, which is a crucially important agricultural activity in many parts of the world, including southern Africa. There is a consensus that as a region, southern Africa will be subjected to amplified hydrological impacts which will affect the sugarcane production landscape. Further the expansion and intensification of sugarcane production across southern Africa is highly likely due, in part, to the recognition of the economic and social importance of this activity for supporting livelihoods. Sugarcane yields have been declining over the past 25 years in the region because of the increased frequency of climatic extremes. Literature reviews showed that by amplifying precipitation variability, climate change will increase the exposure and vulnerability of sugarcane to water stress and will have a devastating impact on yields. However, knowledge gaps remain regarding climate change impacts on water resources and sugarcane yields. Further, few studies have addressed the vulnerability and adaptation potential of sugarcane production at sufficient spatio-temporal scales. To address these knowledge gaps, an initial review was conducted to understand the dynamics between global change and water resources across southern Africa. The review showed that although global drivers are intricately related, their water resources impacts are highly complex, indirectly coupled and spatially and temporally sensitive. Having established a general perspective of the impacts of global change in southern Africa, the multi-scale drivers of sugarcane production were analysed using of a frequency analysis. This approach allowed the determination of proximate and ultimate drivers in the uMngeni, uMlaas, and Umvoti catchments in South Africa, the Ubombo catchment in eSwatini, the Shire catchment in Malawi and the Kilombero catchment in Tanzania. The frequency analysis provided quantitative descriptions of the water resource impacts of sugarcane production across southern Africa. Applying a relationship between observed sugarcane yields and future low, medium, and high production scenarios, this study developed water use estimates for sugarcane over multiple growing cycles. Results indicated that ultimate drivers play the most dominant role in the expansion of sugarcane production within each catchment. Drawing from this analysis, a methodology of assessing yield declines was developed based on a yield gap analysis using the AquaCrop crop growth model. The results were used to develop recommendations to mitigate yield declines by offering safeguards for the sugarcane industry against climatic extremes. Modelling results suggested that yield trends can be attributed to existing crop management approaches instead of prevailing hydroclimatic regimes. The importance of recognising the vulnerability and adaptation potential in sugarcane production was highlighted in this study. It was concluded that if sugarcane growers are to adapt to the effects of extreme climatic events, they must consider shifting crop management approaches and be proactively included in related research. This research highlighted the importance of addressing the interactions between activities that drive land use change, such as sugarcane production, and the current impacts of climatic extremes on water resources. This is important in rapidly developing regions and climate change hotspots such as southern Africa. The development of innovative adaptation policies that will safeguard the already-pressured water resources and secure the sustainability of sugarcane production will become increasingly important under an altered climate.Item An assessment of canopy and litter interception in commercial and indigenous forests in the KwaZulu-Natal Midlands, South Africa.(2011) Bulcock, Hartley Hugh.; Jewitt, Graham Paul Wyndham.Understanding of the hydrological cycle and processes such as interception span as far back as the times of the Renaissance, when Leonardo da Vinci (1452-1519) first described it. However, there remains a gap in the knowledge of both canopy and litter interception in South African forest hydrology. Interception is typically considered to constitute only a small portion of total evaporation and in some models is disregarded or merely lumped with total evaporation, and not considered as a separate process. Interception is a threshold process, as a certain amount of water is required before successive processes such as infiltration and runoff can take place. Therefore an error introduced in modelling interception, especially disregarding it, will automatically introduce errors in the calibration of subsequent models/processes. In this study, field experiments to assess these two poorly understood hydrological processes, viz. canopy and litter interception were established for the three main commercial forestry genera in South Africa, namely, Pinus, Acacia and Eucalyptus as well as an indigenous Podocarpus henkelii stand, thus, accounting for interception of “broad leaf”, “compound leaf” and “needle leaf” trees in order to provide further insight into these processes. The study took place at two locations in the KwaZulu-Natal Midlands over a period of three years. The first site is the Two Streams catchment, located in the Seven Oaks area, about 70km north-east of Pietermaritzburg where the study on the commercial plantation species took place. The second site was the Podocarpus henkelii stand in Karkloof near Howick, 40km north of Pietermaritzburg. From the field data collected (cf. Chapter 2) it was observed that canopy storage capacity, an important parameter governing interception, was not constant and changed with rainfall intensity, with lower intensity events resulting in a higher storage capacity. Building on these findings, a physically based canopy interception model that is based on the well known Gash model was developed, and is referred to herein as the “variable storage Gash model”. While canopy interception is dependent on many factors including the storage capacity, potential evaporation, rainfall intensity and rainfall duration, the litter interception is largely dependent on the storage capacity due to the evaporative drivers under the canopy such as radiation, temperature and wind speed being moderated by the above canopy. From these finding, a litter interception model based on idealised drying curves from litter samples collected at the study sites was also developed (cf. Chapter 3). From the field data, it was found that the canopy interception for Eucalyptus grandis, Acacia mearnsii and Pinus patula was 14.9, 27.7 and 21.4% of mean annual precipitation (MAP) respectively. The simulated canopy interception using the “variable storage Gash model” was 16.9%, 26.6% and 23.3% for E. grandis, A. mearnsii and P. patula respectively. The litter interception measured for E. grandis, A. mearnsii and P. patula was found to be 8.5, 6.6 and 12.1% of MAP respectively, while the simulated litter interception using the idealised drying curve model corresponded well with the measured results and were 10.1%, 5.4% and 13.4% for E. grandis, A. mearnsii and P. patula respectively. The idealised drying curve model is site and species specific and is therefore not transferable to other locations. Conversely, the “variable storage Gash model” is transferable as it is not site and species specific, and relies on readily measureable and available information. Building on field studies, this was then used to simulate the canopy interception for Eucalyptus, Acacia mearnsii and Pinus in South Africa (including Lesotho and Swaziland) for all quinary catchments in which commercial forestry could be grown, i.e. a mean annual precipitation of greater than 600 mm.year-1 (cf. Chapter 4). It was found that, depending on the location and genus, canopy interception loss can be as high as 100 to 300 mm per year or approximately 10% to 40% of MAP. This relates to a mean interception loss of between 1.0 and 3.0 mm per rainday, highlighting the spatial variability of canopy interception. To further investigate the spatial variability of canopy interception, at various spatial scales, remote sensing technology was applied to estimate leaf area index (LAI) for use in modelling/estimating canopy storage capacity and canopy interception (cf. Chapter 6). The NDVI, SAVI and Vogelmann 1 vegetation indices were used in the estimation of the LAI. It was found the Vogelmann 1 index produced the best results. As models to estimate canopy interception typically require LAI and storage capacity, it was calculated that the ability to estimate these parameters over large areas is valuable for water resources managers and planners. An often neglected consideration of canopy and litter interception is its role in determining the water use efficiency (WUE) of a forest stand (cf. Chapter 5). This component of the study was undertaken in an indigenous Podocarpus henkelii stand as well as a commercial Pinus patula stand in Karkloof in the KwaZulu-Natal Midlands. The sap flow (transpiration) was measured in both the P. henkelii and P. patula stands using the using the Heat Pulse Velocity (HPV) technique in order to determine the productive green water use. The canopy and litter interception was measured in the P. henkelii site, but was modelled in the P. patula site using the “variable storage Gash” and idealised drying curve models, in order to estimate the non-productive green water use. It was found that the canopy and litter interception for P. henkelii was 29.8% and 6.2% respectively, while the modelled canopy and litter interception for P. patula was 22.1% and 10.7% respectively. If only the productive green water use (transpiration) is considered, then the water use efficiency of P. henkelii and P. patula was found to be 7.14 g.mm-1 and 25.21 g.mm-1 respectively. However, from a water management perspective it is important to consider the total green water use efficiency (transpiration + interception), which reveals a significantly lower water use efficiency of 3.8 g.mm-1 and 18.8 g.mm-1 for P. henkelii and P. patula respectively. To extend the study to a globally relavent issue, the possible impact of climate change on canopy interception was investigated, as forests growth is critically linked to climate (cf. Chapter 7). To achieve this, the CABALA model was used to model LAI and transpiration of Eucalyptus grandis and Pinus patula under 9 different climate change scenarios, including changes in temperature, rainfall and atmospheric CO2. The simulated LAI values from the CABALA model for all 9 climate scenarios were then used to simulate canopy interception using the “variable storage Gash model”. Results show that LAI may increase by as much as 24% and transpiration may decrease by as much as 13%, depending on the scenario, location and tree species. However, it was found that canopy interception does not change greatly, leading to the conclusion that under climate change conditions, canopy interception may not become a more dominant component of the hydrological cycle than it currently is as the changes under climate change are likely to be less than the natural variability from year to year. However, canopy interception remains an important consideration for water resources management and planning both currently and in the future.Item Balancing water for food and environment : hydrological determinants across scales in the Thukela River Basin.(2008) Kongo, Victor M.; Jewitt, Graham Paul Wyndham.; Lorentz, Simon Antony.In this study, geophysical measurements (Electrical Resistivity Tomography-ERT) and remote sensing techniques were applied in the Thukela river basin at various scales to complement the classical hydrometeorological networks. Detailed process hydrological studies were carried out at the Potshini catchment in the Thukela river basin to provide an in-depth understanding of the influence of different land use management practices, notably the impact of conservation tiJlage practices, on runoff generation and soil moisture retention characteristics at field scale. The general trend that was observed in the field studies is that conservation tillage systems influenced the partitioning of rainfall, by significantly reducing surface runoff over agricultural lands under conservation tillage practices, with a reduction ranging from 46 to 67%. The field soil-water balance studies also indicated that more soil moisture was retained in plots under conservation tillage practices compared to plots under conventional tillage and hence the wider adoption of such a practice could influence the partitioning of rainfall across scales. The field based study was integrated into catchment process studies where a classical hydrometrical network was complemented with geophysical measurements (ERT) along catchment transects to determine the interaction of the surface and sub-surface water and the relative contribution of the subsurface water to catchment response. The study revealed that the shallow ground water contributes significantly, close to 75%, of the stream flows in the Potshini catchment, especially during the dry seasons, with the response of the shallow ground water being a function of both the rainfall intensity and daily total amount. The potential of integrating the catchment process studies with the larger river basin scale was explored through the evaporative term of the water balance by applying the Surface Energy Balance Algorithm for Land (SEBAL), a remote sensing methodology, to estimate total evaporation (ET) from the Moderate Imaging Spectroradiometer (MODIS) satellite images. This was validated with ground measurements from a Large Aperture Scintilometer (LAS) installed in the Potshini catchment. Good comparison was established between the remotely sensed estimates and LAS measurements with a deviation range of between -14 to 26% on discrete days, where the deviation was defined as the departure of the remotely sensed estimates of ET from the respective LAS measurements. The results from this study compare well with results from similar studies in other countries with different climatic conditions. Subsequently, the evaporative water use of various land uses in the upper Thukela river basin was assessed using MODIS images. Commercial forestry was identified to be the land use with a consistent and relatively high evaporative water use In the study area. High evaporation rates over water bodies were observed during the wet summer season when both the natural and man made water bodies were at full capacity. Nevertheless, it is recognized that the inherent low resolution ofthe MODIS images could have impacted on the SEBAL results. Finally, a conceptual framework, drawing the strengths of classical hydrometeorological networks, geophysical measurements, isotope tracers and remote sensing is suggested with the potential of enhancing our understanding and conceptualization of hydrological determinants across scales. The relevance of the framework to water resources management is highlighted through its application to the Potshini catchment and the Thukela river basin using results and findings from this study.Item Challenges in modelling hydrological responses to impacts and interactions of land use and climate change.(2012) Warburton, Michele Lynn.; Schulze, Roland Edgar.; Jewitt, Graham Paul Wyndham.To meet society’s needs for water, food, fuel and fibre the natural land cover throughout the world has been extensively altered. These alterations have impacted on hydrological responses and thus on available water resources, as the hydrological responses of a catchment are dependent upon, and sensitive to, changes in the land use. Similarly, changes in the climate through enhanced carbon dioxide (CO2) levels in the atmosphere have resulted in increased temperature and altered precipitation patterns that alter hydrological responses. In combination, land use change and global climate change form a complex and interactive system, whereby both human influences and climate change manipulate land use patterns, and changes in land uses feed back to influence the climate system, with both impacting on hydrological responses. Relatively few studies have been undertaken examining the combined impacts of climate change and land use change on water resources, with no consensus emerging as yet as to combined influence of land use change and climate change on hydrological responses and the role of geographical characteristics in determining the overriding influence. There is, however, agreement that the effect on hydrological responses will be amplified. Given that South Africa is currently water stressed and considered to be highly exposed to climate change impacts, an understanding of hydrological responses to the complex interactions between land use and climate change is crucial to allow for improved integration of land use planning in conjunction with climate change adaptation into water resources management. To determine the sensitivity of land use to changing climate, a sensitivity study assessing the potential impacts of climate change on the areas climatically suitable for key plantation forestry species was undertaken. Under sensitivity scenarios of climate change the climatically optimum areas for specific forest species were shown to shift, with optimum areas changing in extent and location between and within South Africa’s provinces. With potential for shifts in land use due to climate change shown, the imperative to improve understanding of the dynamics between land use and climate change as well as the subsequent impacts on hydrological responses was further established. For the assessment of climate-land use-water interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, viz. the daily time step ACRU model was selected. In order to increase the confidence in results from the model in a study such as this, its representation of reality was confirmed by comparing simulated streamflow output against observations across a range of climatic conditions and land uses. This comparison was undertaken in the three diverse South African catchments chosen for the study, viz. the semi-arid, sub-tropical Luvuvhu catchment in the north of the country, which has a large proportion of subsistence agriculture and informal residential areas, the Upper Breede catchment in the winter rainfall regions of the south, where the primary land uses are commercial orchards and vineyards, and the sub-humid Mgeni catchment along the eastern seaboard, where plantation forestry is dominant in the upper reaches, commercial plantation sugarcane and urban areas in the middle reaches, and urban areas dominate the lower reaches. Thus, in effect a space for time study was undertaken, thereby reducing the uncertainty of the model’s ability to cope with the projected future climate scenarios. Overall the ACRU model was able to represent the high, low and total flows, and thus it was concluded that the model could be used with confidence to simulate the streamflows of the three selected catchments and was able to represent the hydrological responses from the range of climates and diversity of land uses present within the catchments. With the suitability of the model established for the theme of this research, the understanding of the complex interactions between hydrological responses and land use could be improved. The hydrological responses of the three selected catchments to land use change were varied. Results showed that the location of specific land uses within a catchment plays an important role in the response of the streamflow of the catchment to that land use change. Furthermore, it was shown that the contributions of different land uses to the streamflow generated from a catchment are not proportional to the relative area of those land uses, and the relative contribution of the land use to the catchment streamflow varies with the annual rainfall of the catchment. With an improved understanding of the dynamics between land uses and hydrological responses, the impacts of climate change on hydrological responses were assessed prior to analysing the combined impacts on land use and climate change. Five plausible climate projections from three coupled atmosphere-ocean global climate models covering three SRES emissions scenarios which were downscaled with the RCA3 regional climate model and adjusted using the distribution-based scaling (DBS) approach for bias correction were used as climate input to the ACRU model, with future projections applied to a baseline land cover scenario compared to historical climate applied to the same baseline land cover scenario. No consistent direction of change in the streamflow responses was evident in the Mgeni and Luvuvhu catchments. However, decreases in streamflow responses were evident for all five scenarios for the Upper Breede. With an understanding of the separate impacts of land use and climate change on hydrological responses, an analysis of the combined impacts was undertaken to determine which changes were projected to be of greater importance in different geographical locations. Results indicated that the drier the climate becomes, the relatively more significant the role of land use becomes, as its impact becomes relatively greater. The impacts of combined land use and climate change on the catchments’ streamflow responses varied across both the temporal and spatial scales, with the nature of the land use and the magnitude of the projected climate change having significant impacts on the streamflow responses. From the research undertaken, the key results were • that the climatic variable to which plantation forestry species are most sensitive is rainfall; • that optimum growth areas for plantation forestry are projected to shift under changing climates, having a potentially significant impact on the landscape and thus on the hydrological responses from the landscape; • that the daily time-step, physical-conceptual and process-based ACRU model is appropriate for use in land use change and climatic change impact studies as shown through a space for time study; • that the contributions of different land uses to the streamflow generated from a catchment is not proportional to the relative area of that land use and that, as the mean annual precipitation of a subcatchment decreases, so the disparities between the relative areas a land use occupies and its contribution to catchment streamflow increases; • that specific land use changes have a greater impact on different components of the hydrological response of a catchment; • that land uses which currently have significant impacts on catchment water resources will place proportionally greater impacts on the catchment’s water resources if the climate were to become drier; thus the drier the climate becomes, the more relatively significant the role of land use becomes; • that when considering any hydrological impacts of land use change, climate change or combined land use and climate change, assessments need to consider the scale where the localized impacts may be evident, the progression of the impacts as the streamflow cascades through the catchment, as well as the impacts at the whole catchment scale where the accumulation of the effects through the catchment are evident; and lastly • that each catchment is unique with its own complexities, feed forwards and feedbacks, thus each catchment will have a unique threshold as to where land use change or climate change begins to have a significant influence of the hydrological response. Given these complex interactions between land use, climate and water, there is a growing imperative to improve the understanding of the movement of water within catchments, to be receptive and adaptive to new concepts and information, and to developing resilient and adaptive water management strategies for the future in a way that minimises the risks and maximises the benefits to potential impacts of climate change.Item Degradation of ecological infrastructure and its rehabilitation for improved water security.(2018) Hughes, Catherine Jane.; Jewitt, Graham Paul Wyndham.Abstract available in PDF file.Item Ground and satellite-based assessment of hydrological responses to land cover change in the Kilombero River Basin, Tanzania.(2013) Munishi-Kongo, Subira.; Jewitt, Graham Paul Wyndham.Changes in land use and land cover are a global issue of concern, especially with regard to possible impacts on biophysical processes which affect the hydrological functioning of a system. Tanzania is no exception to this concern. This study, therefore, addresses the implications of land use alterations on the hydrodynamics of the Kilombero River Basin, specifically with regard to the Kilombero Valley’s wetlands and water resources, which have been altered and exploited to a great extent. As its starting point, the study embarked on mapping the current land cover in the Kilombero Basin and the quantification of the historical changes. The study revealed significant changes and, in recent years, increased rates of clearing natural vegetation cover and conversion to agricultural land. The most affected area of the Basin was the Kilombero Valley, a Ramsar Site and formerly extensively inhabited by wildlife, but which now has 62% of its area converted into agricultural and/or human settlements. In line with this observation, the study used two approaches for the impact analysis, a regional scale and a local scale approach. Plant physiology, soil moisture and micro-meteorological measurements were undertaken to quantify the impact of land cover change at local scale. Sensing techniques were then applied to assess the spatial extent of the changes and the basin scale (regional) impact thereof. Investigation of hydrological processes at a local scale placed emphasis on the implications of forest conversion from indigenous Miombo woodland to exotic Teak (Tectona grandis) forests. Field measurements showed the distinctive nature of Teak trees consumptive water use, both in quantity as well as in regard to the seasonal variation as compared to the native Miombo woodland forests. Teak was found to have higher transpiration rates, both during the rainy season (where the rates were approximately 10-fold higher than that of Miombo) and the period immediately after the cessation of rainfall, with consumptive water use rates being four-fold higher than that of Miombo. This contrast in water use was further observed in the measured soil water fluxes which evidenced a large difference in the components of the soil water balance. Less recharge was observed in the Teak forests suggesting significant impacts on the replenishment of groundwater resources in the study area. Assessment of the basin scale impacts of the land cover changes on the evapotranspiration (ET) regime was undertaken using the Surface Energy Balance System (SEBS) remote sensing model. Validation was provided by the Teak field sites and through the monitoring of ET from sugar cane using a Large Aperture Scintillometer (LAS). Results suggest a decrease in ET during the dry season. There is a clear transition of ET that follows the land cover transition from the natural and more adaptable vegetation, to rain-fed dependent crops and bare lands, where minimal ET is observed during the dry season. Similar seasonal leafing, and therefore a similar ET pattern, is observed with the conversion of natural forests to deciduous plantation forests. Irrigated crops, on the other hand, were found to have persistently higher ET throughout the year regardless of rainfall variability. This implies that land cover change in the Kilombera Valley is resulting in higher water use and less recharge in the wet season and a correspondingly lower ET (and possibly lower river flow) in the dry season than would occur under natural conditions. This research provides valuable information relevant to all stakeholders in the Kilombero River Basin (i.e. both smallholders and commercial sugarcane farmers, the forestry industry, Basin Water Authorities etc.). This information will help to inform decision-making around the sustainable management of the water resources in the Kilombero Valley for food security as well as for sustaining livelihoods and ecosystems.Item The hydrological basis for the protection of water resources to meet environmental and societal requirements.(2006) Taylor, Valerie.; Jewitt, Graham Paul Wyndham.; Schulze, Roland Edgar.In common with other natural systems, aquatic ecosystems provide a wealth of economically valuable services and long-term benefits to society. However, growing human populations, coupled with increased aspirations for improved quality of life, have lead to intense pressure on the world's finite freshwater resources. Frequently, particularly in developing countries, there are both perceived and genuine incompatibilities between ecological and societal needs for freshwater. Environmental Flow Assessment (EFA) is essentially a tool for water resources management and its ultimate goal should be the integration of ecological and societal systems. While other ecological components (i.e. biological and geomorphological) are equally important to EFA, this thesis investigates the role of the hydrological cycle and the hydrological regime in providing the ecosystem goods and services upon which society depends. Ecological and societal systems operate at different temporal, spatial and organisational scales and hydronomic zoning or sub-zoning is proposed as an appropriate water resources management technique for matching these different scales. A major component of this thesis is a review of the South African water resources management framework and, in particular, the role of the Reserve (comprising a basic human right to survival water as well as an ecological right of the aquatic resource to maintain ecological functioning) in facilitating ecologically sustainable water resources management. South African water resources management is in the early stages of water allocation reform and the Department of Water Affairs and Forestry has stated that "the water allocation process must allow for the sustainable use of water resources and must promote the efficient and non-wasteful use of water". Thus, new ways of approaching the compromise between ecological and societal needs for freshwater water are required. This thesis argues that this requires that the focus of freshwater ecosystems be extended beyond the aquatic resource, so that societal activities on the catchment are linked to the protection of instream flows. Streamflow variability plays a major role in structuring the habitat templates that sustain aquatic and riparian ecological functioning and has been associated with increased biodiversity. Biodiversity and societal well-being are interlinked. However, there is a need in EFA for knowledge of the most influential components of the streamflow regime in order that stakeholders may anticipate any change in ecosystem goods and services as a result of their disruption to the hydrological cycle. The identification of high information hydrological indicators for characterising highly variable streamflow regimes is useful to water resources management, particularly where thresholds of streamflow regime characteristics have ecological relevance. Several researchers have revisited the choice of hydrological indices in order to ascertain whether some indices explain more of the hydrological variability in different aspects of streamflow regimes than others. However, most of the research relating to hydrological indices has focused primarily on regions with temperate climates. In this thesis multivariate analysis is applied to a relatively large dataset of readily computed ecologically relevant hydrological indices (including the Indicators of Hydrological Alteration and the South African Desktop Reserve Model indices) extracted from long-term records of daily flows at 83 sites across South Africa. Principal Component Analysis is applied in order to highlight general patterns of intercorrelation, or redundancy, among the indices and to identify a minimum subset of hydrological indices which explain the majority of the variation among the indices of different components of the streamflow regimes found in South Africa. The results indicate the value of including several of the IHA indices in EFAs for South African rivers. Statistical analysis is meaningful only when calculated for a sufficiently long hydrological record, and in this thesis the length of record necessary to obtain consistent hydrological indices, with minimal influence of climatic variation, is investigated. The results provide a guide to the length of record required for analysis of the high information hydrological indices representing the main components of the streamflow regime, for different streamflow types. An ecosystem-based approach which recognises the hydrological connectivity of the catchment landscape in linking aquatic and terrestrial systems is proposed as a framework for ecologically sustainable water resources management. While this framework is intended to be generic, its potential for application in the South African Water Allocation Reform is illustrated with a case study for the Mkomazi Catchment in KwaZulu-Natal. Hydronomic sub-zoning, based on the way in which societal activities disrupt the natural hydrological processes, both off-stream and instream, is applied to assess the incompatibilities between societal and ecological freshwater needs. Reference hydrological, or pre-development, conditions in the Mkomazi Catchment are simulated using the ACRU agrohydrological model. Management targets, based on the statistical analysis of pre-development streamflow regimes, are defined to assess the degree of hydrological alteration in the high information hydrological indices of the Mkomazi Catchment as a result of different societal activities. Hydrological alteration from predevelopment conditions is assessed using the Range of Variability Approach. The results indicate that the proposed framework is useful to the formulation of stakeholder-based catchment management plans. Applying hydrological records (either observed or simulated) as an ecological resource is highly appropriate for assessing the variability that ecosystems need to maintain the biodiversity, ecological functioning and resilience that people and society desire.Item Quantification of the water-use dynamics of the dominant plant communities of the Eastern Shores in the iSimangaliso Wetland Park for improved water resource management.(2015) Clulow, Alistair David.; Everson, Colin Stuart.; Price, Jonathan.; Jewitt, Graham Paul Wyndham.No abstract available.Item Rainwater harvesting systems and their influences on field scale soil hydraulic properties, water fluxes and crop production.(2009) Kosgei, Job Rotich.; Jewitt, Graham Paul Wyndham.; Lorentz, Simon Antony.South Africa, in common with many parts of Sub-Saharan Africa, is facing increasing water shortages. Limited available water arising from a low and poorly distributed rainfall, must supply domestic, agricultural, industrial and ecosystem needs. Agricultural activities of smallholder farmers, who largely occupy arid to semi-arid areas, are rainfall-driven as they do not have the capacity to develop conventional water sources, such as boreholes and large dams. This situation has led to persistent food shortages, low income and a lack of investments, resulting in high dependency levels of which examples include over reliance on social grants, household crop production that largely relies on external inputs and availability of cheap unskilled labour. A growing global perception that water for agriculture has low value relative to other value uses could further jeopardize the already over exploited agricultural water. Developing economies such as South Africa are likely to favour, in terms of water allocation, e.g. electricity generation through steam turbines relative to irrigation needs because industry plays a more significant role in the economy. While substantial scientific research has resulted in enhanced yields through in-situ water harvesting and soil and water conservation, as well as crop and soil fertility management and plant breeding, less work has been done to assess the impact of intermittent dry spells on crop yield, particularly with regard to smallholders. Indeed, the interventions that have been promoted to smallholders may provide little buffer against such events. In addition, the increase in yield from many such efforts has been marginal and inconsistent, leading some to conclude that semi-arid environments are hydrologically marginal, have no significant agricultural potential and any attempts to intensify agricultural activities would lead to severe environmental degradation. This study investigated the rainwater harvesting and storage potential among rainfed farmers in a summer-rainfall region of South Africa. The influences of this practice on soil hydraulic properties, water fluxes and crop production is detailed in subsequent chapters. Using historical meteorological data, this study commenced with an investigation of the factors that influence the length of maize (Zea Mays L.) growing seasons notably the prevalence of early season dry spells and late season low temperature which could be responsible for persistent low maize yields amongst smallholder rainfed farmers (Chapter 2). An increasing trend of dry spells was observed which was found to influence sowing dates and the length of the growing season. The influence of no-tillage (NT) as an intervention to secure more root-zone soil moisture was investigated in comparison to conventional tillage (CT) practices. Field experiments, with the aim of quantifying the extent to which water productivity and yields can be improved among smallholder rainfed farmers in the Potshini catchment, Thukela basin; South Africa (Chapter 8), were conducted during both the dry and growing seasons from 2005/06 – 2007/08 seasons at four sites with similar soil textural properties and slopes. Each site was developed as a runoff plot and was fitted with moisture and runoff measuring devices. Meteorological parameters were measured from a weather station installed nearby. A snapshot electrical resistivity survey was used to compliment soil moisture profiling. The analyses of the different measurements provided information on various water flow paths and potential downstream hydrological effects (Chapter 3). The average cumulative runoff was 7% and 9% of seasonal rainfall in NT and CT treatments over the three seasons. Changes over time in soil hydraulic properties due to tillage were examined at two depths through infiltration tests and determination of their bulk densities. These included changes in steady state infiltration rate and hydraulic conductivity (Chapter 4), interaction between soil infiltration and soil characteristics (Chapter 5) and water conducting porosity and water retention (Chapter 6). In 50% of the sites, NT treatments showed significantly higher hydraulic conductivity compared to CT treatments. In response to an unexploited opportunity identified to produce vegetables in winter, an assessment of the potential for runoff water harvesting systems using polyethylene lining as an alternative cost-effective construction method for underground rainwater storage systems, particularly in areas where groundwater levels fluctuate rapidly was undertaken (Chapter 7). The process from conceptualization through design, construction and utilization of the stored water is described and recommendations for the design and construction of such systems made. Finally, various case studies which highlight the potential impact of improved soil profile moisture storage, the additional benefits of water stored in tanks and recommendations for tailored policies to support household food and income generation are made (Chapter 8).Item Water temperature and fish distribution in the Sabie River system : towards the development of an adaptive management tool.(2003) Rivers-Moore, Nicholas Andrew.; Jewitt, Graham Paul Wyndham.Water temperatures are a fundamental water quality component, and a key abiotic determinant of fish distribution patterns in rivers. A river 's thermal regime is the product of a multitude of thermal drivers and buffers interacting at different temporal and spatial scales, including, inter alia, air temperatures, flow volumes (including groundwater flows and lateral inputs from tributaries), channel geomorphology and riparian vegetation. "Healthy" river systems are self-sustaining, with adequate thermal variability to maintain biotic diversity. Temporal variability of flow volumes and water temperatures, and how these change along the longitudinal axis of a river, contribute towards a rivers "signature". Rivers that have had their signatures altered through anthropogenic impacts may no longer be sustainable, and require varying levels of management. Successful river management should include a quantification of these signatures , a definition of the "desired" state which management aims to achieve, associated "thresholds" of change or concern, and monitoring programmes. Such an approach requires flexibility and adaptability, as well as appropriate tools being available to natural resource managers. Indices, the utility of which are enhanced when included in predicative modelling systems, are a common means of assessing system variability and change. The degree of confidence placed in such tools depends on the level of fundamental science, and the degree of system understanding, underpinning them. This research contributes to the understanding of the ecological significance . of water temperatures in variable semi-arid river systems, using the Sabie River (Mpumalanga, South Africa) as a case study, and indices derived from biological indicators (Chiloglanis , Pisces: Mochokidae) to quantify the effects of cumulative changes in heat units against a hypothesised critical water temperature threshold. Hourly water temperatures for 20002002 collected at nine sites in the main rivers of the Sabie catchment, together with biannual surveys of relative abundances and community patterns of fish collected using standard electrofishing techniques, were used to provide the basis for a modelling system which aims to provide river managers with a tool for quantifying changes to the thermal regime of the Sabie River. This modelling system consisted of a suite of pragmatic models, including multiple linear regression models for simulating daily maximum water temperatures, and simple cause-and-effect relationships between biological indices (change In condition factor and change in the ratio of relative abundances of two species of Chiloglanis) and annual metrics of time-of-exposure to heat stress. It was concluded that changes in the thermal regimes of the rivers in the Sabie catchment are likely to lead to changes in fish distribution patterns, and a decline in river health. Inherent system variability suggests that management decisions will be made in the face considerable uncertainty. Indirect management of water temperatures may be possible through maintenance of flow volumes and flow variability. However, the most appropriate management approach for maintaining fish diversity within these rivers is to ensure that obstacles to fish migration are minimized, to maximise the ability of river biota to respond to thermal changes, by accessing suitable alternative habitats or refugia. Future research should focus on extending the time series of water temperatures from such river systems, and further understanding the drivers and buffers contributing to the thermal regimes of variable semi-arid river systems in South Africa. Additional testing of the validity of the hypothesized relationships between abiotic processes underpinning biotic patterns should be undertaken.