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Abstract

In this study we investigated the impact of exogenous reinfection on genetically resistant and

genetically sensitive sub populations. We qualitatively analysed the dynamics of TB by as-

suming that TB is transmitted in two ways namely homogeneous and heterogeneous modes of

transmission. Analytically, we computed the fundamental thresholds used to measure disease

persistence; the basic reproduction number R0, and found that the exogenous reinfection pa-

rameters do not appear in the basic reproduction number. Hence, basic reproduction number

derived in presence of exogenous reinfection does not adequately predict the course of a TB

epidemic. We obtained the exogenous reinfection threshold which indicated that exogenous re-

infection complicates TB dynamics. Both analytical and simulation results disclosed that when

exogenous reinfection is above exogenous reinfection threshold TB dynamics were governed by

a backward bifurcation implying TB may continue to invade the population despite basic repro-

duction number being less than one. We computed critical value of basic reproduction numbers

Rc and found that TB can only be eradicated if basic reproduction number is reduced below

critical value Rc. Furthermore, we incorporated TB therapy in heterogeneous model among

individuals with clinically active TB and performed sensitivity and uncertainty analysis using

Latin Hypercube Sampling. The sensitivity and uncertainty results showed that transmission

rates, reactivation rates and proportion that is genetically resistant greatly influenced outcome

variables of our TB model.

iv



Contents

Acknowledgements iii

Abstract iv

1 Introduction. 1

1.1 Problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Aims and objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Aim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope of dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature review and Preliminary concepts. 6

2.1 Literature review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Evidence of genetic susceptibility to M. tuberculosis. . . . . . . . . . . . . . . . . 10

2.3 Preliminary concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Tuberculosis model incorporating genetic susceptibility without interven-

tion. 15

v



3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Model formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Feasibility region of the model. . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Disease free equilibrium point. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.3 Basic reproduction number. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.4 Endemic equilibrium points. . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.8 Stability of the disease free equilibrium point. . . . . . . . . . . . . . . . 30

3.3.9 Global stability of the disease free equilibrium point. . . . . . . . . . . . 31

3.3.10 Stability analysis of the endemic equilibrium. . . . . . . . . . . . . . . . 33

3.4 Model incorporating heterogeneous transmission. . . . . . . . . . . . . . . . . . 36

3.4.1 Invasion threshold of heterogeneous transmission model. . . . . . . . . . 38

3.4.2 Stability and characteristic equation of the non linear system. . . . . . . 40

3.5 TB therapy as intervention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Numerical simulations. 47

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Parameter estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Simulations for sensitivity analysis of R0. . . . . . . . . . . . . . . . . . . 49

4.3.2 Effects of exogenous reinfection on sub populations. . . . . . . . . . . . . 52

vi



4.3.3 Bifurcations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Uncertainty and sensitivity analysis using latin hypercube sampling technique. . 61

4.4.1 Effects of treatment on TB. . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Discussion. 69

Appendix A: Derivation of Π1 and Π2. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix B: Basic reproduction number for heterogeneous mode of transmission only. 73

References 76

vii



List of Tables

4.1 Table of parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Table of range of parameters used in the sensitivity and uncertainty analysis. . . 62

viii



List of Figures

3.1 A tuberculosis model of genetically resistant individuals (Sr, Lr, Ar) and genet-

ically sensitive individuals (Ss, Ls, As). The dotted lines indicate interactions

between susceptible and actively infected individuals. The solid arrows indi-

cate movement of individuals after they change their status during the course of

infection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Compartmental model of TB with heterogeneous transmission. The dotted lines

indicate interaction between individuals of the two sub populations. . . . . . . . 37

4.1 Sensitivity analysis for basic reproduction numbers Rs and Rr for model with

homogeneous mode of transmission illustrating (a) effect of (βy, µTB) on Rs, (b)

effect of (βx, µTB) on Rr, (c) effect of (βy, τ) on Rs and (c) effect of (βx, τ) on Rr. 50

4.2 Dynamics of genetically sensitive ((a) and (b)) and genetically resistant ((c) and

(d)) populations in the absence of exogenous reinfection. i.e, k = p = 0. . . . . . 52

4.3 Dynamics of genetically sensitive population ((a), (c), (e)) and genetically resis-

tant population ((b), (d) (f)) in the presence of exogenous reinfection. . . . . . . 54

4.4 Plots of sub populations representing condition (i) where p = 0.09 and k = 0.65. 55

4.5 Plots of sub populations representing condition (ii) for k = 0.20 and p = 0.18. . 56

4.6 Plots of sub populations representing condition (iii) for p = 0.18 and k = 0.985. 57

ix



4.7 Plots of sub populations representing condition (iv) where p = p0 = 0.1259

and k = k0 = 0.2491. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 The onset of both transcritical and backward bifurcation. SEE denote the stable

endemic equilibria and UEE is the unstable endemic equilibria. Rcs is the critical

value of the basic reproduction number Rs and Rcr is the critical value of the

basic reproduction number Rr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Sensitivity and uncertainty results representing heterogeneous model of TB trans-

mission without treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.10 Sensitivity and uncertainty results for actively infected individuals at low treat-

ment level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Sensitivity and uncertainty results for high treatment levels. . . . . . . . . . . . 67

x



Chapter 1

Introduction.

Tuberculosis (TB) is a contagious disease caused by a bacteria called Mycobacterium tuber-

culosis (M. tuberculosis). Human beings are the main reservoir of the bacillus. Breathing in

of aerosolized droplets harbouring M. tuberculosis can result in TB infection [1]. The clini-

cal symptoms of TB include frequent prolonged coughing, chest pain, fever, easy fatigability,

night sweating and general weight loss. Before humans understood the entire genome sequence

of mycobacteria via Interferon-Gamma Release Assays (IGRAs), diagnosis of individuals with

infectious TB depended on chest radiography while diagnosis of dormant TB was done using

tuberculin skin test [2].

Factors that aid transmission of the Mycobacterium tuberculosis include the concentration, vi-

ability, virulence of the mycobacteria residing in the sputum droplet nuclei and duration of

time an individual spends near a person whose infection has advanced to active TB [3]. Other

factors include overcrowding as seen in public transport, schools and clubs, social-economic

status, inaccessibility of health services, malnutrition, success of chemoprophylaxis and ther-

apy determine transmission of the Mycobacterium tuberculosis. Furthermore, ineffective TB

combating strategies and immigration are likely to impact TB dynamics. Immigration of indi-

viduals infected with TB to regions which are susceptible to TB increase TB burden in those

regions.
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The discovery of Mycobacterium tuberculosis bacteria as the causative agent of human tubercu-

losis (TB) posed a great challenge in medical field in search for a cure and vaccine [4]. Though,

there has been advancement and improved technology in medical facilities, TB remains a devas-

tating infection worldwide. Globally, approximately two billion people suffer from TB and one

new case of TB is reported every second [5]. Each year about eight to ten million individuals

develop infectious TB and two to three millions die from the disease. In Sub-Sahara Afriaaca,

South Africa carries the largest burden of infected individuals [6]. In 2009, 407000 TB cases

were recorded in South Africa [7]. Worldwide India’s contribution to the TB burden is about

one-third of all cases, hence it is the country hosting the highest number of individuals infected

with TB [6]. The pattern and distribution of TB epidemic across the world has been depicted

to be non uniform [8]. For example approximately 80% of the population inhabiting many

Asian and African countries is infected as evidenced by tuberculin skin test [8] compared to

5− 10% of population that test positive in United states.

Infectious diseases can be categorized as exogenous or endogenous infections [9]. Exogenous

infections refer to infections that originate outside the susceptible host while endogenous refer

to diseases that occur within an individual due to immune system destabilization. TB infection

can occur as result of both exogenous and endogenous infection. The pathogenesis of TB is

characterized by the infection either remaining dormant or progressing directly to active TB

where clinical symptoms immediately manifest. This depends on host immune response towards

the tubercle bacilli. Thus, the exposure to tubercle bacilli does not necessarily result in clinical

forms of TB. Studies suggest that about 5 − 10% of individuals progress directly to active

stage after exposure to bacilli [10, 11]. The other population of infected cases develop dormant

TB. These individuals may remain latently infected for the rest of their lifetime. However,

destabilization of the immune system by the pathogen within the latently infected host triggers

reactivation of M.tuberculosis. The lifetime risk of a latently infected individual progressing to

infectious stage is about 5 − 10% [12]. Individuals harbouring active TB and are not treated

are likely to transmit infection to an average of 10-15 individuals per year [13].
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Although, Bacillus Calmette-Guerin (BCG) is the only vaccine so far used in preventing TB,

its efficacy is not perfect. Its effectiveness in preventing adult forms of TB has been rated to

be relatively poor (roughly 50%) [14]. There is a great variation of BCG efficacy as observed

in several places. For instance, in some endemic areas such as Southern India the efficacy is

rated at 0% while in the United Kingdom protection is about 75% [15, 16]. This disparity in

vaccine efficacy has been attributed to genetically determined immunogenecity of BCG strains,

host immune mechanism and individual exposure to environmental mycobacteria [15, 16].

Treatment of TB is affected by the prolonged treatment period of between six to twelve months.

Strict adherence to therapy prescriptions has been shown to change about 85% of sputum pos-

itive individuals to sputum negative within two months and the individuals becoming uninfec-

tious [17, 18, 19]. Successful completion of TB treatment resulted in about 95% of individuals

converting to sputum negative [17, 19]. However, it remains unclear whether individuals who

convert from sputum positive to sputum negative revert to dormant state of TB or completely

recover from the infection. In developing countries where BCG is commonly administered, only

individuals with clinically active TB are treated due to lack of appropriate and efficient medical

technology to diagnose latent form of TB. The latent TB is treated using chemoprophylaxis as

preventative therapy while the active TB is treated using antibiotics. Due to non compliance

to treatment by infected individuals and failure to agree on appropriate TB treatment strate-

gies by health organizations, TB remains a global burden [20, 21, 22]. This has resulted in

emergence of multi-drug-resistant (MDR) TB and extensive-drug-resistant (XDR) TB as new

strains of TB that are more virulent and persistent. About 77 countries in the world harbour

the resistant strains of TB [23].

The biological differences observed among individuals within a family and in different localities

of the world suggests that genetic susceptibility plays a crucial role in the persistence of TB.

Genetic susceptibility increases the likelihood of some individuals to higher risk of getting

TB than others. Thus, nature of some genes determine whether an individual is genetically

sensitive or genetically resistant to M. tuberculosis [24]. The host genetic make-up has been
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shown to determine the outcome of TB infection [24]. Experiments from rabbits and mice have

disclosed that individual genetic factors are important in the resistance and susceptibility to

mycobacteria.

1.1 Problem statement.

In 1980s, TB prevalence was shown to be declining. To date a dramatic increase in prevalence

is noted [25]. More investigations on TB dynamics need to be explored to establish the cause

of TB resurgence. The contribution of genetic susceptibility of individuals and the effects of

exogenous reinfection have been inadequately investigated. One asks a question whether or not

exogenous TB reinfection in a population with genetic susceptibility could be a contributing

factor to the TB epidemic. Mathematical models have been used successfully to analyse and

understand the possible treads exhibited in infectious diseases [26]. Models can be used to

contribute to disclosure of limitations that need to be considered when designing controlling

strategies within the affected populations. Moreover, data can be used on mathematical models

to predict the future treads of the infection.

1.2 Aims and objectives.

1.2.1 Aim.

The aim of this study is to use mathematical models to investigate and understand the effects

of exogenous TB reinfection in a population with genetic susceptibility to TB.

1.2.2 Objectives.

The objectives of this study are:

(i) Develop mathematical models with homogeneous TB transmission incorporating exoge-

4



nous TB re-infection and genetic susceptibility.

(ii) Develop mathematical models with heterogeneous TB transmission incorporating exoge-

nous TB re-infection and genetic susceptibility.

(iii) Analyze mathematical models in (i) and (ii) analytically and carry out numerical simula-

tions using selected data.

(iv) Validate mathematically analyzed results with the TB biology and make projections using

the mathematical processes that were derived from the TB biology.

1.3 Scope of dissertation.

We have so far provided the introduction of M.TB in this chapter. Chapter 2 incorporates

the literature review of TB studies previously done by other researchers. In chapter 3 we shall

formulate a compartmental model of TB with homogeneous TB infection and provide a detailed

analysis of the model. The model is modified to incorporate heterogeneous transmission of TB

infection between the genetically sensitive and genetically resistant sub populations as well as

treatment of active TB individuals. In chapter 4 we shall provide numerical simulations of our

model. Chapter 5 will contain a detailed discussion of results observations and conclusion.
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Chapter 2

Literature review and Preliminary

concepts.

Introduction.

In this chapter we review the work conducted by other researchers to capture the general

information about TB dynamics. We also outline some major concepts that we will apply in

our study.

2.1 Literature review.

Murphy et al [1] studied TB dynamics in demographically distinct heterogenous population.

In their model they stratified the susceptible population into two sub populations; genetically

susceptible and genetically neutral. The objective of the study was to investigate the impact

of genetic susceptibility in determining persistence and virulence of TB in India and USA.

They hypothesised that HLA-DR2 (Human Leukocyte Antigen) susceptibility allele increased

probability of direct progression to active TB, increased reactivation rate from dormant TB to

infectious TB and increased the likelihood of transmitting or receiving M. tuberculosis. Their
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results showed that genetic susceptibility increased prevalence and incidence of TB in the host

population. Their study did not incorporate any intervention, exogenous reinfection and nat-

ural regression as processes contributing to the dynamics of TB infection. Although there are

some studies that consider latently infected individuals to be infectious [27], they assumed in-

dividuals at latent stage to be uninfectious.

Another study [28] extend the work in [1] to incorporate treatment in the TB dynamics to

investigate the effects of treatment in both low (USA) and high (India) growth populations.

They assumed that treatment of latently infected individuals reduces the rate of progression

to active TB and upon initiation of therapeutics individuals immediately changed their status

from actively infected to the latent state. Their, results suggested that TB cannot be eliminated

from high-growth population when treatment of actively infected individuals was maintained

at low levels (30 − 50%), regardless of the proportion which is genetically susceptible. They

projected that TB could be eradicated in all demographic and genetic susceptibility settings

[28] when therapy was administered at high efficacy of between 50 and 80% levels. They showed

that intervention strategies targeted only on one population (either latently infected or actively

infected) did not substantively reduce TB prevalence in both low and high growth populations

irrespective of the level of genetic susceptibility. Rather a combined strategy would be more

effective in combating TB. In their model they did not consider natural regression from active

TB to latent stage, exogenous reinfection and heterogeneous infection between latently infected

and actively infected individuals of both genetically resistant and genetically susceptible pop-

ulations.

Singer and Kirschener [29] studied the influence of backward bifurcation in a model of TB with

exogenous reinfection. Their study assumed that exogenous reinfection of both latently and in-

fected individuals is possible. However, they argued that it is unclear whether the occurrence of

exogenous reinfection is common enough to cause a significant impact on TB infection dynamics

in the population. Their model depicted two types of bifurcation; the backward bifurcation and

transcritical bifurcation. Backward bifurcation occurred when the basic reproduction number
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was less than one and transcritical bifurcation occurred when the basic reproduction number

was greater than one. Hence, their model disclosed that it is possible for an epidemic to continue

invading the susceptible population despite the basic reproduction number being less than one.

Their model predicted that the appearance of backward bifurcation depend on the condition

that reinfection rate is higher than the initial infection rate [29]. Numerically they showed that

backward bifurcation increases with an increase in the level of exogenous reinfection. They also

showed that backward bifurcation is less likely to occur in a community where effective treat-

ment is administered. They suggested that treatment of latently infected individuals reduced

the likelihood of developing active TB. Their study did not incorporate natural regression and

heterogeneous infection between latently and actively infected individuals.

Study done in [30] excluded exogenous reinfection parameter in their model by making a limit-

ing assumption that exogenous reinfection is likely to occur in places that are highly susceptible

to the tubercle bacilli or amongst immunocompromised individuals. However, Feng et al [31]

in their model for tuberculosis with exogenous reinfection argued that exogenous reinfection

cannot be underestimated in developing countries where high TB incidence rates have been ob-

served (greater than 100 per 100, 000). They proposed that in theoretical studies and models

it is hard to exclude reinfection in places where HIV seroprevalence is remarkably high (specif-

ically in Africa) [32]. Moreover, high TB incidence rates (more than 160 per 100,000) have

been observed in Central Harlem in U.S.A where HIV seroprevalence is also high [31]. Recently

there are several studies that support that exogenous reinfection occur in both low and high

incidence populations [33, 34].

According to the experimental studies of air-borne tuberculosis conducted in [35] using guinea

pig, their findings did not affirm the hypothesis that re-exposure to tuberculosis is likely to

result to infection. Furthermore, they suggested that TB can be wiped out if R0 is decreased

below a critical value. Basing their research on major cities such as Mexico city, Rio de Janeiro

(Brazil), New york city (United States) and Buenos Aires (Argentina) they argued that public

transport, immigration and recent population explosion are drastically changing interaction
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within the population. Thus rapid growth of urbanization across the globe is likely to have

altered epidemiology of TB within the population. Their research emphasized that TB should

no longer be viewed as a disease of the poor but social factors are the one likely to influence

TB epidemiology.

Derivation of reinfection threshold has become a key phenomena in mathematical models that

study effect of reinfection in disease dynamics. For instance [29, 31] showed that TB endemic

will only prevail at certain reinfection threshold levels. A value of reinfection within the interval

of zero and one imply that primary infection is likely to occur than reinfection. Some studies

hypothesize that primary infection provides partial cross immunity to exogenous reinfection

[31]. Values of reinfection within (1,∞) imply that exogenous reinfection is contributing in

progression to active TB. Feng et al [31] suggested that a value of reinfection greater than one

is likely to be found amongst HIV-infected individuals whose immune system is compromised.

In their research they pointed out that invasion threshold did not depend on reinfection pa-

rameter but the reinfection parameter appeared in endemic equilibria.

Gomez et al ascertained in [36] that reinfection threshold does exist as demonstrated in their

work [37]. They postulated that level of infection increase by two orders of magnitude and there

exist a range within which the impact of mass vaccination is significant. Beyond this range

mass vaccination cannot eradicate the infection. This was further emphasized by their simu-

lation results which indicated controllable and uncontrollable zones. From their analysis they

suggested that reinfection threshold is not a bifurcation point when the rate at which vaccine

is administered is less than one. However, the importance of reinfection threshold cannot be

underestimated since it can be used to explicate levels of infection and to evaluate the success

of vaccination programmes [37].
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2.2 Evidence of genetic susceptibility to M. tuberculosis.

The large-scale association-based population case studies of candidate genes, family-based link-

age studies, analysis of individuals highly susceptible to M. tuberculosis and comparison with

mouse models showed the genetic components that are involved in determining the susceptibility

to mycobacterial pathogens [38]. Individual immune response, specifically MHC (Major His-

tocompatibility Complex) molecules involved in antigen presentation to immune effector cells

play a vital role in determining infection outcome upon exposure to Mycobacteria pathogen.

Generally the MHC molecules which occur in two classes (class I and II) perform distinct func-

tions in an immune response to tubercle bacilli. HLA molecules (Human Leukocyte Antigen)

are the human MHC molecules. Studies disclosed that, increased susceptibility and resistance

to at least 500 infections were linked to HLA antigens, alleles, or haplotypes (set of genes that

are typically inherited as a unit) [1, 39]. Several HLA alleles were shown to be major contribu-

tors to M. TB infection susceptibility [40, 41, 42]. Evidence for this was found in India where

HLA-DR2 expression was strongly and consistently associated with development of pulmonary

TB and acute multi-bacillary form of TB [1, 41, 43, 44].

Experimental studies done on children who genetically inherited immune defects from a similar

origin suggested that the children had an increased susceptibility to tuberculosis. This was

confirmed to result from the malfunctioning interferon-gamma secretion [45]. Children with

deficient interferon gamma developed miliary tuberculosis after vaccination with BCG. Thus,

IFN-γR played a role in determining disease progression in the community. The results from

population case/control studies conducted with 410 individuals diagnosed positive and 417

control experiments of healthy individuals from Gambia (West Africa) who originated from a

similar background depicted that four different types of genes in the population were linked to

tuberculosis susceptibility [38, 46].
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2.3 Preliminary concepts.

Basic reproduction number-The basic reproduction number, R0 is defined as the average

number of new infections that will occur when one infected individual is introduced into a com-

munity where everyone is susceptible to the infection. Models describing dynamics of infectious

diseases have a disease free equilibrium point at which the susceptible individual remains when

there is no infection. Such models are usually characterized by a critical parameter identified

as basic reproduction number. The basic reproduction number is computed using Van den

Driessche and Watmough approach [47] where entries of matrix F represent the rate at which

new infections appear while entries of matrix V represent the net outflow of infected individuals

into and out of compartment i. F and V represent the Jaccobian matrices of F and V evaluated

at disease free equilibrium point respectively. Moreover, F is a nonegative matrix while V is a

non-singular M-matrix. The model is rewritten as

Ẋ(t) = (F − V )x(t), (2.1)

where x(t) is a vector. The matrix K = FV −1 is defined as the next generation matrix of a

dynamical system (2.1). The dominant or maximum real part of all the eigenvalues of matrix

K is referred as the spectral bound or abscissa. Generally the dominant eigenvalue is the basic

reproduction number.

Definition 2.3.1. Positive definite and negative definite function [48].

Let V be a continuous differentiable function such that V : Rn −→ R+. Then V is said to be a

positive definite function in a region Ω of Rn that contains the origin if:

• V (0) = 0,

• V (x) > 0 for x ∈ Ω and x 6= 0.

Replacing the second condition with V (x) < 0 then V (x) is considered as negative definite.
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Definition 2.3.2. Lyapunouv function [48].

A lyapunouv function φ : Rm −→ R for the system ẋ = f(x) is a continuously differentiable

positive definite function φ in Ω whose derivative along the trajectories of the system satisfies

φ̇(x) ≤ 0 in Ω. If a Lyapunouv function exists for a system then x∗ is a stable equilibrium point

for the system. The equilibrium point of the system is considered to be globally asymptotically

stable if the derivative of the function along the trajectories of the autonomous system is neg-

ative definite in a positively invariant region.

Definition 2.3.3. Descartes Rule of Signs [49].

Considering the nth polynomial

f(λ) = λn + b1λ
n−1 + · · ·+ bn = 0 (2.2)

and without loss of generality bn > 0. Letting M be the number of sign changes in the sequence

of coefficients {bn, bn−1, · · · , b0}, and ignoring which are zero. Descartes Rule of Signs states

that there are at most M roots of the given polynomial (2.2) which are real and nonnegative.

Further, the rule states that there are M − 2k, k ≥ 0 and k ∈ Z+ real positive roots. If we let

ω = −λ and again applying the Descartes Rule of Signs we obtain M − 2k real negative roots.

Definition 2.3.4. Jacobian matrix and auxiliary equation [49].

Given a system of m equations in m variables y1, · · · , ym, the system can explicitly be written

as

x = g(y) (2.3)

where x = (x1, x2, · · ·xm)T and g(y) = (y1, y2, · · · ym)T . The Jacobian matrix J of the system

(2.3) is defined by

J(y1, . . . , ym) =


∂x1
∂y1

· · · ∂x1
∂ym

...
. . .

...

∂xn
∂y1

. . . ∂xn
∂ym
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An auxiliary or characteristic equation of the system (2.3) is the equation obtained by setting

det(J − λI) = 0, where J denote the Jacobian matrix.

Definition 2.3.5. Routh-Hurwitz criterion [50].

Supposing we have a characteristic polynomial P (λ) = λn + c1λ
n−1 + · · ·+ cn−1λ+ cn, where

the coefficients ci are real constants, i = 1 · · ·n. The n Hurwitz matrices of the characteristic

polynomial are given by

H1 =
(
c1

)
, H2 =

c1 1

c3 c2

 , H3 =


c1 1 0

c3 c2 c1

c5 c4 c3

 and

Hn =



c1 1 0 0 · · · 0

c3 c2 c1 1 · · · 0

c5 c4 c3 c2 · · · 0
...

...
...

...
...

0 0 0 0 · · · cn


where cj = 0 if j > n. The roots of the characteristic polynomial P (λ) are non positive or have

non positive real part iff the determinant of all Hurwitz matrices are nonnegative. det(Hj) > 0,

j = 1, 2, · · ·n.

Example 2.3.6. Routh Hurwitz criterion.

Routh-Hurwitz Criterion for establishing local Stability of 3 × 3 matrices (i.e n = 3). The

auxiliary polynomial of 3 × 3 Jacobian matrix can be algebraically stated in the form λ3 +

c1λ
2 +c2λ+c3 = 0. If the conditions c1 > 0, c3 > 0 and c1c2 > c3 hold then the dynamic system

has a locally stable equilibrium.

Definition 2.3.7. Backward bifurcation.

The qualitative change that occur by varying parameters of a dynamical system is defined as

bifurcation. In models of infectious diseases, the disease free equilibrium point exist for all
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parameters values. The basic reproduction number R0 divides the parameter space into two

domains: R0 < 1 and R0 > 1 [51]. In most models the disease free equilibrium point is locally

stable if it is globally stable. That is we do not have an endemic equilibrium point when

R0 < 1. At R0 = 1 the endemic equilibrium point bifurcates. The bifurcation leading from the

uninfected state to an endemic state is defined as forward or supercritical bifurcation [51]. As

pointed out in [51] there are certain parameter values at which an endemic equilibrium point

occur even though the basic reproduction number is less than unity. Such a bifurcation is

described as backward bifurcation. For instance, in [29, 31, 37] backward bifurcation occurred

due to presence of exogenous reinfection. Other models which showed the existence of backward

bifurcation include: SIS models with saturation recoveries [52], models for drug abuse [53, 54],

vector disease models [55] and in [56]. The epidemiological significance of backward bifurcation

is that the condition R0 < 1 is not sufficient for an epidemic to stop proliferating within the

susceptible community.

Definition 2.3.8. Sensitivity analysis.

Sensitivity analysis is a method used to determine how changes in parameter values influence

the model output. Many parameters used in mathematical models represent quantities that are

difficult to obtain or impossible to measure to a great deal of precision in the real world. Sen-

sitivity analysis is a vital process when building or evaluating a mathematical model. Further,

sensitivity analysis can be used to show the parameter values that are reasonable to use when

modelling. Latin hypercube sampling (LHS) is one of the methods used to perform sensitivity

analysis of parameter values [57].
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Chapter 3

Tuberculosis model incorporating

genetic susceptibility without

intervention.

3.1 Introduction.

The model formulated in Section 3.2 is an extension of the model in [1], where we introduce

exogenous reinfection and natural regression. We first omit the heterogeneous interaction of

infected and susceptible individuals as illustrated in [1]. The model also does not include in-

tervention parameters. In study of infectious diseases there are two mechanisms of infection,

namely, homogeneous and heterogeneous mode of transmission. For the purpose of tracking

both infection processes we first investigate TB dynamics using homogeneous mode of trans-

mission and then combine to check the implication brought about by the combined effects. In

the homogeneous model we will include heterogeneous interaction between susceptibles Ss, Sr

and actively infected TB individuals Ar, As and between TB latently infected Ls, Lr and ac-

tively infected TB individuals Ar, As respectively. Heterogeneous interaction between latently

infected TB individuals and actively infected TB individuals has not been investigated in any

other model. Again on the heterogeneous TB model we will incorporate treatment among

15



individuals with clinically active TB.

3.2 Model formulation.

We formulate a tuberculosis model without intervention to investigate the role of exogenous

reinfection in a genetically susceptible population on the progression of TB. The mathematical

model incorporates two genetically susceptible classes of individuals. The susceptible classes are

differentiated from each other by their inherited genetic components depicted by their immune

response towards M. tuberculosis bacteria. Individuals of the population who are resistant to

the M. tuberculosis are categorized as genetically resistant Sr while those who are sensitive

to M. tuberculosis infection are classified as genetically sensitive Ss. The transmission of M.

tuberculosis to susceptible individuals results in those who are latently infected L(t) i.e they are

infected but cannot transmit M. tuberculosis to other individuals. The transmission can also

result directly in individuals with active M. tuberculosis A(t). Thus, for genetically resistant

population we have three different classes: Sr(t), Lr(t), Ar(t). A similar classification holds for

the genetically sensitive individuals i.e Ss(t), Ls(t), As(t).

The model framework is given in Figure 3.2.

The model represented by the schematic Figure 3.2 exhibits homogeneous transmission of M.

tuberculosis. Homogeneous transmission occurs when the infection is transmitted to individuals

who possess similar genetic characteristics only. This means a genetically resistant individual

with active TB can only transmit TB to a genetically resistant susceptible and genetically

resistant latent individuals. Similarly a genetically sensitive individual with active TB can only

transmit TB to a genetically sensitive susceptible and/or genetically sensitive latent individual.

We use a system of non linear ordinary differential equations to model the dynamics of M.

tuberculosis within the population. We define the total population as:

N(t) = Sr(t) + Ss(t) + Lr(t) + Ls(t) + Ar(t) + As(t).

We assume that recruitment occurs as a result of constant birth (b) and/or immigration at a

rate b. Let τ (0 ≤ τ ≤ 1) represent the proportion of individuals who are genetically resistant
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Ss Ls As

Sr Lr Ar

(1− γs)βy αs

(1− γr)βx αr

γsβy

kβy

pβx

dr

ds

γrβx

αr

µ µ

Untreated TB deaths

(µ+ µTB)

µ µ
(µ+ µTB)

b(1− τ)

bτ

Figure 3.1: A tuberculosis model of genetically resistant individuals (Sr, Lr, Ar) and genetically

sensitive individuals (Ss, Ls, As). The dotted lines indicate interactions between susceptible

and actively infected individuals. The solid arrows indicate movement of individuals after they

change their status during the course of infection.

to the M. tuberculosis and 1 − τ proportion of those who are genetically sensitive. We also

assume that the transmission of tuberculosis epidemic occurs as result of sufficient contact due

to interaction between individuals of each sub population at rates βj (j = x, y), where βx and

βy denote the transmission rates for genetically resistant and genetically sensitive individuals

respectively. βj = βci where β is the average number of susceptibles infected by one infectious

individual per unit time. ci, i ∈ {s, r} represent the per-capita contact rates of genetically

resistant and genetically sensitive individuals respectively. We consider primary infection where

a susceptible individual contracts infection directly from an actively infectious TB individual.
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We also consider exogenous reinfection of latently infected individuals by actively infected TB

individuals. The genetically resistant and genetically sensitive individuals respond to infection

in the following two ways:

(i) They may either be infected with M. tuberculosis and their immune system fail to respond,

progressing directly to the actively infected class at rates γrβx (for genetically resistant)

and γsβy (for genetically sensitive).

(ii) The immune system may fight effectively to contain the bacilli but not completely erad-

icating it, thereby progressing to the latently infected classes at rates (1 − γr)βx (for

genetically resistant) and (1− γs)βy (for genetically sensitive).

Latent TB infection can be reactivated to active TB at rates αi where αi represent the proba-

bilities of progression to active TB. Latently infected individuals may develop active TB due to

exogenous reinfection at rates pβx and kβy for genetically resistant and genetically sensitive re-

spectively, where p and k represent level of exogenous reinfection. Individuals who are actively

infected with TB may naturally recover from the infection (regression) and join the respective

latent compartments at rates di where i ∈ {r, s}. Individuals in all compartments die due to

natural causes at rate µ. Some individuals who acquire active TB may die due to illness at

rates µTBAi, i ∈ {r, s}. We make a limiting assumption that death due to illness between the

two sub-populations is the same since we are considering average death rate occurring in the

susceptible community.The model equations that describe the transmission of M. tuberculosis

due to genetic susceptibility are given as:

dSs
dt

=b(1− τ)− λsSs − µSs, (3.1)

dLs
dt

=(1− γs)λsSs + dsAs − λskLs − (αs + µ)Ls, (3.2)

dAs
dt

=γsλsSs + λskLs + αsLs − (ds + µ+ µTB)As, (3.3)

dSr
dt

=bτ − λrSr − µSr, (3.4)

dLr
dt

=(1− γr)λrSr + drAr − λrpLr − (αr + µ)Lr, (3.5)

dAr
dt

=γrλrSr + λrpLr + αrLr − (dr + µ+ µTB)Ar. (3.6)
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Where λs =
βyAs
N

and λr =
βxAr
N

.

We use the standard incidence as a force of infection in our model. λs is the force of infection

for the genetically sensitive sub-population while λr is the force of infection for genetically

resistant sub-population.

3.3 Analysis.

3.3.1 Feasibility region of the model.

To carry out model analysis we need to establish a biologically feasible region where our model

will be biologically meaningful. When there are no genetically sensitive infected individuals

and genetically resistant infected individuals in the sub-populations we have Ns ≤
b(1− τ)

µ
and

Nr ≤
bτ

µ
where Ns and Nr denote genetically sensitive and genetically resistant sub-populations

respectively. Thus, we investigate the behaviour of our model in Ω0 where;

Ω0 = (Ss, Sr, Ls, Lr, As, Ar) ∈ R6
+, Ss + Ls + As ≤

b(1− τ)

µ
, Sr + Lr + Ar ≤

bτ

µ
. (3.7)

Theorem 3.3.1. The region Ω0 is positively invariant.

Proof. Considering the fact that N(t) ≤ Ss(t) + Sr(t) + Ls(t) + Lr(t) + As(t) + Ar(t) satisfy

dN

dt
= b− µN − (As + Ar)µTB ≤ b− µN (3.8)

The inequality dN
dt
≤ b− µN generates a first order linear differential equation whose solution

yields

N(t) =

(
N(0)− b

µ

)
e−µt +

b

µ
.

As the disease invasion progresses in the sub-populations and time with N(0) < b
µ

tends to

infinity we note that the population will reach a carrying capacity b
µ
. Consequently, we have
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0 ≤ N(t) ≤ b

µ
, hence the region Ω0 is an absorbing set. If N(0) > b

µ
then dN

dt
< 0, and

the population of infected individuals decreases exponentially towards the carrying capacity.

Moreover, for dN
dt
> 0 implies that the population is within the range 0 ≤ N ≤ b

µ
. Hence, the

total population will increase to approach the maximum value but will not exceed it. We can

thus, conclude that solutions stay in Ω0. Hence, Ω0 is the positively invariant region.

3.3.2 Disease free equilibrium point.

The equilibrium point which occurs when there are no infected individuals in the susceptible

population is defined as the disease free equilibrium point. In our model the disease free

equilibrium point is computed by setting the right hand side of the system of differential

equations (3.1)-(3.6) to zero and considering that Ls = Lr = As = Ar = 0. The disease free

equilibrium point denoted by E0 is given by,

E0 =

(
b(1− τ)

µ
,
bτ

µ
, 0, 0, 0, 0

)
. (3.9)

3.3.3 Basic reproduction number.

One of the most important parameters that explains conditions under which the infection is

cleared or persists, is the basic reproduction number denoted as R0. R0 is defined as the expected

number of secondary infections that will result when an infected individual is introduced in a

completely susceptible population [49]. The basic reproduction number of our TB model would

be defined as the rate at which new infections from both genetically sensitive or genetically

resistant individuals occur in a disease compartment i after successful interaction with actively

infected individuals in compartment j. We compute the basic reproduction number using the

next generation matrix approach described in [47].

Our model can be written as ẋ = f(x) = F(x) − V(x) and V(x) = V−(x) − V+(x), where

x = (Ss, Sr, Ls, Lr, As, Ar). F(x) is matrix for the rate of appearance of new infected individuals

in each compartment, V+ is the rate of transfer of infected individuals into compartment i by

all other means and V− is the rate of transfer of infected individuals out of compartment i by all
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other means. Thus the matrix V(x) represent the net outflow of individuals from compartment

i.

The Jaccobian matrix of our dynamic model (3.1)-(3.6) at the disease free equilibrium point

can be written as,

ẋ = (F − V )(x),

where F and V are square matrices (m×m) which have entries given as

F =
∂Fi(E0)

∂xj
and V =

∂Vi(E0)

∂xj
.

Our model has four infective classes Ls, Lr, As and Ar. From these infective classes we extract

matrices F(x) and V(x) which are given by

F(x) =



(1−γs)βyAsSs

N

γsβyAsSs

N

(1−γr)βxArSr

N

γrβxArSr

N

,

V(x) =



βykAsLs

N
+ (αs + µ)Ls − dsAs

(ds + µ+ µTB)As − αsLs − kβyAsLs

N

βxpArLr

N
+ (αr + µ)Lr − drAr

(dr + µ+ µTB)Ar − αrLr − pβxArLr

N

.

The jacobian matrix of V(x) evaluated at the disease free equilibrium point E0 denoted by V

is given as

V =
∂V(E0)

∂xj
=


αs + µ 0 −ds 0

−αs 0 ds + µ+ µTB 0

0 αr + µ 0 −dr
0 −αr 0 dr + µ+ µTB


and the jacobian matrix of F(x) evaluated at the disease free equilibrium point E0 denoted by
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F is given as

F =
∂F(E0)

∂xj
=


0 0 βy(1− γs)(1− τ) 0

0 0 (1− τ)γsβy 0

0 0 0 (1− γr)βxτ

0 0 0 γrβxτ

.

The inverse matrix for V is

V −1 =


1

D1(1−ψ1)
ds

D1D2(1−ψ1)
0

0 0 1
D3(1−ψ2)

dr
D3D4(1−ψ2)

αs

D1D2(1−ψ1)
1

D2(1−ψ1)
0 0

0 0 αr

D3D4(1−ψ2)
1

D3(1−ψ2)

,

where D1 = µ+αs, D2 = ds + µ+ µTB, D3 = µ+αr, D4 = dr + µ+ µTB, ψ1 = dsαs

D1D2
< 1,

ψ2 = drαr

D3D4
< 1.

(a) ψ1 =

(
ds
D2

)(
αs
D1

)
represent movement of infected individuals from latent stage Ls to

infectious stage As,

(b) ψ2 =

(
dr
D4

)(
αs
D2

)
represent movement of infected individuals from latent compartment

Lr to infectious compartment Ar,

(c)
ds
D2

=
ds

ds + µ+ µTB
represent probability that an individual with clinically active TB in

compartment As will recover,

(d)
dr
D4

=
dr

dr + µ+ µTB
represent that an individual with clinically active TB in compartment

Ar will recover,

(e)
αs
D1

=
αs

µ+ µTB
represent probability that TB latently infected individuals in compartment

Ls will progress to active TB As through exogenous reinfection,

(f)
αr
D1

=
αr

µ+ µTB
represent probability that latently infected individuals in compartment Lr

will progress to active TB Ar through exogenous reinfection.
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The next generation matrix defined by FV −1 yields

FV −1 =


(1−τ)(1−γs)αsβy
D1D2(1−ψ1)

(1−τ)(1−γs)βy
D2(1−ψ1)

0 0

(1− τ)γsαsβy (1− τ)γsβy 0 0

0 0 τγrαrβx
D3D4(1−ψ2)

τγrβx
D3(1−ψ2)

.

The eigenvalues of the matrix FV −1 are

λ1 = λ2 = 0, λ3 =
τβx[αr(1− γr) +D3γr]

D3D4(1− ψ2)
, λ4 =

(1− τ)βy[αs(1− γs) +D1γs]

D1D2(1− ψ1)
.

λ3 and λ4 are the dominant eigenvalues.

From [49] the basic reproduction number is defined as the spectral radius of the next generation

matrix FV −1 which is denoted as ρ(FV −1).

ρ(FV −1) = max(Rr, Rs) = R0,

where

Rr = λ3 =
τβx[αr(1− γr) +D3γr]

D3D4(1− ψ2)
,

Rs = λ4 =
(1− τ)βy[αs(1− γs) +D1γs]

D1D2(1− ψ1)
.

Rr and Rs can be decoupled to yield expressions that can be biologically interpreted.

Rr =
τβxαr(1− γr)
D3D4(1− ψ2)︸ ︷︷ ︸

N1

+
τβxγr

D4(1− ψ2)︸ ︷︷ ︸
N2

,

Rs =
(1− τ)βyαs(1− γs)
D1D2(1− ψ1)︸ ︷︷ ︸

N3

+
(1− τ)βyγs
D2(1− ψ1)︸ ︷︷ ︸

N4

,

where

(i) N1 and N3 represent infections caused by progression from susceptible compartment to

infectious compartment via latent compartment of genetically resistant and genetically

sensitive individuals respectively,
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(ii) N2 and N4 represent infections caused by direct progression to active TB of genetically

resistant and genetically sensitive individuals respectively.

(iii)
1

D3D4(1− ψ2)
is the mean infective period that genetically resistant infected individuals

spend in compartments Lr and Ar, with
1

D3

being duration that infected individuals spend

in compartment Lr and
1

D4(1− ψ2)
being duration that genetically resistant infected

individuals spend in compartment Ar,

(iv) Similarly,
1

D1D2(1− ψ1)
is the mean infective period that genetically sensitive infected

individuals spend in compartments Ls and As, with
1

D2

being duration that infected

individuals spend in compartment Ls and
1

D1(1− ψ1)
being duration that genetically

sensitive infected individuals spend in compartment As.

Thus, Rr and Rs are the average numbers of secondary infections that would result when a

genetically resistant or genetically sensitive infected individual is introduced in the susceptible

population.

Remark 3.3.1. Simplification of Rr and Rs yields the following expressions;

Rr =
(αr + µγr)βxτ

(µ+ µTB)αr + (dr + µTB)µ+ µ2
,

Rs =
(αs + µγs)βy(1− τ)

(µ+ µTB)αs + (ds + µTB)µ+ µ2
,

which slightly resemble R0 derived in [1] when only homogeneous transmission of TB is con-

sidered.
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3.3.4 Endemic equilibrium points.

We set the right-hand side of the system of equations (3.1)-(3.6) as follows

b(1− τ)− βyA
∗
sS
∗
s

N∗
− µS∗s = 0, (3.10)

(1− γs)
βyA

∗
sS
∗
s

N∗
+ dsA

∗
s −

βykA
∗
sL
∗
s

N∗
− (αs + µ)L∗s = 0, (3.11)

γsβyA
∗
sS
∗
s

N∗
+
βykA

∗
sL
∗
s

N∗
+ αsL

∗
s − (ds + µ+ µTB)A∗s = 0, (3.12)

bτ − βxA
∗
xS
∗
r

N∗
− µS∗r = 0, (3.13)

(1− γr)
βxA

∗
rS
∗
r

N∗
+ drA

∗
r −

βxpA
∗
rL
∗
r

N∗
− (αr + µ)L∗r = 0, (3.14)

γrβxA
∗
rS
∗
r

N∗
+
βxpA

∗
rL
∗
r

N∗
+ αsL

∗
r − (dr + µ+ µTB)A∗r = 0. (3.15)

We use the limiting system where N∗ = b
µ

to ensure mathematical tractability. From equations

(3.10) and (3.11) we obtain S∗s and L∗s as

S∗s =
b2(1− τ)

µ(βyA∗s + b)
,

L∗s =
b2(1− γs)A∗sβy(1− τ) + bdsA

∗
s(βyA

∗
s + b)

(βyA∗s + b)[βykA∗sµ+ b(αs + µ)]
.

Substituting both S∗s and L∗s in equation (3.12) yields the following expression

A∗s[µβyγsb(1− τ)(βyµkA
∗
sb(αs + µ)) + βykµ(b(1− τ)(1− γs)βyµA∗s + dsµ(βyA

∗
s + b)A∗s)

+ αsb
2(1− τ)(1− γs)βyµ+ αsbdsµ(βyA

∗
s + b)

− (ds + µ+ µTB)µ(βyA
∗
s + b)[βyµkA

∗
s + b(αs + µ)]] = 0.

(3.16)
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We have A∗s = 0 or

µβyγsb(1− τ)(βyµkA
∗
sb(αs + µ)) + βykµ(b(1− τ)(1− γs)βyµA∗s + dsµ(βyA

∗
s + b)A∗s)

+ αsb
2(1− τ)(1− γs)βyµ+ αsbdsµ(βyA

∗
s + b)

− (ds + µ+ µTB)µ(βyA
∗
s + b)[βyµkA

∗
s + b(αs + µ)] = 0.

(3.17)

A∗s = 0 correspond to the disease free equilibrium while equation (3.17) can be rewritten as

f(A∗s) = X1A
∗2
s +X2A

∗
s +X3 = 0, (3.18)

where

X1 =kµβ2
y(µ+ µTB) (3.19)

X2 =βy

[
bkµ(µ+ µTB) +

bkµ2(1− τ)βyγs
αs

+ b[µ2 + (µ+ µTB)αs + (ds + µTB)µ]

(
1− kµRs

αs

)]
,

(3.20)

X3 =b2[µ2 + (µ+ µTB)αs + (ds + µTB)µ][1−Rs]. (3.21)

From equation (3.13) and (3.14) we have

S∗r =
b2τ

µ(βxA∗r + b)
,

L∗r =
b2(1− γr)A∗rβxτ + bdrA

∗
r(βxA

∗
r + b)

(βyA∗r + b)[βxpA∗rµ+ b(αr + µ)]
.

and substituting S∗r and L∗r in equation (3.15) and simplifying yields A∗r = 0 (correspond to the

disease free equilibrium) and

f(A∗r) = Y1A
∗2
r + Y2A

∗
r + Y3 = 0, (3.22)

where

Y1 =pµβ2
x(µ+ µTB), (3.23)

Y2 =βx

[
bpµ(µ+ µTB) +

bpµ2τβxγr
αr

+ b[µ2 + (µ+ µTB)αr + (dr + µTB)µ]

(
1− pµRr

αr

)]
,

(3.24)

Y3 =b2[µ2 + (µ+ µTB)αr + (dr + µTB)µ][1−Rr]. (3.25)
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The endemic equilibrium points are given as

S∗s =
b2(1− τ)

µ(βyA∗s + b)
,

L∗s =
b2(1− γs)A∗sβy(1− τ) + bdsA

∗
s(βyA

∗
s + b)

(βyA∗s + b)[βykA∗sµ+ b(αs + µ)]
,

S∗r =
b2τ

µ(βxA∗r + b)
,

L∗r =
b2(1− γr)A∗rβxτ + bdrA

∗
r(βxA

∗
r + b)

(βyA∗r + b)[βxpA∗rµ+ b(αr + µ)]
.

A∗r and A∗s are obtained by solving (3.18) and (3.22).

We continue to investigate the behaviour of the model by computing the exogenous reinfection

thresholds as derived in [31].

p0 =
(1 +Wr)D3

1−Xr

and k0 =
(1 +Ws)D1

1−Xs

, (3.26)

where D3 =
αr

(αr + µ)
, D1 =

αs
αs + µ

, Wr =
αr

dr + µ+ µTB
and Ws =

αs
dr + µ+ µTB

.

D3 and D1 represent the probability of individuals who survive from the latently infected com-

partment and move to the infectious stage.

Wr and Ws represent the duration exposed individuals spend in infectious compartment mul-

tiplied by the rate at which they leave latently infected compartment.

To compute the critical values of Rr and Rs we rewrite X1, X2, X3 and Y1, Y2, Y3 as

X1 =kµβ2
y(µ+ µTB),

X2 =Θ1 + Π1(1− ϕ1Rs),

X3 =bΠ1(1−Rs).

Y1 =pµβ2
x(µ+ µTB),

Y2 =Θ2 + Π2(1− ϕ2Rr),

Y3 =bΠ2(1−Rr).
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where

Θ1 =βy

[
bkµ(µ+ µTB) +

b(1− τ)kµ2βyγs
αs

]
,

Π1 =bαsds

(
αs

dsD1Ws

− 1

)
,

ϕ1 =
kµ

αs
,

Θ2 =βx

[
bpµ(µ+ µTB) +

bτpµ2βxγr
αr

]
,

Π2 =bαrdr

(
αr

drD3Wr

− 1

)
,

ϕ2 =
pµ

αr
.

The derivation of Π1 and Π2 is shown in the Appendix A. The critical value of the basic

reproduction number Rs is obtained by setting the discriminant 4s, of the quadratic equation

(3.18) to zero.

4s = X2
2 − 4X1X3 = 0,

which results in the expression

4s =Π2
1ϕ

2
1R

2
s + [4bΠ1kµ

2β2
y + 4bΠ1kµβ

2
yµTB − 2Π2

1ϕ1

− 2Θ1Π1ϕ]Rs + [Θ2
1 + 2Θ1Π1 + Π2 − 4bΠ1kµ

2β2
y − 4bΠ1kµβ

2
yµTB] = 0.

(3.27)

Solving (3.27) we obtain the following

Rsc =
1

Π1ϕ1

[ϕ1(Θ1 + Π1)− 2bkβ2
yµ(µ+ µTB)] +

2βy
Π1ϕ2

1

√
Γ1 + Γ2, (3.28)

where

Γ1 =bkµµTB(2bkµ2β2
y + Π1ϕ

2
1 + bkµβ2

yµTB − Π1ϕ1), (3.29)

Γ2 =bµ(Π1ϕ
2
1 + k2bµ3β2

y −Θ1kµϕ1 − Π1kµϕ1 −Θ1kϕ1). (3.30)

Similarly setting the discriminant 4r = Y 2
2 − 4Y1Y3 = 0 we can derive Rrc as

Rrc =
1

Π2ϕ2

[ϕ2(Θ2 + Π2)− 2bpβ2
xµ(µ+ µTB)] +

2βx
Π2ϕ2

2

√
Γ3 + Γ4, (3.31)
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where

Γ3 =bpµµTB(2bpµ2β2
x + Π2ϕ

2
2 + bpµβ2

xµTB − Π2ϕ2), (3.32)

Γ4 =bµ(Π2ϕ
2
2 + k2bµ3β2

x −Θ1pµϕ− Π2pµϕ2 −Θ1pϕ1). (3.33)

Thus the critical value of R0 denoted by Rc is given by the maximum of Rrc and Rsc.

Rc = max(Rrc, Rsc). (3.34)

The TB model without any intervention governed by the system of differential equations (3.1)-

(3.6) can now be analysed using the following cases:

Case 3.3.5. R0 > 1 =⇒ Rr > 1 and Rs > 1. R0 > 1 imply that X3 and Y3 are both negative.

Thus the discriminants 4s > 0 and 4r > 0. This means that each of the expressions (3.18)

and (3.22) has a positive root. Thus, our TB model has a unique positive endemic equilibrium

when R0 > 1.

Case 3.3.6. R0 < 1 (Rr < 1 and Rs < 1) and p < p0, k < k0. From quadratic expressions

(3.18) and (3.22) we note that Y1, Y3 and X1, X3 are nonnegative. X2 and Y2 are either positive

or negative. By the Descartes rule of signs we have two negative roots when X2 and Y2 are

both negative and no positive root when they are both nonnegative. Thus, our model system

has no positive endemic equilibria.

Case 3.3.7. Rc < R0 < 1, p > p0 and k > k0. As derived in (3.28) and (3.31) our model has

two nonnegative critical values denoted by Rrc and Rsc.

In case (3.3.7), the model exhibits a backward bifurcation where the disease free equilibrium

occur concurrently with the endemic equilibria. The exogenous reinfection parameters do not

directly appear in the vital epidemiological threshold R0 but indirectly contribute to the compli-

cation in the TB dynamics by inducing a backward bifurcation. This shows that the exogenous

reinfection of TB cannot be ignored when assessing the impact of TB infection in a commu-

nity with TB genetic susceptibility. Exogenous reinfection may result in regeneration of TB

infection in the community.
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Remark 3.3.2. We note that R0 > 1 can also mean that either Rr > 1 and Rs < 1 or Rr < 1

and Rs > 1. In this case the progression of TB infection is determined solely either by the

genetically sensitive population or by the genetically resistant population. However, disease

progression is likely to be favoured when both Rs and Rr are greater than one.

3.3.8 Stability of the disease free equilibrium point.

The local stability of the disease free equilibrium point is obtained from the analysis of the

jacobian matrix of the infective classes which is given as

F − V =


−(αs + µ) 0 (1− γs)(1− τ)βy + ds 0

αs 0 γs(1− τ)βy − (ds + µ+ µTB) 0

0 −(αr + µ) 0 (1− γr)τβx + dr

0 αr 0 γrτβx − (dr + µ+ µTB)

 .

The criterion for the local stability of the disease free equilibrium point is that the eigenvalues

of the jacobian matrix evaluated at E0 must either be negative or have negative real parts.

Computing the eigenvalues we obtain the following four real eigenvalues

δg =− 1

2
A1 ±

√(
A1

2

)2

− 1

C1

[1−Rr],

δh =− 1

2
B1 ±

√(
B1

2

)2

− 1

C1

[1−Rs],

where

A1 =2µ+ dr + αr + µTB − τβxγr,

B1 =2µ+ ds + αs + µTB − (1− τ)βyγs,

C1 =(di + µTB)µ+ (µ+ µTB)αi + µ2.

g, h ∈ {1, 2} and i ∈ {s, r}.

We note that eigenvalues δg < 0 if and only if Rr < 1 and Rr1 =
τβxγr

dr + µ+ µTB
< 1.
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Similarly δh < 0 if Rs < 1 and Rs1 =
(1− τ)γsβy
ds + µ+ µTB

< 1.

Rr1 and Rs1 represent ratios of primary progression rate to duration infected individuals in

each sub population spend in infectious stages.

Lemma 3.3.3. Provided the basic reproduction numbers Rr, Rs and the ratio of primary pro-

gression rate in genetically resistant and genetically sensitive sub population to duration infected

individuals spend in each sub population are less than one then the disease free equilibrium point

is locally asymptotically stable.

3.3.9 Global stability of the disease free equilibrium point.

To analyse the global stability of the disease free equilibrium point we define a Lyapunouv-

Lassalle function as:

V = αsLs + αrLr + (αs + µ)As + (αr + µ)Ar. (3.35)

The derivative of the function along the trajectories of our TB model (3.1)-(3.6) is

V̇ = αsL̇s + αrL̇r + (αs + µ)Ȧs + (αr + µ)Ȧr. (3.36)

Substituting the expression for L̇r, L̇s, Ȧr, and Ȧs yields

V̇ =αs

[
(1− γs)βyAsSsµ

b
+ dsAs −

βykAsLsµ

b
− (αs + µ)Ls

]

+ αr

[
(1− γr)βxAsSrµ

b
+ drAr −

βxpArLrµ

b
− (αr + µ)Lr

]

+ (αs + µ)

[
γsβyAsSsµ

b

βykAsLsµ

b
+ αsLs − (ds + µ+ µTB)As

]

+ (αr + µ)

[
γrβxArSrµ

b
+
βxpArLrµ

b
+ αrLr − (dr + µ+ µTB)Ar

]
.

(3.37)
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Expanding and simplifying (3.37) yields

V̇ =
[µ
b

(αs + µγs)βySs

]
As +

µ2

b
βykAsLs − [µds + αsµ+ αsµTB + µµTB + µ2]As

+
[µ
b

(αr + µγr)Sr

]
Ar +

µ2

b
βxpArLr − [µαr + αrµTB + µdr + µµTB + µ2]

=
RsAs

[µ2 + (µ+ µTB)αr + (dr + µTB)µ]
+
µ2βykAsLs

bQ1

− As
[µ2 + (µ+ µTB)αr + (dr + µTB)µ]

+
RrAr

[µ2 + (µ+ µTB)αs + (ds + µTB)µ]
+
µ2βxpArLr

bQ1

− As
[µ2 + (µ+ µTB)αr + (dr + µTB)µ]

=
µ2(βykAsLs + βxpArLr)

bQ1

+
As

[µ2 + (µ+ µTB)αr + (dr + µTB)µ]
(Rr − 1)

+
Ar

[µ2 + (µ+ µTB)αs + (ds + µTB)µ]
(Rs − 1) 
 0 for R0 6 1,

where Q1 = [µ2 + (µ+ µTB)αs + (ds + µTB)µ] [µ2 + (µ+ µTB)αr + (dr + µTB)µ] .

Remark 3.3.4.

(i) R0 ≤ 1 and k, p > 0. In the presence of exogenous reinfection V̇ > 0. Hence, the disease

free equilibrium point fails to be globally stable in the Lyapunouv sense.

(ii) R0 ≤ 1 and k = p = 0. In the absence of exogenous reinfection V̇ ≤ 0 implying that the

disease free equilibrium point of TB model is globally stable.

(iii) Remarks (i) and (ii) shows that the presence of exogenous reinfection hampers the eradi-

cation of TB infection in the absence of intervention in the sense that the community will

never have a permanent disease free situation.
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3.3.10 Stability analysis of the endemic equilibrium.

To investigate local stability of the system of equations (3.1)-(3.6) we consider the jacobian

matrix of the full system of equations (3.1)-(3.6) and evaluate the matrix at the endemic

equilibria of case (3.3.5). The resulting matrix has a block triangular form and therefore we

can extract two 3× 3 matrices denoted as J1 and J2.

J =

 J1 0

0 J2

 .

J1 is a Jacobian matrix representing genetically sensitive individuals and J2 is a matrix repre-

senting genetically resistant individuals. Since our model exhibit backward bifurcation we have

a unique positive endemic equilibria when R0 > 1. Positive endemic equilibria is based on the

nonnegativity of A∗s and A∗r as observed in the quadratic expressions (3.18) and (3.22). Our

3× 3 Jacobian matrices are

J1 =


− (βyA∗

s+bµ)

b
0 −βyS∗

sµ

b

(1−γs)βyA∗
sµ

b

−(βykA∗
sµ+b(αs+µ))

b

(1−γs)βyS∗
sµ+bds−βykL∗

sµ

b

γsβyA∗
sµ

b

[βykA∗
sµ+bαs]

b

(γsβyS∗
sµ+βykL

∗
sµ−b(ds+µ+µTB))

b

,
and

J2 =


− (βxA∗

r+bµ)
b

0 −βxS∗
rµ
b

(1−γr)βxA∗
rµ

b
−(βxpA∗

rµ+b(αr+µ))
b

[(1−γr)βxS∗
rµ+bdr−βxpL∗

rµ]
b

γrβxA∗
rµ

b
[βxpA∗

rµ+bαr]
b

(γrβxS∗
rµ+βxpL

∗
rµ−b(dr+µ+µTB))
b

.
The symmetry of our TB model allows us to consider any of the Jacobian matrices. Since we

cannot obtain closed form of the eigenvalues of J1 and J2 we apply Routh- Hurwitz criterion

to investigate local stability. The characteristic polynomial of J1 is given as:

P (λ) = λ3 + c1λ
2 + c2λ+ c3, (3.38)
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where

c1 =
1

b
[(βykA

∗
sµ+ b(αs + µ)) + (βyA

∗
s + bµ)− (γsβyS

∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))] ,

c2 =
1

b2
[(βykA

∗
sµ+ b(αs + µ))(βyA

∗
sµ+ bµ) + γsβ

2
yA
∗
sµ

2

− (βykA
∗
sµ+ bαs)((1− γs)βyS∗sµ+ bds − βykL∗sµ)

− (βykA
∗
sµ+ b(αs + µ))(γsβyS

∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))

− (γsβyS
∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))(βyA

∗
sµ+ bµ)],

c3 =
1

b3
(βykA

∗
sµ+ bαs)[(1− γs)β2

yA
∗
sS
∗
sµ

2 − (βyA
∗
sµ+ bµ)((1− γs)βyS∗sµ+ bds − βykL∗sµ)]

+
1

b3
(βykA

∗
sµ+ b(αs + µ))[γsβyS

∗
sµ+ (βykL

∗
sµ− b(ds + µ+ µTB))

− (γsβyS
∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))(βyA

∗
sµ+ bµ)].

c1 > 0⇐⇒ (γsβyS
∗
sµ+ βykL

∗
sµ < b(ds + µ+ µTB),

c3 > 0⇐⇒ (γsβyS
∗
sµ+ βykL

∗
sµ < b(ds + µ+ µTB),

(1− γs)β2
yA
∗
sS
∗
sµ

2 + (βyA
∗
sµ+ bµ)βykL

∗
sµ

(βyA∗sµ+ bµ)((1− γs)βyS∗sµ+ bds)
> 1.
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We now multiply c1 and c2 and express it in the form ~+ c3 > c3.

c1.c2 = ~+ c3 where

~ =
1

b3
(βykA

∗
sµ+ b(αs + µ))(βyA

∗
sµ+ bµ)[(βykA

∗
sµ+ b(αs + µ)) + (βyA

∗
sµ+ bµ)]

γsβ
2
yA
∗
sµ

2

b2
[(βyA

∗
sµ+ bµ)− (γsβyS

∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))]

− 1

b3
(βykA

∗
sµ+ b(αs + µ))(γsβyS

∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))[(βykA

∗
sµ+ b(αs + µ))

− (γsβyS
∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))]

− 1

b3
(γsβyS

∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))(βyA

∗
sµ+ bµ)[(βykA

∗
s + b(αs + µ))

− (γsβyS
∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))]

− 1

b3
(βyA

∗
sµ+ bµ)(γsβyS

∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))

× [(βyA
∗
sµ+ bµ) + (βykA

∗
sµ+ b(αs + µ))]

− 1

b3
(βyA

∗
sµ+ bµ)[(βykA

∗
sµ+ b(αs + µ))

× ((1− γs)βyS∗sµ+ bds − βykL∗sµ) + (1− γs)β2
yA
∗
sS
∗
sµ

2]

+ (γsβyS
∗
sµ+ βykL

∗
sµ− b(ds + µ+ µTB))[(βykA

∗
sµ+ bαs)((1− γs)βyS∗sµ+ bds − βykL∗sµ)].

Thus c1.c2 = ~+ c3 > c3 provided ~ > 0. Now, ~ > 0 provided the following conditions hold:

(i)
(γsβyS

∗
s + βykL

∗
s)

(ds + µ+ µTB)
< 1,

(ii)
(βykA

∗
sµ+ b(αs + µ))βykL

∗
sµ

(1− γs)β2
yA
∗
sS
∗
sµ+ (βykA∗sµ+ b(αs + µ))((1− γs)βyS∗s + bds)

> 1,

(iii)
(1− γs)βyS∗sµ+ bds

βykL∗sµ
< 1.

Thus the endemic equilibrium point in case (3.3.5) is locally stable when all the conditions

(i)-(iii) are satisfied. We observe that for conditions (i)-(iii) to hold, R0 > 1.
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3.4 Model incorporating heterogeneous transmission.

In this section we modify the model in Section 3 to include heterogeneous TB transmission.

By heterogeneous transmission we mean that TB infection is transmitted to individuals with

different genetic characteristics. We introduce contact rates βw and βz as the new transmission

parameters that represent interaction between genetically susceptible individuals and actively

infected individuals.

βw represent rate of TB transmission between genetically sensitive susceptible individuals and

genetically resistant active TB individuals while βz represent adequate transmission between

genetically resistant susceptible individuals and genetically sensitive TB active individuals.

Thus, the term
βwSsAr
N

= λwSs represent the force of infection as a result of interaction be-

tween genetically sensitive susceptible individuals in compartment Ss and genetically resistant

TB active individuals in compartment Ar. Similarly,
βzSrAs
N

= λzSr represents the force of

infection due to interaction between individuals in compartment Sr and individuals in com-

partment As. Individuals infected through the forces of infection λwSs and λzSr progress either

directly to active TB stage or indirectly through the latent TB stages in both genetically sen-

sitive and genetically resistant populations. The terms
(1− γs)βwSsAr

N
= (1− γs)λwSr and

(1− γr)βzSrAs
N

= (1− γr)λzSr represent progression to compartments Lr and Ls respectively,

due to heterogeneous transmission of TB. The terms
γrβwSsAr

N
and

γsβzSrSs
N

represent progres-

sion to the active TB compartments Ar and As respectively. We also assume that latent infected

individuals can be reinfected by both genetically resistant and genetically sensitive actively in-

fected individuals. Hence, we introduce the terms
kβwArLs

N
= λwkLs and

pβzAsLr
N

= λzpLr

in latently and actively infected compartments. We have
kβwArLs

N
representing exogenous re-

infection due to interaction between genetically resistant TB actively infected individuals and

genetically sensitive latently infected TB individuals and
pβzAsLr

N
representing exogenous re-

infection occurring due to interaction between genetically sensitive TB active individuals and

genetically resistant TB latently infected individuals. The new model framework is represented

in Figure 3.2. The new model with heterogeneous transmission is given by
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Ss Ls As

Sr Lr Ar

(1− γs)(βy + βw) αs

(1− γr)(βx + βz) αr

pβx

γs(βy + βw)

kβy

dr

ds

γr(βx + βz)

αr

µ µ

Untreated TB deaths

(µ+ µTB)

µ µ
(µ+ µTB)

b(1− τ)

bτ

βw

βz

Figure 3.2: Compartmental model of TB with heterogeneous transmission. The dotted lines

indicate interaction between individuals of the two sub populations.

dSs
dt

=b(1− τ)− (λs + λw)Ss − µSs, (3.39)

dLs
dt

=(1− γs)(λs + λw)Ss + dsAs − (λs + λw)kLs − (αs + µ)Ls, (3.40)

dAs
dt

=(λs + λw)γsSs + (λs + λw)kLs + αsLs − (ds + µ+ µTB)As, (3.41)

dSr
dt

=bτ − (λr + λz)Sr − µSr, (3.42)

dLr
dt

=(1− γr)(λr + λz)Sr + drAr − (λr + λz)pLr − (αr + µ)Lr, (3.43)

dAr
dt

=(λr + λz)γrSr + (λr + λz)pLr + αrLr − (dr + µ+ µTB)Ar (3.44)

where λs =
βyAs
N

, λr =
βxAr
N

, λw =
βwAr
N

and λz =
βzAs
N

.
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When there is no infection the disease free equilibrium of the heterogeneous model is given as

Ē =

(
b(1− τ)

µ
,
bτ

µ
, 0, 0, 0, 0

)
.

3.4.1 Invasion threshold of heterogeneous transmission model.

The method using the next generation matrix fails to compute the reproduction number and

thus we resort to the implicit method, a technique used where the next generation matrix fails

[28]. We do this by investigating properties of the constant term of the auxiliary polynomial

of the Jacobian matrix evaluated at disease free equilibrium point. This technique explores

the bifurcation conditions. From the homogeneous transmission we had at least one eigenvalue

equal to zero at the bifurcation point. The criteria that there exist one or more zero eigenvalue

at bifurcation point gives us insight on how to implicitly determine the basic reproduction

number from our model. For a general n × n matrix, we can obtain the auxiliary polynomial

as λn + a1λ
n−1 + · · ·+ an = 0. To have at least one eigenvalue equal to zero, the constant term

an should be equal to zero. Precisely an is the determinant of an n× n matrix. To apply this

technique to model (3.39)-(3.44) we obtain the auxiliary polynomial by setting det(D− λI) to

zero where D denotes the Jacobian matrix of the system of equations (3.39)-(3.44) evaluated

at the disease free equilibrium point. The det(D) = |D0| is obtained by considering the order

of the state variables in D as follows (Ss, Ls, As, Sr, Lr, Ar).

|D0| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 0 −βy(1− τ) 0 0 −βw(1− τ)

0 −D1 (1− γs)βy(1− τ) + ds 0 0 (1− γs)βw(1− τ)

0 αs γsβy(1− τ)−D2 0 0 γsβw(1− τ)

0 0 −βzτ −µ 0 −βxτ

0 0 (1− γr)βzτ 0 −D3 (1− γr)βxτ + dr

0 0 γrβzτ 0 αr γrβxτ −D4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

reduces to
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|D0| = (1− τ)βy[αs(1− γs) +D1γs][D3D4(1− ψ2)]

+ τβx[αr(1− γr) +D3γr][D1D2(1− ψ1)]

+ (1− τ)βw[αs(1− γs) +D1γs]τβz[αr(1− γr) +D3γr]

− (1− τ)βy[αs(1− γs) +D1γs]τβx[αr(1− γr) +D3γr]

− [D1D2(1− ψ1)][D3D4(1− ψ2)] = 0.

Equating the det(D) to zero and manipulating the expression results in

(1− τ)βy[αs(1− γs) +D1γs]

D1D2(1− ψ1)
+
τβx[αr(1− γr) +D3γr]

D3D4(1− ψ2)

+

(
(1− τ)βw[αs(1− γs) +D1γs]

D1D2(1− ψ1)

)(
τβz[αr(1− γr) +D3γr]

D3D4(1− ψ2)

)

−
(

(1− τ)βy[αs(1− γs) +D1γs]

D1D2(1− ψ1)

)(
τβx[αr(1− γr) +D3γr]

D3D4(1− ψ2)

)
− 1 = 0.

(3.45)

The expression (3.45) can be written as

R = Rs +Rr +RwRz −RsRr = 1,

where

Rs =
(1− τ)βy[αs(1− γs) +D1γs]

D1D2(1− ψ1)
, (3.46)

Rr =
τβx[αr(1− γr) +D3γr]

D3D4(1− ψ2)
, (3.47)

Rw =
(1− τ)βw[αs(1− γs) +D1γs]

D1D2(1− ψ1)
, (3.48)

Rz =
τβz[αr(1− γr) +D3γr]

D3D4(1− ψ2)
. (3.49)
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The expression Rs + Rr + RwRz − RsRr is equal to one at the bifurcation point. We thus

define R as the basic reproduction number of our heterogeneous transmission model. Rs and

Rr are the reproduction numbers for the genetically sensitive and genetically resistant sub

populations respectively through the homogeneous mode of transmission. Rw and Rz are the

basic reproduction numbers representing the heterogeneous mode of transmission between the

genetically sensitive and genetically resistant sub populations. The product RwRz define the

interaction between both sub populations (that is genetically sensitive and genetically resistant

individuals). We showed (see Appendix B) that the basic reproduction number for mixing

interaction of members of both sub populations is given by the geometric mean of their re-

spective R0. Basically Rht =
√
RwRz is the basic reproduction number of heterogeneous case

only. The implication of this expression is that individuals pass through two generations before

their present status of infection is established. We subtract the product of Rs and Rr to cancel

the effect of intersection between sub populations (homogeneous case) which have already been

represented in expressions for Rs and Rr.

3.4.2 Stability and characteristic equation of the non linear system.

From the analysis of jacobian matrix of our heterogeneous model evaluated at infection free

equilibrium we note that we cannot obtain a closed form of eigenvalues due to complexity of

the model. We thus explore the constant term of the auxiliary polynomial obtained from our

non linear system as described in [58].

Lemma 3.4.1. [58] Given an auxiliary equation λm + lm−1λ
m−1 + · · ·+ l1λ+ l0 = 0, where all

the coefficients are non negative. The following deductions based on the constant term can be

made:

(i) l0 = 0, the root or largest eigenvalue is zero.

(ii) l0 > 0, all eigenvalues are non positive.

(iii) l0 < 0, the biggest eigenvalue has a non negative real part.
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The Lemma 3.4.1 apparently suggests that we can determine the stability of our non linear

system by investigating the nature of eigenvalues based on the constant term of the auxiliary

equation. The jacobian matrix of infective compartments in the order (Ls, As, Lr, Ar) is given

as. 

−(αs + µ) (1− γs)βy(1− τ) + ds 0 (1− γs)βw(1− τ)

αs γsβy(1− τ)− (ds + µ+ µTB) 0 γsβw(1− τ)

0 (1− γr)βzτ −(αr + µ) (1− γr)βxv0 + dr

0 γrβzτ αr γrβxτ − (dr + µ+ µTB)


.

The auxiliary equation of the polynomial is given as,

λ4 + l3λ
3 + l2λ

2 + l1λ+ l0 = 0, (3.50)

where

l0 =Q1(1−R),

l1 =Q2Q3[1−Rs] +Q4Q5[1−Rr] + γrβxτQ3Rs

+ γsβy(1− τ)Q5Rr − γrβxτQ3(1 + pzRw)− γsβy(1− τ)Q5(1 + pwRz),

l2 =Q3[1−Rs] +Q5[1−Rr] +Q2Q4

[
1−

(
γsβy(1− τ)

Q2

+
γrβxτ

Q4

)]
,

l3 =(αs + µ) + (αr + µ)− (γsβy(1− τ)− (ds + µ+ µTB))− (γrβxτ − (dr + µ+ µTB)).

(3.51)
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Q1, Q2, Q3, Q4, Q5, p
z and pw are denoted by the following expressions.

Q1 =[(αs + ds)µ+ (αs + µ)µTB + µ2][(αr + dr)µ+ (αr + µ)µTB + µ2],

Q2 =[(αr + µ) + (dr + µ+ µTB)],

Q3 =[(αs + ds)µ+ (αs + µ)µTB + µ2],

Q4 =[(αs + µ) + (ds + µ+ µTB)],

Q5 =[(αr + dr)µ+ (αr + µ)µTB + µ2],

pz =
βz
βx
,

pw =
βw
βy
.

As a necessary condition for the lemma 3.4.1 all the coefficients should be positive. Thus,

l1 > 0,⇔ Q2Q3 +Q4Q5 + γrβxτQ3Rs + γsβy(1− τ)Q5Rr

Q2Q3Rs +Q4Q5Rr + γrβxτQ3(1 + pz)Rw + γsβy(1− τ)Q5(1 + pwRz)
> 1,

l2 > 0,⇔
(
γsβy(1− τ)

Q2

+
γrβxτ

Q4

)
< 1, (3.52)

l3 > 0,⇔ Rs1 =
γsβy(1− τ)

(ds + µ+ µTB)
< 1 and Rr1 =

γrβxτ

(dr + µ+ µTB)
< 1.

In all coefficients we have considered Rs, Rr, Rw and Rz to be less than one. Our goal was

to investigate the local stability of the disease free equilibrium point based on nature of the

constant term of the auxiliary equation. From the auxiliary polynomial we note that l0 > 0

when R < 1. Thus, we can summarize our analysis by the following deduction.

Lemma 3.4.2. If conditions (3.52) hold, then the disease free equilibrium point is locally asymp-

totically stable whenever R < 1.

3.5 TB therapy as intervention.

In Section 3.4 we formulated a model that considered heterogeneous mode of transmission.

We extend the model equations (3.39)-(3.44) by assuming that actively infected individuals in

each sub population receive TB therapy at rates ωi, i ∈ r, s. Treatment reduces the number
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of individuals with clinically active TB, whereby individuals partially recover and join latently

infected compartments. The parameter ωr denote the rate at which actively infected individuals

(Ar) receive TB therapy while ωs denote the rate at which actively infected individuals (As)

receive TB therapy. The inclusion of the treatment rate ωr on Ar will modify equation (3.44)

by an additional term −ωrAr and equation (3.43) by an additional term +ωrAr. Similarly, the

inclusion of the treatment rate ωs on As will modify equation (3.41) by an additional term

−ωsAs and equation (3.40) by an additional term +ωsAs. The new model framework where we

replace ds by ds + ωs and dr by dr + ωr is in Section 3.4.

The new invasion threshold that depends on TB therapy is given by

R(ωs, ωr) = Rx(ωr) +Ry(ωs) +Rw(ωs)Rz(ωr)−Rx(ωr)Ry(ωs)

where

Rx(ωr) =
βxτ(αr + µγr)

µ2 + µωr + µ(dr + αr) + µTB(µ+ αr)
,

Ry(ωs) =
βy(1− τ)(αs + µγs)

µ2 + µωs + µ(ds + αs) + µTB(µ+ αs)
,

Rw(ωs) =
βw(1− τ)(αs + µγs)

µ2 + µωs + µ(ds + αs) + µTB(µ+ αs)
,

Rz(ωr) =
βzτ(αr + µγr)

µ2 + µωr + µ(dr + αr) + µTB(µ+ αr)
.

We note that when τ = 0 we have Rx(ωr) = Rz(ωr) = 0. This implies that

R(ωs, ωr) = Ry(ωs)

which is the basic reproduction number for the population with genetically sensitive TB on TB

therapy. When τ = 1, we have Ry(ωs) = Rw(ωs) = 0 so that

R(ωs, ωr) = Rx(ωr)
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which is basic reproduction number for sub population with genetically resistant TB on TB

therapy.

We observe that

∂R(ωs, ωr)

∂ωs
=

−µRy(ωs)

µωs + µ2 + (ds + αs)µ+ (µ+ αs)µTB
− µRw(ωs)Rz(ωr)

µωs + µ2 + (ds + αs)µ+ (µ+ αs)µTB

+
µRx(ωr)Ry(ωs)

µωs + µ2 + (ds + αs)µ+ (µ+ αs)µTB
,

=−
(

Rw(ωs)Rz(ωr)

µωs + µ2 + (ds + αs)µ+ (µ+ αs)µTB

)
−
(

µRy(ωs)

µωs + µ2 + (ds + αs)µ+ (µ+ αs)µTB

)
(1−Rx(ωr)),

=− Λ0 − Λ1(1−Rx(ωr)),

where

Λ0 =

(
Rw(ωs)Rz(ωr)

µωs + µ2 + (ds + αs)µ+ (µ+ αs)µTB

)
,

Λ1 =

(
µRy(ωs)

µωs + µ2 + (ds + αs)µ+ (µ+ αs)µTB

)
.

Thus,
∂R(ωs, ωr)

∂ωs
< 0 ⇐⇒ Rx(ωr) ≤ 1.

∂R(ωs, ωr)

∂ωr
=−

(
µRw(ωs)Rz(ωr)

µωr + µ2 + (dr + αr)µ+ (µ+ αr)µTB

)
−
(

µRx(ωr)

µωr + µ2 + (dr + αr)µ+ (µ+ αr)µTB

)
(1−Ry(ωs)),

=− Λ2 − Λ3(1−Ry(ωs)).

where

Λ2 =

(
µRw(ωs)Rz(ωr)

µωr + µ2 + (dr + αr)µ+ (µ+ αr)µTB

)
,

Λ3 =

(
µRx(ωr)

µωr + µ2 + (dr + αr)µ+ (µ+ αr)µTB

)
.

Hence,
∂R(ωs, ωr)

∂ωr
< 0⇐⇒ Ry(ωs) ≤ 1.

The partial derivative
∂R(ωs, ωr)

∂ωs
suggest that for treatment of genetically sensitive infected in-

dividuals to reduce TB proliferation, TB therapy administered on genetically resistant infected
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individuals should be effective enough to reduce the basic reproduction number for genetically

resistant sub population to a value below one. Similarly, the partial derivative
∂R(ωs, ωr)

∂ωr
sug-

gest that for TB therapy on genetically resistant infected individuals to mitigate TB progression

treatment on genetically sensitive infected individuals should be also effective to maintain basic

reproduction number for genetically sensitive sub population to a value less than one.

3.6 Summary.

In this chapter we formulated three TB models. In the first model we assumed homogeneous

interaction amongst susceptible individuals. Our second model was an extension of the first

model such that individuals in each sub-population interacted with each other leading to het-

erogeneous transmission of TB. The third model was an extension of the second model where

we incorporated treatment among individuals with active TB. Using the dynamical system that

model change of status from one compartment to another we obtained a scenario when there

is no infection (disease free equilibrium) and a scenario when the infection persists within the

susceptible population (endemic equilibria). The simplicity nature of our first model permitted

us to investigate the local and global stability of the disease free equilibrium point (DFE). The

qualitative analysis of the DFE point showed that we can only have a locally stable disease

free equilibrium if the basic reproduction number is less than unity and the rate of primary

progression rate to duration infected individuals spend in each sub-population is less than unity.

Study done in [9] reached to a similar conclusion like ours regarding the local stability of the

disease free equilibrium point.

We constructed a Lyapunouv La-salle function to analyse the global stability of the disease

free equilibrium point and found that the disease free equilibrium point is globally unstable.

This was due to the presence of exogenous reinfection parameter. However, in absence of

exogenous reinfection the DFE point wound be globally stable. Hence, in a community ex-

ogenously reinfected with TB it is impossible to have a TB free community. Interestingly our
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Lypunouv La-salle function reached to a similar result as shown in [59] using Carlo-castillo

Charvez method to prove the global stability of the disease free equilibrium point of a model

that included exogenous reinfection. From the analysis of endemic equilibrium point of our first

model we analytically showed that the presence of exogenous reinfection induced backward bi-

furcation. Epidemiologically it is clearly understood that the classical necessary condition for

an epidemic to wane is that the basic reproduction number should be less than unity [47].

However, our model seem not to agree with such a notion since an endemic equilibria occur

even when the basic reproduction number is less than unity. Further, analysis of the endemic

equilibria showed that TB could only be eradicated if the basic reproduction number is reduced

below a certain critical threshold which we denoted us Rc. Models such as [9, 28, 29, 31] exhib-

ited backward bifurcation.

In our second model we found that it is impossible to compute the basic reproduction number

using the next generation matrix approach. We thus resorted to implicit method where we

explored the properties of the constant term of the characteristic polynomial of our dynamical

system evaluated at the disease free equilibrium point. We found that R0 = 1 is the bifurcation

point. For our third model that incorporated treatment we also found R0 using implicit method.

We finalised the chapter by showing that treatment can only have a significant impact within

the community if only treatment on both sub-populations is effective enough to mitigate basic

reproduction number to a value less than one.
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Chapter 4

Numerical simulations.

4.1 Introduction.

In this chapter we present numerical simulations to enhance the understanding of the predic-

tions of the analytical results since some of the parameter values are not known due to lack

of data or because it is difficult to measure and quantify the values. We shall obtain some

parameters from literature. Also, we shall estimate some of the parameters and perform some

uncertainty and sensitivity analysis. Thus, this chapter will contain sections on parameter

estimations, numerical simulations exhibiting various scenarios emanating from our analyti-

cal results and uncertainty and sensitivity analysis of the unknown parameters using the latin

hypercube sampling.

4.2 Parameter estimation.

Generally parameters such as fraction of individuals that directly progress to TB (γi i ∈ {r, s}),

reactivation rates (αi i ∈ {r, s}) and transmission rates (βj j = {x, y, z, w}) can not be precisely

approximated. For the purpose of simulation we obtain our initial conditions and parameters

from studies on TB dynamics and World Health Organization data released annually [28].
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We assume that αr ≤ αs, γr ≤ γs and βx ≤ βw ≤ βz ≤ βy. We adopt transmission rates

βj, j = {x, y, w, z} from the literature in [11, 60, 61] where the β′js are calculated within

a duration of one year that is the average number of secondary infection cases that a single

infected individual will produce within one year in a susceptible population. The parameters

γs, γr ∈ [0.05− 0.1] [62] vary due to environmental changes and severity of TB.

The exogenous reinfection parameters p, k satisfy the conditions p, k > 0 and can be varied

depending on how an individual’s immunity system is compromised [31]. The parameter τ

satisfy the condition 0 ≤ τ ≤ 1. We choose τ to be 0.7. Our initial conditions were entirely

based on India population where TB prevalence is relatively high. The initial conditions can

be adjusted depending on the case study. The parameter values used have baseline values in

Table 4.1.

4.3 Simulations.

We first perform sensitivity analysis for basic reproduction numbers Rs and Rr to establish

the effects that genetically susceptibility rate (τ) and infection rate βi i ∈ {r, s} have on the

progression of TB. We perform a similar analysis on the death rate due to TB and the infection

rate. We then establish the threshold values β∗y and β∗x of βy and βx respectively at R0 = 1.

The expressions for the thresholds are given by equation (4.1).

β∗y =
(µ+ µTB)αs + (ds + µTB)µ

(1− τ)(αs + µγs)
and β∗x =

(µ+ µTB)αr + (dr + µTB)µ

(τ)(αr + µγr)
(4.1)

Secondly, we shall investigate the effects of exogenous re-infection towards the progression

dynamics of TB. We do this by studying the changes in behaviour of the system as we vary

the exogenous re-infection rates. Lastly, we shall perform sensitivity analysis on some of the

unknown parameters to determine how each of them influences the output variables of the

model.

48



Table 4.1: Table of parameter values.

Variables brief description Values references

Ss genetically sensitive subpopulation 298 679 000 [63, 64] & calculated

Sr genetically resistant subpopulation 696 918 000 [63, 64] & calculated

Ls latently infected (sensitive) 147 552 000 [63, 64] & calculated

Lr latently infected (resistant) 344 288 000 [63, 64] & calculated

As infectious individuals (sensitive) 1 716 000 [63, 64] & calculated

Ar infectious individuals (resistant) 735 817 [63, 64] & calculated

Parameter brief description values references

µ natural death [0.0133− 0.04] yr−1 [61, 65]

µTB TB mortality rate 0.8 yr−1 [66]

γs direct progression (sensitive) [5− 10]% [61, 62]

γr direct progression (resistant) [10− 20]% approximated

αr reactivation rate (resistant) [0.00167− 0.0033] yr−1 [12, 67]

αs reactivation rate (sensitive) [0.0033− 0.0066] yr−1 approximated

p reinfection rate (resistant) [0,1] approximated

k reinfection rate (sensitive) [0,1] approximated

βx new infections (Sr
⊗

Ar) [3, 7] yr−1 [61, 68]

βy = ξβx new infections (Ss
⊗

As) [7, 11] yr−1 approximated

βw = ξwβx new infections (Ss
⊗

Ar) [5, 9] yr−1 approximated

βz = ξzβx new infections (Sr
⊗

As) [5, 9] yr−1 approximated

b birth rate 13241000 yr−1 calculated

τ proportion of genetically resistant 70% [43, 44, 69, 70]

dr natural cure rate (resistant) 0.086 yr−1 [11]

ds natural cure rate (sensitive) 0.021 yr−1 [11]⊗
denote interactions of individuals between respective compartments.

4.3.1 Simulations for sensitivity analysis of R0.

Computing β∗y and β∗x using parameters defined in the Table 4.1 we obtain β∗y = 6.85 and

β∗x = 3.5. From Figures 4.1(a) and 4.1(c), if βy < β∗y then the basic reproduction number Rs is
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less than one. Similarly, from figures 4.1(b) and 4.1(d) when βx < β∗x, the basic reproduction

number Rr is less than one. Thus for values of infection rate less than the infection thresholds

the epidemic is likely to die out.

(a) (b)

(c) (d)

Figure 4.1: Sensitivity analysis for basic reproduction numbers Rs and Rr for model with ho-

mogeneous mode of transmission illustrating (a) effect of (βy, µTB) on Rs, (b) effect of (βx, µTB)

on Rr, (c) effect of (βy, τ) on Rs and (c) effect of (βx, τ) on Rr.

Figure 4.1(a) shows that when death rate due to TB is low the basic reproduction number

increases linearly with the increase in the rate of infection in the case of genetically sensitive

individuals. When both infection rate βy and death due TB are low the basic reproduction

number is less than unity. For the case of low infection rate and high death rate due to TB

the basic reproduction number for genetically sensitive population remains below one. When
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both infection rate and death due to TB are high the basic reproduction number exceeds

one. Thus we can argue that the scenarios when we have high infection rate and low death

and high infection rate and high death rate are likely to trigger a TB endemic in the population.

For the case of genetically resistant individuals Figure 4.1(b), the basic reproduction number

Rr increases exponentially when the death due to TB is low and the infection rate is high.

When both infection rate βx and death due to TB µTB are low the basic reproduction number

is less than one. At low values of µTB and high infection rate βx, the basic reproduction number

is greater than one. When infection rate βx and death due to TB µTB are both high the basic

reproduction number Rr exceeds one. Finally low infection rate and high death due to TB

would imply that the basic reproduction number is less than unity. Thus, the case when we

have low µTB and high infection rate and the case when we have high infection rate βx and

high death rate due to TB µTB are the one likely to promote TB progression in the community.

The results from Figures 4.1(a) and 4.1(b) seem to suggest that in a genetically susceptible

population TB is more devastating in a huge population compared to a smaller population as

indicated by the exponential growth of R0 in the genetically resistant population compared to

the genetically sensitive population. This suggests that when there is no intervention, low death

rate due to TB implies that infected individuals stay longer as active TB and consequently more

susceptible are at higher risk of getting infected. Hence the value of R0 increases. In Figure

4.1(c) when the infection rate βy and proportion that is genetically susceptible τ are low the

basic reproduction number is below one. When infection rate is high and the proportion of

genetic susceptibility τ is low, the basic reproduction number is above one. If both βy and τ are

high then basic reproduction number exceeds one. When the infection rate βy is low and τ is

high the basic reproduction number is less than one. Figure 4.1(d) shows that the reproduction

number can only be above unity when both the infection rate βx and proportion of genetic

susceptibility τ are high.

Our results suggest that the infection rates are the key drivers of the increase in the basic
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reproduction number compared to the rate at which individuals die due to TB infection and

the rate for genetic susceptibility. However, with high infection rates, the increase in deaths due

to TB reduces the reproduction numbers even though the reproduction number is maintained

above unity.

4.3.2 Effects of exogenous reinfection on sub populations.

In this section we investigate the effects of exogenous re-infection on the progression of TB.

We consider the case where exogenous reinfection parameters p and k are assumed to be zero.

Figure 4.2 shows that the absence of exogenous reinfection does not cause oscillations in the

(a) (b)

(c) (d)

Figure 4.2: Dynamics of genetically sensitive ((a) and (b)) and genetically resistant ((c) and

(d)) populations in the absence of exogenous reinfection. i.e, k = p = 0.
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system variables. Thus the system variables approach their endemic states steadily. Figure 4.3

shows the effects of introducing and increasing exogenous reinfection.

The results in Figures 4.3(a) and 4.3(b) shows that an increase in exogenous reinfection de-

creases both genetically sensitive and genetically resistant susceptible sub-populations. The

increase is associated with increase in the actively infected populations (Figures 4.3(c) and

4.3(d)) and a slight increase in the latently infected populations (Figures 4.3(e) and 4.3(f)). An

increase in the actively infected populations may imply that the actively infected population

increases interaction with susceptibles and pose a high risk of increased population with TB

infection.

Using the parameters defined in the Table 4.1 we compute the reinfection thresholds p0 and

k0 as derived in Chapter 3, Section 3.3.4. k0 = 0.2491 and p0 = 0.1259. We investigate TB

dynamics based on the following hypothetical scenarios:

(i) p < p0, k > k0.

(ii) p > p0, k < k0.

(iii) p < p0, k > k0.

(iv) p = p0, k = k0.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Dynamics of genetically sensitive population ((a), (c), (e)) and genetically resistant

population ((b), (d) (f)) in the presence of exogenous reinfection.
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(a) (b)

(c) (d)

Figure 4.4: Plots of sub populations representing condition (i) where p = 0.09 and k = 0.65.

Figure 4.4 shows the scenario in hypothesis (i). Figures 4.4(a) and 4.4(b) representing genet-

ically sensitive sub population exhibit damped oscillations before stabilizing at endemic equi-

librium points. However, the genetically resistant sub population as shown in Figures 4.4(c)

and 4.4(d) does not exhibit oscillations. The results suggest that increasing the exogenous

reinfection above the threshold k0 induces some oscillations in state variables. Figures 4.5(a),

4.5(b), 4.5(c) and 4.5(d) do not exhibit oscillations despite p being greater than the reinfection

threshold. Thus comparing results for conditions (i) and (ii) we observe that reinfection oc-

curring among genetically sensitive sub population may be more devastating than exogenous

reinfection occurring among genetically resistant sub population.
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(a) (b)

(c) (d)

Figure 4.5: Plots of sub populations representing condition (ii) for k = 0.20 and p = 0.18.

Figure 4.6 which represent condition (iii) where both exogenous reinfections rates are above

the exogenous reinfection thresholds. We observe that there are sustained damped oscillations

in both sub populations.

Figure 4.7 shows that there are no oscillations in both sub populations. Our results from these

four conditions have reaffirmed that exogenous reinfection thresholds exist as ascertained by

Gomez et al [37]. In addition, there are limits at which the effects of exogenous reinfection

above which it contributes significantly towards TB proliferation. In fact when the exogenous

reinfection thresholds are exceeded the dynamics of the model are governed by backward bifur-

cation as demonstrated in our model analysis. Thus the delay caused by exogenous reinfection

does destabilize the typical TB endemic in a TB genetically susceptible population. Biologi-
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(a) (b)

(c) (d)

Figure 4.6: Plots of sub populations representing condition (iii) for p = 0.18 and k = 0.985.

cally, rapid oscillations have implications on the timing of intervention strategies when TB is

endemic in that resources may be allocated before there is a surge of TB leading to under plan-

ning and under budgeting. Thus, appropriate intervention timing is important in controlling

TB epidemic when exogenous reinfection is present in a genetically susceptible population.

4.3.3 Bifurcations.

Our TB model revealed the possibility of coexistence of the disease free equilibrium and the

endemic equilibrium points. In this section we explore all types of bifurcation likely to be
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(a) (b)

(c) (d)

Figure 4.7: Plots of sub populations representing condition (iv) where p = p0 = 0.1259

and k = k0 = 0.2491.

exhibited by our TB model due to change in exogenous reinfection. We will consider two sce-

narios, i.e when the level of exogenous reinfection is below exogenous reinfection thresholds and

when the level of exogenous reinfection is above the reinfection threshold. Using the quadratic

expressions (3.18) and (3.22) we plot the steady states of actively infected individuals against

the varying basic reproduction numbers for fixed values of exogenous reinfection. Depending

on the level of exogenous reinfection our model exhibits the following types of bifurcation.

(i) Transcritical bifurcation.
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Figures 4.8(e) and 4.8(f) show the presence of transcritical bifurcation at R0 = 1. For

values of exogenous reinfection below exogenous reinfection thresholds (p ≤ p0 and k ≤ k0)

our model has two equilibrium points; the disease free equilibrium point when R0 ≤ 1.

When R0 > 1 Figures 4.8(e) and 4.8(f) show that we have two steady states; one which

correspond to unstable disease free equilibrium point and the other corresponding to a

TB endemic scenario.

(ii) Backward bifurcation.

When the level of exogenous reinfection is above exogenous reinfection thresholds our

model exhibit backward bifurcation as illustrated by Figures 4.8(a) and 4.8(b). When

Rc < R0 < 1 our model exhibit three equilibrium points, namely we have a disease free

equilibrium point and two endemic equilibrium points. Furthermore, fixing the exogenous

reinfection values we obtained the critical points Rsc and Rcr of basic reproduction number

Rs and Rr respectively. These critical points act as limit point of our basic reproduction

number, since below these critical points we have only a stable disease free equilibrium

point [29]. Hence, TB can only be eliminated when R0 < Rc. Figures 4.8(c) and 4.8(d)

show that backward bifurcation increases with an increase in the level of exogenous rein-

fection.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: The onset of both transcritical and backward bifurcation. SEE denote the stable

endemic equilibria and UEE is the unstable endemic equilibria. Rcs is the critical value of the

basic reproduction number Rs and Rcr is the critical value of the basic reproduction number

Rr.
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4.4 Uncertainty and sensitivity analysis using latin hy-

percube sampling technique.

The behaviour of models incorporating high degree of heterogeneity needs to be analysed using

numerical methods. The method of uncertainty and sensitivity analysis are important tools

that aid in understanding the complexity of models that are characterized with a high degree of

uncertainty in approximating the parameter values [71]. Since the values of many parameters

used in deterministic models are unknown, their impact in disease transmission can not be

underestimated [26, 71]. Uncertainty analysis is mainly used to assess the variability in the

outcome variable that occur as a result of uncertainty in estimating the values of the input pa-

rameters [72]. Sensitivity analysis can be used together with uncertainty analysis in recognising

the input parameters that are vital in contributing to the prediction of the outcome variable.

Thus, sensitivity analysis examines how altering the input parameters affect the value of the

outcome variable [72]. A dominant parameter has a partial rank correlation coefficient (PRCC)

close to one or negative one while parameters with least influence on variable output have rank

coefficients close to zero.

The Latin Hypercube Sampling (LHS) is one of the techniques used in exploring the intricate

behaviour of mathematical models. The LHS is a stratified Monte Carlo sampling [71, 73]

where the uncertainty of every input parameter is considered as a random variable and a prob-

ability distribution function is assigned for each parameter. The use of each parameter at a

time makes LHS an extremely efficient sampling design. The LHS technique is relevant to our

model due to the reasons that: (i) there exists uncertainty in some of the parameters used in

the model. (ii) the outcome variables might be non linear functions of the input parameters

and (iii) there is a need to analyse the entire parameter space. The qualitative relationship

that exist between the input parameter and the output variable is indicated by the sign of the

PRCCs [71]. Further the PRCCs can be used to show the degree of monotonicity that occur

between the input variable and a specific outcome variable [71, 72].
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Table 4.2: Table of range of parameters used in the sensitivity and uncertainty analysis.

Parameter min. value max. value parameter min. value max. value

βy 3 5 αs 0.001 0.005

βx 1 3 p 0.01 0.18

βz 2 4 k 0.01 0.25

βw 2 4 dr 0.01 0.1

τ 0.1 0.8 ds 0.01 0.05

γr 0.001 0.0044 µ 0.0129 0.04

γs 0.05 0.25 µTB 0.25 0.95

αr 0.001 0.0044 ωr = ωs 0.3576 3.576

Remark 4.4.1. The LHS method was used in a case study conducted in [57] to investigate

the parameters that contributed in high proportion of multidrug-resistant TB in Papua New

Guinea. The sensitivity and uncertainty analysis showed that the rate of progression from

dormant TB to clinically active TB was the most influential parameter.

We carry out uncertainty and sensitivity analysis on the heterogeneous transmission TB model

using LHS to investigate the effects that the parameters have on the output variables for TB

infection. Our sensitivity and uncertainty analysis will involve the following parameters: βy,

βx, βz, βw, αr, αs, γs, γr, dr, ds, τ , µ, µTB, p, k, ωr and ωs. In our sensitivity analysis

we are interested in those parameters that are often unknown but affect TB progression. We

shall also limit our analysis to the four infected classes of our model namely: Ls, Lr, As and

Ar. We run our model 1000 times using varied parameter values as defined in each parameter

space. The range of values of our parameters are included in the Table 4.2. We concentrate on

interpreting our sensitivity analysis results based on day 20 and day 180 since the incubation

period of TB is about two to twelve weeks.

In Figure 4.9(a) the transmission rates βy, βx, βw, and βz, fraction that directly progress to
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(a) (b)

(c) (d)

Figure 4.9: Sensitivity and uncertainty results representing heterogeneous model of TB trans-

mission without treatment.
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clinically active TB γr, γs, the level of exogenous reinfection p and reactivation rates αr, αs

are positively correlated. However, the reactivation rate αr is strongly positively correlated

to variable As. The results suggests that the increase in these parameters may significantly

increase the number of clinically active TB cases. On the other hand the proportion that is

genetically susceptible τ , regression rates ds, dr and mortality rates µ, µTB are negatively corre-

lated implying that a slight increase of these parameters decrease the genetically sensitive TB

active individuals. The parameters τ, µ, µTB are strongly negatively correlated. Intervention

strategies should aim at controlling transmission rates, exogenous reinfection and reactivation

parameters so as to reduce TB burden in a genetically susceptible population.

In Figure 4.9(b) the transmission parameters βy, βx, βw and βz, proportion that is genetically

resistant τ , fraction that directly progress to active TB γs and exogenous reinfection parameters

p, k are positively correlated to variable Ar. The reactivation parameter αr is strongly posi-

tively correlated to variable Ar. The parameters dr, ds, γr, µ and µTB are negatively correlated

to variable Ar. µ and µTB are strongly negatively correlated.

In Figure 4.9(c) the parameters βy, βx, βw, βz, αr, αs, p, k, γs, γr and µ are negatively cor-

related to variable Ls. Thus a slight increase in these parameters will further reduce the latent

population. However this will have a negative impact on the general population since more

active TB cases will result. Hence, intervention strategies should concentrate on reducing the

value of these parameters to mitigate TB progression from dormant state to infectious stage.

dr, ds and µTB are strongly positively correlated.

In Figure 4.9(d) the parameters βx, βy, βw, βz, γr, γs, αr, αs, p, k and µ are negatively

correlated while τ, dr, ds and µTB are positively correlated to variable Lr. The parameter τ

is strongly positively correlated implying that a slight increase in the parameter significantly

influence the outcome of latently infected cases.
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4.4.1 Effects of treatment on TB.

To investigate the effects of treatment on the progression of TB we assume that only individuals

with clinically active TB are treated, which is a scenario likely to be found in most developing

countries where medical technology is not advanced to diagnose latent state of TB. We also

assume that both genetically sensitive and genetically resistant individuals are treated at the

same rate, i.e ωr = ωs. From our model with treatment the fraction of infectious individuals

receiving TB therapy can be given as Yω =
ωi

di + ωi + µ+ µTB
where i ∈ {r, s}. This fraction

lies between 0 and 100%. For low treatment levels we consider treatment to be within (30% ≤

Yω ≤ 50%) while for high treatment level the fraction lies within (50% ≤ Yω ≤ 80%) [28] .

Using parameter values as defined in the Table 4.1 to compute treatment levels when fraction

of treated individuals lies within these two ranges we obtain 0.3576 ≤ ωs = ωr ≤ 0.8344 and

0.8344 ≤ ωs = ωr ≤ 3.5970 as ranges representing low and high therapeutic levels respectively.

To perform our sensitivity analysis on our model with treatment we establish the following

treatment strategies.

(i) Low treatment level.

(ii) High treatment level.

We investigate the effect of treatment on populations based on day 180 since TB treatment

usually takes six to twelve months [28]. Figure 4.10(a) represent a scenario where TB treatment

is administered at low level. We observe that the parameters βy, βx, βw, βz, γr, γs, αr, αs, p and

k are positively correlated to variable As. βw and αr are strongly positively correlated imply-

ing that a slight increase in heterogeneous transmission of TB and reactivation rate are likely

to trigger a TB epidemic in a genetically sensitive sub population. τ, dr, ds, µ, µTB, ωr and ωs

are negatively correlated to variable As. The parameters τ, µ and µTB are strongly negatively

correlated to variable As.

In Figure 4.10(b) we observe that the parameters βy, βx, βz, βw, τ, γr, γs, αr, αs, p, k, and

ωr are positively correlated while parameters dr, ds, µ, µTB and ωs are negatively correlated

65



(a) (b)

Figure 4.10: Sensitivity and uncertainty results for actively infected individuals at low treatment

level.

to variable Ar. The parameters βx, βw, τ and αr are strongly positively correlated to variable

Ar indicating that a slight increase in these parameters will result to an increase in clinically

active TB cases. µ, µTB and ωs are strongly negatively correlated to Ar. We observe that the

parameter ωr representing treatment on genetically resistant sub population is initially nega-

tively correlated as depicted on day 20. However, in the long-term the effect of the treatment

on the infected population is reversed as evidenced by a positive PRCC on day 180. This may

suggest that the population of individuals being treated is very small in comparison to the total

population that is suffering from TB. Moreover, it may be due to appearance of drug-resistant

strains of M. tuberculosis and non compliance of infected individuals to treatment directives

[28]. Hence, TB will continue to invade the population irrespective of presence of treatment.

We now consider a scenario where treatment is administered at high levels. We take the levels

of treatment to be within the range 0.8344 ≤ ωr = ωs ≤ 3.5. The sensitivity and uncertainty

analysis depicting this scenario is illustrated in Figure 4.11. In Figure 4.11(a) the parameters
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βy, βx, βz, βw, γr, γs, αr, αs, p and k are positively correlated to variable As. βw and αr are

strongly positively correlated. An increase in infection rate βw and reactivation rate αr are

likely to cause a TB epidemic in the genetically sensitive sub population. On the other hand

the parameters τ, µ, µTB, ωr and ωs are negatively correlated. τ, µ and ωr are strongly negatively

correlated. Further, the LHS sensitivity and uncertainty results show that the parameters βy,

βx, βw, τ, αr, αs, dr, µ, ωr and ωs are the significant parameters. Thus a slight alteration

of the parameters will greatly influence the outcome of genetically sensitive individuals with

active TB. In this scenario it is apparent that treatment of genetically sensitive individuals

with active TB reduces TB burden in the population. Also in this scenario we observe that

although exogenous reinfection contribute in increasing number of individuals with active TB,

in presence of treatment it is not significant.

(a) (b)

Figure 4.11: Sensitivity and uncertainty results for high treatment levels.

In Figure 4.11(b) the parameters βy, βx, βz, βw, τ, γr, γs, αr, αs, p and k are positively correlated

while dr, ds, µ, µTB, ωr, and ωs are negatively correlated to variable Ar. Amongst these βx,

βw, τ, γs, αr, αs, µ, µTB, ωr and ωs are the most significant parameters as evidenced by LHS

sensitivity and uncertainty analysis. A slight change in these parameters will significantly affect
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the output of variable Ar. Also we observe that treating genetically resistant individuals with

active TB reduces TB burden in the population as evidenced by a negative PRCC.
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Chapter 5

Discussion.

In our model we investigated the effect of exogenous reinfection with TB in a genetically sus-

ceptible population. We computed the fundamental threshold that governs the severity of an

epidemic and found that the exogenous reinfection parameters do not appear in our basic re-

production number. Thus, the basic reproduction number obtained when the population is

exogenously reinfected with TB is not a better predictor of the course likely to be taken by

TB epidemic. The classical measure of persistence of an epidemic in the susceptible popula-

tion is the basic reproduction number. When R0 ≤ 1 the epidemic ceases while R0 > 1 the

infection becomes endemic. For our case we have a scenario where infection persists irrespec-

tive of R0 being less than unity. Thus controlling TB in a genetically susceptible population

in the presence of exogenous reinfection will not be successful by only forcing R0 to a value

less than one. Other factors such as critical value of basic reproduction number, reinfection

threshold and backward bifurcation thresholds have to be considered in order to eradicate TB.

In fact our mathematical and numerical results suggested that TB can be eliminated when

the basic reproduction value is decreased to a value less than Rc i.e R0 < Rc < 1. The grad-

ual transition from transcritical bifurcation to backward bifurcation has vital implications in

governing the behaviour of our dynamical system. We do not expect backward bifurcation to

occur when exogenous reinfection is less than reinfection threshold. Interestingly, backward

bifurcation occur at different values of exogenous reinfection between the two sub-populations.
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As suggested by Singer and Kirshner [29] most of the exogenous reinfection values at which

backward bifurcation occur are unrealistic and may not be expected in a real epidemic. There

is a direct relationship between backward bifurcation and exogenous reinfection. An increases

in the level of exogenous reinfection increases backward bifurcation. This scenario show that

at high levels of exogenous reinfection TB will continue to invade the susceptible population

despite the success of controlling strategies in maintaining basic reproduction number below

one. Epidemiologically the knowledge of backward bifurcation may enable public health and

policy makers to devise effective treatment strategies.

The appearance of damped oscillations as exhibited by our numerical simulation reaffirmed

that exogenous reinfection does destabilize the typical TB endemic. Introduction of interven-

tion when TB has not stabilized will not significantly reduce TB progression. Hence, its crucial

for people involved in implementing controlling strategies to understand the qualitative dynam-

ics of TB in a community that has exogenous reinfection with TB. From the sensitivity analysis

for basic reproduction number Rs and Rr we observed that the scenarios when we have high

infection rate and low death rate µTB and high infection rate and the case when we have both

infection rate and death due to TB high, are the one likely to cause a TB endemic. However,

TB endemic occurring when we have high infection rate and low death rate is more devastating

than when we have high infection rate and high death rate. This is due to the fact that infected

individuals stay longer in the susceptible population thus infecting more people.

The partial derivatives of the basic reproduction number for heterogeneous transmission model

with treatment showed that TB treatment could only reduce TB proliferation if the treatment

administered in either genetically sensitive or genetically resistant sub populations is effective

enough to reduce the basic reproduction number to a value below one. Thus, treating either

genetically sensitive or genetically resistant sub population will not eradicate TB. Epidemio-

logically, this observation is vital in public heath sectors targeting to combat TB in any given

locality, for the sole purpose of overcoming TB progression in that prior visualization of the

treatment level likely to reduce TB is important so as to optimize the resources allocated in

70



controlling strategies.

We investigated the heterogeneous model using Latin Hypercube Sampling by first considering

heterogeneous mode of transmission without treatment and later in presence of intervention.

From our TB model without treatment, sensitivity and uncertainty analysis results showed

that contact rates and reactivation rates greatly influence the outcome of clinically active TB

individuals. Thus controlling measures should aim at controlling these parameters in order to

mitigate TB progression in the affected population. In our model with treatment we found that

low level treatment of genetically resistant individuals may not suppress TB progression in a

population. However, the same strategy has better results on genetically sensitive individuals

on reduction of the TB burden as evidenced by a negative partial rank correlation coefficient.

At high level of TB therapy sensitivity and uncertainty analysis results showed that treatment

reduces number of clinically active cases in both genetically sensitive and genetically resistant

sub populations. Despite the availability of TB antibiotics and chemoprophylaxis that can

eliminate or reduce TB to zero levels, TB has remained a global threat due to ineffective treat-

ment strategies [28]. Theoretically there exist TB treatment levels that can be administered

to a given population to eradicate TB. However, these levels are too high to be achieved by

many developing countries. For instance, we observed that if 80% of the population that is

genetically susceptible is treated then TB is likely to reduce to zero levels. This percentage is

too high to be achieved in most developing countries.

Future work may focus on implementing optimal treatment control strategies where both la-

tently and actively infected individuals are treated. Further, factors such as adherence to

drug prescriptions, resistance to treatment and effect of nutrition on TB progression should be

investigated within the scope of genetic susceptibility.
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Appendix A: Derivation of Π1 and Π2.

From the quadratic expression (3.18) we have

X1 =kµβ2
y(µ+ µTB),

X2 =βy

bkµ(µ+ µTB) +
bkµ2(1− τ)βyγs

αs
+ b [µ2 + (µ+ µTB)αs + (ds + µTB)µ]︸ ︷︷ ︸

a

(
1− kµRs

αs

) ,
X3 =b2 [µ2 + (µ+ µTB)αs + (ds + µTB)µ]︸ ︷︷ ︸

b

[1−Rs].

letting

(αs + µ)(ds + µ+ µTB) =αsds + αsµ+ αsµTB + µds + µ2 + µµTB

=µ2 + (µ+ µTB)αs + (ds + µTB)µ+ αsds. (1)

Subtracting αsds from the equation (1) we have expressions (a) and (b) represented as

(αs + µ)(ds + µ+ µTB)− αsds = µ2 + (µ+ µTB)αs + (ds + µTB)µ

We have Ws =
αs

ds + µ+ µTB
and Xs =

αs
αs + µ

which implies that

1

Ws

=
ds + µ+ µTB

αs
,

1

Xs

=
αs + µ

αs
.

Thus

µ2 + (µ+ µTB)αs + (ds + µTB)µ =(αs + µ)(ds + µ+ µTB)− αsds,

=(αs + µ)(ds + µ+ µTB)(
α2
s

α2
s

)− αsds,

=α2
s

(
αs + µ

αs

)(
ds + µ+ µTB

αs

)
− αsds,

=
α2
s

XsWs

− αsds,

=αsds

(
α2
s

αsdsXsWs

− 1

)
,

=αsds

(
αs

dsXsWs

− 1

)
.
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Now in X2 and X3 we replace µ2 + (µ+ µTB)αs + (ds + µTB)µ with αsds

(
αs

dsXsWs

− 1

)
.

Hence,

X1 =kµβ2
y(µ+ µTB),

X2 =βy

[
bkµ(µ+ µTB) +

b(1− τ)kµ2βyγs
αs

+ bαsds

(
αs

dsXsWs

− 1

)
(1− ϕ1Rs)

]
,

X3 =b2αsds

(
αs

dsXsWs

− 1

)
.

We follow a similar procedure to obtain

Π2 = bαrdr

(
αr

drXrWr

− 1

)
.

Appendix B: Basic reproduction number for heteroge-

neous mode of transmission only.

We apply van den Driessche approach as described in 3.3 to determine basic reproduction

number for heterogeneous mode of transmission. Thus

F(x) =



(1−γs)βwArSs

N

βwArγsSs

N

(1−γr)βzAsSr

N

βzAsγrSr

N



V(x) =


βwArkLs

N
+ (αs + µ)Ls − dsAs

(ds + µ+ µTB)As − αsLs − βwArkLs

N

βzAspLr

N
+ (αr + µ)Lr − drAr

(dr + µ+ µTB)Ar − αrLr − βzAspLr

N

 .
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The partial derivatives of V(x) and F(x) evaluated at disease free equilibrium point Ē are given

as

F =
∂F(Ē)

∂xi
=


0 0 0 (1− γs)βw(1− τ)

0 0 0 βwγs(1− τ)

0(1− γr)βzτ 0 0

0 βzγrτ 0 0

 ,

V =
∂V (Ē)

∂xj
=


(αs + µ) −ds 0 0

−αs (ds + µ+ µTB) 0 0

0 0 (αs + µ) −dr
0 0 −αr dr + µ+ µTB

 .

The inverse of V is given as

V −1 =


ds+µ+µTB

ς1
ds
ς1

0 0

αs

ς1

µ+αs

ς1
0 0

0 0 dr+µ+µTB

ς2
dr
ς2

0 0 αr

ς2

αr+µ
ς2


where ς1 = µ2 + (αs + ds)µ+ (αs + µ)µTB, ς2 = µ2 + (αr + dr)µ+ (αr + µ)µTB.

The next generation matrix FV −1 is given as

FV −1 =


0 0 −(1−τ)(1−γs)αrβw

ς1

−(1−τ)(1−γs)(µ+αr)βw
ς1

0 0 (1−τ)αrγsβw
ς1

(1−τ)(µ+αr)βwγs
ς1

(1−γr)ταrβz
ς2

(1−γr)τ(µ+αs)βz
ς2

0 0

ταsβzγr
ς2

τγr(µ+αs)βz
ς2

0 0
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The eigenvalues of FV −1 are given as

λ1 =0,

λ2 =0,

λ3 =−

√(
βw(1− τ)(αs + µγs)

(αs + ds)µ+ (αs + µ)µ+ µ2

)(
βzτ(αr + µγr)

(αr + dr)µ+ (αr + µ)µTB + µ2

)
,

=−
√
RwRz,

λ4 =

√(
βw(1− τ)(αs + µγs)

(αs + ds)µ+ (αs + µ)µ+ µ2

)(
βzτ(αr + µγr)

(αr + dr)µ+ (αr + µ)µTB + µ2

)
,

=
√
RwRz.

The dominant eigenvalue is our basic reproduction number. Thus

Rht =
√
RwRz

is the basic reproduction number for heterogeneous mode of transmission only.

Glossary

Bacillus- Refer to any of a group of rod-shaped, gram-positive, aerobic or anaerobic bacteria

widely found in soil and water.

Tubercle bacillus - Refer to a rod-shaped aerobic bacterium (Mycobacterium tuberculosis)

that causes tuberculosis.

HLA−DR2- Is a serological designation for HLA DR alleles that code for α and β chains of

MHC class II molecules.

IFN− γR - The interferon-gamma receptor (IFN-γR) is a receptor which binds interferon-γ,

the sole member of interferon type II.
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