HUMAN

LYMPHOCYTE

 ANTIGENS
HUMAN LYMPHOCYTE ANTIGENS

MICHAEL GRAHAM HAMMOND B.Sc(SA) Ph.D(Natal)

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Science
in the
Department of Biological Sciences
Faculty of Science

University of Natal

PREFACE

This thesis embodies much of my work done over the past 25 years. The impetus for these studies was the need to provide the best tissue typing available for organ transplantation and to overcome the problems of defining HLA antigens in different ethnic groups. These goals were achieved by extensive international collaboration and participation in the International Histocompatibility Workshops.

The discovery that the HLA antigens are associated with many diseases led to an epidemic of investigations in which over 500 diseases have been studied. In retrospect, it is not surprising that auto-immune diseases such as diabetes and rheumatoid arthritis showed such marked associations with HLA antigens. The studies in Part II of this thesis were aimed at finding out if the HLA associations reported in Caucasian populations were also present in the Black and Indian populations.

These research interests led to my being invited by the National Science Council of the Republic of China in Taiwan to be a Visiting Professor at the National Taiwan University in Taipei for the 1989 academic year. I investigated the association between HLA and naso-pharyngeal carcinoma in Chinese during that year.

I wish to express my appreciation to Dr Peter Brain who inspired the early investigations and continued to encourage and support my research. I am grateful to all my co-authors and the many colleagues, clinicians and laboratory staff who have contributed to the various research programmes.

Studies of the relationship of the HLA system to cancer, diabetes, arthritis and other diseases have been supported in part by grants from the National Cancer Association and the Medical Research Council of South Africa.

CONTENTS

Preface iv
Publications vi
Part I
THE DEFINITION OF HLA ANTIGENS
Chapter 1 Introduction 2
Chapter 2 Serology 4
Chapter 3 DNA 229
Part II
HLA AND DISEASE
Chapter 1 Introduction 244
Chapter 2 Cancer 245
Chapter 3 Diabetes mellitus 312
Chapter 4 Rheumatoid arthritis 369
Chapter 5 Foeto-maternal 392
Chapter 6 Others 417

BIBLIOGRAPHY

1. Brain P and Hammond MG. Leucocyte antigens in three race groups. Med Proc 14: 589, 1968
2. Hammond MG and Brain P. Leucocyte groups in baboons tested with human antisera. S Afr Med J 44: 380, 1970
3. Hammond MG and Brain P. Reactions of HLA antisera in three populations. Vox Sang 20: 492, 1971
4. Brain P and Hammond MG. Frequency of HLA antigens in South African Bantu, Indians and Caucasians. In: Dausset J, Colombani J (eds) Histocompatibility Testing 1972 p433. Munksgaard, Copenhagen. 1972
5. Hammond MG, Appadoo B and Brain P. HLA antigens and antibodies in South African Bantu. Transplantation 14: 159, 1972
6. Downing HJ, Brain P, Hammond MG, Vos GH and Webb GR. Leucocyte antigens of baboons. Transplant Proc 4: 33, 1972
7. Vos GH, Hammond MG, Vos D, Grobbelaar BG, Auslander HP, and Marescotti G. An evaluation of humoral antibody responses in patients with carcinoma of the cervix. J Obs Gyn 79: 1040, 1972
8. Hammond MG, Appadoo B and Brain P. HLA antigens and antibodies in South African Indians. Tissue Antigens 2: 389, 1972
9. Brain P and Hammond MG. Association between histocompatibility type and the ability to make Rh antibodies. Eur J Imm 4, 223. 1974

10 Hammond MG, Appadoo B and Brain P. Subdivision of HLA 5 and comparative studies of the HLA polymorphism in South African Indians. Tissue Antigens 4, 42. 1974

11 Vos GH, Hammond MG and Marescotti G. Changeable lymphocytotoxic antibody activity in patients with cervical carcinoma. Vox Sang 28: 285, 1975

12 Hammond MG, Appadoo B and Brain P. HLA antigens in Bantu and Indians. In: Kissmeyer-Nielsen F (ed) Histocompatibility Testing 1975 p173 Munksgaard, Copenhagen. 1975

Hammond MG, Appadoo B and Brain P. HLA and cancer in South African Negroes. Tissue Antigens 9: 1, 1977

Hammond MG, Appadoo B and Brain P. HLA antigens in South African Negroes and Indians. Tissue Antigens 10: 230, 1977

Hammond MG, Appadoo B and Brain P. HLA in non-Caucasian populations. In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p407. Munksgaard, Copenhagen. 1977

Schreuder I, Bos A and Hammond MG. HLA-Bw40 is heterogeneous In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p408. Munksgaard, Copenhagen. 1977

7 Biegel A, Botha MC, Bouysou C, Briggs B, Hasty B, Herbert S, Pollack M, Wolf E, Duquesnoy R and Hammond MG. Joint Report. The "Black" antigens : Aw36, Aw34, Aw43 and Bw42. In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p164. Munksgaard, Copenhagen. 1977

Amos DB, Engelfriet P, Hammond MG, Mazzilli C, Payne R, Richiardi P and Ting A. Joint Report. B5, Bw51, Bw52, Bw53, Bw35. In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p166. Munksgaard, Copenhagen. 1977

Downing HJ, Criticos A, Burgess LE and Hammond MG. An antigen resembling HLA 7 on the leucocytes of vervet monkeys. J Med Primat 7: 174, 1978

20 Hammond MG, Appadoo B and Brain P. HLA and cancer in South African Indians. Tissue Antigens 14: 296, 1979

21 Hammond MG. Further splits of HLA B5. In: Terasaki PI (ed) Histocompatibility Testing 1980 p758. UCLA Tissue Typing Laboratory, Los Angeles. 1980

2 Hammond MG and Appadoo B. Confirmation of ST-1 in Asian Indians. In: Terasaki PI (ed) Histocompatibility Testing 1980 p844. UCLA Tissue Typing Laboratory, Los Angeles. 1980

23 Hammond MG. Heterogeneity of HLA B40. In: Terasaki PI (ed) Histocompatibility Testing 1980 p782. UCLA Tissue Typing Laboratory, Los Angeles. 1980

Hammond MG and Asmal AC. HLA and insulin dependent diabetes in South African Indians. Tissue Antigens 15: 244, 1980

Hammond MG and Lamm L. A/C crossover in a South African Indian family. In: Terasaki PI (ed) Histocompatibility Testing 1980 p794. UCLA Tissue Typing Laboratory, Los Angeles. 1980

6 Hammond MG. Antigen Report. HLA Bw53. In: Terasaki PI (ed) Histocompatibility Testing 1980 p429. UCLA Tissue Typing Laboratory, Los Angeles. 1980

Svejgaard A, Platz P, Ryder LP, Bertrams J, Bodmer JG, Brautbar C, Acton RT, Bartova A, Bashir H, Ceppelini R, de Mouzon A, Guttman RD, Hammond MG, Hansen JA, Juji T, Kastelan A, Kreisler JM, Moller E, Mayr WR, Raffoux C, Rubinstein P, Saito S, Sucia-Foca N, Tiilikainen A, Tsuji K and Arnaiz-Villena A. Joint Report: Insulindependent Diabetes In: Terasaki PI (ed) Histocompatibility Testing 1980 p638. UCLA Tissue Typing Laboratory, Los Angeles. 1980

Stastny P, Barger BD, Batchelor JR, Bertrams J, Betuel H, Botha MC, Braun WE, Carpenter CB, Darke C, Dawkins RL, Engelfriet CP, Fauchet R, Festenstein H, Gazit E, Gorodezky C, Hammond MG, Hansem JA, Juji T, Mayr WR, Mayer S, McConnachie PR, Oh JH, Perez-Rojans GE, Petranyi GG, Radvany R, Rodey GE, Sasazuki T, Sucia-Foca N, Walford R and Winchester RJ. Joint Report: Rheumatoid Arthritis. In: Terasaki PI (ed) Histocompatibility Testing 1980 p681. UCLA Tissue Typing Laboratory, Los Angeles. 1980

Hammond MG and Moshal MG. HLA and duodenal ulcer in South African Indians. Tissue Antigens 15, 508. 1980

Hammond MG and Asmal AC. HLA and insulin dependent diabetes in South African Negroes. Diabetologia 19, 101. 1980

Hammond MG and Angorn B. HLA and cancer of the oesophagus in South African Negroes. Tissue Antigens 16, 254. 1980

Coovadia HM, Wesley A, Hammond MG and Kiepiela P. Measles, Histocompatibility leukocyte antigen polymorphism, and natural selection in humans. J. Inf. Dis. 144, 142. 1981

Hammond MG. HLA and cancer of the oesophagus. In: Pfeiffer CJ (ed) Cancer of the Oesophagus Vol 1, Chapter 11. C R C Press. Boca Raton, Florida. 1982

Haffajee IE, Hammond MG and Moosa A. HLA antigens in black South African children with rheumatic heart disease. Ann. Trop. Paed. 2,17. 1982

35 Hammond MG. Antigen Report. HLA Bw35. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p112. Immunopublishing, Toorak, Australia, 1983

36 Hammond MG. Antigen Report. HLA Bw53. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p65. Immunopublishing, Toorak, Australia, 1983

37 Hammond MG. Antigen Report. HLA Cw4. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p138. Immunopublishing, Toorak, Australia, 1983

38 Hammond MG. Subdivision of HLA B15 in Indians. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p413. Immunopublishing, Toorak, Australia, 1983

39 Hammond MG. Anomalous reactions with Bw4 sera in Indian families. In: Simons MJ, Tait Bd (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p411. Immunopublishing, Toorak, Australia, 1983

40 Bashir H, Juji T, Moffitt P, Amos DB, Kostyu D, Chen RB, Chiewsilp P, Fong R, Hammond MG, Hirota M, Sasazuki T, Vaidya M, Mehra N, Woodfield G, Ye YG, Kirk R, Dawkins RL and Elliott RG. Diabetes Mellitus In: Simons MJ, Tait Bd (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p332. Immunopublishing, Toorak, Australia, 1983

41 Christiansen FT, Komori K, Dawkins RL, Mehra M, Bashir H, Sekiguchi S, Saito H, Mehra M, Hammond MG, Chandanayingyong D, and Chan SH. Rheumatoid Arthritis In: Simons MJ, Tait Bd (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p348. Immunopublishing, Toorak, Australia, 1983

42 Hammond MG, Betuel H and Gebuhrer L. Antigen Report. HLA A29. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p126. Springer-Verlag, Berlin 1984

Campbell EM, du Toit ED, Hammond MG and Oudshoorn M. Antigen Report. Aw43. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p132. Springer-Verlag, Berlin 1984

47 Hammond MG. Definition of Bw53 in South African Indians. Ninth International Histocompatibility Workshop Newsletter VI p6 1984

48 Appadoo B and Hammond MG. Splits of DR4 in South African Indians. Ninth International Histocompatibility Workshop Newsletter VI p15 1984

49 Hammond MG. The HLA A10 and Aw19 complex in South
African Indians and Negroes. Ninth International Histocompatibility
Hammond MG. The HLA A10 and Aw19 complex in South
African Indians and Negroes. Ninth International Histocompatibility Workshop Newsletter VII p6 1984

50 Hammond MG. HLA B15 complex in South African Indians. Ninth International Histocompatibility Workshop Newsletter VIII p4 1984

51 Hammond MG. Short Bw41. Ninth International Histocompatibility Workshop Newsletter VIII p9 1984

Omar MAK, Hammond MG and Asmal AC. HLA A, B, C and DR antigens in young South African Blacks with Type I (insulin-dependent) diabetes mellitus. Diabetologia 26, 20-23. 1984

Omar MAK, Hammond MG, Rajput MC and Asmal AC. HLA A, B, C and DR antigens in young South African Indians with insulin-dependent diabetes mellitus. S. Afr. Med. J. 66, 765-767. 1984
Taylor C, Ting A, Hammond MG, de Waal L, de Lange GG and Engelfriet P. Antigen Report. Bw53. In: Albert Ed et al. (eds) Histocompatibility Testing 1984 p161. Springer-Verlag, Berlin 1984

Chandanayingyong D, Cambon-Thomsen A and Hammond MG. Bw62 and other B15 variants - Bw6 associated. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p169. Springer-Verlag, Berlin 1984

Cambon-Thomsen A, Chandanayingyong D, Thomsen M and Hammond MG. Bw63 and other Bw4 associated variants. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p171. Springer-Verlag, Berlin 1984

Omar MAK, Hammond MG, Seedat MA and Asmal AC. HLA antigens and non-insulin dependent diabetes mellitus in young South African Indians. S. Afr. Med. J. 67, 130. 1985

Adhikari M, Coovadia HM and Hammond MG. Associations between HLA antigens and nephrotic syndrome in African and Indian children in South Africa. Nephron 41, 289. 1985

56 Norman RJ, Reddi K, Richards A, Hammond MG and Joubert SM. Male transmission of the gene for isolated gonadtropin releasing hormone deficiency. Fert. and Steril 43, 225. 1985

57 Omar MAK and Hammond MG. The HLA system and diabetes mellitus. Editorial S. Afr. Med. J. 68, 333. 1985

58 Mauff G, Hitzeroth H, Hammond MG and Kleeberg HH. Immunogenetic aspects of TB and leprosy. S. Afr. J. Science 82, 3921986

59 Naidoo C, Jialal I, Hammond MG, Omar MAK and Joubert SM. HLA and NIDDM in the Young. Diabetes Care 9, 436. 1986

60 Hammond MG. Antigen Report HLA A3. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p27 Hokkaido University Press, Sapporo 1986

61 Hammond MG. Antigen Report HLA A11. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p29 Hokkaido University Press, Sapporo 1986

62 Mehra NK, Taneja V, Kailash S, Chaudhuri TK, Vaidya MC, Balakrishnan K, Contractor N, Seth GS, Hammond MG, Undevia JV and Khan R. North Indians - Ethnic Study In: Aizawa M (ed) HLA in Asia-Oceania 1986 p271. Hokkaido University Press, Sapporo 1986

63 Hammond MG and Appadoo B. HLA antigens in African Blacks. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p316 Hokkaido University Press, Sapporo 1986

64 Naito S, Kong FH, Hawkins BR, Mehra NK, Serjeantson SW and Hammond MG. Joint Report: HLA and Disease: SLE. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p364 Hokkaido University Press, Sapporo 1986

65 Hawkins BR, Chan SH, Charoenwongse P, Guo SS, Hammond MG, Pei J, Sun YP, Tian D, Ye GY and Yi YN. Thyroid disease Joint Report. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p369 Hokkaido University Press, Sapporo 1986

Albert ED, Chandanayingyong D, Thompson JS, Zhao T, Hammond MG, Naito S and Sierp GM. Antigen Society \#9 Report (Bw46 and the subgroups of B15) In: Dupont B (ed).Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p153-195.

71 Sekiguchi S, Neumeyer N, Kashiwagi N, Tsuji K, Kobayashi K, Konoeda Y, Ohkubo M, Atoh M, Tokunaga K, Yagita A, Inoko H, Fong R, Mervart H, Paik Y, Reekers P, Hammond MG, du Toit ED and Call E. Antigen Society \#12 Report (Bw54, Bw55, Bw56 and Bw42) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p199-201.

72 Arnaz-Villena A, Belvedere M, Decary F, Fotino M, Heise E, Hogan V, Martinetti M, Muller C, Richiardi P, Vicario J, Barbanti M, Bruyere J, Caruso C, Conighi C, Gelsthorpe K, Hammond MG, Lopez-Larrea C, Mervart H, Peruccio D, Regueiro JR and Schreuder I. Antigen Society \#15 Report (Bw4 and Bw6) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p214-216.

73 Conighi C, Contu L, Grappa MT, du Toit ED, Hammond MG, Lulli P, Mayr WR, Menicucci A, Mervart H and Pupura M. Antigen Society \#18 Report (Cw4 and Cw6) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p222-235.

74 Stastny P, Layrisse Z, Singal DP, Svejgaard A, van den Berg-Loonen E, Dohi K, Caraballo L, Chiewsilp P, Colombe B, Fauchet R, Haas E, Hammond MG, Jakobsen BK, Knight S, Lee J, Mervart H, Schreuder GMT and Sullivan K. Antigen Society \#24 Report (DRw11, DRw12, DRw8) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: SpringerVerlag, 1989. p249-251.

Cambon-Thomsen A, Calot M, Sommer E, Ohayon E, Goeken N, Kaplan C, Mattiuz PL, Menicucci A, Cross R, Tait B, Buc M, Jeannet M, Irle C, Mayer S, Tongio MM, Contu L, Purpura M, Nikaen A, Mervart H, Sullivan K, Schweizer R, Hansen JA, du Toit ED and Hammond MG. Antigen Society \#26 Report (DR3, DR7, DQw2): Part 1 In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p255-258.

76 Gazit E, Fauchet R, Jones M, van Leeuwen A, Longo A, Mahoney R, Navarrete C, Richiardi P, Tongio MM, Altshuler R, Bouhallier O, Balboni S, Belvedere M, Cappelacci S, Crepaldi T, Ferrara GB, Hammond MG, Lulli P, Martinetti M, Savi M, D'Amaro J, Yunis EJ and van Rood JJ. Antigen Society \#31 Report Part 2: Antigen Society \#31 Report. In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: SpringerVerlag, 1989. p281-282.

77 Paulsen G, Markussen G, Acton RT, Tiercy JM, Hammond MG and Fauchet R. RFLP Standardization Report for DR Beta/Hind III: In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p598-600.

78 Paulsen G, Markussen G, Barger BO, Fauchet R, Hammond MG and Tiercy JM. RFLP Standardization Report for DP Beta/HindIII In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p662-663.

Mody GM, Hammond MG and Naidoo PD. HLA associations with rheumatoid arthritis in African blacks. J Rheum 16:10 13261989

80 Omar MAK, Hammond MG, Desai RK, Motala AA, Abboo N and Seedat MA. HLA Class I and II antigens in South African blacks with Graves' disease. Clin Imm Immunopath 54;98 1990

81 Maharaj B and Hammond MG. HLA-A, B, DR and DQ Antigens in Black patients with idiopathic dilated cardiomyopathy. Amer J Cardiology 65; 1402. 1990

82 Johnson N, Moodley J and Hammond MG. HLA Status of the Fetus Born to African Women with Eclampsia. Clin and Exper Hyper in Pregnancy B9 (3): 311. 1990

83 Hammond MG, Hsu M-M, Ko J-Y, Hsieh R-P, Yang C-S. Preliminary results of HLA Class I and Class II antigens in Chinese with nasopharyngeal carcinoma. In: Ablashi DV et al (eds) Epstein-Barr Virus and Human Diseases, p407. Humana Press, Clifton, New Jersey. 1991.

84 O'Farrell N and Hammond MG. HLA antigens in Donovanosis (Granuloma Inguinale). Genitourin Med; 67:400-402 1991

85 Bhigjee AI, Hammond MG, Bill PLA and Windsor IM. HLA Profile and HTLV-I Associated Myelopathy (HAM/TSP) in Natal, South Africa. J Neurology, Neurosurgery and Psychiatry; 55:329-330 1992

86 Hammond MG, Tokunaga K, Fotino M, Grunnet N, Graugaard B and Vives J. Antigen Society \#112 Report. In: Tsuji K (ed) HLA 1991 Oxford University Press, Oxford (in press)

87 Hammond MG, Marcelli A and Poirier JC. Complement polymorphism in African Blacks. In: Tsuji K (ed) HLA 1991. Oxford University Press, Oxford (in press)

88 Hammond MG, du Toit ED, Sachs JA, Kaplan C and Mbayo K. HLA in Southern African Black Populations. In: Tsuji K (ed) HLA 1991 Oxford University Press, Oxford (in press)

89 Bodmer JG, Tonks S, Oza AM, Mikata A, Takenouchi T, Lister TA and collaborating centres. 11th International Histocompatibility Workshop Hodgkin's Disease Study. In: Tsuji K (ed) HLA 1991 Oxford University Press, Oxford (in press)

90 Hammond MG. HLA and mate selection. (submitted to Human Immunology)

91 Hammond MG. Paternity calculations in court. (submitted to Forensic Science International).

92 van Wyk CW, Hammond MG. HLA associations in oral submucous fibrosis caused by chewing betel nuts (in preparation)

I am a member of the international Transplantation Society; a founder member of the South African Transplantation Society and of the South African Immunology Society. I am also a member of the South African Society of Human Genetics.

Part I

THE DEFINITION OF HLA ANTIGENS

Chapter Introduction 2
Chapter 2 Serology 4
Chapter 3 DNA 229

Introduction

Human lymphocyte antigens (HLA) occur on lymphocytes and all other nucleated cells. They were catapulted into importance when their function as histocompatibility antigens made them an essential part of transplantation programmes.

The definition of the antigens, in all their complexities of 'splits' and crossreactions was facilitated by International Histocompatibility Workshops. The study of HLA antigens in different race groups emphasised the complexities of this system and revealed the difficulties in defining the antigens in different races.

The HLA system is one of the most complex antigenic systems known in man. There are at least 15 loci determining histocompatibility antigens and they are sufficiently close to exhibit linkage, ie they segregate together. The products of the A, B and C loci are glycoprotein components of the plasma membrane of nucleated cells and are referred to as Class I antigens while the Class II genes control the expression of DR, DQ and DP antigens which have a restricted distribution, notably on B lymphocytes. The number of clearly defined antigens has increased dramatically as a result of a series of International Histocompatibility Workshops and the fact that nearly all the genes have now been sequenced. There are now 82 Class I antigens and 33 Class II antigens that can be serologically defined. However, 153 Class II alleles have been defined by DNA sequencing and this has proved a useful tool in establishing defined serological reactions for use in tissue typing for transplantation.

The frequency of these antigens varies in different races and antigens which are rare or of low frequency in Caucasians are often more common in other races. Linkage disequilibrium is the tendency for some alleles at different loci to occur together more often than would be expected from the frequencies of the individual alleles concerned. In different populations, linkage disequilibrium produces different haplotypes; these haplotypes are frequently characteristic of population groups.

The first HLA antigen was described by Dausset in 1958 and was called 'Mac'. In 1959 van Rood et al. described leucocyte antigens 2 and 3. Rapid progress followed the observation that leucocyte antibodies are present in the sera of about 10% of parous women.

Tremendous progress was made as a result of a series of International Histocompatibility Workshops. In 1964, the first International Histocompatibility Workshop was held to compare various tissue typing methods. The second Workshop in 1965 showed that different laboratories, using different techniques, could detect the same specificities. The third Workshop studied families and showed the inheritance patterns. The locus was named HLA. A standardised technique - the microlymphocytotoxicity test of Terasaki - was introduced for the fourth Workshop in 1970. The use of micro quantities of serum made it possible for many laboratories to participate by sending small amounts of sera through the mail.

Anthropology was the focus of the fifth Workshop in 1972 and our early work on the distribution of HLA antigens in three race groups led to an invitation from the organiser of the Workshop, Jean Dausset, to present our results. Only 29 laboratories in the world participated in testing 49 different ethnic populations. I have since participated in all the International Histocompatibility Workshops and our studies have been accepted in the series "Histocompatibility Testing" which is published after each Workshop. The C locus was clearly identified during the sixth Workshop (1975) and the seventh Workshop concentrated on the definition of the DR antigens by typing B lymphocytes in 1977. The eighth Workshop (1980) was able to define 78 specificities and in 1984 the ninth Workshop explored the DQ and DP loci. Molecular biology was introduced at the Tenth Workshop (1987). By this time 157 laboratories were involved with the serological aspects but we were one of only 80 laboratories world-wide that performed Southern blots on DNA extracted from lymphocytes in one of the earliest attempts to define the genes responsible for the Class II determinants. The Eleventh International Histocompatibility Workshop introduced a refinement of the earlier methods of studying the DNA of HLA genes by using the polymerase chain reaction (PCR) to amplify specific alleles and detecting slight variations with sequence specific oligonucleotide probes (SSO's) by means of "dot-blots".

In addition to the International Histocompatibilty Workshops, I participated in the Asia-Oceania Histocompatibility Workshops which are organised on a regional basis and involve most of the HLA laboratories bordering the Pacific ocean. I participated in the Second and Third Asia-Oceania Histocompatibility Workshops and I am now a Councillor for this series of Histocompatibility Workshops.

The forty nine papers dealing with the definition of HLA antigens in the different races from 1968 to the present form Part I of this thesis.

SEROLOGY OF HLA

p10 Brain P and Hammond MG. Leucocyte antigens in three race groups. Med Proc 14: 589, 1968
p14 Hammond MG and Brain P. Reactions of HLA antisera in three populations. Vox Sang 20: 492, 1971
p22 Hammond MG, Appadoo B and Brain P. HLA antigens and antibodies in South African Bantu. Transplantation 14: 159, 1972
p29 Hammond MG, Appadoo B and Brain P. HLA antigens and antibodies in South African Indians. Tissue Antigens 2: 389, 1972
p37 Hammond MG, Appadoo B and Brain P. Subdivision of HLA 5 and comparative studies of the HLA polymorphism in South African Indians. Tissue Antigens 4, 42. 1974
p45 Hammond MG, Appadoo B and Brain P. HLA antigens in South African Negroes and Indians. Tissue Antigens 10: 230, 1977
p46 Hammond MG and Brain P. Leucocyte groups in baboons tested with human antisera. S Afr Med J 44: 380, 1970
p49 Downing HJ, Brain P, Hammond MG, Vos GH and Webb GR. Leucocyte antigens of baboons. Transplant Proc 4: 33, 1972
p53 Downing HJ, Criticos A, Burgess LE and Hammond MG. An antigen resembling HLA 7 on the leucocytes of vervet monkeys. J Med Primat 7: 174, 1978

HISTOCOMPATIBILITY TESTING 1972

p62 Brain P and Hammond MG. Frequency of HLA antigens in South African Bantu, Indians and Caucasians. In: Dausset J, Colombani J (eds) Histocompatibility Testing 1972 p433. Munksgaard, Copenhagen. 1972

HISTOCOMPATIBILITY TESTING 1975

p70 Hammond MG, Appadoo B and Brain P. HLA antigens in Bantu and Indians. In: Kissmeyer-Nielsen F (ed) Histocompatibility Testing 1975 p173 Munksgaard, Copenhagen. 1975

HISTOCOMPATIBILITY TESTING 1977

p77 Hammond MG, Appadoo B and Brain P. HLA in non-Caucasian populations. In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p407. Munksgaard, Copenhagen. 1977
p78 Schreuder I, Bos A and Hammond MG. HLA-Bw40 is heterogeneous In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p408. Munksgaard, Copenhagen. 1977
p80 Biegel A, Botha MC, Bouysou C, Briggs B, Hasty B, Herbert S, Pollack M, Wolf E, Duquesnoy R and Hammond MG. Joint Report. The "Black" antigens : Aw36, Aw34, Aw43 and Bw42. In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p164. Munksgaard, Copenhagen. 1977
p82 Amos DB, Engelfriet P, Hammond MG, Mazzilli C, Payne R, Richiardi P and Ting A. Joint Report. B5, Bw51, Bw52, Bw53, Bw35. In: Bodmer W F et al.(eds) Histocompatibility Testing 1977 p166. Munksgaard, Copenhagen. 1977

HISTOCOMPATIBILITY TESTING 1980

p88 Hammond MG. Further splits of HLA B5. In: Terasaki PI (ed) Histocompatibility Testing 1980 p758. UCLA Tissue Typing Laboratory, Los Angeles. 1980
p90 Hammond MG and Appadoo B. Confirmation of ST-1 in Asian Indians. In: Terasaki PI (ed) Histocompatibility Testing 1980 p844. UCLA Tissue Typing Laboratory, Los Angeles. 1980
p91 Hammond MG. Heterogeneity of HLA B40. In: Terasaki PI (ed) Histocompatibility Testing 1980 p782. UCLA Tissue Typing Laboratory, Los Angeles. 1980
p93 Hammond MG and Lamm L. A/C crossover in a South African Indian family. In: Terasaki PI (ed) Histocompatibility Testing 1980 p794. UCLA Tissue Typing Laboratory, Los Angeles. 1980
p94 Hammond MG. Antigen Report. HLA Bw53. In: Terasaki PI (ed) Histocompatibility Testing 1980 p429. UCLA Tissue Typing Laboratory, Los Angeles. 1980

SECOND ASIA-OCEANIA HISTOCOMPATIBLLITY WORKSHOP

p99 Hammond MG. Antigen Report. HLA Bw35. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p112. 1983
p102 Hammond MG. Antigen Report. HLA Bw53. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p65. 1983
p103 Hammond MG. Antigen Report. HLA Cw4. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p138. 1983
p104 Hammond MG. Subdivision of HLA B15 in Indians. In: Simons MJ, Tait BD (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p413. 1983
p107 Hammond MG. Anomalous reactions with Bw4 sera in Indian families. In: Simons MJ, Tait Bd (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p411. 1983

HISTOCOMPATIBILITY TESTING 1984
p110 Hammond MG, Betuel H and Gebuhrer L. Antigen Report. HLA A29. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p126. Springer-Verlag, Berlin 1984
p111 Campbell EM, du Toit ED, Hammond MG and Oudshoorn M. Antigen Report. Aw43. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p132. Springer-Verlag, Berlin 1984
p113 Taylor C, Ting A, Hammond MG, de Waal L, de Lange GG and Engelfriet P. Antigen Report. Bw53. In: Albert Ed et al. (eds) Histocompatibility Testing 1984 p161. Springer-Verlag, Berlin 1984
p114 Chandanayingyong D, Cambon-Thomsen A and Hammond MG. Bw62 and other B15 variants - Bw6 associated. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p169. Springer-Verlag, Berlin 1984
p116 Cambon-Thomsen A, Chandanayingyong D, Thomsen M and Hammond MG. Bw63 and other Bw4 associated variants. In: Albert ED et al. (eds) Histocompatibility Testing 1984 p171. Springer-Verlag, Berlin 1984
p118 Hammond MG. Definition of Bw53 in South African Indians. Ninth International Histocompatibility Workshop Newsletter VI p6 1984
p119 Appadoo B and Hammond MG. Splits of DR4 in South African Indians. Ninth International Histocompatibility Workshop Newsletter VI p15 1984
p121 Hammond MG. The HLA A10 and Aw19 complex in South African Indians and Negroes. Ninth International Histocompatibility Workshop Newsletter VII p6 1984
p123 Hammond MG. HLA B15 complex in South African Indians. Ninth International Histocompatibility Workshop Newsletter VIII p4 1984
p126 Hammond MG. Short Bw41. Ninth International Histocompatibility Workshop Newsletter VIII p9 1984

THIRD ASIA-OCEANIA HISTOCOMPATIBILITY WORKSHOP
p128 Hammond MG. Antigen Report HLA A3. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p27 Hokkaido University Press, Sapporo 1986
p130 Hammond MG. Antigen Report HLA A11. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p29 Hokkaido University Press, Sapporo 1986
p132 Mehra NK, Taneja V, Kailash S, Chaudhuri TK, Vaidya MC, Balakrishnan K, Contractor N, Seth GS, Hammond MG, Undevia JV and Khan R. North Indians - Ethnic Study In: Aizawa M (ed) HLA in Asia-Oceania 1986 p271. Hokkaido University Press, Sapporo 1986
p138 Hammond MG and Appadoo B. HLA antigens in African Blacks. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p316 Hokkaido University Press, Sapporo 1986

HISTOCOMPATIBILITY TESTING 1987

p143 Albert ED, Chandanayingyong D, Thompson JS, Zhao T, Hammond MG, Naito S and Sierp GM. Antigen Society \#9 Report (Bw46 and the subgroups of B15) In: Dupont B (ed).Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: SpringerVerlag, 1989. p153-195.
p186 Sekiguchi S, Neumeyer N, Kashiwagi N, Tsuji K, Kobayashi K, Konoeda Y, Ohkubo M, Atoh M, Tokunaga K, Yagita A, Inoko H, Fong R, Mervart H, Paik Y, Reekers P, Hammond MG, du Toit ED and Call E. Antigen Society \#12 Report (Bw54, Bw55, Bw56 and Bw42) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p199-201.
p190 Arnaz-Villena A, Belvedere M, Decary F, Fotino M, Heise E, Hogan V, Martinetti M, Muller C, Richiardi P, Vicario JL, Barbanti M, Bruyere J, Caruso C, Conighi C, Gelsthorpe K, Hammond MG, Lopez-Larrea C, Mervart H, Peruccio D, Regueiro JR and Schreuder I. Antigen Society \#15 Report (Bw4 and Bw6) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p214-216.
p194 Conighi C, Contu L, Grappa MT, du Toit ED, Hammond MG, Lulli P, Mayr WR, Menicucci A, Mervart H and Pupura M. Antigen Society \#18 Report (Cw4 and Cw6) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p222-235.
p208 Stastny P, Layrisse Z, Singal DP, Svejgaard A, van den Berg-Loonen E, Dohi K, Caraballo L, Chiewsilp P, Colombe B, Fauchet R, Haas E, Hammond MG, Jakobsen BK, Knight S, Lee J, Mervart H, Schreuder GMT and Sullivan K. Antigen Society \#24 Report (DRw11, DRw12, DRw8) In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: SpringerVerlag, 1989. p249-251.
p211 Cambon-Thomsen A, Calot M, Sommer E, Ohayon E, Goeken N, Kaplan C, Mattiuz PL, Menicucci A, Cross R, Tait B, Buc M, Jeannet M, Irle C, Mayer S, Tongio MM, Contu L, Purpura M, Nikaen A, Mervart H, Sullivan K, Schweizer R, Hansen JA, du Toit ED and Hammond MG. Antigen Society \#26 Report (DR3, DR7, DQw2): Part 1 In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p255-258.
p215 Gazit E, Fauchet R, Jones M, van Leeuwen A, Longo A, Mahoney R, Navarrete C, Richiardi P, Tongio MM, Altshuler R, Bouhallier O, Balboni S, Belvedere M, Cappelacci S, Crepaldi T, Ferrara GB, Hammond MG, Lulli P, Martinetti M, Savi M, D'Amaro J, Yunis EJ and van Rood JJ. Antigen Society \#31 Report Part 2: Antigen Society \#31 Report. In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: SpringerVerlag, 1989. p281-282.

HISTOCOMPATIBILITY TESTING 1991

p219 Hammond MG, Tokunaga K, Fotino M, Grunnet N, Graugaard B and Vives J. Antigen Society \#112 Report. In: Tsuji K (ed) HLA 1991 Oxford University Press, Oxford (in press)
p223 Hammond MG, du Toit ED, Sachs JA, Kaplan C and Mbayo K. HLA in Southern African Black Populations. In: Tsuji K (ed) HLA 1991 Oxford University Press, Oxford (in press)
p226 Hammond MG, Marcelli A and Poirier JC. Complement polymorphism in African Blacks. In: Tsuji K (ed) HLA 1991 Oxford University Press, Oxford (in press)

LEUCOCYTE Λ NTIGENS IN THREE RACE GROUPS

Peter Brain, M.D.
and
M. Hammond

The Natal Institute of Immunology, Durban*

The antigens of leucocytes are important in transplantation, and there is already some evidence ${ }^{1-3}$ that their incidence, like that of the red cell antigens, varies from one race to another. In this country tissue typing may have to be done on donors and recipients of at least 3 diffcrent races. It is therefore necessary to know something of the distribution of these antigens in the main population groups. This paper reports a preliminary study in which a number of antisera were characterized and tested against the white cells of 3 groups of donors, viz. White (European), Bantu and Indian.

Material and Methods

The EDTA agglutination test of van Rood et al.4 was used with certain modifications. Red cells were sedimented with 3% gelatin in normal saline. Only one drop of antiserum was used for each test; the quantities of the other reagents were correspondingl: reduced. All tests were read by the same wotker. Nor seral were aborbed.

Scra lown preguant women were screened daily against the white cells of 4 bload donors, and larger samples obtained from some of the women found to have antibodies. From these samples 39 of the most avid sera were selected. Nothing was known in advance of their specificity; 19 were from Colnured (mixed Banru-White), 14 from White, 4 from lolian and 2 from Bantu donors. Reference sera obtained through the collaborative programme of the Transplantation Immunology Branch, National Institutes of Health, Bethesda, Md., were run in parallel with these antisera.

White cell donors (40 each of Whites, Bantu and Indians) were healthy adult staff members or blood donors. These race groups are relatively pure in the sense that there has been little intermarriage between the groups. Bantu were of the Zulu tribe. The Indians were inhabitants of Natal whose forefathers (mostly Hindi, Tamil and Telegu speakers) came from India about 60 years ago.

The White series was begun first, and 3 sera (84 , 86 and 88) were introduced too late to be included in it. With this exception all the sera were tested apatinst the white cells of all the donors. From the Jatom:urre promools the results for each race group were ascmiled in a large matrix, coding any positive result as 1 , negative as 0 . The rows of these 3 matrices (each representing the reactions of one serum with the cells of 40 donors) were transferred to punch cards and the reactions within the race

- Poutal Aldress: P.O. Box 2356, Durban, South Africa.
group of each serum comp3red with those of every other, using a comparator that has been described elsewhere. ${ }^{\text {. }}$ The output of this comparator was fed to a Dichl Combitron calculator programmed to compute λ^{2} for 2×2 tables. Yates' correction was not applied.
A further 32 White donors were studied, but in order to make the results exactly comparable in the 3 populations these results were not considered when calculating χ^{3}. The frequencies with which the White sera react, however, are calculated from the larger sample.

Results

Fig. 1 shows the associations of the sera in each population group. Each serum is represen:ed by a circle of diameter proportional to the frequency with which it reacts. Positive associations between sera with χ^{2} of 6.6 or more are represented by solid lines. Those with a χ^{3} of 10 or more have thicker lines. Dotted lines represent negative associations with a χ^{2} of at least 3.0 .
The sera fall into 5 well-defined groups, corresponding to the antigenic complexes 7 d , $6 b-7 c, 4 a, 4 b$ and an unidentified group defined by the 2 sera 27 and 29 . The $4 a$ and $4 b$ groups, against which no reference sera were included in the run, were identified afterwards by 2 sera of known specificity. The anti-8a reference serum (Pinquette) is not consistently associated with any group; neither is the serum T0/01/II of Ceppellini, which recognizes his antigen Tol.

Discussion

The criteria of association must be explained. Two sera with identical reactions (as long as these are neither all positive nor all negative) will be positively associated by a χ^{2} equal to the number of individuals in the panel, here 40. The maximum value of x^{2} thus depends on the size of the panel, and any quoted value of χ^{3} means little unless this is stated. A comparatively high level of x^{2} can be adopted as the criterion of positive association. But where 2 reliable antisera are recognizing the products of a pair of antithetical alleles, many individuals will type positive with both sera because
they are heterozygotes. This greatly reduces the maximum value of X^{2} for the kind of negative association of the greatest interest, that between alleles. As Dausset ${ }^{1}$ has shown, it is therefore only reasonable to adope a much lower standard of χ^{2} for negative associations.

No 2 sera gave identical results in all race groups, but 49 and 88 were identical in the Bantu. In the halian group they are associated

The s.mer well-marked groups of tightly associated scra appear in all 3 populations, and each of these groups of sera identifies a complex of antigenic factors that are frequently inherited in association. ${ }^{\text {" }}$ The important entities, at this stage of knowledge, are the antigenic complexes: they must not be regarded as simple antigens. An antiserum described as anti-\{a, for example, recognizes a certain arbitrary though common combination of antigens within the 40 group. It is of no greater or less value in tissue typing than another antiserum in the same group that recognizes a slightly different combination of antigens. Hence it is essential to use batteries of related antisera against each of the complexes when undertaking tissue typing for transplantation. They will not all give the same results.

Tabie: 1: Miv frequencies of Antigenic Combisise in Tinriee Race Groups
(FIGURES IN DRACKETS SIIOW NUMDER OF SERA USED TO IDENTIFY TIIE COMPLEX)

Complex	\% Frequency		
	Wrbite	Indian	Bamfn
4 a	54(6)	78(5)	68(7)
4b	84(3)	82(5)	93(5)
8 a	52(1)	$60(1)$	70(1)
6 b	47(1)	55(1)	52(1)
7 c	32(4)	24(5)	36(5)
7 d	$28(8)$	$30(10)$	42(9)
Tol	$72(1)$	78(1)	70 (1)
Unknown (sera 27, 29)	21 (2)	22(2)	26(2)

Many of the sera appear in the same tightly associated grouls in all 3 populations. Such, e.g. are $12,72,25,64$, 6 and Willett in the anti-7d group; 9. 10, 14 and 76 in anti-6b-7c; 44,7 , and 32 in anti-4a; and 23,46 and 49 in anti-4b. From such sera a general-purpose tissue-typing kit could be assembled for use with any of the 3 race groups. But to do this would exclucle many sera; examples are 51, 48 and 52 which are tightly associated with the 7 d group in the Indians but not in the Whites. Dausset ${ }^{1}$ has also observed that some of the
sera identifying a complex in one population do not identify it in another. It is better, therefore, to have a special set of sera for use with each race group. Such sera should be chosen because they have several strong positive associations within the group and few or none, except negative ones, outside it. Using such sets of sera we can calcülate a mean frequency of each antigenic complex in each race group, as Table I shows.
There are some interesting differences between the race groups:
Serum 73 is a member of the anti-4a group in Whites and Bantu, but anong the Indians it is associated with 54, a member of the anti-4b group: 54 in its turn is a respectable member of anti- 4 h in Indians and Bantu, but in the Whites it has a much lower frequency and no strong associations with this group;
48 is not strongly associated with the anti-7d group in Whites; in both the other populations it is;
51 is in the anti-7d group in the Indians, but in anti-6b-7c in the Bantu;
84 is connected with the anti-4a group in the Bantu; in the Indian its only strong associations are negative ones with the new group 27/29, whose specificity is unknown.
The complex of anti-7d sera is larger and shows more numerous and stronger associations between its members in the Indians than in Whites.
The 4 a and 4 b complexes, by our criteria of association, are negatively associated in the Whites, less strongly so in the Indians, and not at all in the Bantu. In the Bantu there are many strong negative associations between $6 \mathrm{~b}-7 \mathrm{c}$ and 4a. These are weaker in the Whites and absent in the Indians.
The sera of the anti-7c group are almost entirely contained in the reference serum anti-6b (Rens) when tested against the Indian and White panels (i.e. they seldom give positive results when Rens is negative), but there are many exceptions to this in the Bantu. Fig. 1 shows several other differences between the race groups. Because the panels are small, such associations (or the lack of them) should be treated with some reserve.

Differences in the frequencies of leucocyte antigens may be of interest to anthropologists. Dausset, ${ }^{1}$ in a study of a small sample of Negroes from the West African state of Mali, found lower frequencies of $8 \mathrm{a}, 4 \mathrm{a}, 4 \mathrm{~b}, 7 \mathrm{~d}$ and Gb than in the French population. New York Negroes ${ }^{2}$ also had lower frequencies of 8a, 4a, 7 c and 7 d ; they were not tested for 4 b . The findings in the Bantu are quite different. Every antigen we could test for, except \cdot Tol, had a higher frequency in the Bantu than in the White group. The Indian group appears to have a higher incidence of 4 a , and a lower one of 4 b , than either of the other populations. Figures such as these are, of course, to some degree arbittary, as they depend on the choice

of sera used to obtain them. Until more work has been done they should, therefore, be regarded as provisional.

It is not clear why we failed to find a good anti-8a serum. Such sera are common. They are avid and would thus not be excluded by our criteria of selection. These criteria may well have excluded sera like anti-7a and anti7b, which are said ${ }^{7}$ to give weak and unreliable results. No allowance has been made in this study for false negative reactions caused by the ANAP (agglutination negative absorption positive) phemomom, but out choice of avid sera

Several of the sera that have not been classified probably detect known specificities; 61 may be ami-5b. The group detec:ed by the sera 27 and 29 is a well-defined one, but does not appear to correspond to any of van Rood's specificities.

The knowlcdge gained from this study will help us to undertake tissue typing in 3 race groups with more confidence, but it is still incomple:e. Rubinstein et al. ${ }^{3}$ have pointed out that new antigenic specificities may be found as new populations are examined and that to detect some of these it may be necessary to use antisera derived from the population groups concerned. We had relatively few Bantu and Indian sera in this study, and not surprisingly did not detect convincingly any new groups confined to one population. If experience with red cell antigens is any guide, we may expect to find such specificities in the future.

Summary

Thirty-nine leucoagglutinating sera from pregnant women were tested against the white cells of 3 panels of 40 donors each, from the White, Indian and Bantu race groups.

Many of the sera could be classified into groups detecting the $7 \mathrm{~d}, 6 \mathrm{~b}-7 \mathrm{c}, 4 \mathrm{a}$ and 4 b antigenic complexes, together with another complex of unknown specificity.

The sera identifying each of these complexes differed in number. and in their interrelationships from one population group to another.

The frequency of the $7 \mathrm{~d}, 6 \mathrm{~b}-7 \mathrm{c}, 4 \mathrm{a}, 4 \mathrm{~b}$ and 8a antigenic complexes was higher in the Bantu than in the Whites. The Bantu thus differ notably from West African and American Negroes, who have been found by other workers to have lower frequencies than Whites for most of these complexes.

Groups of sera chosen to identify the antigenic comp'exes in each race group were assembled for use in tissue typing.
We are grateful to Dr. Kayhoe and Dr. Ohanesian of the NIH Transplantation Immunology Brancl for valuable reference sera. and to Mrs. G. C. Buckle, Miss B. Hall and Mrs. A. D. Skinner for help in the laboratory.

REFERENCES

1. Dausset, J., Ivanyi, P. and Ivanyi, D. (1965): Histocompatibility Testing, 1965, p. 51. Copenhagen: Munksgaard.
2. Dzusset, J., Ivanyi, P., Colombani, J., Feingold, N. and Legrand, L. (1967): Histocompatibility Tessing, 1967, p. 189. Copenhagen: Munksgaard.
3. Rubinstein, P., Costa, R., van Leeuwen, A. and van Rood, J. J. (1967): Histocompatibility Tessing, 1967, p. 251. Copenhagen: Munksgaard.
4. van Rood, J. J., van Leeuwen, A., Schippers, A. M. J., Pearce, R., van Blankenstein, M. and Volkers, W. (1967): Histocompatibility Testing, 1967, p. 203. Copenhagen : Munksgaard.
5. Brain, P. (1968): Transplantation. In the press.
6. Amos, D. B. (1967): Transplantation, 5, 1015.
7. van Rood, J. J., van Leeuwen, A., Schippers, A. M. J., Vooys, W. H., Frederiks, E., Balner, H. and Eernisse, J. G. (1965): Ilisfocompatibility Testing, 1965, p. 37. Copenhagen: Munksgaard.

Reactions of HL-A Antisera in Three Populations

M. G. Hammond and P. Brain
Natal Institute of Immunology, Durban

Abstract

Cytotoxic antisera against HL-A antigens were tested in panels of Caucasian, Bantu and Indian donors. A serum that gives reliable results in Caucasians may prove quite unreliable when used in Bantu or Indians, since it may possess extra antibodies against antigens that are very rare in Caucasians but common in the other groups. Every serum that is to be used in a population different from that in which it was standardized must therefore be re-standardized in the new group before use. Results obtained in previous studies by EDTA agglutination cannot be compared with those obtained by cytotoxicity. The NIH serum Willett (anti-HL-A 8) gives identical results by agglutination and by cytotoxicity when tested in Caucasians; but in the Bantu it reacts with 49% by agglutination and only 8% by cytotoxicity. The Bantu evidently possess several unidentified HL-A antigens.

It is now well established [2-4, 7, 8] that the frequency of HL-A antigens differs considerably from one population group to another. In an earlier study, [2], using leukoagglutination, we found - as DAUSSET [3] had previously observed - that a serum giving reliable results in one population group would not necessarily do so in another. The hospital population in this part of South Africa consists of 3 im portant groups, Bantu, Caucasians and Indians, and it soon became clear to us that if we were to perform reliable tissue typing we must have sera that have been tested and found effective in all 3 groups. Since adopting the microcytotoxicity test we have screened some 20,000 sera of parous women in our own laboratory. We present in this paper some of the results obtained with selected sera of our own, and with sera from the National Institutes of Health and other sources.

[^0]
Materials and Methods

Lymphocytes were isolated by the method of Boyum [1], using a Ficoll-Isopaque mixture, and a final suspension was made to contain between 4,000 and 6,000 cells/cu mm. The cytotoxicity test was performed in 60 -well Microtest tissue culture plates (Falcon Plastics) using the two-stage method recommended by the National Institutes of Health plus trypan blue, as follows: antisera were dispensed in $1 \mu \mathrm{l}$ amounts under paraffin, and $1 \mu \mathrm{l}$ of the cell suspension added. After 30 min at room temperature 5μ of fresh unabsorbed rabbit serum was added and the plates left to stand for 60 min . Five microliter of a fresh preparation of trypan blue, made daily by diluting a 1% aqueous stock solution with an equal volume of 1.7% saline, was then added. After 15 min at room temperature $\left(20^{\circ} \mathrm{C}\right)$ the excess dye was flicked off the plates and they were examined with an inverted microscope and 20 x objective; phase contrast was not used. We have not found the results in plastic trays to be unreproducible, as suggested by Dick [5], as long as the two-stage procedure is used.

The serum donors were parous women of all race groups, but up to the time of this study there were relatively few Bantu among them. There were, however, a large number of coloured (mixed European and Bantu origin) donors, as many coloured women attended an antenatal clinic situated near our laboratory. Sera were screened daily against the lymphocytes of 6 blood donors. Screened but uncharacterized sera were obtained also from the South African Institute for Medical Research, Johannesburg. Reference sera were obtained from the National Institutes of Health bank and through them (in ready prepared trays) from Dr. P. I. Terasaki; also from the National Tissue Typing Reference Laboratory, Bristol (Dr. G. H. Tovey), from commercial sources (identified by the prefix C), and one (394 CH) from the Massachusetts General Hospital (Dr. Paul S. Russell). Positively reacting sera from the screening tests were put up, together with reference sera, against panels of donors who were all in the first instance Caucasian. An IBM 1130 computer was used to compare the reactions of every serum with those of every other and to print out X^{2} [2]. Selected sera were later tested in the same way against panels from the other 2 race groups.

Donors of lymphocytes were healthy unrelated adult blood donors and staff members of either sex. The Caucasian population of South Africa is of Western European origin. Bantu were almost all of the Zulu tribe. Indians are the descendants of immigrants who arrived about a century ago, principally from the Madras Presidency. The 3 groups are quite distinct in appearance and none of the individuals used by us appeared to be of mixed origin. The group of mixed origin which appears among the serum donors was not included among the lymphocyte donors.

The groups of antisera identifying the antigenic complexes were characterized in previous unpublished studies. Those groups used in this study that do not include a reference serum obtained from elsewhere contained (among others) sera characterized as follows against those supplied in trays by the National Institutes of Health (tray NIH 202), using a panel of 30 Caucasian donors:

Anti-HL-A10: Serum V 104, X ${ }^{2} 19.3$ with both sera 2527.0 and 1617.1. Anti-HL-A5: Serum S 21: X ${ }^{2} 23.1$ with both 951.0 and 2532.

Table I. Percent frequency of reaction of sera in 3 population groups

Anti-	Serum	Origin ${ }^{1}$	\% frequency		
			Caucasian	Bantu	Indian
HL-Al	324	I	49	0	38
	C1		49	3	43
	89	C	46	20	38
HL-A2	291	C	33	20	40
	C2		33	20	40
	317	C	36	25	40
HL-A3	394 CH		33	8	20
	C3		33	8	33
	Storm		31	8	35
	125	C	46	8	38
HL-A9	275	Co	23	23	10
	300	I	26	18	18
	C9		33	28	20
	Jones 05		36	25	18
	42	Co	33	50	38
HL-Al0	V104		8	30	15
HL-A5	310	C	13	5	35
	S21		13	5	40
HL-A7	101	I	21	25	15
	247	Co	23	28	15
	130	C	26	35	18
HL-A8	GT 29		33	13	8
	311	C	33	15	10
	284	C	46	15	8
	S71		44	63	23
	C8		41	45	20
HL-A12	137	C	28	18	20
	271	C	28	20	25
	GT 61		23	18	18
	328	C	23	18	10
	320	I	28	38	23
Tel0(BB)	V8		21	15	25
Tel0+HL-A7	253	C	33	28	33
Te17(SL)	35	C	18	53	43
	S90		21	53	28
	24	Co	28	60	30
	131	B	21	45	33
Te50(4c)	204	Co	31	15	43
	301	Co	31	10	45

${ }^{1}$ Origins of sera: $\mathrm{C}=$ Caucasian. $\mathrm{Co}=$ coloured. $\mathrm{B}=$ Bantu. $\mathrm{I}=$ Indian.

Anti-HL-A7: Serum 247, X ${ }^{2} 25.5,17.9,17.9$, and 25.5 respectively with Te 473.2 , 4070, 3186.0 and 1953.0.
Anti-HL-A 12: Serum 271: X ${ }^{2} 19.8$ with each of 719.1 and 975.1.
Anti-Te 17: Serum 35, $\mathrm{X}^{2} 17.4$ with each of Te 3346.4 and Te 479.5.
Anti-Te 10: Serum V 8: X ${ }^{2} 18.5$ with $2717.0,18,9$ with 2659.
Anti-Te 50: Scrum 204, X ${ }^{2} 25.5$ with each of Te 889.1 and $\mathrm{Te} 10.21 ; 15.1$ with 2526.0.

Results

Table I shows the frequencies of reaction of each serum in each population, together with the population group (where known) of the serum donor.

Table II. Alleles detected in individuals of 3 population groups, Caucasian, Bantu and Indian

First (LA) sub-locus				Second (Four) sub-locus contd.			
Alleles	Number of individuals			Alleles	Number of individuals		
	C	B	I		C	B	I
HL-A1	7	0	7	Tel0(BB)	3	3	2
2	3	5	4	Te17(SL)	1	10	7
3	3	3	2	HL-A5,7	0	1	1
9	5	6	6	5,8	1	0	0
10	2	5	3	5,12	0	0	2
1,2	4.	0	6	5,Tel0	0	0	3
1,3	4	0	2	5,Te17	0	0	4
1,9	3	0	0	7,8	1	1	1
2,3	4	0	3	7,12	3	2	1
2,9	2	0	1	7,Tel0	1	2	1
2,10	0	3	2	7,Te17	1	4	0
9,10	1	3	0	8,12	1	0	0
Blank	1	15	4	8,Tel0	2	0	0
Totals	39	40	40	8,Tel7	0	2	0
Second (Four) sub-locus				12,Tè 10	0	0	3
HL-A5	3	0	5	12, Tel7	3	2	0
7	2	2	2	Tel0, Tel7	2	1	0
8	8	1	2	Blank	4	8	5
12	3	1	1	Totals	39	40.	40

Table II shows the alleles detected in the individuals of the 3 population groups (39 Caucasians, 40 Bantu, 40 Indians) at each of the sub-loci LA and Four.

Table III shows the reactions of one serum (Willett) tested by both EDTA agglutination [2] and by cytotoxicity in three population groups.

Table III. Antiserum Willett: \% frequency of reaction in 3 population groups

Method	Caucasian	Bantu	Indian
Cytotoxicity (NIH)	31	8	13
Agglutination (EDTA)	31	49	40

Discussion

It is of interest to compare these results with those obtained by agglutination in our earlier study [2]. There we concluded that the Bantu were quite different from the West African and American Negroes, since they showed higher frequencies of most of the common antigens than did Caucasians. Negroes had been found, by cytotoxicity, to have lower frequencies. It is now clear that although our findings were correct our conclusions were not. Although the numbers tested are small it is probably safe to say that by cytotoxicity the Bantu show lower frequencies than Caucasians for HL-A $1,2,3,8, \mathrm{Te} 50$. and perhaps HL-A 9,5 and 12. Bantu frequencies are higher for Te 17 and HL-A 7. Using agglutination the findings are very different, the frequencies for HL-A 2 and 8 being higher in the Bantu than in the Caucasians. The NIH anti-HL-A 8 reference serum Willett, which works by both agglutination and cytotoxicity, is of great interest, It was used in earlier studies by us but not in this one since supplies were exhausted. The 1969 edition of the NIH catalogue states that its activity as an agglutinin corresponds exactly to its cytotoxic activity. In table III we see that this is perfectly true as long as
testing is confined to Caucasians. (The panels on which Willett was tested were not the same as in the present study.) But in the Bantu the frequency of reactions by cytotoxicity is 8% and by agglutination 49%, and there is also a lesser but still marked difference in Indians. Results obtained in a population by agglutination are internally perfectly consistent, but they cannot be compared with those obtained by cytoloxicity. It is obvious that the serum Willett is not identifying the same antigens by agglutination and by cytotoxicity. In Caucasians it appears to be doing so because the 2 antigens have the same frequency and are associated. In the Bantu and Indians they are quite distinct. The moral of this is that a serum that behaves perfectly in the population group against which it was originally characterised may perform quite differently in another. Consider the commercial cytotoxic serum C 8. When used in Caucasians, against whom it must have been originally standardised, this is an excellent serum. In the Bantu, however, it reacts with a frequency of 45%, whereas the frequency of a true anti-HL-A 8 is 15% or less. Results with the Bristol reference serum GT 29 and our serum 311 are similar in all 3 race groups; C8 gives similar results in Caucasians ($\chi^{2}>23$) but quite dissimilar in the Bantu ($\mathrm{X}^{2} 1.3$). This commercial serum tested in the Bantu includes GT 29, but it is reacting also against another antigen that is evidently common in the Bantu and very rare in Caucasians; too rare, that is, to have been observed in the doubtless very extensive tests the serum received before being released for sale. We are not criticising this serum; in Caucasians it is almost perfect. The point we are making is that any serum that has been standardised in one population group must be re-standardised before it is used in another. We suspect that there may be no such thing as a monospecific serum; to misquote Wiener, the number of antibodies that can be detected is limited only by the ingenuity of the experimenter. Other sera that behave differently in different races include $S 71$, which resembles the commercial serum in its reactions but is not strongly associated with it in the Bantu and must therefore contain a different second antibody; 89 , which might have been regarded as an acceptable anti-HL-A 1 had it not been tested in the Bantu; and 320. Some sera, however, are encouragingly uniform from one population to the next. Of the anti-HL-A 2 sera, the commercial product C 2 and our 291 are absolutely identical in all the 3 groups, and 317 is identical with them in Indians. All 4 anti-HL-A 3 sera (C 3, $394 \mathrm{CH}, 125$ and Storm) are identical in the Bantu.

We were gratified that table II shows no individual with more than 2 alleles at 1 sub-locus. We have not reported our findings for HL-A 11 and Te 19 , since the sera are inadequately characterised; if included, they would abolish the only blank at the first sub-locus in the Caucasians and 3 of the 4 in the Indians. There would still be 14 individuals blank for the first sub-locus among the Bantu; while among those in whom only 1 allele was detected, some may be heterozygotes for an unknown antigen rather than homozygotes for a known one. The behaviour of some of the sera makes it clear that unknown antigens must be common in the Bantu. As Rubinstein et al. [7] have observed, such antigens are likely to be found by using sera derived from the population groups concerned; we have already begun a study of sera from Bantu women in the hope of finding some of them.

Our frequencies for the antigens in the 3 race groups must be regarded as tentative because of the size of the panels and the uncertain reliability of the sera detecting some of the more obscure factors. The anthropological significance of these findings deserves more work on larger panels, and another paper.

Acknowledgments

This study was supported by a grant to P. B. from the Medical Research Council of South Africa. We are grateful also to all the laboratories which sent us sera, and to Mr. Grabam Webb for the computer programme.

References

1. Boyum, A.: Separation of leucocytes from blood and bone marrow. Scand. J. clin. lab. Invest. 21: suppl. 97, p. 7 (1968).
2. Brain, P. and Hammond, M.: Leucocyte antigens in three race groups. Med. Proc. 14: 589 (1968).
3. Dausset, J.; Ivanyi, P., and Ivanyi, D.: Tissue alloantigens in humans identification of a complex system (Hu-1). Histocompatibility testing, p. 51 (Munksgaard, Copenhagen 1965).
4. Dausset, J.; Ivanyi, P.; Colombani, J.; Feingold, N., and Legrand, L.: The Hu-1 system. Histocompatibility testing, p. 189 (Munksgaard, Copenhagen 1967).
5. Dick, H. M.: cii. Kissmeyer-Nielsen and Thorsby Human transplantation antigens. Transpl. Rev. 4: 1 (1970).
6. Kissmeyer-Nielsen, F. and Kjerbye, K. E.: Lymphocytotoxic microtechnique: purification of lymphocytes by flotation. Histocompatibility testing, p. 381 (Munksgaard, Copenhagen 1969).
7. Rubinstein, P.; Costa, R.; Van Leeuwen, A., and Van Rood, J. J.: The leukocyte antigens of Mapuche Indians, ibid., p. 251 (Munksgaard, Copenhagen 1969).
8. Singal, D. P., Mickey, M. R., and Terasaki, P. I.: Serotyping for homotrausplantation XXIX. Two new HL-A antigens. Transplantation 8: 235 (1969).

Authors' address: Mr. M. G. Hammond and Dr. Peter Brain, Natal Institute of Immunology, P. O. Box 2356, Durban (South Africa)

HL-A ANTIGENS AND ANTIBODIES IN SOUTH AFRICAN BANTU ${ }^{1}$

M. G. Hammond, D. Appadoo, and P. Brain
The Natal Mistilute of Immunology, Durban, South Africa

Abstract

SUMMARY We previnaty fomm that nearly 35% of the Jantu had no antigens at the first loctis dencetathe wih the ant isitra arailable to us. The sera of $1,00+$ Bantu women were therefore serecoed and those containing antibodies were tested against 50 unrelated Bantu donors in parallel with kown antisera, using the 2-stage microlymphocytotoxic test. Antiseral for To (is) and Te 66_{6} were obtained from the National Institutes of Heallh (:NIII, Thesc two specificities almost completely filled the gap previously fomed :al her first locess. Two hunded two of the 1,00t Bantu sera contained HL-A antibodies, hat only one had the specificity anti-Te 63. One hundred twenty selected sera were then used to test a further 100 Bantu and 100 Cancasians. We tested for 10 antigens at the first locus, HL-A1.2,3,9,10,11, W28, W19, Te 63, and Te 66; and at the second loculs we tested for 12 antigens. HL-A5,7, 8,12.13. W5, W22, W15, W17. W10. and W27. HL-A1 has a very low frectucuey in the Bautu (5%) and no Bantu were foumd with HL-A11, while HL-A.3 had a lower freguency (12%) than in Caupasians. II 28 (19%), HL-A9 (17%), HJ-A $10(23 \%)$, Te 63 (13%), and Te $66(31 \%)$ all had higher freguencies in Bantu than in Caucasians. At the second locus, the frequency of HL-A7 was only 11% but W 22 was found in 34% of the Bantu (5% in Caucasians). Thirty-five anti-HL-A12 sera could be divided into two groups, one reacting as a short. anti-HI-A12.

There are significant differeness in the frequencies of HL-A autigens in various races ($1-3$, $\gamma, s, 11-13$). We have reported (5,3) the antigen frequencies in small samples from the three large population groups of Durlan: Caucasian, Inclian, and Bantu.
This study is the result of our finding (9) that nearly 35% of the Bantu had no antigens at the first locus detectable with the antisera available to us. The corresponding perecmages for Caucasians and Indians were 2.5 and 10%, respectivoly. Evidently, the Bantu posesess, at relatively high frectumenes, antigens that are unknown or rare in Cancasians. Antilodies against, such antigens, therefore, might be expected to oceur in Bantu women, and the original aim of this study was to find them.

materials and methods

Lymphorytes were isolated by the method of boyum (4), usiug a Ficoll-Hypague mixture,

[^1]and the cytotoxicity test was performed in Falcon microtest trays using the 2 -stage procedure recommended by the NIH (6) as follows: $1 \mu \mathrm{l}$ of antiscrum and 1μ of cell suspension were added to each well under paraffin. After 30 min at room temperature, $5 \mu \mathrm{l}$ of unabsorbed rabbit complement was added and, after a further 60 min at room temperature, $5 \mu \mathrm{l}$ of freslly prepared 0.6% trypan blue in saline was added. After 15 min at room temperature. excess dye was ficked off and the wells were examined with an in;erted microscope.
Blood saimples were collected from $1,00+$ Bantu women of the Zulu tribe attcuding antenatal and postuatal clinics. The number of pregnancies was not recorded, but more than onehalf were multiparas. The serum was separated and stored at. -30 C .

Their sera were sereened daily against the lymphocytes of normal adult Bantu blood donors or staff members. A serum was not regarded as negative until it had given no positive reactions with 40 different Bantu donors. Posi-

Table 1. Numbers and sources of antisera used to identify HL-A antigens

Antigens	Antisera Nos. from			Total
	$\begin{gathered} \text { Natal } \\ \text { Institute } \\ \text { Iof Imo } \\ \text { of Imoloy } \end{gathered}$	$\begin{gathered} \text { NIII } \\ \text { serum } \\ \text { bank } \end{gathered}$	$\underset{N 621}{\mathrm{~N} I \mathrm{H} \text { tray }}$	
HL-A1	9	1	3	13
HL-A2	14	1	3	18
HL-A3	3	3	3	9
HL-A9	2	3	2	7
HL-A10	4	1	4	9
HL-A11	1	1	3	5
W28	4	3	2	9
W19	1	2	2	5
Te 63	1	0	2	3
Te 66	0	1	2	3
HL-A5	6	2	3	11
W5	:	1	3	7
HL-A7	$!$	2	4	15
W22	3	1	1	5
HIT, $\mathrm{A}^{\text {8 }}$	4	4	3	11
W14	3	1	3	7
HL-A12	11	0	3	14
HL-A13	4	2	2	8
W15	3	0	2	5
W17	5	1	3	9
W10	3	1	3	7
W27	1	1	0	2
Total	94	32	56	182

Tabliz 3. Percentage of frequency of HL-A antigens in three race groups

Antigen	150 Bantu	147 Indians	$\stackrel{100}{\text { Caucasians }}$
HL-A1	5	27	27
HL-A2	20	31	51
W28	19	12	6
HL-A3	12	15	35
HL-A11	0	25	13
HL-A10	23	7	8
HL-A9	17	16	13
W19	17	10	14
Te 63	13	1	5
Te 66	31	2	5
Blank	3	3	0
HL-A5	4	37	12
W5	9	34	22
HL-A7	11	13	26
W22	34	3	5
W27	3	1	12
HL-A8	13	5	21
W14	7	1	6
IIL-A12	22	10	28
HL-A13	5	7	7
W 15	16	17	15
W17	29	26	9
W10	5	34	16
Blank	3	1	2

Table 2. Specificity of antibodies detected in sera of 1,004 parous Bantu women

Specificity	No.	Specificity	No.
HL-A1	0	HL-A5	0
HL-A2	3	W5	1
Associated with HL-A2	4	Associated with W5	6
Associated with HL-A2 + W28	1	HL-A7	3
W28	1	HL-A7 + W22	12
Associated with W28	1	Associated with HL-A7 + W22	17
< W28	1	Associated with HL-A7 + W27	1
HL-A $2+\mathrm{W} 28+\mathrm{W} 17$	1	HL-A8	1
HL-A3	1	Associated with HL-A8	3
HL-A11	0	W14	0
HL-A9	2	HL-A12	3
Associated with HL-A9	2	Associated with HL-A12	10
HL-A9 +8	1	< HL-A12	5
Associated with HL-A10	3	HL-A13	2
Associated with HL-A10 + W28	2	Associated with HL-A13	1
W19	1	HL-A13 + W17	1
Associated with W19	2	Associated with W15	2
Te $63+\mathrm{HL}-\mathrm{A} 13$	1	W17	4
Te 66	0	Associated with W17	8
		Associated with W10	1
Multispecific	32	W27	1
		Associated with W27	2
Unrelated	59		

Total 202

Figure 1. Reaclion pattern of anti-HI $-A 7$ and W22 sera with 50 Bantu cell donors.
tively reacting sera were kept for further study.
These sera were tested, together with a large number of others, against the lymphocytes of 50 unrelated normal Bantu. Of the other sera, some had been claracterised by us in the past, some came from the NIH serum bank, and others were obtained already dispensed on tissue typing trays (No. N621) from the NIH. In addition to sera of our own that were regarded as monospecific or of known specificity, we included 96 that had previously given obscure results. In all, 480 sera were tested against this panel; 120 sclected sera were then used to test two further panels of 100 Bantu and 100 Caucasians. The results were analysed using an IBM 1130 computer (5).

We used large numbers of sera because we have previously found that as scrum which ap)pears to be monospecific in one population may not be so at all in another (7). This is usually because it contains extra antibodics against antigens very rare in the first population and relatively common in the second. As a rule the antisera with the lowest frequency within a particular group are usually defining the antigen correctly. The numbers used and the origins of these sera are shown in Table 1.

RESULTS

Table 2 shows the specificities of the 202 out of the 1,004 Bantu sera that were found to have lymphoce totoxic antibodies.

Table 3 shows the frequencies of the HL-A antigens in Bantu and Caucasians. For the second sample of Bantu, no more preloaded trays were available and the results for Te 63 and Te 66 should therefore be treated with reserve, as Te 66 was detected with only a single serum and Te 63 was detected with only two sera, both of which are mixtures. For comparison, frequencies obtained on a panel of 147 Indians are included in this table.

Figure 1 slows the reaction patterns of sera containing antibodies to HL-A7 and W22 in the first 50 Bantu. Table 4 gives the 2×2 tables of these sera. Figure 2 and Table 5 illustrate the reactions of antisera against 150 Bantu. Figure 3 and Table 6 show the reaction pattern and $2 \times$ 2 tables of sera with antibodies recognising HLA12 or part of it.

DISCUSSION

Antisera for Te 63 and Te 66 which were available for this study almost completely filled

Table; 4.2×2 comparisons of sera illustrated in Figure 1

Leading serum	Antisera	\% ${ }^{+}$	+ +	--	+ -	- +
K-N 8498	Te 31860	100	22	27	0	1
	N456	100	22	28	0	0
	B507	82	22	28	0	0
	B606	95	22	28	0	0
	B730	100	22	28	0	0
	B486	100	21	27	1	1
	N3s9	82	21	27	1	1
	N1: ${ }^{\text {a }}$	81	21	2.8	1	0
	B22	95	21	27	1	1
	1390	68	21	27	1	1
	B956	100	20	27	2	1
	13900	95	20	26	2	2
	13516	81	20	27	2	1
	13247	71	21	28	1	0
	B395	89	18	28	4	0
	B735	76	20	27	2	1
	B673	95	18	27	4	1
	B317	57	11	25	11	3
	13155	88	17	28	5	0
	1353.4	83	18	28	4	0
	B653	53	13	26	9	2
	B580	69	13	28	9	0
	B652	54	12	27	10	1
	B563	50	6	26	16	2
	B857	73	15	28	7	0
	N 2 Si	27	19	27	12	1
	N431	(64	13	27	9	1
	N549	73	15	28	7	0
	N286	80	14	27	8	1
	B232	57	13	27	9	1
	B891	70	10	28	12	0
	Te A4929	83	6	28	16	0
	13166	(6.3	8	28	14	0
	N5 S^{2}	(67	6	28	16	0
	N199	67	6	28	16	0
	N76	50	(28	16	0
	N101	50	4	28	18	0
	B117	33	3	28	19	0
	B705	71	6	27	16	1
	13419	33	3	28	19	0
	13729	33	3	28	19	0
	N306	0	3	28	19	0
	N247	0	3	28	19	0
	N533	75	4	29	18	0
	N489	100	4	28	18	0
	N403	50	4	28	18	0
	Te 5691.1	50	4	28	18	0
	Te 5091.2	75	4	28	18	0
	1) 66-15903	75	4	28	18	0

Figure 2. Reaction pattern of anti- $\mathrm{HI}_{1}-\mathrm{A} 7$ and W22 sera with 150 Bantu cell donors.

Table 5. 2×2 comparisons of sera illustrated in Figure 2

Leading serum	Antisera	$\%+$	+ +	- -	+ -	- +
K-N 8498	N456	92	(60	85	0	5
	13900	100	57	83	3	7
	B652	66	32	86	28	4
	13155	97	36	87	24	3
	B395	93	. 53	85	7	5
	N431	83	47	84	13	6
	N286	55	45	84	15	6
	B857	73	48	80	12	4
	13891	79	34	86	26	4
	N549	76	35	87	25	3
	13232	73	34	84	26	6
	B16if	7	25	S5	35	5
	$13951 ;$	Sis	35	85	22	5
	N281	50	20	89	40	1
	N489	(65	20	88	40	2
	N533'	79	12	90	48	0

the gap previously found in the Bantu at the first locus. No cell donor was found with more than two antigens and in only three donors were none detected at the first locus.

It is interesting that we did not find antibodies to these specificities among our 202 positive sera, except for one in a mixture. Presumably the antigenicity of these factors is low. Several good antisera were found. Antisera listed in Table 2 as specific did not have more than one discrepancy with liwr reference serum for that specificity. Those associated with a specificity had two or more discrepancies. Some of the 32 multispecific antisera included common specificities, e.g., HL-A2, but generally reacted with three antigens or more. The 59 antisera that showed no relation to any other recognised specificity generally had a very low frequency of reaction (10%) and few of the reactions gave 100% kill. They were not restricted to those cells with only one detectable allele at either locus. One possible explanation is that they are recognising products of IIL-B locus (14).

In Caucasians, HL-A1 and HL-A8 have similar frequencies and a higlı degree of association and conseruently antisera containing anti-HLA1 and anti-HL-AS may be difficult to identify. Indians, however, lave a very low frequency of HL-A8 (5\%) while 27% possess HL-A1, whereas in the Bantu the reverse is found. Only 5% were HL-A1-positive while 13% are positive for HLA8. These differences can be put to good use by
using a selected panel from each race group for characterising antisera.

Figure 3 shows the reaction pattern of sera associated with or included in HL-A12 in 150 Bantu. It appears that HL-A12 is a heterogenous antigen which can be subdivided into two parts. The 2×2 tables of these reactions are listed in Table 6. Next to each serum is shown the percentage of reactions that gave 100% killing of lymphocytes. The $(-+)$ reactions of sera N137 and B374 are with cells that are positive for W19. Svejgaard et al. (15. 16) have described an antigen, EL*, which is defined by an antiserum that reacts with HL-A12 cells and with cells that are EL*-positive. However, the differences in the Bantu presented here are within HL-A12.

The most interesting difference was the high Prequency of W22 and the large number of sera that contained antibodies to HL-A7 and W22 (Table 2). Figure 1 illustrates the reaction patterns obtained with the sera in the first panel of 50 Bantu. Table 4 lists the 2×2 tables for these sera and the percentage of $4+$ reactions for each serum. Six sera, including Engelfriet's serum D66-15903 (obtained from the NIH) and Te 5691.1 gave identical results and all have been previously characterised as anti-HL-A7. They reacted with only 4 out of 50 donors. Four

Table 6.2×2 comparisons for sera shown in Figure 3

Antigen	Antisera	$\% \%^{4+}$	++	--	+-	-+
HL-A12	N399	81	31	118	0	1
	B12	100	30	118	1	1
	B872	100	25	117	6	2
	B894	100	30	119	1	0
	B855	97	31	119	0	0
	B836	97	30	119	1	0
	B364	67	27	119	4	0
	B389	75	28	119	3	0
	N513	65	26	119	5	0
	B315	96	27	118	4	1
	B898	44	5	117	26	2
	N328	50	3	118	28	1
	PE102	25	8	119	23	0
	B374	89	22	114	9	5
	N137	58	23	115	8	3
	N546	100	22	119	9	0
	B225	74	22	118	9	1
	B228	75	21	116	10	3
	N366	37	19	119	12	0
	B849	31	15	118	16	1
	N320	50	10	119	21	0

Fıgure 3. Reaction pattern of anti-HL-A12 sera with 150 Bantu cell donors.
antisera gave identical reactions to $\mathrm{K}-\mathrm{N}$ 8498 (from Kissmeyer-Nielsen) which is anti-HL-A7 + W22 and were positive with 22 out of 50 donors. Another 11 sera including Te 3186.0 (HL-A7 $+\mathrm{W}^{2} 2$) all had a coefficiont of correlation $\left(r=\sqrt{\chi^{-} / N^{\prime}}\right)$ greater than 0.5 with $K-N$ S498. Eight seral appear to identify W22. The negative reactions of these eight sera are not attributable to weakly reacting sera because at least 50% of the reactions give total killing of lymphocytes (Table 4). Another six sera (B232, N286, N549, N431, $\mathcal{N} 281,13857$) react with HLA7 and part of W22.

We then tested a further 100 Bantu using two anti-HL-A7 sera and two anti-HL-A7 + W22 sera and 12 other sera that slowed associations with this complex. Figure 2 shows the overall pattern of reactions of these sera with cells from 150 Bantu. Two sera, B155 and B652, appear to recognise W22 only. Three cell donors appear to possess both HL-A7 and W22.

Kissmeyer-Nielsen (personal communication) has found that the antigen AA (W22) can be subdivided into f wo caterories which he calls A^{*} and A.t-.W. Thi- suly of the bantu has shown that here are eren more parts to this complex. The identification of these subgroups may only be possible in a rate group such as the Bantu where the frefuency of this antigen is so much greater than in Caucasians.

REFLRENCLS

1. Albert, E. D.; Mickey, M. R.; MeNicholas, A. C.; Terasiki, P. I. 1970. p. 221. In P. I. Terasaki (ed.). Histocompalibility lesting 1970. Munksgard, Cojenhagen.
2. Amos, D. B.; Cabrera, G.; Bias, IV. B.; Macqueen, J. M.; Lancaster, S. L.; Ward, F. E. 1970. p. 259. In P. I. Terasnki (ed.). Histocompalibility testing 19i0. Munksgaard, Copenhagen.
3. Bodmer, J. G.; Bodmer. IV. F. 1970. Amer. J. Human Genet. 22: 396.
4. Boyum, 1. 1968. Scand. J. Clin. Lab. Invest. 21: 7.
5. Brain, P.; Hammond, M. G. 1968. Med Proc. 14: 589.
6. Brand, D. L.; Ray, J. G.; Fare, D. B.; Kayhoc, D. E.; McClelland. J. D. 1970. p. 357. In P. I. Terasaki (ed.). Histocompatibility lesting 1970. Munksgaard, Copenhagen.
7. Dausset. J.; Ivanyi, P.; Colombani, J.; Feingold, N.; Legrand, L. 1967. p. 189. In E. S. Curtoni, P. L. Mattiuz, and R. M. Tosi (eds.). Ilislocompatibility tesiing 100i. Munksgaard, Copenhagen.
8. Dausset, J.; Ivanyi, P.; Ivanyi, D. 1965. p. 51. In H. Balner; F. J. Cleton; J. G. Eernisse (eds.). Histocompalibility testing 1965. Munksgaard, Copenhagen.
9. Hammond, M. G.; Brain, P. 1971. Vox Sang. 20: 492.
10. Robillard, P.; Potworowski, E. F. 1970. Transplantation 9: 137.
11. Rubinstein, P.; Costa, R.; van Leeuwen, A.; ran Rood, J. J. 1967. p. 251. In E. S. Curtoni, P. L. Mattiuz, and R. M. Tosi (eds.). Histocompatibility lesting 1967. Munksgaard. Copenlagen.
12. Singal, D. P.; Mickey, M. R.; Terasaki, P. I. 1969. Transplantation 8: 235.
13. Singal, D. P.; Mickey, M. R.; Terasaki, P. I. 1969. Transplantation 8: 829.
14. Singal, D. P.; Sengar, D. P. S.; Terasaki, P. I. 1970. In P. I. Terasaki (ed.). Histocompatibility Lesting 19\%0. Munksgaard, Copenhagen.
15. Srejgaard, A.; Kissmever-Nielsen, F. 1970. Vox Sang. 18: 12.
16. Svejgaard, A.; Kissmeyer-Nielsen, F.; Thorsby, E. 1970. In P. I. Terasaki (ed.). Histocompalibility testing 1970. Munksgaard, Copenhagen.

Received 19 October 1971.
Accepted 6 March 1972.

HL-A Antigens and Antibodies in South African Indians

M. G. Hammond, B. Appadoo and P. Brain
The Natal Institute of Immunology, Durban, Soutlı Africa

The Indian population of South Africa has been found to have a higher frequency of the antigens HL-A5 and W5 than do either Caucasians or Bantu. Some antisera that appeared to be good anti-HL-A5 or anti-W5 in South African Caucasians gave anomalous results when tested in Indians. The sera of 1,000 Indian women were tested for lymphocytotoxic antibodies and those sera found to contain antibodies were tested in parallel with known antisera against the cells of 150 Indians.

We tested for 10 antigens at the first locus, HL-A1, 2, 3, 9, 10, 11, W28, W19, Te63 ($=$ W19-1) and Te66 ($=$ W19-4) and at the second locus for 12 antigens, HL-A5, 7, 8, 12, 13, W5, W14.W15, W17, W22, W27 and W10.

The frequency of $\mathrm{HL}-\mathrm{Al}$ is 22%, which agrees with the Caucasian origin of the Indian population. There apparently are subdivisions of HL-A5 and W5, and one serum was found to be a "short" W10. HL-A11 has a relatively high frequency in Indians and may also be subdivided.

Received for publication 24 May, accepted 24 July 1972

The frequency of HL-A antigens varies in the different race groups, and antigens which are rare in one race group may be more common in other race groups. We have previously reported an intensive search in South African Bantu for new antigens (Hammond et al. 1972). This paper describes a similar search in the Indian population for antisera that would resolve the aummalous results we obtained with antisera for HL-A5 and W5. The Indian population has a relatively high frequency of these antigens and we were more
likely to find antibodies to these specificities in such a population.

There are three distinct racial groups in Durban: Caucasian, Bantu and Indian. The Caucasian population is of Western European origin. The Indian population is concentrated in the province of Natal and accounts for approximately 13% of its total population. In Durban (population 650,000) the proportion of Indians is much higher (34%). The Indians are descendants of immigrants who arrived about a century ago, principally from the Madras

[^2]Presidency. They speak mostly Hindi, Tamil and Telegu. There has been little admixture with other groups.

Materials and Methods

Lymphocytes were isolated by the method of Böyum (1968) using a Ficoll-Hypaque mixture, and the cytotoxicity test was performed in Falcon microtest trays using the two-stage procedure recommended by the National Institutes of Health.

Blood samples were collected from 1,000 Indian women attending ante-natal and post-natal clinics. The serum was separated and stored at $-30^{\circ} \mathrm{C}$. All the sera were screened against a panel of 12 selected donors, but as this panel would not contain antigens that were "new", the sera were also screened against the cells of 40 random Indian blood donors.

A serum was not regarded as negative until it had given mon positive reactions with 40 donors. The positively reacting sera were tested in parallel with previously characterised sera against the lymphocytes of 99 randomly selected but unrelated In-
dians. Altogether 318 sera were tested and the results analysed by computer. A total of 120 selected sera were then tested against the cells of a further 51 Indians.

Results

Table 1 shows the number and specificity of the antibodies detected. Table 2 shows the 2×2 comparisons of the sera illustrated in Fig. 1. Table 3 shows inclusions in HL-A2. Table 4 and Fig. 2 show the relationship between sera reacting with the HL-A5-W5 complex. Table 5 and Fig. 3 illustrate a subdivision of W10. Tables 6 and 7 give the phenotypic and gene frequencies of $\mathrm{HL}-\mathrm{A}$ antigens in the Indian population with those of Bantu and Caucasians for comparison. Table 8 gives the calculated haplotype frequencies in the three races, using the method described by Mattiuz et al. 1970.

Discussion

Two recent studies by Ting et al. (1971) and Singal et al. (1971) of HL-A fre-

Table 1
Number and specificity of antibodies detected in 1000 Indian women

Specificity	No.	Specificity	No.
HL-A1	2	Associated with HL-A5 + W5	12
HL-A2	4	HL-A7	3
Associated with HL-A2	2	HL-A7 + W22	6
W28	1	HL-A7 + W10	1
HL-A2 + W28	3	HL-A8	1
HL-A3	1	W14	-
Associated with HL-A3	1	HL-A12	2
Associated with HL-A11	3	HL-A13	1
HL-A9	2	Associated with HL-A13	3
HL-A10	2	Associated with W15	6
Associated with W19	1	W17	3
Te63 (= W19-1)	-	Associated with W10	4
Te66 $=$ W19-4)	-	W27	-
Multispecific	69	Unknown	57

quencies in Asian Indians show similar antigen frequencies except that we have found a much higher incidence of HL-A5 and HL-A11. These differences may be attributable to sectarian differences. Milner \& Calitz (1968) and Milner (1970) have shown differences in the strength of the B antigen in various Indian religious sects.

Of the 190 antisera from Indian women, 126 gave reactions that could not be identified (Table 1). Of these sera, 57 had a frequency of less than 10% and showed no correlation with any other known antisera, nor were their reactions included in those of any known sera. It does not seem possible that they are all recognising specific HL-A antigens or combinations of rare antigens, and one explanation is that some of them may be recognising non-HL-A antigens such as those described as HL-B antigens by Singal et al. (1970), although these authors found HL-B antibodies primarily as extra antibodies in HL-A antisera.

The Indian population has a higher frequency of HL-A11 than do either Caucasians or Bantu, but the reactions of the sera we used differed significantly among themselves. Serum N597 contains antibodies to HL-A3 and HL-A11, and when it was characterised in Caucasians there were no positive reactions outside these two specificities. In the Indians this serum has a frequency of 42%, of which 32% appeared to be HL-A11. HL-A3 was identified with two monospecific sera. Three antisera obtained from Indian women gave a reaction pattern which was included in HL-A11, but they had no significant correlation with each other. This is shown in Fig. 1 and Table 2.

Two sera gave reactions which were included in HL-A2 but the possibility exists that these are reacting with only some cells from homozygous subjects, although there were no weak reactions with these sera. The 2×2 comparisons are shown in Table 3.

Figure 1. Reaction pattern of antisera associated with HL-A11 in 150 Indian donors.

Table 2
2×2 comparisons of sera illustrated in Figure 1, tested in 150 Indian donors

$\% 4+$	Serum	Serum	++	+-	-+	--
97	N597	anti-HL-A3 + 11	66	2	4	78
97	N597	anti-HL-A11	46	22	2	80
82	A23	anti-HL-A11	31	3	17	99
66	A25	anti-HL-A11	27	2	21	100
73	A289	anti-HL-A11	25	1	23	101
82	A23	A25	24	10	5	111
82	A23	A289	15	19	11	105
66	A25	A289	18	11	8	113

Table 3
2×2 comparisons of sera included in HL-A2 tested in 150 Indian donors

Serum	Serum	$\% 4+$	++	+-	-+	--
anti-HIL-A2	A689	100	34	12	0	104
A689	A1	89	35	11	3	101

Table 4
2×2 comparisons of sera reacting with the HL-A5, W5 complex (as in Figure 2) tested in 150 Indian donors

Leading serum	\% $4 \cdot 1$	Antisera	$\% 4+$	$++$	+ -	$-+$	- -
AGST	92	N442	97	63	1	3	83
		N310	93	58	6	1	85
		PE27.	78	43	21	2	84
		S152	88	38	26	2	84
		V52	78	36	28	0	86
		A110	86	40	24	1	85
		. A168	69	16	48	0	86
		A803	46	13	51	0	86
		A177	55	11	53	0	86
		N579	38	5	59	3	83
		N335	88	10	54	6	80
N429	89	N277	94	43	-2	4	101
		A 568	100	43	- 2	7	98
		A125	70	36	9	4	101
		A911	89	34	11	3	102
		N482	83	20	25	3	102
		A831	84	26	19	5	100
		A587	86	14	31	0	105
		N335	88	16	29	0	105

Figure 2. Reaction pattern of antisera associated with the HL-5 - W5 complex in 150 Indian donors.

The most interesting results, however, are those obtained with the antisera recognising HL,-A5 and W5. These antigens
are relatively frequent in the Indian population, so that differences in reaction patterns are conspicuous. Table 4 shows $2 \times$

2 tables for several sera that show associations with this complex, which is illustrated in Fig. 2. It seems that there may be more factors involved than the three described in the 1970 Workshop data, i.e. HL-A5, W5 and W18. AGST, N442 and N310 are operationally monospecific anti-HL-A5 sera in Caucasians, and in the Indian series they agree very well. Four sera, V52, PE27, S152 and A110, have patterns that are included in HL-A5. The reactions of sera A168 and A803 are included in these four sera.
Across the middle of Fig. 2 is the reaction pattern of sera that are associated with W5. The block at the right centre represents cells that are positive for W5 and negative for HL-A5. Two sera from this group (N429 and N277) have previously been characterised as anti-W5. At the top are four sera which appear to react with both HL-A5 and W5. Unfortunately no sera for W 18 um arailable and this specificity has been shown to be associated with W5 (Albert et al. 1971). It appears
that there are other antigens present which cross-react with antisera against HL-A5, W5, and W 18.

Table 5 shows the 2×2 comparisons of sera reacting with the W10 antigen, and these reaction are also shown in Fig. 3. The serum A488 appears to be a short W10 and this serum gives strong reactions with no weak positives. Serum A150 appears to be even shorter than A488.

The serological identification of HL-A antigens is not yet complete and if (as Dausset (1971) suggests) each specificity consists of several factors, then the HL-A system may have an almost individualspecific configuration. On the other hand, unrelated individuals have been found (Eijsvoogel et al. 1971) who are phenotypically identical in mixed lymphocyte cultures (MLC), which indicates that there is a restricted, though large, number of allelic variations. :

The data presented here show that these antigenic factors can be more easily identified by testing different race groups

Table 5
2×2 comparisons of W10 antisera illustrated in Figure 3
tested in 150 Indian donors

Leading serum	$\% 4+$	Antisera	$\% 4+$	++	+-	-+	--
A150	64	A488	94	10	1	10	129
		A530	96	10	1	36	103
		A561	90	10	1	30	109
		BAUER	94	10	1	21	118
		V8	95	10	1	29	110
		N253	100	8	3	22	117
	A488	A530	96	19	1	27	103
		A561	90	18	2	22	108
		BAUER	94	17	3	14	116
		V8	95	19	1	20	110
		N253	100	16	4	14	116
	BAUER	A530	96	30	1	16	103
		A561	90	24	7	16	103
		V8	95	30	1	9	110
		N253	100	23	8	7	112

in which these factors have a higher frequency. Our studies in the Bantu (Hammond et al. 1972) have shown this to be
true for other antigens. The elucidation of all the factors governed by the HL-A locus may be possible only in this manner.

Figure 3. Reaction pattern of antisera associated with W10 in 150 Indian donors.

Table 6
Percentage frequency of antigens in Caucasians, Bantu and Indians

Antigen	Caucasian	Bantu	Indian
	$\mathrm{N}=446$	$\mathrm{~N}=150$	$\mathrm{~N}=150$
HL-A1	30.3	4.7	22.0
HL-A2	48.2	20.7	30.1
W28	7.6	18.7	15.3
HL-A3	29.8	12.0	15.3
HL-A11	10.1	0.0	32.0
HL-A9	15.0	23.3	26.7
HL-A10	8.5	16.7	6.7
W19	9.9	18.0	3.3
Te63	4.3	13.3	0.7
Te66	3.4	30.0	0.7
Blank	0.4	3.3	0.7
HL-A5	10.1	2.7	42.0
W5	13.7	11.3	26.7
W15	12.6	15.3	16.0
HL-A7	23.5	10.7	14.0
W27	9.4	3.3	2.7
W22	3.4	35.3	4.7
HL-A8	22.0	12.0	6.0
W14	5.2	8.0	1.3
HL-A12	29.6	22.7	11.3
HL-A13	6.1	4.7	8.0
W10	15.5	5.3	19.3
W17	9.0	30.0	20.7
Blank	3.1	2.7	0.7

Table 7
$H L-A$ gene frequencies in Caucasians, Bantu and Indians

| Gene | Caucasian | Bantu | Indian |
| :--- | :---: | :---: | :---: | :---: |
| HL-A1 | .165 | .024 | .117 |
| HL-A2 | .280 | .109 | .167 |
| W28 | .039 | .098 | .080 |
| HL-A3 | .162 | .062 | .080 |
| HL-A11 | .052 | .000 | .175 |
| HL-A9 | .078 | .124 | .144 |
| HL-A10 | .044 | .087 | .034 |
| W19 | .051 | .095 | .017 |
| Te63 | .022 | .069 | .003 |
| Te66 | .017 | .163 | .003 |
| Blank | .002 | .017 | .003 |
| | | | |
| HL-A5 | .052 | .013 | .239 |
| W5 | .071 | .058 | .146 |
| W15 | .065 | .080 | .084 |
| HL-A7 | .126 | .055 | .073 |
| W27 | .048 | .017 | .013 |
| W22 | .017 | .196 | .024 |
| HL-A8 | .177 | .062 | .031 |
| W14 | .026 | .041 | .007 |
| HL-A12 | .161 | .121 | .058 |
| HL-A13 | .031 | .024 | .041 |
| W10 | .081 | .027 | .102 |
| W17 | .046 | .163 | .109 |
| Blank | .016 | .013 | .003 |

Table 8
Ilaplotype frequencies for Caucasian，Bantu and Indian populations
（number per 1000）

	号	n	$\stackrel{i n}{3}$	$\begin{aligned} & \text { 采 } \\ & \underset{i}{B} \end{aligned}$	$\stackrel{N}{3}$	$\begin{aligned} & \text { N } \\ & \mathbf{3} \end{aligned}$	$\begin{gathered} \infty \\ \substack{1 \\ ~ \\ \hline} \end{gathered}$	$\stackrel{ \pm}{3}$			$\frac{0}{3}$	$\stackrel{N}{3}$	告	
HL－A1	0	2	8	14	7	0	88	4	2	0	3	20	1	C
	0	2	0	2	0	0	2	0	8	0	0	8	0	B
	24	26	21	10	0	5	0	0	0	2	2	47	0	I
HL－A2	15	9	28	36	18	5	0	4	80	10	31	6	6	C
	2	0	0	0	2	0	0	10	22	0	4	47	6	B
	43	15	17	19	1	4	6	3	25	0	22	16	0	1
W28	3	4	2	0	4	4	0	0	10	6	0	1	2	C
	2	5	19	9	6	6	0	7	2	5	5	32	0	B
	11	2	12	0	6	2	5	3	6	11	22	0	0	I
HL－A3	2	20	10	59	0	9	13	2	0	4	8	3	2	C
	3	4	0	0	0	0	18	16	3	0	2	25	0	B
	8	19	13	8	0	2	2	0	6	4	17	2	0	I
HL－A11	6	11	0	11	5	0	0	3	2	0	6	4	0	C
	0	0	0	0	0	0	0	0	0	0	0	0	0	B
	46	0	21	14	9	0	0	0	13	16	21	20	0	I
HL－A9	3	8	6	6	2	1	1	6	14	1	11	2	1	C
	0	0	17	8	0	37	7	10	15	1	0	22	0	B
	35	31	2	25	0	0	11	3	6	5	16	0	0	I
HL－A10	3	0	4	0	1	2	1	0	7	2	3	2	3	C
	6	2	19	6	2	9	2	0	16	0	5	25	0	B
	12	6	0	1	3	10	6	0	0	2	0	0	0	I
W19	0	0	8	3	7	0	3	3	17	2	11	0	0	C
	0	28	7	2	9	16	13	0	3	1	5	0	0	B
	4	1	17	2	0	3	0	0	3	0	6	2	0	I
Te63	1	3	1	0	0	2	0	0	16	1	1	0	0	C
	3	0	5	7	0	13	3	0	14	6	2	15	0	B
	0	3	0	0	0	0	0	0	0	0	0	0	0	I
Te66	3	0	0	0	0	0	2	1	2	3	3	0	0	C
	1	13	5	10	0	76	17	0	14	8	7	0	5	B
	0	0	0	0	0	0	0	0	0	0	0	0	0	I
Blank	2	1	0	0	0	0	0	0	0	0	1	0	0	C
	0	3	2	3	0	8	0	0	2	3	0	0	0	B
	3	0	0	0	0	0	0	0	0	0	3	0	0	I

$\mathrm{C}=$ Caucasian， $\mathrm{B}=$ Bantu， $\mathrm{I}=$ Indian．

References

Albert，E．D．，Mickey，M．R．\＆Terasaki，P．I． （1971）Genetics of four new HL－A specifici－ ties in the Caucasian and Negro populations． Transplant．Proc．3， 95.

Böyum，A．（1968）Separation of leucocytes from blood and bone marrow．Scand．J．clin．Lab． Invest．21，Suppl． 97.
Dausset，J．（1971）The genetics of transplanta－ tion antigens．Transplant．Proc．3， 8.

Eijsvoogel, V. P., Schellekens, P. T. A., BreurVriesendorp, B., Koning, L., Kock, C., van Leeuwen, A. \& van Rood, J. J. (1971) Mixed lymphocyte cultures and HL-A. Transplant. Proc. 3, 85.
Hammond, M. G., Appadoo, D. \& Brain, P. (1972) HL-A antigens and antibodies in South African Bantu. Transplantation 14, 159.
Mattiuz, P. L., Ihde, D., Piazza, A., Ceppelini, R. \& Bodmer, W.F. (1970) New approaches to the population: Genetic and segregation analysis of the HL-A system. Histocompatibility Testing 1970. Munksgaard, Copenhagen.
Milner, L. V. (1970) The strength of the B antigen in Soutl African Asiatics related to language group and religious sect. Social Biology 17, (3) 213.
Milner, L. V. \& Calitz, F. (1968) Quantitative studies of the erythrocytic B antigen in South African Caucasians, Bantu and Asiatic blood donors. Transfusion 8, (5) 277.

Singal, D. P., Sengar, D. P. S. \& Terasaki, P. I. (1970) Detection of non-HL-A antibodies. Histocompatibility Testing 1970, ed. Terasaki, P. I. Munksgaard, Copenhagen.

Singal, D. P., Mickey, M. R. \& Terasaki, P. I. (1971) HL-A typing in Asian Indians. Tissue Antigens 1, 286.
Ting, A., Wee, G. B., Simons, M. J. \& Morris, P. J. (1971) The distribution of HL-A leucocyte antigens in Singapore Chinese, Malays and Indians. Tissue Antigens 1, 258.

Address:

M. G. Hammond

The Natal Institute of Immunology
149 Prince Street
Durban
South Africa

Subdivision of HL-A5 and Comparative Studies of the HL-A Polymorphism in South African Indians

M. G. Hammond, B. Appadoo and P. Brain
The Natal Institute of Immunology, Durban, South Africa

Abstract

The HL-A5 antigen has a higher frequency in the Indian population than in either the Caucasian or Bantu populations of South Africa. Ninety-five Asian Indians were tested by microcytotoxicity using 34 anti-HL-A5 and nine anti-W5 sera. The results confirm the heterogeneity of the HL-A5 antigen and show that it may be subdivided into at least four parts. The Indian population of South Africa is here subdivided into four groups. The HL-A antigen frequencies in each group are compared, and haplotype frequencies and gametic associations (delta values) have been calculated. The genetic distances (f) between these groups and betwern Indians, Caucasians and Bantu also are calculated. The results may indicate a differential selection with respect to the HL-A polymorphism.

Received for publication 15 June, revised, accepted 1 November 1973

A previous investigation (Hammond et al. 1972b) revealed significant differences in the reaction patterns of different anti-HLA5 sera when tested in the Indian population of Durban. Further work is described in this paper.

Materials and Methods
 Subjects

The Indians of Natal are the descendants of immigrants who arrived about a century ago to work on the sugar plantations. They
can be grouped firstly into Tamil and Telegu speakers from southern India, both Hindu by religion but subdivided here by language, and secondly into two groups from the north, northern Hindus from the eastern side of the continent and a group from the west who are Moslem by religion. Most of the latter would have been Hindus before conversion but are separated geographically from the Hindu group in the north-east.

Caucasians are of western European origin. The Bantu are Negroes, mostly of the

Supported by a grant from the South African Medical Research Council (P.B.)

Zulu tribe. The Coloured population is of mixed Caucasian and Bantu origin. The proportion of each race group in the greater Durban area is shown in Table 1.

Table 1
Population of Durban

Race	Number	$\%$
Caucasian	269,635	24.4
Indian	348,483	31.5
Bantu	443,382	40.0
Coloured	45,376	4.1
Total	$1,106,876$	100.0

Although Indians are normally considered to be Caucasians, for the purposes of this paper the terms Caucasians, Indians and Bantu will refer to the populations as defined above.

Serology

A total of 250 antisera were used in a twostage microlymphocytotoxicity test as recommended by the National Institutes of Health (Brand et al. 1970); of these, 34 were anti-HL-A5 and nine were anti-W5. Serum Lindford was kindly donated by Dr. M. Shapiro of the South African Blood Transfusion Service, Johannesburg, and several antisera were obtained from the N.I.H. serum bank. More than 120 of these sera have been characterised in parallel with N.I.H. tray N621 (Hammond et al. 1972a). Lymphocytes from 95 randomly selected Indians were isolated by the method of Böyum (1968) using a Ficoll-Hypaque density gradient.

Statistical Analysis

The distribution of the different groups in the 95 Indians tested was as follows:

Hindu	34	Tamil	37
Moslem	14	Telegu	8
Others	2		

The subdivision of HL-A5 emerged from the analysis of the reaction patterns of these 95 Indians. A total of 303 Indians was used for the population frequencies and 258 of these could be classified by language and religion into the four groups mentioned. There were 45 other Indians who could not be classified.
Haplotype frequencies and delta values were calculated according to Mattiuz et al. (1970), and the genetic distances (f) between populations were calculated according to Cavalli-Sforza \& Bodmer (1971) using the formula

$$
\begin{gathered}
\mathrm{f}=4(1-\operatorname{Cos} \theta) / \mathrm{K}-1 \\
\text { where } \operatorname{Cos} \theta=\sum_{\mathrm{i}=1}^{\mathrm{K}} \sqrt{\mathrm{Pi} \times \mathrm{Pi} 2},
\end{gathered}
$$

K is the number of alleles, and $\mathrm{Pi}, \mathrm{Pi} 2$ are the respective allele frequencies in the two populations.

Results

Fig. 1 shows the reaction pattern obtained with 34 anti-HL-A5 sera, nine anti-W5 sera and serum Laskey (anti-W18). Also shown is the distribution of the other antigens at the second segregant series and the distribution of Indians from the North and South of India. Table 2 lists the 2×2 comparisons for these sera versus HL-A5 and W5, as illustrated in Fig. 1. Table 3 shows the distribution of subdivisions of HL-A5 amongst the four groups of Indians and the significance is calculated in Table 4.

Tables 5 and 6 show the HL-A antigen frequencies at the first and second segregant series in each of the Indian subgroups compared with the frequencies in Caucasians and Bantu. Table 7 shows the frequency of haplotype HL-A1, W17 in all the populations with the standard error and delta values.

Figure 1. Reaction pattern of HL-A5 and W5 antisera in Indians.

Table 2
2×2 comparisons of antisera reacting with HL-A5 and W5 as defined in Fig. 1

	Antisera D	Dilution	\% 8 +	+ +	+-	- +	- -	χ^{2}
HL-A5	LINFORD	2	100	4	23	0.	68	10.5
	PE27	30	75	4	23	0	68	10.5
	N56.4	8	75	4	23	0	68	10.5
	N475	2	33	3	24	0	68	7.8
	V52	3	80	5	22	0	68	13.3
	N348	2	56	8	19	1	67	17.9
	K. KLAASEN	N 1	44	9	18	0	68	25.0
	A803	1	37	8	19	0	68	22.0
	S152	20	90	9	18	0	68	25.0
	N583	1	33	9	18	0	68	25.0
	WOLF	1	86	7	20	0	68	19.0
	COUPER	1	71	13	14	1	67	33.5
	PE468	1	36	11	16	0	68	31.3
	N204	4	92	13	14	0	68	37.9
	N693	2	79	17	10	2	66	43.5
	N442	5	52	21	6	0	68	67.9
	D66-6222	2	32	18	9	1	67	51.3
	MARSON	1	50	17	10	1	67	47.6
	N619	2	79	18	9	1	67	51.3
	N680	1	53	19	8	0	68	59.8
	N644	1	91	23	4	0	68	76.4
	N358	6	68	24	3	1	67	76.2
	N711	1	72	25	2	4	64	68.5
	N301	1	79	24	3	4	64	64.1
	V323	1	79	26	1	8	60	60.1
	AGST	100	93	25	2	4	64	68.5
	N298	1	96	26	1	2	66	81.0
	WESA	1	86	27	0	2	66	85.8
	BYRON	1	87	26	1	5	63	69.5
	N310	1	90	26	1	3	65	76.9
	FUJINAKA	1	100	27	0	3	65	81.7
	N615	1	74	27	0	7	61	67.7
	N400	1	71	26	1	8	60	60.1
	A106	1	71	25	2	10	58	50.4
W5	N615	1	74	9	2	25	59	11.5
	N400	1	71	10	1	24	60	16.4
	A106	1	71	11	0	24	60	21.3
	N706	2	100	11	0	6	78	57.1
	A911	1	92	11	0	2	82	78.5
	A368	1	45	9	2	2	82	59.9
	PE286	4	38	11	0	2	82	78.5
	FINLEY	1	50	9	2	3	81	54.0
	N374	1	80	10	1	0	84	85.3
	N429	1	75	10	1	2	82	69.1
	S126	30	44	8	3	1	83	58.0
	A587	1	40	7	4	3	81	37.3

Table 3
Distribution of sub-divisions of $H L-A 5$

	HL-A5			
	5.1	5.2	5.3	5.4
Hindu	1	0	1	7
Moslem	0	0	0	3
Telegu	1	1	0	0
Tamil	2	3	5	2

Note: One cell donor (No. 25) of unknown origin had been omitted.

Table 4
Association between subgroups of $H L-A 5$ and Indians from the North and South of India

	HL-A5 $.1+.2+.3$	HL-A5 .4	Total
North of India	2	10	12
Moslem and Hindu			
South of India			
Tamil and Telegu	12	2	14

$\chi^{2}=12.4 \quad P<0.001$
Fisher's exact method $P=0.00064$
Note: One cell donor (No. 25) of unknown origin has been omitted from the calculation.

Table 5
IIl-. I muigen frequencies at the first locus in Indian sub-groups compared with the frequencies in Caucasians and Bantu

	Hindu 70	Moslem 38	Telegu 45	Tamil 105	North 108	South 150	Indian 303	Caucasian 704	Bantu 166
HL-A1	15.7	21.1	24.4	32.4	17.6	30.0	25.7	31.5	4.2
HL-A2	17.1	42.1	33.3	31.4	25.9	32.0	30.0	46.3	22.9
W28	17.1	15.8	6.7	10.5	16.7	9.3	13.2	7.8	19.3
HL-A3	21.4	10.5	17.8	17.1	17.6	17.3	17.8	30.0	12.1
HL-A11	31.4	10.5	26.7	28.6	24.1	28.0	26.7	11.4	0.0
HL-A9	30.0	36.8	28.9	25.7	32.4	26.7	28.7	16.5	23.5
HL-A10	2.9	10.5	11.1	8.6	5.6	9.3	7.9	9.0	16.3
W19-6	10.0	7.9	8.9	6.7	9.3	7.3	7.9	7.0	16.3
W29	0.0	0.0	2.2	1.0	0.0	1.3	0.7	3.6	12.7
W31	2.9	0.0	0.0	0.0	1.9	0.0	0.7	3.3	30.7
X	51.5	44.8	40.0	38.0	48.9	38.8	40.7	33.6	42.0

Table 6
$H L-A$ antigen frequencies at the second locus in Indian sub-groups compared with the frequencies in Caucasians and Bantu

	Hindu 70	Moslem 38	Telegu 45	Tamil 105	North 108	South 150	Indian 303	Caucasian 704	Bantu 166
HL-A5	40.0	36.8	33.3	33.3	38.9	33.3	36.0	9.9	2.4
W5	17.2	13.2	28.9	23.8	15.7	25.3	21.8	13.6	10.8
HL-A7	7.1	7.9	17.8	13.3	7.4	14.7	12.2	23.3	12.7
W22	0.0	0.0	4.4	1.9	0.0	2.7	2.6	3.8	34.3
W27	8.6	0.0	0.0	1.9	5.6	1.3	3.3	7.8	3.0
HL-A8	5.7	5.3	13.3	4.8	5.6	7.3	5.9	23.7	11.5
W14	0.0	5.3	0.0	0.0	1.9	0.0	1.0	6.4	7.8
HL-A12	14.3	21.1	8.9	9.5	16.7	9.3	12.9	29.8	22.3
HL-A13	8.6	2.6	6.7	6.7	6.5	6.7	6.3	5.1	4.2
W10	27.1	29.0	33.3	23.8	27.8	26.7	25.4	13.4	4.8
W15	14.3	13.2	20.0	12.4	13.9	14.7	14.9	11.4	15.1
W17	18.6	23.7	20.0	22.9	20.4	22.0	21.1	7.8	30.7
Y	38.5	41.9	13.4	45.7	39.6	36.0	36.6	44.0	40.4

Table 7
Distribution of the $H L-A 1$, W17 haplotype. All figures are $\times 10^{3}$

	Hindu	Moslem	Telegu	Tamil	North	South	Indians	Caucasian	Bantu
Frequency 25	49	66	86	33	80	61	19	7	
s.e.	40.4	57.7	37.3	37.1	33.2	28.3	19.4	10.0	23.5
Delta	16.7	34.9	52.5	64.6	23.3	61.1	45.1	11.7	3.1

Table 8
Genetic distances (f) between the four Indian groups based on the HL-A gene frequencies at the first and second locus

	First locus	Second locus	Average
Hindu - Moslem	0.0963	0.0548	0.0755
Hindu - Telegu	0.0864	0.0383	0.0623
Hindu - Tamil	0.0818	0.0553	0.0686
Moslem - Telegu	0.0720	0.0418	0.0569
Moslem - Tamil	0.0699	0.0642	0.0670
Telegu - Tamil	0.0571	0.0340	0.0456

Table 9
Genetic distances hefzeen Caucasians and Indian suberroups

	First locus	Second locus	Average
Caucasian - Hindu	0.1015	0.0994	0.1004
Caucasian - Moslem	0.0803	0.1015	0.0909
Caucasian - Telegu	0.0689	0.0744	0.0716
Caucasian - Tamil	0.0668	0.1027	0.0847
Caucasian - North	0.0880	0.0941	0.0910
Caucasian - South	0.0675	0.0914	0.0794
Caucasian - Indian	0.0679	0.0865	0.0772
Caucasian - Bantu	0.1271	0.0951	0.1111
Indian - Bantu	0.1561	0.1072	0.1316

Discussion

The reaction patterns illustrated in Fig. 1 show how the anti-HL-A5 sera may be subdivided into groups. We have called these groups 5.1, 5.2, 5.3 and 5.4, and together they make up HL-A5. Those cells which are 5.1 (the first four subjects) reacted positively with almost all the HLA5 antisera. Those which are 5.2 reacted

Table 10
$H L-A$ gene frequencies

| Gene | Caucasian | Bantu | Indian |
| :--- | :---: | :--- | :--- | :--- |
| HL-A1 | 0.1726 | 0.0213 | 0.1383 |
| HL-A2 | 0.2672 | 0.1219 | 0.1635 |
| W28 | 0.0399 | 0.1015 | 0.0683 |
| HL-A3 | 0.1632 | 0.0622 | 0.0935 |
| HL-A11 | 0.0585 | N.O. | 0.1440 |
| HL-A9 | 0.0861 | 0.1253 | 0.1557 |
| HL-A10 | 0.0458 | 0.0849 | 0.0404 |
| W19.6 | 0.0354 | 0.0849 | 0.0404 |
| W29 | 0.0179 | 0.0654 | 0.0033 |
| W31 | 0.0165 | 0.1677 | 0.0033 |
| 'O' | 0.0969 | 0.1649 | 0.1493 |
| HL-A5 | 0.0510 | 0.0121 | 0.1998 |
| W5 | 0.0707 | 0.0558 | 0.1156 |
| HL-A7 | 0.1242 | 0.0654 | 0.0630 |
| W22 | 0.0194 | 0.1897 | 0.0133 |
| W27 | 0.0399 | 0.0152 | 0.0166 |
| HL-A8 | 0.1266 | 0.0590 | 0.0302 |
| W14 | 0.0325 | 0.0400 | 0.0050 |
| HL-A12 | 0.1623 | 0.1185 | 0.0666 |
| HL-A13 | 0.0259 | 0.0213 | 0.0319 |
| W10 | 0.0692 | 0.0244 | 0.1364 |
| W15 | 0.0585 | 0.0784 | 0.0772 |
| W17 | 0.0399 | 0.1677 | 0.1119 |
| W18 | N.T. | N.T. | 0.0213^{*} |
| 'O' | 0.1799 | 0.1525 | 0.1062 |
| I N $=95$ | | | |
| N. O. $=$ Not observed | | | |
| N.T. $=$ Not tested | | | |

positively with most of the antisera except the first five sera, which reacted only with 5.1 cells. 5.3 cells reacted with fewer antisera and 5.4 with fewer still. There were no antisera that reacted specifically with $5.2,5.3$ or 5.4 , although one serum (N 442) reacted only with $5.1+5.2+5.4$ and not with 5.3, and four sera (Linford, PE 27, N564 and N 475) reacted only with 5.1.

There is no question of the "short" sera reacting only with cells homozygous for HL-A5 because only three of the 27 cell donors did not have another antigen present at the second locus. Two of these subjects are in group 5.3 , with which serum N 442 did not react.

There is, of course, the possibility that only the cell donors on the left of Fig. 1 possess the HL-A5 antigen and that the extra reactions are caused by an antigen (or antigens), common in Indians but extremely rare in other populations, cross reacting with anti-HL-A5 sera and commonly associated with HL-A5 in Indians. Fig. 1 and Table 4 also show that 5.4 seems to be closely associated with Indians from the north of India. It is known that these northern populations were subjected to successive waves of infiltration of Mongoloid races from the northeast. These waves did not penetrate to the south of India, which is occupied by Dravidian races who originated in Western Asia and settled in India in prehistoric times. This is confirmed by the frequency of the HL-Al antigen in the sub-groups investigated here. It is lowest in the Hindu population which emigrated to Soulh Africa from the northeast of India, slightly higher in Moslems from the northwest and is the same in the Caucasians as in the Tamil population which emigrated from the southern-most part of India. (The Telegu occupy provinces to the North of the Tamils.) The significance of the differences in antigen frequency was tested by calculating χ^{2} values for each antigen between all possible pairs of Indian subgroups. The only value with P <0.01 was that for $\mathrm{HL}-\mathrm{A} 2$ between Hindu and Moslem ($\chi^{2}=7.99$). Considering the total number of comparisons and the small number of Moslems tested, this value is not significant.

If only one antigen was detected at the first segregant series the cells were clas-
sified as, e.g., HL-A3, X,HL-A7, W27. Thus ' X ' represents an unknown, or more precisely, an undetermined antigen because of the possibility of homozygosity. Similarly a ' Y ' is used at the second segregant series. The frequencies of ' X ' and ' Y ' are therefore, to some degree, a measure of heterozygosity, because of the low frequency of null genes (' 0 ') at each locus.

The frequency of ' X ' at the first segregant series ranges from 33.6% in Caucasians to 51.5% in the Hindu population. At the second segregant series similar frequencies are observed for ' Y ' except for the Telegus where the frequency is only 13.4 $\%$. The next lowest frequency of ' Y ' is in Hindus (38.5%) and the difference is significant ($\chi^{2}=6.97 ; P<0.05$), perhaps even more so, considering that the genetic distance (f) between Telegu and Hindu at the second locus is only 0.0383 (Table 8). The difference in the frequency of ' Y ' between Telegu and Tamil is highly significant ($\chi^{2}=14.3 ; P<0.0005$). This implies that there may be a selective advantage to the heterozygote at the second segregant series in. the Telegu populations. We have found (Brain \& Hammond, submitted for publication) a correlation between heterozygosity at the first segregant series and the ability to make Rh antibodies. There may be a correlation between heterozygosity at the second segregant series and the ability to make antibodies to pathogens which are (or were) common in the Telegu provinces of India.

Haplotype frequencies and delta values were calculated from the phenotype data for each population. The only significant delta values were for the haplotype HLA1, W 17 and these are shown in Table 7. Singal et al. (1971) found the frequency of this haplotype to be $24 / 1000$ in a study of 80 Indians of whom more than lalf (47) were from Northern India. Its delta value was not significant and their figures
are almost the same as our figures in the Hindu population. Ting et al. (1971) found a significant delta value for HL-A1, W17 in a study of Indians in Singapore. In our Caucasian population the delta value is greater than the standard error of the haplotype frequency. The data collected during the Fifth Workshop (Histocompatibility Testing 1972) show an increasing frequency of the HL-A1, W17 haplotype with increasing distance east of Europe.

If Caucasians and Dravidians have prehistoric ancestors in common it may be interesting to speculate on the high frequency of the W17 antigen and the HL A1, W17 haplotype in the Tamil and Telegu groups, compared with the frequency of HL-A8 and the HL-A1, HL-A8 haplotype in Caucasians. There is also a negative delta value (-0.0096) for the HLA1, HL-A8 haplotype in Indians from the south of India. In fact only one individual out of 150 possessed both HL-A1 and HLA8. What selective pressures can there have been to favour the HL-A1, W17 haplotype (and act against HL-A1, HLA8) in the Dravidian races? There also must have been different selective pressures at work in the Caucasian population that were advantageous to the HL-A1, HL-A8 haplotype and did not affect the HL-A1, W17 haplotype.

Table 8 shows the genetic distances (f) between the lurlian subgroups. The lowest values are between Tamil and Telegu from the south of India. The genetic distances between Caucasians and the other populations are shown in Table 9.

The f-values between Caucasians and Bantu and between Indians and Bantu are lower at the second segregant series than at the first segregant series. But the fvalues between Caucasians and the Indian sub-groups are greater at the second segregant series than at the first, with the excep-
tion of Hindus, who show the greatest disparity with Caucasians.

References

Bodmer, J. G. \& Bodmer, W. F. (1970) Studies on Alrican pygmies. IV. A comparative study of the HL-A polymorphism in the Babinga Pygmies and other African and Caucasian populations. Amer. J. hum. Genet. 22, 396411.

Böyum, A. (1968) Separation of leucocytes from blood and bone marrow. Scand. J. clin. Lab. Invest. 21, Suppl. 97.
Brand, D. L., Ray, J. G., Hare, D. B., Kayhoe, D. E. \& McClelland, J. D. (1970) Preliminary trials toward standardization of leukocyte typing. Histocompatibility Testing 1970, p. 357-367. Munksgaard, Copenhagen.
Cavalli-Sforza, L. L. \& Bodmer, W. F. (eds.) (1971) The Genetics of Human Populations. Freeman, San Fransisco.
Dausset, J. \& Colombani, J. (eds.) (1972) Histocompatibility Testing 1972. Munksgaard, Copenhagen.
Hammond, M. G., Appadoo, B. \& Brain, P. (1972a) HL-A antigens and antibodies in South African Bantu. Transplantation 14, 159-165.
Hammond, M. G., Appadoo, B. \& Brain, P. (1972b) HL-A antigens and antibodies in South African Indians. Tissue Antigens 2, 389-396.
Mattiuz, P. L., Ihde, D., Piazza, A., Ceppellini, R. \& Bodmer W. F. (1970) New approaches to the population: Genetic and segregation analysis of the HL-A system. Histocompatibility Testing 1970, p. 193-205. Munksgaard, Copenhagen.
Singal, D. P., Mickey, M. R. \& Terasaki, P. I. (1971) HL-A typing in Asian Indians. Tissue Antigens 1, 286-289.
Ting, A., Wee, G. B., Simons, M. J. \& Morris, P. J. (1971) The distribution of HL-A leukocyte antigens in Singapore Chinese, Malays and Indians. Tissue Antigens 1, 258-264.

Address:

M. G. Hammond

The Natal Institute of Immunology
P.O. Box 2356

149 Prince Street
Durban
South Africa

HLA ANTIGENS IN SOUTH AFRICAN NEGROES AND INDIANS. M.G. Hammond, B. Appadoo and Peter Brain. Natal Institute of Immunology, Durban, South Africa.

The Seventh Workshop serum set was tested in Zulu Negroes and Indians (the descendents of l9th century immigrants from India) because of the high frequency in these races of antigens that have been 'split'. At the A locus Aw30 is very common in Zulus and the reaction pattern of Aw30 sera shows that this antigen is probably heterogeneous although no clearcut split could be defined. As in the Sixth Workshop there wers no sera recognising Aw31 but Aw32 was clearly defined by sera W312 and W327. Aw33 was detected only in Indians and a possible split is defined by two workshop sera which reacted as 'short' Aw33 (W331 and W427). Only serum W427 did not react with HLA AlO cells.

Several splits can now be defined at the B locus. The Seventh Workshop sera confirm our earlier subdivision of HLA B5 (M.G. Hammorid et al, Tissue Antigens (1974) 4, 12), although serum W336 appears to define 85.3 and not 85.2 while B5.l is split into B5.l and B5.2. $H R$ is not as clear as in the Sixth Workshop and the relationship between H and 85.4 needs clarification. These subdivisions are common in the Indian population but Zulus have only B5.l and HR. Bw35 was fairly well defined except for two Indians whose cells reacted with only some of the Bw35 sera. Nearly all Bw5.1, 5.2, 5.3, 5.4 and HR cells were 4a positive. while Bw35 cells were 4b.
Bw42 was found only in Zulus and was clearly different from Bw22 although some sera reacted with cells that were also positive with Bw41.
It is clear that Bw40 can be split. Bw40.l is defined by serum W457 but the other Bw40 sera showed a very complex reaction pattern which was confined to Indians. Further splits cannot be excluded. There were no helpful $4 a$ or $4 b$ associations. The question of a split of Bwly defined with Bwl 5 sera is not clear at all. Only Indians were positive with the short Bwl5 sera in the workshop set. Eight local sera and one workshop serum (W436) reacted as long Bwl5 sera with five Zulus and four Indians. Four of these local sera were positive with a further four Indians and two Zulus. Eleven of thege donors were also Bwly and ten of them had another antigen present at the B locus. However, six local sera and six workshop sera defining Bwl7 showed no differences between these 10 cells and 16 other Bwl7 cells. All Bwll cells were $4 a$ while the short Ewl 5 cells were $4 b$.

The first five antigens at the C locus presented no problems. At the Sixth Workshop we reported that CW2 was absent in Indians but we have since found that it is present at a low frequency. T7 was present in 42% of Indians and 35\% of Zulus.

A preliminary analysis of the B cell antisera gave the following percentage frequencies for the D locus antigens. A split of DW2 was present in Indians.

	Zulu	Indian
Dw2	8	26
< Dw2	0	10
Dw3	19	13
Dw5	14	8
LD107	11	21
WB5-W86	11	10

DW1, DW4, DW6 could not be defined.

LEUCOCYTE GROUPS IN BABOONS TESTED WITH HUMAN ANTISERA*

M. G. Hammond and P. Brain, Natal Institute of Immunology, Durban

The South African baboon (Papio papio) is a useful animal for research in transplantation, and Murphy et al. ${ }^{1}$ have already shown that its leucocytes will cross-react with human leuco-agglutinating sera. The human antisera used in Murphy's study, however, were not characterized by leucocyte group. We report here a study of 29 baboons tested with 62 leuco-agglutinating sera previously characterized in a human panel.

Material

Twenty-nine adult baboons, of which 13 were male, were examined. They had been collected in five widely separated parts of South Africa and, as far as is known, were unrelated.

The human antisera were obtained from parous women as previously described. They had been characterized by x^{2} and sometimes by factor analyses against the leucocytes of panels of Caucasian donors varying in size from 40 to 188 individuals. A study of some of the sera has been previously published. ${ }^{2}$ A composite χ^{2} map of all these results is seen in Fig. 1. The antigenic complexes which the sera were recognizing were identified in earlier studies by the use of reference sera obtained from the National Institutes of Health and elsewhere, and many of the sera have also been examined by another laboratory. Many antisera that fell into positions intermediate between the main complexes, and some of unknown specificity, were deliberately included in the survey.

[^3]
methods

The EDTA agglutination test of Van Rood et al. ${ }^{3}$ was used with certain modifications. Red cells were sedimented with 3% gelatin in normal saline. Only one drop of antiserum was used for each test, and the quantities of the other reagents were correspondingly reduced. All tests were read by the same worker.

From the laboratory protocols the results were assembled in a 29×63 matrix, coding any positive reaction as 1 , negative as 0 . An IBM 1130 computer was programmed to perform the following analyses:

1. Compare the reactions of every serum with those of every other, and print out χ^{2} and $r . \quad\left(r=\sqrt{ } \frac{\chi^{2}}{29}\right.$)
2. Compare the pattern of reactions of each individual baboon with that of every other, and perform a χ^{2} analysis as above.

RESULTS

Fig. 1 shows the χ^{2} associations of the sera in the human and Fig. 2 in the baboon panel. Each serum is represented by a circle of diameter proportional to the frequency with which it reacts. The unbroken lines between circles represent positive associations with χ^{2} such that $\mathrm{r} \geqslant 0.5$ (thick lines) or $\geqslant 0.32$ (thinner lines). Negative associations with $r \leqslant 0.20$ are shown by dotted lines.

Table I shows the percentage frequencies with which the sera react in humans and baboons and the antigenic clusters to which the sera correspond in the human panel.

TABLE 1．SPECIFICITY OF ANTISERA，AND FREQUENCIES OF REACTION IN MAN AND IN BABOONS

2				$\dot{2}^{\circ}$	$\begin{array}{r} \dot{4} \text { 들 } \\ \hdashline= \end{array}$		Σ_{20}
						ふ̀口	式
－				E	边出卫	$\frac{8}{8}$	5 5
$\underset{y}{5}$				ξ	家可	g s	－0
$\stackrel{\rightharpoonup}{6}$				$\stackrel{\pi}{4}$	\％̇	2	20
				\sim	8	5	40
7	4 a	48	14	76	7c	37	31
9	7c	34	31	78	4a	59	79
10	7 c	34	10	86	7 d	45	10
12	7 d	36	35	88	4 b	88	86
14	7 c	22	21	89	7 d	29	66
15	$4 \mathrm{a}+$	71	41	99	$4 \mathrm{a}+$	78	59
19	$7 \mathrm{c}+$	53	10	101	7c－－7d	29	24
23	4 b	88	38	103	$4 a+$	74	72
24	$\pm 8 \mathrm{a}$	51	38	105	$4 \mathrm{a}+$	85	59
25	7 d	42	7	106	4 b	90	59
27	New	17	62	109	7c－7d	34	31
29	New	21	28	112	7d	22	38
32	4 a	52	55	113	7c－7d	22	10
34	7 d	25	41	114	？ 5 b	89	90
38	4 a	32	76	115	7 d	51	17
39	？	65	55	116	$4 \mathrm{a}+$	75	24
40	$7 \mathrm{c}+4 \mathrm{a}$	22	14	121	7 d	61	31
44	4 a	64	10	124	？	38	17
46	$4 b$	83	79	127	$?$	60	10
48	$8 \mathrm{a}+7 \mathrm{~d}$	46	35	129	？	53	31
49	4 b	75	100	132	$4 b$	80	28
52	7d	28	31	1：5	4 b	83	28
53	7 c	43	59	$1 \because$	＇？	48	31
54	$<4 \mathrm{~b}$	48	38	137	4 a	43	14
61	？	80	52	138	？ 56	93	79
64	7 d	35	31	142	7c	65	79
66	7d	32	17	143	7 c	60	35
68	4 a	73	41	144	？	45	48
70	7d	32	10	145	7c－7d	15	10
72	7 d	29	24	146	？	88	52
73	7c－－4a	58	66	152	$4 b$	88	7

Mean of all frequencies in man $=52.7 \%$
Mean of frequencies in baboons $=39.1 \%$
group detected by agglutination tests with these sera difiers from the HL－A 8 group detected by cytotoxic tests．Studies of baboon leucocyte groups using cytotoxic sera of human origin would be interesting，and we hope to undertake them．

SUMMARY

The leucocytes of 29 South African baboons（Papio papio）were tested with 62 EDTA agglutinating human antisera，mostly of known specificity against human leucocytes．All these sera reacted with the cells of some baboons．Before it can be assumed that baboons have the equivalent of human white cell groups，however，it must be shown that the same sera that identify an antigenic complex in man are associated to form a complex in baboons also．This was found to be so only with some of the anti－7c（HL－A7）sera．There was no evidence of the equivalent of a human 4 a or 4 b group in the baboons tested，but the χ^{2} map showed several antigenic complexes that do not appear to be related to human groups and may represent groups peculiar to the baboon．It is concluded that

TABLE If．ANTIGENIC CLUSTERS IN BABOONS

Cluster No．	Sera Nos．	Antigenic complex identified by serum in man
	145	$7 \mathrm{c}-\mathrm{d}$
	10	7 c
1	124	？
	113	$7 \mathrm{c}-\mathrm{d}$
	19	7c
	40	$7 \mathrm{c}+4 \mathrm{a}$
	72	7 d
	44	4 a
2	115	7 d
	127	？
	14	7 c
	54	＜4b
	29	New
3	64	7 d
	52	7 d
	12	7 d
	66	7 d
	101	7c－d
4	86	7 d
	116	$4 \mathrm{a}+$
	70	7 d
	76.	7 c
	135	4b
	121	7d
5	15	
	144	？
	112	7 d
	109	$7 \mathrm{c}-\mathrm{d}$
6	32	4 a
	48	7d－8a
	137	4 a

Antigenic complex ied by serum

7 c
$7 \mathrm{c}-\mathrm{d}$
$7 c+4 a$
7 d
？
$<4 b$
$7 d$
$7 d$
$7 \mathrm{c}-\mathrm{d}-\mathrm{d}$
$4 a+$
$7 d$
$4 b$
$7 d$
$4 a+$
$?$
7 d
$7 \mathrm{c}-\mathrm{d}$
$7 d-8 a$
the South African baboons tested have a leucocyte group that is related to the human 7 c group，but no groups related to the human 4 a or 4 b groups．

We wish to thank Prof．J．V．O．Reid of the Department of Physiology，University of Natal，and the proprietors of the Natal Lion Park for permission to take blood from baboons in their possession；and Mr G．L．Webb for the computer pro－ gramme．

REFERENCTS－

1．Murphy，G．P．．Brede，H．D．，Weber，H．W．，Retief，F．P．，Van Zyl， J．J．W．，Van Zyl，J．A．and De Klerk，J．N．（1969）：S．Afr．Med．J．， 43， 689.
2．Brain，P．and Hammond，M．（1968）：Med．Proc．，14， 589.
3．Van Rood，J．J．，Van Leeuwen，A．，Schippers，A．M，J．，Pearce．R．， Van Blankenstein，M．and Volkers，W．（1967）：Histocompatibility Testing，p．203．Copenhagen：Munksgaard．
4．Daussct，J．，Ivanyi，P．and Ivanyi，D．（1965）：Histocompatibility Testing，p．51．Copenhagen：Munksgaard．

Fig. 1. χ^{2} associations of sera tested against human leucocytes.

In Table II the data on the sera making up the antigenic clusters in baboons are summarized for convenience.
The x^{2} map of the comparisons between individual baboons showed only one complex of 19 positively associated individuals. It is not reproduced here.

DISCUSSION

If a human antiserum that detects an antigen, say 8 a , in man is tested in baboons it may well react with the cells of some individuals. This does not mean, however, that these individual baboons possess the equivalent of the 8 a antigen. For this to be so, we must find that the same sera that fall into the anti-8a cluster in the human χ^{2} map are associated in an equivalent cluster in the baboon analysis. Even in different human populations, for example in Caucasians and Bantu, it has been found ${ }^{2,4}$ that a serum that identifies a certain factor in one population does not necessarily do so in another. It would thus be surprising if there was much similarity between the leucocyte groups of human beings and baboons, and this study in fact shows that there is little.
The χ^{2} map of the baboon tests does show, however, a number of clusters, of which only the central one composed of sera $10,19,40,113,124$ and 145 is well defined.

The χ^{2} map shows that all the clusters are in fact sub

Fig. 2. χ^{2} associations of sera with baboon leucocytes.
groups of one major cluster, and it is interesting to note from Table II that almost all the sera composing them have anti-7c or anti-7d affiliations in the human panel. In the tight central cluster of the baboon analysis most of the sera fall into the anti-7c group in human subjects. This strongly suggests that baboons have a leucocyte group that somewhat resembles 7c (HL-A7). The other clusters seen in the baboon χ^{2} map may represent antigenic complexes that have no homologues in man. It appears unlikely that the baboons tested have anything equivalent to the human 4 a or 4 b complexes. We can say nothing about the 8 a complex since only one pure anti-8a serum, from an impeccable source, was included in the study. It worked very well in the human panel but did not react with the cells of the baboons at all.
Further studies of baboon leucocyte groups would be of great theoretical interest, but should be carried out with sera derived from parous or transplanted baboons rather than from human subjects. After some well-defined groups have been detected in this way we may be able to investigate further their relationship to the leucocyte groups of man. If methods of immunosuppression improve enough in the future to make baboon-to-man transplants practicable, such studies will be of great practical importance.

ADDENDUM

The results with our anti-7d sera should be accepted with reserve. since we have subsequently shown that the human

Leukocyte Antigens of Baboons

By H. J. Downing, P. Brain, M. G. Hammond, G. H. Vos, and G. R. Webb

THE BABOON IS BEING USED in large numbers for transplant programs and it is therefore desirable to be able to identify its tissue antigens. It has been shown that the leukocytes of baboons will react with human leukoagglutinating sera. ${ }^{1}$ Using 26 sera, Murphy et al. found that the greater the number of differences in the leukocyte antigens between the donor and the recipient of a skin graft, the shorter was the period of survival of the graft. This suggested that these human antisera were recognizing tissue antigens of the baboon. This was supported by their observation that homogenates of baboon kidneys reacted with the same antisera as did the leukocytes from the same baboon. Unfortunately, however, the sera used had not been previously characterized in man. Even if a serum had been characterized in one species it is difficult to apply it to another species. For example, if a human antiserum that detects an antigen, say, HL-A2, in man, reacts with the leukocytes of some baboons, it does not necessarily mean that these individual baboons posses the equivalent of the HL-A2 antigen. Even in different human populations it has been found that a serum that identifies a certain antigenic complex in one of these populations does not necessarily do so in the other. ${ }^{2,3}$ An illustration of this is the serum Willett which has been described as having an agglutinin activity that corresponds exactly with its cytotoxicity activity. ${ }^{4}$ This is certainly true for a white population, but it is not the case for Indians and blacks where the agreement between the two tests falls to 20%. Similarly, two sera that give a close correlation in a white population need not necessarily correlate with

From the Natal Institute of Immunoogy and the University of Natal, Durban, South Africa.
one another when tested in another population. In a white population the two sera Willett and S71 gave a close agreement with a χ^{2} of 27.7, while in a black population there was very little association between these sera, and the χ^{2} was reduced to 2.2. The reason for this is that many sera thought to be monospecific contain second antibodies against determinants that are very rare in one race but common in another, and this is far from being a rare occurrence. In a survey of white, Indian, and black populations, Brain and Hammond ${ }^{3}$ found that although many leukocyte antisera appeared in the same tightly associated groups in all three populations, other sera closely associated in one race group were not associated in one of the other race groups. Where the same groups of closely associated sera are found in all three populations, it can be concluded that each of these groups of sera identifies a complex of antigenic factors frequently inherited in association. ${ }^{5}$.

On the basis of this principle, human leukoagglutinating sera were used to study the leukocyte groups of baboons. ${ }^{6}$ The results are illustrated in Fig. 1. The numbers are the reference number of the sera, the diameter of the circles represent the number of positive tests expressed as a percentage of the total, and the thickness of the lines represents the degree of association as measured by the χ^{2} test. This method of drawing maps was first used by Dausset. There is little resemblance between the χ^{2} maps for the two species except for one cluster of sera that detect HL-A7 in man and form a corresponding cluster in baboons. This strongly suggests that baboons have a leukocyte antigen that resembles HL-A7, but as this study did not reveal any other antigen shared by humans and ba-

Fig. 1. Relations of 13 sera in man and baboon recognizing 7c complex in man.
boons, an attempt was made to develop isoantibodies in baboons.

Baboons were immunized by skin grafts ${ }^{7}$ followed by s.c. booster injections of leukocytes in Freund'; adjuvant. Ten days later, samples of blood were taken from the 16 baboons concerned and the sera tested by
cytotoxicity against a panel of baboon lymphocytes stored in liquid nitrogen. Of the 16 baboons, 15 gave positive results and were plasmapheresed to give bulk supplies of plasma. The remaining baboon was given a further injection of lymphocytes but again failed to develop antibodies. The

Table ?. Dairs of u_{a} bonns With Gimilar Leukocyte Anticens as Determined by rytotoxict to Test

CELLS	ANTISERA														
	82	A3	E5	28	C9	B8	C7	C6	04	E2	T2	T7	T8	TII	T13
81	+	+	+	+	*	+	+	+	+	-	-	-	+	+	+
T2	+	+	+	+	+	+	+	+	+	-	-	-	+	+	+
4	+	-	+	-	-	+	+	-	+	-	-	-	+	+	+
5	-	-	+	-	-	+	+	-	+	-	-	-	+	+	+
7	+	+	-	+	-	-	+	*	+	+	+	+	+	+	+
C9	+	+	-	+	-	+	+	+	+	+	+	+	+	+	+
T3	+	-	+	-	-	+	+	+	+	+	-	-	+	+	+
T7	+	-	-	-	-	+	+	+	*	+	-	-	+	*	*
9	+	-	+	-	+	+	+	-	-	-	-	-	+	+	+
C3	+	-	+	-	+	+	+	-	+	-	-	-	+	+	*
Cl	+	+	-	+	-	+	+	-	-	-	-	-	+	+	+
C5	+	+	-	+	+	+	+	-	-	-	-	-	+	+	+

results of the cytotoxicity tests between the 15 sera and the lymphocytes from 45 baboons were analyzed by a computer and the χ^{2} relationships between sera and between cells determined. The χ^{2} values for the sera are shown in Fig. 2. Sera C7 and B8 are from baboons immunized by tissues from the same donor E3 and show a high degree of association. Although baboons A3 and E5 were immunized by donor C3, the sera from these baboons are not associated. Serum E5, however, is related to C7 which is also related to serum T11. Tissues from baboon 7 were used to immunize five baboons, and the sera from these baboons fall into two unrelated groups. Serum T8 is associated with sera T13 and T11, thus forming a group of six sera as shown at left of Fig. 2. The sera from the other
two baboons, T 2 and T 7 , that received tissues from baboon 7 are associated with one another but belong to a separate group of 4 sera (T2, T7, 28, and C6) as shown at right of Fig. 2. Outside these two groups of sera are four other sera (plus one serum not shown in Fig. 2) that are not related to any other serum.

Absorption studies have not been performed on any of these sera as the sera were produced by random immunizations and are unlikely to be monospecific. Instead, the sera have been used to compare the lymphocytes from the various baboons in our colony. From the analysis of these results, six pairs of baboons have been selected and are shown in Table 1. The two baboons in the first pair gave identical results with all 15 sera while the members of

Fig. 2. Relationship between 14 cytotoxic sera produced in baboons by isoimmunization.
the other pairs differ from one another with respect to only one serum.

The next stage of the immunization program will be to exchange skin grafts between the members of each pair in an endeavour to produce more specific sera. These sera will be tested by absorption to see if any of them are monospecific. This work is being performed in one species of baboon, Papio ursinus, and it would be of interest to test these sera in other species of baboon. For this reason we hope to col-
laborate with other laboratories working in this field, especially Dr. Barnes and his colleagues at the University of Birmingham. They have already tested our first batch of sera.

ACKNOWLEDGMENT

The authors would like to thank Mr. H. J. Klomfass, Mr. G. Davidson, and Mr. S. Benimadho for their technical assistance in the production of the sera.

REFERENCES

1. Murphy, G. P., et al.: S. Afr. Med. J. 43, Md., National Institute of Health, 1968, p. 130. 1969.
2. Amos, D. B.: Transplantation 5:1015, 1967.
3. Hammond, M. G., and Brain, P.: S. Afr. Med.
4. Dausset, J., Ivanyi, P., and Ivanyi, D.: Histocompatibility Testing 1965, Copenhagen, Munksgaard, 1965, p. 51.
5. Brain, P., and Hammond, M. G.: Med. Proc. 14:589, 1968.
6. Catalogue of Typing Sera for 1968. Bethesda,
7. Balner, H.: Transplantation 8:206, 1969.
8. Terasaki, P. I., and Singal, D. P.: Ann. Rev. Med. 20:175, 1969.

Short Papers

J. med. Primatol. 7: 174-181 (1978)

An Antigen Resembling HL-A7 on the Leukocytes of Vervet Monkeys ${ }^{1}$

h.J. Downing, A. Criticos, L.E. Burgers and M.G. Hammond
Natal Institute of Immunology and Department of Biological Sciences, University of Natal, Durban

Key Words. Leukocyte antigens • Vervet monkeys • Tissue typing • HL-A
Abstract. Human leukocyte typing sera of known specificities were used to test the leukocyte antigens of vervet monkeys. The results suggest that these leukocytes contained an antigen resembling the HL-A7 antigen of human leukocytes. This is similar to a previous observation with leukocytes from baboons. These findings are consistent with the suggestion that the $4 \mathrm{a} / 4 \mathrm{~b}$ complex is the precursor substance from which the other specificities have evolved.

There have been numerous reports in which isoimmune typing sera developed in one species of primate have been used to study platelet and leukocyte antigens of other species. Human sera have been used to investigate the platelet antigens of the chimpanzee, gibbon, orangutan, baboon, rhesus monkey and African green monkey [19]. Other investigators [3-5, 14] have nsed human sera to test the leukocyte antigens of chimpanzees. In the reverse situation, sera developed in chimpanzees, by immunization with cells from other chimpanzees or human beings, have been used to test human leukocyte antigens [3-5, 14, 18, 19].

Human typing sera have also been used to study the leukocyte antigens of baboons by means of the agglutination technique $[8,15,16]$ and the cytotoxicity test [9]. Human typing sera of specificities anti-4a and anti-4b were used to test the leukocytes of rhesus monkeys by the absorption technique [6].

[^4]We describe here an investigation in which human typing sera were used to test the leukocytes of vervet monkeys by the cytotoxicity test. In such studies, however, where sera that have been developed in one species have been used to test leukocytes of another species, the results have to be interpreted with caution [3]. Even within a species, a serum that gives a reliable result in one population will not necessarily do so in another [8, 10]. For this reason we have chosen a number of human sera for each specificity and have analysed the results to see if those sera that show a close relationship when used to test human leukocytes also show a similar correlation when used to test the leukocytes of vervet monkeys. This can be best seen from a diagram showing the relationships between the sera. Sera that cluster together when used to test human leukocytes show a similar cluster when they are used to test the leukocytes of monkeys.

Materials and Methods

Species. The vervet monkey (Cercopithecus pygerythrus Cuvier) is a species belonging to the superspecies C.aethiops of which the superspecific type species is the grivet monkey. Hill (13) recognises 13 subspecies of C. pygerythrus. No attempt, however, has been made in this paper to classify beyond species although the geographical distribution suggests that the specimens concerned were of the subspecies C. pygerythrus. The 80 individuals tested were housed at the NII Primate Centre, and had been collected from Natal and Northern Transvaal.

Anaesthctics. The monkeys were anaesthetized by intramuscular injection of ketamine hydrochloride ('Ketalar', Parke-Davis, Detroit, Mich.) at a dose of $15 \mathrm{mg} / \mathrm{kg}$ body mass. Blood samples, 5 ml , were collected from the femoral vein and defibrinated.

Cytotoxicity test. The lymphocytes were obtained by density gradient separation using ficoll-hypaque. The test was a modification of the microcytotoxicity test of Singal et al. [20] in that trypan blue was used instead of eosin to eliminate the need for phase contrast optics. The specificitics, and the number of sera for each, are shown in table I.

Analysis of results. The results were analysed at the Computer Centre of the University of Natal using a program designed by G.R. Webs to calculate X^{2} between each pair of sera in turn [11].

Results

Only associations between sera where the χ^{2} was equal to or greater than 30 have been considered. These results have been summarized in table II and have been represented diagrammatically in figure 1 where the strength of the associations is shown by the thickness of the lines connecting the various

Fig. 1. Associations between human leukocyte-typing sera when tested with leukocytes from vervet monkeys. Diameter of circle represents percentage of positive results. Thickness of line represents strength of association. Numbers are the identification numbers of the sera.
pairs of sera. The percentage of positive results is indicated by the size of the circle representing each serum.

As there were 80 sera tested and compared with each other, there were 3,160 pairs of sera, but of these pairs only 24 had X^{2} values equal to or greater than 30 (table 1I). These 24 pairs were made up from only 16 of the original 80) sera (fig. 1). The specificities of these sera were $4 \mathrm{HL}-\mathrm{A} 7+$ W22, 3 HL-A7, 2 HL-A12 and one of each of HL-A1, HL-A2, HL-A3, HL-A5, HL-A13, HL-A17, and W15. When this list is compared with the number of sera of each specificity (table l), it can be seen that of the five sera with specificities HL-A7 + W22 there are four that show relationships with other sera. Similarly, of all four HL-A7 sera, three are associated with other sera. Of these seven sera, one (No. 24) is associated with an HL-Al serum (No. 3) while the remaining six are related to one another and to six other sera as shown in figure 1 . The specificity that occurs most frequently in this cluster of sera is therefore HL-A7, and only the sera of

Tahle l. The specificitics and number of sera for each specificity

Specificity: anti-	Number of sera
HL-AI	5
HL-A2	6
HL-A3	2
HL-A3 + HL-AII	1
HL-A5	6
HL-A7	4
HL-A7 + W22	5
HL-A8	2
HL-A!	6
HL-AI0	2
HL-AII	1
HL-AI2	4
HL-AI3	1
HL-AI3 + WI0	2
HL-AI4	2
HL-A17	2
HL-A28	2
W10	1
WI5	4
Total	3

anti-HL-A7 specificity, with and without anti-W22, show any tendency to cluster among themselves as they do if tested with human lymphocytes.

Discussion

The cluster of sera with HL-A7 specificity that has been observed when human typing sera were used to test the leukocytes of viervet monkeys is similar to the earlier observation when a panel of human sera was used to test baboon leukocytes [12]. In this earlier paper the sera were associated in one major cluster that had some subclusters. In the tight central cluster that was formed when the baboon cells were tested, most of the sera belonged to the anti-7c (anti-HL-A7) group when tested with human leukocytes. This strongly suggested that baboons have a leukocyle group that somewhat resembles HL-A7. The results of the present investigation, which

Table II. Comparison of results obtained between pairs of human cytotoxic sera when tested with leukocytes of vervet monkeys,

Serum 1		Serum 2		Results				χ^{2}
No.	specificity	No.	specificity	--	- +	+-	+ +	
3	HL-A1	24	HL-A7	72	3	0	5	48.00
		45	HL-A 13	68	7	0	5	30.22
9	HL-A2	29	HL-A7 + W22	40	9	5	25	32.04
12	HL-A3	19	HL-A5	42	3	10	25	36.30
19	HL-A5	23	HL-A7	48	4	7	21	38.38
		25	HL-A7 + W22	49	3	10	18	32.19
		26	HL-A $7+\mathrm{W} 22$	49	3	7	21	41.54
		29	HL-A7 + W 22	42	10	3	25	36.30
21	HL-A7	25	HL-A7 + W22	48	3	11	18	30.15
23	HL-A7	25	HL-A7 + W22	52	3	7	18	39.31
		26	HL-A7 + W22	49	6	7	18	30.55
25	HL-A $7+\mathrm{W} 22$	26	HL-A7 + W22	53	6	3	18	42.09
		28	HL-A7 + W22	57	2	4	17	51.45
		29	HL-A7 + W22	44	15	1	20	30.67
		42	HL-A 12	44	15	1	20	30.67
		44	HL-A 12	56	3	8	13	31.25
		49	HL-A 17	56	3	5	15	41.50
		58	W15	54	5	6	15	32.74
26	HL-A7 + W22	28	HL-A7 + W22	53	3	8	16	34.87
		29	HL-A7 + W22	43	13	2	22	31.99
28	HL-A7 + W22	29	HL-A7 + W22	45	16	0	19	32.04
		42	HL-AI2	45	16	0	19	32.04
		49	HL-A17	56	5	5	13	32.38
29	HL-A7 + W22	49	HL-A17	45	0	16	18	30.85

used cytotoxicity rather than agglutination, suggest that this is also the siluation with vervet monkeys.

These two sets of observations, in which human HL-A7 sera react with the cells of baboons and vervet monkeys, are similar to the findings of Balner et al. [3]. These investigators found that certain of their chimpanzee sera (group 3) showed 7c- or HL-A7-like reactivity. They postulated that these sera might have a specificity related to AA (or W22) which is known to cross-react with HL-A7 antigens when used with human cells. Our findings in which the W22 specificity was associated with four of the six HL-A7 sera in the cluster are consistent with Balner's suggestion.

Further evidence that there are cross-reactions is offered by our observations that not all our HL-A7 were associated when tested with leukocytes of vervet monkeys. Although six of the sera were associated, three (No. 22, 24 and 27) were not. Furthermore, six of the sera (No. 23, 24, 25, 26, 28, 29) were each found to be associated with at least one serum of anothet specificity. The antigens on the leukocytes of the vervet monkey are therefore different from the human HL-A7 antigen which they resemble. This is similar to the situation with the chimpanzee where BALNER et al. [4] have used human cells to absorb chimpanzee sera and have shown that there are differences between the HI.-A7 antigens on human leukocytes and their apparent counterpant on chimpanzee leukocytes. Balner et al. concluded therefore that the ' 7 c ' on the chimpanzee cells consists of an additional specificity, or that the 7c (chimp) and 7c (human) have different configurations but are crossreactive.

Baliner [I] has also identified antigens on rhesus leukocytes that may well be the counterparts of the human 4 a and 4 b antigens.

These observations have led to the suggestion [2, 3, 17] that the basic substances from which the other antigens evolved are the $4 \mathrm{a} / 4 \mathrm{~b}$ antigens. As this complex is closely related to the seven series of antigens, our findings concerning the HL-A7 antigen in vervet monkeys are consistent with the suggestion that the $4 \mathrm{a} / 4 \mathrm{~b}$ antigens are the precursor substances from which the other specificities have evolved.

Acknow'redgements

We would like to thank Mr. G.R. Weisb, Director of the Computer Centre of the University of Natal, for the computer programs, and Mr. H.J. Klomfass, Mr. A. Saikoolal and Mr. P. Pooniah for their technical assistance.

References

[^5]3 Balner, H.; Crabb, B.W.; Dersjant, H.; Vreeswijk, W. van; Leeuwen, A. van, and RDOD, J.J. van: Heterologous antisera for human histocompatibility testing. Transplantn Proc. 3: 1088-1098 (1971).
4 Balner, H.; Leeuwen, A. van; Dersjant, H., and Rood, J.J. van: Chimpanzee isoantisera in relation to human leukocyte antigens; in histocompatibility testing 1967, pp. 257-265 (Munksgaard, Copenhagen 1967).
5 Balner, H.; Leeumen, A. van; Dersjant, H., and Rood, J.J. van: Defined leukocyte antigens of chimpanzees: use of chimpanzee isoantisera for leukocyte typing in man. Tramsplantation 5: 624-642 (1967).
6 Balner, H.; Dersjant, H.: Leeuwen, A. van, and Rood, J.J. van: Identification of two major leukocyte antigens of rhesus monkeys and their relation to histocompatibility; in histocompatibility testing 1967, pp. 267-276 (Munksgaard, Copenhagen 1967).

7 Boyum, A.: Separation of leukocyte from blood and bone marrow. Scand. J. clin. Invest. 21: suppl. 97, p. 7 (1968).
8 Brain, P. and Hammond, M.G.: Leukocyte antigens in three race groups. Med. Proc. 14: 589-592 (1968).
9 Cohen, E.; Gregory, S.G.; Dozier, A.; Groenewald, J.H., and Murphy, G.P.: Human-type crythrocyte A-B-O group and leukocyte antigens of Papio ursinus, South Africa; in Goldsmith and Moor-Jankowski Medical primatology 1970. Proc. 2nd Conf. exp. Med. Surg. Primates, New York 1969, pp. 148-152 (Karger, Basel 1971).

10 Dausset, J.; Ivanys, P., and Ivanyi, D.: Tissue alloantigens in human-identification of a complex system ($\mathrm{Hv}-1$); in Histocompatibility testing 1965, pp. 51-62 (Munksgaard, Copenhagen 1965).
11 Downing, H.J.; Schleyer, M.E.: Saikoolal, A., and Pooniah, P.: Leukocyte antigens in vervet monkeys (Cercopithecus pygerythrus Cuvier). S. Afr. J. Sci. 69: 84-85 (1973).
12 Hammond, M.G. and Brain, P.: Leucocyte groups in baboons tested with human antisera. S. Afr. med. J. 44: 380-382 (1970).
13 Hill, W.C.O.: Primates - comparative anatomy VI (Edinburgh University Press, Edinburgh 1966).
14 Metzgar, R.S. and Zmiewski, C.M.: Species distribution of human tissue isoantigens. I. Detection of human tissue antigens in chimpanzees. Transplantation 4: 84.93 (1966).

15 Mhirfiy, (i.P.: Boiha, M.C.; Brede, H.D.: Wehler, H.W.; Retief, F.P.; Zyl, J.J.W. van; Zyl, J.A. van, and Klerk, J.N. de: Correlation of tissue-typing tests in baboon renal allotransplants. J. surg. Res. 9: 19-28 (1969).
16 Murphy. G.P.; Brede, H.D.; Weber, H.W.; Retief, F.P.; Zyl, J.J.W. van; Zyl. J.A. van, and Klifk, J.N. de: Correlation of tissue-typing tests in baboon renal allotransplants - a preliminary study. S. Afr. med. J. 43: 689-694 (1969).
17 Rood, J.J. van: Leeuiven, A. van, and Ziveerus, R.: The 4a and 4b antigens: do they or don't they? in Histocompatibility testing 1970, pp. 93-104 (Munksgaard, Copenhagen 1970).
18 Shulman, N.R.; Marder, V.J.; Hiller, M.C., and Coller, E.M.: Platelet and leukocyte isoantigens and their antibodies: serologic, physiologic and clinical studies. Prog. Haematol. 4: 222-304 (1964).

19 Sifulman, N.R.; Moor-Jankowski, J., and Hiller, M.C.: Platelet and leukocyte isoantigens common to man and other animals; in histocompatibility testing 1965, pp. 113-123 (Munksgaard, Copenlagen 1965).
20 Singil, D.P.; Mickey, M.R., and Terasaki, P.I.: Serotyping for homotransplantation. XXIX. Two new HL-A antigens. Transplantation 8: 235-240 (1969).

Dr. H.J. Downing, Deputy Director, Science Museum of Victoria, 304-328 Swanston Street, Melbourne. Victoria 3000 (Australia)

Histcocompatibility Testing 11972

REPORT OF AN INTERNATIONAL WORKSHOP \& CONFERENCE COLLOQUE DE L'INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE

HELD AT EVIAN, FRANCE
23-27 MAY 1972

Editors: Jean DAUSSET
\& Jacques COLOMBANI

Frequency of HL-A Antigens in South African Bantu, Indians and Caucasians

P. BRAIN \& M. G. HAMMOND
The Natal Institute of Immunology, 149 Prince Street, Durban, South Africa

Description of the Populations

There are three distinct race groups in Durban: Caucasian, Bantu and Indian.

The Caucasian population is of Western European origin. Bantu are mostly of the Zulu tribe. Indians are the descendants of immigrants who arrived about a century ago, mostly from the Madras Presidency. The Indians in Durban can be subdivided according to language, by their names; the proportions are approximately: Tamil 36, Hindi 28, Telegu 15, Other 21 (including those with Muslim names). The series tested here, however, was not classified in this way.

The three races are about equally represented in the population of Durban (about 650,000). There is a small Coloured (mixed Caucasian and Bantu) population that was not studied.

The Bantu and Indian populations of the city maintain a Western way of life with little or no mixture between the races.

Materials and Methods

One hundred and fifty unrelated individuals of each race were tested for the antigens listed in Table I.

Lymphocytes were isolated by the method of Boyum (1968) and the cytotoxicity test was performed in Falcon microtest trays

Supported by a grant from the South African
Medical Research Council (P. B.)
After the Vth International Histocompatibility Conference the WHO Committee on HL-A Nomenclature agreed on the following equivalents: $\mathrm{Te} 63=\mathrm{W} 29 ; \mathrm{Te} 66=\mathrm{W} 30+\mathrm{W} 31$.
using the two-stage procedure recommended by the N.I.H.

Sera were obtained from the N. I. H. bank and elsewhere and used in parallel with sera obtained from the screening of over 50,000 parous women and standardised in this laboratory. In an intensive search for antisera that might detect new antigens in the Bantu and Indian populations, samples were taken from 1,000 parous women of each race and tested against the lymphocytes of at least 40 random donors of the same race. Table I shows the number of sera used to detect each antigen, and their origins.

Results

Table II shows the frequencies of the various antigens in the three population groups. Table III shows the gene frequencies in the three population groups. Figure 1 illustrates the reaction pattern of HL-A 7 and HL-A 7 + W 22 antisera with 50 Bantu and Figure 2 with 150 Bantu. Figure 3 shows the reaction pattern of sera with, or included in, HL-A 12 in 150 Bantu. Figure 4 illustrates the reaction pattern of sera included in HL-A 11 and Figure 5 that of sera associated with the HL-A 5, W 5 complex. Table IV shows the phenotype frequencies of other polymorphisms.

Discussion

Our earlier studies on the Bantu showed many individuals who had no detectable antigens at the first locus. When we obtained sera against Te 63 and Te 66 , however, we found that these specificities accounted for
most of the blanks. Both have a far higher incidence in the Bantu than in the other races, and the difference in incidence, here and with other sera, between Bantu and Indians shows clearly that the population groups are, for practical purposes, unmixed with each other.

The Bantu are otherwise distinguished by low frequencies of HL-A 1, 11, 5 and 7 and high frequencies of HL-A 10, W 22 and W 17. The Indians are remarkable for low frequencies of W 19, Te 63 and Te 66 (lower than in Caucasians); HL-A 8 and W 14; and for high frequencies of HL-A 11, HL-A 9, HL-A 5 and W 10. The Indians, unlike other non-Caucasian populations, have a frequency of 22% for HL-A 1 but this may be the result of a common Indo-European ancestry.

In an earlier published study (Hammond \& Brain 1971) we said that the frequency of

HL-A 7 in the Bantu was about 28%. We did not then realise that many of our sera contained antibodies for both HL-A 7 and W 22. Figure 1 illustrates the reaction pattern obtained with these sera in the first panel of 50 Bantu. Six sera including N. I. H. serum D 66-15903 and Te 5691.1, gave identical reaction patterns and all have been previously characterised as anti-HL-A 7. They reacted with only 4 out of 50 donors. Four sera gave identical reactions to K-N8498 from Kissmeyer-Nielsen which is anti-HL-A $7+\mathrm{W} 22$ and were positive with 22 out of 50 donors. Another 11 sera including Te 3186.0 (HL-A $7+\mathrm{W} 22$) all had a coefficient of correlation ($\mathrm{r}=\sqrt{\chi^{2} / \mathrm{N} \text {) }}$ greater than 0.87 with $\mathrm{K}-\mathrm{N} 8498$. Eight sera appear to identify W 22 with some variations.

We then tested a further 100 Bantu using two anti-HL-A 7 sera and two anti-HL-A 7

TABLE I
Numbers and sources of antisera used to identify HL-A antigens

Antigens	Antisera			
	Natal Institute of Immunology	N. I. H. Serum Bank	N. I. H. Tray N 621	Total
HL-A 1	9	1	3	13
HL-A 2	14	1	3	18
HL-A 3	3	3	3	9
HL-A 9	2		2	7
HL-A 10	4	1	4	9
HL-A 11	1	1	3	5
W 28	4	3	2	9
W 19.	1	2	2	5
Te 63	1	0	2	3
Te 66	0	1	2	2
HL-A 5	6	2	3	11
W 5	3	1	3	7
HL-A 7	9	2	4	15
W 22	3	1	1	5
HL-A 8	4	4	3	11
W 14	3	1	3	7
HL-A 12	11	0	3	14
HL-A 13	4	2	2	8
W 15	3	0	2	5
W 17	5	1	3	9
W 10	3	1	3	7
W 27	1	1	0	2
Total	94	32	56	182

TABLE II
Percentage frequency of antigens in Caucasians, Bantu and Indians

Antigen	Caucasian	Bantu	Indian
HL-A 1	26	5	22
HL-A 2	52	20	31
W 28	7	19	15
HL-A 3	33	12	15
HL-A 11	12	0	32
HL-A 9	14	17	27
HL-A 10	9	23	7
W 19	11	17	3
Te 63	6	13	1
Te 66	5	31	2
HL-A 5	10	4	42
W 5	19	9	27
W 15	18	16	16
HL-A 7	27	11	14
W 27	9	3	3
W 22	3	34	5
HL-A 8	21	13	6
W 14	5	7	1
HL-A 12	31	22	11
HL-A 13	9	5	8
W 10	15	5	19
W 17	6	29	21

TABLE III
HL-A gene frequencies in Caucasians, Bantu and Iṇdians

Gene	Caucasian	Bantu	Indian
HL-A 1	.140	.025	.117
HL-A 2	.307	.106	.169
W 28	.036	.100	.078
HL-A 3	.182	.062	.078
HL-A 11	.062	.000	.175
HL-A 9	.073	.089	.146
HL-A 10	.047	.123	.036
W 19	.057	.089	.015
Te 63	.031	.067	.005
Te 66	.025	.169	.010
HL-A 5	.051	.020	.239
W 5	.100	.047	.146
W 15	.100	.084	.084
HL-A 7	.146	.057	.073
W 27	.047	.015	.015
W 22	.015	.188	.025
HL-A 8	.111	.067	.031
W 14	.025	.036	.005
HL-A 12	.169	.117	.057
HL-A 13	.046	.025	.041
W 10	.078	.025	.100
W 17	.031	.157	.111

Fig. 1. Reaction pattern of HL-A 7 and HL-A $7+W 22$ antisera with 50 Bantu.

REACTIONS OF.HL A7
related sera in the bantu
Fig. 2. Reaction pattern of HL-A 7 and HL-A 7 $+W 22$ antisera with 150 Bantu.

+ W 22 sera and 12 sera that showed associations with this complex. Figure 2 shows the overall pattern of reactions of these sera with 150 Bantu. Two sera, B 155 and B652, showed some agreement and appeared to recognise W 22 only. Three cell donors appear to possess both HL-A 7 and W 22. It is clear that this complex must consist of more than two or even three antigens. Kiss-meyer-Nielsen (personal communication) has found that the antigen AA (W 22) can be subdivided into two categories which he calls AA^{*} and AA-AJ.

When we tested these same sera with 150 Caucasians we found only 3% positive for W 22 and 27% for HL-A 7. This makes it extremely difficult to differentiate this complex by testing the Caucasian population; but, as we have shown here, the Bantu population has a high frequency of these antigens and this will make further investigations easier.

Figure 3 shows the reaction pattern of sera associated with or included in HL-A 12 in 150 Bantu. It appears that HL-A 12 is a heterogeneous antigen which can be subdivided into at least two parts. The sera on the left apparently recognise the shortened HL-A 12 and those on the right the short HL-A 12 plus another component. Three sera seem to react only with this new antigen or part of it. Svejgaard et al. (1970 a, b) have described an antigen EL* which is defined by an antiserum that reacts with HL-A 12 cells and with cells that are EL* positive. However, the variation in the Bantu appears to be within HL-A 12 because sera that have given identical patterns of reaction in Caucasians show differences in the Bantu. Serum N 320 has only 10 positive reactions. This is not a weak serum that reacts only with those cells that are homozygous for HL-A 12, because two of the cell donors have another antigen present at the second locus. Colombani et al. (1971) has recently described a subdivision of HL-A 12 into HL-A 12^{\prime} and HL-A $12^{\prime \prime}$ and this may explain the differences in the Bantu.

Several interesting points have emerged from the studies of the Indian population with sera obtained from Indians. There were 57 sera reacting with the cells of less than 10% of the population, that showed

Fig. 3. Reaction pattern of sera associated with HL-A 12 in 150 Bantu.

REACTIONS OF HL Al2 SERA IN THE BANTU

HL-A11 IN S.A. INDIANS
Fig. 4. Reaction pattern of sera included in HL-A 11 in 150 Indians.

HL-A5 AND W5 IN S.A. INDIANS
Fig. 5. Reaction pattern of sera associated with HL-A 5 and W 5 in 150 Indians.
no correlation with any of the known antigens, nor were their reactions included in those of any known antigens. It does not seem possible that they are all recognising specific HL-A antigens or combinations of rare ones, and one explanation is that they may be recognising HL-B antigens, as de-

TABLE IV
Phenotype frequencies of other polymorphisms in Caucasians, Bantu and Indians

Caucasian	Bantu	Indian	
A	37.2	29.7	21.0
B	11.3	19.0	32.3
O	47.9	44.1	37.1
AB	3.6	4.4	8.9
Weak A	0.0	1.8	0.2
Weak AB	0.0	0.9	0.5
Rh +	85.5	96.4	95.2
Rh -	14.5	3.6	4.8
Le (a+b-)	17.2	24.0	27.1
Le (a-b+)	76.8	55.9	61.4
Le (a-b-)	6.0	20.1	11.4
MMS	21.3	8.1	21.4
MsMs	11.1	16.1	14.3
MNS	24.8	12.9	34.5
MsNs	23.9	33.9	19.0
NNS	5.2	9.7	7.1
NsNs	13.7	19.4	3.6
P +	78.2	93.5	69.7
P -	21.8	6.5	30.3
K +	9.3	0.0	2.2
K -	90.7	100.0	97.8

scribed by Singal et al. (1970), although they found HL-B antibodies primarily as extra antibodies in HL-A antisera. The analysis of 1,004 sera from Bantu women showed 59 sera that had no correlation with known antigens.

The Indian population has a higher frequency of HL-A 11 than either Caucasians or Bantu, but the sera we used were significantly different. Serum N 597 contains antibodies to HL-A 3 and HL-A 11 and when characterised in Caucasians there were no positive reactions outside these two specificities. In the Indians this serum has a frequency of 42%, of which 32% appeared to be HL-A 11. Three antisera obtained from Indian women gave a reaction pattern which was included in HL-A 11 but they had no significant correlation with each other. This is shown in Figure 4.

The most interesting results, however, are those concerning the antisera recognising HL-A 5 and W 5. The relatively high frequency of these antigens in the Indian population emphasises variations in reaction patterns of the different sera. Figure 5 shows the reaction pattern of several sera that show associations with this complex. It seems that there may be more factors involved than the three described in the 1970 workshop data, viz. HL-A 5, W 5 and W 18. N 310 and AGST appear to be operationally monospecific anti-HL-A 5 sera in Caucasians and in the Indian series they agree very well. V 52 is also a good anti-HL-A 5 serum in Caucasians but in Indians V 52
reacts with only 26 of the $42 \mathrm{HL}-\mathrm{A} 5$ cells. Serum D 66-6222 from the N. I. H. is also a good HL-A 5 reagent in Caucasians but reacts with only 15 of the cells that are positive with V 52. Three other sera (PE 27, S 152 and N 442) also have patterns that are included in HL-A 5, W 5 and W 18.

We have previously shown (Hammond \& Brain 1971) that an antiserum that is apparently monospecific when characterised in Caucasians may give very different results if tested in another population, and this has been the experience of other workers also. For the purely practical purposes of tissue typing in South Africa, therefore, it is necessary that every serum used should be characterised and found suitable in each population group. The work we have put into this has produced quite a lot of information that may be of interest to anthropologists.

References

Boyum, A. (1968) Separation of Leucocytes from blood and bone marrow. Scand. J. clin. Lab. Invest. 21: Supp 97, 7.
Colombani, J. D'Amaro, J., Gabb, B., Smith, G. \& Svejgaard, A. (1971) International agreement on a platelet complement fixation micro technique. Transplant. Proc. 3, 121.
Hammond, M. G. \& Brain, P. HL-A antigens in three populations. (1971) Vox Sang. (Basel) 20, 492.
Singal, D. P., Sengar, D. P. S. \& Terasaki, P. I. (1970) Detection of non-HL-A antibodies. Histocompatibility Testing 1970. Munksgaard, Copenhagen.
Svejgaard, A. \& Kissmeyer-Nielsen, F. (1970 a) Complement fixing Platelet Iso-antibodies V HL-A typing. Vox Sang (Basel) 18, 12.
Svejgaard, A., Kissmeyer-Nielsen, F. \& Thorsby, E. (1970b) HL-A typing of platelet. Histocompatibility Testing 1970. Munksgaard, Copenhagen.

Histocompatibility Testing 1975

Report of the VI International Histocompatibility Workshop and Conference

The Workshop Conference was held in Arhus, Denmark, at the Congress Centre, Scanticon, from June 29 to July 5, 1975

Editor: F. Kissmeyer-Nielsen

Munksgaard

HL-A Antigens in Bantu and Indians

M. G. Hammond, B. Appadoo and P. Brain
The Natal Institute of Immunology Durban, South Africa

This investigation served a dual purpose. The workshop sera were used to type unrelated individuals from each race to determine the antigen and gene frequencies of each population. At the same time 'difficult' antigens could be studied because the Bantu and Indian populations have high frequencies of these antigens.

Materials and Methods
The Indians of Natal are the descendants of immigrants who arrived about a century ago to work on the sugar plantations. They can be grouped firstly into Tamil and Telegu speakers from Southern Indian, both Hindu by religion but subdivided here by language, and secondly into two groups from the north, Hindus from the northeast and Moslems from the north-west. In this study fifty unrelated Tamil and fifty unrelated Telegu speakers as well as one hundred Bantu, all of the Zulu tribe, were tested.

The workshop sera were tested in parallel with our own battery of 180 selected typing sera. Lymphocytes were isolated by the method of Boyum (1968) and the cytotoxicity test was performed in Falcon mictrotest trays using the N.I.H. technique stlpulated for the workshop.

Results and Discussion

Table 1 shows sha antigen frequencies at the SD l locus. The division of HL-A9 into $W 23$ and $W 24$ vias well defined. The Bantu are predominantly W23 while nearly all the Indians are W24.

TABLE I
SD I antigen frequencies in \%

Antigen	Tamil	Telegu	Indian	Bantu
HL-AI	32	42	37	6
M0:	0	0	0	1
HI-A2	20	36	28	18
W28	18	12	15	19
HL-A3	12	6	9	12
HL-All	34	28	31	1
W23	0	2	1	18
W24	36	14	25	4
W25	2	0	1	9
W26	8	6	7	13
W29	0	0	0	16
W30	6	8	7	39
W31	0	2	1	13
W32	6	2	4	2
W19.6	8	10	9	0
W19 NEW	0	0	0	8

TABLE II
SD 2 antigen frequencies in \%

Antigen	Tamil	Telegu	Indian	Bantu
HL-A5. 1	14	24	19	3
HL-A5. 2	12	8	10	0
HL-A5. 3	6	2	4	0
HR	4	6	5	3
W5	16	22	19	4
W18	4	4	4	6
W15	6	4	5	2
W16	2	4	3	4
W21	0	0	0	1
HL-A7	18	16	17	14
W22	0	0	0	0
MWA	0	0	0	35
W27	0	0	0	0
407:	0	0	- 0	1
HL-A8	6	6	6	13
HL-A14	0	0	0	4
HL-Al2	14	4	9	14
TT	0	0	0	8
HL-AI 3	4	8	6	8
W10.1	20	18	19	0
W10.2	14	20	17	0
Sabell	0	0	0	1
Da34	2	0	1	0
Da 35	2	0	1	1
TY	10	2	6	0
HS	0	0	0	0
W17	28	32	30	39

The components of Wlg were more difficult to distinguish. Figure l illustrates the reaction pattern of all the sera involved. A new antigen which we have called WIg IU'n $^{\prime}$ appears to be included. It is defined by positive reactions with two of the $W 29$ workshop sera (W034 Fabre, W036 abs. 8.53) and negative reactions with the nther two W29 sera (W033 Fe7l, W035 12385.l). In addition WII4 RC and Wl4 2 HIB are negative with WI9 NEW but positive with W29. Workshop serum wo40 Fe 5IA is positive with W30 + WIg NEW and negative with W2g. WIg NEW was only present in the Bantu. W30 has a frequency of 39% in the Bantu and workshop sera W0 32 Nakumura and W048 SAL may define subdivisions of $W 30$ judging by their reaction patterns which are almost completely included in W30 (Fig. I). The workshop sera did not define W3l but two sera from the NIH (Thompson and Quinones) which both react with $W 31+W 32$ were used on our own trays. W19.6 was not detected in the Bantu but had a frequency of 9% in Indians.

Table Il shows the antigen frequencies of the SO 2 locus. We have confirmed the high frequency of the MWA antigen and the absence of $W 22$ in the Bantu. Heither of these antigens was detected in Indians. The antigen TT was present in 8% of the Bantu but was absent from the Indians tested. Wl7 has a high frequency in the Bant: \{3!! and in Indians (30\%). Figure 2 shows how HL-A5 can be subdivided into thres parts. HL-A5.l is defined by the two workshop sera WI29 298 E and W130 PA 101.ll. The other workshop serum (WI28 19IE) that was submitted as a short HL-AS reacted as a 'standard' HL-AS as did serum Wllg Bechard. The difference
between the 'standard' HL-A5 sera and WI2O Eiden may define a further subgroup, HL-A5. 3.

Serum Wl20 Eiden is positive with HL-A5.1 + HL-AS.2. Six local sera reacted similarly to Eiden. In a previous investigation (Hammond et al. 1974) we showed four subdivisions of HL-A5 in the Indian population, one of which appeared to be confined to Indians from the north of India. In this study however, we tested only Indians from the south of India. Figure 3 illustrates the reaction pattern of antisera associated with W1O and HL-Al3. WlO.I is defined by serum W075 2608/72. Serum W078 10234.1 appears to be HL-A7 + W1O.I. Only the anti-HL-Al 3 sera show good agreement, however, and the WlO complex needs further study especially in the Indian population. The antigen TY had a frequency of 6 in Indiars but was not detected in the Bantu.

TABLE \|l
SD 3 antigen frequencies in \%

Antigen	Tamil	Telegu	Indian	Bantu
T1	8	2	5	0
T2	0	0	0	15
T3	8	14	15	10
T4	14	16	14	
T5	2	2	2	4

Table lll shows the antigen frequencies at the SD 3 locus. Tl was not found in the Bantu and $T 2$ was absent in the Indians. The associations between antigens of the SO 3 series and the SD 2 series are quite different in these populations compared with Coucasians, except for the association between T5 and HL-Al2 in all three races and $T 4$ and $W 5$ in Indians and Caucasians. An interesting association is that between $T 2$ and the blanks in the Bantu, which may indicate the presence of an undefined antigen more common in the Bantu and associated with T2. Table $I V$ shows the haplotype frequencies, standard errors and delta values in the four population groups. Significant delta values are underlined. Also shown are the delta-haplotype ratios suggested by Thomsen et al. (1974) which indicate how much the delta value contributes to the haplotype frequency. The correlation coefficients (r) between the antigens are also shown in Table IV.

These associations show that is easier to characterise antisera by using panels from all three race groups, and that the identification of complex antigens may only be possible in this way.

Acknowledgement: This work was supported by a grant from the South African Medical Research Council (P.B.).

References:
Boyum, A. (1968) Separation of leucocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. 21 Supp. 97, 7.

Hammond, M.G., Appadoo, B. E Brain, P. (1974) Subdivision of HL-A5 and comparative studies of the HL-A polymorphism in South African Indians. Tissue Antigens 4, 42.
Thomsen, M., Dupont, B., Jersild, C., Hansen, G.S., Staub Nielsen, L., Platz, P.,
 compatibility complex (MHC) in man. Tissue. Antigens 4, 400.

TABLE IV
Haplotype frequencies and correlation co-efficiencs

			TAMIL					TELEGU					INDIAN					BANTU				
	SD 1	SD 2	HF	SE		inf	r	HF	SE		/HF	r	HF	SE		/HF	r	HF	SE		/HF	r
	HL-Al	W17	75	33	49	. 65	. 34	135	39	93	. 68	. 55	105	26	71	67	. 45	18	12	11	.61	0.14
	BLANK	W17	58	27	55	. 94	. 40 -	44	36	27	.61	. 08	52	21	42	. 80	. 27	0	24	-17	-	0.19
	HL-A2	W5	2	20	-7	-	. 08	91	32	68	. 74	. 51	50	20	35	. 70	. 27	0	6	-4	-	0.10
	HL-AI	TY	51	22	42	. 82	. 49	10	10	8	. 80	. 17	31	12	24	. 77	.33	-	-	-	-	-
	BLANK	HL-Al2	50	23	49	. 98	. 56	8	13	6	. 75	. 08	29	14	26	. 89	. 30	0	13	-7	-	0.13
	HL-Al	HL-A5	44	36	13	. 29	. 08	0	50	-90	-	-. 44	4	30	-33	-	-. 18	5	5	4	. 80	0.20
	W19-NEW	HL-Al 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	36	13	34	. 94	0.86
w	W25	HL-Al2	0	5	-2	-	. 06	-	-	-	-	-	0	3	-1	-	-. 03	30	13	26	. 86	0.48
	W24	HL-A 7	56	29	37	. 66	. 30	5	17	-1	-	-. 02	29	17	17	. 58	.17	20	10	19	. 95	0.50
	SD 2	SO 3																				
	W5	T4	73	27	67	. 91	. 92	95	30	83	. 87	. 88	84	20	75	. 89	. 90	4	7	2	. 50	. 06
	W17	T3	29	19	23	. 79	. 31	60	26	48	. 80	. 46	45	16	35	. 77	. 40	4	17.	-9	-	. 08
	W10	TI	41	20	33	. 80	: 41	10	10	8	. 80	. 18	25	11	20	. 80	. 31	-	-	-	-	-
	W'5	BLANK	84	28	14	. 16	. 06	0	96	-178	-	-. 45	27	59	-56	-	.-. 21	0	28	-17	-	-. 16
	HL-Al2	T5	0	5	-2	-	. 06	10	10	10	1.00	. 70	5	5	4	. 80	. 20	15	9	13	. 86	. 36
	BLANK	T2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	45.	19	34	. 75	. 25
	HF = Haplotype frequency				cier	$S E=$	tandar	SE = Standard error	r	$=$ delta			All values $\times 1000$									

Figure 1
Reaction pattern of WIG related antisera.

Histocompatibility Testing 1977

Report of the 7 th International Histocompatibility Workshop and Conference

The Workshop Conference took place
in Oxford, England from
4-10 September, 1977

Editors :

W.F.Bodmer
J.R.Batchelor
J.G.Bodmer
H.Festenstein
P.J.Morris

M．G．Hammond，B．Appadoo，and Peter Brain，Natal Institute of Immunology，Durban，South Africa．
B5＋HR：B5．1，B5．2，B5．3，B5．4 and HR all present in Indians． B5．1 and $H R$ in zulus．All groups included in W4． Comparison with B5 patterns in Dutch Caucasians are presented in table：

B5 PATTERNS WITH 7W SERA

 	Zulu		Indian		Dutch Cauc． $\mathrm{N} \quad$ spec	
	N	spec	N	spec		
＋＋＋＋＋＋－＋＋＋＋＋＋＋	1	B5． 1	10	B5． 1	16	B5． 1
$--++++{ }^{+}++++++$	0		4	B5．2	0	
－－＋－＋＋\ddagger＋＋＋＋＋＋	0		0		5	B5． 2
－ー ニこ＋＋＋＋＋＋＋＋	0		3	B5．3	0	
－－＝－－＋＋＋	0		1	B5．4	0	
－－－－－－－－－－＋	2	HR	0		0	
－－－－－－－－－＋＋	0		1	HR	0	
－＋＋－－＋＋	0		0		1	HR

Bw40：heterogeneous in Indians（see Schreuder and Bos）．
Bwl5）＇Short＇Bw15，only present in Indians；included in W6．
Bwl7）＇Long＇Bw15：7W436 and BWl7 sera reacted with both In－ dians and Zulus；local sera recognized two patterns； inclusion in $W 4$ ．Bwl 7 was well defined with $7 W$ sera； included in $W 4$ ．
B cell serology：Dwl，Dw4 and Dw6 could not be defined． Dw2：heterogeneous in Indians； 5 sera reacted with all 10 Dw2 individuals whereas 9 only reacted with 6 of them．
ASSOCIATIONS BETWEEN HLA－A，－B AND－D LOCI AND DIABETES IN SOME SOUTHERN AFRICAN POPULATIONS

M．C．Botha，B．R．Briggs，E．D．du Toit，E．Campbell，D．Tal－ jaard，W．P．U．Jackson＊．Provincial Blood Grouping Laboratory and \＃Department of Medicine，Cape Town，South Africa．

The known increases of $A 2, B 8$ and Bwl5 and decreases of $B 7$ in European juvenile onset diabetes（JOD）were confirmed（ $n=29$ ）． Of most interest were the Xhosa maturity onset diabetes（MOD） in which the following antigens demonstrated significant in－ creases in two consecutive studies：

ANTIGEN
$\frac{\text { CONTROLS }}{(\mathrm{n}=76)}$
pos．（freq）

$\frac{\text { SECOND STUDY }}{(n=30)} p$ pos．（freq）（fisher）pos．（freq）（fisher）

A2	19	$(.25)$	9	$(.45)$.053	15	$(.50)$.011
B8	8	$(.11)$	6	$(.30)$.035	8	$(.27)$.041
BW35	1	$(.01)$	3	$(.15)$.027	6	$(.20)$.001

In a small group of 11 Xhosa JOD Bw35 was increased with a fre－ quency of .30 and $p=.001$ ．For Dw3（the only antigen for which typing was done）the frequency was 0.73 as compared to .33 in the control group（ $p=.020$ ）．
No significant deviations were noted in 30 non－Malay Coloured MOD＇s and in two consecutive studies of respectively 24 and 35 Malay Coloured MOD＇s．

Ieke Schreuder, Alie Bos. Dept. of Immunohaematology, University Hospital Leiden, Holland.
Ella van den Berg-Loonen. Central Laboratory of the Dutch Red Cross Bloodtransfusion Service, Amsterdam, Holland.

Two sera recognized the same specificity:
Serum VR30087: B5, Bl8, Bwl5.2, Bw35, HR, Bw2l, SV; Leiden. Serum CLB23 : B5, Bl8, Bwl5, Bw35, HR, Bw37, PR; Amsterdam.
$S V=P R$ found in 2 out of 200 individuals used for cell exchanges:
TB: Aw36, Aw23, B12, SV=PR, W4, W6 VR30087 + CLB23 +
JM: A3, A28, Bw22, SV=PR, W6
VR30087 + CLB23 +
$S V$ and $P R$ were found to segregate in families.
$S V=P R$ is a new B locus specificity with a very low gene frequency $(<1 \%)$ and is included in W6.

HLA-BW40 IS HETEROGENEOUS
Ieke Schreuder, and Alie Bos. Dept. of Immunohaematology, University Hospital Leiden, Holland.

Several HLA-Bw40 related patterns were observed with local sera in 239 out of 1350 HLA typed blood donors.

PATTERN	SERUM:	1	2	3	4	5

$\frac{\text { SERUM ORIGIN: }}{\text { nr.l, } 2 \text { VR: }} \mathrm{w} 40+13$ nr.3, VR: $\quad \mathrm{W} 40+7$ nr.4, USSR: w40 nr.5, Japan: w40 nr.6, Nij: \quad 4 $40+\mathrm{w} 41$

Pattern l and 2 are distinct and associated with the presence of Cw3 and Cw2 (or occasionally C negative) respectively. pattern 3 was only seen on two cells send to us by Dr. Kiss-meyer-Nielsen.
Pattern $4,407^{*}$ in the Dutch population:
l. segregates infamilies.
2. is included in W4.
3. has a gene frequency of less than 1%.
4. is in link. diseq. with A3: hapl.freq. $=.0035$; delta $=.003$.
5. is mainly found together with T7 (Cw7).
6. can be recognized by several Bw40 and B27 antisera.
7. is best defined by serum 7W387-anti Bw40C.

Bw40 patterns with 7W sera as observed in Dutch Caucasians,
South African Zulus and in Asian Indians (M.G. Hammond et al).

	Dutch cauc. N spec.		Zulu!		
			N	N	spec.
+ + + + + + + + + + + + + + - - -	14	w40-Cw3	1	2	w40.1
$- \pm+ \pm+++++++$ +	10	w40-Cw 2	0	3	w40.2
$--++++++++$	0		0	7	w40.2
- - - - + + + + + + + - - + + +	4	407*	0	0	
+ - - - - - - - - + +	0		0	3	W41
+ - - -	5	w41	0	0	

Serum 322 was positive with many American Black and Japanese Aw33 cells but did not appear to give such strong correlations in other groups. There was a suggestion from the French data which was analysed separately, that a "short" version of Aw33, comparable to the behaviour of Fe55 in other Workshops may exist and that cells tve with 328 and -ve with 331 are a variant of Aw33, which is related to the Al9 cross reactive group (CREG) and in linkage disequilibrium with B14.2. The remaining Aw33 cells, tve with 331 and 328 appear to be more closely related to the A28 CREG and show some resemblance to the antigen previously described as "Malay" (Joysey et al., 1972 in Histocompatibility Testing 1972) with a high \triangle with B12.

Working Party : As AlO.
The "Black" antigens : Aw36, Aw34, Aw43 and Bw42 (Table 4.6)
Aw36
Aw36, found only in Blacks, was originally defined by unexpected extra reactions in some Al sera(Histocompatibility Testing 1972). Aw36 could not be clearly defined with the 1977 Workshop sera. There was a weak and therefore unreliable Aw36 component in sera 301 and 473. Serum 303, reference serum for Al in previous Workshops, does not react with Aw36 positive cells.

Aw34
Using the 1977 Workshop sera, this specificity could only be defined in the absence of A25 and A26. Sera 317, 331 and 423 had strong Aw34 activity, whereas sera 316 and 384 reacted weakly with some of the Aw 34 positive cells tested. Sera 310, 311, 312, 313, 314, 327, 420, 421 and 422 were negative with Aw34 and Aw43 cells.

Aw43

Dr. Botha's laboratory submitted 10 Aw 43 positive cells of Xhosa origin. The definition of Aw43 on these cells was principally based on local sera not included in this Workshop. Serum 315, used in the 1975 Workshop to define Aw43, was positive with these cells as were sera 316,317 and 423.

Bw 42

In the African Blacks, there was good agreement in defining Bw 42 by the different laboratories in spite of the heterogeneity of the Bw $22 / B w 42$ sera used in this Workshop. The apparent absence of Bw22 in this ethnic group made the definition of Bw42 easy. In contrast, Bw22 was present in the American Blacks, which may complicate the interpretation of Bw42. The results obtained from the African and the

TABLE 4.6
Reaction Pattern with Al and Aw 36 Positive Cells

	301	303	473	
A1	+	+	+	\ldots
Aw36	$(+)$	-	$(+)$	(weak reactions) (ie. 30-40\%

Aw34, Aw43

	315	316	317	331	384	423
Aw34	-	$-1+$	+	+	$-/+$	+
AW43	+	+	+	-	-	+

Bw42. Reactivity of 7 w sera
7w Sera

+ve	$(50-100 \%$ kill)	$373,374,377,378(457) *$	
+ve	$(30-50 \%$	kill)	$416,442,443,446,449,(459) *$
\pm	$(30 \%$	kill)	$372,376,445,447,450,(455) *$

* These sera are primarily anti B40.

American Blacks showed that there was a strong Bw42 component in sera $373,374,377,378$ and 457. In addition, sera $416,442,443,446,449$ and 459 reacted strongly with Bw42 posiliqe cells from African Blacks, but gave equivocal results in the American Blacks. Some other sera $(372,376$, $445,447,450$ and 455) seemed to contain a weak Bw42 component.

When analysing sera which have such complex reaction patterns as the Bw22 and B4O sera used in this Workshop, negative reactions can be extremely informative. Serum 416, together with the heterogenous $B 40$ sera 457 and 459 , may help in differentiating between Bw42 and Bw22. All three sera reacted with B7 and Bw42 positive cells but not with any Bw22 positive cells (Table 4.6).

Editorial Note :- This report on Bw42 should be read in conjunction with the report on Bw22.

Working Party : A. Biegel, M.C. Botha, C. Bouysou, B. Briggs, B. Hasty, S. Herbert, M. Pollack, E. Wolf (data also from R. Duquesnoy and M. Hammond).

Additional note, contributed by Dr. A. Biegel, on B7 - Bw22 Bw42 Group in American Blacks.

In Region USl, 170 American Blacks were typed ; in addition to the conventional B 7 , Bw 22.1 and Bw 42 , two variants were found, and out of a total of 51 cells 12 remain unclassified with regard to this antigen group.

The first. variant is a "short" Bw42 ("42.2" ; N = 4) differing Enom Bw42 by negative reactions for sera 373, 374, 377, 416, 446, 447 and by positive reactions in 379 and 455. These cells were not B7, as shown in this and previous workshops ; they carried neither Cwl nor Cw3.

The second variant $(N=2)$ is a variant of Bw22.l, with negative reactions in 376,444 and 448 ; and positive in 379 and 457, distinct from the standard Bw22.l pattern. Bw22.1 in American Blacks is rare, but when present is Cw3 associated. This variant is negative for $C w 1$ and $C w 3$, as is Bw22.2 in this population group. For each of these variants, the antigen assignment for one or more cells was confirmed by family analysis. For additional details, see the USl regional report (this volume).

B5, Bw5l, Bw52, Bw53, Bw35 (formerly B5, B5.1, B5.2, HR and Bw35)

The specificities within the B5 - Bw 35 complex have in this Workshop become more clearly delineated. For the first time agreement can be reached on the definition of Bw53 (formerly HR) in the five populations studied. However, no monospecific reagent for Bw53 was detected. Bw5l (formerly B5.1) was differentiated from Bw52 (formerly B5.2) ; monospecific

TABLE 4.7
Sera for B5-Bw35 complex

TABLE 4.8

Antigen Frequencies (8) from the Patterns of 20 Selected Laboratories
($\mathrm{N}=$ population size)

	$\begin{aligned} & \text { Europ. Caucas. } \\ & (\mathrm{N}=363) \end{aligned}$	N. Amer. Caucas. $(N=358)$	Amer. Blacks $(N=221)$	African Blacks $(\mathrm{N}=102)$	Japanese $(N=374)$
Total B5	15.55	10.61	14.93	ND	32.89
Bw 51	9.91	5.03	7.24	ND	12.30
Bw5 2	1.65	1.68	0.45	ND	9.36
Bw35	16.53	ND	14.48	10.78	10.43
Bw53	0.55	ND	5.88	1.96	1.87

ND $=$ Not done

TABLE 4.9
B5

	337	432	335	338	334	333	336	Europ. Caucas.	N. Amer, Caucas.	Amer. Blacks	African Blacks	Japanese
B5	+	+	+	+	+	+	+	5	6	6	0	18
Bw51	+	+	+	+	+	+	-	28	13	9	2	37*
	+	+	+	+	+	-	-	3	2	1	0	0
BW52	+	+	+/-	+/-	+/-	-	+	4	3	0	2	21
	+	+	+	+	+	-	+	0	2	0	0	0

[^6]examples of anti-Bw51, Bw52 ard Bw35 sera were found among the submitted sera. There was suggestive evidence, but not clear definition, of a further possible split of $B 5$ in two populations, namely Black and Asian Indians, but the patterns for these are not provided since more study is required. The patterns of serum reactions shown represent a summation based on all the cells from 20 selected laboratories.

Bw51

The serum pattern for the Bw5l specificity was defined by 13 sera. The pattern was essentially the same in the European Caucasoids, North American Caucasoids and Blacks, African Blacks and Japanese (Table 4.7). The four sera, 332, 333, 334 and 335 , were all specific for Bw5l (333 also contained anti B8). Bw5l was a frequently occurring antigen in all populations with a range from around ll\% - 34\% (Table 4.8). This is a rather conservative estimate. This also applies to all the calculations for the other specificities in this table.

Bw52
Nine sera could be used to define Bw 52. Only serum 336, of Japanese origin, was almost monospecific for Bw52. This serum in a few laboratories gave some weak reactions in single typings of individuals with Bw5l cells (defined by the Workshop criteria). However, this may be the consequence of the cross-reactivity since Bw52 cells can absorb anti-Bw5l antibody. The frequency of Bw52 was highest in the Japanese population, and occurred with a lower frequency in the other populations with the exception of the African Blacks (Table 4.9).

Bw35

There were eight sera that could be employed to define Bw 35. Serum 342 was monospecific (Table 4.7). Serum 344, submitted as anti-Bw35, was actually anti-Cw 4 serum. Serum 433, submitted as having Bw35 specificity, was non-reactive in most laboratories. Sera 341 and 343 both had activity for Bw35 and Bw53 together. The remaining sera in the pattern gave \pm reactions, i.e. these did not react with all Bw35 cells. Serum 470, submitted as Cw4, also gave \pm reactions with Bw 35 cells which may result from the linkage disequilibrium between tho two specificities. It is likely to contain Bw35 since this \pm reaction is present in the Japanese population in which Cw 4 has a low frequency. No information was available on the relationship of the \pm patterns to the postulated antigens Bw 35 A and Bw 35 C .

Bw53

No monospecific Bw53 serum was submitted. There were two groups of Bw53 sera, one with B5 and one with Bw35, with a

TABLE 4.10
Bw53, compared with B5 (Bw51 + Bw52)

	428	429	431	432	339	340	Europ. Caucas.	N. Amer. Caucas.	Amer. Blacks	African Blacks	Japanese
"BS"	+	+	+	+	+	+	40	22	19	4	ND
HR	+/-	-	+/-	+/-	+	+	4	12	17	1	ND

ND $=$ Not dom

TABLE 4.11
Bw35/B5

	339	340	429	431	342	343	341	470	403	344	Europ. Caucas.	N. Amer. Caucas.	Amer. Blacks	African Blacks	Japanese
85 (Bw51)	+	+	+	+	-	-	+/-	-	-	-	34	15	13	6	12
Bw35	-	-	-	-	+	+	+	+	-	+	23	21	4	0	0
	-	+/-	-	-	+	+	+	+	-	+	13	0	0	7	0
Not 8w35*	-	+	-	+/-	+	+	+	+	+	-	0	\bigcirc	0	0	8

- Cells listed as BS, Bl5, Bw35 by submitting laboratories

TABLE 4.12
HLA-B12 : Bw44, Bw45 (formerly B12, not TT* and TT*)

	345	346	434	349	347	348	Europ. Caucas.	N. Amer . Caucas.	Amer. Blacks	African Blacks	Japanese
$\begin{aligned} & \text { BW44 } \\ & (\text { B12, not TT*) } \end{aligned}$	+	+	+	+	+	+	4	4	13	2	2
	-	+	+	+	+	+	41	14	7	4	18
	-	+	+	+	$+$	-	23	20	2	4	8
	-	-	+	+	+	+	6	9	4	1	3
	-	-	+	+	$+$	-	8	26	5	2	11
Other variants, probably Bw44	+	-	+	+	+	+	1	0	0	0	0
	+	+	+	-	+	+	0	1	0	0	0
	-	+	+	+	-	+	2	\bigcirc	0	0	0
Bw45 (TT*)	+	+	-	+	+	+	1	1	2	1	0
	+	+	-	+	+	-	0	0	3	1	1
	-	+	-	+	+	+	3	0	0	0	0
	-	+	-	+	+	-	2	1	0	0	1
Other varlants	+	+	+	+	+	-	0	1	9	5	0

(Patterns with less than three positlve reactions are not included)
total of 8 sera. The Bw53 specificity can now be readily defined, the specificity being present in most populations at low frequency except for the Blacks. The disparity between African and American Blacks could perhaps be due to different tribal origins, or misclassification in the patterı $\mathfrak{c l e f i n i n g ~ B 5 . ~}$

B5
In all populations there were cells that reacted with both Bw5l and Bw52 sera. These cells frequently had another welldefined B locus specificity, suggesting that the result may be due to serologic rather than genetic considerations.
Perhaps this flows from the antigen density, although in family studies reported elsewhere, the subdivisions are inherited as Mendelian dominants. Cells not defined as Bw51 or Bw52 are referred to in the tables of frequency as B5. Two reports in the literature (Hammond and payne et al.) indicate the presence of other subdivisions of the B5 - BW35 complex in restricted populations which were not observed in the Workshop data.

Editorial Note : Tabulations of the PATTERN analysis of the Workshop data are appended to provide additional information on this group of antigens, and comparisons of serum behaviour. (Tables 4.9, 4.10 and 4.11)

Working Party : D.B. Amos, P. Engelfriet, M. Hammond, C. Mazzilli, R. Payne, P. Richiardi, A. Ting.

HLA-B12 : Bw44, Bw45 (formerly Bl2 (not TT*) and TT*)
There were six sera submitted to the Workshop to define the parts of Bl2. Two of these appeared to be of special importance in defining the split between the Bw4 associated Bw44 and the Bw6 associated Bw45. Serum 345 reacted as anti Bw 45 with a few extra reactions and serum 434 appeared to recognise only the Bw44 antigen in the Caucasian population. The exact definition of Bw44 and Bw45 still presents problems when analysing the total 7 th Workshop data. As in the 6 th Workshop, the various patterns indicate the heterogeneity of the antigens and the antisera used to determine them. The clearest correlation using 7th Workshop sera is shown in the 2×2 tables in the Scandinavian Regional report on a Caucasian population. The majority of Bl2 typings in all ethnic groups agree with these Scandinavian findings (q.v.). The results for the Bw45 antigen are similar but less clear cut, probably because of the small number of Bw 45 cells recognised in the analysis. There is a group of cells of American and African Black origin which are Bw6 associated and show a pattern of reactivity which does not occur in caucasoids. These cells are recognised by a negative reaction with serum 348 and positive reaction with all the other Bl2 sera. Japanese cells do not appear to have a definable Bw45

Histccompatibility Testing1980

REPORT OF THE EIGHTH INTERNATIONAL HISTOCOMPATIBILITY WORKSHOP HELD IN LOS ANGELES, CALIFORNIA, USA
4-10 FEBRUARY 1980

Editor: PAUL I. TERASAKI

UCLA Tissue Typing Laboratory, UCLA School of Medicine, University of California, Los A ngeles, California 90024

[^7]FURTHER SPLITS OF HLA-B5
M.G. Hammond
The Natal Institute of Immunology, Durban, South Africa

Received August 20, 1979

The reaction patterns of 8 W sera show a further subdivision of B5.

Table 1 shows the reaction patterns of three families. The mother and five shildren all possess a short BW51. Sera 8W057, 059, 268, and 060 are all negative. The father has 8W64.

The second family has BW52 as defined in the Work. shop prescreening specificity patterns. The mother and both children are BW52 positive. The father and one child have BW35. The third family shows the inheritance of a short BW52 from the father to three children. The key sera are 8W338, 8W595, and 8W278. BW35 is inherited from the father by the other two children. Some of the BW35 sera appear to be very weak. The mother appears to be 8W59 positive.

Table 2 shows the reaction patterns of the disease trays. There is no clear-cut split of BW51 although serum

8 W502 may be a key serum. Cell 55 is BW52 as defined in the newsletter and the four cells below this appear to be a short BW52 but only two sera (8W133 and 8W782) reveal this split. Cell 65 is 8W66 and is clearly different from these splits.

These findings lent support to my earlier description of four splits of B5 (1). The 19th International Cell Ex. change featured splits of B5 and I reported then, on B5.1, B5.2, and B5.3. It would be interesting to see how those cells react with the Workshop sera.

REFERENCE

1. Hammond MG, Appadoo B, Brain P. Subdivision of HL-A5 and comparative studies of the HL-A polymorphism in South African Indians. Tissue Antigens 1974, 4:42.

Table 1．Reaction patterns of families with B5 splits．

		（omiole				$\begin{gathered} 3 \\ 0 \end{gathered}$			
＇，F－allies	11.59	0			088.8			888886	
－Moniker：	1761	80888		8688	$8 \quad 0 \quad 8.8$				
$\stackrel{\rightharpoonup}{\circ}$	1362	80888		6668	$8-0.8 i 8$				，
	116.3	808888		8688	$8 \quad 088$		1		，
	$1 \begin{aligned} & 1 \\ & 1 \\ & 4\end{aligned}$	$\begin{array}{lllll}8 & 0 & 8 & 8 & 8 \\ 8 & 0 & 8 & 8 \\ 8 & 8\end{array}$		8 8 8 688881	8 8	$1!$	－	6.818 .886	，
： 07	1148	80888		$\square 78.8$					
		0 1 0 1	$!$	i $1: 18$	088 0		1	，	
L．Molher		08188		8	$\begin{array}{llll}8 & 0 & 818\end{array}$	8	8.8 ＇		： 1
	＇ 58	08188		$4.8 \quad 88$	¢ 88080688.8	4 ！	6^{6}		$1!$
	： 5	40888		－14 ！ 488	8 －． 0.88	4	$6: 88: 1$	$1 \quad 1 \quad 1$	1
置 Fialurir	18.0	0 0 88		86.44^{\prime}	${ }_{8}^{4} 62880088.88$		$\begin{array}{llll}81 & 1 \\ 1 & 1\end{array}$		$1{ }_{1}^{1}$
E Mooher＇	－79	0			！$\quad 808810$		：！ 1	；1 ：＇	$\begin{array}{llll}1 & 1 & 1 \\ 1 & 1 & \\ 1\end{array}$
官。	8.1 8.2	0 8 8 0 8 8		8		1 ；	＇88		$11:$
容		088		8	8 8： 088		－	，1＇ 1	－！
	＇8	－0			$\begin{array}{l:l}6 & 80888\end{array}$				
	8．5	： 0			$6{ }^{6} 4680888$		：		

Table 2．Reaction patterns of＇disease＇patients with B5 splits．

CONFIRMATION OF ST1 (8W12) IN SOUTH AFRICAN INDIAN FAMILIES

M.G. Hammond and D. Appadoo

Natal Institute of Immunology. Durban, South Africa
Received October 24, 1970

The new DR specificity ST1 reported by Colombe et al (1) is clearly demonstrated in three Asian Indian families and in two other individuals (Table 1). Several interesting points emerged from these studies in a different race.

In all three families the haplotype carrying ST1 also carries the BfF allele. The gene frequency of BfF is 0.357 in Asian Indians (unpublished observations on 380 Indians) and shows significant link disequilibrium with HLA-B37. This consistent finding of ST1 and BfF together suggests that the Bf locus is closer to the DR locus than to the B locus.

One family has the B37 antigen on the same haplotype as ST1. The other two have BW35. Family 02 also demonstrates a crossover between the A and C loci and the ST1 travels with B37, CW1, and BfF.

Only one South African Negro was found (cell 62) with the reaction pattern defining ST1. DRW2 was also
present but the Bf typing has not been done. The frequency of BIF in South African Negroes is 0.623 and shows strong linkage disequilibrium with the AW30-BW42 haplotype (2).

There is only one discrepancy between serum 691 (BW12) and serum 1097 (BW14) and no conclusions can be drawn. The DC-1 specificity is clearly distinct.

Finally, the rarity of DRW1 in Asian Indians ($<2 \%$) has facilitated the definition of ST1 because the antibody is so often found as an extra in DRW1 sera.

REFERENCES

1. Colombe B, Payne R, Cann H. Reactivity to a new DR specificity, ST-1, in selected 8th International Workshop antisera. This volume
2. Teng YS, Kirk RL, Hammond MG. Linkage disequilibrium between HLA and Bf in Black South Africans. Human Genetics 1979, In press.

Table 1. Eighth workshop sera containing ST-1.

HETEROGENEITY OF B40

M.G. Hammond

The Natal Institute of Immunology, Durban, South Africa
Received November 12, 1979

Since our first report on the heterogeneity of B 40 (1), successive International Workshops have emphasized the complexity of the crossreactive group of antigens which include B7, B13, BW41, and EW48 (1,2).

Table 1 shows the reaction pattern of the sera used in the family studies. The first cell (195) is the only one which can be classified as $8 W 60$ (B40.1). The other B40 cells are all classified as 8 W 61 (B 40.2) although the reaction pattern reveals further heterogeneity.

Table 1 has been divided to show a possible further split of 8W61, although many of the sera clearly have weak extra antibodies which makes it difficult to decide on a clear-cut split.

All the B40 cell donors are Asian Indians. BW41 is well defined and was only found in Negroes. BW47 and BW48 were not found in families.

Table 2 shows the reaction pattern using the disease trays. The first three cells show the reaction pattern of B13. Five ce!ls are classified as 8 W 60 and the remaining B40 cells as $8 W 61$. Positive reactions with serum $8 W 086$ seem to
define a split of 8 W 61 . The extra reactions of serum 8 W 346 are with B 5 and B 7 cells. Three B 7 cells with other antigens present at the E locus have been included to show that cell 235 could be either 8W60 or 8W61 and that BW48 can only be assigned to B 7 negative cells such as cell 093. Again, all the B40 cells are Asian Indians whereas all the BW41 cells are from Negroes.

REFERENCES

1. Hammond MG, Appadoo B, Brain P. HLA antigens and antibodies in South African Indians. Tissue Antigens 1972, 2:389.
2. Hammond MG, Appadoo B, Brain P. HLA antigens in Bantu and Indians. In Histocompatibility Testing 1975, Kissmeyer-Nielsen F, ed, Munksgaard, Copenhagen, 1975, 173.
3. Hammond MG, Appadoo B, Brain P. HLA in nonCaucasian populations. In Histocompatibility Testing 1977, Bodmer W, et al, eds, Munksgaard, Copenhagen, 1978, 407.

Table 1. Reaction pattern of B40 antisera.

\begin{tabular}{|c|}
\hline $$
\begin{gathered}
\text { Tray } \\
\text { og } \\
\text { cellig } \\
\hline
\end{gathered}
$$ \& $$
\begin{array}{r}
7 \\
8 \\
\hline
\end{array}
$$ \& $\stackrel{\sim}{8}$ \& $$
\begin{array}{r}
9 \\
6 \\
21 \\
\hline
\end{array}
$$ \& $$
\begin{aligned}
& \underset{7}{7} \\
& 22
\end{aligned}
$$ \& $$
\begin{aligned}
& 9 \\
& 23
\end{aligned}
$$ \& $$
\begin{aligned}
& -1 \\
& 24
\end{aligned}
$$ \& $$
\begin{gathered}
\underset{\sim}{0} \\
25
\end{gathered}
$$ \& $$
\begin{gathered}
\text { D. } \\
\text { 人 } \\
26
\end{gathered}
$$ \& $$
\underset{\sim}{N}
$$
$$
27
$$ \& $$
\begin{aligned}
& \underset{\sim}{9} \\
& 28 \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& m \\
& m \\
& 30
\end{aligned}
$$ \& \& $$
\begin{aligned}
& \underset{\sim}{n} \\
& 32
\end{aligned}
$$ \& \& \& $\stackrel{9}{7}$ \& N

36 \& 8
7

37 \& $$
\begin{array}{r}
9 \\
\underset{38}{2} \\
\hline
\end{array}
$$ \& \[

$$
\begin{aligned}
& 71 \\
& 39
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 40 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\tilde{4} \\
\text { in }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 5 \\
& 43 \\
& 43
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 8 \\
& 4
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
n \\
i s \\
i s
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 6 \mathrm{y} \\
& 60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 v \\
& 61 \\
& \hline
\end{aligned}
$$
\] \& 4 \& Orhar

\hline 195 \& - \& - \& 0 \& - \& 0 \& - \& 6 \& - \& 8 \& © \& - \& 0 \& - \& \& \& \& 0 \& \& \& 1 \& \& \& \& 6 \& 4 \& - \& - \& - \& 6×59

\hline 252 \& 8 \& 8 \& 0 \& 4 \& \& 8 \& 8 \& \& \& \& 0 \& 8 \& - \& B \& 4 \& \& 0 \& \& \& 0 \& \& \& \& 6 \& 4 \& - \& * \& \& -68

\hline 251 \& 6 \& d \& 0 \& 4 \& \& 0 \& 6 \& \& \& 4 \& 6 \& \& \& \& \& \& 0 \& \& \& 4 \& \& \& \& \& \& - \& + \& - \& Ous

\hline [289 \& \& - \& 0 \& \& \& 0 \& 0 \& \& \& 4 \& 0 \& 6 \& 6 \& 0 \& \& \& 0 \& \& \& 6 \& \& \& \& 0 \& 6 \& - \& + \& - \& -ubs

\hline 059 \& 8 \& - \& 0 \& \& 4 \& 8 \& - \& \& \& - \& - \& 4 \& 6 \& 6 \& \& \& 0 \& \& \& 0 \& \& * \& \& \& \& - \& . \& - \& -0552

\hline $\underline{060}$ \& 8 \& E \& 0 \& \& 6 \& 6 \& - \& \& - \& 6 \& 6 \& \& 4 \& \& 4 \& \& 0 \& \& \& 6 \& \& . \& \& \& \& - \& + \& - \& *

\hline [049 \& θ \& E \& \bigcirc \& \& \& 6 \& 日 \& \& \& 6 \& - \& \& - \& 6 \& \& 4 \& 0 \& \& \& 0 \& \& \& \& \& \& - \& 4 \& - \& ± 7

\hline $\leq \cos$ \& - \& θ \& 0 \& \& \& \& 8 \& \& \& 4 \& - \& 6 \& - \& 6 \& \& \& 0 \& 6 \& \& \& \& \& \& 4 \& 6 \& - \& + \& - \& Dos]

\hline [012 \& 8 \& 8 \& 0 \& \& \& \& 0 \& \& \& \& 8 \& 6 \& \& \& \& \& 0 \& \& \& 6 \& \& \& \& \& \& - \& + \& - \& 8

\hline -015 \& 8 \& 8 \& 0 \& \& \& \& 8 \& \& \& 6 \& 8 \& 4 \& 8 \& 6 \& \& \& 0 \& \& \& 0 \& \& \& \& 6 \& 0 \& - \& 4 \& - \& 137

\hline 079 \& 6 \& 8 \& 0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& 0 \& \& \& 6 \& \& \& \& \& \& \& \& \&

\hline 001 \& 8 \& 8 \& \bigcirc \& \& \& \& \& \& \& 4 \& θ \& 4 \& \& \& \& \& 0 \& \& \& 6 \& \& \& \& \& \& - \& * \& - \& <20-52

\hline 082 \& 4 \& B \& 0 \& \& \& \& \& \& \& 4 \& \& \& \& \& \& \& 0 \& \& \& 4 \& \& \& \& \& \& - \& + \& . \& <buc 2

\hline 003 \& \& 8 \& 0 \& \& \& \& 4 \& \& \& 4 \& - \& \& 6 \& 6 \& \& \& 0 \& \& \& 6 \& \& \& \& \& \& - \& * \& - \& <ense

\hline [081 \& 6 \& θ \& \bigcirc \& \& \& \& \& \& \& \& 1 \& \& \& \& \& \& 0 \& \& \& 6 \& \& \& \& \& 4 \& - \& - \& - \& <evis

\hline 097 \& 6 \& - \& 0 \& \& \& \& 0 \& \& \& \& 4 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& - \& - \& - \& B.35

\hline 169 \& d \& 0 \& 0 \& \& \& \& \& \& \& 6 \& \& \& \& \& \& \& 0 \& \& \& - \& \& \& \& 6 \& \& - \& - \& - \& -

\hline 095 \& - \& 8 \& 0 \& \& \& \& 6 \& \& \& \& 1 \& 6 \& e \& \& \& \& 0 \& \& \& \& \& \& \& \& \& - \& - \& - \& mad

\hline \& \& \& \& \& \& \& \& \& \& \& \& 6 \& - \& \& \& \& 0 \& \& \& \& \& \& \& 6 \& \& - \& * \& - \& 38

\hline \& \& \& 0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& 0 \& \& \& - \& 6 \& 0 \& - \& \& - \& - \& - \& + \&

\hline 073 \& \& 6 \& 0 \& \& \& 6 \& \& \& \& \& \& \& \& \& \& \& 0 \& 4 \& \& - \& 6 \& - \& - \& \& \& \& \& + \&

\hline -074 \& \& \& 0 \& \& 6 \& 4 \& * \& \& \& \& \& 6 \& \& \& \& \& 0 \& 6 \& \& - \& - \& - \& - \& \& 6 \& - \& - \& + \& med

\hline \& - \& - \& \& - \& - \& - \& * \& -ris

\hline 113 \& \& \& 0 \& \& \& 4 \& \& \& \& \& \& \& \& \& \& \& 0 \& \& \& - \& \& - \& - \& \& 6 \& - \& - \& + \& -1

\hline \& \& - \& 0 \& \& 4 \& 4 \& * \& - \& - \& E \& c \& 6 \& \& 4 \& - \& \& 0 \& \& \& 0 \& * \& - \& - \& 6 \& * \& - \& \& \&

\hline [138 \& \& \& 0 \& \& \& \& 6 \& \& 0 \& - \& 6 \& \& \& \& 6 \& \& 0 \& \& \& - \& , \& \leqslant \& , \& \& \& \& \& \&

\hline 110 \& \& \& 0 \& \& \& \& - \& 0 \& - \& * \& , \& \& \& \& - \& \& \& \& \& \& \& \& \& \& \& - \& - \& - \& 7

\hline 114 \& \& \& 0 \& \& \& \& 1 \& \& 1 \& 6 \& + \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& - \& - \& - \& 7. 3046

\hline \& m \& \& Of \& \& \& \& \& \& \& \& \& \& \& \& \& \& 0 \& \& \& \& \& \& \& \& \& - \& - \& - \& 17, m

\hline
\end{tabular}

Heterogeneity of B40

Table 2. Reaction pattern of B40 antisera.

$\begin{gathered} \text { Tray } \\ 15 \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\boldsymbol{\sigma}} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \underset{\infty}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{\sim}$	O	$\stackrel{0}{\underset{m}{2}}$	$\stackrel{r}{\mathbf{M}}$	$\stackrel{\text { OI }}{\mathbf{m}}$	$\begin{aligned} & \dot{\otimes} \\ & \hline 0 \end{aligned}$	$\stackrel{n}{8}$ 49	$\stackrel{\rightharpoonup}{n}$ 50	$\underset{\sim}{\sim}$ 51	$\begin{aligned} & 8 w \\ & 60 \end{aligned}$	$\begin{aligned} & 8 w \\ & 61 \end{aligned}$	$\begin{gathered} B W \\ 41 \end{gathered}$	Bw 48	
Cells	38	39	40	41	43	44	45	46	47	48					61	41	48	Other
088	8	8	8		8	8	8		4					-	-	-	-	B13, Bw51
037	8	8	8	6	8	8			4					-	-	-	-	B13, -
124	8	8	8		8	8								-	-	-	-	B13, Bw52
094					8	8	8	8	8		6	6		+	-	$?$	-	-
106					8	8	8	8	8		4			+	-	-	-	Bw5 1
107					8	8	8	8	8	6				+	-	-	-	B8
150					8	8	8	8	8		8	4		+	-	-	-	Bw4 4
214					8	8	8	8	8	8	6			+	-	-	-	Bw5 1
238				8	8	8			6	6				-	+.	-	-	Bw44
015				8	8	8			8					-	+	-	-	B37
020				¢	8	8			8					-	+	-	-	-
144				8	8	8			8					-	+	-	-	-
041				6	8	6			4					-	+	-	-	8w67
197				4	8	8			8					-	+	-	-	Bw 35
087				6	8	8	8		8					-	+	-	-	Bw51
005					8	8	8		8					-	+	-	-	Bw53
090					8	8	6		8			4	8	-	+	-	-	8w68
204					8	8	8		6					-	+	-	-	Bw51
055					8	8	4		8					-	+	-	-	Bw5 2
025					8	6			8				4	-	+	-	-	8w64
024					8	8			0					-	+	-	-	B8
198					8	8			8	4				-	+	-	-	-
235					8	8	8	8	8					?	$?$	-	-	B7
226							8	8	8					-	-	-	-	B7, Bw44
105							8	8	8					-	-	-	-	B7. 8w68
175							8	8	8					-	-	-	-	B7, B37
093							8	8	8					-	-	-	+	Bw51
164					4		8	8	8	6	8			-	-	+	-	B7
203					8						8			-	-	+	-	B8
140					8						8			-	-	+	-	B8
052					8						8			-	-	+	-	B8
050					8						8			-	-	\pm	-	-
248	8	8	8		8	6		4	8		8			-	-	+	-	B13
207	8	8	8	6	8	8	6				8	6	4	-	-	+	-	B13

A/C CROSSOVER IN SOUTH AFRICAN INDIAN FAMILY

M.G. Hammond and L. Lamm

The Natal Institute of Immunology, Durban, South Africa, and Finod Bumb and Tissue Typing Laboratory, Ashus C, Denmark

Received December 5, 1979

One of the Indian families typed for the 8th Workshop showed a crossover between the A and C loci. The pedigree is illustrated in Figure 1.

This family was also typed for $\mathrm{Bf}, \mathrm{C}^{\prime} 2$, and $\mathrm{C}^{\prime} 4$. The $C^{\prime} 2$ and $C^{\prime} 4$ typings were not informative. The $B f$ F allele traveled with the C, B, and $D R$ alleles which does not contradict the positioning of the Bf locus between B and D .

Figure I. South African Indian family with a crossover between A and C .

FAMILY 02

BW53

M.G. Hammond

The Natal Institute of Immunology, Durban, South Africa

History -

This antigen was first described by Engelfriet et al in 1972 (1) as the antigen HR. This antigen can only be defined by extra reactions i:, sme E5 and EW35 antisera but during the 7 th Workshop it was decided that this definition was clear enough for the provisional designation BW53.

Serology

No monospecific antiss:a vere available for the 8 th Workshop but the definition of BW53 was quite clear in the absence of B5 and BW35. The sera used in the disease set gave a better definition than the genetic set. It was impossible to define BW53 in the presence of BW35 using the genetic set (when no other antigen was present) unless the presence of BW4 is taken to indicate that BW53 is present. In the disease set it was impossible to distinguish between BW35 and BW53 in the presence of 25 extept by using the absence of BW6 to indicate the absence of BW35.

Linkage

No linkage disequilibrium was evident in the predata analysis but the estimated haplotype frequencies in Caucasians showed that the A28-BW53 haplotype had the highest frequency followed by AW3O-BW53. These two A-locus antigens have much higher frequencies in Negroes who also have the highest frequency of BW53.

Conclusions

The definition of BW53 continues to be difficult since monospecific sera are lacking.

REFERENCE

1. Engeliriet $C P$, Veenhoven von Riesz E, Kort-Bakker M, van den Berg-Loonen PM. Some studies with anti-4c, anti-R, anti-HL-A5, anti-W5, W18 and the description of a new antigen of the four segregant series, called HR. In Histocompatibility Testing 1970, Terasaki PI, ed, Munksgärd, Copenhagen, 1972, 475.

BW 53

Caucasian: $1.5 \quad$ Negro: $12.6 \quad$ Oriental: 0.2

Random Population								
Card	Serum		\% Fr	equen	cy	With	Antigen	
Column	Number	Lab	C	N	0	r	\% 8s	Other Specificities
06-79	196	CAN	25	25	41	39	60	BW51,BW52,B13,BW49, BW59,8W66
07.27	665	CRB	16	27	9	42	60	BW35
07-28	678	GAN	21	27	19	40	77	BW35
07-30	034	GOL	33	37	42	49	85	BW51,BW35,BW52
07.33	228	FES	21	27	16	54	89	BW35
13.78	541	BOT	27	46	37	36	85	BW51,BW52,BW49,BW63, BW57,BW58,BW59
14-19	248	GAZ	25	37	29	46	83	BW35,BW51,CW4
14-21	269	MYR	16	23	35	56	87	BW51,BW52
14.22	494	ENG	20	27	34	55	90	BW51,BW52,BW49,BW63, 8W66
14.23	493	ENG	14	17	29	71	64	BW51,BW52
14.24	035	GOL	15	25	33	71	88	BW51,BW52,8W66
14.25	596	MYE	21	29	32	50	86	BW51,BW52,BW49,BW63, 8W66
14.26	1159	GEL	16	23	13	86	86	BW35
14.27	133	PER	27	30	37	621		BW35,BW51,BW52
14.28	784	ENT	37	51	54	551		BW35,BW51,BW62,BW52, 8W59
14.30	782	ENT	40	48	51	42	93	BW35,BW51,BW62,BW52, 8W59,BW49

Joint Report: BW53

Joint Report: BW53

Sera
Number

034	55			
678	82	62		
665	75	44	71	
196	08	57	21	00
	228	034	678	665

sera Number										
784	83									
133	76	82								
1159	60	62	73							
596	39	38	40							
035	42	54	55	14	72					
493	44	54	56	11	70	92				
494	41	39	45	10	87	74	77			
269	51	61	66	27	63	85	87	72		
248	70	78	89	76	32	44	43	33	53	
541	39	36	38	12	80	58	60	76	60	30
	782	784	133	1159	596	035	493	494	269	248

Serum	PUR 07					
Number	P	P	1	2	3	HLA
1152	-	$+$	$+$	-	-	53,35
665	-	$+$	+	-	-	53,35
678	-	$+$	+	-	-	53,35
034	-	$+$	+	-	-	53,35
228	-	$+$	+	-	-	53,35
426	-	$+$	$+$	\pm	-	53,35
783	-	+	+	=	-	53,35
1116	-	-	-	-	-	35
1040	-	-	-	-	-	35
058	-	-	-	-	-	5
079	-	-	-	-	-	5
338	-	-	-	-	-	5
196	-	+	\pm	-	-	5
308	-	-	-	-	-	5
256	-	-	-	-	-	51
306	-	-	-	-	-	51
1190	-	-	\sim	-	-	51

$\begin{array}{llllllll}\text { Serum } & \text { VIL } & 03 \\ & & & & & \\ \text { Number } & P & P & 1 & 2 & 3 & 4 & \text { HLA }\end{array}$

| 1152 | - | - | - | - | - | 53,35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 665 | - | - | + | - | - | 53,35 |
| 678 | + | + | + | - | - | 33,35 |
| 034 | - | + | + | - | $-33,35$ | |
| 228 | - | + | + | - | $-33,35$ | |
| 426 | - | + | + | - | - | 3,35 |
| 783 | - | + | + | - | - | 33,35 |
| 1116 | - | - | - | - | - | |
| 1040 | - | - | - | - | -55 | |
| 058 | - | - | - | - | 5 | |
| 079 | - | - | - | - | 5 | |
| 338 | - | - | - | - | 5 | |
| 196 | - | - | - | - | 5 | |
| 308, | - | - | - | - | -5 | |
| 256 | - | - | - | -51 | | |
| 306 | - | - | - | -51 | | |
| 1190 | - | - | - | - | - | |

PROCEEDINGS OF THE SECOND ASIA AND OCEANIA HISTOCOMPATIBILITY WORKSHOP CONFERENCE

Editors: Simons M.J.
Immunngene Typing Laboratories,
Immunosearch Centre, Melbourne.
Tait B.D.
Tissue Typing Laboratories,
Royal Melbourne Hospital, Melbourne.

December 1981

Bw35

Michael G. Hammond, Natal Institute of Immunology, Durban, South Africa
Bw35 was well defined by the sera used in this Workshop. Eight sera (see tables) gave strong reactions and together were able to define Bw35 even in the presence of B5 or B15. Sera 249 and 446 reacted with some Bw5l cells, sera 237, 238, 421 and 449 were positive with nearly all B5 splits and sera 447 and 448 were positive with Bw63 cells.

Bw35 is usually associated with Bw6 but there were 2 of 43 Caucasian cells that were Bw35 positive Bw6 negative. In the Japanese 18 of 175 cells were in this category while in Chinese only 5 of 9 Bw 35 cells were positive for Bw6. The definition of Bw6 presented some difficulty and I have therefore counted those cells which were negative for all Bw6 sera as being Bw6 negative for this analysis.

Frequency of Bw35 in the three populations:
Chinese Japanese Caucasians
$N=164 \quad N=992 \quad N=520$
$\begin{array}{llll}\text { Frequency } & 5.5 & 16.3 & 7.7\end{array}$
There are marked differences in the frequency of Bw35 associated daplotypes in the different races tested in this Workshop. The well known Bw35, Cw4 haplotype is not common in Japanese and is replaced by Bw35, Cw3. Other differences are shown in Table 11. No significant delta values were seen in the Chinese Bw35 association.

Table I
Bw35 Sera in Each Population

Serum Number	Caucasian		Japanese		Chinese		other Specificities
	r	$88+$	r	$88+$	r	$88+$	
237	64	98	52	91	64	86	$\mathrm{Bw} 51+52$
238	56	93	32	89	70	100	$\mathrm{Bw} 51+52+53$
249	77	97	46	84	67	100	Bw51
421	53	90	36	94	74	100	B5
446	87	87	73	90	67	100	
447	87	90	69	87	59	100	Bw63
448	79	76	59	69	48	100	Bw63
449	57	84	40	68	39	33	B5

Table II
The Most Frequent Bw35 Haplotype $\left(\times 10^{4}\right)$

	Caucasian $\mathrm{N}=688$	Japanese $\mathrm{N}=994$	Chinese
A2, Bw35	$\mathrm{N}=164$		
A3, Bw35	21	275^{*}	80
Aw24, Bw35 Bw35	88^{*}	6	0
Bw35, Cw3	105^{*}	93	35
Bw35, Cw4	68	268	94
Bw35, DR1	15	600^{*}	77
Bw35, DP4	325^{*}	23	150

* Significant linkage disequilibrium

Figure 1
Bw35 sera x sera r values $\times 100$

Bw 53

Michael G. Hammond, Natal Institute of Immunology, Durban, South Africa
It is not possible to define Bw53 with the Workshop sera. The four cells defined as Bw53 in previous workshops gave inconsistent reaction patterns which could not be differentiated from the reaction patterns of the various splits of B5. Three sera were submitted as containing Bw:53 antibodies. Serum 241 gave hardly any strong positive reactions. Sera 249 and 446 had many extra reactions besides Bw35, especially in the Japanese, but no consistent pattern could be found in order to define Bw53.

Bw53 is a low frequency antigen in all races except Blacks who were not tested in this Workshop.

Cw4

Michael G. Hammond, Natal Institute of Immunology, Durban, South Africa
Cw4 was very closely defined by five antisera $(541,542,543,544,545)$ and by serum 551 which also reacted with Cw6 cells. Sera 542 and 544 were not as strong as the others.

Frequency of Cw4

	Caucasian	Japanese	Chinese
	$N 520$	$N 992$	$N / 64$
Frequency $\%$	9.8	6.7	14.6

There are marked differences in the associations of Cw4 with other A and B locus antigens in the different races. The well known linkage disequilibrium between Cw 4 and Bw35 is present in Caucasians but not in Japanese or Chinese. Instead, Cw4 is associated with Bw ? ? ith a significant delta value. Also noticeable is the lack of an association between A3, Cw4 and B13, Cw4 in Japanese and Chinese.

Table 1 Cw4 Sera in Each Population

Serum	Caucasian		Japanese		Chinese		Other
No.	r	$\% 8+$	r	$\% 8+$	r	$78+$	Specificities
541	74	96	64	93	82	100	
542	61	67	55	81	56	50	
543	85	98	73	95	83	82	
544	77	79	73	76	87	72	
545	81	95	75	95	84	95	
551	49	94	57	100	58	91	Cw6

Table 2 Cw4 Haplotypes (x104)

A3, Cw4	109*	0	0
A11, Cw4	$119 *$	$157 *$	214
Aw31, Cw4	6	$58 *$	61
B13, Cw4	$62 *$	0	0
Bw35, Cw4	$325 *$	23	150
Bw56, Cw4	0	$50 *$	0
Bw62, Cw4,	75	$224 *$	$319 *$
* Significant linkage disequilibrium			

Figure 1 Serum \times serum r values $\times 100$ for Cw4 sera
Serum Number

542	65				
543	85	69			
544	73	71	75		
545	74	59	75	70	
551	61	43	62	52	56
	541	542	.543	544	545

Subdivision of HLA B15 in Indians

M.G. Hammond, Natal Institute of Immunology, Durban, South Africa.

Two splits of B15 have been given official numbers, Bw62 and Bw63. The definition of $8 w 66$ or B15.3 at the Eighth Workshop was not clear enough to be given a W number, nor was the definition of $8 w 59$ which includes BU and SV. The sera used in the Second Asia-Oceania workshop, however, were able to give a better definition of these splits.

Three monospecific sera gave a good definition of Bw62 but Bw63 could only be defined by extra reactions of two B17 sera $(404,405)$ in the absence of B17 because the broad B15 sera ($340,341,343$) reacted weakly with B17 cells. $8 w 66$ or B15.3 was best defined in the absence of Bw35 by sera 447 and 448 together with the broad B15 sera and sera 337,344 and 345 which had different extra specificities as listed in Table 1. The number of cells with each pattern in each race was derived from a computer programme, run in Melbourne, utilising all the data and included families, disease data and panel cells but nevertheless the frequency of Bw62 is very low in all the populations tested. Table 2 shows the segregation of $8 w 66$ in an Indian family.
$8 w 59$ was only defined by a single serum (356) in the absence of Bw62, Bw63, $8 w 66$, Bw35 and B17, but it is apparent that there is a relatively high frequency of this specificity in Chinese and Indians.

Segregation of $8 w 59$ was shown in another family with the following haplotypes.

Table 1

Reaction pattern of sera used to define splits of B15

Serum Number	Bw62	Bw63	Bw66	8w59	Other Specificities
349	+	-	-	-	
339	+	-	-	-	
338	+	-	-	-	
347	+	\pm	-	-	
346	+	\pm	-	-	Cw1
348	+	-	\pm	-	
337	+	-	\pm	-	B13
345	+	-	\pm	\pm	Cw1 + B7
344	+	-	+	\pm	
342	+	+	+	-	
340	+	+	+	-	B17
341	+	+	+	-	B17
343	+	+	+	-	B17
508	\pm	\pm	\pm	-	Bw46
447	-	-	+	-	Bw35
448	-	-	+	-	Bw35
404	-	+	-	-	B17
405	-	+	-	-	B17
356	+	+	+	+	Bw35 + B17
CAUC	34	4	1	4	452 cells
JAP	112	0	11	59	1124 cells
CHIN	25	1	13	34	218 cells
Indian	3	2	6	16	122 cells

Table 2

Segregation of Bw66 (15.3)

	M	F	C1	C2	C3
	064	063	065	066	067
349	-	-	-	-	-
347	-	-	-	-	-
339	-	-	-	-	-
338	-	-	-	\bigcirc	-
346	-	-	-	-	-
348	-	-	-	-	-
337	+	-	-	\pm	0
345	+	-	+	+	+
344	+	-	-	+	\pm
342	+	-	-	+	+
340	+	-	-	+	+
341	+	-	-	+	+
343	+	-	-	+	+
508	+	-	-	+	\pm
447	+	-	-	+	+
448	+	-	-	+	+
404	-	-	-	-	-
405	-	-	-	-	-
356	+	-	-	+	+

Anomalous Reactions with Ifn. 4 Sera in Indian Families

M. G. Hammond, Natal Institute of Immunology, Durban 4000 South Africa

The classical division of B locus specificities into Bw 4 associated and Bw 6 associated antigens places B13 in the Bw4 group and B40 (Bw60 and Bw61) in the Bw6 group.

Two Indian families studied in this workshop showed exceptions to this classification. The reaction patterns of family 01 are shown in Table 1. The inheritance of the haplotype containing Bw61 and Bw6 can be followed through four generations. (Only the B locus antigens will be discussed for simplification). It is unlikely that the great grandmother (cell 024) is homozygous for Bw61 because of the presence of Bw4. Her daughter (cell 004) inherited Bw61, Bw6 from her mother and B13, - from her father. The existence of a blank instead of being homozygous for Bw6 is proved by two of her children (006 and 007) being negative for Bw6 and only having Bw4 together with either B5 or Bw44 from their father (003). The possibility of cell 004 being homozygous for Bw61 and thus causing false positive reactions with B13 sera can be discounted because her grandson (cell 027) is in fact homozygous for Bw61, Bw6.

The existence of a short Bw4 occurs in family 02 where two HLA identical siblings have inherited Bw61, Bw6 from their father and B13, Bw4X from their mother.

This pattern was also seen in two unrelated individuals (cells 062 and 084) the latter cell also having Bw61 present. The last two cells show a conventional B13, Bw4 pattern for comparison.

These families illustrate the necessity for caution in using the presence or absence of Bw4 and Bw6 as indicators for the presence or absence of various B locus antigens.

TABLE 1

Histocompatibility Testing 1984

Report on the Ninth International Histocompatibility Workshop and Conference
Held in Munich, West Germany, May 6-11, 1984
and in Vienna, Austria, May 13-15, 1984

Edited by
E.D. Albert M.P. Baur W.R. Mayr

Coeditors* and Organizing Committee
E.D. Albert, Munich M.P. Baur, Düsseldorf J. Bertrams*, Essen
S. Goldmann*, Ulm H. Grosse-Wilde*, Essen W.R. Mayr, Vienna
G. Opelz*, Heidelberg C. Rittner*, Bonn D.J. Schendel*, Munich
S. Scholz*, Munich R. Wank*, Munich

With 226 Figures and 432 Tables

Springer-Verlag
Berlin Heidelberg New York Tokyo

Table 1. Split of A28 into two subtypic specificities (Aw68 and Aw69) with Ninth Workshop reagents

Cells	9WS Sera ${ }^{\text {a }}$			9WS Moabs ${ }^{\text {a }}$		
	A2	$\begin{aligned} & \text { A2+ } \\ & \text { Aw69 } \end{aligned}$	A28	A2 and A28	A2	$\begin{aligned} & \mathrm{A} 2+ \\ & \mathrm{A} w 69 \end{aligned}$
	0	0000	0000000	11111111	11	1. 1
		0000	0000000	11111111	11	11
		1112	2222233	00034455	34	03
Bodmer lab data		7891	3457912	23801216	24	49
A2 Homozygotes		$++++$? - - - - -	$+++++++$	$++$	$++$
A2 Heter (most)		$++++$	- - - - - -	$+++++++$	$++$	+ +
Aw68(28) (Regular)		- - -	$+++++{ }_{\text {b }}$	$++++++++$	- -	--
Aw69 (28) (Rare)		$+++$	$+++++{ }^{\text {b }}$	$+++++++$	-	+ +

Italy 1 reg. data (refers to fimilies)
Aw69(28) (Less common) $-\quad-\quad 0+++\quad++++?+? \quad++++++++\quad-\quad++$
Aw68(28) (Common type) $-{ }^{\text {C }} 0---\quad++++?+? \quad++++++++---$

- Details of other reactivities not given
b Serum 32 appears to lack Aw69 reactivity

References

1. Kennedy LJ, Bodmer JG (1983) A2 variants. Ninth International Histocompatibility Workshop Newsletter 5
2. Richiardi P, Amoroso A, Conighi C, Menicucci A, Savi M, Marsico D, Fina C, Curtoni ES (1984) Further splits of A28. Ninth International Histocompatibility Workshop Newsletter 6

Antigen Report: HLA-A29

M.G. Hammond ${ }^{1}$, H. Bétuel ${ }^{2}$, and L. Gebuhrer ${ }^{2}$

I Natal Institute of Immunology, Durban 4000 , South Africa
2 Blood Transfusion Center, 69007 Lyon, France
The A29 antigen has been well defined since 1975 [I], and the five sera submitted as monospecific A29 sera for this workshop gave a clear definition in all races.
All five sera have high Q scores (Table 1), and the average strength scores show that nearly all positive reactions with A29 were very strong. Sera 9wl 04 and 9 wl 08 had some extra reactions with A1I and Al cells, respectively.

Table 1. A29 serum analysis

Serum	Q score	Ave strength with A29	Extras
9 w 102	9.9	7.6	
9 w 103	10.0	7.6	Aw43, Th. (Al1):
9 w 104	9.7	7.9	Aw43
9 w 106	12.0	7.7	Aw43
9 w 108	11.0	7.1	(Aw4.3).(Al)

[^8]The other extra reactions were only seen in the Ne groid populations. Three sera, $9 \mathrm{w} 103,9 \mathrm{wl} 104$, and 9 wl 06 , reacted with Aw43 cells, and serum 9wl04 also reacted with cells carrying Th. Several broad Awl9 sera also recognized A29:9wl49, 9wl50, $9 w 062$, and $9 w 301$. There were no discrepancies in the segregation patterns of 45 families.
A29 was not found in Chinese or Japanese cells but was present at low frequency in some southeast Asian populations.
As at previous workshops, A29 and B44 showed a positive linkage disequilibrium in Caucasoid and Negroid populations.

Reference

1. Bodmer T. Curtoni ES, van Leeuwen A, et al (1975) The ABC of HLA. A serological report of the Sixth Histocompatibility Testing Workshop. In: Kissmeyer-Nielsen F (ed) Histocompatibility testing 1975. Munksgaard, Copenhagen. p 21

This antigen is mainly found in Negroids. Aw36 is closely related to AI and it is normally defined by a subset of Al sera. At the Sixth Workshop, the A locus assignment of this antigen was confirmed by segregation patterns in a large Zambian family [4]. Although Aw36 is observed mainly in Negroids, sera with anti-Aw36 activity commonly originate from Caucasoids with no apparent Negroid ancestry. Anti-Aw36 activity is only found in anti-Al sera and not in combination with any other single A locus specificity.
Three anti-Aw36 plus anti-A1 sera were submitted to the Ninth Workshop: 006, 007 and 009 (Table 1), with which Aw36 can be easily assigned in cells which are negative for AI.

Table 1. Anti-HLA-Aw36 sera

9W serum no.	Average score	\% Reactions missed	\% Extra reactions	Serum strength	Quality score
006	7.1	11	83	88	7.7
007	6.5	38	89	83	3.1
009	6.4	11	84	80	7.3

Although the majority of cells typed in this workshop as Aw36 reacted with all three anti-Aw36 sera, five cells were positive with 006 and 009 and negative with 007 . However, the patterns of reactions were variable and probably do not signify a split of this specificity.
In a recent study of Nigerian cells, Aw36 was found in linkage disequilibrium with Bw53 and Cw4 [3].

References

1. Festenstein H, Adams E, Brown J, Burke J, Lincoln P, Oliver RTD, Rondiak G, Sachs JA, Welch SG, Wolf E (1973) The distribution of HL-A antigens and other polymorphisms in Bantu-speaking Negroids living in Zambia. In: Dausset J, Colombani J (eds) Histocompatibility testing 1972. Munksgaard. Copenhagen, p 359
2. Lawler SD, Klouda PT (1973) West Indian Negroes immigrant in the United Kingdom. In: Dausset J, Colombani J (eds) Histocompatibility testing 1972. Munksgaard, Copenhagen, p 415
3. Okoye R et al (1984) HLA polymorphism in the Nigerian population (submitted)
4. Wolf E, Festenstein H, Pritchard J, Watson B, Sachs J, Traub N (1975) Further HLA heterogeneity in Zambian and Caucasoids populations. In: Kissmeyer-Nielsen F (ed) Histocompatibility testing 1975. Munksgaard, Copenhagen, p 179

Antigen Report: HLA-Aw43

E.M. Campbell ${ }^{2}$, E.D. du Toit ${ }^{1}$, M.G. Hammond ${ }^{2}$, and M. Oudshoorn ${ }^{1}$
I Provincial Laboratory for Tissue Immunology, Private Bag 4, Observatory 7935, South Africa
2 Natal Institute of Immunology, P.O. Box 2356, Durban 4000, South Africa

History

In 1972, the occurrence of apparent triplets associated with HLA-A10 and A29 in the Khoisan populations of Namibia was reported [I]. In 1975 [6], an HLA-A10/A29 allele was defined in terms of the Fifth International Histocompatibility Workshop antisera and designated BK. The Sixth and Seventh Workshops [2,3] provided further opportunities for studying BK. At both these workshops $B K$ was serologically well defined with reactions involving HLA-A10, A26, and A29 antisera and was shown to segregate clearly within families. During the Eighth Workshop a monospecific HLAAw43 antibody was used for the first time, simplifying the assignment of this antigen [4]. Although at the timc of the Eighth Workshop,

HLA-Aw43 had only been found in Khoisan, Cape Colored, Xhosa, and South African Caucasoid individuals in Cape Town [4], we felt that HLAAw43 would eventually be detected in other Southern African groups. The assumption that Aw43 could be present in Southern African Negroes other than the Xhosa was based on the finding of Jenkins et al. [5] that there was a considerable San admixture in most Southern African Ne groes.

Serology

The Ninth International Histocompatibility Workshop antisera allow good defintion of the allele HLA-Aw43. No splits are apparent, and problems of identification should not arise. In our hands

Table 1. Serum analysis in South African Negroes

9W Serum	Antigens	r	χ^{2}	\% Missed	\% Extras
072	Aw43	0.67	54	0	44
	A26	0.91	86	7	0
074	Aw43	0.65	52	0	46
	A26	0.95	96	0	0
075	Aw43	11.65	51	0	46
	A26	0.95	95	0	0
079	Aw43	0.62	47	0	50
	A26	0.87	82	0	13
081	Aw43	0.62	47	0	50
	A26	0.87	82	0	13
082	Aw43	0.61	44	0	51
	A26	0.79	66	7	20
100	Aw43	0.68	55	6	39
	A26	0.65	45	38	11
101	Aw43	0.92	102	6	0
103	A29	0.70	59	0	37
	Aw43	0.91	81	0	7
106	A29	0.69	57	0	39
	Aw43	0.87	74	0	13

9wl0I is an excellent anti-Aw43 serum, with an r value of 0.92, as shown in Tibble 1. Four families, with 15 individuals positive for HLA-Aw43, were submitted from South Africa. The serum analysis of the ten best antisera for identifying HLA-Aw43 is shown in Table 1.

Gene Frequencies and Linkage Disequilihrium. The gene frequencies of HLA-Aw43 in various Southern African Negroid population groups ran-
ges between 0.02 (Zulu) and 0.10 (Central!Kung) Aw43 is in linkage disequilibrium with B7, Bw70, and Cw4.

Conclusion

The antigen HLA-Aw43 was seen in South Africa during the Ninth Workshop. It was again well de[ined, particularly with antiserum 9 wl01.

References

1. Botha $M C$, du Toit ED, Jenkins T, van Leeuwen A. D`Amaro J, Meera Khan P, van der Steen G, van Rood JJ, van der Does J (1972) The HL-A system in Bushmen (San) and Hottentot (Khoikhoi) populations of South West Africa. In: Dausset J, Colombani J (eds) Histocompatibility testing 1972. Munksgaard, Copenhagen, p 421
2. Botha MC, Campbell E, Briggs BR, du Toit ED (1975) Further observations on BK , an African SD-1 antigen. In: Kissmeyer-Nielsen F (ed) Histocompatibility testing 1975. Munksgaard, Copenhagen, p 261
3. Dick H (1977) Joint Report. HLA-A, B and C serology and antigen reports. In: Bodmer WF, Batchelor JR, Bodmer JG, Festenstein H, Morris PJ (eds) Histocompatibility testing 1977. Munksgaard, Copenhagen, p 164
4. Du Toit ED, Briggs BR, Botha MC, Campbell EM (1980) Joint Report. HLA-Aw43. In: Terasaki P (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, p 344
5. Jenkins T, Zoutendyk A, Steinberg AC (1970) Gammaglobulin Groups (Gm and Inv) of various Southern ACrican Populations. Am J Phys Anthropol 32:197-218
6. Nurse GT, Bodmer JG, Bodmer WF, van Leeuwen A, van Rood JJ, du Toit ED, Botha MC (1975) A reassessment of HL-A system in Khoisan populations in South West Africa. Tissue Antigens 5:402

Antigen Report: HLA-Aw66

L.P. de Waal ${ }^{1}$, G.G. de Lange ${ }^{1}$, V. Joysey ${ }^{2}$, C.P. Engelfriet ${ }^{1}$, and A. Amoroso ${ }^{3}$

I Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, P.O. Box 9190, Amsterdam, The Netherlands
2 Tissue Typing Laboratory, Addenbrooke's Hospital, Cambridge, U.K.
3 Istituto di Genetica Medica, Università di Torino, Via Santena 19, 10126 Italy

History

During the Eighth International Histocompatibility Workshop [3] it was agreed that HLA-A25, A26, and Aw34 were well defined, without evidence for Curther splits.
Recently, however, a new HLA-A antigen, called LN (= Aw66), was described, which is closely re-
lated to A25, A26, and Aw34 [4]. The definition of Aw66 was based on the reaction pattern of "monospecific" A25 and A26 sera and more complex "Al0 cross-reacting" sera containing Aw66 reactivity and on segregation in families. Especially important for defining Aw66 were sera reacting with both All and Aw66. Linkage disequilibrium of Aw66 with Bw41 was observed [4].

[^9]In conclusion, there were a number of monospecific B51 sera, the most specific being nos. 152, 153, 156 , $157,158,159$. Other useful B51 sera without Bw52 (but with B35 and Bw53) were 171 and 172. There were no monospecific Bw52 sera, the best being nos. 162 and 414 . No. 162 was a weak Bw52 serum containing weak B5I and B49 activity. Serum 414
did not react with B51-positive cells but had an an-ti-B49 reactivity. Despite the lack of monospecific sera, Bw52 could be easily defined with a combination of the B5 and B51 sera (see Table 1 in the Bw53 report, Taylor et al., this volume). There was no evidence of splits or variants of B51 or Bw52 at this Workshop.

Antigen Report: HLA-Bw53

C. Taylor ${ }^{1}$, A. Ting ${ }^{1}$, M.G. Hammond ${ }^{2}$, L.P. de Waal ${ }^{3}$, G.G. de Lange ${ }^{3}$, and P. Engelfriet ${ }^{3}$

1 Nuffield Dept. of Surgery, John Radeliffe Hospital, Oxford, U.K.
2 Natal Institute of Immunology, P.O. Box 2356 , Durban 4000 , South Africa
3 Central Laboratory, Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands

Only one serum (Workshop no. 163) was submitted as a monospecific anti-Bw53 serum. Other sera submitted as having anti-Bw53 as well as other antigens were: 170 (B5); 171, 172 (B5, B35); and 177 (B5, B35, B18).
For each serum the Q score, number of "correct" positive reactions, and "tail" antigens derived from 2×2 comparisons are shown in Table 1 .
Serum no. 163 was submitted as a monospecific an-ti-Bw53 serum but the Worksh甲p data did not con-
firm this. Bw53 could be differentiated from B51, Bw52, B35, and Bw70 with the Workshop sera, but there was no monospecific serum for Bw53. However, there are still some problems when the abovementioned antigens are present. The definition of Bw53 is shown in Table 2: sera 174 and 176 reacted with B51, Bw52, and Bw53; sera 312, 181, and 182 with B35, and Bw53; sera 171 and 172 with B51, $B 35$, and Bw53; and sera 199, 315 , and 317 with B51, Bw52, B35, Bw70, and Bw53.

Table 1. Q score, percentage of "correct" to reactions with the listed antigen (\% Correct), and ad. ditional specificities in each serum. The sera are listed in order of quality

9WS no.	Antigen	Q score	\% Correct	\% 8's	Other specificities
177	Bw53	8.3	100	89	B35,51, w52. 18
172	Bw53	7.9	98	92	B35,51
199	Bw53	4.8	98	84	B35, 51. (w52)
171	Bw53	6.7	96	89	B35, 51
176	Bws 3	5.5	91	86	B5I, w52, 49, (w63), 8 w66
181	Bw53	7.0	90	79	B.35, (51)
182	Bw53	6.5	91	84	B35 (51, w52)
174	Bw53	5.1	89	78	B51.w52. 49
317	Bw53	4.6	96	73	B35, 51, w52, 18,w62. +
312	Bw53	4.4	92	76	B35, w62, 50, w70 (w57)
315	Bw53	5.8	92	84	B35, 51, w52,w62,w70
316	Bw53	2.6	78	56	Bw62. 35, (w63, 51, w57, w46)

Table 2. Definition of B51.Bw52. Bw53. B35. and Bw70 with the Ninth Workshop sera

?: weak reaction

References

1. Hammond MG, Appado B, Brain P (1972) HLA antigens and antibodies in South African Indians. Tissue Antigens 2:389
2. Dick HE, Bodmer WF (1977) Joint report 4: HLA-A, -B and -C serology. In: Bodmer WF, Batchelor JR, Bodmer

JG, Festenstein H, Morris PJ (eds) Histocompatibility testing 1977. Munksgaard, Copenhagen, pp 178-180
3. Thompson JP (1980) Joint report: Bw60. In: Terasaki PI (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 458-461

Antigen Report: HLA-Bw62 and Other Bw6-Associated Variants of B15

D. Chandanayingyong ${ }^{1}$, A. Cambon-Thomsen ${ }^{2}$, and M.G. Hammond ${ }^{3}$

I Blood Bank, Siriraj Hospital, Bangkok 10700, Thailand
2 INSERM U. 100, Unité de Recherches d'Immunologie et de Cytogénétique, 31052 Toulouse Cedex, France
3 P.O. Box 2356 Natal Institute of Immunology, Durban, South Africa

History

Subdivisions of B 15 were suggested at the Fourth International Workshop [18] and were reported at the Sixth Workshop to be found often in Malay and Chinese populations [11]. Sera against these variants were described as early as 1974 [14]. During the Seventh Workshop, one component appeared to be associated with Bw4 and another with Bw6 [9]. At the Eighth Workshop, two splits were defined: Bw62, which is Bw6 associated [17], with one exception recently published [1], and Bw63, which is Bw4 associated [19]; a third split was proposed in Negroids: 8w66, which is Bw4 associated [7]. During the Seventy-second International Cell Exchange, further splits of B15 were suggested: B15.3 in Chinese [12] and a new B15 variant in Vietnamese [13], both of which are Bw6 associated. At the Second Asia-Oceania Histocompatibility Workshop, an antigen report on B15 described a short pattern of reaction within Bw62, called Bw62.1 [15].

Serology

During this Workshop, the complexity of B15 has been described in nine newsletters $[2-6,8,10,16$, 20], and the different patterns of reactions are shown in Table I. Bw62 was clearly defined by positive reaction with four monospecific sera: $9 w 285,9 \mathrm{w} 286,9 \mathrm{w} 284$, and 9 w 289 , with Q scores of $8.9,8.5,7.4$, and 5.3 respectively. Bw62.1 or sh (short) was defined by negative reaction with these
four key sera for Bw62. Twenty-five families in this Workshop, six from Japan, four from Thailand and China, 11 from South Africa and four from the USA, with 28 informative sibs, showed clear segregation of this split. B15.3 and B15 SL were negative with the above-mentioned sera and also with a number of other sera (see Table 1). B15 G and B15 Sau seem to be rather similar, and further data are needed in order to support a clear difference between the two. B15 S (Siamese), in contrast, seems to have a pattern different from that of other splits mentioned and to react with some Bw45 sera. Separate segregation of B15S (Siamese) and B15 T (Thai; see report on Bw63) was also seen in one family (FAM ANZ DCH 06; Fig. 1).

Linkage Disequilibrium

The gene frequencies of Bw62 as calculated in the Workshop Central Analysis were 0.06 for Caucasoids and 0.08 for Mongoloids. A strong linkage disequilibrium was noted with Cw3.I and with Cw3.2, and an association with DR4 in Caucasoids and DRw9 in Mongoloids.

Conclusion

Bw62 was well defined in this Workshop and a number of other Bw6-associated BI5 components were defined. Bw62.1 or sh (short) seems to be well defined, but the other splits need further studies.

Table 1. Reaction pattern of B15 on Ninth Workshop sera

(0: not tested; w: weak reaction)

FAM ANZ, DCH 06

$\mathrm{a}=\mathrm{A} 2, \mathrm{~B} 15 \mathrm{~S}, \mathrm{Cw} 3 \mathrm{BW} 6$
$\mathrm{b}=\mathrm{A} 2, \mathrm{~B} 15 \mathrm{~T}, \mathrm{Cw}-, \mathrm{BW} 4$
$\mathrm{c}=\mathrm{A} 11, \mathrm{~B} 51, \mathrm{Cw}-, \mathrm{BW} 4$
$\mathrm{d}=\mathrm{Aw} 19, \mathrm{~B} w 44, \mathrm{Cw} 7, \mathrm{BW} 4$

References

1. Alonso A, Ollier W, Doyle P, Williams E, Festenstein H (1983) Family investigation demonstrating the association of HLA-Bwf2 witi HLA-Bw4. Tissue Antigens 22:32-36
2. Alonso A. Doyle P, Williams E, Festenstein H (1984) Further splits of HLA-BI5. Ninth Workshop Newsletter V
3. Campbell EM, Taljaard DG. Du Toit ED (1984) B15 Kemp/Bi5 short Thai. Ninth Workshop Newsletter V
4. Chandanayingyong D (1983) A possible new Thai variant of B15. Ninth Workshop New'sletter II
5. Chiewsilp P, Chandanayingyong D, Sujirachato K (1983) B15 short Thai. Ninth Workshop Newsletter II
6. Coates E, Stratton A, Dewar PJ (1983) Definition of Bw62. Bw63 and B15.3. Ninth Workshop Newsletter IV
7. Danilovs J, Pollock C (1980) 8w66. In: Terasaki Pl (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 477-479
8. Dejour G, Fauchet R, Jalais E, Bouhallier O, Genetet B (1983) B15.3 (Chinese) specificity. Ninth Workshop Newsletter III
9. Dick HB (1978) HLA-A, B and C serology and antigen reports. In: Bodmer W et al (eds) Histocompatibility testing 1977. Munksgaard, Copenhagen, p 157
10. Hammond MG (1984) HLA-B15 complex in South African Indians. Ninth Workshop Newsletter VIII
11. Joysey VC, Roger JH, Bland C, et al (1975) Further studies on a Malay population. In: Kissmeyer-Nielsen F
(ed) Histocompatibility testing 1975. Munksgaard, Copenhagen, p 251
12. Loon J, Bernoco D, Terasaki P, Takemura S (1981) Report of the $72^{\text {nd }}$ International Cell Exchange. UCLA Tissue Typing Laboratory, Los Angeles
13. Loon J, Terasaki PI, Takemura S (1981) Report of the $73^{\text {rd }}$ Ceil and $1^{\text {sl }}$ Serum Exchange. UCLA Tissue Typing Laboratory, Los Angeles
14. Richiardi P, Castagneto M, D'Amarro J, et al (1974) Four new HLA allelic factors subtypic to HLA-12 and W15. Their correlation with W4 and W6. J Immunogenet 1:323
15. Saueracker G, Christiansen FT, Dawkin RL (1981) Antigen Report ABC B15. In: Simmons MJ, Tait BD (eds) Proceedings of the Second Asia and Oceania Histocompatibility Workshop Conference 198I. Immunopublishing, Victoria, Australia, p 80
16. Shiraki T, Akasa T, Asami M, Ueda Y, Morishima Y, Hasegawa I, Yoshida TO (1983) A study of a new HLAB locus antigen TS-I with 9th workshop sera. Ninth Workshop Newsletter III
17. Singal DP, Lung P (1980) Bw62. In: Terasaki PI (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 462-464
18. Thorsby E, Kissmeyer-Nielsen F, Svejgaard A (1970) New alleles of the HLA system: serological and genetic studies. In: Terasaki PI (ed) Histocompatibility testing 1970. Munksgaard, Copenhagen, p 137
19. Troup GM (1980) Bw63. In: Terasaki PI (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 465-468
20. Zhao TM, Lee TD, Bu KJ, Zhang GL, Rubinstein P (1984) Definition of the HLA-B antigen SH 7, identical to TS-I in the Chinese population. Ninth Workshop Newsletter VII

Antigen Report: HLA-Bw63 and Other Bw4-Associated Variants of B15

A. Cambon-Thomsen ${ }^{1}$, D. Chandanayingyong ${ }^{2}$, M. Thomsen ${ }^{1}$, and M.G. Hammond ${ }^{3}$
1 INSERM U. 100 . Hôpital Purpan, 31052 Toulouse Cedex. France
2 Blood Bank. Faculty of Medicine and Siriraj Hospital, Mahidol University, Bangkok 10700. Thailand
3 Natal Institute of Immunology, P.O. Box 2356, Durban 4000, South Africa

History

Bw63 was clearly defined at the Eighth International Histocompatibility Workshop as a Bw4associated subdivision of $\mathrm{B} \mid 5$, as had been suggested at previous workshops [3]. At the same workshop another component of $\mathrm{B} I 5$, also included in Bw4, and found preferentially in Negroids, was also described: 8 w66, which had been first suggested in the 31st International Cell Exchange of Terasaki [2].

Serology

At the Ninth Workshop, among the 25 sera reacting strongly with at least one component of $\mathrm{B} \mid 5$, none was monospecific for Bw63. This antigen was defined by positive reaction with sera directed against B15 + B17: 9w310, 307, 309. 308, 305, 278, and 299 , with Q scores from 9.6 to 5.0 , or against BI5 alone: $9 \mathrm{w} 276,28 \mathrm{l}$, and 277 , with Q scores of 6.3 , 4.8 , and 4.8 , respectively. Among these sera, 9 w 305 and 299 did not react with Bw62-positive cells. Serum 9w278 was negative on Negroid Bw63-positive cells and positive on Caucasoid Bw63-positive cells. Some sera reacted only with cells from Bw63-
homozygous individuals: $9 \mathrm{w} 289,290$, 3/4. Bw63 was also defined by negative reactions with the Bw62-specific sera (9w282, 284, 285, 286, and 289). The following sera also had some Bw63 activity in the tail analysis: $9 \mathrm{wl} 76,316,323,306,234,286$, 163, and 302. Antigen $8 w 66$ was assigned only to seven cells in the Negroid population. The pattern of reactivity was shorter than that of Bw63: negative reaction with 9 w 299 and variable pattern with 9 w276, 277, 278, and 281. In addition, three sera directed against B5 and B49 reacted with 8 w66positive cells: $9 \mathrm{w} 173,174$, and $175 ; 9 \mathrm{w} 173$ and 174 also contained some anti-Bw63 activity. Another pattern of BIS: B15T was described in a Thai family: ANZ DCH 06 [1]: this variant had the same pattern as 8 w 66 , but sera $9 \mathrm{w} 173,174$. and 175 were negative. All the reaction patterns are tabulated in the report on Bw62 in this volume.

Linkage Disequilibrium

The gene frequency of Bw63 is 0.006 in Caucasoid and Mongoloid populations. The most frequent associations were with A24, A32, Cw7, Cw-, DRw6, and BfF in Caucasoids, while Bw63 was associated with A26, Cw3, and DR5 in Mongoloids.

Conclusion

Bw63 was clearly defined at the Ninth Workshop although no monospecific serum was available. The other variants of B 15 associated with Bw4 need further confirmation.

References

1. Chandanayingyong D (1983) A possible new Thai variant of B15. Workshop Newsletter no. 2
2. Danilovs J, Pollock C (1980) Joint report: 8w66. In Terasaki PI (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 477-479
3. Troup GM (1980) Joint report: Bw63. In: Terasaki PI (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 465-468

TABLE I
REACTION PATTERN OF BI5 ON 9TH WORKSHOP SERA

1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	4	4
7	7	7	7	8	7	7	7	8	8	8	8	8	8	9	0	0	0	0	1	1	1	1	0	0
3	4	5	9	0	6	7	8	1	2	4	5	6	9	9	5	7	8	9	0	1	2	3	1	2

Natal Institute of Immunology, P.O. Box 2356, Durban, South Africa

The antigen BwS3 has always been difficult to define, especially in the presence of other antigens of the $B 5-35$ complex.
The Ninth Workshop sera give a better definition than the Eighth Work. shop sera ${ }^{1}$ because it is now possible to recognise Bw53 in the presnce of Bw35 without relying on the presence of Bw4. However it is still not possibie to distinguish Bw53 in the presence of Bw51.
Bw5I and Bw52 were well defined; serum 441 being exceptionally strong and only giving extra seactions with homozygous Bw5 1 cells.
Figure 1 shows the reaction patterns of each of these specificities and Figure 2 shows the inheritance of Bw53 through three generations.

REFERENCES
${ }^{1}$ M.G. Hammond. Antigen report Bw53
In: Histocompatibility Testing 1980 pp 429-432.

NINTH WORKSHOP SERA

Figure 1. Reaction pattern of HLA B5-35 complex.

Figure 2. Inheritance of BwS3. Family 23.

B. Appadoo and M.G. Hammond

Natal Institute of Immunology, P.O. Box 2356, Durban, South Africa

A number of investigators have reported on the heterogeneity of the DR4 antigen both in the 8th International Histocompatibility Workshop (1980) $6-10$ and in the 9 th Workshop Newsletters, ${ }^{1-5}$ but the splits of the antigen was not admitted to DR status at the 8th Workshop. ${ }^{10}$
We support these investigators' observations and report here three splits of DR4 in two families of South African Indians (Table I). We designated these antigens DR4.1, DR4.2 and DR4.3.
DR4.1 is in agreement with other reports in that all the DR4 antisera reacted positively as seen in family 23(a).
DR4.2, as seen in family 23(b) is negative with 5 antisera 9 w 591, 592, 593, 594, 582 and is similar to that reported by Borelli et al. in Newsletter II, ${ }^{1}$ and Gebuhrer et al. in Newsletter III. ${ }^{4}$
A very short DR4.3 in family 15 is negative for the 5 sera as in DR4.2 but in addition sera $595,590,578$ and 587 are also negative.
Two random cells, 92 (DR4.2) and 104 (DR4.1) are also shown.

REFERENCES

${ }^{1}$ Borelli, I., Richiardi, P., Curtoni, E.S.
Splits of DR4 with ws alloantisera and monoclonal antibodies and correlation with HLA-D factors.
9th Histocompatibility Workshop Newsletter II.
${ }^{2}$ Fauchet, R., Bonhallier, O., Jalais, E., Jejour, G., Genetet, B.
Complexity of DR4 specificity: serological definition.
9th Histocompatibility Workshop Newsletter III.
3 Tait, B. and Boyle, A.
DR4 Serology.
9th Histocompatibility Workshop Newsletter III.
${ }^{4}$ Gebuhrer, L., Betuel, H., Lambert, J., Fredel, A.C. and Farre, A. Subtypes of HLA-DR4.
9th Histocompatibility Workshop Newsletter III.
5 Schreuder, I. and Parievleit, J.

HLA-DR4 on HTC and in Families.

9th Histocompatibility Wrokshop Newsletter IV.
6 Betuel, H., Gebuhrer, L., Bertrand, J.
Division of HLA-DRw2 and of DRw4.
In Histocompatibility Testing (1980) p 800-801, ed. P.I. Terasaki.
7 Colombe, B., Pask, S., and Payne, R.
Further complexity associated with DR4 typing.
In Histocompatibility Testing (1980), p 802, ed. P.I. Terasaki.
${ }^{8}$ Mizrachi, Y., Orgad, S., Jonash, A., Arigad, S., Yaron, M., Schiff, B. and Gazit, E.
Heterogeneity of DRw4 in an Israeli population.
Histocompatibility Testing (1980), p 803, ed. P.I. Terasaki.
9 Walker, M., and Rubinstein, P.
On splits of DRw4: genetics vs serology.
In Histocompatibility Testing (1980) p 804, ed. P.I. Terasaki.
10 Festenstein, H.
DR4 Histocompatibility Testing (1980) p 515, ed. P.I. Terasaki.

TABLE 1. SEROLOGICAL PATTERNS OF SPLIT DR4 IN SOUTH AFRICAN INDIANS
Ninth Workshop Sera

THE HLA A10 AND Aw 19 COMPLEX IN SOUTH AFRICAN INDIANS AND NEGROES

M.G. HAMMOND
Natal Institute of Immunology P.O. Box 2356 Durban South Africa

Figure 1 shows the reaction pattern of sera recognising antigens of the HLA A10 compiex. The Aw34 was only found in one Negro family and in a Coloured family. The reaction pattern of LN^{1} is similar to that given by Moreno and Kreisler ${ }^{2}$ and Gebuhrer et al. ${ }^{3}$ except that sera 071 and 151 were positive. This antigen was only found in one South African Indian family.

The Aw 19 complex is illustrated in Figure 2. Aw33 was seen in five Indian families with the same reaction pattern except that sera 135 and 144 were occasionally negative. None of the variations described by Chandanayingyong ${ }^{4}$ were found. Campbell et al. ${ }^{5}$ described an antigen 19BAC similar to TH. ${ }^{6}$ The antigen 19NEW in Figure 2 is positive with serum 106 as well. It was found in two grandchildren of a large Coloured family but unfortunately the father was not available for testing.

REFERENCES

1 Mesman, B., De Lange, G. and Engelfriet, C.P. (1983). A new HLA-A antigen, called LN, closely related to A25, A26 and Aw34. Tissue Antigens 21, 192.
2 Moreno, M.E. and Kreisler, J.M. (1983). Definition of antigen LN with 9th Workshop sera in two informative families. Ninth IHW Newsletter Vp4.
3 Gebuhrer, L., Primard, Y., Labonne, M.P. and Betuel, H. (1983). Recognition of antigen LN (Locus A) in an informative family. Ninth IHW Newsletter III pl4.
4 Chandanayingyong, D. (1983). Further splits of antigen Malay. Ninth IHW Newsletter III P18.
5 Campbell, E.M., Taljaard, D.G. and du Toit, E.D. (1983). 19BAC - A possible new Negroid HLA-A locus specificity. Ninth IHW Newsletter V P8.
6 Wolf, E., Pritchard, J., Watson, B. and Festenstein, H. (1981). Characterisation of a new Negroid A locus specificity TH In: Histocompatibility Testing 1980. Ed. P. Terasaki UCLA Los Angeles p744.

がロでる

HLA B15 COMPLEX IN SOUTH AFRICAN INDIANS

M.G. HAMMOND

Natal Institute of Immunology P.O. Box 2356 DURBAN South Africa

The cross-reacting group of antigens comprising Bw62, Bw63, B15.3, BU and SV have been defined in many different ways with many variations such as B15 KEMP, B15 THAI, B15 G and others. ${ }^{1-10}$

Table 1 shows the reaction pattern found in South African Indians. Bw62 was clearly defined. Bw62S was also clear and also associated with Bw6 and shows a close similarity with B15 THAI and B15 KEMP. Bw63 was associated with Bw4 and easily confirmed by sera 176, 305 and 299 in the absence of Bw52.

Only serum 314 defined SV; serum 180 also reacted with many of the Bw62S cells.

REFERENCES

1 Raffoux, C., Lepage, V., Dehay, C., Degos, L., Busson, M., Colombani,
J. and Dausset, J.
Da(6) and BU, SV or 8 W59 antigen.
Ninth IHW Newsletter I 1983.
2 Chiewsilp, P., Chandanayingyong, D. and Sujirachato, K.
B15 short Thai.
Ninth IHW Newsletter II 1983.
${ }^{3}$ Chandanayingyong, D.
A possible new Thai variant of B15.
Ninth IHW Newsletter II 1983.

4 Graugaard, B., Junge, K., Jorgensen, H. and Kissmeyer-Nielsen, F. The BU, SV or 8 w 59 antigen. Ninth IHW Newsletter II 1983.
5 Dejour, G., Fauchet, R., Jalais, E., Bouhallier, O. and Genetet, B. B15.3 (Chinese) specificity. Ninth IHW Newsletter III p 211983.

6 Coates, E., Stratton, A. and Dewar, P.J. Definition of Bw62, Bw63 and B15.3. Ninth IHW Newsletter IV p5 1983.
7 Laundy, G.J., Lewis, L., Hardiman, P., Roberts, I., and Bradley, B.A. Partition of Bw59 into BU and SV by polyclonal and monoclonal reagents. Ninth IHW Newsletter IV p 71983.
${ }^{8}$ Campbell, E.M. Taljaard, D.G. and du Toit, E.D. B15 Kemp/B15 short Thai. Ninth IHW Newsletter V p12 1983.
9 Alonso, A., Doyle, P., Williams, E. and Festenstein, H. Further splits of HLA B15. Ninth IHW Newsletter V p 131983.
${ }^{10}$ Andrien, M. and du Pont, E. Further characterization of BU-SV antigens. Ninth IHW Newsletter V p 161983.

Fig． 1 hla bis complex in soutii african indians

Ninth Workshop Sera																												
	呂	～	$\stackrel{\infty}{\sim}$	$\stackrel{\text { a }}{\text {－}}$	－	$\stackrel{\sim}{\sim}$	E	$\stackrel{\infty}{\dagger 1}$	$\underset{\sim}{\sim}$	－	－	合	$\stackrel{\text { O}}{ }$	ज	$\frac{\mathrm{N}}{\mathrm{~m}}$	$\stackrel{m}{m}$	\cdots	$\stackrel{0}{\sim}$	－	$\stackrel{\infty}{m}$	\pm	－	$\stackrel{\circ}{\sim}$	을	－	$\stackrel{\text { ¢ }}{\square}$		
Bw62	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	\pm	－	－	－	－	－	－	－	Bw6	21 cells
Bw62S	－	－	－	－	w	w	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	－	－	\pm	－	－	－	－	Bw6	21 cells
Bw63	－	－	－	－	－	－	＋	＋	\pm	＋	＋	＋	＋	－	－	－	－	\pm	－	－	－	－	－	＋	＋	＋	Bw4	7 celll
BU	－	－	－	－	－	－	－	－	－	\pm	－	－	－	＋	＋	＋	＋	＋	＋	\pm	＋	＋	\pm	－	\pm	－	Bw6	4 celis
sv	－	－	－	－	－	－	－	－	－	\pm	－	－	－	＋	＋	＋	＋	\pm	＋	＋	－	－	\pm	－	\pm	－	Bw6	16 cells

SHORT Bw4l

M.G. HAMMOND

Natal Institute of Immunology P.O. Box 2356 Durban South Africa

Tibensky et al. ${ }^{1}$ reported a variant of Bw41 in a family of East European ancestry. We report here a similar reaction pattern in an Asian Indian. The key serum (9 w 241) was negative as well as sera $9 \mathrm{w} 380,381$ and 386 as shown in Figure 1. The other Bw41 cells were from a Negro family.

The split of Bw60 reported by Chiewsilp and Sujirachato ${ }^{2}$ was not seen in the Asian Indians we tested and the difference between Bw61 and Bw47 was clear.

REFERENCES

1 Tibensky, D., Morochove, L. and Mervart, H. Possible variant of Bw41. Ninth IHW Newsletter III p26 1983.
2 Chiewsilp, P. and Sujirachato, K. B40 (Bw60, 61), 48, 41, 47. Ninth IHW Newsletter II 1983.

Figure 1. Reactioa paltern with 840 and related antigens

Ninth Workshop Sera

HLA IN ASIA - OCEANIA

1986

PROCEEDINGS OF THE THIRD ASLA-OCEANIA HISTOCOMPATIBILITY WORKSHOP AND CONFERENCE
Held in Sapporo, Japan June 27 - July 1, 1986

Editor-in-Chief : MIKI AIZAWA Co-editors: TAKASHI NATORI AKEMI WAKISAKA YOSHIKI KONOEDA

Editorial staff : SHUICHI HAWKIN AKIO TAKADA
Editorial Office : Department of Pathology
Hokkaido University
School of Medicine N15 W7, Sapporo 060, Japan

MG HAMMOND
Natal Institute of Immunology, Durban, South Africa

The HLA A3 antigen was well defined with the four sera listed in Table 1.
The pattern analysis shows that there were very few extra reactions with any of these sera and the lower Q-scores for sera 100 and 803 were caused by missed reactions. Serum 100 was a weak serum with only $6088+$ reactions but serum 803 (a monoclonal antibody) had 88% strong reactions.

The frequency of 13 ranges from 25.08 in the West (Caucasians) to about $2 \frac{\circ}{\sigma}$ in the East (Chinese and Japanese). The exceptions to this trend are the African Blacks (138) and the New Zealand Maoris (128). The distribution is shown in the map.

There was linkage disequilibrium between A3 and B7 in Northern Chinese, Malays and Maoris as well as in Caucasian populations.

The Japanese and Koreans had A3, B44 while the A3, B8 haplotype was found in Koreans, Chinese in Thailand and African Blacks.

TABLE 1 HLA-A3 antisera

Key sera	Strength	\underline{r}	Q-score
3AO 103	0.94	0.93	8.0
3 AO 102	0.93	0.90	7.5
3 AO 803	0.88	0.75	4.2
$3 \mathrm{AO}, 100$	0.61	0.72	4.2

A 3

		A R	A R	A R	A ${ }^{\text {a }}$				
HLA	SERUM	+1*	+1-	-1*	-1-	0 S	R	S 1	INCLUOING
A3	AOH102	76	2	9	1239	8. 326	0.929	0.929	
	AOH103	78	0	10	1237	10.036	0.938	0.943	
	AOH8O3	54	21	4	1233	4.736	0.810	0.879	
	AOH100	49	26	12	1185	4.093	0.709	0.672	

A3	-				
AOH18?	\%minumuman			1	
AOHID3	mamalutioum	.			1
QOHABS QOHJB	Hendin í	- -- -	1	1	

MG HAMMOND
Natal Institute of Immunology, Durban, South Africa

HLA A11 was very well defined by three key sera, 025,028 and 022 and several other sera also reacted with All cells (see Table 1).

One of the monoclonal sera (809) together with serum 038 was reported by Chandanayingyong and Bejrachandra in a pre-workshop newsletter (Minipaper No. 5) as a short All in Thais. The same reaction pattern in southern Chinese was described by Hawkins at a symposium on HLA typing in Chinese. Although about 50 of positive reactions with serum 414 were with HLA All cells, Zhao (this volume) reported that absorption studies showed that this serum did not contain A11 antibodies but recognised an antigen CSH2 which was in strong linkage disequilibrium with A11. .

The distribution of A11 is shown in the map. The highest frequencies (40-58\%) are found in southern China, Phillipines,. Thailand, Malaya and Nepal. The frequencies decrease westward to European Caucasians (12\%), and eastward to Japan (16\%). Australlan aborigines have a frequency of 18% but A11 is absent from African blacks so that the frequency of All in American blacks can be used to measure the amount of admixture with North American Caucasians.

Linkage disequillbrium between A11 and B5 was significant in all Caucasoid populations as far as Nepal and also in Phillipinos. The southern Chinese, Koreans and Thais had the A11,B15 haplotype.

TABLE 1

Key sera	Strength	\underline{r}	Q-score	Remarks
3 AO 025	0.93	0.95	7.7	
3AO 028	0.97	0.94	7.3	
3AO 022	0.94	0.93	7.0	
Other sera				
3AO 808	0.89	0.84	4.8	Monoclonal
3 AO 035	0.84	0.84	4.6	
3 AO 034	0.88	0.79	4.3	A26
3 AO 087	0.88	0.78	4.2	A10
Possible split				
3AO 809	0.87	Q. 80	4.4	A26 Monoclonal
3AO 038	0.90	0.87	5.2	Weak A1

Multispecific sera $033,036,117,810$ also reacted with A11.

A11

		A R	A R		A R				
HLA	SERUM	414	+/-	-10	- /-	Q ${ }^{\text {S }}$	R	51	INCLUOING
A11	AOHO28	332	4	26	962	8.046	0.942	0.961	
	AOHO25	317	15	7	973	8. 916	0.955	0.923	
	AOHO22	310	6	28	935	7.439	0.931	0.920	
	AOH808	280	56	18	987	4.772	0.853	0.888	
	AOHOS 8	310	26	54	935	5.249	0.846	0.863	
	AOHO35	300	26	58	911	5.063	0.835	0.804	
A11.126	AOHO34	426	41	13	844	5.865	0.910	0.875	
	AOHOB 7	441	27	36	821	6.007	0.896	0.862	
	AOH809	420	45	10	839	5.995	0.895	0.858	
A11. 'A10	AOH8 10	649	74	88	478	3.552	0.744	0.897	AW33.A28.8W57
	AOHO36	577	74	49	597	4.003	0.811	0.872	A1. A3. B8
	AOHO33	475	19	90	711	5.717	0.832	0.874	

Mehra N.K., Taneja V, Kailash S, Chaudhuri T.K. and Vaidya M.C. Cellular Immunology laboratory, Department of Anatomy, All India Institute of Medical sciences, NEW DELHI-110029 India.
and
K. Ba lakrishinan, Hoxworth Blood Centre, University of Cincinnati, Ohio 45267, USA; N. Contractor Institute of Immunohematology, Seth G.S. Medical College and K.E.M. Hospital, Bombay-400013, India; M.G. Hammond Transplantation Unit, The Natal Institute of Immunology, Durban 400, Republic of South Africa; and J.V. Undevia Cancer Research Institute, Tata Memorial Hospital, Bombay400013, India; Khan R, Memorial Sloan Kettering Hospital, New York, USA.

INTRODUCTION:

India was predestined by its geographical structure to be one of the great breeding grounds of humanity. In the diversity of its natural conditions, it constitutes a whole world in itself. The people of India are largely the product of successjue invasions that swept into this continent from times immemorial. Though the Indian population can be divided into various groups with different castes, languages, religion and tribes; broadly it could be classified as Dravidians and Aryans. The former were considered the original inhabitants of India who were driven Southwards following invasion by Aryans who crossed the Hindu Kush Mountains from the Northwest during second and third millenium B.C. This was followed by periodic intrusions by Moguls and Arabs between 12th and 16 Century A.D. and the Mongols thereafter. Historically, therefore, the Indian sub-continent constituted a cul-de-sac for different migratory racial groups who largely halted here and led to a considerable intermingling of culture and races,. Presently language rather than ethnic origin is the primary distinction between diverse Indian peoples, and terms such as Aryans or Dravidion have no significance when attached indiscriminately.

The Aryans who were mostly descendants of the Bronze age invaders introduced the major features of the Hindu religion to India and the framework of an elaborate caste system with its basic fourfold division into priests (Brahmins), warriors (Ksatriyas), tradesmen and cultivators (vaisya) and inferior craftsmen (Ksudras). By practising endogamy and observing strict dietry restrictions, they have preserved genetic continuity with their Aryan ancestors to a considerable extent, particulary in the upper castes; while the lower castes physically suggest in varying extents, the absorption of earlier Dravidians, particularly in skin colour. Thus, fairest skin is found in the Northwest India and Pakistan; the black element predominates in the Deccan (but does not present the hair and lips of the Negroid), yellow skins with high cheek bones live in the neighbourhood of Tibet, upper Burma and Eastern India.

The North Indians studied here are the descendants of Aryans. They are light to dark skinnned people with dark hair and light eyes. In the present workshop. HLA data on North Indians was compiled from thore of the

MATERIALS AND METHODS:

A total of 156 unrelated healthy individuals representing the North Indian Hindus were studied for the 3 AOH workshop. (Table l). Care was taken to exclude any blood relatives and individuals belonging to South India,

Table 1: Source and composition of the data contributed

Lab/Contributor	Number studied	Origin
BAL/Balakrishnan	44	North Indians settled in USA
Con/Contractor	18	Native inhabitants
HAM/Hammond	41	Noth Indians settled in South
		Africa.
VAI/Mehra	33	Native inhabitants
UND/Undevia	20	Native inhabitants

Data ru flll Hwth Imfians previously studied by us (Mehra et al, 1986) was also conibined for analysis so as to have a reasonably larger sample size. This report, therefore, it based on 556 individuals ($156+400$) studied for HLA class I antigens and 275 individuals ($141+134$) for class II (DR and DQ) antigens.

RESULTS AND DISCUSSION:
The perrent antigen and gene frequencies for HLA-A,B,C, DR and DQ alleles is rpresented in table II, III and IV. Most of the antigens detected in the north Indians are found in the European and North American caucasoids suggesting a close kinship of the two population groups. The antigens appearing with highest frequencies in the A locus are Al (25.7%) , A2(23.9%), A9(27.5\%), All(25.2\%) and Awl9 (32.5\%). In the A9 specificity, A23 was low while most of the split was that of A24. Similarly, the Al0 antigen was represented almost exclusively by the A26 split. The genes for Aw34, Aw66 and Aw43 could not be detected in this population.

In the B locus, the most frequent antigens are B5 (28.2\%), B35(27.1\%) and B40 (22.3\%) in that order. These frequencies are comparable to those reported amongst the western caucasoids. However, the most remarkable difference was concerning antigens Bl4 and Bl6. While the former was almost absent, the latter appeared with a significantly decresed frequency amongst the North Indians as compared to the European and North American caucasians. The only two individuals positive for Bl4 originated from South Africa and were ethnically muslims. It is interesting to note that Bl4 occurs with a significantly high frequency amongst the Parsis living in and aroung Bombay (reported in this workshop). A comparison of the frequencies of thise two antigens amongst various population groups around the world yields important results. Whereas Bl4 is absent or rare amongst the Mongolnids,Australian aborigines and most Asiatic populations, it occurs with a f:ommoy of 3-19\% amongst the western caucasoids and Negroids. An almor! prerse trend is seen for antigen Bl6. This antigen is absent or rare in negroes, Australian aborigines and scots whereas the caucasords and the Japanese present it with a frequency of $4-9 \%$.

Another important point in this population is that concerning the split of 'broad' B locus specificities. Most of the split antigens detected in the North Indians are B44 for B12, B62 for B15, Bw50 for B21 and Bw6l for B40. Genes for Bw42, Bw46, Bw59, Bw70 and Bw7l were not detected. The HLA-C locus antigens in the present study showed an almost similar distribution as in European caucasoids except for $\mathrm{C} w 7$ which was significantly more frequent amongst the North Indians.

In the DR locus, HLA-DR2 appears to be the most frequent allele in this population occuring with a frequency of 46.2% which is significantly much
higher than the value of 25.1 \% reported amongst the European Caucasoids (Baur and Danilovs, 1980) Similarly DRw6 occurs much more significantly amongst the North Indians.

The most common haplotypes with significant positive and negative linkage disequilibria are given in tables V and VI respectively. Amongst these, Al0-B8 and A26-B8 appear to be the characteristic haplotypes in the North Indians. The characteristic caucasion haplotype Al-B8 was not present amongst North Indians. Other more frequent haplotypes observed in this population are Al-B17, AW33-B44, A3-B7, Al-B37, B35-CW4, B27-CW2, B17-CW2, Bl8-DR5, B8-DR3, Bl7-DR7, DR3-DQw2, DR2-DQW1 most of which are common with the European and North American caucasions.

CONCLUSIONS: The populations of the Indian subcontinent are essentially caucasions. There is a complete lack of B14 and low prevalence of Bl6 antigens amongst North Indians. The most characteristic Norll Indian haplotypes are $\mathrm{AlO} 1-\mathrm{B8}$ and $\mathrm{A} 26-\mathrm{B8}$.

REFERENCES

Baur, MP and Danilovs, JA. Population analysis of HLA-A,B,C, DR and other genetic markers. In: Histocompatibility Testing 1980. ed Terasaki, PI. UCLA Tissue Typing Laboratory, Los Angeles, California, P955-993, 1980. Mehra, NK, Taneja V, Kailash, S., Raizada N and. Vaidya, MC. Distribution of HLA antigens in a sample of the North Indian Hindu population. Tissue Antigens. 27:64-76, 1986.

Table III: Percent gene and antigen frequencies in North Indians for HLA - DR Locus antigens.

Antigens	3 AOHWC Study$N=141$		Published Data$N=134$		Total North Indians$N=275$	
	AF	GF	AF	GF	AF	GF
HLA - DRI	7.9	3.9	14.1	7.3	10.9	5.6
DR2	45.3	26.1	47.0	27.2	46.2	26.6
DR3	27.6	14.9	26.1	14.0	26.9	14.5
DR4	9.9	5.0	26.1	14.0	17.8	9.3
DR5	22.7	12.0	23.1	12.3	22.9	12.2
DRW11	0.0	0.0	-	-	-	-
DRW12	1.0	0.5	-	$-$.	-
DRW6	i8.4	9.6	17.9	9.4-	18.2	9.5
DRW13	5.4	2.7	-	-	-	-
DRW14	0.7	0.3	-	-	-	-
DR7	23.4	12.4	22.3	11.8	22.9	12.2
DRW8	10.6	5.4	0.7	0.3	5.8	2.9
DRW9	1.4	0.7	2.9	1.5	2.2	1.1
DRW10	7.0	3.6	2.2	1.1	4.7	2.4
DRX		5.8		1.1		4.6

Table IV: Percent Gene and antigen frequencies in North Indians for HLA - DQ Locus antigens.
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Antigens } & \text { Number } & \text { Number Positive } & \text { AF } & \text { GF } \\ \hline \text { HLA -DRW52 } & 141 & 93 & 65.9 & 41.6 \pm 2.1 \\ \text { DRW533 } & 141 & 51 & 36.1 & 20.1 \pm 1.7 \\ \text { DRW1 } & 141 & 101 & 71.6 & 46.7 \pm 2.1 \\ \text { UWW2 } & 141 & 32 & 22.1 & 12.0 \pm 1.4 \\ \text { DQW3 } & 141 & 56 & 39.7 & 2 \ldots .3 \pm 1.7 \\ \text { DQWA } & 73 & 0 & 0.0 & 0.0 \\ \text { TAl0 } & 91 & 25 & 27.4 & 14.8 \pm 1.8\end{array}\right]$
$A F=$ Antigen frequencies $\quad C F=$ Gene frequencies

Table V: Positive linkage disequilibrium (Δ) between HLA-loci A,b,c and DR in North Indians (per 10^{4}).

Haplotype (556)	\triangle	x^{2}	H.F.	Haplotype (275)	\triangle	x^{2}	H.F.
Loci A and B				Loci A and DR			
A10-B8	179	80.6	202	Aw32-DRw10	72	9.1	85
A26-B8	149	69.8	166	A24-DRw9	60	6.8	71
Al9-B12	229	22.2	375	Aw33-DRw53	136	8.7	191
Al9-844	209	21.1	337	Loci B and DR			
A30-Bl3	50	14.8	58	B18-DR5	143	16.8	175
A23-Bw57	17	13.8	17	Bl7-DR7	225	16.1	313
Aw33-B44	17	13.8	17	Bw63-DRw10	50	14.3	53
Al-Bl7	140	10.7	248	B8-DR3	146	10.6	199
Al-B37	75	10.5	104	B44-DR7	160	8.9	237
A3-87	105	9.5	169	B52-DRw53	124	13.5	153
Aw33-B12	76	9.4	107	B52-DRw52	171	14.3	227
A28-Bw63	45	8.0	56	Bw57-DRw53	85	9.1	103
A23-817	29	6.7	34	Bl7-DRw53	146	7:8	218
Al-Bw63	52	6.5	72	Bw58-DRw53	72	7.8	86
Loci B and C				Bw61-DRw53	116	7.7	160
B35-Cw4	850	82.2	1183	Loci B and DQ			
Bw57-Cw2	399	71.4	431	Bw61-DQwl	222	13.6	308
B52-Cw8	839	67.2	934	Bw52-DQw2	120	11.4	139
Bw58-Cw3.]	563	61.6	603	Bw57-DQw3	357	11.1	403
Bw61-Cw ${ }^{\text {c }}$	721	5/.7	796	Bw52-DQw2	95	9.5	106
Bw55-Cw1	344	51.7	366	Loci C and DQ			
Bw22-Cwl	376	49.6	410	Cw8-DQw3	110	8.1	235
B51-Cw7	824	28.1	934	Cw7-DQw3	107	5.9	258
Bw60-Cw8	813	21.6	904	Loci DR and DQ			
B52-Cw5	709	20.2	786	DR3-DQw2	46.21	20.68	618.23
B17-Cw3	438	19.2	575	DR2-DQwl	948.02	19.83	1988.3
B27-Cw2	381	16.8	426	DRw53-DQw3.	381.04	9.51	615.76
B17-Cw2	394	15.9	473	DR5-TA10	183.04	5.02	276.60
Bw60-Cw5	690	14.9	757				
85-Cw4	267	8.3	592				
Bw61-Cw2	357	7.0	391				
B35-Cw2	203	6.5	329				
Bw60-Cw6	678	6.1	757				

Table VI: Nogative linkage disequilibrium (Δ) between HLA-loci A, B, C, and DR in North Indians (per 10^{4})

Haplotype	\triangle	x^{2}	H.F.	Haplotype	\triangle	X^{2}	H.F.
Eoci A and B				Loci A and DR			
Al-B7	-103	6.1	-7	Aw36-DRw9	-0.3	13.1	-0.2
All-Bl7	-93	4.4	14	All-DRw 7	-88	5.8	-25
				A3-DR2	-177	4.5	14
				Loci B and DR			
				B13-DRw52	-112	6.2	-63
				B45-DRw9	-0.7	6.0	-0.39
				Loci A and DQ			
				A2-DQw3	-139	4.0	-17
				Bl3-DQwl	-77	5.8	-23

MG HAMMOND and B APPADOO
Natal Institute of Immunology, Durban, South Africa

We tested 160 African Blacks with the 3 AOH workshop serum set. They wer randomly selected blood donors and staff and were all Zulus: Only 134 were tested for 3 lymphocyte antigens.

Table 1 shows the frequencies at the A locus for this workshop and compare them with the frequencies obtained from previous workshops and with local assignments. The frequencles were similar except for $A w 30$ and 31 which were difficult to define with 3AO sera... HLA A11 is virtually absent from African Black populations. We have only found one cell with this antigen and thus the frequency is 0.05%.

At the B locus the frequencies found for this workshop were similar to previdus workshops. The antigens' Bw22, B37 and Bw 52 are absent or extremely rare in African Blacks (Table 2). We were surprised to find three random cells positive for HLA B27 and analysed all B27 Black cells as shown in Table 3. This shows that the frequency of 1.9% for this Workshop was a chance event and the true frequency of HLA B27 in Africah Blacks is 0.4% 。

Cw2 could not be defined with $3 A O$ sera but $C w 1, C_{w} 3$ and $C w 4$ were as expected (Table 4). The other C-locus antigens were difficult to define because of the variations between antisera.

The frequencios of DR1 and DR7 were increased for this workshop but these antigens ar. \because Nll defined in both this and previous workshops. Unfortunately, DQ2 could not be defined with the workshop serum set but the frequencies of DQ antigens in African Blacks are shown in Table 5.

Haplotypes showing significant linkage disequilibrium are shown in Table 6. The A and B locus haplotypes are distinctive and typical of African Blacks, e.g. Aw30, Bw42; A1, B7; A3, B8 but the associations of B locus and DR locus antigens are also found in other races, e.g. B7, DR2 and B8, DR3.

TABLE 1

TABLE 2 SOUTH AFRICAN BLACKS

HLA	$\begin{gathered} 3 \mathrm{AO} \\ \mathrm{~N}=160 \end{gathered}$	$\begin{aligned} & \text { Other WS } \\ & +\quad \text { Local } \\ & 1707 \end{aligned}$	$\begin{gathered} \text { Total } \\ 1867 \end{gathered}$
B7	27,5	21,4	21.9
B8	13,1	13,0	13,0
B13	2,5	3,7	3,6
B14	4,4	5,7	5,6
B15	3,8	3,7	3,7
B16	6,3	3,3	3,6
B17	38,8	38.4	38,5
B18	5,6	5,4	5,4
B21	2,5	1.8	1,8
Bw22	0	0,06	0,05
B27	1,9	0,3	0,4
B35	5,0	7,0	7,0
B37	0.6	0,06	0,1
B40	0	0,5	0,5
Bw41	0	1.6	1.4
Bw 42	13,8	22,1	21,2
B44	13,1	15,8	15,6
B45	6,9	8,6	8,4
Bw47/48	0.6	0,06	0,1
Bw51	2,5	1,1	1,2
Bw52	0	0	0
Bw53	1,9	1,4	1.4
Bw70	25,6	17,1	17,8
One ant.	23,8	28,0	27,2
		139	

	Pos	\underline{N}	Percentage
Random	8	1867	0.43

Rheum. arthritis	1	172	0,58
Cancer	2	732	0,27
Hehrt disease	2	264	0,76
Choriocarcinoma	1	90	1,11
Hyperimmune	2	153	1,31
Renal disease	1	186	0,54
Tuberculosis	3	509	0,59
Schistosomiasis	1	194	0,52
Thyroid disease	1	112	0,89
Diabetes	0	176	0,0
Other	1	631	0,16
	15	3219	0,47
		1	
Ankylosing spondylitis	7	27	25,9

TABLE 4 SOUTH AFRICAN BLACKS

HLiA-C	$\begin{gathered} 3 \mathrm{AO} \\ \mathrm{~N}=160 \end{gathered}$	$\begin{gathered} \text { Other WS } \\ + \text { Local } \\ 1707 \end{gathered}$	Total 1867
Cwl	0,6	0,3	0,3
Cw2	NT	17,6	-
Cw3	8,1	11,3	11.0
Cw4	15,6	11,7	12,0

HLA DR	$\begin{aligned} & 3 \mathrm{AO} \\ & 134 \end{aligned}$	$\begin{aligned} & \text { Other WS } \\ & + \text { Local } \\ & 275 \end{aligned}$	$\begin{gathered} \text { Total } \\ 409 \end{gathered}$
DR1	10,4	2,2	4,4
DR2	21,6	25,5	24,0
DR3	38,8	34,6	35,8
DR4	6,7	11,6	9,9
DR5	29,1	30,9	31.0
DRw6	11,2	17,1	16,6
DR7	23,9	12,4	17,4
DR8	7,5	2,2	5,4
DR9	1,5	0,4	0,4
DR10	1,5	2,6	2,7
	134	128	262
DRw52	75,4	73,4	74,4
DRw53	25,4	35,2	30,2
	134	64	198
DQ1	53,0	68,8	58,1
DQ2	NT	23,4	-
DQ3	29,1	31, 3	29,8

TABLE 6 SOUTH AFRICAN BLACKS
HAPLOTYPES WITH SIGNIFICANT DELTA VALUES
$N=1867$

	Freq. $/ 1000$	${ }^{\Delta}$ /SE
Aw30 - Bw42	62	7,9
Al - B7	24	6,8
A24-B7	18	6,3
A29 - B44	26	6,0
A25-B44	24	5,9
A29-B13	9	4,1
A2 - B45	16	4,0
A3 - B8	13	3,3
A28-B14	10	3,1

N-413

B7 - DR2	58	4,2
B8 - DR3	32	2,2
B17 - DR7	38	1,9
Bw42 - DR3	59	4,1
Bw70 - DR5	38	1,5

Bo Dupont

Editor

Immunobiology of HLA

Volume I Histocompatibility Testing 1987

With 362 Illustrations

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong
2. Schreuder I. Bos A. van de Berg-Loonen E. $S V=P R$: A new B-locus antigen discovered. In: Bodmer WF, Batchelor JR. Bodmer JG. Festenstein H. Morris PJ (eds): Histocompatibility Testing 1977. Munksgaard. Copenhágen. 1977. p 408.
3. Schreuder I. Nieman HG, Laundy GJ, Entwistle CC. Bu and SV: Two closely related B-locus specilicities. Tissue Antigens 1980;16:169.
4. Hall PJ, Levin AG. Enimile CC. Knight SC, Wasunna A. Brubacker G. B15 heterogeneity in East African blacks. Tissue Antigens 1980;16:326.
5. Hall PJ, Levin AG, Entwistle CC. Knight SC, Wasunna A, Kungin A, Brubacker G. HLA antigens in African black patients with Burkitt's lymphoma or nasopharyngeal carci-
noma and in controls. A pilot study. Hum immunol 1982:5:91.
6. Entwistle CC. Laundy GJ. 8w58: Joint report. In: Terasaki PI (ed): Histocompatibility Testing 1980. UCLA Tissue Typing Laboratory, Los Angeles. 1980. p 475.
7. Laundy GJ, Raffoux C. Schreuder GMT, Klouda PT. Antigen Report: HLA-Bw70, HLA-Bw7I and HLA-Bw72. In: Albert ED. Baur MP. Mayr WR (eds): Histocompatibility Testing 1984. Springer-Verlag, Berlin. 1984, p 173.
8. Guttridge MG. Laundy GJ, Klouda PT. 1988. Biochemical variants of the Bw 70 antigen (Bw 71 , Bw 72). In: Dupont B (ed): [mmunobiology of HLA. Volume I: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989.

Antigen Society \#9 Report (Bw46 and the Subgroups of B15)

E.D. Albert, ${ }^{1}$ D. Chandanayingyong, ${ }^{2}$ J.S. Thompson, ${ }^{3}$ T. Zhao, ${ }^{4}$ M.G. Hammond. ${ }^{5}$ S. Naito, ${ }^{6}$ and G.M. Sierp ${ }^{1}$

History

The antigen HLA-B15. first described as LND (Thorsby et al. 1970 (29)) or TE15 (Albert et al. 1970 (1)), was first recognized to be heterogeneous at the Fourth International Workshop (Thorsby et al. 1970b (30)). In the following Workshops, a growing number of reports documented the heterogeneity of BIS (Richiardi et al. 1974 (23). Joysey et al. 1975 (18). Dick et al. 1978 (15), Singal et al. 1980 (27). Danilovs and Pollock 1980 (13). Saueracker et al. 1981 (24). Alonso et al. 1983 (2). Zhao and Shiraki 1986 (33)). It was becoming clear that most of the variants of $\mathrm{B} \mid 5$ are Inond in Southeast Asian populations. During the Niath International Histocompatibility Workshop. the complexity of B15 was discussed in nine different viravierter contributions 13.6.9.11.12, 14.17.25. ij and summarized by Lnandatiay ingong et ai. (10) And Cambon-Thomsen et al. (5). From this summary it appears that next to the classical Bw62 antigen there exists a Bw6-associated short Bw62 antigen, which has been observed by several different authors (6.9.11 17.25.34) mostly in Asian populations, and named Bw62.1. TSI, BI5short Thai. B15 Kemp, SH7. Bw62S. This antigen is characterized by cross-reactions with B35 sera. There was evidence for an even shorter split of B15, which is also Bw6-associated and which was named B15.3 or B15SLI. Two further antigens described BISSAU and BI5G (4) may or may not be equivalent with B15.3. In the Thai population, there exists one lurther split of BI5, named BISS, with a characteristic cross-racton with anti-B45 sera (9).

[^10]Among the Bw4-associated splits of B15, there is, in addition to the classical Bw63. an antigen found in Negroid populations and named $8 w 66$ (31). which has a shorter reaction pattern than $\mathrm{B} w 63$. One further split of B15 with a clearly shorter reaction pattern than Bw63 occurs in the Thai population and is named B15T (9).

B15 Serology X. International Histocompatibility -Workshop

Using Core sera and Antigen Society sera, seven different subtypes of BIS could be identified. The reaction patterns and the key antisera for the definition of the various subtypes are given in Tables 1 and 2. It is quite likely that several more subtypes of B15 do exist: however. in the absence of family segregation data it was difficult to assess slight differences in reactivity.

Antigen Bw62. This antigen is by far the most comunon subtype of B15. It is characterized by association with Bw6 and it can be very well defined using a large number of antisera. of which only the best examples were chosen for the reaction patterns given in Tables 1 and 2. There are many antisera reacting with all B15 subtypes, but only two antisera (nos. 250 and 252) distinguish Bw62 and Bw 76 from the rest of the BI5 group.

Antigen Bw75 (Equivalents: Bw62.1, TSI, B15short Thai, B15 Kemp. SH7, Bw62S). This antigen was already clearly delined in the Ninth International Histocompatibility Workshop (10) as a short. Bw6-associated variant of Bw62, which is characterized by a crossreactivity with 835 (i.e.. in the presence of Bw75 and the absence of B35 and Bw53 some of the anti-B35. Bw53 antisera react positively). Among the cells, whose reaction pattern corresponds closely to the Bw75 pattern given in Table I. we have found the following codings:

Table 1. Reaction Pattern of B15 Antisera from the Core Scrum Set

Table 2. Reaction Patterns of B15 on Tenth Workshop Antigen Society No. 9 Sera Set
Specificities of Antiscra:
w77

				$w 53$															
	w77	w77		15.3		w62	w46		w76					w 71					
	w53	w6.3	w77	w75	w77	w63	A. 31	w75	15.3	all	w62	w62	w62	B35	w76		w76		
	w63	15.3	w53	1.35	w53	w. 57	815	w77	w75	B15	w76	w76	w76	w79	w75	w76	844		
Antigen	9275	9303	9289	9288	9293	9310	4508	9314	4507	9306	4493	9313	4487	9241	9235	9245	9274	Bw4	Bw6
Bw62	-	-	-	-	-	+	+	+	+	$+$	-	$+$	w	-	-	-	-	-	+
Bw7s	-	-	-	+	-	+	+	+	+	$+$	-	-	-	+	+	-	-	-	+
Bw76	-	-	-	+	-	+	+	+	+	+	+	+	+	+	+	+	+	-	+
Bw63	+	$+$	-	$-$	+	+	$+$	+	+	$+$	-	-	-	-	-	-	+	$+$	-
Bw77	$+$	$+$	+	$+$	$+$	$+$	$+$	+	$+$	+	-	-	-	-	-	-	-	$+$	-

Bw62, Bw62.1, B15Sw6, B15, TE79, B15K. As all four cells coded TE79 and all 13 cells coded BI5K show a reaction pattern that is very similar to that of B 775 , it is possible that one should add TE79 and BI5K to the list of equivalents for Bw75. For Te79 this is also borne out by the fact that the three antisera (nos. 215, 216, and 221) submitted as anti- Te 79 react with all cells positive for Bw75. For the specificity called B15SLI, there is different coding in different laboratories. The cells from Dr. Zhao in Shanghai, which have been called BI5SL1, correspond exactly to the Bw75 reaction pattern, while one cell from Dr. Festenstein's laboratory has a different reaction pattern. Also in the Ninth International Histocompatibility Workshop, B15SLI showed a reaction pattern clearly different from that of Bw75 (then Bw62.1) (10). Bw75 is found mostly in Chinese. Thais, and other Southeast Asian populations and only very occasionally in cells coded as Caucasian. The relatively frequent occurrence of this antigen in the Cape colored population of South Africa probably reflects the contribution of Southeast Asian wers to the gene pool in this population.

Antigen Bw76 (Equivalent: B15S (Siamese)). This Bw6-associated split of BI5 was first described during the Ninth International Histocompatibility Workshop (9). It is characterized by a strong cross-reactivity with anti-B45 sera. This antigen seems to be restricted to the Southeast Asian populations. The characteristic reaction pattern for Bw76 is given in Tables 1 and 2 .

Antigen B15.3. This designation characterizes a Bw6associated antigen with a short Bw62 reaction pattern. It has been noted that in this workshop there was an inconsistent use of this designation. as cells belonging to clearly distinct subtypes of B15 were called B15.3. Among the cells coded as $B I 5.3$. there is a group characterized by a short Bw62 reaction pattern (see Tables 1 and 2), with reactivity with long B35/Bw62/Bw70 antisera. It must be stressed however, that this specificity is ill-defined and there is considerable indication for the existence of several more Bw6-associated short variants of B15.

Antigen Bw63. This antigen is characterized by its association with Bw4 and by a short reaction pattern (see Tables I and 2). Reactivity with Bw63 cells is frequently found in anti-Bw57 and anti-Bw58 sera. There appears to be a variant of Bw63, tentatively called Bw63.1. found in Negroid populations uhich reacts, in addition to the Bw6; iypical pattern, with antisera directed against $B 51$. Bw53, and $B 49$. This antigen may be identical to the specificity $8 w 66$ (20.21). Unfortunately, there were too few cells coded for this specificity in order to determine identity or non-identity with what has been called Bw63.1.

Antigen Bw77 (Equivalent B15T). This antigen was first described in the Ninth International Histocompatibility Workshop in the Thai population (9). It is

Table 3. Reaction Pattern of Bw46 on the Tenth Workshop Core Sera Set

associated with Bw4 and characterized by a short BI5 reaction pattern and cross-reactivity with antisera containing anti-Bw53 activity (see Tables 1 and 2).

Antigen Bw46. This antigen does not belong to the B15 complex even though in almost all long B15 antisera, anti-Bw46 activity can be detected. The antigen occurs almost exclusively in Chinese, Japanese, Thais, or other Southeast Asians. Bw46 is strongly associated with Cwll and DRw8 among Japanese and DR9 among Chinese. At the Ninth International Histocompatibility Workshop, there was a suspicion of a split of Bw46 (7) that could not be substantiated in the Third Asia-Oceania Histocompatibility Workshop (8).

In this Workshop, Bw46 was very well defined with three narrow antisera $(263,257$, and 258) and two broad sera (261 and 262) as well as with three broad sera from the Antigen Society set (nos. 9246. 9250, and 9251). With anti-serum 258 , there was some suspicion of a mixup. as apparently this serum was a perfect anti-Bw46 in some laboratories and completely negative in other laboratories (Kennedy et al., Newsletter No. 1 (19)). In cells that possess in addition to Bw46 a Bw4-associated B-locus antigen, it has been observed that there is a short ceaction pattern for Bw6 as given in Table 3. This may be in accordance with the finding from DNA sequencing of the $B w 47$ gene that the Bw46 gene carries in the position covering aminoacid 79-83, which is responsible for the Bw6/Bw4 variability-a sequence coming from a Cw3 gene (Parham et al., this volume (22)).

Computer Cell Typing

Using the computer cell-typing procedure developed for the Ninth International Histocompatibility Workshop (26). HLA-A,B,C computer cell-typing was performed on the basis of local assignments. For the antigen Bw75, cells that were coded as BI5SLI or SH7 and corresponded in their reaction pattern to the reaction pattern of Bw75 were recoded as Bw75. As is shown in Table 4 for the antigens discussed in this repor. there is a very high percentage of cells for which the local assignment and the computer assignment is identical. It can be seen that the two least well detined and probably heterogeneous antigen groups. Bw63 and $B \mid 5.3$, show the lowest R value between local and computer assignment.

Table 4. Computer-Cell Typing and Corrclation with Local Assignment

	No. Cells Tested	Lab + Prog. +	Lab + Prog.	Lab - Prog.	R value

Listing of Sera Typine lnformation of All Sera Relevant to the Antigens of the Antigen Society and of all Antigen Society Sera

Sera typing u'as performed using the procedure and the format developed for the Ninth International Histocompatibility Workshop. The definition of most of the BIS subgroups is dependent on the reactions of many broad antisera and therefore it is important to investigate the
inclusion of narrow specificities into the broad ones. For a restricted analysis. this is only possible if the narrow specificities are analyzed first. The sera typing of the relevant Core sera is given in Table 5 and those of the Antigen Society sera in Table 6.

T-Cell Defined Bw62 Variants

Information obtained from Dr. Beatty. Seattle, indicates that a cytolytic T-cell clone (HAN 4) and a proliferative T-cell clone LAY-1 recognize all core cell lines expressing Bw62. In addition, the T-cell clone HAN 4, when tested with Bw62 variants, appears to be recognizing subtypes. which are positive for the Workshop sera 250 and 252 (Bw62 and Bw76).

Correlation Between Biochemical Subtypes and Serology

Intormation from Dr. Chere, Sualie, shows that the biochemical variam B15.1 corresponds to $\mathrm{Bu} \cdot 75$, B 15.2 corresponds to Bw76, and B15.3 corresponds to Bw62.

SERUM	ANTIGEN	$\begin{aligned} & \text { NO. } \\ & \text { REAC AVE } \end{aligned}$	++	$\begin{gathered} \text { MISS } \\ +\bullet \end{gathered}$	EXTR -+	\cdots	PERCENTAGE				R	CHI	QSCORE	QNORM	Antigen
10W165	TRAY:	6 POS: 6		LOCAL	SPECIFI	CITY:	B5								
10W165	B51	$530 \quad 7.9$	39	0	73	418	76	0	65	100	0.54	157.1	7.73	0.85	B51
$10 W 165$	BW52	4918.0	15	0	58	418	65	0	79	100	0.42	88.6	6.52	0.84	BW52
10W165	BW53	4767.7	6	0	52	418	56	0	89	100	0.30	43.8	5.30	0.81	BW53
10W165	BW77	$470 \quad 7.7$	7	1	45	417	53	12	86	88	0.32	¢0. 3	4.48	0.65	BW77
10W165	BW63	4627.2	5	4	40	413	48	44	88	56	0.22	21.9	3.03	0.43	BW63
$10 W 165$	B15.3	4536.0	4	3	36	41.0	47	42	90	58	0.21	20.6	2.75	0.41	B15.3
10W165	B18	$446 \quad 6.7$	17	14	19	396	50	45	52	55	0.47	98.2	2.47	0.29	B18
10 W 165	B35	$415 \quad 6.4$	11	30	8	366	42	73	42	27	0.35	51.6	0.74	0.08	B35
10W166	TRAY:	4 POS: 35		LOCAL	SPECIFI	CITY:	B5								
$10 W 166$	B51	$524 \quad 8.0$	40	0	59	425	84	0	59	100	0.60	185.9	7.35	0.81	B51
10 W 166	BW52	$484 \quad 7.7$	15	0	44	425	74	0	74	100	0.48	111.5	5.95	0.77	BW52
$10 W 166$	BW77	4698.0	8	1	36	424	70	11	81	89	0.38	68.2	4.37	0.62	BW77
$10 W 166$	BW63	4608.0	4	5	32	419	63	55	88	45	0.19	17.1	3.36	0.48	BW63
10 W 166	BW53	4516.0	4	2	28	417	59	33	87	67	0.27	32.7	2.93	0.45	BW53
$10 \mathrm{W166}$	BW57	4457.1	7	16	21	401	60	69	75	31	0.23	24.0	0.85	0.11	BW5 7
$10 W 166$	BW58	$422 \quad 7.2$	10	34	11	367	57	77	52	23	0.28	32.7	0.61	0.07	BW58
10 W 166	BW4	$378 \quad 6.4$	11	141	0	226	45	92	0	8	0.21	16.8	1.43	0.13	BW4
10W185	TRAY:	6 POS: 5		LOCAL	SPECIF	CITY:	B51	W52, B							
10W185	B51	5298.0	40	0	33	456	83	0	45	100	0.71	270.3	9.15	0.98	B51
$10 W 185$	BW52	4897.7	'15	0	18	456	63	0	54	100	0.66	213.8	7.40	0.93	BW52
10W185	BW53	4747.0	4	1	14	455	44	20	77	80	0.41	80.3	5.59	0.86	BW53
10W185	BW77	4696.7	6	1	8	454	35	14	57	86	0.60	167.9	4.82	0.69	BW77
10W185	BW4	4625.6	5	229	3	225	12	97	37	3	0.03	0.5	0.83	0.08	BW4
10W189	TRAY:	6 POS: 9		LOCAL	SPECIF	CITY:	BW53	BW52	51, 835						
10W189	BW77	5327.5	11	1	112	408	52	W	'91	92	0.25	32.5	5.18	0.72	BW77
10W189	BW75	5206.8	42	18	70	390	49	30	62	70	0.43	94.3	3.44	0.37	BW75
10W189	B15.3	$460 \quad 6.8$	5	4	65	386	38	44	92	56	0.16	11.6	2.44	0.36	B15.3
10W189	835	$451 \quad 6.6$	28	14	37	372	36	33	56	67	0.48	102.5	3.06	0.35	B35
10W189	B51.	4096.7	17	16	20	356	32	48	54	52	0.44	78.7	2.65	0.32	B51
10W192 10W192	TRAY:	6 POS: 11		LOCAL	SPECIFI	CITY:	BW53	B35							
10W192	B35	5307.6	39	8	57	426	66		59	83	0.53	146.3	5.61	0.61	B35
10 W 192	BW75	4837.0	42	13	15	413	57	23	26	77	0.72	248.6	4.36	0.47	BW75
10W198 10 W198	TRAY:	6 POS: 23		LOCAL	SPECIFI	CITY:	5 W 71	B35,	W53, 815						
10W198	B35	5317.6	47	0	125	359	63	0	72	100	0.45	107.6	8.15	0.92	
10W198	BW75	$484 \quad 7.3$	56	0	69	359	56	0	55	100	0.61	181.9	8.11	0.89	BW75
10W198	BW62	4286.6	44	62	25	297	47	58	36	42	0.40	67.2	1.70	0.17	BW62
10W198	B51	$322 \quad 6.7$	6	24	19	273	44	80	76	20	0.15	6.9	1.22	0.15	B59
10W198	BW70	2926.3	13	33	6	240	36	71	31	29	0.38	42.5	0.95	0.11	BW70
10 W 198	BW6	2465.2	5	150	1	90	16	96	16	4	0.07	1.1	0.91	0.09	BW6

Table 5. Continued

Table 5. Continued

Table 5．Continued

10W235	TRAY：	6 POS： 20		LOCAL	SPECIFICITY：	B3								
10W235	8W53	531880	7	－	$\begin{array}{ll} \text { SPECIFICIT } \\ 212 \end{array}$	78		96						
10W235	835	52478.8	45	0	$167 \quad 312$	77		78	100	0.14 0.37	10.1	6.25	1.00	8W53
10W235	8W75	4797.8	55	1	112311	73	0	78 67	100 99	0．37	112．4	8.52	0.98	835
10W235	BW77	42388.0	10	1	102310	65	9	67 91	99	0.48 0.24	112.1 24.1	7.89 5.69	0.88	8W75
10 W 235	B15．3	4127.8	8	1	94309	61	19	91	81	0.24	24.1 20.3	5.69 5.24	0.83	BW77
10W235	851	4037.7	27	5	67304	59	15	72	89	0.22	20.3	5.24	0.80	815.3
10W235	BW52	$371 \quad 7.1$	7	6	60298	47	45	71	85	0.42	72.4	5.25	0.63	851
10W235	BW62	$358 \quad 6.5$	55	34	5264	45	？ 2	89	54	0.18 0.69	11.7 172.2	2.80 3.39	0 O	8W52
10W235	BW70	2697.2	5	40	0224	80	E3	0	12	$\begin{aligned} & 0.69 \\ & 0.31 \end{aligned}$	$\begin{array}{r} 172.2 \\ 25.4 \end{array}$	$\begin{aligned} & 3.39 \\ & 0.77 \end{aligned}$	$\bar{r}-3$	$\begin{aligned} & 3 W 62 \\ & 8 W 70 \end{aligned}$
10W236	TRAY：	6 POS： 37		local	SPECIFICITY：	BW62，	3							
10W236	BW75	5307.9	＝9	0	150321	92		71						
10W236	BW62	4717.9	$亏$	0	35321	92	0	71	100	0.44	102.0	9.17	0.73	－275
10W236	BW77	35678	2	0	24321	77	0	23	100	0.83	325.6	9.79	0.77	\therefore シú2
10W236	BW76	3457.2	\％	0	11	70	0	45	100	0.54	104.1	6.71	0.55	ジャ77
10W236	B15．3	3328.0	j	2	$6 \quad 319$	72	28	45	100	0.72	180.7	6.56	0.70	3w76
10W236	BW6	$325 \quad 6.8$	5	221	1988	72 50	28	54	72	0.56	103.5	4.05	0.63	315.3
							97	16	3	0.04	0.5	0.61	0.00	$3 W 6$
10W237	TRAY：	6 POS： 41		LOCAL	SPECIFICITY：	B15								
10W237	BW77	5238.0	12	0	179332	83	0	93	100	0.20		6.18		
10W237	BW75	5117.8	50	0	119332	82	0	66	100	0.50	126.1	8.18	0.35	BW77
10W237	B15．3	4517.0	8	0	111332	78	0	93	100	0.22	122.7	8.00	0.85	BW75
10W237	BW62	4437.5	99	7	12325	79	6	10	94	0.88	346.6	5.43 6.52	0.81	B15．3
10W237	B35	3376.4	5	29	7296	41	85	58	15	0.20	13.7	6.52 0.47	$\begin{aligned} & 0.65 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \text { BW62 } \\ & 835 \end{aligned}$
10W238	TRAY：	6 POS： 50		LOCAL	SPECIFICITY：	B15								
10W238	BW76	5308.0	18	0	195317	93	0	91	100	0.23				
10 W 238	BW77	5128.0	12	0	183317	92	0	93	100	0.20	20.0	7.78	0.99	BW76
10W238	BW75	5007.9	55	1	128316	92	1	69	99	0.45	103.2	9.18	0.97	BW77
10W238	BW62	4448.0	108	5	20311	91	4	15	96	0.86		9.00	0.97	BW75
10W238	BW63	3317.1	9	1	＋11 310	55	10	55	90	0.86	329.1	8.08	0.80	BW62
10W238	B15．3	3217.0	6	1	5309	45			80	0.62	128.0	5.32	0.76	BW63
10W238	BW5 7	3146.0	4	13	1296	20	76	45	86	0.68	146.4	4.86	0.75	B15．3
10W239	TRAY：	6 POS												
10W239	BW62	$529 \quad 6.3$	80	35	SPECIFICITY：	B15								
10W239	BW75	$414 \quad 6.0$	21	37	26 351	30	30	24	70	0.65	225.0	3.42	0.33	BW62
10w240	TRAY：	6 POS： 40		LOCAL										
10W240	BW75	5317.9	60	0	SPE139 332	93								
10W240	BW62	$471 \quad 7.9$	115	0	$\begin{array}{rl}139 & 332 \\ 24 & 332\end{array}$	93	0	69	100	0.46	112.9	9.27	0.98	BW75
10W240	B15．3	$356 \quad 7.7$	7	0	17332	92	0	17	100	0.88	363.4	10.02	0.98	BW62
10W240	BW77	3498	10	1	7 7	79	9	70	100	0.53	98.8	6.29	0.95	815.3
10W240	BW63	3387.2	5	5	2326	42	9	41	91	0.72	181.4	5.89	0.82	8W77
					2326	42	50	28	50	0.59	116.7	3.22	0.45	3W63
10W241	TRAY：	6 POS： 46		LOCAL	SPECIFICITY：	815								
10W241	BW77	5318.0	12	0	191328	83			100					
10W241	BW75	5197.8	60	0	131328	82	0	64	100	0.19	116.8	7．19	0.99	BW77
10W241	BW62	4597.6	112	2	19326	79	1	14	99	0.47	116.5	9.07	0.96	BW75
10W241	B15．3	3457.2	5	2	14324	47	28		79	0.89	361.3	9.65	0.95	BW62
10W241	BW63	3387	7	3	$7 \quad 321$	42	30	5	72	0.42	112.6	4.04	0.61	B15．3
10W241	BW57	3285.6	5	12	2309	14	70	28	30	0.58	112.6 63.9	3.97	0.56	BW63

10W242	TRAY:	6 POS: 47		LOCAL	SPECIF	CITY:	815								
10 W 242	BW75	5318.0	60	0	180	291	93	0	75	100	0.39	82.0	7.84	0.84	BW75
10W242	BW62	4717.8	115	0	65	291	91	0	36	100	0.72	246.0	8.34	0.83	BW62
10W242	BW76	3568.0	13	0	52	291	92	0	80	100	0.41	60.4	6.00	0.83	BW76
10W242	BW77	3438.0	11	0	41	291	90	0	78	100	0.43	63.6	5.80	0.82	BW77
10W242	BW63	3327.4	10	0	31	291	87	0	75	100	0.47	73.2	5.54	0.80	BW63
10W242	B15. 3	3228.0	5	2	26	289	93	28	83	72	0.31	31.4	3.32	0.52	B. 15.3
10W242	BW46	3157.9	22	19	4	270	92	46	15	54	0.64	128.3	2.17	0.25	BW4 6
10 W 243	TRAY:	6 POS: 58		LOCAL	SPECIF	CITY:	B15								
10W243	BW62	5308.0	117	0	100	313	35	0	46	100	0.64	216.6	9.98	0.99	BW62
10W243	BW77	4138.0	11	0	89	313		0	89	100	0.29	35.4	6.90	0.98	BW77
10W243	BW75	4027.9	57	0	32	313	-	0	35	100	0.76	233.6	9.04	0.98	BW75
10w243	BW63	3457.8	9	1	23	312		10	71	90	0.48	79.7	5.46	0.79	8W63
10w243	B15.3	$335 \quad 7.7$	6	1	17	311	\%	14	73	86	0.46	69.5	4.87	0.76	815.3
10W243	BW5 7	3287	6	19	11	300	\%	64	64	36	0.32	33.1	1.83	0.24	BW57
10W243	BW46	3117	10	32	1	268	63	76	9	24	0.43	58.5	0.98	0.11	BW46
10W245	TRAY:	6 POS: 48		LOCAL	SPEC:F	CITY:	8W62								
10W245	BW75	4937.9	59	0	128	306	3	0	68	100	0.47	109.7	7.79	0.84	BW75
10W245	BW77	4348.0	12	0	116	306	92	0	90	100	0.26	29.5	6.00	0.84	BW77
10W245	BW62	422 7.8.	97	2	19	304	51	2	16	98	0.87	322.5	8.25	0.84	BW62
10 W 245	B15.3	323 7.7	6	1	13	303	29	14	68	86	0.50	82.4	4.27	0.66	B15.3
10W245	BW63	3168.0	6	3	7	300	92.	33	53	67	0.54	91.9	3.78	0.56	BW63
10W245	BW4	3078.0	5	191	2	109	85	97	28	3	0.02	0.2	1.37	0.25	BW4
10W246	TRAY:	6 POS: 38		LOCAL	SPECIF	CITY:	BW62								
10W246	BW62	5317.9	117	0	87	327	91	0	42	100	0.67	240.5	10.02	0.98	BW62
10 W 246	BW75	4147.9	58	0	29	327	83	0	33	100	0.78	253.5	9.12	0.97	BW75
10W246	BW76	3565.8	13	0	16	327	62	0	55	100	0.65	152.1	6.61	0.89	BW76
10 W 246	BW77	$343 \quad 7.8$	10	1	6	326	81	9	37	91	0.74	190.1	5.65	0.78	BW77
10W246	B15.3	3328.0	4	3	2	323	66	42	33	58	0.61	123.4	3.91	0.59	B15.3
$10 W 247$	TRAY:	6 POS: 49		LOCAL	SPECIF	CITY:	BW62								
$10 W 247$	BW76	5308.0	18	0	206	306	89	0	91	100	0.22	25.5	6.94	0.89	BW76
10W247	BW77	5128.0	12	0	194	306	88	0	94	100	0.19	18.3	6.38	0.88	BW77
10W247	$\mathrm{BW75}^{1}$	$500 \quad 7.8$	56	0	138	306	87	0	71	100	0.45	99.5	8.11	0.87	BWils
10W247	B15.3	$444 \quad 7.5$	-	1	130	305	86	11	94	89	0.18	14.3	5.67	0.83	B15.
10W247	$8 W 62$	4357.9	110	1	20	304	86	0	15	100	0.89	340.7	8.31	0.82	BW62
10w247	BW63	3247.2	$三$	5	15	299	35	50	75	50	0.32	34.2	3.76	0.54	BWE
10W247	BW57	$314 \quad 6.7$	6	11	9	288	26.	64	60	36	0.34	36.8	1.42	0.18	8 W 57
10W248	TRAY:	6 POS: 33		LOCAL	SPECIF	CITY:									
10 W 248	BW76	$523 \quad 7.7$	18	0	156	349	70	0	89	100	0.27	37.4	7.21	0.91	BW76
10W248	BW62	$505 \quad 7.8$	108	6	48	343	68	5	30	95	0.75	281.1	7.72	0.75	BW62
10W248	BW75	3915	42	12	6	331	22	22	12	78	0.80	249.6	4.16	0.45	BW75
10W248	BW6	3375.2	5	225	1	106	0	97	16	3	0.04	0.6	1.08	0.10	BW6
10W249	TRAY:	6 POS: 39		LOCAL	SPECIF	CITY:	BW62								
10W249	BW75	5297.4	59	0	117	353	65	0	66	100	0.50	133.2	8.84	0.93	BW75
10W249	BW77	4705.8	12	0	105	353	60	0	89	100	0.28	37.2	6.55	0.89	BW77
10W249	BW62	4586.9	100	13	5	340	62	11	4	89	0.89	365.0	6.58	0.64	BW62
10W249	B15.3	$345 \quad 6.5$	4	3	1	337	40	42	20	58	0.67	155.2	3.21	0.48	B15.

Table 5. Continued

10W250	TRAY:	6 POS: 34		LOCAL	SPECIF	CITY:	BW62	-							
10W250	BW76	5317.8	18	0	88	425	60	0	83	100	0.38	74.7	7.85	0.97	8W76
10W250	$8 W 62$	5136.8	88	28	0	397	54	24	0	76	0.84	253.5	4.76	0.46	BW62
10W252	TRAY:	6 POS: 35		LOCAL	SPEこ:	ICITY:	BW62								
10W252	BW76	53173.8	18	0	$1: 2$	401	76	0	86	100	0.33	$\cdots .5$	7.71	0.95	BW76
10W252	BW62	5137.5	107	9	5	392	74	7	4	73	0.92	0.3 .4	7.37	0.71	BW62
10W253	TRAY:	5 POS: 48		LOCAL	SPECIF	ICITY:	BW62								
10W253	8W76	3347.2	18	0	159	357	63	0	89	100	0.27	27.6	3.65	0.72	BW76
10W253	8W62	5167.1	100	16	59	341	63	13	37	87	0.65	275.4	4.63	0.45	BW62
10W253	BW77	$\therefore 007.8$	9	3	50	338	59	25	84	75	0.30	53.7	3.18	0.43	BW77
10W253	8W75	3887.0	35	19	15	319	54	35	30	65	0.62	150.7	2.33	0.25	BW75
10W254	TRAY:	6 POS: 57		LOCAL	SPEC 1	ICITY:	B15	7							
10W254	8W75	5318.0	60	0	211	260	93	0	77	100	0.35	64.9	8.08	0.88	BW75
10W254	BW'76	4718.0	14	0	197	260	91	0	93	100	0.19	17.8	6.31	0.87	8W76
10W254	BW77	4578.0	12	0	185	260	90	0	93	100	0.19	16.3	6.12	0.86	8W77
10W254	BW62	4457.8	113	0	72	260	90	0	38	100	0.69	212.9	8.59	0.86	BW62
10W254	BW63	3328.0	8	2	64	258	90	20	88	80	0.25	20.6	4.75	0.70	8W63
10W254	B15.3	$322 \quad 7.7$	6	1	- 58	257	89	14	90	86	0.25	19.5	4.29	0.67	815.3
10W254	BW46	3157.8	38	3	20	254	89	7	34	93	0.74	173.1	5.69	0.65	BW46
10W254	BW57	2748.0	14	2	6	252	85	12	30	88	0.77	161.5	4.78	0.64	8W57
10W255	TRAY:	6 POS : 42		LOCAL	SPEC!	ICITY:	B15								
10W255	BW75	5297.9	60	0	79	390	77	0	56	100	0.60	189.9	8.82	0.95	8W75
10W255	BW77	4697.6	11	1	68	389	65	8	86	92	0.32	49.2	5.52	0.77	8W77
10W255	815.3	$457 \quad 7.8$	8	1	60	388	61	11	88	89	0.29	39.7	4.97	0.73	B15.3
10W255	B51	4487.1	23	9	37	379	58	28	61	72	0.48	101.6	4.06	0.49	851
10W255	BW62	$416 \quad 6.8$	24	78	13	301	51	76	35	24	0.29	35.7	0.70	0.07	BW62
10W255	B35	3146.8	5	29	8	272	30	85	61	15	0.18	10.7	0.50	0.06	B35
10W256	TRAY:	6 POS: 60		LOCAL	SPECI	ICITY:	BW76								
10W256	BW76	5298.0	18	0	11	500	72	0	37	100	0.78	321.3	7.06	0.85	BW76
10W257	TRAY:	4 POS: 50		LOCAL	SPECIF	ICITY:	BW46								
10W257	BW46	5327.8	56	1	9	466	81	1	13	99	0.91	440.5	7.85	0.80	BW46
10W258	TRAY:	8 POS:30		LOCAL	SPECIF	ICITY:	BW46								
10W258	BW46	5187.9	56	1	8	453	84	1	12	99	0.92	436.3	7.89	0.81	BW46
10W259	TRAY:	7 POS: 40		LOCAL	SPECIF	ICITY:	BW46								
10W259	BW63	532: 6.5	8	2	245	277	88	20	96	80	0.09	4.3	3.01	0.49	BW63
10W259	BW76	522 8.0	18	0	227	277	90	0	92	100	0.20	21.1	3.40	0.43	BW76
10 W 259	8W77	5048.0	13	0	214	277	89	0	94	100	0.18	16.3	3.17	0.43	BW77
10W259	BW75	4918.0	52	4	162	273	88	7	75	93	0.36	62.4	2.79	0.30	BW75
10W259	815.3	43588.0	7	2	155	271	85	22	95	78	0.12	6.5	1.66	0.24	B15.3
10W259	CW1	4267.9	74	2	81	269	84	2	52	98	0.59	148.6	2.34	0.23	CW1
10W259	BW62	3507.5	76	17	5	252	75	18	6	82	0.84	244.3	1.94	0.19	BW62

Table 5. Continued

10W495	TRAY:	$3 \text { POS: } 15$		LOCAL	SPECIF										
10W495	813	$533 \quad 7.9$	35		282	215	92								
$10 W 495$	827	4977.8	26	0	256	215	92	2	88 90	98	0.21	22.8	2.60	0.30	
$10 W 495$	BW57	4718.0	26	0	230	215	91	0	90	100	0.21	20.9	2.43	0.30	B27
$10 W 495$	BW52	4457.9	14	0	216	215	91	0	89 93	100	0.22	23.1	2.40	0.30	BW57
$10 W 495$	844	4317.9	73	1	143	214	90	0	93	100	0.17	13.5	2.06	0.28	BW52
$10 W 495$	851	$357 \quad 7.9$	33	1	- 110	213	87	2	66	99	0.44	84.2	2.57	0.27	B44
10W495	BW4	3237.9	95	5	15	208	87 84	2	76	98	0.38	50.9	2.01	0.24	B51
							84	5	13	95	0.86	239.5	4.19	0.75	BW4
$10 W 496$	TRAY:	3 POS: 17		LOCAL	SPECIF	IT	BW4								
$10 W 496$	BW77	5338.0	13	0	235	285									
$10 W 496$	B27	$520 \quad 7.2$	26	1	209	284	64	3	94	100	0.17	15.3	3.01	0.40	BW77
$10 W 496$	BW63	$493 \quad 7.8$	10	0	199	284	62	3 0	88 95	97	0.24	30.0	3.14	$\therefore .37$	B27
$10 W 496$	BH52	4836	10	3	189	284	51	0 23	95	100	0.17	13.9	2.59	36	BW63
$10 W 496$	BW57	$470 \quad 7.2$	23	1	189	281	59 59	23	94	77	0.12	7.0	2.45	. 36	BW52
10 W 496	B59	$446 \quad 7.4$	29	4	137	276	59	$1{ }^{4}$	87	96	0.26	32.5	2.45	$\because 29$	BW57
$10 W 496$	B38	$413 \quad 7.6$	20	3	117	276	58	12	82	88	0.30	39.1	2.31	$\because .27$	B51
$10 W 496$	B13	$390 \quad 7.2$	23	9	917	273	55	13	85	87	0.28	31.8	2.10	0.25	B38
$10 W 496$	837	3586.0	7	9	94	264	51	28	80	72	0.27	29.1	1.89	0.22	B13
$10 W 496$	AW33	3496	25	2	87	262	46	22	92	78	0.19	12.7	1.29	0.18	837
1014496	A32	$319 \quad 6.9$	7	4	55	257	47	16	71	84	0.41	59.8	1.04	2.11	AW33
$10 W 496$	BW4	$308 \quad 6.6$	51	45	5	253	45	36	88	64	0.21	14.2	0.66	0.09	A32
						208	43	46	7	54	0.62	118.3	4.41	8.40	8W4
104497	TRAY:	3 POS: 18		LOCAL	SPECIF	IT	BW4								
$10 \mathrm{W4} 97$	B15.3	5347.6	5	5	${ }_{68}$	456	BW4 69								
$10 W 497$	BW63	5248.0	5	5	63	451	69	50	93	50	0.15	11.4	2.90	0.42	B15.3
106497	813	5147.9	21	14	42	437	69	50 40	92	50	0.15 0.39	12.4	2.53	0.36	BW63
$10 W 497$	B27	47978	8	18	42	4319	66	40	66	60	0.39	79.6	2.95	0.34	B13
10 W 497	8W61	453 5.7	8	18	37	419	52	69	80	31	0.19	16.6	1.29	0.16	827
$10 W 497$	B51	$428 \quad 7.7$	7	18	27	401	44	72	79	28	0.19	16.0	1.06	0.13	BW61
10W497	B44	3956.8	12	57	22	373	44	84	81	16	0.11	4.7	0.55	0.06	B51
				57	10	316	40	82	45	18	0.24	22.2	0.54	0.06	B44
10 W 498	TRAY:	3 POS: 16		LOCAL	SPECI:	IT									
10 W498	B51	$532 \quad 7.9$	40		272										
105498	893	$\begin{array}{ll} \\ 492 & 8.0\end{array}$	35	0	272	220	94 94	0	87	100	0.24	30.5	2.61	0.29	B5 1
$10 W 498$	B27	45788	23	0	237	220	94	0	87	100	0.25	30.5	2.54	0.29	B13
10 W 498	B44	43477.9	$\frac{23}{73}$	2	14.	220	93	0	90	100	0.22	22.5	2.27	0.28	B27
10 W 498	B38	35979	71	2	14.	218	92	2	65	98	0.44	83.7	2.25	0.23	844
10 W 498	BW4	337 7.9	108	9	$12:$	217	90	4	85	96	0.29	31.0	1.69	0.21	838
		3377.9	108	9	15	208	90	7	10	93	0.86	251.3	3.92	0.70	BW4
10W499	TRAY:	3 POS: 19		LOCAL	SPE										
106499	BW75	5178.0	60	0	347	110									
10W499	BW76	45788	14	0	343	110	92	0	85	100	0.19	18.3	4.13	0.51	BW75
10W499	BW62	4438.0	111	2	222	1108	91	0	95	100	0.10	4.6	2.71	0.43	BW76
10W499	B39	3307.6	116	0	206	108	81	1	66	99	0.31	43.2	3.73	0.42	BW62
10W499	BW54	$314 \quad 8.0$	7	0	190	108	87	0	92	100	0.16	8.2	2.59	0.40	B39
10W499	BW4 1	30788	6	0	199	108	88	0	96	100	0.11	3.8	2.13	0.39	BW54
10W499	BW48	30188.0		0	193	108	87	0	96	100	0.10	3.3	2.02	0.39	BW4 1
10W499	BW60	2967	25	0	188	108	87	0	97	100	0.10	2.8	1.90	0.38	BW48
$10 W 499$	88	2707	25	1	163	107	87	3	86	97	0.21	13.1	2.57	0.36	BW60
10W499	835	24976	20	1	143	106	85	4	87	96	0.21	11.6	2.34	0.34	B8
10W499	87	2187.8	35	2	114	104	84	6	79	94	0.28	18.9	2.30	0.31	B35
10W499	8W56	1808	35	3	79	101	82	7	69	93	0.37	29.2	2.15	0.28	B7
10W499	BW70	$173 \quad 7.9$	31	5	73 42	100	79	14	92	86	0.17	5.2	1.41	0.26	BW56
10W499	BW61	1376	31	5	42	95	78	13	57	87	0.46	35.9	1.82	0.24	BW70
10W499	BW6	1396	6	2	36	93	64	25	85	75	0.24	7.9	1.16	0.21	BW61
		1297.2	22	11	14	82	63	33	38	67	0.51	33.1	3.56	0.34	BW6

Table 5. Continued

10 W 500	TRAY:	3 POS: 20		LOCAL	SPECI	CITY:	BW6								
10 W 00	BW75	5328.0	59	0	421	52	95	0	87	100	0.12	7.2	2.14	0.27	BW75
10W500	BW60	4738.0	38	0	383	52	94	0	90	100	0.10	5.1	1.83		
10w500	B35	43588.0	42	0	341	52	94	0	89	100	0.12	6.3	1.80	3.24	B35
10w500	BW46	3937.9	48	0	293	52	93	0	85	100	0.15	8.3	1.84	$\bigcirc 24$	BW46
10 W 00	B18	3458.0	23	0	270	52	93	0	92	100	0.11	4.4	1.49	\bigcirc	B18
10W500	BW70	3223.0	43	1	227	51	93	2	84	98	0.15	7.2	1.56	j. 21	BW70
10 W 00	BW62	2783.0	84	3	143	48	92	3	65	97	0.26	18.8	1.73	1.21	BW62
10 W 00	BW42	191 B. 0	15	0	128	48	88	0	8 8	100	0.17	5.5	1.21	0.20	BW42
10W500	B8	1767.9	15	0	113	48	36	0	85	:00	0.19	6.1	1.14	0.18	B8
10 W 500	BW76	1618.0	11	0	102	48	85	0	96	100	0.18	5.0	1.04	0.18	BW76
10W500	B39	$150 \quad 7.7$	14	0	88	48	84	0	86	100	0.22	7.3	1.08	0.18	B39
10W500	BW54	1368.0	5	0	83	48	84	0	94	100	0.14	2.8	0.72	0.15	BW54
10W500	B7	1318.0	28	2	55	46	83	6	66	94	0.34	15.1	1.03	0.15	B7
10W500	B45	1018.0	6	1	49	45	74	14	89	86	0.17	3.0	0.42	0.08	B45
10W500	BW6	948.0	20	2	29	43	71	9	59	91	0.43	17.3	2.01	0.19	BW6
10W501	TRAY:	3 POS: 23		LOCAL	SPECIF	CITY:	BW6								
10W501	B7	5287.8	59	3	, 357	109	79	4	85	96	0.15	11.3	5.15	0.65	B7
10W501	BW76	4668.0	18	0	339	109	77	0	94	100	0.11	5.7	4.06	0.63	BW76
10W501	835	4487.4	45	2	294	107	75	4	86	96	0.16	11.5	4.66	0.62	B35
10W501	BW60	4017.3	46	0	248	107	75	0	84	100	0.22	18.9	4.70	0.62	BW60
10W501	839	$355 \quad 7.7$	18	0	230	107	75	0	92	100	0.15	8.2	3.92	0.61	B39
10W501	BW54	3378.0	10	0	220	107	75	0	95	100	0.12	4.8	3.40	0.60	BW54
10W501	BW41	3278.0	7	0	213	107	74	0	96	100	0.10	3.5	3.04	0.59	BW41
10W501	BW75	$320 \quad 6.7$	35	1	178	106	73	2	83	98	0.23	17.1	3.70	0.51	BW75
10W501	B8	2847.2	21	1	15.7	105	75	4	88	96	0.20	11.0	3.26	0.49	B8
10W501	BW46	2627.3	33	5	124	100	76	13	78	87	0.23	13.4	3.18	0.44	BW46
10W501	BW42	2248.0	16	2	108	98	76	11	87	89	0.20	8.9	2.79	0.44	BW42
10W501	BW61	2067.6	14	2	94	96	73	12	87	88	0.20	8.6	2.47	0.40	BW69
10W501	8W62	1907.3	52	10	42	86	71	16	44	84	0.48	43.6	2.76	0.35	BW62
10W501	BW70	1287.2	22	8	20	78	69	26	47	74	0.48	29.2	2.08	0.31	BW70
10W501	B18	987.3	9	4	11	74	65	30	55	70	0.47	22.0	1.45	0.24	B18
10W501	8W6	857.4	7	4	4	70	54	36	36	64	0.58	28.8	2.54	0.24	BW6
10W502	TRAY:	8 POS: 52		LOCAL	SPECIF	ICITY:	BW6								
10W502	BW62	5308.0	113	2	351	64	92	1	75	99	0.17	15.5	1.27	0.13	3W62
10W502	818	4158.0	28	0	323	64	90	0	92	100	0.11	5.5	0.93	0.12	B18
10W502	835	3877.9	37	0	286	64	90	0	88	100	0.14	8.1	0.97	0.12	B35
10 W 02	B8	3508.0	25	0	261	64	89	0	91	100	0.13	6.0	0.88	0.12	B8
10W502	BW70	3258.0	39	1	222	63	88	2	85	98.	0.16	8.5	0.83	0.10	3W70
10W502	BW76	2858.0	17	0	205	63	86	0	92	100	0.13	5.1	0.71	0.10	BW76
10W502	839	2687.8	18	0	187	63	85	0	91	100	0.15	5.9	0.69	0.10	B39
10W502	B45	2508.0	11	0	176	63	85	0	94	100	0.12	3.9	0.56	0.09	B45
10W502	8W60	2397.9	32	1	144	62	84	3	81	97	0.21	10.7	0.67	0.08	BW60
10W502	BW4 1	2068.0	6	0	138	62	81	0	95	100	0.11	2.7	0.45	0.08	BW4 1
10W502	BW6	2007.7	96	9	42	53	80	8	30	92	0.51	52.0	1.81	0.17	BW6

 	NuNNNOOOF Ma No 		Mơ	$\begin{gathered} \text { Mos } \\ \frac{\mathrm{m}}{3} \\ \hline 8 \end{gathered}$	
abunN－ountummーan MMMMMMNNNTー．FON －000000000000000000	óóóóóóo＇00＇0	Nogonint $0^{\circ \circ} 0^{\circ \circ}$	an	$\begin{aligned} & \text { MN } \\ & \dot{0} \underset{0}{0} \end{aligned}$	안응 $0^{\circ} 0^{\circ}$
nvorowinouvmunvao minniñ－r－óoóni	かんのタルス miminimininir－ócon	NMminn ○○○゚○ー	$\begin{aligned} & 0 \infty \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & -0 \\ & \dot{0} \dot{0} \end{aligned}$	oant vióo
NoMm000－MNTMOODO 	Moanintrormag－in	$\begin{aligned} & \text { NTNNT } \\ & \text { fooning } \end{aligned}$	$\begin{aligned} & \text { Mr } \\ & \text { MO } \\ & \text { MN } \end{aligned}$	$\begin{aligned} & \text { nN } \\ & \text { Na } \\ & \text { Na } \end{aligned}$	
OUNNNONMNロMONMNM －000000000000000000	 	ommmino －000000	$\begin{aligned} & \text { 앙 } \\ & 00 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { oo } \\ & \text { io } \\ & \text { io } \end{aligned}$	NMOM －000
 		음웅ㅁ	80	8_{0}^{n}	añon
 	un unoma－mmuminme monanon onamonon		ON	FN	
OONTMOOOONVNORMM		－0000m	On	On	Nunom
$\underset{\sim}{3}$		$\begin{aligned} & \text { z } \\ & \text { andmañ } \\ & \frac{3}{0} 0 \end{aligned}$	${\underset{工}{3}}^{\infty}$	${\underset{工}{3}}^{-a \sim}$	${ }^{m}{ }^{\sin }$
ジNNaN o owo onvogono \leftrightarrow 寝 a					シ느NN 능nNN 는 こめMm u 分
	なoooonm－nmenvinunn			苞	$\underset{\substack{4 \\ \hline}}{ }$
oangomavtungvNong		ômoma	$\frac{2}{\sim}$	$\frac{a}{N}$	\bar{N}_{N}
T⿻amonconooann nNon ${ }^{\prime \prime N}$	－00000innavaounn 	NOOOMOO Nomonn人 \qquad	$\begin{aligned} & \text { Yoo } \\ & . \infty \infty \end{aligned}$	$\begin{aligned} & \infty \infty \\ & \underset{\sim}{\infty} \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { gono } \\ & \text { nno } \end{aligned}$
$\ddot{8}$ 	ï anonnionniog onnin 		$\begin{aligned} & \infty \\ & Q_{M M}^{M} M \end{aligned}$		$\begin{aligned} & \ddot{\ddot{0}} \\ & \text { BOMmN } \\ & \text { MलN~N } \end{aligned}$
m	m	m	n	N	N
ninnunnuminnnnununn 	人̂ONONONONONONO munnunnuninnmmunn 	gagagaga ninn ninn in ーテーーーケー	N～N 는N 337 으강	ninin 느ำㄴํㄴ 으으응	NMNON inumun ${ }_{3}{ }_{3}{ }_{3}{ }_{3}{ }^{3}$ 으응ㅇㅇ웅

Table 5. Continued

ANANANA 항형ㅇㅇㅇㅇ NNNNNNN甜觡甜甜	NNNNNNNNスN 	NNONNNNNNNTNNN ㅈNNNNNNNNNNNN 	MMMMMMMMMM 으으으으으으응ㅇ NNNNNNNNNN 	minininininininn NNNNNNNNNN

	LOCAL	SPECIFICITY：B44，B45，B59，BW		
18	0	64313	71	0
4	2	$60 \quad 311$	64	33
6	7	54304	66	53
22	24	32280	62	52
4	10	28270	65	71
8	21	20249	67	72
	LOCAL	SPECIFICITY：BW4		
12	1	64319	68	7
8	1	$\begin{array}{ll}56 & 318\end{array}$	68	11
4	4	$52 \quad 314$	67	50
7	8	45306	67	53
15	13	30293	64	46
5	7	25286	50	58
8	14	17272	44	63
8	19	9253	47	70
5	89	4164	33	94

	－M M N 은NNNTV 	GN 	Non Ninn	
	オペロ～～Nざの Minnñ． $00^{\circ} 0^{\circ} 0^{\circ} 00$	 －0＇0000000000000	טن்ט்ல்ó	OMMMNNロNAO М＇0．000 $0^{\circ \circ} 0^{\circ}$
∞ MnN aMNFNO けベージ。	NNTNTMNOMO子ホMniniテio	 	MnNNGMamm $\therefore 0^{\circ \circ \circ} 0^{\circ \circ}$	－Mmyninnayo
onanmin Nómynin	muannunmo 	にーMール Nincómincióscirva 	man minmmo かöñicivinin	oominminamin nioioooñoinj
MNOMMO $0^{\circ \circ} 0^{\circ \circ} 0^{\circ}$	MOnanNanm MMーケMNNMO óóóoㅇo̊o	MNunnt oaOtmint MNOO．00000000	minagntina $0^{\circ \circ \circ} 0^{\circ \circ} 0^{\circ \circ \circ}$	Mavinvinomun $0^{\circ \circ 0} 0^{\circ \circ} 0^{\circ \circ} 0^{\circ}$
	MaONTNMOO ambutingMm		NOMロがNNがN a이	 かoがomkRNa
Nomóniñ	かんNomomonins		mNNMエNNOO	「「さMさんMoNへ

Table 5. Continued

10W2106	TRAY:	16	PO	14		LOCAL	SPECIF	ICITY:	BW6								
10w2106	B18		396	-. 9	26	0	280	90	94	0	91	100	0.14	8.2	3.28	0.46	818
10W2106	BW76		370	$\therefore 0$	18	0	262	90	94	0	93	100	0.13	6.1	2.98	3.45	BW76
10W2106	BW70		352	$\therefore 3$	21	1	241	89	94	4	91	96	0.12	5.4	3.10	0.45	BW70
10W2106	BW67		330	\%)	5	0	236	89	93	0	97	100	0.08	1.9	2.23	0.45	BW67
10W2106	B8		325	-. j	14	0	222	89	93	0	94	100	0.13	5.5	2.80	U. 45	B8
10W2106	BW56		311	3.3	9	0	213	89	93	0	95	100	0.11	3.7	2.51	0.44	BW56
10W2106	835		302	7.7	35	,	178	88	92	2	83	98	0.22	14.0	3.02	0.40	B35
10w2106	BW60		266	8.0	39	1	139	87	94	2	78	98	0.27	19.9	3.02	0.40	BW60
10W2106	B7		226	7.9	30	1	109	86	92	3	78	97	0.29	18.9	2.79	0.38	B7
10W2106	BW61		195	7.9	14	1	95	85	92	6	87	94	0.22	9.2	2.20	0.35	BW61
10W2106	BW62		180	7.6	51	6	44	79	92	10	46	90	0.50	45.1	2.11	0.26	BW62
$10 W 2106$	BW75		123	7.3	25	4	19	75	97	13	43	87	0.58	42.0	1.77	0.25	BW75
10W2106	BW6		94	9.0	17	11	2	64	100	39	10	61	0.66	40.6	3.81	0.39	8W6
10 W 2107	TRAY:	16	PO	15		LOCAL	SPECI	ICITY:	BW6								
10W2107	BW56		395	7.8	9	0	325	61	95	0	97	100	0.07	1.7	1.03	0.18	BW56
10 W 2107	B7		386	8.0	34	0	291	61	96	0	89	100	0.13	7.0	1.28	0.17	B7
10W2107	BW70		352	8.0	24	0	267	61	95	0	91	100	0.12	5.4	1.14	0.16	BW70
10 W 2107	818		328	8.0	22	0	245	61	95	0	91	100	0.13	5.4	1.11	0.16	818
10 W 2107	BW76		306	8.0	18	0	227	61	94	0	92	100	0.12	4.8	1.04	0.15	BW76
10 W 2107	BW54		288	8.0	11	0	216	61	94	0	95	100	0.10	3.1	0.93	0.15	BW54
10 W 2107	839		277	8.0	14	0	202	61	93	0	93	100	0.12	4.2	0.98	0.15	839
10W2107	B8		263	8.0	14	0	188	61	93	0	93	100	0.13	4.5	0.98	0.15	88
10 W 2107	BW60		249	7.9	36	1	152	60	93	2	80	98	0.21	11.2	0.98	0.13	BW60
10 W 2107	BW75		212	7.9	32	1	120	59	92	3	78	97	0.24	12.3	0.94	0.12	BW75
10 W 2107	835		179	7.9	29	2	91	57	92	6	75	94	0.26	11.9	0.71	0.09	B35
10W2107	CW2		148	7.7	7	0	84	57	92	0	92	100	0.18	4.6	0.53	0.07	CH2
10W2107	8W6		141	7.8	70	6	14	51	92	7	16	93	0.72	72.4	2.86	0.30	BW6

Table 6. Seratyping of Antigen Society Sera Defining B15 and Its Subgroups

SERUM	ANTIGEN	$\begin{aligned} & \text { NO. } \\ & \text { REAC } \end{aligned}$	AVE	++	$\begin{gathered} \text { MISS } \\ +- \end{gathered}$	EXTR	--	STR	$\begin{gathered} \text { PE } \\ \text { MISS } \end{gathered}$	RCENTA EXTR	INCL	R	CHI	QSCORE	QNORM	ANTIGEN
	TRAY: 280		3		LOCAL	SPECIF	CITY:	B17								
10W265	BW57	680	7.5	22	8	64	586	67	26	74	74	0.39	104.6	3.16	$0.35{ }^{\text {\% }}$	BW57
10 W 265	BW5 8	650	7.4	36	18	28	568	60	33	43	67	0.57	214.2	2.76	0.28	BW58
10W265	BW63	596	5.7	6	22	22	546	39	78	78	22	0.18	18.4	0.50	0.06	BW63
10 W 4486	TRAY: 280 BW77	684	4 8.0	13	LOCAL	SPECIF 39%	C1TY:	815 73	0	96	100	0.14	\therefore	5.69	0.78	BW77
10 W 4486	BW75	671	7.8	61	1	253	351	72	1	80	90	0.32	-0.8	6.72	0.72	BW75
10 W 4486	BW76	609	5.7	14	0	244	351	67	0	94	100	0.18	19.5	5.20	0.70	BW76
$10 W 4486$	BW62	595	7.6	157	8	87	343	70	4	35	96	0.68	276.7	6.23	0.59	BW62
$10 W 4486$	B15.3	430	6.6	10	1	77	342	48	9	88	91	0.29	34.9	3.99	0.56	B15.3
$10 W 4486$	BW63	419	7.4	22	6	55	336	48	21	71	79	0.42	72.5	3.77	0.47	BW63
$10 W 4486$	BW57	391	6.7	14	6	41	330	38	30	74	70	0.37	54.6	2.64	0.33	BW57
$10 W 4486$	BW46	371	5.7	29	50	12	280	31	63	29	37	0.43	67.2	1.14	0.12	BW46
$10 W 4487$	TRAY: 280 BW76	$\begin{gathered} \mathrm{PO} \\ 682 \end{gathered}$	$\begin{array}{r} 5 \\ 8.0 \end{array}$, 18	$\begin{array}{r} \text { LOCAL } \\ 0 \end{array}$	$\underset{15}{\text { SPECIF }}$	$\begin{gathered} \text { CITY: } \\ 649 \end{gathered}$	$\begin{array}{r} B 15 \\ 75 \end{array}$	0	45	100	0.73	363.6	6.65	0.77	BW76
10 W 4488	TRAY: 280 BW75	(PO	7.6	62	LOCAL	SPECIFI 218	CITY:	BW62,	BW63 0	77	100	0.38	97.7	8.07	0.83	BW75
10 W 4488	BW77	619	8.0	13	0	205	401	78	0	94	100	0.20	24.4	6.32	0.83	BW77
10 W 4488	B15.3	606	7.4	13	0	192	401	77	0	93	100	0.21	26.0	5.92	0.77	B15. 3
10 W 4488	BW62	593	7.7	151	11	41	390	78	6	21	94	0.80	376.7	6.11	0.56	8W62
10 W 4488	BW63	431	7.3	24	4	17	386	43	14	41	86	0.68	202.0	4.50	0.52	BW63
10 W 4488	A31	399	4.9	7	25	9	358	18	78	56	22	0.27	28.8	0.59	0.06	A31
10W4489	TRAY: 280 BW76	PO 684	7 8.0	18	LOCAL	SPECIF 263	C1TY:	BW62 83	0	93	100	0.20	26.5	6.51	0.84	BW76
10 W 4489	BW77	666	8.0	13	0	250	403	82	0	95	100	0.17	20.3	6.08	0.83	BW77
$10 W 4489$	B15.3	653	7.3	9	3	241	400	82	25	96	75	0.10	7.0	5.06	0.78	B15. 3
10 W 4489	BW75	641	7.8	52	6	189	394	82	10	78	90	0.34	73.7	5.79	0.63	BW75
$10 W 4489$	BW62	583	7.7	146	17	43	377	78	10	22	90	0.76	337.3	5.79	0.55	BW62
$10 W 4489$	BW63	420	6.7	9	19	34	358	41	67	79	33	0.19	15.7	1.01	0.12	BWS 3
$10 W 4489$	BW57	392	6.3	6	15	28	343	41	71	82	29	0.17	11.1	0.72	0.09	BW5 7
10W4489	BW46	371	5.9	22	57	6	286	39	72	21	28	0.40	59.3	0.70	0.07	BW4ó
10 W 4490	TRAY: 280 BW77	PO 683	8 8.0	13	LOCAL	SPECIF 226	CITY:	BW62 84	0	94	100	0.19	24.6	6.15	0.83	BW77
10 W 4490	BW76	670	7.8	18	0	208	444	83	0	92	100	0.23	36.3	6.46	0.82	BW76
$10 W 4490$	BW75	652	7.8	50	8	158	436	83	13	75	87	0.36	86.4	5.19	0.56	BW75
$10 W 4490$	BW62	594	7.6	138	27	20	409	79	16	12	84	0.80	380.7	4.89	0.46	BW62
$10 W 4490$	B15.3	429	6.7	6	5	14	404	45	45	70	55	0.38	63.2	2.60	0.41	B15.3
$10 W 4490$	BW63	418	6.4	5	23	9	381	42	82	64	18	0.22	19.5	0.67	0.08	BW63
$10 W 4491$	TRAY: 280	PO	9		LOCAL	SPECIF	CITY:	BW62								
10W4491	BW77	653	8.0	13	0	221	419	75	0	94	100	0.19	23.8	6.56	0.89	BW77
10W4491	BW76	640	6.6	18	0	203	419	73	0	91	100	0.23	35.1	6.15	0.79	BW76
10 W 4491	BW75	622	7.9	50	6	153	413	75	10	75	90	0.38	89.8	6.10	0.66	BW75
10W4491	BW62	566	7.4	129	29	24	384	69	18	15	82	0.77	331.4	4.61	0.44	BW62
$10 W 4491$	B15.3	408	6.7	6	5	18	379	33	45	75	55	0.34	48.4	2.57	0.36	B15.3
10 W 4491	BW63	397	6.0	4	17	14	362	22	80	77	20	0.16	10.8	0.71	0.09	BW63
10W4491	CW6	303	6.0	4	73	6	220	20	94	60	6	0.06	1.2	0.56	0.06	CW6
10W4491	BW6	299	5.8	8	215	2	74	20	96	20	4	0.02	0.2	0.76	0.10	BW6

Table 6．Continued

	TRAY： 280	POS： 10		LOCAL	SPECIFI	CITY：	BW62								
$10 W 4492$	BW77	6848.0	13	0	240	431	80	0	94	100	0.18	22.6	6.84	0.90	BW77
$10 W 4492$	BW75	6717.8	60	1	180	430	79	1	75	99	0.41	114.4	8.63	0.89	3W75
10 W 4492	BW76	6104.9	11	3	169	427	74	21	93	79	0.16	16.6	6.13	0.79	8W76
$10 W 4492$	BW62	ご万 7.5	152	13	17	414	78	7	10	93	0.88	$45: .7$	6.69	0.62	BW62
10W4492	B15．3	$\therefore \mathrm{E} 7.0$	6	5	11	409	47	45	64	55	0.42	－3	2.81	0.43	815.3
10W4492	BW63	＋23 6.5	8	20	3	389	36	71	27	29	0.43	$7 \% .2$	1.45	0.17	8 W 63
	TRAY： 280	POS： 11		LOCAL	SPECIFI	CITY：	BW62								
10．．．． 33	BW76	6587.7	18	0	161	479	82	0	89	100	3.27	49.5	7.68	0.96	3W76
$10 \ldots \rightarrow 73$	BW62	$640 \quad 7.6$	133	34	28	445	81	20	17	80	3.75	356． 3	5.41	0.50	3W62
10， 10.33	BW75	4737.5	19	36	9	409	60	65	32	35	3.44	91.6	1.56	0.17	3W75
10w－693	BW60	4145.6	5	32	4	373	22	86	44	14	0.24	24.6	0.60	0.07	8W60
10winc 93	BW6	3816.0	4	239	0	138	25	98	0	2	0.08	2.3	0.88	0.08	BW6
10W4－94	TRAY： 280 BW76	POS： 12 683 8.0	18	LOCAL	${ }_{\text {SPECIF }}$	CITY： 394	8W62，	5.3 0	93	100	0.19	25.2	5.81	0.75	BW76
10WL：94	BW75	6658.0	55	3	216	391	84	5	79	95	0.34	77.0	5.61	0.60	8W75
10 Wm 994	BW77	$607 \quad 7.7$	12	1	204	390	80	7	94	93	0.18	18.6	4.29	0.59	$3 W 77$
$10 W 4474$	BW62	5947.8	155	10	49	380	79	6	24	94	0.78	359.9	5.53	0.53	BW62
$10 W 4494$	B15．3	4297.1	7	4	－ 42	376	38	36	85	64	0.27	30.4	2.58	0.41	815.3
$10 W 4494$	B27	4146.4	5	16	36	357	31	76	87	24	0.11	4.8	0.43	0.06	827
$10 W 4494$	B13	3935.6	5	29	31	328	30	85	86	15	0.06	1.4	0.47	0.05	813
$10 W 4494$	BW6	3635.9	26	$23 i$	6	100	31	89	18	11	0.07	1.9	1.45	0.20	8W6
$10 W 4495$	TRAY： 280 BW77	POS： 13 686 7.0	12	LOCAL	SPECIF	CITY：	BW62， 67	5.3 7	93	93	0.21	29.4	5.76	0.74	BW77
$10 W 4495$	BW75	$673 \quad 7.4$	49	13	121	490	67	20	71	80	0.39	104.6	5.24	0.54	BW75
$10 W 4495$	BW62	6117.0	113	54	8	436	61	32	6	68	0.74	331.5	4.02	0.37	BW62
10W4496	TRAY： 280 B51	POS： 7.6	38	LOCAL	SPECIF	CITY：	B51 76	25	17	75	0.77	402.4	4.66	0.47	B51
10W4496	BW6	6315.8	8	503	0	120	37	98	0	2	0.05	1.9	0.64	0.09	
10W4497	TRAY： 280 BW77	POS： 15 685 8．0	12	LOCAL	SPECIF 139	ITY 533	BW62 70		66	93	0.24	38.1	6.42	0.84	BW77
10 W 4497	BW76	6727.2	18	0	121	533	67	0	87	100	0.32	70.9	6.58	0.81	BW76
10 W 4497	BW75	6547.3	46	12	75	521	66	20	61	80	0.49	156.1	4.44	0.47	BW75
10 W 4497	BW62	5966.8	62	104	13	417	57	62	17	38	0.46	128.3	1.39	0.13	BW62
10W4497	BW63	4305.5	4	23	9	394	30	85	69.	15	0.18	13.7	0.56	0.06	BW63
10W4498	TRAY： 280 BW76	POS：${ }^{16}$ 685 8.0	18	LOCAL	SPECIF 194	ICITY 473	BW62	0	91	100	0.25	41.2	6.95	0.90	BW76
10W4498	BW77	$667 \quad 7.8$	13	0	181	473	65	0	93	100	0.22	32.3	6.43	0.88	BW77
10 W 4498	BW75	6547.7	46	12	135	461	63	20	74	80	0.36	84.8	4.66	0.51	BW75
10 W 4498	813	5867.0	23	19	109	435	56	45	82	55	0.21	26.9	2.36	0.27	813
$10 W 4498$	BW62	5546.6	90	69	22	373	52	43	19	57	0.57	183.1	2.49	0.24	BW62
10W4498	BW5 7	$395 \quad 6.7$	9	14	13	359	45	60	59	40	0.36	52.3	1.62	0.20	BWS7
10W4498	BW63	3726.0	5	19	8	340	30	79	61	21	0.25	22.9	0.76	0.10	BW63

10 W 4511	$\text { TRAY: } 280$ BW52	664	8		LOCAL	SPECIF	245	B5, 83	5	18,	100	- 1				
10 W 4511	815.3	604	8.0	21	0	398	245	89	0	94	100	0.14	12.7	5.54	0.75	BW52
10 W 4519	$8 \mathrm{BW5}{ }^{3}$	643	8.0	13	0	385	245	89	0	96	100	0.11	8.2	4.96	0.74	B15.3
10W4511	8W75	6317	8.0	13	0	372	245	89	0	96	100	0.12	8.4	4.96	0.74	BW53.
10W4511	835	557	8.0	59 50	1	313	244	88	1	84	99	0.26	40.2	6.05	0.69	BW75
10W4511	B51	506	7.9	45	1	263	243	86	1	84	99	0.27	39.9	5.85	0.69	B35
10W4511	B18	460	7.5	32	1	186	242	84	2	82	98	0.29	42.6	5.65	0.67	B51
10W4511	BW62	427	7.8	119	6	187	241	81	3	85	97	0.28	35.0	4.93	0.62	818
10W4511	BW77	302	8.0	4	1	67	235	81	4	36	96	0.67	191.7	5.26	0.55	BW62
10W4511	BW70	297	7.2	33	14	30 30	220	59	20	94	80	0.18	9.8	2.82	0.51	BW77
10W4511	B38	250	7.3	8	9	22	211	50	29 52	47	71 48	0.52 0.29	$\begin{aligned} & 80.2 \\ & 21.2 \end{aligned}$	2.31 1.78	$\begin{aligned} & 0.28 \\ & 0.27 \end{aligned}$	BW70
10W4512	TRAY: 280 B51	${ }^{\text {PO }}$	29 8.0		LOCAL	SPECIF 338	294	B15 ${ }^{\text {B }}$	18	. 4						
10W4512	835	683	7.0	51	0	338	294	78	0	86	100	0.25	41.7	5.05	0.57	851
10W4512	BW5 2	572	8.0	24	0	278	294	74	0	32	100	0.30	57.7	5.02	0.55	B35
10W4512	BW53	548	8.0	10	0	254	294	70	0	91	100	0.22	26.5	4.22	0.54	BW52
$10 W 4512$	BW76	538	7.1	15	0	244	294	68	0	96	100	0.15	11.8	3.28	0.49	8W53
10W4512	837	516	7.2	12	0	229	294	66	0	93	100	0.19	18.6	3.46	0.48	BW76
10W4512	B18	511	7.2	36	1	213	291	66	0	94	100	0.18	15.9	3.26	0.47	B37
10W4512	B15.3	474	7.9	36	1	181	293	65	2	83	98	0.31	49.1	3.93	0.47	B18
10W4512	BW75	463	6.9	9	2	172	291	59	18	95	82	0.14	9.1	2.75	0.46	B15.3
$10 W 4512$	B21	410	6.8	40	7	132	284	59	14	76	86	0.33	51.5	3.13	0.36	BW75
10W4512	B38	410	7.1	13	1	124	280	50	16	96	84	0.14	7.6	1.89	0.31	B21
10W4512	BW41	389	6.8	13	2	114	281	50	13	89	87	0.23	22.6	2.17	0.30	B38
$10 W 4512$	B13	382	7.1	5	2	106	276	49	28	95	72	0.13	6.4	1.42	0.23	BW41
10W4512	CW8	347	7.6	23	12	83	264	49	34	78	66	0.27	27.7	1.35	0.17	B13
$10 W 4512$	B39	334	5.8		3	13	261	42	23	87	77	0.25	20.9	1.58	0.17	CW8
10 W 4512	CW4	317	6.8	17	8	65	252	35	52	89	48	0.14	6.7	0.83	0.12	B39
10W4512	BW6	288	5.8	46	185	48	234	36	51	73	49	0.24	19.0	0.55	0.06	CW4
						5	52	29	80	9	20	0.12	3.9	0.59	0.09	BW6
10W4513	TRAY: 280	PO	30		LOCAL	SPECI	ITY:	B15								
10W4513	B21	680 653	8.0	18	0	400	262	75	0	95	100	0.13	11.6	5.57	0.79	BW76
10W4513	BW62	656	7.7	163	0	387	260	74	0	98	100	0.08	4.0	4.33	0.77	B21
10W4513	BW75	489	7.9	53	3	178	258	74	2	58	98	0.45	131.6	6.66	0.68	BW62
10W4513	BW7\%	433	7.5	11	1	178	255	65	5	77	95	0.34	57.0	5.19	0.61	BW75
10W4513	BW4 9	497	7.0	6	,	159	254	56	8	93	92	0.17	13.0	3.91	0.60	BW77
10W4513	B15. 3	414	8.0	8	3	153	251	53	14	96	86	0.12	6.3	3.24	0.55	BW41
10W4513	8W75	403	6.6	43	8	110	250	54	27	95	73	0.11	5.4	3.29	0.51	815.3
10W4513	B35	352	7.0	30	11	80	242	51	15	71.	85	0.36	53.3	3.64	0.44	BW70
10W4513	BW53	311	7.0	4	5	76	236	51	26	72	74	0.33	38.0	2.76	0.34	835
10W4513	B45	296	6.3	6	6	70	214	47	55	95	45	0.07	1.7	1.84	0.30	BW53
10W4513	BW60	288	. 3	16	16	54	214	46	50	92	50	0.11	3.9	1.70	0.26	B45
10W4513	844	258	7.0	26	19	54	202	47	50	77	50	0.21	12.9	1.52	0.20	BW60
10W4513	BW61	213	6.5	2	19	28	185	50	42	51	58	0.42	44.7	1.69	0.20	B44
10W4513	851	202	. 5		7	24	178	35	63	85	37	0.16	5.5	1.13	0.18	BW61
0W4513	BW57	178	. 5	8	16	16	162	33	66	66	34	0.24	12.0	0.97	0.14	B51
10W4513	BW6	160		4	14	12	148	37	77	75	23	0.16	4.3	0.57	0.08	BW57
		160	. 4	10	84	2	64	33	89	16	11	0.14	3.2	1.35	0.19	BW6

10W4514	TRAY: 280 BW76	POS: 31	18	LOCAL	SPECIF 448	CITY:	B15,817	0	96	100	0.11	8.5	5.91	0.84	B476
10W4514	B15.3	6628.0	14	0	434	214	91		96	100					
10.44514		64880	12	0		214			97	100	0.10	0.8	60	0.84	815.3
10W4 14	BW77	6488.0	12	0	422	214	91	0	97	100	0.10	6.0	5.41	0.83	3W77
10W4514	BW62	6368.0	163	1	259	213	90	0	61	100	0.41	108.0	7.78	0.80	8W62
10W4514	BW75	4728.0	55	1	204	212	85	1	78	99	0.32	48.2	6.50	0.76	8W75
10W4514	BW57	4168.0	22	1	182	211	81	4	89	96	0.23	21.2	5.32	0.72	3W57
10W4514	BW63	3937.9	24	2	158	208	79	7	86	93	0.25	23.7	4.82	0.64	BW63
10W4514	BW46	$367 \quad 7.5$	68	8	90	2	76	10	56	90	0.48	84.2	4.99	0.57	3W46
10W4514	SWPO	2917	41	9	49	!	72	16	54	84	0.51	76.7	4.38	0.53	3W70
10W4514	E35	2427.5	30	3	19		75	21	38	79	0.63	96.2	3.85	0.49	835
10W4514	851	20478	8	14	11		68	63	57	37	0.32	21.4	1.07	0.15	851
10W4514	BW4	1826.8	10	109	1	$2 \geq$	63	91	9	9	0.14	3.4	1.32	0.20	8W4
	TRAY: 280	POS: 32		LOCAL	SPECIF	Cl^{+}	317 B15								
$10 W 4515$	3W76	6828.0	18	0	249	$4: 5$	85	0	33	100	0.21	28.7	6.95	0.90	3W76
10W4515	BW77	6648.0	13	0	236	4 :	84	0	94	100	0.18	22.1	6.50	0.89	3W77
10W4515	B15.3	6517.3	11	2	225	413	83	15	95	85	0.14	13.4	5.04	0.69	B15.3
$10 W 4515$	BW62	6387.8	141	24	84	309	83	14	37	86	0.62	245.6	5.46	0.52	3W62
10 W 4515	BW75	$473 \quad 7.6$	39	16	45	37	67	29	53	71	0.50	120.4	3.76	0.41	BW75
10W4515	BW63	4186.5	12	16	33	357	51	57	73	43	0.28	32.2	2.00	0.25	8W63
10W4515	BW5 7	$390 \quad 6.4$	5	15	28	342	51	75	84	25	0.14	7.4	0.97	0.12	BW57
10W4515	BW46	$370 \quad 6.6$	21	57	7	285	53	73	25	27	0.38	52.9	0.81	0.08	8W46
10W4515	BW6	2926.0	6	209	1	76	28	97	14	3	0.04	0.5	0.83	0.11	BW6
	TRAY: 280	POS: 33		LOCAL	SPECIF	CITY:	BW62								
$10 W 9228$	BW77	5278.0	13	0	246	268	76	0	94	100	0.16	13.8	5.56	0.84	BW77
10W9228	BW76	51466	18	0	228	268	75	0	92	100	0.20	20.3	5.53	0.79	BW76
10 W 9228	B15.3	$496 \quad 6.4$	11	0	217	268	76	0	95	100	0.16	13.2	4.80	0.75	815.3
10W9228	BW62	4857.6	133	17	84	251	77	11	38	89	0.59	169.5	5.01	0.52	BW62
10 W 9228	BW75	3357.8	36	12	48	239	64	25	57	75	0.47	74.3	3.37	0.41	BW75
10 W 9228	BW63	2877.1	13	14	35	225	43	51	72	49	0.27	21.1	1.45	0.20	BW63
10W9228	BW5 7	$260 \quad 6.8$	5	9	30	216	37	64	85	36	0.16	6.3	1.11	0.17	BW57
10W9228	BW46	2466.2	18	51	12	165	33	73	40	27	0.27	17.3	0.46	0.05	BW46
	TRAY: 280	POS: 34		LOCAL	SPECIF	CITY:	8W62,	62S		CR					
10W9229	BW76	5218.0	18	0	180	323	80	0	90	100	0.24	30.4	6.37	0.82	$8 W 76$
10W9229	BW62	5037.7	133	18	47.	305	78	11	26	89	0.71	256.8	5.23	0.50	8462
10W9229	BW75	3526.7	34	14	13.	291	48	29	27	71	0.67	158.7	2.91	0.32	BW75
10W9229	BW6	3045.3	11	192	2	99	23	94	15	6	0.08	1.9	0.65	0.11	BH6
10W9230	TRAY: 281 BWS2	$562^{\text {POS: }} 7.3$	23	LOCAL	SPECIF	$\begin{array}{r} \text { ICITY: } \\ 475 \end{array}$	${ }^{85} 82$	11	72	89	0.45	115.9	6.60	0.79	BW52
10 W 9230	B51	5367.6	47	2	14	473	78	4	22	96	0.84	382.2	6.97	0.74	851
$10 \mathrm{W9} 230$	BW61	4877.0	4	30	10	443	50	88	71	12	0.15	10.3	0.57	0.06	8461
10W9230	BW6	4536.7	9	370	1	73	50	97	10	3	0.03	0.3	0.99	0.16	BW6
10W9231	$\begin{aligned} & \text { TRAY: } 281 \\ & 851 \end{aligned}$	POS: ${ }_{562}{ }^{4.8}$	45	LOCAL	SPEC1	1C1TY:	$\begin{gathered} B 5,835 \\ 63 \end{gathered}$	8	50	92	0.64	229.5	7.09	0.76	851
10W9231	BW52	$513 \quad 6.6$	19	7	26	461	33	26	57	74	0.53	141.5	4.12	0.50	BW52
10W9231	8W53	4876.3	6	7	20	454	23	53	76	47	0.30	44.0	3.26	0.43	BW53
10W9231	835	4745.4	13	38	7	416	25	74	35	26	0.37	64.0	0.92	0.10	B35
10W9231	8W61	$423 \quad 6.4$	5	26	2	390	57	83	28	17	0.32	43.1	0.77	0.09	BW61

Table 6. Coninued

10W9241	TRAY: 281 POS: 13			LOCAL SPECIricITY: B15											
10 W 2441	BW75 BW76	$\begin{array}{ll}560 \\ 513 & 7.3\end{array}$	45	2	138	375	54	4	75	96	0.41	9	6.13	0.71	B475
10W9241	B21	4867	14	0	124	375	47	0	89	100	0.29	-	4.73	0.66	BW76
10W9241	B35	486	33	22	$\begin{array}{r}19 \\ 19 \\ \hline 74\end{array}$	362	46	20	96	80	0.13		2.75	0.47	B21
10W9241	B18	4395	13	16	74	352	45	40	72	60	0.29	\angle	1.80	0.20	B35
10W9241	CW2	2525	1	10	54	184	41	55	85	45	0.17	12	1.07	0.14	B18
10W9241	B39	$394 \quad 6.4$	5	11	63	184	48	62	89	呮	0.09		0.86	0.13	CW2
10W9241	BW62	$378 \quad 6.6$	45	86	18	315 229	50	68	92	32	0.38		0.78	0.11	B39
10W9241	BW6	2476.3	16	128	2	101	49	85	28	35	0.35	45	0.78	0.08	BW62
								88	11	12	0.17	7.	1.08	0.10	BW6
10W9242	TRAY: 281 BW76	P6S : 14		LOCAL	SPECI	CITY:	B15								
10W9242		5635	33		34	511	27	27	72	73	0.42	99.2	3.05	0.38	BW76
10W9242	BW6	5455.6	30	399	4	112	26	93	11	7	0.06	2.3	0.72	0.12	BW6
10W9243	TRAY: 281 BW76	POS: 15		LOCAL	SPECIF	CITY:	B15								
10 W 9243	B45	49388	18	0	123	412	59	0	87	100	0.31	54.4	6.34	0.86	BW76
10W9243	BW55	4978	8	0	110	378	53	0	93	100	0.23	26.0	5.20	0.82	B45
10W9243	BW75	5187	4	5	111	407	50	55	96	45	0.07	2.7	2.01	0.31	BW55
10W9243	839	478	23	19	88	388	50	45	79	55	0.24	30.2	2.11	0.25	BW75
10W9243	BW54	476	5	12	83	376	42	70	94	30	0.05	1.4	1.38	0.19	B39
10W9243	BW62	$446 \quad 6.2$	53	88	78	368	38	61	93	39	0.09	3.8	1.14	0.16	BW54
10W9243	BW6	$295 \quad 5.6$	21	170	25	270	38	64	32	36	0.33	49.1	0.84	0.08	BW62
		2955.6	2	170	4	100	28	89	16	11	0.12	4.4	0.53	0.05	BW6
10 W9244	TRAY: 281	POS: 16		LOCAL	SPECIF	CITY:	B15								
	BW76	5627.7	18	0	360	184	76	0	95	100	0.13	9.1	2.28	0.32	BW76
10 W 244	B35	5447.8	53	4	307	180	76	7	85	93	0.19	20.4	1.90	0.22	B35
$10 W 9244$	BW55	487 6.2	9	1	298	179	73	10	97	90	0.08	3.2	1.34	0.21	BW55
10W9244	B39	$477 \quad 7.0$	14	4	284	175	73	22	95	78	0.06	1.9	1.38	0.20	839
10W9244	BW70	4597.3	27	5	257	170	75	15	90	85	0.13	7.4	1.33	0.17	BW70
10W9244	BW62	4277.5	121	21	136	149	75	14	52	86	0.36	55.6	1.54	0.16	BW62
10W9244	BW56	2857.0	8	1	128	148	70	11	94	89	0.15	6.3	0.97	0.15	BW56
10W9244	B8	2768.0	13	5	115	143	71	27	89	73	0.14	5.2	0.68	0.10	B8
10 W 9244	BW60	2587.6	23	10	92	133	67	30	80	70	0.19	9.7	0.73	0.09	8 W 60
10W9244	CW8	2257.8	34	3	58	130	65	8	63	92	0.46	47.7	0.90	0.09	CW8
10W9244	B7	1885.7	13	10	45	120	50	43	77	57	0.21	8.1	0.61	0.08	B7
10W9244	BW61	1657.4	13	7	32	113	57	35	71	65	0.31	16.3	0.55	0.08	BW61
10W9244	AW34	$80 \quad 6.7$	3	1	17	59	55	25	85	75	0.26	5.6	0.30	0.06	AW34
10W9245	TRAY: 281 BW76	$\begin{array}{r} \text { POS: } 17 \\ 564 \end{array}$	18	$\begin{array}{r} \text { LOCAL } \\ 0 \end{array}$	$\begin{gathered} \text { SPECI F } \\ 24 \end{gathered}$	$\begin{aligned} & C I T Y: \\ & 522 \end{aligned}$	BW76 45	0	57	100	0.64	231.1	6.99	0.88	B476

	TRAY: 281	POS: 18		LOCAL	SPECIF	ITY:	BW46,								
$\begin{aligned} & 10 \mathrm{~W} 9246 \\ & 10 \mathrm{~W} 9246 \end{aligned}$	BW76	$563 \quad 7.7$	18	0	339	206	62	0	94	100	0.14	10.7	1.91	0.27	BW76
10 W 9246 $10 \mathrm{H} 9246$	BW77	5457	13	0	326	206	61	0	96	100	0.12	8.1	1.61	0.25	BW77
1049246	BW46	53278	88	19	238	195	60	11	73	89	0.27	39.1	1.92	0.21	BW46
10W9246	BW75	4337.4	31	8	207	187	50	20	86	80	0.16	10.4	1.01	0.13	BW75
10 W 9246	8W56	$394 \quad 6.4$	5	2	202	185	46	28	97	72	0.05	1.0	0.70	0.12	BW56
10 W 9246	813	3876.8	19	8	183	177	46	29	90	71	0.10	3.8	0.87	0.12	B13
10W9246	818	$360 \quad 5.6$	17	9	166	168	44	34	90	66	0.08	2.4	0.53	0.07	818
10W9246	AW34	2196	3	1	106	109	44	25	97	75	0.07	1.0	0.43	0.07	AW34
10W9246	BW60	3307.1	19	9	144	158	46	32	88	68	0.11	4.2	0.50	0.07	BW60
10W9246	BW58	3026.9	7	5	137	153	44	49	95	59	0.04	0.6	0.44	$\because .07$	BW58
10W9246	BW54	$290 \quad 7.7$	6	3	131	150	43	33	95	67	0.07	1.4	0.40	$\therefore .07$	BW54
10W9246	CW8	2816.4	9	7	122	143	41	43	93	57	0.05	0.6	0.58	$\bigcirc 06$	CW8
10W9246	CW1	$265 \quad 7.3$	8	9	114	134	41	52	93	48	0.01	0.0	0.56	is. 06	CW1
10W9246	A29	$165 \quad 5.4$	7	2	73	83	40	22	99	78	0.14	3.3	0.34	S. 06	A29
10W9247	$\text { TRAY: } 281$ BW77	$\begin{array}{r} \text { POS: } 19 \\ 557^{19} 8.0 \end{array}$	13	LOCAL	SPECIF 222	ITY:	CW3,								
10W9247	B5 ${ }^{1}$	54478.9	41	3	181	322 319	73	0	94	100	0.18 0.32	18.2	3.88 3.60	0.54	BW77
10W9247	BW63	5007.9	22	4	159	315	66	15	87	85	0.32	27.8	2.87	0.35	BW63
10W9247	BW5 2	4747.8	19	4	140	311	62	17	88	83	0.23	26.1	2.47	0.31	BW52
10W9247	BW53	4517.0	6	4	134	307	58	40	95	60	0.09	4.0	1.33	0.22	BW53
10W9247	BW57	4496.2	12	6	122	301	58	33	91	67	0.16	11.7	1.33	0.17	BW57
10W9247	BW76	4237.6	9	6	113	295	59	40	92	60	0.13	7.4	1.16	0.16	BW76
10W9247	BW46	4087.0	60	30	53	265	58	33	46	67	0.46	87.6	1.42	0.15	8W46
10W9247	BW58	3187.0	6	7	47	258	49	53	88	47	0.16	8.5	0.91	0.13	BW58
10W9247	A32	2206.4	5	4	33	178	52	44	86	56	0.21	9.6	0.48	0.06	A32
10W9248	TRAY: 281 CW3	POS: 20 564 7.9	228	LOCAL	SPECIF_{78}	C179:	CW3.	3							
10W9248	BW5 7	3296.2	9	6	69	245	57	40	25	60		96			
10W9248	BW46	31470	33	18	36	227		45	88	60	0.19	11.4	1.44	0.19	8W57
10W9248	BW62	2637	11	38	35	189	6	35	52	65	0.45	64.8	1.24	0.13	BW46
10W9248	BW54	214 -1	1	3	25	189	61	77	69	23	0.12	3.9	0.82	0.08	BW62
10W9248	888	2148	4	14	21	186	60	42	84	58	0.26	14.5	0.53	0.08	BW54
10W9248	B8	2075.2	5	14	16	i72	52	73	76	27	0.17	6.0	0.55	0.07	B8
10W9249	TRAY: 281	POS: 21		LOCAL	SPECIF		CW3,								
10W9249	CW3	5517.9	92	19	185	-6	80	17	66	83	0.33	62.5	$\underline{3} .22$	0.33	CW1
10W9249	BW46	26470.4	159	3	28	-3	72	16	15	84	0.73	243.4	± 41	0.35	CW3
10W9249	BW62	2525.1	7	37	12	-196	42 26	84	67 63	75 16	0.46	55.0 5.4	2.27	0.06	BW62
10W9250	$\begin{aligned} & \text { TRAY: } 281 \\ & \text { CW3 } \end{aligned}$	$\begin{gathered} \text { POS: } 22 \\ 561 \\ 7.9 \end{gathered}$	230	LOCAL	SPECIF 128	ITY:	CW1 ${ }_{9}$, CW	35	99		2102			
10 W 9250	BW46	32888	51	0	77	200	96	0	35	99	0.6	210.2	4.06	0.39	$\mathrm{CWW}^{\text {ch }}$
10 W 9250	CW1	$277 \quad 7.7$	20	5	57	205	82	0	60	100	0.54	94.4	3.35	0.35	BW46
10W9250	BW56	2524.0	1	5	57	195	72	20	74	80	0.37	37.3	2.79	0.31	
10W9250	B51	2517.3	18	10	56	195	60	0	98	100	0.12	3.4	1.87	0.31	BW56
10W9250	BW62	223 6.8	10	10	38	185	67	35	67	65	0.36	32.0	0.86	0.10	B59
10W9250	BW75	1856	1	28	28	157	65	73	73	27	0.11	2.8	0.83	0.08	BW62
		1856.9	9	14	19	143	75	60	67	40	0.25	11.8	0.43	0.05	BW75

	TRAY: 281	${ }_{563}$	63		LOCAL	SPECIF	CITY:	B15 BW								
10W9251	BW76	563	6.9	18	0	291	254	79	0	94	100	0.16	15.3	5.25	. 72	3W76
10W9251	BW77	545	8.0	13	0	278	254	81	0	95	100	0.15	11.6	4.92	0.72	BW77
10W9251	BW46	532	8.0	97	2	181	252	80	2	65	98	0.44	101.9	5.94	. 63	BW46
10W9251	BW75	433	7.8	36	3	145	249	69	7	80	93	0.32	44.9	4.32	0.52	BW75
10W9251	BW63	394	7.4	19	9	126	240	63	32	86	68	0.18	12.5	2.97	0.39	BW63
10W9251	BW54	366	6.9	7	4	119	236	61	36	94	64	0.11	4.3	2.53	. 38	BW54
10W9251	B15.3	355	8.0	6	5	113	231	63	45	94	55	0.08	2.3	2.21	0.33	815.3
10W9251	BW62	344	6.9	96	48	17	183	51	33	15	67	0.61	128.4	2.58	0.26	3W62
10W9251	BW5 7	200	7.3	6	8	11	175	?	57	64	43	0.34	22.8	1.40	0.20	BW57
1049251	CW1	186	7.0	4	11	7	164	\%	73	63	27	0.26	12.5	0.83	0.08	CW1
10W9252	TRAY: 281 BW75	${ }_{561}$	24 6.6	37	LOCAL	SPECIF	C1TY:	$3 \times$	21	74	79	0.37	75.7	3.13	. 37	
														3.	0.37	BW75
10W9252	BWここ	514	5.0	4	5	103	402	-	55	96	45	0.08	3.1	1.89	0.30	8W55
10 W 9252	BW: +	505	6.3	7	6	P6	396		46	93	54	0.13	9.2	1.67	0.24	BW54
10W9252	BZE	492	6.7	29	26	${ }^{-}$	370		47	69	53	0.30	43.5	1.84	0.21	B35
10W9252	B51	437	6.5	13	35	54	335		72	80	28	0.11	5.7	0.64	0.08	B51
	TRAY: 281	POS	25		LOCAL	SPEC:F	CITY:	CW?								
10W9253	BW4 1	560	6.5	4	2	192	362	5%	33	97	67	0.07	2.7	1.91	0.43	BW41
10W9253	BW54	554	7.0	14	2	178	360	59	12	92	88	0.19	20.3	2.31	0.32	BW54
10W9253	BW77	538	5.8	11	2	167	358	60	15	93	85	0.17	16.0	2.06	0.30	8W77
10W9253	CW1	525	7.6	83	17	84	341	62	17	50	83	0.53	149.2	2.24	0.22	CW1
10W9253	BW46	425	6.2	9	14	75	327	39	60	89	40	0.12	5.8	1.72	0.18	BW46
10W9253	AW34	280	7.0	6	5	48	221	38	45	88	55	0.18	9.1	0.55	0.08	AW34
10W9253	B13	391	6.3	8	14	61	308	37	63	88	37	0.12	5.6	0.57	0.07	B13
10W9253	BW6	369	6.1	51	257	10	51	37	83	16	17	0.00	0.0	2.16	0.35	BW6
10W9254	TRAY: B35 S	POO	26 7.9	54	LOCAL	SPECIF	243:	TS1, 81	BW6	83	95	0.26	37.6	4.52	0.53	
10W9254	BW75	509	8.0	47	3	219	240	78	6	82	94	0.28	38.7	4.31	0.51	BW75
10W9254	BW62	459	7.7	138	10	81	230	73	6	36	94	0.63	181.5	4.52	0.47	BW62
10W9254	BW70	311	6.8	26	5	55	225	51	16	67	84	0.44	59.8	3.50	0.46	BW70
10W9254	BW76	280	6.8	10	3	45	222	49	23	81	77	0.32	28.3	2.32	0.35	BW76
10W9254	B15:3	267	6.4	5	4	40	218	46	44	88	56	0.19	10.0	1.63	0.27	B15.3
10W9254	BW60	258	5.7	13	17	27	201	45	56	67	44	0.28	20.1	0.95	0.12	BW60
10W9254	B39	228	6.5	4	9	23	192	59	69	85	31	0.14	4.7	0.70	0.11	B39
10W9254	BW6	215	7.3	16	94	7	98	60	85	30	15	0.13	3.5	1.69	0.16	BW6
10W9255	TRAY: 281 B35	${ }_{511}{ }^{\text {PO}}$: 77	51	LOCAL	SPECIF	17Y:	TS1,	, BW	81 84	92	0.22	24.1	5.63	0.72	
10W9255	BW52	458	7.9 8.0	24	0	262	172	84	0	91	100	0.18	15.2	5.09	0.71	BW52
10W9255	BW77	434	8.0	12	0	250	172	83	0	95	100	0.14	8.1	4.34	0.70	BW77
10W9255	BW53	422	7.6	10	0	240	172	82	0	96	100	0.13	7.0	4.13	0.67	BW53
10W9255	B18	412	8.0	26	2	214	170	82	7	89	93	0.19	14.8	4.14	0.60	B18
10W9255	B51	384	7.8	40	2	174	168	80	4	81	96	0.28	29.8	4.11	0.54	B51
10W9255	B15.3	342	8.0	7	0	167	168	77	0	95	100	0.14	6.9	3.15	0.54	B15. 3
10W9255	BW75	335	7.9	41	2	126	166	76	4	75	96	0.35	40.8	4.12	0.52	BW75
10W9255	BW76	292	6.9	7	3	119	163	70	30	94	70	0.10	3.0	2.11	0.36	BW76
10W9255	BW63	282	6.7	9	4	110	159	70	30	92	70	0.12	4.1	1.90	0.31	BW63
10W9255	BW62	269	7.2	66	33	44	126	71	33	40	67	0.40	43.1	1.72	0.20	BW62
10W9255	BW46	170	7.5	36	35	8	91	75	49	18	51	0.48	39.2	0.96	0.12	BW46

10W9256	TRAY: 281 B35	POS: 28 571 810	55	LOCAL	SPECIFI 243	1TY:	TS1, ${ }_{8}$	551	852,	95	0.29	47.0	5.53	$0.63 \mathrm{B35}$
10W9256	BW52	$513 \quad 7.8$	25	0	218	270	78	0	89	100	0.24	29.2	4.71	0.59 BW52
10W9256	BW53	4887.6	11	0	. 207	270	77	0	94	100	0.17	13.9	4.04	0.57 BW53
10W9256	B15.3	4777.6	9	1	198	269	76	10	95	90	0.14	9.0	3.69	0.55 B15.3
10W9256	BW75	4678.0	47	2	151	267	75	4	76	96	0.37	64.2	4.10	0.46 BW75
10W9256	BW77	4188.0	10	1	141	266	68	9	93	91	0.19	14.7	3.02	0.44 BW77
10W9256	851	4077.9	38	4	103	262	65	9	73	91	0.40	64.5	3.73	$0.43 \mathrm{B51}$
10W9256	B18	3657.3	19	7	84	255	54	26	81	74	0.28	27.8	3.03	$0.39 \mathrm{B18}$
10W9256	BW62	3396.7	54	65	30	190	50	54	35	46	0.35	41.7	0.74	0.08 BW62
10W9257	TRAY: 281 BW76	P0S: 29	i8	LOCAL	SPECI 324	CITY:	TS1 82	85	52	150	0.14	11.4	4.43	0.70 BW76
10W9257	BW77	53388.0	; 3	0	311	209	81	0	95	100	0.13	8.6	4.5	0.69 BW77
10W9257	B15.3	5207.6	9	0	302	209	80	0	97	100	0.11	6.2	3.77	0.68 B15.3
10W9257	BW53	5117.5	11	2	291	207	80	15	96	85	0.08	3.6	4.03	0.67 BW53
10W9257	BW75	4987.9	45	4	246	203	80	8	84	92	0.22	25.0	4.30	0.56 BW75
10W9257	B35	4498.0	43	5	203	198	77	10	82	90	0.24	26.3	3.70	0.48 B35
10W9257	BW62	4017.6	124	14	79	184	72	10	38	90	0.57	129.6	3.61	0.41 BW62
10W9257	BW70	2636.5	19	11	60	173	53	36	75	64	0.26	17.9	2.41	0.35 BW70
10W9257	BW52	233 6.7	12	6	48	167	58	33	80	67	0.27	17.1	1.69	0.26 BW52
10W9257	B51	2156.8	17	9	31	158	58	34	64	66	0.38	31.6	1.69	0.25 B51
10 W 9257	BW57	1896.0	5	8	26	150	54	61	83	39	0.16	5.0	0.88	0.15 BW57
10W9257	BW63	1766.0	4	9	22	141	57	69	84	31	0.13	2.9	0.68	0.11 BW63
10W9258	TRAY: 281 BW76	POS: 30 568 6.7	18	LOCAL	SPECIF 196	CITY:	TS1 63	0	91	100	0.23	30.8	4.15	0.58 BW76
10 W 9258	BW77	$550 \quad 7.3$	12	1	184	353	64	7	93	93	0.18	18.6	3.79	0.56 BW77
10 W 9258	BW46	5377.6	86	17	98	336	63	16	53	84	0.51	137.1	3.11	0.33 BW46
10W9258	BW55	$434 \quad 6.0$	4	3	94	333	44	42	95	58	0.19	4.9	1.41	0.24 BW55
10W9258	BW58	$427 \quad 6.0$	8	6	86	327	44	42	91	58	0.16	10.4	1.40	0.21 BW58
10W9258	BW54	4137.0	8	4	78	323	45	33	90	67	0.20	15.8	1.38	0.20 BW54
10W9258	BW75	4017.1	20	18	58	305	43	47	74	53	0.27	29.5	1.04	0.13 BW75
10W9258	CW1	3636.6	10	13	48	292	36	56	82	44	0.20	13.8	1.30	0.12 CW 1
10W9259	$\begin{aligned} & \text { TRAY: } 281 \\ & \text { B7 } \end{aligned}$	POS: 31	28	LOCAL 19	SPECIF	ITY:	TS1,	40	61	60	0.42	97.6	2.44	0.27 B7
10W9259	BW60	511 4.9	19	28	26	438	37	59	57	41	0.36	64.4	1.77	C. 20 BW60
10W9259	BW75	464 -. 2	8	35	18	403	50	81	69	19	0.18	15.1	0.51	-. 36 BW75
10W9260	TRAY: 281 BW76	POS: 32 569	18	'LOCAL	SPECIF ${ }_{190}$	361	BW62, 70	63	91	100	0.24	32.3	6.58	0.90 BW76
10W9260	BW77	5517.2	12	1	178	360	68	7	93	93	0.19	19.7	5.05	0.73 BW77
10W9260	BW75	5387.0	38	11	140	349	67	22	78	78	0.30	48.1	4.06	0.48 BW75
10W9260	BW62	4897.2	119	40	21	309	67	25	15	75	0.71	246.3	3.84	0.38 BW62
10W9260	BW63	$330 \quad 5.3$	6	19	15	290	23	76	71	24	0.21	14.1	0.76	0.10 BW63
10W9260	BW60	$305 \quad 5.3$	6	26	9	264	26	81	60	19	0.22	14.6	0.70	0.09 BW60
	TRAY: 281 BW76	POS: 33		LOCAL	SPECIF	CITY:	BW62 68						6.11	0.78 BW76
10W9261	BW77	$\begin{array}{ll}567 & 8.0 \\ 549 & 6.8\end{array}$	18	3	183	366 363	68	23	91	100	0.24	33.9	4.74	0.70 BW77
10W9261	BW75	$536 \quad 7.0$	39	10	134	353	65	20	77	80	0.32	55.2	3.91	0.43 BW75
10W9269	BW62	$487 \quad 7.2$	115	42	19	311	65	26	14	74	0.71	243.0	3.38	0.32 BW62

Table 6．Continued

10W9262	TRAY： 281 BW77	POS： 34 $568 \quad 8.0$	12	LOCAL	SPECIFI	CITY：	TS1 ${ }_{8}{ }^{\text {B3 }}$	${ }_{7}^{81} 1$	$W 2$ 93	93	0.19	20.5	5.35	0.75	BW77
10W9262	B51	5558.0	41	4	138	372	79	8	77	92	0.37	77.6	5.78	0.66	851
10W9262	B35	5107.8	47	8	91	364	74	14	65	\because	0.46	106.5	5.40	0.61	835
10W9262	BW52	4557.6	31	4	70	360	64	16	76	－	0.39	67.7	4.84	0.61	8W52
10W9262	BW53	4307.1	7	2	63	358	60	22	90	－3	0.24	25.5	3.75	0.57	3W53
10W9262	BW75	4217.2	39	9	24	349	60	18	38	32	0.67	187.1	4.47	0.51	BW75
10 W9262	B15．3	3738	4	5	20	344	45	55	83	－ 5	0.24	22.1	3.14	0.47	815.3
$10 \% 352$	CW4	33973	6	25	13	295	36	80	68	20	0.19	12.2	0.56	0.06	CW4
	TRAY： 281	POS： 35		LOCAL	SPECIF	CITY：	815								
16がこころ	BW76	5668.0	18	0	181	367	77	0	90	100	0.25	34.3	6.10	0.81	3W76
10ッここう3	BW77	5487.1	13	0	168	367	75	0	92	100	0.22	27.0	5.58	0.78	3W77
1049253	BW62	5357.5	118	40	50	327	76	25	29	75	0.60	195.0	3.58	0.35	3W62
10＇19253	BW75	3777.2	33	16	17	311	60	32	34	68	0.62	143.2	2.75	0.31	BW75
10W？254	TRAY： 281 CW1	POS： 529 7.2	78	LOCAL 26	SPECI	CITY：	CW1，			75			2.88		
10w9264	BW46	$\begin{array}{ll} \\ 425 & 6.3\end{array}$	78	13	18	388	60 45		75	32	0.24	25.1	2.34	0.23	BW46
10W9265	TRAY： 282 B44	POS： 559	72	LOCAL	SPECIF	CITY：	$\mathrm{B} 51$	$.$	33	94	0.75	311.6	5.47	0.54	844
10 W 9265	BW77	4826.0	7	4	30	441	48	36	81	64	0.32	49.7	2.25	0.30	BW77
10 W 9265	BW58	4717.0	8	9	22	432	50	52	73	48	0.32	49.0	1.50	0.20	BW58
10W9265	AW33	$419 \quad 6.2$	9	21	10	379	47	70	52	30	0.34	48.4	1.19	0.12	AW33
10W9265	BW4	4246.4	11	169	2	242	53	93	15	7	0.15	9.8	1.11	0.10	BW4
	TRAY： 282 BWS2	POS： 574		LOCAL	SPECI_{25}	ITY：	${ }_{451}{ }_{4}{ }^{\text {B }}$								
$\begin{aligned} & 10 \mathrm{~W} 9266 \\ & 10 \mathrm{~W} 9266 \end{aligned}$	BW52 BW4	$\begin{array}{ll}574 & 6.0 \\ 545 & 6.2\end{array}$	17	255	－ 8	265	44	86 93	86 32	14 7	0.09 0.08	4.9 3.4	0.40 0.40	0.07	BW4
10W9267	$\text { TRAY: } 282$ BW46	$\begin{gathered} \text { POS: } \\ 547 \\ 5.3 \end{gathered}$	6	$\begin{array}{r} \text { LOCAL } \\ 96 \end{array}$	SPECIF 6.	$\begin{array}{r} \text { ICITY: } \\ 439 \end{array}$	TS1 16	94	50	6	0.12	8.0	0.14	0.01	BW46
10W9268	TRAY： 282 BW46	$\begin{gathered} \text { POS: } \\ 568 \\ 5.8 \end{gathered}$	11	$\begin{array}{r} \text { LOCAL } \\ 90 \end{array}$	$\underset{10}{\text { SPECIF }}$	$\text { ICITY: }_{457}$	$\begin{array}{r} \text { BW46 } \\ 38 \end{array}$	89	47	11	0.18	17.9	0.18	0.02	BW46
10W9269	TRAY： 282 BW52	${ }_{576} \mathrm{POS}: 7.7$	24	LOCAL	SPECIF	CITY：	BW55，	17	82	83	0.32	59.2	3.71	0.43	BW52
10 W 9269	B44	5477.2	55	21	57	414	64	27	50	73	0.52	146.0	3.17	0.33	B44
10W9269	B51	4717.2	26	23	31	391	56	46	54	54	0.43	86.3	1.77	0.19	851
10W9269	A23	4206.0	4	9	27	380	38	69	87	31	0.16	10.7	1.02	0.12	A23
10W9269	B38	4096.3	7	13	20	369	40	65	74	35	0.26	27.5	0.92	0.11	B38
10W9269	BW4	3896.5	13	110	7	259	45	89	35	11	0.17	10.9	1.49	0.13	BW4
10W9270	$\begin{aligned} & \text { TRAY: } 282 \\ & \text { CW4 } \end{aligned}$	$531^{\text {POS: }} 7.8^{8}$	4	LOCAL	$\begin{gathered} \text { SPECI } \\ 14 \end{gathered}$	${ }_{431}$	BW46 44	95	77	5	0.03	0.5	0.07	0.01	CW4

10W9277	TRAY： 282 BW46	POS： 15 498	6	LOCAL	SPECIF	CITY：	BW62 40	93	40	7	0.15	10.9	0.11	0.01	
10W9277	BW6	4026.5	4	324	0	74	50	98	0	2	0.05	0.9	1.29	0.20	BW6
	TRAY： 282	POS： 16		LOCAL	SPECIF	CITY：	B35								
10W9278	CW4	$533 \quad 7.7$	85	1	30	417	75	1	26	99	0.82	361.8	6.34	0.62	CW4
10W9278	835	$483 \quad 7.5$	4	14	36	429	55	77	90	23	0.10	4.8	2.02	0.23	835
10W9278	8W6	4656.3	31	327	5	102	52	91	13	9	0.06	1.8	0.36	0.05	BW6
	TRAY： 282	POS： 17		LOCAL	SPECIF	ITY：	CW3								
10以゙ら279	A2	3787.9	127	52	26	173	93	29	5	71	0.59	131.1	1.39	0.19	A
10以リさ79	A28	1996.5	11	19	15	154	84	63	57	37	0.30	17.3	0.	0.11	$A=?$
$10 W 9279$	835	1698.0	5	7.	10	157	100	58	66	42	0.32	17.2	0	0.06	B35
10W9280	TRAY： 282	POS： 18	295	LOCAL	SPECI 178	Cily	CW3，	1	37	99	0.45	116.6		0.27	
10W9280	A28	2758.0	36	2	142	95	74	5	79	95	0.25	17.4	＝	0.22	A ${ }^{\text {cha }}$
10W9230	AW34	1698.0	11	0	109	49	71	0	90	100	0.17	4.8	i．	0.19	AW3i4
10 W9280	A10	1588.0	21	1	88	48	68	4	80	96	0.23	8.4	$\therefore .20$	0.18	A 10
10W9280	BW60	2046.7	11	0	99	94	59	0	90	100	0.22	9.9	$0 . シ ミ$	0.06	BL60
10W9280	BW55	1938.0	4	3	95	91	59	42	95	58	0.02	0.1	C． 3	0.05	BW55
	TRAY： 282	POS： 19		LOCAL	SPECIF	CITY：	A2，BW								
10W9281	A2	5707.9	279	17	68	206	84	5	19	95	0.71	288.1	3.76	0.35	A2
10W9281	BW4 1	2746.0	5	1	63	205	41	16	92	84	0.20	11.3	1.66	0.23	BW41
10W9281	BW60	2686.8	10	3	53	202	41	23	84	77	0.28	21.7	1.39	0.16	BW60
10W9281	B18	$255 \quad 5.4$	7	12	46	190	37	63	86	37	0.11	3.2	0.51	0.06	B18
10W9281	B7	2366.8	18	9	28	181	41	33	60	67	0.43	43.2	0.52	0.06	B7
	TRAY： 282	POS： 20		LOCAL	SPECIF	CITY：	85								
10 W 9282	BW77	5697.7	7	6	69	487	51	46	90	54	0.18	18.8	1.90	0.27	BW77
10 W 9282	837	5566.0	4	6	． 65	481	47	60	94	40	0.11	7.1	1.44	0.21	B37
10 W9282	B51	5467.0	22	23	43	458	47	51	66	49	0.34	64.0	1.41	0.16	B51
10W9282	BW52	5016.3	6	20	37	438	41	76	86	24	0.12	7.3	0.40	0.05	BW52
	TRAY： 282	POS： 21		LOCAL	SPECIF	CITY：	BW6								
10W9283	BW76	5727.6	18	0	301	253	66	0	94	100	0.16	14.7	3.99	0.58	BW76
10W9283	B7	5548.0	46	2	255.	251	65	4	84	96	0.26	36.5	4.20	0.51	
10W9283．	BW55	5066.4	9	1	246	250	59	10	96	90	0.11	6.4	2.48	0.40	$8 W 55$
10W9283	8W75	4967.3	43	4	203	246	59	8	82	92	0.27	36.4	3.11	0.38	BW75
10W9283	8W60	4497.7	37	5	166	241	56	11	81	89	0.28	34.4	2.93	0.36	8W60
10W9283	B8	4076.3	21	8	145	233	50	27	87	73	0.18	12.9	2.11	0.29	88
10w9283	8W61	3787.2	25	7	120	226	51	21	82	79	0.25	23.4	1.98	0.26	8W61
10W9283	839	3467.0	10	5	110	221	46	33	91	67	0.14	7.1	1.50	0.22	839
10W9283	818	3316.4	15	10	95	211	46	40	86	60	0.16	8.7	1.21	0.17	B18
10W9283	8W54	3067.0	8	6	87	205	45	42	91	58	0.12	4.7	1.03	0.16	8W54
10W9283	BW62	2926.3	49	52	38	153	43	51	43	49	0.30	25.9	0.66	0.07	BW62
10W9283	835	1916.0	13	17	25	136	44	56	65	44	0.25	12.3	0.50	0.07	B35
10W9283	8W6	1616.5	20	41	5	95	48	67	20	33	0.37	22.3	1.02	0.15	BW6
10W9284	TRAY： 282 CW4	${ }_{533} \mathrm{POS:} 22$	4	$\begin{array}{r} \text { LOCAL } \\ 82 \end{array}$	$\operatorname{SPECIF}_{7}$	$\begin{aligned} \text { ICITY } \\ 440 \end{aligned}$	CW3 18	95	63	5	0.08	3.4	0.17	0.02	CW4

Table 6. Continued

10W9292	TRAY: 282 BW77	POS: 30	13	LOCAL	SPECIFI	C17Y:	${ }^{85} 47$	0	89	100	0.30	50.6	4.82	0.65	BW77
$10 \mathrm{W9} 292$	BW76	5596.6	13	5	93	448	44	27	87	73	0.25	34.3	2.41	0.31	BW76
10W9292	BW58	5417.3	8	9	85	439	43	52	91	48	0.14	11.0	1.71	0.22	BW58
10W9292	BW57	52478	11	10	74	429	41	47	87	53	0.20	21.0	1.60	0.20	BW57
10W9292	827	5036.2	9	12	65	417	36	57	87	43	0.17	13.2	1.12	0.14	827
10W9292	844	$40^{2} \quad 6.5$	26	40	39	377	33	60	60	40	0.30	44.0	1.07	0.11	844
10W9292	838	$4: 7.0$	4	12	35	365	25	75	89	25	0.11	4.3	0.73	0.10	838
10W9292	BW4	40.5 .5	23	115	12	250	22	83	34	17	0.20	16.5	0.85	0.08	
	TRAY: 282	PCOS: 31		LOCAL	SPECIFI	C! 1%	${ }^{35} 79$								
10W92?3	BW77	$5 i 5 \quad 7.7$	12	0	65	-	79	0	84	100	0.37	69.7	5.49	0.76	BW77
10W92こう	BW52	5037.9	16	7	49	\square	78	30	75	70	0.37	68.7	2.94	0.36	8W52
10W92:5	B51	4807.8	26	10	23		73	27	46	73	0.58	163.3	3.12	0.36	851
10W9293	BW53	4447.5	4	7	19	$\therefore \therefore$	$5 ?$	63	82	37	0.22	22.3	1.51	0.21	BW53
10W9293	BW4	$433 \quad 6.8$	13	156	6	25:	47	92	31	8	0.13	7.2	0.91	0.08	BW4
10W9294	TRAY: 282 B44	POS: 32 572 8.0	73	LOCAL	SPECIF 246	C171:	$8 W 4$ 84	0	77	100	0.34	66.4	3.62	0.39	844
10W9294	BW76	4997.8	16	0	230	253	79	0	93	100	0.18	17.0	2.29	0.31	8W76
10W9294	BW77	4838.0	11	0	219	253	78	0	95.	100	0.16	12.4	2.10	0.31	BW77
$10 W 9294$	BW53	4727.7	14	0	205	253	77	0	93	100	0.19	16.7	2.15	0.30	BW53
$10 W 9294$	827	4587.8	18	2	187	25	76	10	91	90	0.19	17.3	1.95	0.26	B27
$10 W 9294$	BW57	4387.8	18	1	169	250	74	5	90	95	0.22	22.0	1.79	0.24	BW57
$10 W 9294$	BW52	4198.0	23	2	146	248	73	8	86	92	0.27	29.5	1.80	0.23	BW52
$10 W 9294$	BW5 5	3945.6	5	4	141	244	69	44	96	56	0.06	1.4	1.13	0.17	BW55
$10 W 9294$	851	3857.3	32	6	109	238	70	15	77	85	0.33	41.1	1.11	0.13	851
10 W9294	A23	34788.0	6	0	103	238	67	0	94	100	0.20	13.3	0.77	0.10	A 23
10 W9294	BW4	3417.3	72	15	31	223	66	17	30	83	0.67	153.0	3.04	0.47	BW4
	TRAY: 282	POS: 33		LOCAL	SPECIF	17Y:	B5, 8479								
10W9295	BW77	4618.0	4	4	39	414	67	50	90	50	0.19	15.9	2.25	0.33	BW77
10 W 9295	BW52	4537.4	13	11	26	403	64	45	66	55	0.38	66.8	2.11	0.25	BW52
10W9295	8W57	4297.0	4	13	22	390	57	76	84	24	0.15	9.5	1.15	0.15	BW57
10W9295	851	$412 \quad 7.4$	7	24	15	366	59	77	68	23	0.22	19.7	0.80	0.09	B51
10W9296	TRAY: 282 BW76	POS: 529	18	LOCAL	SPECIF 237	CITY:	BW6	0	92	100	0.19	20.0	3.98	0.64	BW76
10W9296	BW48	3167	4	0	169	143	61	0	97	100	0.10	3.3	2.65	0.60	BW48
10W9296	BW75	5077.2	41	7	192	267	57	14	82	86	0.26	33.2	2.58	0.34	BW75
$10 \mathrm{W9} 296$	88	4597.2	24	8	168	259	54	25	87	75	0.18	15.6	2.10	0.31	B8
10W9296	87	4276.9	34	9	134	250	52	20	79	80	0.27	31.6	2.08	0.28	B7
10 W 9296	818	38466	17	9	117	241	50	34	87	66	0.17	11.4	1.52	0.24	B18
10W9296	BW54	3586.7	9	5	108	236	47	35	92	65	0.14	6.6	1.32	0.22	BW54
10 W 9296	BW60	3447.1	22	12	86	224	47	35	79	65	0.24	19.4	1.51	0.21	8W60
10 W 9296	BW56	$310 \quad 6.7$	6	5	80	219	45	45	93	55	0.11	4.1	1.05	0.19	8W56
10W9296	839	2995.8	8	8	72	211	43	50	90	50	0.12	4.7	0.92	0.15	839
10 W 9296	835	2836.2	23	21	49	190	44	47	68	53	0.26	19.8	0.87	0.12	B35
10 W 9296	A29	1316.0	4	1	32	94	50	20	88	80	0.23	7.2	0.47	0.07	A29
10 W 9296	BW61	2347.0	10	17	35	172	46	62	77	38	0.16	6.2	0.40	0.06	8W61
10W9296	BW6	2076.5	34	86	1	86	42	71	2	29	0.36	26.5	1.02	0.16	BW6

$10 W 9297$	TRAY: 282 B44	POS: 573 80 8.0	72	LOCAL	SPECIFI	CITY:	BW4 86	1	84	99	0.17	15.6	1.00	0.11 B44
10 W 9297	B51	5007.9	48	0	350	102	83	0	87	100	0.16	13.6	0.92	0.11 B51
10 W 9297	BW52	$452 \quad 7.8$	27	0	323	102	82	0	92	100	0.14	8.4	0.65	0.08 BW52
10 W9297	BW4	$425 \quad 7.8$	147	4	176	98	81	2	54	98	0.37	58.5	3.78	0.58 BW4
10 W 9298	TRAY: 282	POS: 36	34	LOCAL	SPECIFI	C1TY:	B5 ${ }_{81}^{818, B}$	35,	83	98	0.21	26.3	5.35	0.71 B18
10 W 9298	815.3	53588.0	10	1	272	252	79	9	96	91	0.11	6.6	4.16	0.59 B15.3
10 W 2298	BW77	5247.6	11	0	261	252	79	0	95	100	0.14	10.4	4.12	C. 3 BW77
10W9298	BW65	3337.0	4	0	175	154	83		97	100	0.10	3.5	3.29	\bigcirc ¢ 3W65
$10 \mathrm{W9} 298$	835	5097.9	54	1	203	251	78		78	99	0.33	56.1	5.20	¢ ... 835
10W9298	B51	$454 \quad 7.9$	40	2	163	249	74	'	80	96	0.32	47.8	4.86	$\therefore 851$
10 W9298	BW52	4127.9	24	1	139	248	69	4	85	96	0.29	35.5	4.28	[.i) BW52
$10 W 9298$	BW75	$387 \quad 7.7$	42	2	97	246	64	4	69	96	0.44	76.5	4.30	0.53 BW75
$10 W 9298$	B37	34388.0	7	0	90	246	53	0	92	100	0.23	18.1	3.08	0.53 B 37
$10 W 9298$	BW53	33688.0	8	1	82	245	50	11	91	89	0.23	18.2	3.08	0.53 BW53
$10 \mathrm{W9298}$	BW62	$327 \quad 6.5$	62	52	20	193	45	45	24	55	0.49	80.0	1.24	0.14 BW62
$10 \mathrm{W9} 298$	BW70	2135.5	4	25	16	168	35	86	80	14	0.06	0.8	0.48	0.37 BW70
10 W 9298	BW4	1845.8	9	92	7	76	37	91	43	9	0.01	0.0	1.05	0.10 BW4
10W9299	$\begin{aligned} & \text { TRAY: } 283 \\ & \text { A2 } \end{aligned}$	$\begin{gathered} \text { POS: } \\ 567 \\ 7.2 \end{gathered}$	191	$\begin{array}{r} \text { LOCAL } \\ 104 \end{array}$	$\mathrm{SPEC}_{3} \mathrm{Fl}$	$\begin{gathered} \text { CITY: } \\ 269 \end{gathered}$	$\mathrm{A}_{7} \mathrm{~F}_{4} \mathrm{BW} 62$	35	1	65	0.67	254.7	3.60	0.33 A2
10W9300	TRAY: CW3	${ }_{565}{ }^{\text {POS }} 7.4$	212	LOCAL	SPECI 24	1TY:	CW3	11	10	89	0.81	375.1	5.08	0.47 CW 3
10W9300	CW1	$326 \quad 6.3$	19	44	5	258	54	69	20	31	0.43	59.5	0.74	0.08 CW 1
10W9301	TRAY: 283 CW3	$\begin{gathered} \text { POS: } \\ 568 \\ 7.6 \end{gathered}$	232	$\begin{array}{r} \text { LOCAL } \\ \hline \end{array}$	$\underset{25}{\text { SPECIFI }}$	$\begin{aligned} & \text { CITY: } \\ & 303 \end{aligned}$	$\begin{aligned} & \text { CW3 } \\ & 82 \end{aligned}$	3	9	97	0.88	443.6	5.84	0.53 CW 3
10W9302	TRAY: 283	POS: 376 7	14	LOCAL	SPECIF	CITY:	BW4 90	6	95	94	0.05	1.0	0.68	0.11 A29
10W9302	BW57	5518.0	19	0	406	126	88	0	95	100	0.10	5.8	0.59	0.07 BW57
$10 W 9302$	B27	5327.8	26	0	380	126	87	0	93	100	0.13	8.5	0.61	C. 37 B27
10W9302	A24	$324 \quad 7.7$	103	9	163	49	89	8	61	92	0.19	11.3	0.59	$\bigcirc .2$ A24
10W9302	B44	394 2.:	51	2	226	115	86	3	81	97	0.22	19.7	0.63	$\therefore \therefore$ B44
10W9302	CW2	170 \%	5	2	116	47	88	28	95	72	0.00	0.0	0.44	C.SCW2
10W9302	BW4	334 T.	111	17	110	96	84	13	49	87	0.34	39.2	1.09	C.9 BW4
	TRAY: 283	POS: 7		LOCAL	SPECIF	CITY:	: B5							
10w9303	BW77	5677.5	13	0	95	459	57	0	87	100	0.32	56.5	4.95	$0.66 \text { BW77 }$
1069303	BW63	5546.6	19	10	76	449	53	34	80	66	0.30	50.4	2.63	0.31 BW63
$10 \mathrm{W9} 303$	B15.3	$525 \quad 7.3$	6	5	70	444	53	45	92	55	0.17	14.6	1.85	0.25 B15.3
$10 \mathrm{W9} 303$	B37	5136.0	5	5	64	439	52	50	92	50	0.15	11.7	1.71	$0.24 \mathrm{B37}$
$10 \mathrm{W9303}$	BW52	5046.5	12	11	53	428	53	47	81	53	0.26	33.1	1.76	0.22 BW52
10 W 9303	BW58	4817.0	6	8	47	420	56	57	88	43	0.18	14.9	1.39	0.18 BW58
10 W9303	B51	$467 \quad 6.6$	20	18	27	402	55	47	57	53	0.42	82.8	1.59	0.18 B51
10W9303	BW57	4296.8	5	12	22	390	51	70	81	30	0.19	16.0	1.04	0.13 BW57
10W9304	TRAY: 283 B35	${ }_{567}{ }^{\text {POS }}$: 7.1	46	$\begin{array}{r} \text { LOCAL } \\ 12 \end{array}$	SPECIF 33	ICITY:	: B35 59	20	41	80	0.64	230.3	4.56	0.48 B35
10 W 9304	BW53	50977.3	6	5	27	471	48	45	81	55	0.29	42.8	3.50	0.45 BW53
10W9304	B15.3	4987.2	5	7	22	464	44	58	81	42	0.25	31.5	2.33	0.31 B15.3
10W9304	B51	486 6:0	10	36	12	428	40	78	54	22	0.27	34.8	0.70	$0.08 \mathrm{B51}$

10W9311	TRAY: 283	POS: 15		LOCAL	SPECI	-	BW62	63 ,							
10W9319	BWW75	$\begin{array}{ll}559 & 8.0 \\ 546 & 7.8\end{array}$	13	0	262	284	81		95	100	0.16	13.7	6.77	0.98	BW77
10W9311	B15.3	4997	11	0	215	284	80	0	82	100	0.32	55.7	8.21	0.95	BW75
10 W 9311	BW76	4885.9	14	0	190	284	78	0	94	100	0.17	14.9	6.06	0.91	B15.3
10W9311	BW62.	4747.8	151	5	190	284	78	0	93	100	0.20	20.1	5.95	0.85	BW76
10W9311	BW63	$\begin{array}{ll}318 & 6.0\end{array}$	1515	12	39 24	279	81	3	20	97	0.81	311.4	8.39	0.84	BW62
10W9311	BW57	2917.5	4	19	20	256	49	44	61	56	0.40	51.4	2.47	0.33	BW63
10W9311	BW46	2765.9	18	67	2	189	35	78 78	83 10	27	0.16	7.1	1.50	0.21	BW57
10W9312	TRAY: 283 BW76	$\begin{gathered} \text { POS: } 16 \\ 557 \\ 7.9 \end{gathered}$	18	LOCAL	SPECIFICITY: BW62,8W6E, BW74 0100										
10W9312	BW62	53977	18	-		352	81		91	100	0.24	31.9	6.30	0.jum	BW76
10W9312	BW75	38166.5	140	18	47	334	80	$1]$	25	89	0.73	286.8	5.45	¢, ${ }^{\text {ct }}$	BW62
10W9312	BW63	$\begin{array}{ll}3888 & 5.5\end{array}$	33 4	10	14	324	51	23	29	77	0.70	185.9	3.30	$\bigcirc .3$	BW75
			4	23	10	301	35	85	71	15	0.16	8.4	0.49	0.30	BW63
10W9313	TRAY: 283	POS: 17		LOCAL	SPECIFICITY: BW62,8W76										
10W9313	BW62	53487	18	0	143	393	81	0	88	100	0.29	45.4	6.90	0.87	BW76
10W9313	BW6	380	128	28	15	365	79.	17	10	83	0.80	344.9	4.94	0.47	BW62
		3805.3			1	111	13	94	6	6	0.10	3.9	0.86	0.08	BW6
10W9314	TRAY: 283 BW62	POS: 18		LOCAL	SPECIFICITY: B15										
10W9314	BW75	39988	159	0	213	186	94	0	57	100	0.45	111.2	7.20	0.72	BW62
10W9314	BW63	$352 \quad 7.9$	27	0	139	186	90	0	77	100	0.34	46.5	5.90	0.69	8W75
10W9314	BW76	32588.0	13	0	126	186	87	0	83	100	0.31	32.8	5.19	0.66	BW63
10W9314	BW77	3128.0	12	0	128	186	85	0	90	100	0.24	18.1	4.40	0.64	BW76
10 W 9314	BW57	$300 \quad 7.7$	15	0	+114	186	84	0	90	100	0.24	18.4	4.31	0.64	BW77
10W9314	B15.3	2857.8	9	0	90	186	82	0	86	100	0.29	25.8	4.48	0.63	BW57
10W9314	BW46	2767.6	74	10	90	186	80	0	90	100	0.25	17.5	3.93	0.62	B15.3
10W9314	A31	1927.5	4	7	16	176	80	11	17	89	0.78	169.2	3.78	0.41	BW46
10W9314	BW4	1816	10	100	12	169	56	63	75	37	0.25	12.0	0.57	0.06	A31
			10	100	2	69	50	90	16	10	0.12	2.7	1.19	0.19	BW4
10W9315	TRAY: BW76	POS: 19		LOCAL	SPECIFICITY: B15,A32, BW76										
10W9315	BW75	5578.0	18	0	196	343		0	91	100	0.23	29.8	5.18	0.71	BW76
10W9315	BW62	4967	36	7	160	336	68	16	81	84	0.29	45.3	3.94	0.47	BW75
10W9315	B39	$\begin{array}{ll}496 \\ 338 & 6.6\end{array}$	125	33	35	303	68	2 r	21	80	0.69	232.9	3.27	0.33	BW62
10W9315		$\begin{array}{ll}338 & 6.6 \\ 323 & 6.5\end{array}$	7	8	28	295	45	こう	80	47	0.26	22.3	1.25	0.18	B39
	BW4	3236.5	19	180	9	115	42	3	32	10	0.04	0.5	0.48	0.08	BW4
	TRAY: 283	POS: 20		LOCAL	SPECIFICITY: BW62,B15										
10W9316	BW77	5567.7	13	0	232	311	69	0	94	100	0.17	16.9	5.78	0.83	BW77
10.19316	BW76	5436.2	18	0	214	311	68	0	92	100	0.21	25.0	5.93	0.80	BW76
$10 W 9316$	BW75	5257.5	41	2	173	309	69	4	80	96	0.33	57.8	5.72	0.67	8W75
10W9316	BW62	482-7.4	135	21	38	288	65	13	21	87	0.73	257.1	4.96	0.49	BW62
10 W 9316	BW63	3265.9	18	9	20	279	31	33	52	67	0.52	86.5			
10W9316	815.3	2996.8	5	4	15	275	45	44	75	56	034	35.5	3.68 2.48	0.48 0.45	BW63 B15.3
10W9317	TRAY: BW76	POS: 21		LOCAL	SPECIFICITY: BW62										
10W9317	BW75	5337	18	0	182	351	68	0	91	100	0.24	32.7	5.39	0.72	BW76
10W9317	BW77	$490 \quad 7.2$	10	8	147	343	67	18	80	82	0.30	46.4	4.28	0.50	BW75
$10 W 9317$	BW62	4787.1	107	49	137	341	65	16	93	84	0.18	16.7	3.29	0.47	BW77
$10 W 9317$	839	3226.5	4	11	26	292	64	31	21	69	0.61	180.6	2.70	0.27	BW62
				11	26	281	46	73	86	27	0.13	5.6	1.15	0.16	B39

Table 6. Continued

$10 W 9318$	$\begin{aligned} & \text { TRAY: } 283 \\ & \text { BW75 } \end{aligned}$	$\begin{aligned} & \text { POS: } 22 \\ & 558 \end{aligned}$		LOCAL	SPECI	1TY:	B15,8	-		W46					
10 W 9318	BW76	$\begin{array}{ll}558 \\ 511 & 8.9\end{array}$	47	0	352	159	90	0	88	100	0.19	20.3	5.61	0.69	BW75
10 W9318	BW77	$497 \quad 8.0$	13	0	335	$\begin{array}{r}159 \\ 459 \\ \hline 159\end{array}$	90	0	96	100	0.11	6	4.29	0.66	BW76
10 W9318	BW63	48478	29	0	296	59 159	89	0	96	100	0.11	-	4.21	0.66	3W77
10 W 9318	B15.3	4557.8	11	0	285	159	89	0	91	100	0.18	15	4.88	0.65	$\mathrm{BW63}_{3}$
$10 \mathrm{W9318}$	$8 W 62$	4448.0	152	2	133	157	89	1	46	+90	0.12	$12{ }^{2}$	3.90 5.79	0.63	${ }^{815} 813$
10W9318	BW57	2908.0	14	1	119	156	78	6	89	94	0.22	122	5.79 3.52	0.61 3.53	BW62 BW57
10W9318	BW46	2757.8	79	5	40	151	76	5	33	95	0.68	12	4.15	3.47	BW57 BW46
10W9318	BW53	191. 6.3	6	3	34	148	45	33	85	67	0.25		2.0	3.41	BW46
10W9318	BW70	182 6.7	9	18	25	130	44	66	73	34	0.15		1.45	3.21	8W70
10W9319	$\begin{aligned} & \text { TRAY: } 283 \\ & \text { BW77 } \end{aligned}$	POS: 23		LOCAL	SPECIF	CITY:	815								
10W9319	BW76	5138	12	0	256	245	88	0	95	100	0.15	1?.2	5.51	0.82	BW77
10W9319	BW75	48388.0	18	1	238	245	87	0	92	100	0.19	13.9	5.92	0.82	BW76
10W9319	BW62	44678.9	144	5	502	244	87	2	84	98	0.28	3.0	6.11	0.74	BW75
10W9319	815.3	2977	7	1	51	238	85	12	28	97	0.73	238.1	6.39	0.65	BW62
10W9319	3W57	2897.6	9	4	42	234	56	30	87 82	88	0.29	24.2	3.59	0.58	815.3
10W9319	BW63	$276 \quad 6.8$	16	9	26	225	56 50	36	82 61	70 64	0.29	24.9 50.7	$\begin{aligned} & 2.80 \\ & 2.14 \end{aligned}$	0.41	$\begin{aligned} & \text { BW57 } \\ & \text { BW63 } \end{aligned}$
$10 \mathrm{W9} 320$	TRAY: 283 BW75	POS: 556 8.0	47	LOCAL	$\begin{array}{r} \text { SPECI } \\ 271 \end{array}$	17Y:	$\begin{aligned} & 815 \\ & 85 \end{aligned}$		85	100					
10 W 9320	B15.3	5098.0	11	1	260	237	83	8	85	100	0.26	38.	7.35	0.85	BW75
$10 W 9320$	BW76	4977.8	13	0	247	237	82	0	95	100	0.12	12.3	5.57	0.82	815.3
10 W 9320	BW77	4847.8	12	0	235	237	81	0	95	100	0.16	12.2	5.56	0.81	8W76
10 W 9320	BW62	4727.8	144	11	91	226	81	7	35	100	0.16	11.8	5.46	0.80	BW77
10 W 9320	BW63	$317 \quad 7.0$	24	3	67	223	63		3	93	0.60	171.6	5.78	0.58	BW62
10 W 9320	BW57	2906.6	10	5	57	218	64	33	73	89	0.41	52.2	4.10	0.52	BW63
10W9320	8W46	2757	50	34	57	184	64	33 40	85 12	67 60	0.24	16.9 110.8	2.77	0.39	BW57
10W9321	TRAY: 283 BW75	$\begin{gathered} \text { POS: } 25 \\ 557 \\ 8.0 \end{gathered}$	47	LOCAL	SPECIF 371	139	B15	, TS	3W57						
10W9321	BW63	5107.8	28	0	343	139	89		88	100	0.18	17.1	5.83	0.76	BW75
10W9321	BW5 7	48288.0	16	0	327	139	88	0	92	100	0.15	11.1	5.12	0.73	BW63
10W9321	BW76	46688.0	14	0	313	139	88	0	95	100	0.12	6.7	4.56	0.73	BW57
10W9321	BW77	4528.0	13	0	300	139	88	0	95	100	0.11	6.1	4.41	0.73	BW76
$10 W 9321$	B15. 3	43988.0	11	0	289	139	88	0	95	100	0.11	5.	4.32	0.72	BW77
10W9321	BW62	42878	152	1	137	138	87	0	96	100	0.11	5.2	4.13	0.72	B15.3
$10 W 9321$	BW46	2757.8	83	2	54	136	75	2	37	108	0.51	110.0	6.40	0.71	8W62
10W9321	BW53	$190 \quad 6.0$	6	3	48	133	50	33	39	98	0.64	112.6	5.23	0.63	BW46
10W9321	BW5 2	$181 \quad 6.9$	7	5	41	128	52	43	88	67	0.19	6.8	2.20	0.48	8W53
10W9321	BW70	1695.8	13	14	28	114	52	41	85	59	0.19	6.7	1.69	0.29	BW52
10 W9321	813	1426.5	8	10	20	104	67	51	68	49	0.24	10.0	1.86	0.28	BW70
10W9321	835	1247.2	10	14	10	90	70	58	71 50	45	0.24	8.0	1.11	0.17	B13
10W9321	851	10066	6	13	4	77	60	68	50 40	42	0.34	14.3	0.83	0.12	835

TRAY:		
BW777	POS: 26	
BW76	540	8.0
B15.	527	7.9
BW75	509	7.8
BW62	498	8.0
BW57	455	7.8
B35	302	7.5
BW63	286	7.2
BW46	249	8.0
BW70	226	7.0
B51	152	5.3
	126	6.3

	LOCAL	SPECIF 320	ICITY:	B15 B	BW70,835
13	0	320	207	85	0
18	0	302	207	85	0
10	1	292	206	84	9
39	4	253	202	84	9
142	11	111	191	81	7
11	5	100	186	65	31
26	11	74	175	65	29
12	11	62	164	63	47
42	32	20	132	56	43
9	17	11	115	35	65
6	14	5	101	54	70

100
100
91
91
93
69
71
53
57
35
30
0.12
0.15
0.10
0.20
0.53
0.16
0.29
0.16
0.46
0.29
0.33
8.3
12.1
4.6
19.9
129.3
7.4
23.3
6.1
47.5
12.6
13.5

4.81	0.77	BW77
5.08	0.76	BW76
3.55	0.59	B15.3
4.51	0.58	BW75
4.69	0.50	BW62
2.38	0.36	BW57
2.59	0.35	B35
1.51	0.21	BW63
1.49	0.18	BW46
0.87	0.13	Bn70
0.52	0.08	B 51
5.74	0.78	BW76
5.07	0.73	BW77
4.77	0.71	815.3
5.48	0.64	BW75
2.08	0.27	BW63
2.31	0.23	BW62
0.66	0.07	BW46
5.00	0.76	BW77
5.02	0.72	BW76
5.46	0.69	B13
5.35	0.66	BW75
3.51	0.55	B15.3
5.29	0.55	BW62
1.79	0.26	BW57
1.44	0.20	BW63
0.73	0.13	B38
0.66	0.09	BW60
4.85	0.70	BW53
2.95	0.32	335
2.61	0.2 ²	351
0.58	0.07	513
0.48	0.05	3W60
0.19	0.02	BW46
3.97	0.36	CW3
0.39	0.05	BW77
0.99	0.15	BW6

Table 6. Continued

10W9328	$\begin{aligned} & \text { TRAY: } 283 \\ & \text { CW3 } \end{aligned}$	$\begin{array}{r} \text { POS: } 32 \\ 567 \\ 7.8 \end{array}$	232	LOCAL	SPECIF	CITY:	CW3 82	2	24	98	0.73	302.0	4.89	0.45	CW3
10W9328	8W77	3287.5	11	1	66	250	49	8	85	92	0.31	32.2	1.67	0.24	8W77
10W9328	8W46	3167.0	30	19	36	231	43	38	54	62	0.43	57.1	1.08	0.11	BW46
10W9328	8W62	2676.0	8	40	28	191	36	83	77	17	0.04	0.5	0.81	0.08	3W62
10W9328	BW75	2197.1	9	18	19	173	35	66	67	34	0.23	11.7	0.54	0.06	3W75
10W9328	C'rii	1925.5	4	13	15	160	26	76	78	24	0.14	3.9	0.57	0.06	C:19
10 W9328	Bucj	1756.0	8	18	7	142	26	69	46	31	1.33	19.2	0.41	0.05	8W63
10W9329	TRAY: 283 CWS	$\begin{aligned} & \text { POS: } 33 \\ & 557 \\ & 7.9 \end{aligned}$	229	LOCAL	SPECIF	CITY:	$\begin{gathered} \mathrm{CW} 3 \\ 87 \end{gathered}$		21	99	0.78	340.3	6.25		
10 W 9329	CW1	32478.0	41	21	21	241	59	.	33	67	0.58	109.4	\%.25	0.58	CW3
10W9329	8W4ó	2626.0	4	8	17	233	42	\therefore	80	34	0.20	10.9	1.36	0.14	BWi46
10 W 9329	BW62	2505.6	5	37	12	196	47	\therefore	70	12	0.09	2.1	0.64	0.06	8W62
10W9330	TRAY: BW77	POS: 34	13	LOCAL	SPEC1	CITY:	BS_{72}		91	100	0.25	34.2	5.28	0.70	
10W9330	BW53	5517.4	13	1	132	405	69	7	91	93	0.24	32.8	5.23	0.69	BW77
10w'9330	859	5377.6	43	2	89	403	68	4	67	96	0.50	133.5	5.15	0.56	B51
10W9330	BW5 2	4927.6	23	4	66	399	60	14	74	86	0.42	86.8	3.70	0.43	BW52
10W9330	BW58	4657.5	11	4	55	395	53	25	83	74	0.31	44.5	2.87	0.37	8W58
10W9330	BW63	$450 \quad 6.4$	15	6	40	389	49	23	72	72	0.40	72.0	2.76	0.34	BW63
10W9330	BW57	4297.1	9	8	31	381	52	$4 i$	77	53	0.30	39.8	1.78	0.24	BW57
10 W 9330	B35	$412 \quad 6.0$	13	36	18	345	48	73	58	27	0.26	28.9	0.63	0.07	B35
10w9330	BW4	3637.2	15	122	3	223	61	89	16	11	0.21	16.8	9.69	0.15	BW4
	TRAY: 283	POS: 35		LOCAL	SPECIF	17Y:	B5 Bh	, BW5	8 W 63						
10w9331	BWS2	56488.0	27	0	147	390	82	0	84	100	0.34	63.6	5.35	0.62	BW52
1049331	BW53	53788	14	0	133	390	78	0	90	100	0.27	38.1	4.57	0.59	BW53
10W9331	8W77	52388.0	13	0	120	390	76	0	90	100	0.27	39.1	4.49	0.59	BW77
10W9331	851	5107.9	43	2	77	388	74	4	64	96	0.53	142.3	4.62	0.49	B51
10W9331	BW57	4657.8	16	3	61	385	62	15	79	85	0.38	65.6	2.96	0.36	BW57
10W9331	BW58.	4467.3	11	3	50	382	55	21	81	79	0.34	51.6	2.42	0.31	BW58
10W9331	BW63	4326.6	14	5	36	377	52	26	72	74	0.42	74.9	2.38	0.31	8W63
10W9331	8W4	4137.0	23	126	13	251	50	84	36	16	0.18	13.2	2.36	0.21	BW4
10w9332	TRAY: 283	POS: 36 558 8.0	13	LOCAL	SPECIF	C1TY:	BW62 84	0	96	100	0.13	9.2	5.72	0.84	
10W9332	BW57	5457.4	20	1	297	227	83	4	93	96	0.15	12.3	5.92	0.79	8W57
10 W 9332	BW62	5247.9	153	1	144	226	84	0	48	100	0.56	161.7	7.81	0.78	8W62
1019332	BW76	3706.6	17	0	127	226	71	0	88	100	0.27	28.0	5.64	0.78	BW76
10 W 9332	BW75	3538.0	43	1	84	225	73	2	66	98	0.49	83.2	6.44	0.76	BW75
$10 W 9332$	B15.3	3097.0	8	1	76	224	59	11	90	89	0.24	17.8	3.96	0.62	B15.3
10 W 9332	BW63	3007.3	23	2	53	222	59	8	69	92	0.46	64.1	4.69	0.61	BW63
10W9332	8W46	2756.6	46	42	7	180	52	47	13	53	0.57	90.6	1.67	0.18	BW46

References

I. Allert ED, Mickey MR. McNicholas AC, Terasaki PI. Seven new IIL-A specilicities and their distribution in three races. In: Terasaki PI (ed): Ilistocompatibility Testing 1970. Munksgaard, Copenhagen, 1970;221-230.
2. Alonso A, Ollier W, Doyle P, Williams E, Festenstein H. Family investigation demonstrating the association of HL.A. Bw62 with HLA-Bw4. Tissue Antigens 1983;22:32-36.
3. Alonso A, Doyle P, Williams E, Festenstcin 11. Further splits of HLA-B15. Ninth Workshop Newsletter No. 5, 1984.
4. Alonso A, Doyle P, Williams E, Gill D, Ollier W, Jaraquemada D, et al. HLA-BI5 heterogeneity in different populations. Tissue Antigens 1985;25:33-37.
5. Cambon-Thomsen A, Chandanayingyong D, Thonsen M, Hammond MG. Antigen Report: HLA-Bw63 and Other Bw4-Associated Variants of BI5. In: Albert ED, et al. (eds): Histocompatibility Testing 1984. Springer-Verlag, Berlin, Heidelberg, 1984;171-174.
6. Campell EM, Taljaard DG, Du Toit ED. BIS Kenip/B15 short Thai. Ninth Workslop Newsletter No. 2, 1983.
7. Chan SH, Naito S. Antigen Report: HLA-Bw46. In: Albert ED, et al. (eds): Histocompatibility Testing 1984. SpringerVerlag, Berlin, Heidelberg, 1984; 153-154.
8. Chan SH. Antigen Report: Bw46. In: Aizawa M (ed): HLA in Asia-Oceania 1986. Hokkaido University Press, Sapporo, Japan, 1986;106 1117
9. Chandanayingyong D . $\quad 1 \cdots$ Wl: new Thai variant of $\mathrm{B} \mid 5$. Ninth Workshop Newstclec itw. 2, 1983.
10. Chandanayingyong D, Cambon-Thomsen A, Hammond MG. Antigen Report: HLA-Bw62 and other Bw6-associated variants of BIS. In: Albert ED, et al. (eds): Histocompatibility Testing 1984. Springer-Verlag, Berlin, Heidelberg, 1984:169-171
11. Chiewsilp P, Chandanayingyong D. Sujirachato K. BIS short Thai. Nintl Worksiop Newsletter No. 2, 1983.
12. Coates E, Stration A, Dewar PJ. Definition of Bw62, Bw63, and B15.3. Ninth Workshop Newsletter No. 4, 1983.
13. Danilovs J, Pollock C. Joint report: 8w66. In: Terasaki PI (eds): Histocompatibility Testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, 1980;477-479.
14. Dejour G, Fauchet R, Jalais E, Bouhallier O, Genetet B. B15.3 (Chinese) specificity. Ninth Workshop Newsletter No. 3, 1983.
15. Dick HB. HLA-A, B and C serology and antigen reports. In: Boder WF, et al. (eds): Histocompatibility Testing 1977. Munksgaard, Copenhagen, 1977:157.
16. Fan LA, Choo SY. Beally Pri, Iansen JA. HLA-Bw62 variants identified by cytoroxic lymphocytes and isoelectric focusing gel electrophoresis. Tenth Workshop Newsletter No. 3, 1987.
17. Hammond MG. HLA-BIS complex in South African Indians. Ninth Workshop Newsletter No. 8, 1984.
18. Joysey VC, Roger JH, Bland C, et al. Further studies on a Malay population. In: Kissmeyer-Nielsen F (ed): Histo-
compatibility Testing 1975. Munksgaard, Copenhagen, 1975;251.
19. Kennedy IJ. Marsh SGE, Bodmer JG. Some preliminary thoughts on our resules using the core typing sels. Tenth Workshop Newsletter No. I, 1987.
20. Loon J, Bernoco D, Terasaki P, TakemuraS. Report of the 72nd International Cell Exchange. UCLA Tissue Typing Laboratory, Los Angeles, 1981.
21. Loon J, Terasaki P. Takemura S. Report of the 73rd Cell and Ist Serum Exchange. UCLA Tissue Typing Laboratory, Los Angeles, 1981.
22. Parlam P. ct al. In: Dupont B. (ed): Immunobiology of HLA, Volume I: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989
23. Richiardi P, Castagneto M, DAmaro J, et al. Four new HIA allelic fallis uhypic to HLA-12 and w15. Their conclatinn wih wi. .ind w6. J Immunogenet 1974; I:323.
24. Saueracker (; Christiansen FT, Dawkins RL. Antigen Report: ABC BI5. In: Simons MJ, Tait BD (eds): Proceedings of the Second Asia and Oceania Histocompatibility Workshop Conference. Immunopublishing, Australia, 1981;80.
25. Shiraki T, Akasa T, Asami M, Ueda Y, Morishima Y, Hasegawa I. A study of a new HLA-B locus antigen TS-I with 9 th workshop sera. Ninth Workshop Newsletter No. 3, 1983.
26. Sierp G, Albert ED, Cambon-Thomsen A, Ohayon E. Data analysis of the HLA-typing for "Provinces Francaises," genetique des populations humaines. Colloque INSERM 1986;142:177-196
27. Singal DP, Lung P. Bw62. In: Terasaki P1 (ed): Histocompatibility Testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, 1980;462-464.
28. Taljaard DJ, Martell RW, du Toit ED. HLA Bw62, Bw63 and otler BIS variants found in Cape Town. Tenth Workshop Newsletter No. 6. 1987.
29. Thorsby E, Kissucyer-Nielsen F. New HL-A alleles. Idendification by planned immunization. Vox Sang, Basel, 1970;18:138-148.
30. Thorsby E, Kissmeyer-Nielsen F, Svejgaard A. New alleles of the HLA system: Serological and genetic studies. In: Terasaki PI (ed): Histucompatibility Testing 1980. UCLA Tissue Typing Laboratory, Los Angles, 1980;137.
31. Troup GM. Joint Report: Bw63. In: Terasaki PI (ed): Histocompatibility Testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, 1980;465-486.
32. Zhao TM, Lee TI), Bu KJ, Zhang GL, Rubinstein P. Definition. of the HLA-B antigen SH7, identical to TS-1 in the Chinese population. Ninth Workshop Newsletter No. 7, 1984.
33. Zhao TM, Shiraki T. Antigen report: HLA-Bw62, Bw63, Bw70, Bw62. 1 and B15 variants. In: Aizawa M (ed): HLA in Asia-Oceania 1986. Hokkaido University Press, Sapporo, Japan, 1086:07 05.
34. Zhaw TM. I.ee T1) 1. ymivalence of SH7, BI5SLI and other Bw6-associated variants of B15. Tenth Workshop Newsletter No. 4, 1987.

Antigen Society \#12 Report (Bw54, Bw55, Bw56 and Bw42)

S. Sekiguchi, ${ }^{1}$ H. Neumeyer, ${ }^{2}$ N. Kashiwagi, ${ }^{3}$ K. Tsuji, ${ }^{4}$ K. Kobayashi, ${ }^{1}$ Y. Konoeda, ${ }^{\text {, M. M. Ohkubo, }}$ M. Atoh, K. Tokunaga. ${ }^{5}$ A. Yagita, H. Inoko, ${ }^{4}$ R. Fong, ${ }^{6}$ H. Mervart, ${ }^{6}$ Y. Paik, ${ }^{8}$ P. Reekers, ${ }^{9}$ M. Hammon!!" F. Du Toit. " and E. Call."

History

The antigen Bw54 was officially designated as a split of Bw22 at the Seventh International Histocompatibility Workshop. This antigen was primarily defined in the Japanese population by several laboratories independently, and designated as $\mathrm{J}-\mathrm{I}$ by Juji et al. (1), as SAP-1 by Nakayama et al. (2) and as SN-1 by Saito et al. (3). Splits of Bw22 in Caucasians were recognized mainly by the association with either Cwl or Cw 3 . The antigens Bw55 and Bw56, splits of Bw22 in Caucasians that were primarily called BT22 (4) and Te22 (5), Da30 (6) and AA-AJ (7), were confirmed at the Eighth International Workshop in 1980. The antigen Bw55 is associated with Cw3 in Caucasians and with Cwl in Japanese. The antigen Bw 56 is associated with Cwl in Caucasians and with Cwi in Japanese. A new Bw22 antigen as a split of Bw56 was primarily described by Tokunaga in 1983 at the Eighth Japanese Histocompatibility Workshop, but

Reporting Laborutories: JAPSEK.' GERNEU. ${ }^{2}$ JAPKSH. ${ }^{3}$ JAPTSU." JAPTOK." ANZFON." NCYMRV." USSPAK,* BENREE*
Participating Laboratories: SAFHAM. ${ }^{10}$ SAFDUT"
was not clearly defined. The antigen Bw42, previousl called MWA (8), was defined at the Fifth Internationa Workshop in 1972. This antigen was primarily found it Negroid populations.

Serology

At this Workshop, 43 antisera and 3 extra antisera wer submitted for this society set. Many of the sera were polyspecific (B7+Bw42, B7+Bw55, Bw42+Bw55 and so on). Several sera, however, were confirmed a monospecific for Bw55 and B7. The following ser formed clusters, identifying the Bw55 specificity (4592 4590, 4595. 4581, and 4578), and the B7 (4607 and 4613). Other sera were polyspecific. The monospecific sera for Bw54, Bw56, and Bw42 were not obtained is this society set. Twenty-one sera (4602, 4608, 4605 $4610,4586.4593,4600,4601,4612,4614,4615,4582$ 4583, 4613, 4607, 4578, 4581, 4590, 4592, 4588, anc 4589) had R values greater than 0.7 with Bw22 antiger group. The reactivities of these sera are given in Table I The reaction patterns of these antigens are shown ir Table 2. It seems that four sera ($4584,4593.4617$, and 4614) could split Bw56 into two distinct portions (long

Table 1. Analysis of the Correlation Between Serum Activity and Antigenic Specificity of the Sera

Seruin Identily	Specificities	R value	\% False pos	\% False neg	Extras
4.582	Bw22	0.89	6.7	2.6	
4583	Bw22	0.77	3.5	22.8	
4592	Bw5	0.82	3.4	8.8	$B w+2$
$+590$	Bw55	0.82	2.9	12.1	$B w+2$
4595	Bw55	0.76	4.2	15.5	$B w+2$
4581	Bw5	0.75	7.1	5.2	Bw54.Bw67
4578	Bw55	0.85	3.9	7.1	Bw42
+607	B7	0.87	0.9	15.9	
4613	B7	0.82	3.8	10.0	Bw42
$+588$	Bw55+w4?	0.32	5.6	7.9	
$+589$	Bws5+	0.76	1.7	27.8	
4593	$\mathrm{Bw} 29+\mathrm{w} 42$	0.78	5.4	14.8	
4586	$B w 22+w 42$	0.77	9.2	49.0	B7
.600 ${ }^{2}$	B7+w+2+w55	0.84	7.7	7.5	Bw56
± 608	B7+w+2+w55	0.83	5.6	11.3	
$+610$	B7-w+2+w55	0.79	4.1	16.8	Bw56
+614	$B 7+w 43+w 55$	0.75	3.1	25.6	Bw56.Bw67
+60) 6	$B 7+w-12+w 5+56$	0.91	4.9	3.4	Bw54
4615	B7-w +2	0.88	2.1	10.7	
4612	B7+w+2	0.87	6.0	1.9	
+601	B7 $+w+2$	0.84	7.7	2.0	Bus5
460)	$B 7+w+2$	0.77	3.7	22.1	

[^11]Table 2. Reaction Pattern of the Sera

	Serum No.																				
	4	\downarrow	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6
	9	9	9	7	8	8	8	8	9	8	1	1	0	1	0	1	1	0	0	0	1
HLA	0	5	2	8	1	3	2	6	3	4	7	4	6	0	8	5	2	1	0	7	3
Bw. 54	-	-	-	-	*	$+$	$+$	$+$	-	-	-	-	-	*	-	-	-	-	\sim	-	-
Bu55	$+$	$+$	$+$	$+$	+	*	$+$	$+$	$+$	+	$+$	*	$+$	$+$	$+$	-	-	-	-	-	-
BuS0	-	-	-	+	-	-	$+$	$+$	*	*	*	*	$+$	$+$	-	-	-	-	-	-	-
Bu.4?	-	-	-	-	-	-	-	$+$	$+$	$+$	+	$+$	+	$+$	$+$	+	$+$	$+$	$+$	-	-
B7	-	-	-	-	-	-	-	-	-	-	$+$	$+$	+	$+$	$+$	$+$	$+$	$+$	+	$+$	$+$

pattern and short pattern. Table 3). Most of the Japanese are positive for the cluster sera, but all Caucasians except one are negative. Two families were awalable fo: the segregation of Bw56 shor, but the family having Bw56 long was not found. There were a few false positives or false negatives, but the segregations were confirmed in these families. The cells of family 1 were the same cells that were used at the Eighth Japanese Workshop. No distinctive patterns suggestive of a split were detected in the 52 positive cells of B7, 20 positive cells of $\mathrm{Bw} 42,57$ positive cells of Bw 54 , and 48 positive cells of Bw.55 (Table 4).
A cluster of sera appears to split the Bu'56 antigen into two portions. Bw56.1 and Bw56.2. The "short" Bw56.1 antigen. seen predominantly in Caucasians. reacts only
 not react witn the sera $4584,4617,4614$, and 4593 . The "iung" Bw56.1 + Bw56.2 antigen seen predominantly in Japanese reacts with both groups of the tested sera.

In the Core serum set, Bw54 can be defined by three sera. and one serum of Bw42 monospecific sera was found from 30 sera submitted as containing Bw54, Bw 55 , Bw56. and/or Bw42. The reactivities of these sera are given in Table 5. Sera 303, 304. and 305 as Bw 54 , and 320 as Bw42 were confirmed as monospecific sera respectively. There were sera in the Core set showing concomitant specificities of Bw56. B35, and Bw62 but not with Bu'55 or Bw54. This may be of some significance in that antigen Bw56 is different from the other Bw 22 complex antigen in its epitope.

Table 3. The Reaction Patlern of Bu.56 Amigen

					Serum No.									
Lab	ID	Ethnic	C	Locus	$\begin{aligned} & 4 \\ & 5 \\ & 7 \\ & 8 \end{aligned}$	4 5 8 2	$\begin{aligned} & 4 \\ & 6 \\ & 0 \\ & 5 \end{aligned}$	4 6 0 6	$\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 0 \end{aligned}$	4 5 8 4	$\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 9 \\ & 3 \end{aligned}$	
TSU	412	Jap	4	-	+	+	+	+	$+$	+	+	+	+	Long
TSU	401	Jap	1	3	$+$	$+$	+	+	$+$	$+$	$+$	+	$+$	pattern
KSH	6015	Jap	4	-	$+$	$+$	+	+	$+$	$+$	+	+	$+$	
KSH	6021	Jap	4	-	$+$	+	+	$+$	$+$	+	$+$	+	+	
TOK	2515	Jap	1	3	$+$	$+$	+	+	$+$	$+$	$+$	+	+	
PAK	122	Jap	J	3	$+$	+	+	+	$+$	$+$	+	-	+	
SEK	3697	Jap	1	7	$+$	$+$	+	+	$+$	$+$	0	$+$	$+$	
MRV	846	Cau	1	7	-	$+$	$+$	+	$+$	-	$+$	$+$	+	
NEU	8	Cau	1	7	$+$	+	+	+	+	-	$+$	-	-	Shorn
NEU	9	Cau	1	6	$+$	+	+	+	+	-	-	-	-	pattern
NEU	12	Cau	1	4	$+$	+	+	+	+	-	"-	-	_	
NEU	53	Cau	1	-	$+$	+	$+$	+	+	-	-	-	-	
NEU	4	?	1	-	$+$	$+$	+	+	+	-	-	-	-	
TOK	1072	Jap	1	7	+	+	+	0	$+$	-	-	-	-	Family IF
TOK	1853	Jap	1	5	$+$	$+$	$+$	+	$+$	-	-	-	_	M
TOK	1854	Jap	1	3	$+$	+	+	+	+	-	-	-	-	C
NEU	1	Cau	1	4	$+$	+	+	+	$+$	-	-	-	-	Family 2 F
NEU	2	Cau	1	7	-	-	+	+	$+$	-	-	-	-	M
NEU	3	Cau	1	1	$+$	+	+	$+$	+	-	-	-	-	Cl
NEU•	4	Cau	1	7	$+$	$+$	$+$	$+$	$+$	-	-	-	_	C2
NEU	5	Cau	1	4	$+$	+	+	$+$	0	-	-	-	-	C3
NEU	6	Cau	1	7	$+$	-	-	$+$	$+$	-	-	-	-	C4

Table 4. Pattern Analysis in Antigens of Antigen Society \#12 Positive
Cells

Serum No.													
$\begin{aligned} & \mathrm{B7} \\ & \mathrm{~N}=5 ? \end{aligned}$	4	4	4	4	4	4	4	4	4	4	4		Freq.
	6	6	6	6	6	6	6	6	6	6	6		
	0	0	1	0	1	1	0	0	1	0	1		
	2	8	0	6	5	2	1	0	4	7	3	$\mathrm{n}=$	
pattern 1 pattern 2 pattern 3	$+$	$+$	$+$	+	$+$	$+$	$+$	+	+	$+$	$+$	40	76.9\%
	$+$	$+$	+	+	$+$	+	+	+	$+$	-	$+$	3	5.8
	$+$	-	+	+	+	$+$	$+$	$+$	+	-	$+$	2	3.8
Serum No.													
$\begin{aligned} & B w 42 \\ & N=20 \end{aligned}$	4	4	4	4	4	4	4	4	4	4	4		Freq.
	5	5	6	6	6	6	6	6	6	6	6		
	9	8	0	0	1	0	1	1	0	0	1		
	3	6	2	8	0	6	5	2	1	0	4	$\mathrm{n}=$	
pattern 1 pattern 2 pattern 3 pattern 4	$+$	+	+	+	$+$	$+$	+	$+$	+	+	+	9	45.0\%
	-	-	+	+	$+$	$+$	+	+	+	+	+	2	10.0
	$+$	-	+	+	$+$	$+$	+	+	+	$+$	+	2	10.0
	+	-	+	$+$	+	$+$	-	$+$	+	+	+	2	10.0

Serum No.							
	4	4	4	4	4		
Bw54	5	5	5	5	6		
$\mathrm{~N}=57$	7	8	8	8	1		
	9	2	3	6	0	$n=$	Freq.
pattern 1	-	+	+	+	+	17	29.8%
pattern 2	-	+	+	+	-	17	29.8
pattern 3	+	+	+	+	11	20.4	
pattern 4	-	-	-	-	-	7	13.0

Serum No.

	4	4	4	4	4	4	4	4	4	4	4	4	4		
BW55	5	5	5	5	5	5	5	5	5	6	6	6	6		
$\mathrm{~N}=48$	9	9	9	8	7	7	8	9	8	0	0	1	0		
	2	0	5	1	8	9	2	3	6	2	8	0	6	$\mathrm{n}=$	Freq.
patcern 1	+	+	+	+	+	+	+	+	+	+	+	+	+	28	58.3%

Serum No.

	4	4	4	4	4	4	4	4	4		
Bw56	5	5	5	5	5	5	6	6	6		
$\mathrm{~N}=13$	7	7	8	8	9	8	0	1	0		
	8	9	0	2	3	6	0	0	6	$n=$	Freq.
pattern 1	+	+	+	+	+	+	+	+	+	3	23.1%
pattern 2	+	-	+	+	-	-	-	+	+	2	15.4
pattern 3	+	-	-	+	-	-	-	0	+	2	15.4

Table 5. Analysis of Correlation Between Serum Activity and Antigenic Specificity of the Sera of Core Serum Set

Serum Identity	Specificities	+ +	+-	-+	--	Total	$\begin{gathered} \mathrm{R} \\ \text { value } \end{gathered}$
303	Bw54	$+1$	1	20	312	374	0.78
ju4	Bw54	39	4	14	319.	376	0.78
303	BwSt	33	9	10	320	372	0.74
320	Bw-	3.3	3	15	318	369	0.76
325	$\mathrm{B} 7+\mathrm{Bw+}$	76	13	13	260	362	0.80
324	$\mathrm{B} 7+\mathrm{Bw}+2$	89	3	20	256	368	0.84

Conclusion

The following sera formed clusters defining Bu:54 (10w'303. 304. and 305). Bu'55 (10W4578. 4581.4590. 4.592. and 4505). broad Bu 22 (10W'296. 4582, and 4583). and Bw42 (10w 320). Bu:54 and Bw 42 could be defined well with the tenth Core serum set and Bu'55 with the sera of Antigen Society set 12. Bu'56. however. was not defined as a monospecific serum. It was possible In detect Bw 55 and Bw 56 based on reactivity with several polyspecific sera of the Core serum set containing $\mathrm{Bu}: 22$ antigen group. We can split Bw 56 into two portions, Bu:56.1 and Bu:56.2, by a cluster of sera. Most Japanese belong 1o Bu:56.I + 56.2 (long Bu:56). Caucasian, Bw56.1 (short Bw56). The (short) Bw.56.1 was seen in a Caucasian family, a Japanese family, and a random Caucasian population. The report by E.L. Milford et al. on The Serologic Exercises of the 10th Internalional Histocompatihility Workshop gives additional detail on the serologs antigen Society \#12.

References

1. Juji T. Hagine Y. Tamaru M. et al. A possible new Japanese specific HL-A anigen (J-1). Jap Exp Med 1973:43:447.
2. Nakayama E. Itakura K. Yakura H, et al. Sa-1. a possible now HL-A specificity found in the Japanese population. Vox Sang. Bascl. 1974:27:134.
3. Saito S. Naito S. Toyoda K. et al. A study on HLA system in Japanese. Tissuc Anligens 1975:5:217.
4. Batchelor JR. Chapman BA. Genetic background and transplantation antigens. J Clin Path 1967:30:415.
5. Alben ED. Mickey MR. McNicolas. el al. In: Terasaki PI (cd): Histocompatihility Testing 1970. Munksgaard. Copenhagen, 1970:221.
6. Daussel J. Colombani J. Legrand L. et al. Population and family studies in a French population with special reference to non-HLA antitodies. In: Dausset J. Colombani J (eds): Histocompatibility Testing 1972. Munksgaard. Copenhagen, 1973:107.
7. Thorsby E, Lidholm A. Sandbere L. et al. The HL-A system. Funtic: evidence of antigenic heterogeneity. Vox Sang. Bascl, 1971:21:68.

Antigen Society \#13 Report (B7, B27, Bw47, Bw73)

HLA-B7 and HLA-B27 are well defined by monospecific Tenth International Workshop sera listed in Table 1 (Core sera) and Table 2 (Antigen Society 13 sera). There are no monospecific Workshop sera to define BW47, but this specificity is easily defined using $\mathrm{B} 27+\mathrm{Bw} 47$ sera and $\mathrm{B} 40+\mathrm{B} 13+\mathrm{Bw} 47$ sera (Tables 1 and 2). Bw 73 was originally described by Mayr and Kirnbauer as "ka" in 1977 (1), and was given WHO nomenclature after the Ninth Workshop, based on the reactivity of three sera ($9 \mathrm{w} 245.246,247$), which also reacted with other B7-CREG (cross reactive group) antigens (2). In the Tenth Workshop there are five Core sera plus seven Antigen Society 13 sera that define Bw73 in the absence of other B7-CREG antigens. In addition, there are two Core sera, 10 w 336 (9 w 440) and 10w338, that were submitted as monospecific Bw73 sera. Although these two sera were not strictly monospecific, having extra reactivity toward Bw46 and Cw7, they were not reactive with other B7-CREG antigens. The Cw7 reactivity in these two sera does not appear to be an artifact of Cw7 linkage with B7 and Bw73. A "new" B7-like antigen, pot. previously described by Reekers et al. (3), is identified by three Core sera and five sera from Antigen Society 13. These eight sera are positive with other B7-CREG antigens, so assignment of B pot is possible only in the absence of other B7-CREG antigens.

[^12]Table 1. Best Core Sera

Serum	Percent Inclusion					Others
	B7-	B27	Bw47	Bw73	B pot	
276	96					
278	89					
335	86					
275	95					Bw42(65)
325	98					Bw42(83)
280		96				
282		98				
283		88				
292		91	92			
288		94	56			
368			90			$\begin{aligned} & \text { Bw60(94).Bw61(92). } \\ & \text { B13(89) } \end{aligned}$
353			99			$\begin{aligned} & \text { Bw60(98). } \mathrm{Bw61(98),} \\ & \mathrm{~B} 13(96), \mathrm{Bw} 48(91) \end{aligned}$
375			97			$\begin{aligned} & \mathrm{B} w 60(98) . \mathrm{Bw61(98),} \\ & \mathrm{~B} 13(97), \mathrm{Bw} 48(95) \end{aligned}$
370			87			$\begin{aligned} & \mathrm{Bw60(95).Bw} 1(94), \\ & \mathrm{BI} 13(90) \end{aligned}$
339	98	89		68		Bw42(65).Bw67(50)
341	98	97		76		
343	98	95		59		Bw48(68)
340	98	92		77	100	$\begin{aligned} & \mathrm{B} w 42(93) . \mathrm{Bw} 48(77) \text {, } \\ & \mathrm{B} w 60(69) . \mathrm{Bw} 55(74) \end{aligned}$
333	96	21		86	67	Bw42(47)
336				70		Bw46(55),Cw7(32)
338				70		Bw46(23).Cw7(31)
381	97	90			100	$\begin{aligned} & \mathrm{B} w 42(81), \mathrm{Bw} 48(78), \\ & \mathrm{B} w 67(57) \end{aligned}$

1.3. Yang SI. Chang A. Olivern R. Kclins V'. Yum EJ. IEF patrerns of HLA-BI? antigens from ()rientids and Caucasians. Immunogenctics 1486:21:125-134.
14. Kamura H. Kohara S. Shimizu K. Akaza T. Antigen report: B13. B40(Bw60.Bw61). Bu41. B247. Bw48. Bw73. FU. In: Aizawa M (ed): HLA in Asia-Occania. Hokkaidn University Press. Sapporo, Japan. 1986:120-122.
15. Mervart H. Taylor C. Ting A. Antigen report: HLA-Bu'41. In: Alber ED. Baur MP. Mayr W'R (eds): Histocompalibility Testing 1984. Springer-Verlag. Berlin. 1984:149.
16. Mueller-Eckhardt G. Schrender I. Mayr WR. Westphal E. Mueller-Ecthardt C. A new Bw6-ascociated B locus amigen "Rl." Ninth Workshop Newsletter No. 5. pp 24-26.
17. Reckers P. Beucken vander M. Andrien M. Beclen J. Mueller-Eckihardi G. Schreuder GMTh. HLA-BPut: A newHLA antigen within the B7 cross-reaclive group. Tissuc Antigens 1986:28:182-189.
18. Watson K. Ness D. Gantan Z. Perkins H. Grume! FC. ST40: A new Bu40 subiype identified by alloantisera and a monoclonal antitody. Hum Immunol 1982:5:170-179.

Antigen Society \#15 Report (Bw4 and Bw6)

A. Arnaiz-Villena, ${ }^{\text {M }}$ M. Belvedere. ${ }^{2}$ F. Decary, ${ }^{3}$ M. Fotino, ${ }^{4}$ E. Heise, ${ }^{5}$ V. Hogan, ${ }^{6}$ M. Martinetli, ${ }^{2}$
 K. Gelsthorpe. M. Hammond. ${ }^{12}$ C. Lopez-Larrea. ' H. Mervart. ${ }^{6}$ D. Peruccio ${ }^{\text {(thaty) }}$, J.R. Regueiro, ${ }^{\text {' }}$ and I. Schreuder ${ }^{13}$

During the Tenth Workshop. 27 anti-sera in the Antigen Society and 22 anti-sera in the Core serology serum set were provided for the serologic analysis of the supertypic HLA-B locus specificities Bu'4 and Bw6. The serum sets included 12 monoclonal antibodies with Bw4 or Bw6 specificity. For each of the submitted sera. Q score. R values. \% extra. and missed reactions, as well äs "tail" antigens derived by 2×2 comparison of their reaclivity on Caucasians. Negroes. and Orientals, are shown in Tables 1 and 2.

The Bw4 specificity was best defined with the alloantisera 493. 495. 498 and the monoclonals 2064. 2065. 2102 of the Core serum set. as well as the alloantisera 4750. 4751. 4752. 4758, 4759. 170171I MUE of the Antigen Society with highly concordant positive reaction patterns in 87% of the Bw4 positive cells in all analyzed different ethnic groups. Among the anti-Bw6 anti-sera reagents, $4765,4766,4768,4769$ and the monoclonal antibody 2BC W'ES of the Antigen Society. as well as the sera 494.500 and the monoclonals 2106, 2107. showed the highest Q scores and R values in all

Reporing Laboratorics: FRAARN.' IT2FER. ${ }^{2}$ US8DEC. ${ }^{3}$ US8FOT. ${ }^{4}$ USIHEI.* NCYMRV." GERMUC. ${ }^{\text { }}$ ITICEP* Parricipaling Laboraiorics: BENBRU, ${ }^{9}$ ITICNG. ${ }^{10}$ UKIGEL," SAFHAM, ${ }^{12}$ BENROO ${ }^{13}$
analyzed races. Pattern analysis revealed that in 96% of Bw6 positive cells of all ethnic groups there was a positive reaction with at least six of the nine best Bw6 sera.

Three of the anti-Bw4 alloantisera (4750, 4751, 4752) appeared to be "monospecific" for HLA-Bw4 in all ethnic subpopulations. As in previous Workshops. a larger group (4758. 4759. 17017II MUE. 27IMUC, 493. 498. 2064, 2065. 2102) of anti-Bw4 alloantisera and monoclonals were found to recognize also determinants on HLA-A locus antigens, in particular A23. A24, A32, A2. In tail and pattern analysis most of these anti-Bw4 sera showed extra-reactions with A24, A23, A32 in Caucasians (Table 3), whereas in Negroes and Orientals only the monoclonals 2064 and 2065 detected these HLA-A locus antigens frequently. Two anti-Bw4 alloantisera ($495,260 \mathrm{MUC}$) revealed extra-reactivity with subgroups of the Bw6-associated HLA-B locus antigens B50 and B35 in Caucasians. Monoclonal antibodies 2101 and 2198 appeared to have Bw4 reactivity, but were frequently negative with Bw4 and Bw6 positive cells. In serum-to-serum correlations, 16 of the 25 submitted anti-Bw4 anti-sera were included in one cluster with three serum subgroups of highest correlations (Table 4).
In contrast. all anti-Bw6 anti-sera except the alloantiserum 4764 were operationally monospecific and had high correlations among each other (Table 4). Serum

Table 1. Tenth Wurkhop Core Sera With Anti-Bwt, Bw6 Reactivity

				Q score			R value			\% extras			\% misses			Other Sperilicilies
	10th WS No.	Origin	Specilictly	C	N	0	C	N	0	C	N	0	C	N	0	
	493	L.AW	Bw-t	4.1	5.4	3.8	0.77	0.83	0.79	4	3	4	4	4	6	A32
	495	GAN	But	5.3	5.2	6.4	0.79	0.84	0.90	4	5	3	3	1	2	850
	498	ILE	Burd	5.6	5.8	7.0	0.83	0.88	0.92	5	3	3	2	2	1	-A32
	496	MBC	But	3.7	3.8	4.4	0.70	0.67	0.76	3	2	2	12	14	9	
	497	DPT	Bwt	0.8	0.7	0.4	0.30	0.26	0.23	1	3	3	43	55	$+1$	
	2057*	AUC	Bwt	4.2	4.0	3.1	0.63	0.73	0.67	0	20	2	20	11	13	A32, A23, A24
	2064*	TSU	Bwt	8.3	5.7	5.5	0.97	0.89	0.83	0	2	1	1	3	6	A32, A23, A24
	$2065 *$	TSU	Bwa	7.3	5.2	5.6	0.94	0.86	0.83	1	4	1	1	3	6	A32. A23, A24
	2102*	GEL	Bwa	8.6	5.4	4.7	0.92	0.86	0.81	3	2	7	0	1	2	A32
	2098*	WAN	Bwa	1.9	1.6	1.3	0.55	0.47	0.48	2	0	4	23	28	25	
	2101*	MUC	Bwt	1.1	0.4	0.3	0.41	0.27	0.21	1	11	1	35	53	45	
	499	BRN	Bw6	6.0	5.2	3.3	0.81	0.80	0.62	0	9	2	7	7	11	
\emptyset	500	MUE	Bw6	5.9	5.0	2.5	0.83	0.81	0.56	5	4	1	0	1	7	
	507	FAU	Bw6	2.9	3.4	2.3	0.58	0.64	0.51	4	3	2	12	8	13	
	509	ROO	Bw6	1.3	1.9	1.2	0.40	0.56	0.41	12	8	8	6	2	2	
	501	RIC	Bw6	3.5	3.4	2.4	0.59	0.59	0.52	. 1	1	2	18	16	14	
	504	BER	Bw6	4.1	3.1	1.6	0.70	0.55	0.37	1	2	2	12	17	28	
	502	DPT	Bw6	3.6	2.4	1.8	0.68	0.69	0.45	6	4	6	3	4	7	
	2106*	KRE	Bw6	6.0	3.6	2.1	0.86	0.72	0.50	2	2	3	2	8	12	
	2107*	SİR	Bw6	5.6	4.5	2.4	0.89	0.80	0.54	1	3	4	2	4	8	
	2103*	GEL	Bw6	1.3	0.2	-	0.42	0.07	-	5	11	-	21	22	-	
	2105*	THP	Bw6	0.1	0.1	-	0.07	0.13	-	13	I	-	23	27	-	
	427	HAM	B44	7.2	5.3	7.4	0.81	0.77	0.87	30	4	2	0	1	0	But
	166	EAE	B51	4.6	1.7	5.1	0.66	0.46	0.71	3	1	2	0	10	0	But

*Monoclonal antibody; C Caucasians ($\mathrm{N}=410$); N Negros $(\mathrm{N}=589)$; O Orientals ($\mathrm{N}=1001$)

Table 2. Tenth Workshor Anligen Sociely Sera With Anti-Bwf. -Bw6 Reactivity

10th WS No.	Origin	Specificity	Q score		R value		${ }_{n}$ extras		\% misses		Other Specificities
			C	N	C	N	C	N	C	N	
4750	YAG	Bw4	4.7	1.6	0.76	0.57	1	6	11	16	
47.51	BRN	Bw'4	3.5	3.4	0.74	0.78	5	6	8	\cdots	
4752	ROO	Bw4	8.2	1.3	0.89	0.51	2	8	3	16	
4753	BRU	Bw4	2.4	2.4	0.62	0.26	6	7	13	32	
4755	ROO	Bw4	3.9	1.2	0.64	0.49	0	5	21	22	
4756	KWC	Bw4	2.8	1.9	0.58	0.58	20	18	1	3	
4757	Mibr	Bu. 4	1.5	1.4	0.43	0.53	6	16	21	6	
47.58	CEP	Bu.4	5.4	1.7	0.84	0.59	2	16	3	3	A32. A23, A24
4759	DPT	Bw4	4.5	1.7	0.73	0.50	6	24	2	1	A32, A23, A 24
4760	DPT	Bw 4	4.1	3.6	0.67	0.68	15	16	1	0	
1702311\%	MUE	Bw4	1.4	-	0.51	-	12	-	5	-	A23, A24
1701711\%	MUE	Bw4	3.7	-	0.74	-	6	-	$?$	-	A2̇, míl
$260{ }^{\prime \prime}$	MUC	Bw4	4.4	-	0.71	-	: 7	-	0	-	B35
271\%	MUC	Bu. 4	1.6	-	0.53		16	-	6	-	A2
4761	OHA	Bw6	2.7	1.4	0.53	0.40	2	10	22	12	
4762	BAC	Bw6	2.7	1.0	0.59	0.42	3	5	16	22	
4763	BAC	Bw6	0.4	0.7	0.15	0.33	2	4	60	33	
4764	ROO	Bw6	3.5	1.7	0.71	0.55	1	6	7	11	A3
4765	BRU	Bw6	7.3	3.0	0.93	0.74	1	6	1	2	
4766	BRU	Bw6	5.4	2.2	0.84	0.64	4	7	2	5	
4767	MAC	Bw6	7.4	2.5	0.94	0.67	1	6	1	5	
4768	PNW	Bu6	6.3	3.6	0.87	0.78	2	6	3	1	
4769	ROO)	Bur	6.6	2.6	0.81	0.70	I	16	7	3	
4770	HFP	Bw6	4.6	2.2	0.78	0.61	1	5	9	10	
4771	ROO	Bw6	5.4	1.9	0.79	0.59	2	6	6	8	
307\#	MUC	Bw6	3.4	-	0.67		3	-	10	-	
2BC4*\#	WES	Bw6	4.9	-	0.80	-	4	-	3	-	

\# = Local assignment: ${ }^{*}=$ monoclonal antibody: $\mathrm{C}=$ Caucasians ($\mathrm{N}=585$); $\mathrm{N}=$ Negroes ($\mathrm{N}=14 \mathrm{I}$)

Table 3. Serologic Patterns of Selected Anti-Bw4 Sera on A23*. A24* or A32 + . Bw4- Cells

	\%	I0th WS Sera							
		493	498	2064	2065	2105	2057	4758	4759
In 50 Caucasians	32.0	-	-	+	+	+1-	+ $1-$	+	+
	26.0	+	+1-	+	+	+1-	+/-	+	+
	120	+	+	+	+	+	+	+	+
	12.1	--	+	+	+	+1-	+ -	+	+
	6.0	-	-	+	+/-	-	+	-	+
	4.0	+/-	-	+	$+$	-	-	-	+
	2.0	+	$+$	+	+	+	+	-	-
	2.0	+	+	+	+	-	+	-	+
	2.0	-	--	-	-	+	$+$	-	+
	2.0	-	-	+	+	-	+	-	$+$
In 161 Negroes and Orientals	56.5	-	-	+	+	-	+	nt	n
	8.6	-	-	-	-	-	-	$n \mathrm{t}$	nt
	7.4	-	-	+	+	-	-	nt	nt
	7.4	+1-	-	+	+	+	+	nt	nt
	6.2	+	+/-	+	+	-	+	nt	nt
	4.9	-	-	-	-	-	+	n	nt
	4.8	-	-	+	-			n	nt
	1.8	-	$+$	+	+	-	$+$	n	nt
	1.8	+1-	+/-	+1-	+1-	-	+1-	nt	nt

Table 4. Internal Correlations of Selected Anti-Bwt and Bwh Scra

4764 showed extra-reactions with A3 in Caucasians. Two monoclonal antibodies 2106 and 2107 were excellent Bw6 reagents in all races. A further monoclonal antibody 2103 with Bw6 reactivity missed many BwG positive cells.

In summary, inclusion analysis of the Bw4 and Bw6 specificities revealed no significant deviation with previous reports. The anti-Bw4 sera submitted to the Tenth Workshop were more heterogenous in their reactivity with HLA-A locus antigens than the anti-Bw6 anti-sera and showed differences in this reaction in various ethnic groups. All anti-Bw4 monoclonal reagents with high performance in this serologic analysis also were found to cross-react with HLA-A locus antigens and thus did not lead to a further differentiation of the HLA-Bw4 specificity.

Antigen Society \#16 Report (Cw1, Cw3, Cw9, Cw10, Cw11)

P. Chiewsilp. ${ }^{1}$ K. Sujirachato, ${ }^{1}$ W.R. Mayr, ${ }^{2}$ P. Perrier. ${ }^{3}$ H. Hasekura. ${ }^{4}$ M. Ota, ${ }^{4}$ M. Aizawa. ${ }^{5}$

A. Wakisaka, ${ }^{5}$ H. Ikeda, ${ }^{5}$ S. Naito, ${ }^{6}$ T. Akaza, ${ }^{7}$ M. Jeannet, ${ }^{8}$ A. Zachary, ${ }^{9}$ and W. Braun ${ }^{9}$

History

HLA-Cwl and HLA-Cw3 were first described in the Fourth and the Fifth International Histocompatibility Workshops. respectively (1.2). The three subtypic fac: tors of Cw3. namely Cw3.1. Cw3.2, and Cw3.3, were demonstrated in the Ninth International Histocompatibility Workshop (3). The expression of CwI and Cw3 on the same haplotype in Orientals was observed by Payne et al. in $1975(4)$ and ans later found to be strongly associated with Bw46. CwB had been proposed as a new C locus ant igen for this $\mathrm{Cw} 1-\mathrm{Cw} 3$ co-segregating phenotype in the Second Asia and Oceania Histocompatibility (AOH) Workshop (5). However. CX46 was more recently used to designate this C locus antigen in the Third AOH Workshop (6). In the present Workshop, the new assignment of HLA specificities is given by the Wh H nomenclature committee (7). This included antigens in Clocus, i.e., Cwy, C:?? !) Cw10 (Cw3.2), and $\mathrm{Cw} \|(\mathrm{CX}+6, \mathrm{Cw}|+3, \mathrm{Cw}| \mathrm{X} 3 . \mathrm{C}$-Bangkuñ, CSH1).

Linkage Disequilibrium

There are strong associations of $\mathrm{Cw} /$ with B 27 in Caucasoids: with Bw54. Bw55, and Bw59 in Japanese, and with Bw54. Bw55, and B40 in Chinese and Thais (Table

[^13]1). Further strong associations were observed for Cw 9 with Bw55 and Bw62: Cw 10 with Bw62, Bw60 in Caucasians: Cw9 with B35. Bw55: Cw 10 with B40: Cw11 with Bw46 in Japanese: and Cw9 with B15: Cw 10 with Bw58 and B40: Cwll with Bw46 in Chinese and Thais.

Serology

Cwl. Eight sera were submitted as anti-Cwl, six from the Core set and two from the Antigen Society (Table 2 and Table 3). The CwI antigen was well defined by the Tenth Workshop anti-sera: 508, 512, 513. 514. 259. 510. and 4773. Pattern analysis among Caucasians, Japanese. and Thais indicated that they were strongly correlated with one another.

Cw3, Cw9, Cw10, and Cwll. Twenty-nine sera were submitted as anti-Cw3, 10 from the Core set and 19 from the Antigen Society (Table 2 and Table 3). There appeared to be seven possible subtypes of Cw 3 , all of which were identified by patterns. It was confirmed that Cw 3 could be divided into Cw 9 and Cw 10 by the sera $524.525,526,527.529,530.260,528.9064,532$, 4777. 4778. 4779. 4783. 4785, 4786, 4787. 4788. 4780, 4781.4793 . and 9035 (Table 4). Cw9 reacted with all of the above anti-Cw3 sera, while Cw 10 gave negative reactions with sera 9064 and 532 .
Only a few Thai individuals were found to be Cw 9 short (Cw 9 S). Approximately 45 cells of several ethnic origins appeared to have the Cw9S pattern as displayed in the CXS Workshop data base. Cw9S can be dilferen-

[^14]SD locus: In: Kissmeyer-Nielsen F (ed): Histocompatibility Festing 1975. Munksqaard. Copenhagen: 1975; p 343.
5. Chandanayingyong D. Bu46 report. In: Simons MJ. Tail BD (eds): Proceedines of the Second Asia and Occania Histocompatihilit? Workshop Conference. Meltourne. 1981: -127.
6. Shimbo M. Mitani T. Ikeda H. Sekiguchi S: Analysis of "CX46" specificity: In: Aizawa W (cd): Proceedings of the

Third Asia and Oceania Histocompatibility Workshop Conference. Sappors. Japan. p 52.
7. Bodmer WF. Alber E. Bodmer JG. Duponi B, Mach B. Mayr W. et al. Nomenclature for factors of the HLA system.
8. Sun Y. Shimbo M. Mitani T. Ikeda H. Sckiguchi S. HLACwl. Cu: 3 Reporn. In: Aizaw: M (ed): Proceedings of the Third Asia and Oceania Histocompatibility Workshop Conference. Sapporo. Japan. p 52.

Antigen Society \#17 Report (Cw5 and Cw8)

W.R. Mayr. ${ }^{\text {L }}$ L. Contu. ${ }^{2}$ M. Kirnbauer. ${ }^{\prime}$ and H. Mervan ${ }^{3}$

As in the previous Workshops. the definition of $\mathrm{C} w 5$ and Cw8 was rather difficult because of the cross-reactivity between Cw5 and Cw8 and because of the strong linkage disequilibrium between Cw 5 and B 44 as well as between Cw5 and B14.

CuS 5 and Cw8 were nearly absent in non-Caucasian populations: therefore, the reactivity of the ami-sera used to define these factors was analyzed by taking into account only the cells of Caucasians tested in Antigen Society 17 ($\mathrm{n}=164$).
The best sera for the definition of Cw 5 and Cw 8 are listed in Table 1. Serum 10w552 contains, besides an anti-Cw5 + Cw8. a strong anti-B44.
There was no good indication for the existence of splits of Cw5 or Cw8.
In spite of the fact that one good anti-Cw5 (serum 10 w 551) and one anti-Cw8 of reasonable quality (serum

Participating Laborabores: EAEMI'R.' ITICON. ${ }^{2}$ NCYMRV'

10w554) have been found. difficulties remain with regard to the definition of $\mathrm{Cu} \cdot 5$ and Cw 8 .

Table 1. Reactivity of the 10 w Anti-Cw5 and Cw8 Sera

10 w serum	antigen	ave.str	\% fp	\% fn	r	Qsc
551 \#\#	Cu.	7.5	0	0	0.98	8.96
$550 \#$	Cu. 5	5.3	0	30	0.79	5.63
$554 \#$	Cw8	6.3	25	10	0.78	5.21
$9004 \#$	Cw. 5	7.2	41	0	0.72	5.91
	Cw8	2.5	29	77	0.35	1.51
$553 \#$	Cw.5	5.1	37	26	0.61	4.58
	Cw8	8.0	10	0	0.90	7.48
$4794 \#$	Cw.	3.0	60	65	0.28	1.01
	Cw8	6.4	55	10	0.59	5.21

\# serum of the Core set
\#\# serum of Antigen Society 17
ave.str $=$ average strength
\% $\{p=$ percentage of false positive reacions
\%fn = percentage of false negative reactions
$r=$ correlation coefficiẹnt
Qsc = quality score

Antigen Society \#18 Report (Cw4 and Cw6)

C. Conighi, ${ }^{1}$ L. Contu, ${ }^{2}$ M.T. Grappa, ${ }^{3}$ E. Du Toit, ${ }^{4}$ M. Hammond, ${ }^{5}$ P. Lulli, ${ }^{6}$ W.R. Mayr, ${ }^{7}$
A. Menicucci, ${ }^{8}$ H. Mervart, ${ }^{9}$ and M. Pupura ${ }^{10}$

HLA-Cw4 (formerly T4, RH315) and HLA-Cw6 (formerly T7) obtained the formal HLA designation after the Sixth and Seventh International Histocompatibility Workshops respectively (1,2). Since then, it has been

[^15]observed that some troubles arise in identifying Cw6 when Cw 4 is present: The difficulty is due to the fact that while bispecific $\mathrm{Cw} 4+\mathrm{Cw} 6$ and monospecific Cw4 sera are comparatively frequent, Cw6 sera not recognizing Cw4 are quite rare $(3,4)$.

[^16]Table 1. Core Set Sera Analysis: Blacks

			STR	SPEC	AVE	INCL	N	T	P	FN	FP	TN	Q	R	CHI^{2}
533	BEN	ENG	CLB												
	CW4		90	99	7.5	96	$A 30=10 \%$			$B 2$	3	212	7.735	0.948	320.593
	RES		14	CW6 =	20\%	$\mathrm{Al}=10 \%$				27 $=10 \%$	BW57 $=10 \%$				

536 US5 CRO Martincz2.21.83

CW4	76	99	6.6	87	357	122	19	3	213	6.023	0.867	268.529
RES	14	A $=$		$6=$		$=$				$1=$		

537 UKI BRS 5956.CBT

	CW4	93	95	7.5	94	356	134	8	11	203	5.806	0.884	278.261
+	B7	47	97	2.1	19	214	6	26	5	177	0.544	0.262	14.708
+	BW57	78	99	2.0	14	182	3	18	2	159	0.694	0.262	12.534
	OR	92	99	6.0	73	356	143	52	2	159	4.752	0.726	187.595
	RES	14	CW6 $=20 \%$	A3 $=10 \%$	AWI $9=10 \%$	BW65 $=10 \%$	BW70	$=10 \%$					

539 EAE ZAR MZ467

	CW4	75	93	6.7	90	337	121	14	14	188	4.475	0.822
+	3227.680											
BW50	33	94	5.3	75	202	3	1	11	187	3.669	0.380	29.240
OR	74	94	6.6	89	337	124	15	11	187	4.588	0.835	235.124

RES $\quad 52 \quad$ CW6 $=10 \% \quad$ A2 $=9 \% \quad B 7=7 \% \quad C W 2=7 \%$

541 NCY MRV 22166.0
$\begin{array}{lllllllllllll}\text { CW4 } & 76 & 100 & 7.0 & 94 & 355 & 133 & 9 & 1 & 212 & 7.457 & 0.936 & 311.197\end{array}$
RES 33
543 US8 JLE Billing

CW4	78	77	7.0	92	349	127	11	49	162	2.895	0.669	156.128
CW6	55	98	6.2	88	211	45	6	4	156	5.839	0.859	155.515
OR	72	98	6.7	91	349	172	17	4	156	6.045	0.877	268.406

545 US5 TER TER.C4610B

547 GER MUE MUE23928

CW6	74	92	6.5	84	359	53	10	23	273	3.939	0.706	178.731
RES	42	$\mathrm{CW} 4=17 \%$	$\mathrm{BW} 53=12 \%$	$\mathrm{AW} 36=7 \%$	$\mathrm{~B} 35=7 \%$	$\mathrm{~A} 2=6 \%$						

558 FRA DDC Devinat

	CW7	71	78	4.9	61	358	43	27	64	234			
+	B39	38	79	4.3	71	388	5	2	59	227	1.493	0.338	0.946
+	AW34	4	81	3.3	42	281	11	15	48	207	0.484	0.170	8.117
+	BW60	45	82	4.7	67	255	4	2	4	205	1.489	0.193	9.461
+	A24	47	84	3.1	43	249	6	8	38	197	0.661	0.167	6.942
+	A26	65	86	3.3	35	235	7	13	31	184	0.620	0.162	6.945
+	BW4	77	96	2.2	18	215	29	129	2	55	0.259	0.178	6.794
	OR	67	96	3.1	35	358	105	196	2	55	0.705	0.246	21.607
	RES	43	$\mathrm{A} 30=22 \%$		$\mathrm{A} 29=11 \%$	$\mathrm{B} 45=11 \%$		BW72 $=11 \%$			CW6 $=11 \%$		21.607
205	GER BRA	918 B											
	B35	78	77	5.7	74	360	48	17	67	228	1.825	0.419	
+	B39	6	79	3.7	70	295	7	17	60	225	1.254	0.211	63.304 13.181
$+$	AW34	33	82	3.4	48	285	12	13	48	212	0.585	0.207	12.204
$+$	BW70	24	85	2.9	42	260	13	18	35	194	0.45	0.225	13.122
$+$	AI	33	87	2.8	35	229	9	17	26	177	0.498	0.197	8.851
+	BW71	38	89	3.5	42	203	5	7	21	170	1.173	0.224	10.804
+	A29	9	91	2.5	36	191	4	7	17	163	0.942	0.211	8.542
	OR	51	91	4.0	54	360	$\begin{gathered} 98 \\ B W 53 \\ =7 \% \end{gathered}$	$82 \quad 17{ }_{\mathrm{A} 30}^{=6 \%} 163$			1.199	0.479	82.771
	RES	24	CW4 $=12 \%$		$A 2=10 \%$								

		51%	SPEC	AVE	INCL	N	TP	FN	FP	TN	Q	R	CHI^{2}
192	USS PNW	Juli											
	B. 35	64	92	4.8	62	354	40	24	24	266	1.804	0.53 .9	102.800
+	AW34	20	93	2.0	2.3	290	6	20	18	246	0.386	0.177	9.082
+	CW4	4.5	97	1.8	15	264	1.3	72	5	174	0.314	0.230	13.918
*	BW'53	20	98	1.3	7	179	1	14	4	160	0.283	0.105	1.989
	OR	55	97	2.9	34	354	59	116	5	174	0.946	0.398	56.067
	RES	23	CW3 $=$		A28 $=$		$\mathrm{A} 30=8 \%$		$70=$		BW7 $=8 \%$		

191 US2 MBC BC.CYCHAD

BW 53	70	79	6.3	85	358	73	13	56	216	2.297	0.569	115.706
B35	75	96	6.2	82	272	47	10	9	206	3.866	0.780	165.46 .3
OR	73	96	6.3	84	358	120	23	9	206	4.214	0.809	2.34 .089

562 ITI PUR CNTS. 105 $\begin{array}{lllllllllllllllll}\text { CW4 } & \because & 76 & 99 & 6.4 & 84 & 357 & 120 & 23 & 2 & 212 & 5.200 & 0.852 & 259.267\end{array}$ RES $\quad 20 \quad \mathrm{~A} 26=20 \% \quad \mathrm{~A} 30=20 \% \quad \mathrm{BW} 42=20 \% \quad \mathrm{BW} 58=20 \% \quad \mathrm{CW} 3=20 \%$
535 EAE MY'R Furlinger

| CW4 | 82 | 98 | 7.2 | 94 | 322 | 118 | 7 | 3 | 194 | 6.365 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $0.928 \quad 277.584$

347 US5 MIT B.5612.4

B7	93	71	7.9	100	354	42	0	90	222	4.185	0.471	78.543
BW42	64	82	7.0	98	312	40	1	50	221	4.588	0.584	106.483
CW4	47	97	3.1	38	271	46	75	4	146	1.338	0.448	54.432
BW67	33	97	0.0	0	150	0	0	4	146	17.600	0.213	6.813
OR	68	97	4.9	63	354	128	76	4	146	2.750	0.610	131.694

+	CW4	98	79	7.8	97	359	139	4	45	171	4.519	0.744	198.518
	BW53	58	85	6.1	83	216	15	3	30	.	168	3.227	0.458
	B35	61	91	5.5	74	198	14	5	16	163	2.766	0.525	54.574
+	B51	-	03	3.4	50	179	4	4	12	159	2.054	0.318	18.149
+	CW2	20	97	2.0	19	171	8	34	4	125	0.375	0.267	12.219
	OR	87	97	6.2	78	359	180	50	4	125	4.795	0.717	184.646

214 USS WOL NW14002

538 BEN BOU 64307 6/7/84
$\begin{array}{llrrrrrrrrrrr}\text { CW4 } & 63 & 98 & 5.9 & 79 & 349 & 111 & 30 & 4 & 204 & 4.781 & 0.797 & 221.594\end{array}$
RES $43 \quad \mathrm{~A} 30=10 \% \quad \mathrm{~B} 35=10 \% \quad \mathrm{BW} 42=10 \% \quad \mathrm{CW} 7=10 \% \quad \mathrm{~A} 23=10 \%$
204 ITI CON CA181

CW'4	88	91	7.0	89	356	125	16	19	196	4.098	0.791	222.621
A32	33	92	4.0	60	215	3	2	16	194	1.909	0.286	17.627
OR	87	92	6.9	88	356	128	18	16	194	4.068	0.798	226.503

534 UKI FES Langlais

CW4	49	100	4.3	56	355	79	62	1	213	2.872	0.646	148.193
RES	33											

2101 GER MUC TUI09
$\begin{array}{lllllllllllll}\text { * } & \text { BW4 } & 52 & 95 & 2.7 & 29 & 347 & 70 & 175 & 5 & 97 & 0.533 & 0.258\end{array} \quad 23.043$ 2103 UKI GEL 103.I.5.

*	BW6	76	35	5.6	72	351	199	78	48	26	0.104	0.063	1.145
RES	68	CW $4=13 \%$	BW53 $=11 \%$	$\mathrm{AW} 33=6 \%$									

Table 2. Core Set Sera Analysis: Caucasians

541 NCY MRV 22166.0 $\begin{array}{lllllllllllllllll}\text { CW4 } & 71 & 99 & 6.5 & 88 & 382 & 86 & 12 & 2 & 282 & 7.280 & 0.897 & 307.135\end{array}$ RES $\quad 20 \quad A 2=17 \% \quad A 31=17 \% \quad B W 50=17 \% \quad B 44=17 \% \quad C W 6=17 \%$
543 US8 JLE Billing $\begin{array}{llllllrlrllll}\text { US8 JLE } & \text { Billing } & & 71 & 7.2 & 98 & 381 & 95 & 2 & 81 & 203 & 3.447 & 0.603 \\ \text { CW4 } & 78 & 71 & 138.355 \\ \text { CW6 } & 74 & 99 & 6.9 & 94 & 284 & 78 & 5 & 3 & 198 & 8.465 & 0.924 & 242.343 \\ \text { OR } & 77 & 99 & 7.1 & 96 & 381 & 173 & 7 & 3 & 198 & 8.152 & 0.943 & 338.464\end{array}$ RES $\quad 78 . \quad A 2=13 \% \quad A 3=7 \% \quad B 7=7 \% \quad B 13=7 \% \quad C W 2=7 \%$
545 US5 TER TER.C4610B

CW4	90	64	7.7	99	382	97	1	101	183	3.794	0.550	115.722
CW6	74	89	7.0	95	284	79	4	22	179	5.229	0.794	179.039
B5	64	91	4.0	50	201	4	4	18	175	1.317	0.263	13.880
TECIO	33	91	0.0	0	193	0	0	18	175	13.381	0.097	1.833
OR	83	91	7.2	95	382	180	9	18	175	5.196	0.855	279.357

CW4	98	69	8.0	100	382	98	0	89	195	4.191	0.596	135.617
CW6	92	97	7.8	100	284	83	0	6	195	8.886	0.943	252.745
OR	96	97	7.9	100	382	181	0	6	195	9.758	0.964	354.972
RES	33	$\mathrm{~A} 2=7 \%$	$\mathrm{~A} 23=7 \%$	$\mathrm{~B} 49=7 \%$	$\mathrm{~B} 51=7 \%$	$\mathrm{AI}=7 \%$						

547 GER MUE MUE23928 $\begin{array}{llllllllllllll}\text { CW6 } & 79 & 94 & 6.8 & 90 & 380 & 81 & 9 & 16 & 274 & 4.278 & 0.818 & 254.447 \\ \text { RES } & 61 & \text { B35 }=17 \% & \mathrm{CW} 4=17 \% & \mathrm{~A} 3=11 \% & \mathrm{~A} 2=7 \% & & & & \end{array}$
558 FR.A DDC Devinat $\begin{array}{lrrrrrrrrrrrr}\text { CW7 } & 81 & 68 & 6.8 & 89 & 381 & 119 & 15 & 78 & 169 & 1.840 & 0.544 & 112.608 \\ \text { CW7L } & 81 & 71 & 7.6 & 100 & 247 & 9 & 0 & 69 & 169 & 2.850 & 0.278 & 19.101 \\ \text { OR } & 81 & 71 & 6.9 & 90 & 381 & 128 & 15 & 69 & 169 & 2.092 & 0.583 & 129.543\end{array}$ RES $\quad 56 \quad \mathrm{CW} 4=9 \% \quad \mathrm{~B} 35=7 \% \quad \mathrm{~A} 3=6 \% \quad \mathrm{Al}=6 \% \quad \mathrm{~A} 2=6 \%$
205 GER BRA 918B $\begin{array}{lllllllllllll}\text { B35 } & 95 & 95 & 7.9 & 100 & 382 & 78 & 0 & 16 & 288 & 8.081 & 0.880 & 295.958\end{array}$

+	CW7L	33	96	2.7	30	304	3	7	13	281	1.207	0.221	14.901
+	B39	56	96	2.4	21	294	3	11	10	270	0.799	0.202	12.054
	OR	92	96	6.6	82	382	84	18	10	270	4.504	0.804	246.907

	B35		73	95	6.9	94	382	73	5	14	290	6.377	0.849	275.409
+	B51		20	97	1.7	15	304	6	33	8	257	0.275	0.204	12.629
*	BW53		60	97	2.0	14	265	1	6	7	251	0.958	0.150	5.944
	OR		69	97	5.2	68	382	79	38	8	257	2.998	0.704	189.59]
	RES		26	$\mathrm{Al}=10 \%$		CW7 $=10 \%$	$B 8=8 \%$		CW6 $=8 \%$		A24 $=8 \%$			
191	US2	MBC B	BC.CY.CHAD											
	B35		61	96	5.9	81	382	63	15	13	291	4.412	0.767	224.624
	BW53		69	97	5.4	71	304	5	2	8	289	4.329	0.503	76.985
$+$	B5		11	98	3.1	38	297	3	5	5	284	3.053	0.370	40.642
$+$	CW4		33	99	1.8	16	289	3	16	2	268	0.888	0.295	25.173
	OR		59	9	5.0	66	382	74	38	2	268	4.263	0.740	209.121
	RES		14	$\mathrm{A} 2=$		$B 44=18 \%$		$=18$		$1=9 \%$		= 9%		

Table 2. Continued

Table 3. Core Set Sera Analysis: Orientals

		STR	SPEC	AVE	INCL	N	TP	FN	FP	TN	Q	R	CHI^{2}
53	BEN ENG	CLB											
	CW4	86	99	7.1	91	586	50	5	5	526	7.209	0.891	465.682
	RES	9	A26 $=12 \%$		BW61 $=12 \%$		$\mathrm{A} 24=12 \%$		$C W I=12 \%$		CW3 $=8 \%$		
536	US5 CRO	Martinez2.21.83											
	CW4	79	\bigcirc	6.8	87	567	47	7	42	471	3.936	0.632	226.767
+	BW46	40	45	2.8	31	513	20	44	22	427	0.856	0.319	52.070
+	CW1	57	100	2.0	18	449	22	103	0	324	0.812	0.361	58.538
	OR	66	100	3.3	37	567	89	154	0	324	2.015	0.495	139.153

537 UKI BRS 5956.CBT
$\begin{array}{llllllllllllll}\text { CW4 } & 92 & 96 & 7.1 & 87 & 584 & 48 & 7 & 20 & 509 & 6.259 & 0.755 & 332.629\end{array}$
RES $\quad 22 \quad A 24=13 \% \quad A 26=10 \% \quad C W I=9 \% \quad A 2=7 \% \quad B W 61=7 \%$
539 EAE ZAR MZ467
$\begin{array}{lllllllllllll}\text { CW4 } & 77 & 99 & 6.5 & 85 & 572 & 47 & 8 & 5 & 512 & 5.973 & 0.858 & 421.570\end{array}$ RES $\quad 27 \quad A 11=16 \% \quad C W 6=11 \% \quad A 2=11 \%$
541 NCY MRV 22166.0
$\begin{array}{lccccccccccc}\text { CW4 } & 78 & 99 & 6.7 & 87 & 584 & 48 & 7 & 4 & 525 & 6.345 & 0.879 \\ \text { RES } & 14 & \mathrm{~A} 24=17 \% & \mathrm{~A} 2=8 \% & \mathrm{~B} 38=8 \% & \mathrm{BW} 54=8 \% & \mathrm{CW} 1=8 \% & & 451.257 \\ \text { RS8 } & =8\end{array}$ 543 US8 JLE Billing

CW4	78	97	6.7	89	579	49	6	18	506	4.829	0.779	351.478
CW6	54	100	5.1	67	524	16	8	2	498	4.198	0.747	292.310
OR	73	100	6.2	82	579	65	14	2	498	5.560	0.872	440.527

RES $\quad 43 \quad \mathrm{~A} 32=10 \% \quad \mathrm{~B} 44=10 \% \quad \mathrm{~A} 2=10 \% \quad \mathrm{BW} 63=10 \% \quad \mathrm{CW} 3=10 \%$
545 US5 TER TER.C + TKIOR

	CW4	83	9.4	7.2	93	583		51	4	31	497	5.281	0.725	306.637
	CW6	54	97	5.0	67	528		16	8	15	489	3.068	0.560	165.657
+	BW59	45	98	2.3	22	504		4	14	11	475	0.713	0.232	27.045
*	TECIO	20	98	6.0	100	486		1	0	10	475	8.491	0.300	43.878
	OR	75	98	5.7	73	583	- 7	71	26	11	475	3.673	0.756	332.831
	RES	36	A24		CW3 $=$		$111=$	= 7%		$=7 \%$		= 7%		

540 FRA DDC Pierson

CW4	93	94	7.7	98	584	54	1	31	498	6.096	0.759	336.583
CW6	69	99	7.1	100	529	24	0	7	498	8.153	0.859	390.401
OR	86	99	7.5	99	584	78	1	7	498	8.264	0.938	513.480
RES	41	A $24=17 \%$	BW $62=10 \%$	AW $33=7 \%$	$\mathrm{~B} 44=7 \%$	$\mathrm{~A} 26=7 \%$						

547 GER MUE MUE23928

	CW6	63	96	4.1	52	561	12	11	20	518	1.957	0.415	96.718
+	CW4	60	98	2.4	22	538	11	40	9	478	0.753	0.308	50.953
+	CWI.												
	3		2.0	27	487	3	8	6	470	1.402	0.304	44.989	
	OR	56	99	2.8	31	561	26	59	6	470	1.183	0.451	14.130
	RES	20	$\mathrm{~A} 2=10 \%$	$\mathrm{AW} 33=10 \%$	$\mathrm{Al1}=10 \%$	$\mathrm{~B} 44=7 \%$	$\mathrm{CW} 1=7 \%$						

558 FRA DDC Devinat

Table 3. Continucd

191 US2 MBC BC.CYCHAD

	B35	68	96	6.0	81	572	55	13	21	48.3	3.781	0.727	302.233
+	B51	28	98	2.1	20	504	11	43	10	440	0.563	0.284	40.536
$*$	BW53	60	48	8.0	100	450	1	0	9	440	8.689	0.314	44.355
	OR	61	98	4.3	54	572	66	56	10	440	2.138	0.623	221.938

562 ITI PUR CNTS. 105

CW4	86	97	7.0	89	565	47	6	13	499	5.679	0.808	369.230
BW62	38	98	1.5	8	512	5	55	8	444	0.157	0.142	10.304
OR	$8!$	98	4.0	46	565	52	61	8	444	2.027	0.571	184.480
RES	26	A.24	$=13 \%$	$\mathrm{~A} 31=10 \%$	$\mathrm{~A} 2=10 \%$	$\mathrm{~B} 44=6 \%$	CW $=6 \%$	$=6 \%$				

535 EAE MYR Furlinger
$\begin{array}{lllllllllllll}\text { CW4 } & 90 & 98 & 6.9 & 87 & 575 & 47 & 7 & 12 & 509 & 5.276 & 0.808 & 375.230\end{array}$
RES $\quad 52 \quad \mathrm{~A} 24=12 \% \quad \mathrm{~A} 2=8 \% \quad \mathrm{CW} 3=8 \% \quad \mathrm{~B} 44=6 \% \quad \mathrm{~A} 26=6 \%$
347 US5 MIT B5612.4

	B7	89	88	7.6	98	583	61	1	63	458	5.320	0.646	243.489
	CW4	73	93	4.4	54	521	28	24	35	434	1.709	0.426	94.381
	BW67	7	94	2.7	46	469	6	7	29	427	1.277	0.256	30.617
+	BW56	11	94	3.2	60	456	3	2	26	425	2.396	0.241	$26.517-$
+	BW48	38	95	2.0	16	451	5	26	21	399	0.460	0.131	7.709
+	BW55	27	96	1.9	15	420	4	22	17	377	0.731	0.135	7.621
+	B40	27	96	1.8	14	394	4	25	13	352	0.403	0.144	8.135
+	BW60	23	97	1.4	8	365	5	55	8	297	0.166	0.121	5.366
*	BW42	33	97	1.0	0	305	0	1	8	296	4.502	0.106	3.423
	OR	69	97	3.6	42	583	116	162	8	297	1.545	0.475	131.515

196 FRA BET E1218

+	CW4	96	84	7.7	96	575	53	2	81	439	4.411	0.559	179.453
	B35	73	92	6.0	77	520	43	13	38	426	2.969	0.583	176.826
+	B51	14	95	2.5	31	464	17	37	21	389	0.856	0.310	44.522
+	B27	33	96	3.1	43	410	3	4	18	385	1.596	0.240	23.697
$*$	BW53	20	96	6.0	100	403	1	0	17	385	7.650	0.234	22.111
	OR	74	96	5.3	67	575	116	56	18	385	2.640	0.679	265.296

214 US2 WOL NW14002

Table J. Continued

Core Set Serology

Results of the Core set ceri anaksis in the three main ethnic groups (Blacks. Cumams. Orientals) are reported in Tables 1. 2, and 3.

The analysis includes the sera submitted as recognizing Cw4 and/or Cw6 as well as the sera whose reactions have been observed to be associated with these antigens in the previous central data analysis.

The high number and the good quality of the sera subnitted allow a very good definition of Cw'4. The situation regarding definition of the Cw6 antigen with the Tenth Workshop Core set sera is not satisfactory: when Cwt is absent, Cw6 may be assigned because of the positivity of the cluster of Cw4+Cw6 sera (10W 543. 10W540, and 10W545): serum 10W547, the only Cw6
monospecific serum, is negative in 14% of Cw4-ve. Cw6 + ve cells and positive in 15% of $\mathrm{Cw} 4+\mathrm{ve}, \mathrm{Cw6}$ - ve cells. This problem is clearly shown in Table 4, in which the reaction patterns of some selected sera in the three main ethnic groups are reported.

Antigen Society Serology

The results of the Antigen Society sera analysis are reported in Tables 5 and 6: Analysis has not been performed in Orientals because of the very low number (18) of cells tested. Among the 15 sera submitted, two recognize both Cw4 and Cw6, ten Cw4, and two Cw6. The reaction patterns of some selected sera are shown in Table 7: The problems in the definition of Cw6 appear to be similar to those observed with Core set sera.

Table 4. Fiequ: , I(w) nlthe Reation Patlerns of Selected Core Set Sera (Patterns Observed in Only One Cell Ilane Nor Becon Reported)

$\mathrm{a}=\mathrm{Cw} 4+\mathrm{Cw} 6 ; \mathrm{h}=\mathrm{Cw} 6 ; \mathrm{c}=\mathrm{Cw} 4$

Table 5. Antigen Society Scra Analysic: Machs

Table 5. Continued

			STR	SPEC	AVE	INCL	N	'T1	H	117	7N	Q	R	CHI^{2}
4799	FRA	BET 1268												
	CW4		43	91	5.0	79	200	23	6	16	155	2.681	0.613	75.254
+	A23		39	96	3.0	40	171	10	15	6	140	1.770	0.432	31.873
	OR		42	96	4.1	61	200	33	21	6	140	2.861	0.631	79.623
	RES	7		$\mathrm{A} 30=14 \%$		$\mathrm{A} 26=7 \%$	$\mathrm{B} 7=7 \%$		B15 $=7 \%$		CW3 $=7 \%$			
4800	US5	PNW	BO	T 99	4.1	59	200	17	12	2	169	2.647	0.677	91.727
	CW4		30											
	RES		33											
4801	ITI	MTT	Fi0											
	CW4		75	92	7.1	93	199	26	2	14	157	5.001	0.723	104.112
+	Al		26	96	4.6	73	171	8	3	6	154	3.264	0.603	62.195
$+$	A30		7	100	1.4	10	160	6	53	0	101	0.287	0.246	9.655
	OR		54	100	3.4	41	199	40	58	0	101	1.643	0.501	50.044

RES	33	
EAE	ZAR	MZ435

4803 EAE ZAR MZ435

	CW4	49	87	4.7	67	198	18	9	22	149	2.104	0.455	41.073
+	BI3	26	91	5.4	80	171	8	2	14	147	3.447	0.491	41.229
+	AW68	5	95	2.1	24	161	8	26	6	121	0.476	0.273	11.987
+	B45	9	98	1.8	27	127	4	11	2	110	1.376	0.377	18.054
	OR	29	98	3.2	44	198	38	48	2	110	1.505	0.516	52.774
	RES	14	A30 $=33 \%$	B44 $=33 \%$	BW $58=33 \%$	BI5 $=33 \%$	CW $3=33 \%$						

4804 FRA PRR SCH1423

	CW4	88	93	6.8	85	198	23	4	12	159	4.510	0.692	94.920
+	A1	7	96	3.4	55	171	6	5	6	154	2.738	0.483	39.914
+	B44	45	99	1.9	17	160	4	19	2	135	0.592	0.296	14.013
	OR	68	99	4.3	54	198	33	28	2	135	2.580	0.629	78.248
	RES	14	A30 $=20 \%$	A $26=20 \%$	$\mathrm{~B} 7=20 \%$	B15	$=20 \%$	CW3	$=20 \%$				

4805 BEN DPT SMEETS. 80

4804 FRA PRR SCH1423

Table 5. Comimued

Table 6. Antigen Society Sera Analysis: Cancasiaus

Table 6. Cominued

When there are taken into account the cells typed both with the Core set and the Antigen Society set sera (Table 8) the definition of Cw6 appears improved, although in some $\mathrm{Cw} 4-\mathrm{ve}, \mathrm{Cw} 6+$ ve cells the Cw 6 sera react as in the $\mathrm{Cw} 4+\mathrm{ve}, \mathrm{Cw} 6$ - ve cells: This improvement is clearly due to the increase in the number of the monospecific Cw6 sera.

Segregation I)ata

Some interesting segregation data (S.A. Blacks and Cape colored) have been kindly supplied by Dr. E. Du Toit. In Table 9 the segregation pattern of some Core set sera in family Dut 228 is shown. The four children receive from the father the pattern $10 \mathrm{~W} 543+$,
$10 \mathrm{~W} 540+, 10 \mathrm{~W} 545+$: 10W537 and 10W539 segregate together and in repulsion with 10W547 (the monospecific Cw6 serum); in this family the sera 10W537 and 10W539 segregate with the haplotype Aw68,Cw6,Bw72. Similar segregation patterns have been observed in families Dut 10 and Dut 20, associated respectively with B 15 K and with Bw57.

Population Data

In Cw4 - ve unrelated Black population 10W537 and 10W5 34 are associated ($r=0.54$); there are eight cells $10 \mathrm{~W} 537+$, 10W539 + : seven of them are Cw6 + ve, and five out of them are Bw57+ve. Among the 10 cells Cw4-, Cw6-, Bw57 + none has been observed to be
 Antigen Society Sera (Patterns Obsernchim('hl One Cell lave Not Been Reported)

Phenotype		Tenth IV A:						Population	
Cw4	Cw6	4	4	4	4	4	4	Black	(alue
		8	8	8	8	8	8		
		0	0	0	0	0	$1)$		
		7	9	8	2	S	6		
		a	1	b	c	c	¿		
$+$	-							$(\mathrm{N}-25)$	($N=66$)
		$+$	-	--	t	+	+	36	70
		$+$	$+$	-	+	t	$+$	40	5
		-	-	-	+	t	1.	16	-
		+	-	$+$	+	+	+	8	-
-	+							($\mathrm{N}=50$)	($\mathrm{N}=67$)
		$+$	$+$	-	-	--	-	12	30
		$+$	+	$+$	-	-	-	24	30
		-	+	-	-	-	-	12	7
		-	-	-	-	-	--	4	6
		+	-	-	-	-	-	-	4
		-	t	+	-	-	-	? 0	3
-	-							$\cdots 119$	$(N=158)$
		-	-	-	-	-	-	75	91
		-	+	-	-	-	-	7	3
		-	-	-	-	$+$	-	-	3

$\mathrm{a}=\mathrm{Cw} 4+\mathrm{Cw6} ; \mathrm{b}=\mathrm{Cw6}: \mathrm{c}=\mathrm{Cw} 4$

10W537+. 10W539+: among the 38 cells Cw4-. $\mathrm{Cw} 6+$, Bw57-, only two are positive with both sera.

These family and population data may suggest that 10W537 and 10W539 ,........ion a atio (iwh or. perhaps, a new HLA-C masen cross acacting with
 Dut 228

	Tenth W No.									
	5	5	5	5	5	5	5	5	5	
	4	4	4	4	3	4	3	3	3	
	3	0	5	7	3	1	5	7	9	
F	$+$	+	+	$+$	-	-	-	$+$	+	ab
M	-	-	-	-	-	-	-	-	-	cd
(1	$+$	$+$	$+$	-	-	-	-	$+$	+	ac
C2	t	+	t	-	-	-	-	+	+	ad
C3	$+$	$+$	+	t	-	-	-	-	-	bd
C4	+	$+$	$+$	$+$	0	-	-	-	-	bd

Haplotypes: $\mathfrak{a}=$ Aw68. Cw6, Bw72; $\mathrm{b}=\mathrm{A} 3$, Cw6, Bw58:
$\mathrm{c}=\mathrm{A} 30, \mathrm{Cw} 2, \mathrm{~B} w 7 \mathrm{I} ; \mathrm{d}=\mathrm{A} w 34, \mathrm{Cw} 7, \mathrm{~B} 8$.

Cw4 and Cw6 and in linkage disequilibrium with Bw57 in Blacks.

Acknowledgment. We gratefully acknowledge the helpful support of Dr. Fiorenza Quoghi.

Re「erences

1. Nomenclature for Factors of the HLA System. In: Kissmeyer-Nielsen F (ed): Histocompatibility Testing 1975. Munksgaard, Copenlagen. 1975: p 5.
2. Nomenclature for Factors of the HLA System 1977. In: Bodmer WF, el al. (eds): Histocompatibility Testing 1977. Munksgaard, Copenhagen: 1977; p 14.
3. Tiilikainen A, Cw6. In: Terasaki PI (ed): Histocompatibility Testing 1980. UCLA, Los Angeles. I980; p 496
4. Schoiz S. Wakisaka A. HLA-Cw6. In: Albert ED, et al. (eds): Histocompatitility Testing 1984. Springer-Verlag, Berlin, Heidelberg, 1984; p 181.

Table 8. Frequency $(\times 1(0)$ of the Reaction Patterns of Selected Core and Antigen Society Sera (Patterns Observed in Only One Cell Have Not Been Reported)

Phenolype		Tenth W No.													Population	
Cw4	Cw6	5	5	5	4	5	4	4	4	5	5	5	4	4	Black	Cauc
		4	4	4	8	4	8	8	8	3	4	3	8	8		
		3	0	5	0	7	0	0	0	3	I	5	0	0		
					7		9	8	6				2	5		
		a	a	a	a	b	b	b	c	c	c	C	c	c		
+	-														($\mathrm{N}=13$)	($\mathrm{N}=63$)
		+	$+$	+	$+$	-	-	-	$+$	+	$+$	+	$+$	$+$	15	67
		+	+	+	$+$	-	+	-	$+$	+	$+$	+	$+$	+	8	6
		+	+	+	+	-	-	-	$+$	+	-	$+$	+	+	-	6
		+	$+$	+	+	-	-	-	$+$	$+$	$+$		$+$	+	-	3
		+	$+$	+	+	$+$	-	-	+	+	-	+	+	+		3
-	+														$(N=26)$	
		$+$	$+$	$+$	$+$	+	$+$	+	-	-	-	-	-	-	4	29
		$+$	+	+	$+$	+	+	-	-	-	-	-	-	-	4	23
		+	+	+	+	-	+	-	-	-	-	-	-	-	-	6
		$+$	+	+	-	$+$	$+$	-	-	-	-	-	-	-	-	4
		+	$+$	+	$+$	+	+	+	-	-	-	-	-	+	8	3
		-	$+$	+	-	$+$	-	-	-	-	-	-	-	-	-	3
		+	+	+	-	-	-	-	-	-	-	-	-	-	-	3
		1		1		1	t	+	-	-	-	-	-	-	4	3
		$+$;	1	1	1	$+$	$+$	$+$	-	-	-	-	-	-	3
		$+$	$+$	-	+	$+$	+	$+$	-	-	-	-	-	-	15	-
		$+$	$+$	-	-	$+$	+	+	-	-	-	-	-	-	15	-
		$+$	+	-	$+$	$+$	+	-	-	--	-*	-	-	-	8	-
-	-														($\mathrm{N}=59$)	($\mathrm{N}=156$)
		--		-	-	-	-	--	--	--	-		--	-	68	86
		-	-	$+$	-	--	-	-	-	-	-		-	-	-	4
		-	-	+	-.	--	+	-	-	-	-	-	-	-	-	3
		-	-	-	-	-	-	-	-	-	-	-	-	+	-	2
		-	+	-	-	-	-	-	-	-	-	-	--	$+$	-	1
		-	-	-	-	-	+	-	-	-	--	-	-	-	3	-

$a=C w 4+C w 6 ; b=C w 6 ; c=C w 4$

Conclusion

With some variation of standard techniques, it is possible to achieve excellent serologic typing of LCLs. DR4 remains heterogeneous with one obvious split. Undoubtedly, other splits exist. but the various patterns cannot be classified until additional well characterized LCLs are available.

References

1. Williamson J, Tait B, Richiardi P, et al. Antigen report: HLADR4. In: Albert ED, Baur MP, Mayr WR (eds): Histocompatibility Testing 1984. Springer-Verlag, Berlin, 1984:188-189.
2. Grimsley G, Homes P, Townsend D, Williamson J, Dawkins RL. HLA typing of lymphoblastoid cell lines (LCL). In: Aizawa M (ed): HLA in Asia-Oceania 1986. Sapporo, Japan: Hokkaido University Press, 1986:909-913

Antigen Society \#24 Report (DRw11, DRw12, DRw8)

P. Stastny, ${ }^{1}$ Z. Layrisse, ${ }^{2}$ D.P. Singal, ${ }^{3}$ A. Svejgaard, ${ }^{4}$ E. van den Berg-Loonen, ${ }^{5}$ K. Dohi, ${ }^{6}$
L. Caraballo, ${ }^{7}$ P. Chiewsilp, ${ }^{8}$ B. Colombe, ${ }^{9}$ R. Fauchet, ${ }^{10}$ E. Haas, ${ }^{11}$ M.G. Hammond, ${ }^{12}$
B.K. Jakobsen, ${ }^{4}$ S. Knight, ${ }^{13}$ J. Lee, ${ }^{14}$ H. Mervart, ${ }^{15}$ G.M.T. Schreuder, ${ }^{16}$ and K. Sullivan ${ }^{17}$

HLA-DR5

Groups of sera defining a DRS specificity correlated with HLA-Dw5 were first observed in the Seventh Workshop. However, sera of excellent quality recognizing a distinct DR5 antigen have been rare. In the Ninth Workshop. it was discructe! that most DR5 sera contained antibodies against related DQ-specificities, and shorter patterns (DRw11 and DRw12) were defined.
In the present Workshop no reagents for definition of DR5 have been found. However, DRwll and DRwl2 can be seen quite clearly.

Reporting Laboratories: US4STA.' LATLAY.' US5SIN.' SCASVE. ${ }^{\text {B }}$ BENBER, ${ }^{5}$ JAPDOH ${ }^{6}$
Participating Laboratories: LATCOL.' ANZCHI, ${ }^{3}$ US3GVY, ${ }^{9}$ FRAFAU. ${ }^{10}$ LATHAA. ${ }^{11}$ SAFHAM. ${ }^{12}$ UKIKNT. ${ }^{13}$ US8JLE. ${ }^{14}$ NCYMRV, ${ }^{15}$ BENROO, ${ }^{10}$ USITUL ${ }^{17}$

HLS-DRw 11

A large group of sera defining DRwll was observed. While many of these do have some contaminating antibodies (especially DQw3 and DQw7), enough very good reagents could be selected that reacted in block and established DRwll typing quite unequivocally (see Tables 1 and 2).

HLA-DRw 12

Three reagents of the Workshop (10W, 9999, 9050, and 3068) recognized DRw 12 monospecifically. These were three different aliquots of the same monoclonal antibody (DN1), which clustered with high correlation values. Coincident reaction of the replicates provided excellent definition for this antigen in most of the participating laboratories. The continuity of the definition of this

Table 1. Tenth Workshop Sera Used for the Analysis of DRwll, DRw12, and DRw8

HLA Specificity	Core Set Alloantibodies	Monoclonal	Ag. Soc. 24
DRwll	1096. 1103. 1113.1114	3036	5154.5157,5170
			5172, 5175,5181
			9059.9069.9070
			9075
DRw 12		9999. 9050, 3068	
DRw8	1085. 1086. 1087. 1089. 1091		5190,9093
DRw52	$1152.1198,1199,1201 .$ 1204.5384		
DRw52-short		3025, 3062, 3063	9059
DQwI	1153.1155.1159	3091	
DQw 3	1116.1176, 1179	3066, 3111	
DQw7		3119.3120 .3121	9051
DQw4		3101	
DQw5	1136		
DQw6	114]	.	
IIB3	1217	$\begin{aligned} & 3086.3088,3090 \\ & 3122 \end{aligned}$	9055.9056

Table 2. The Most Common Haplotype Associations With HLA-IDRw/I. DRwI2. and DRw8

antigen with the previous definition in the Ninth Workshop was demonstrated by typing of the cell line Herluf and several other cells and members of families that had been tested in the previous Workshop. In some laboratories occasional reactivity of DN1 with DRw8 cells was observed. It was brought to our attention that a T-cell clone from M . Thomsen reacted uniquely with DRw12-positive cell lines.

DRw8

DRw8 antigen was defined in this Workshop by several good sera (Table 1). In addition, many other sera on the Antigen Society tray appeared to react with DRw8 cells and to contain antibodies against the new DQw4 specificity.

Haplotype Associations of HLA-DRw 11, HLA-DRw12, and DRw8 With DRw52 and DQ Alleles

The haplotype associations are summarized in Table 2. DRw11, DRw12, and DRws all reacted with broad DR sera defining DRw52. Huswor, a subset of reagents among those clustering with DRw52 gave shorter patterns, some of which are observed to be negative with DRw12-positive cells and/or DRw8-positive cells.
DQ haplotype associations observed with DRwll and DRwl2 were similar. The most common haplotypes were with DQw 3 , and these were almost always positive for DQw7. While a few DRwll, DQw3. DQw7-negative cells were present, their number was sufficiently small to likely represent a residual of typings with technical problems.

Other haplotypes observed with DRw I1, DRw I2, and DRw8 carried DQwl. Such cells reacted either with 10W I141, defining DQw6, or with IOW1136, an antibody correlated with LY1327 (4), reported to define DQw5. Most DRwll and DRw8, DQwl cells were positive with 10 W 1141 (DQw6); the DRwl2, DQwl cells
were IOWI141-negative and sometimes reacted with 10W 1136 , suggesting they were positive for DQw5.
The frequency of haplotype associations with DRw8 and DQ antigens varies in different ethnic groups. In Caucasoids the most common haplotype was DRw8, DQw4. In Orientals, DRw8, DQwl was more commonly observed. Other haplotypes observed were DRw8, DQw7, and less frequently, DQw3-positive, DQw7-negative.

A cluster of antibodies defining the broad DQ specificity $11 B 3$ reacted with $D R w 11$, DRw12, and DRw8, DQwl-associated cells. Also included were the DRw8, DQw4, and DRw8, DQw3, DQw7-negative haplotypes.

Relationship with DRw13 and DRw14

Cells having DRwll frequently gave patterns of weak reactivity with sera used to define DRw 13. This was also true of cells that were coded as DRwI2. DRwl4 was defined in the Core set by only one reagent (10W9060). In addition, 10WI111 was a duospecific serum reacting with both DRwll and DRwl4.

References

I. Bodmer JG. Pickbourne P, Richards. Joint Report: la Serology. In: Bodmer WF, et al. (eds): Histocompatibility Testing 1977. Munksgaard, Copenhagen, 1978; pp 35-84.
2. Betuel H, Gebuhrer L. Schreuder GMT, Goldmann SF. Arnaiz Villena A, Layrisse Z. Antigen Report: HLA-DRS and its subtypes HLA-DRंw11 and HLA-DRw12. In: Alben ED, Baur M. Mayr W (eds): Histocompatibility Testing 1984. Springer-Verlag, Berlin. 1984; pp 190-192.
3. Park MS, et al. In: Terasaki P (ed): Histocompatibility Testing 1980. UCLA Tissue Typing Laboratory, Los Angeles. 1980: p 548.
4. Gebuhrer L, Betuel H, Freidel AC, Farre A. A division of HLA-DQwl associated with DR1, DR1x-DQw1, DR2 short, DRw10, and DRw14. 1. Definition of allo-antiserum LY1327. Hum Immunol 1987;18:235-245.

DRw12 specificity could be clearly distinguished from DRw 13 (Table 3). DRw 12 was predominantly observed with DQw7. Some of these cells were reponted as DB6 (D Herluf).

Laboratory DUT originally reported some cells as DR6×12 but the analysis suggests that they could be DRw 12 in association with DQw5 (Table 3). This pattern has thus far only been observed in South African blacks.

References

1. Schreuder GMT, Kennedy LJ, Gebuhrer L, Awad J. Betuel
H. Degos L. et al. Antigen report: HLA-DRw6 and its subgroups HLA-DRw 13 and HLA-DRw 14. In: Albert ED, Baur MP, Mayr WR (eds): Histocompatibility Testing 1984. Springer-Verlag, Berlin. Heidelberg, 1984; p 192.
2. Schreuder GMT. Maeda H, Koning F, DAmaro J. TA10 and 2B3, wo new alleles in the HLA-DQ region recognized by monoclonal antibodies. Hum Immunol 1986; 16:127.
3. Gebuhrer L. Betuel H, Freidel AC. Farre A. A division of HLA-DQw1 associated with DR1, DRix-DQw1, DR2 short. DRw10, and DRw14. I. Definition by alloantiserum LY1327. Hum Immunol 1987:18:235.

Antigen Society \#20 Report (DR3, DR7, DQw2): Part 1

A. Cambon-Thomsen, ${ }^{1}$ M. Calot, ${ }^{1}$ E. Sommer, ${ }^{1}$ E. Ohayon, ${ }^{1}$ N. Goeken, ${ }^{2}$ C. Kaplan, ${ }^{3}$ P.L. Mattiuz, ${ }^{4}$ A. Menicucci, ${ }^{4}$ R. Cross. ${ }^{5}$ B. Tait. ${ }^{6}$ M. Buc, ${ }^{7}$ M. Jeannet. ${ }^{8}$ C. Irle, ${ }^{8}$ S. Mayer, ${ }^{9}$ M. M. Tongio, ${ }^{9}$ L. Contu, ${ }^{10}$ M. Purpura. ${ }^{14}$ A. Nikaein, ${ }^{12}$ H. Mervart, ${ }^{13}$ K. Sullivan, ${ }^{14}$ R. Schweizer, ${ }^{15}$ J. A. Hansen, ${ }^{16}$ E. Du Toit, ${ }^{17}$ and M.G. Hammond ${ }^{18}$

General Introduction

There were 1,019 cells analyzed in the Antigen Society (795 Caucasians. 202 Negroes. 22 Orientals): 1.011 were tested both on Core serology and Antigen Society reagents. The total number of sera and monoclonal antibodies (MAbs) in the antigen group was 182, distributed as shown in Table 1 .
The list of these reagents is given in Table 2 with their identity and lab of origin. It must be noted that due to a heterogeneity in the tray layout between the different

[TIMTT' Participating Laboratories: ANZCRS, ${ }^{3}$ ANZTAI. ${ }^{\text {E }}$ EAEBUC.' FRNEA," FRAMYE," [TICON. ${ }^{\circ}$ ITIPUR," NCYNIK," ${ }^{\prime 2}$ NCYMRV, ${ }^{13}$ USITUL, ${ }^{14}$ US5SWE. ${ }^{13}$ US7HAN, ${ }^{3}$ SAFDUT. ${ }^{1 "}$ SAFHAM ${ }^{\text {R }}$

labs, the central data analysis team cue down the results of 15 anti-DR7 sera from the Antigen Society as indicated between the two horizontal lines in Table 2. The results concerning these sera could not be analyzed in detail.

Table 1. Type and Number of Serologic Reagents Toward the Specificities Studied in Antigen Group 26 : DR3, DR7, DQw2

\quad Specificity	Core Serum	Core MAb	Antigen Society
DR3 (mainly) Related 10 DR3 (DRw52...	14	5	41
DR7 (mainly) Related to DR7 (DRw53. DRw9...)	10	3	1
DQw2	12	4	59

Table 2. List and Identification of Serologic Reagents for Antigen Group 26

Origin	10WID Original ID
Order = 1 US6 BRN	1039 CC434.1
Specs: DR3	
Order $=2$ UK1 DRK	1043 WILLIAMS. 773
Specs: DR3	
Order $=3$ SAF HAM	1040 N1165
Specs: DR3	
Order $=4$ SAF HAM	1037 N1164
Specs: DR3	
Order $=$ S ANZ P ? $\mathrm{i}^{\text {a }}$	10\%8. SPARKS
Specs: DR7	
Order $=6 \mathrm{ANZ}$ DAW	1070 SIMMONDS.P6.5590
Spees: DR7	
Order $=7$ JTI MRA	1071 PV35
Specs: DR7	
Order $=8$ IT2 GAN	1075 C0812
Specs: DR7	
Order = 9 UKI JOY	1152 HAYES
Specs: DR3 DRw6 DRw8	
Order $=10 \mathrm{NCY}$ MRV	120118660
Specs: DRw 52	
Order $=11$ SAF HAM	1069 N1101
Specs: DR7	
Order $=12 \mathrm{UK} 1 \mathrm{AST}$	1072 DB24I0
Specs: DR7	
Order $=13$ US5 TER	1182 TER.DQ3A
Specs: DQw3	
Order $=14 \mathrm{ITI}$ MTT	1169 F102406
Specs: DQw2	
Order $=15$ FRA FAl	1173 CHEVRIER
Specs: DQwi	
Order $=16$ US6 BRN	1168 CC 413.1
Specs: DQw2	
Order $=17$ FRAFAU	1067 JEGU
Specs: DR7 DRw9	
Order $=18$ US8 RUB	1038 NYBC002
Specs: DR3	
Order $=19$ NCY MRV	103510466
Specs: DR3	
Order $=20$ NCY MRV	103411552
Specs: DR3	
Order $=21$ UK1 FES	1036 ALLEN
Specs: DR3	
Order $=22$ US2 BAC	1150 REYNOLDS
Specs: DR3 DRw6	
Order $=23$ GER NEU	1077 GO810468B
Specs: DR7	
Order $=24$ FRA BET	1079 E915
Specs: DR7	
Order $=25$ US6 BRN	1080 CC327.5
Specs: DR7	
Order $=26$ GER GOL	1076924.4
Specs: DR7	
Order $=27$ USI THP	1042 EUINK
Specs: DR3	
Order $=28 \mathrm{NCY} \mathrm{GOE}$	1202 PL855
Specs: DRu'52	
Order $=29$ US5 SIN	120515886
Specs: DRw52	
Order $=30$ FRA DDC	5384 P6465
Specs: DRw52	
Order $=31$ US8 JLE	1216 H 181
Specs: DRw53	

Origin	10W1D Original ID
Order $=321 \mathrm{~T} 2 \mathrm{FER}$	1213 FE200
Specs: DRu'53	
Order $=33$ GER BRA	1170 422B
Specs: DQu 2	
Order $=34 \mathrm{ITI} \mathrm{MTT}$	1174 Fl03295
Specs: DQw2	
Order $=35 \mathrm{US2} \mathrm{MBC}$	1175 BC.CA.MAGN
Specs: DQu:	
Order $=36 \mathrm{BEN}$ BER	1172 MSD20
Spees: DQu 2	
Order $=37$ US5 TER	1117 TER.DP1
Specs: DPu'l	
Order $=38 \mathrm{NCY}$ YUN	1144 BLOUDETTE
Specs: DR3 DR6	
Order $=39$ UK1 TAT	1041 WINTER.SOH. 487
Specs: DR3	
Order $=40$ FRA PRR	1064 VELI557
Specs: DRu9	
Order $=41$ ANZ DAW	1195 R5.6295
Specs: DR4 DR5	
Order $=42 \mathrm{NCY}$ MRV	121224784
Specs: DRu'53	
Order $=43$ UKI DRK	1078 OWEN. 812
Specs: DR7	
Order $=44$ NCY MRV	116711028
Specs: DQw2	
Order $=45$ FRA FAU	. 1066 ANTIN
Specs: DR7 DRu9	
Order $=46$	9060
Specs: UNK	
Order $=47$ FRA JEA	1151 DROZ
Specs: DR3 DRw6	
Order $=48$ FRA MYE	1147 LECOINTRE
Specs: DR3 DRw6	
Order $=49 \mathrm{BEN}$ BER	1135 MSD6
Specs: DRw13 DRw 14	
Order $=50 \mathrm{IT} 1 \mathrm{MTT}$	1180 Fl 101404
Specs: DQw3	
Order $=51 \mathrm{IT} 2 \mathrm{FER}$	1186 FE94
Specs: DQw3	
Order = 52 USI DUQ	1171 QUAGLIER
Specs: DQw2	
Order $=53$ UKI DRK	1208 PRATT. 80%
Specs: DR3 DR5 DRw6 DRw52	
Order $=54 \mathrm{ITI} 1 \mathrm{MTT}$	1200 F102422
Specs: DRw. 52	
Order = 55 GER WAN	3005 C 5 C 5
Specs: DR1 DR3 DR4 DRw8	
Order $=56$ FRA DDC	3010 CHE 153
Specs: DR1 DR7	
Order $=57 \mathrm{JAP} \mathrm{AIZ}$	3011 HU30
Specs: DR2 DRI	
Order $=58$ GER WAN	3020 M4FII
Specs: DR3 DRwl3	
Order $=59$ FRA DDC	3023 CHE41. 2
Specs: DR3 DRw6	
Order $=60$ UKIFES	3031 JAI
Specs: DR3	
Order = 61 JAP JUJ	3048 PLM3
Specs: DR7 DRw9 DRw12	
Order $=62$ UKI BOD	3049 17.3.3
Specs: DR7	

?fition Origin	10WID Original ID	Origin	10WID Original ID
Order $=63$ NCY SFR	3050 SFRI6.DR7M	$\begin{aligned} & \text { Order }=94 \text { US6 BRN } \\ & \text { Specs: DR3 } \end{aligned}$	5230 CC519.2
Specs:' : DR7	305I GSP65.1	Order $=95$ US6 BRN	5231 CCB1060.1
Order $=64$ US7 GSC Specs: \times DR7 DRw 10	3051 GSP65.1	Specs: DR3	
Specs:", DR7 DRwio Order = 65 GER WAN	3062 M4G8	Order $=96$ UKI JOY	5232 DENNING
Specs: DRw52		Specs: Order $=$ DR3 PAE RIC	5233 HII 95.1
	3105	Specs: DR3	
$\begin{aligned} & \text { Specs: } \quad D Q w 2 \\ & \text { Order }=67 \mathrm{IT} 2 \text { FER } \end{aligned}$	3106 MPI	Order $=98$ NCY GOE	5234 J18571
Specs: DR2 DR3 DR4 DR5 DRw6		Specs: Order $\quad 99$ EAE KAS	5235 KAS7292
Order = 68 IT2 GAN	3167×111358	$\begin{aligned} & \text { Specs: DR3 } \\ & \text { Order }=100 \text { uS8 } \mathrm{ILE} \end{aligned}$	5236 M 325
Specs: DQw?		Order $=100$ US8 JLE Specs: DR3	5236 M 325
Order $=69$ US7 GSC Specs: ${ }^{\text {DQw3 }}$	3113 GSP91.l	Order $=101$ FRA OHA	5237 MARCHE
Specs: \quad DQw3 Order $=70$	3025	Specs: DR3	
Specs: DR3 DR5 DRw6		Order $=102 \mathrm{BEN} \mathrm{BER}$	5238 MSD8
Order = 71 GER WAN	3046 C6E2	Specs: DR3	
Specs: DR3 DR4 DR7		Order $=103$ SAF HAM	5239 N1163
Order $=72 \mathrm{ITI} \mathrm{CEP}$	1081 TORP 1017	Specs: DR3	
Specs: DR7		Order = 104 SAF HAM	5240 N 1233
Order $=73$ FRA PRR	5006 PUY.A. 217	Specs: DR3	
Specs: DR7		Order $=105$ US7 DUP	5241 NJ4050
Order $=74$ UKI BRS	5210 10726.LCS	Specs: DR3	
Specs: DR3		Order $=106$ FRA PRR	5242 ROU.A
Order $=75$ NCY MRV	521127026	Specs: DR3	
Specs: DR3		Order $=107$ US4 SND	5243 SI5L178
Order $=76$ NCY MRV	521218835	Specs: DR3	
Specs: DR3		Order $=108$ US5 TER	5244 TER.DR3
Order $=77$ NCY MRV	521320571	Specs: DR3	
Specs: DR3		Order $=109$ UKI JOY	5245 WATERHOUSE
Order $=78$ NCY MRV	52142551.6	Specs: DR3	
Specs: DR3		Order $=110$ US3 PER	5246 WOODARDP0109A
Order $=79$ US2 MBC	5215 BC.HE.BURJ	Specs: DR3	
Specs: DR3		Order $=111$ USI DUQ	5247 Y.CARROLL
Order $=80$ US2 MBC	5216 BC.JA.SADO	Specs: DR3	
Specs: DR3		Order $=112$ UKI TAT	5248 DURNFORD.
Order $=31$ US2 MBC	5217 BC.VE.BREE	Specs: DR3	SOH. 517
Specs: DR3		Order $=113$ UK1 DRK	5249 MARSHALL. 1070
Order $=82 \mathrm{ITI} \mathrm{MIT}$	5218 F101972	Specs: DR3	
Specs: DR3		Order = 114 USI DUQ	5250 YURUS
Order $=83$ FRA BIG	5219 HI 2	Specs: DR3	
Specs: DR3		Order $=115$ USS SIN	525115452
Order $=.84$ FRA DDC	5220 P2983	Specs: DR7	
Specs: DR3		Order $=116$ NCY KAP	5252 CWRP1518
Order $=85$ ANZ CRS	5221 PAGE	Specs: DR7	
Specs: DR3		Order = 117 US7 POL	5253045
Order $=86$ US7 HAN	5222 SEA1250	Specs: DR7	
Specs: DR3		Order $=118 \mathrm{NCY}$ MRV	525411542
Order $=87$ ANZ DAW	5223 SLEEPY.F29026	Specs: DR7	
Specs: DR3		Onder $=119$ GER GOL	525515924.4
Order $=88$ NCY MRV	52243953.5	Specs: DR7	
Specs: DR3		Order $=120 \mathrm{EAE} \mathrm{SHA}$	5256 SHA. 8
Order $=89$ NCY MRV	52259134.2	Specs: DR7	
Specs: DR3		Order $=121$ GER GOL	525716738
Order $=90$ US5 ABS	5226 ABS. 17	Specs: DR7	
Specs: DR3		Order $=122$ NCY MRV	525819330
Order $=91 \mathrm{UKI} \mathrm{MID}$	5227 BEL553D	Specs: DR7	
Specs: DR3		Order $=123$ NCY MRV	525920387
Order $=92$ NCY CAR	5228 BOS/BAT	Specs: DR7	
Specs: DR3		Order $=124$ NCY MRV	526020502
Order $=93$ FRA FAU	5229 BRIAND	Specs: DR7	
Specs: DR3		Order $=125$ NCY MRV Specs: DR7	526121420

Origin	IOWID Original 1D	Origin	10xid Original ID
Order $=126 \mathrm{NCY}$ MRV	526225552	Order $=155$ SAF HAM	5292 NI 334
Specs: DR7		Spees: DR7	
Order $=127 \mathrm{BEN} \mathrm{BOU}$	$5263643529111 / 82$	Order $=156$ SAF HAM	5293 N945
Specs: DR7		Specs: DR7	
Order $=128$ NCYMRV	52647128	Order $=157$ FRA PRR	5294 PHII466
Specs: DR7		Specs: DR7	
Order $=129 \mathrm{NCY}$ MRV	52669235	Order $=158$ UK1 JOY	5295 RICHARDSON
Specs: DR7		Specs: DR7	
Order $=130$ GER BRA	5267950	Order $=159$ US8 FOT	5297 STRATIS
Specs: DR7		Specs: DR7 -	
Order $=131$ USS ABS	5268 ABS 20	$\text { Order }=160 \text { US5 TER }$ Specs: DR7	5298 TER.DR7
Specs: DRi		Specs: DR7 Order $=161$ FRA MYE	5299 THOMAS
Order $=132 \mathrm{HI}$ (B : B	5264 ANI27	Order $=161$ FRA MYE Specs: DR7	5299 THOMAS
Specs: \quad DR7 Order $=133$ UK1 JOY		Specs: DR7 Order $=162 \mathrm{ITI}$ CNG	5300 TSRP170
Order $=133$ UKI JOY Specs: ${ }^{\text {DR7 }}$	5270 ANDREWS	Specs: DR7	
Order $=134 \mathrm{ITI} \mathrm{MTT}$	5271 B08.3	Order $=163 \mathrm{ITI} \mathrm{CNG}$	5301 TSRP307
Specs: DR7		Specs: DR7	
Order $=135 \mathrm{ITI} \mathrm{CEP}$	5272 CDS9031	Order $=164$ US3 PER	5302 ULRICHP0019C
Specs: DR7		Specs: DR7	
Order $=136$ UK1 MID	5273 BEL213D	Order $=165$ US8 JLE	5303 W 283
Specs: DR7		Specs: DR7	
Order $=137 \mathrm{UK1} \mathrm{MlD}$	5274 BEL522D	Order $=166$ UKI DRK	5304 JONES.
Specs: DR7		Specs: DR7	GERRARD. 807
Order $=138 \mathrm{FRA}$ OHA	5275 BERNON	Order $=167$ UK 1 LAW	5305 WILLIAMS
Specs: DR7		Specs: DR7	
Order $=139$ EAE RIC	5276 BH3747	Order $=168$ NCY KAP	5306 CW'R.PLA. 1355
Specs: DR7		Specs: DR7	
Order $=140$ UK1 GEL	5277 CLA22677	Order $=169$ NCY KAP	5307 CW'R.NIE. 3
Specs: DR7		Specs: DR7	
Order $=141 \mathrm{IT} 2 \mathrm{GAN}$	5278 CO868	Order $=170$ NCY KAP	5308 CWR.PLA. 1007
Specs: DR7		Specs: DR7 DRw'9 DR3	
Order $=142$ US5 SWE	5279 DELMASTRO	Order $=171$ UK! GEL	5309 DA Y 20558
Specs: DR7		Specs: DR7	
Order $=143$ FRA FAU	5280 ESNAULT	Order $=172$ US6 BRN	5310 CCB. 1045.2
Specs: DR7		Specs: DR3 DR7	
Order $=144 \mathrm{ITI}$ MTT	5281 F101577	Order $=173$ IT2 GAN	5311 CO1178
Specs: DR7		Specs: DR3 DR7	
Order $=145 \mathrm{IT} 2 \mathrm{FER}$	5282 FE208	Order $=174$ UK 1 GLA	5312 HUTTON
Specs: DR7		Specs: DR7 DR3 DQw 2	
Order $=146 \mathrm{IT} 2 \mathrm{FER}$	5283 FE216	Order $=175$ NCY KAP	5313 CWR.PRIM
Specs: DR7		Specs: DR3 DR7 DRw'	
Order $=147$ ANZ CRS	5284 HENNING	Order $=176$ US6 BRN	5314 CCB.1035.1
Specs: DR7		Specs: DQw2	
Order $=148$ US6 GAT	5285 JH	Order $=177$ US2 BAC	5315 M.LARSEN
Specs: DR7		Specs: DQw2	
Order $=149$ US4 STA	5286 KW1	Order $=178$ NCY GOE	9104 PL1758
Specs: DR7		Specs: DQw2	
Order = 150 USI DUQ	5287 MCCLOSKEY12.84	Order $=179$ NCY GOE	9105 PL2051
Specs: DR7		Specs: DQw2	
Order $=151$ FRA KRE	5288 MTC8122	Order $=180$ NCY GOE	9106 PL2282
Specs: DR7		Specs: DQw2	
Order $=152$ FRA KRE	5289 MTC8337	Order $=181 \mathrm{NCY}$ GOE	9107 PL244।
Specs: DR7		Specs: DQw2	
Order $=153 \mathrm{SAF} \mathrm{HAM}$	5290 N1188	Order $=182$ NCY GOE	9108 PL2451
Specs: DR7		Specs: DQw2	

Antigen Society \#31 Report Part 2: Antigen Society \#31 Report

E. Gazit, ${ }^{1}$ R. Fauchet, ${ }^{2}$ M. Jones, ${ }^{3}$ A. Van Leeuwen, ${ }^{4}$ A. Longo, ${ }^{5}$ R. Mahoney, ${ }^{6}$ C. Navarrete, ${ }^{\text {, }}$ P. Richiardi, ${ }^{8}$ M.M. Tongo, ${ }^{9}$ R. Altshuler, ${ }^{\text {' O }}$. Bouhallier, ${ }^{2}$ S. Balboni, ${ }^{5}$ M. Belvedere, ${ }^{10}$ S. Cappelacci, ${ }^{11}$ T. Crepaldi, ${ }^{8}$ G.B. Ferrara, ${ }^{5}$ M. Hammond, ${ }^{17}$ P. Lulli, ${ }^{11}$ M. Martinetti, ${ }^{10}$ M. Savi, ${ }^{5}$ J. D'Amaro, ${ }^{4}$ E.J. Yunis, ${ }^{13}$ and J.J. Van Rood ${ }^{4}$

History

The discovery that alloactivated T lymphocytes express new class II antigens (1,2) stimulated experiments in which activated lymphocytes were studied for the expression of new antigens 1 in detected at the quiescent stage. Other workers have show n that resting T lymphocytes could be subdivided by the use of sera recovered from patients with juvenile rheumatoid arthritis (3) or from alioimmunized volunteers $(4,5)$. Later (6), TCATCB system expressed on T gamma-enriched cells was also identified by alloantisera. When PHA-activated lymphocytes were used in the screening of pregnancy sera, it appeared that some sera reacted exclusively with the lectin-activated lymphocytes, but not with the resting T or B lymphocytes separated from the same individual (7). Cross-absorption experiments indicated that, indeed, these determinants were not shared by the resting autologous lymphocytes. In blocking experiments, it was shown that the new determinants are associated with B-2 microglobulin, which classified them into the class-l gene product family. Their absence from thymocytes suggested that they may be the human counterpart of the murine Qa-like gene products (8). Family studies have shown that the reactivity segregated

Reporting Laboratories: GERGAZ,' FRAFAU, ${ }^{2}$ UKILAW, ${ }^{3}$ BENROO," [T2FER," NCYMAH, ${ }^{\text { }}$ UKIFES, ${ }^{\text { }}$ ITICEP, ${ }^{8}$ FRAMYE'
Participating Laboratories: ITIMRA, ${ }^{10}$ IT2GAN," SAFDUT. ${ }^{12}$ NCYYUN"

Table 1. Cellular Targets Tested in the Workshop

Name of Target	No. of Cells
1) Peripheral blood leucocytes	70
2) Nylon wool purified T-cells	324
3) Nylon wool purified B-cells	270
4) PHA activated lymphocytes	423
5) Alloactivated lymphocytes	30
6) EBV transformed B cell lines	76
7) Leukemia T-cell lines (HPB. Jurkat. MOLT-4.	
8402. PEFR. HSB-2)	6
8) Leukemia lymphoblasts	
T-cell acute lymphoblastic (ALL)	11
Common acute lymphoblastic (C-ALL)	22
Acute Myeloid (AML)	33
Chronic lymphoid (CLL)	15
Unclassified	7

with HLA, which maps it to chromosome VI (7). When the lymphocytes used for screening were assigned their HLA phenotype, linkage disequilibrium with HLA was observed, specifically with locus A gene products. Thus, some sera exhibited linkage disequilibrium with HLAA3, A10, A2 , A9 or HLA-A1 (7-10). It was originally suggested by Gazit et al. to term them HT (human T) because of their similarity with the mouse T-region gene products (8) or later H-A by Fauchet et al. (9) because they were expressed by PHA or alloactivated on T cells and B-cell lines. In biochemical experiments, it was shown that the antigenic determinant which was precipitated by the specific alloantibody was a $41-12 \mathrm{~K}$ dimer distinct from the HLA class I $44-12 \mathrm{~K}$ antigen (7). Sequential immune precipitation with the w6/32 or HLA-A3 monoclonal antibodies did not remove the antigenic reactivity of this determinant, indicating that it is different from HLA-ABC antigens. Taken together, the reports published so far indicate that PHA activation, alloactivation, or beta interferon stimulation (11) induces the expression of new non-HLA class I antigens.
This system is distinct from HLA for the following reasons. The reactivity is not absorbed by either platelets or resting T or B lymphocytes. Lysostripping with HLA alloantibody does not remove the reactivity (7). There is a linkage disequilibrium with HLA; however, there are cells that do not express the linked HLA antigen, but do react with the serum. The molecular weight of the heavy chain is 41 to 42 K and not 44 K , which is typical for the heavy chain of HLA. To date, all efforts have failed to produce a murine monoclonal antibody that specifically reacts with the PHA-activated lymphocyte and precipitates the antigen.

Results

This is the first international HLA workshop in which these novel antigens have been studied. The objectives

Table 2. PHA Activation Protocol

Gazit (8)	Fauchet (9)
PBL + PHA (purified)	PBL + PHA (crude)
3 days	2 days
IL-2	IL-2
4 days	2 days
Harvest + freeze	Harvest + freeze
	Cytotoxicity Testing
$1+2$ hours	$1+1$ hours

Table 3. Patterns of Reacivities of the Alloantibodies

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Peripheral blood lymphocyles	-	+	-	-	-	-	-
T lymphocytes	-	+	-	-	-	-	-
B lymphocytes	-	+	+	-	-	+	+
PHA T cells	-	+	$+$	+	+	+	-
Allogenic T cells	-	+	+	+	+	+	-
EBV cell lines	-	+	+	$+$	-	-	-
Number of sera	5	13	25	14	6	1	1
	1	1	1				
Possible interpretation	negative	anti-HLA-A, -B	anti-HLA-DR. -DQ		New Class 1 markers?		B cell

were to compare the different protocols of PHA T-cell preparations to define the linkage with the classic HLA antigens and to identify the serologic clusters. Fifteen Laboratories took active part in these studies. The protocol required a study of 20 to 30 unrelated selected cells and two or three families including different lymphocyte targets: PBL or T cells, PHA T cells, B cells, and EBV cell lines. Additional targets were selected as an optional study. They included thymocytes, pathologic cells, leukemia T-cell lines, and leukemia lymphoblasts. Sixtynine platelets, allosera, and six monoclonal antibodies were submitted by eight laboratories. Classic class I and class Il sera were added as control (Fel-Fa7: HLA-A2, HLA-DR4,Fe3-Fa9: HA10, Fe2-Fa8: negative sera). Table 1 summarizes the lymphocyte targets that were used. Two protocols were followed for the preparation of the activated lymphocytes (Table 2). The difference between Gazit's and Fauchet's protocols lies in the use of
crude PHA by Fauchet and length of the tissue culture (a total of 7 days in the first protocol and 4 days in the second). From preliminary experiments (5), it appeared that the crude PHA is superior for the preparation of blasts, but it has not been decided whether short- or long-term culture is superior. In Table 3, the overall pattern of the reactivities is summarized. It is clear that several sera reacted like HLA ABC or DR antibodies. They were subsequently identified and removed from the analysis. The serum by serum (SxS) analysis resulted in 10 clusters, 4 of which were found to be the classic HLA. The remaining six clusters are summarized in Table 4. It is worth mentioning that some sera that reacted as classic HLA antibodies clustered with the corresponding sera, which showed linkage disequilibrium with a particular HLA antigen. In four clusters, there is a significant linkage disequilibrium with HLA, and the r value is given in Table 4. There is

Table 4. PHA Activated Lymphocytes Form Clusters of Reactivity*

Cluster No.	Serum No.	HLA Association	R value	Reacting with EBV	Reacting with Thymocytes	Reacting with T-cell Lines
1	4875	A1	0.26	-	$+$	+
	4877	A]	-	-	+	-
	4879	A)	0.29	-	-	-
2	4888	A-2	0.45	+	+	-
	4889	A-2	0.38	$+$	$+$	+
3	4844	A-3	0.39	+ +	-	+
	4890	A-3	0.55	+	-	+
	9378(BRAN)	A-3	0.27	+	-	+
4	4880	A-10	0.29	+	-	+
	4881	A-10	0.25		_	-
	4887	A +10	0.22		-	-
	4889	A-10	-		-	-
5	4850	-			+ +	-
	$9379 \text { (SCHN) }$	-			$+$	+
	$9380 \text { (SPIE) }$	-			$+$	$+$
	4880	-			+	+
6	4838	-			_	
	4839	-			-	$+$
	4840	-			+	+
	4842					$+$
	4843					

[^17]Table 5. The Reactivity of Sera from Cluster 3 with Leukemia Lymphoblasts

	Leukemia Type			
Serum	T-ALL	AML	c-ALL	B-CLL
Number	$(\mathrm{n}=12)$	$(\mathrm{n}=28)$	$(\mathrm{n}=16)$	$(\mathrm{n}=14)$
4844	NS	NS	0.027	0.054
4890	NS	0.017	0.027	0.011
BRAN	NS	NS	NS	NS

The number in the table is the p value, which was calculated for the numbers of cells reacting with the sera in the cluster and having HLA-A3. NS $=$ nonsignificant.
a cluster that is associated with HLA-A1, A2, A3, and A10. The sera in the clusters were analyzed by their reactivities with B-cell lines. thymocytes. T cell lines, segregation in families and reactivities with leukemia lymphoblasts (Tables 4 and 5). Two groups of sera from clusters 2 and 3 were found to react with B-cell lines, and cluster 5 reacted with thymocytes (Table 4).

Leukemia T-cell lines were found to react with sera in clusters 3. 5. and 6. The segregation of the reactivities was studied in several families, and clusters 1 to 4 were found to segregate with HLA. ALL, which classified as c-ALL and were HLA-A3-positive, reacted with sera in cluster 3 (HT-3,), i.e., the reactivity was associated with the presence of the HLA-antigen, and not with the leukemia per se.

Discussion

The experiments performed in this Workshop successfully identified and defined six clusters of non-HLA alloantibodies. four of which were in linkage disequilibrium with HLA. Sera in the remaining two clusters also reacted with thymocytes, T-cell lines, and some T-ALL lymphoblasts. Thus, it is possible to divide the
clusters into two groups: Qa-like and the TL-like antigens. In family studies, the reactivities of most clusters segregated with HLA. Clusters 2 and 3 also reacted with EBV-transformed B-cell lines. and cluster 5 reacted with T-cell lines and thymocytes. The reactivity of these nonHLA antibodies with human thymocytes extends the findings in early reports ($12-14$). Common ALL lymphoblasts in HLA-A3-positive individuals reacted with sera in cluster 3.

These results indicated that the serologic aspects of the new system are almost resolved, even though the reproducibility of the tests have not, as yet, been worked out. Unfortunately, the biochemistry experiments failed. Therefore, no biochemistry data were presented in this Workshop. Also, Qa-Tla-like probes were not assayed in the molecular biology experiments of this workshop.

It is hoped that immune precipitation and Southern blot analysis will be studied in future workshops using specific monoclonal antibodies in biochemistry experiments and non-HLA class I probes in DNA experiments.

References

1. Evans RL. et al. J Exp Med 1978;148:1440.
2. DeWolf WC, Schlossman SF, Yunis EJ. J Immunol 1979;122:1780.
3. Strelkauskas AJ, et al. J Immunol 1978:120:1278.
4. Ferrara GB, et al. J Immunol 1979:123:1272.
5. Van Leeuwen A. et al. Tissue Antigens 1979;14:437.
6. Van Leeuwen A. et al. Tissue Antigens 1987:31:33.

- 7. Gazit E, Terhorst C. Yunis EJ. Nature 1980:284:275.

8. Gazit E. et al. J Immunol 1984; 132:165.
9. Fauchet R, et al. Human Immunol 1986:17:3.
10. Mitsuishi Y. et al. Human Immunol 1986;15:175.
11. Gazit E. et al. Human Immunol 1987:18:53.
12. Ferrara GB, et al. Clin Immunol Immunopathol 1982; 222:428.
13. Mahoney RJ, et al. J [mmunol 1982:129:263.
14. Park S, et al. Human Immunol 1988:22:151.

Antigen Society \#31 Report Part 3: Leukemic Blasts Express New HLA Class I-Like Alloantigens

D. Peruccio, ${ }^{1}$ T. Crepaldi, ' C. Castagnoli, ${ }^{\prime}$ M. Lecchi, ${ }^{\prime}$ E. Lovisone, ${ }^{1}$ P. Saracco, ${ }^{1}$ E. Olivetti, ${ }^{\text {, }}$ and P. Richiardi'

New HLA, $\beta 2 \mathrm{~m}$-associated alloantigens, undetectable on resting T and B cells and platelets, are detected on PHA-activated lymphocytes (PHA-L) using plateletabsorbed alloantisera (1-4). The expression of these new HLA class I-like specificities was examined in newly

ITICEP
diagnosed acute leukemias. Bone marrow blasts obtained at onset and peripheral blood lymphocytes during remission were tested by the complement-dependent lymphocytotoxicity technique using platelet-absorbed alloantisera. All leukemia samples (26 cALL, 6 T-ALL. 28 ANLL) were tested with locally selected alloantisera (1), while only a limited number (8 cALL, 3 T-ALL, 19 ANLL) was examined with the alloantisera submitted

Proceedings of the 11th International Histocompatability
 Workshop and Conference, Yokohama

6-13 November 1991

References

1. Ness, D. B., Watson, A. K., and Grumet, F. C. Hum. Immunol. 4, 55 (1982).
2. Zhao, T. M. and Lee, T. D. Tenth International Histocompatibility Workshop Newsletter, no. 1, p. 23 (1987).
3. Chandanayingyong, D., Bejrachandra, S., Rungroung, E., et al. Tenth International Histocompatibility Workshop Newsletter, no. 1, p. 4 (1987).
4. Alonso, A., Altshuler, R., Batat, S., et al. Histocompatibility testing 1984 (ed. E. D. Albert, M. P. Baur, and W. R. Mayr), p. 146. Springer-Verlag, Berlin (1984).
5. Charoenwongse, P. and Noppornpunth, V. Proceedings of the Third Asia and Oceania Histocompatibility Workshop and Conference 1986 (ed. M. Aizawa et al.), p.97. Hokkaido University Press, Sapporo (1986).

W2.19 Antigen Society no. 112: HLA-B40 crossreacting group, HLA-B60, -B61, -B47, -B48, -B13
M. G. HAMMOND, K. TOKUNAGA, M. FOTINO, N. GRUNNET, B. GRAUGAARD, and J. VIVES

Svejgaard et al. was the first to describe the B40 antigen in 1970 [1]. The various splits were described subsequently [2-6]. HLA-B13 has been well defined since 1970 [7] but many of the sera show crossreactivity. We analysed the reactions of the antisera used in both sets of the Eleventh International Histocompatibility Workshop (IHWS) in order to produce reaction patterns that define each antigen.

Results and discussion

There were 12870 cells typed for this IHWS and the serographs (Figure 1) produced by the IHWS computer programs [W2.3, this volume] analysed 1106 cells that reacted positively with the sera used to define the antigens of the B40 crossreacting group (creg). Consensus was reached among the members of Antigen Society no. 112 (AS-112) as to the reaction pattern that best defined the different antigens. The reaction pattern of the sera used in Eleventh IHWS core sera set 1 is shown in Table 1.

- B13 was very well defined by three Eleventh IHWS allosera. Serum no. 0344 (MID107) had a Q score of 14.04 but serum 0345 (DDC213) had weak reactivity in some laboratories. Six monoclonal sera were tested but only one had an r value greater than 0.9 . Previously reported splits [8] of B13 that had
been confirmed by isoelectric focusing (IEF) could not be seen in the reaction pattern of the sera used in this IHWS.
- B60 was detected by 14 Eleventh IHWS sera but only two were monospecific no. 0355 (JUJ204) and no. 0356 (HSE207). However, three other sera were positive with only $\mathrm{B} 60+\mathrm{B} 48$ and so were very useful because of the low frequency of B48.
- B61. There were no operationally monospecific sera so this specificity could only be defined by 'subtraction', i.e. if the B40 sera were positive and the B 60 sera negative. The $\mathrm{B} 60+\mathrm{B} 48$ sera were helpful in this regard. It was not possible to differentiate between B60 homozygotes and B60/B61 heterozygotes. There was no evidence of new splits of B60 or B61 that could not be explained by weak reactions.
- B47 was defined by positive reactions with Eleventh IHWS sera 0346 (PRR210), 0347 (NOS208), and 0348 (FER206). One of the B27 Eleventh IHWS sera 0342 (SCN204) also reacted with B47 so that it was possible to define B47 in the presence of B60, B61, and B13. Serum 0347 (NOS208) was very useful because there were no extra reactions outside of these four antigens.
- B48 was well defined by seven sera, but there is only one monospecific Eleventh IHWS serum 0360 (AKA216) to rely on if B60 is present. Three sera reacted only with $\mathrm{B} 60+\mathrm{B} 48$, but the others were broadly reactive with many other antigens.
- BFU. The definition of BFU depends on a negative reaction with Eleventh IHWS serum 0360 (AKA216) and positive reactions with the other B48 sera which means that BFU cannot be distinguished in the presence of B60. This antigen was first described by Kawaga et al. [8] in the Fifth Japanese Red Cross HLA Workshop and was well defined in the Tenth IHWS when several B48 sera failed to react with BFU. In this IHWS, BFU was confirmed to be different from B48 by IEF. In addition, family studies were reported in the Tenth IHWS [9]. It was not possible to distinguish between B60 homozygotes and B60/B48 heterozygotes. Analyses of the complete Eleventh IHWS data showed that suggested further splits of B48 could not be confirmed because of the many extra weak reactions.
- B41. This was best detected with Eleventh IHWS serum 0401 (LEV201) and four other sera also reacted with B41. There were some cells that reacted with both B42 and B41 sera when there was another B-locus antigen present. This pattern has been reported previously as a split of B41 [10], but it could just as easily be a split of B42. Further studies will be needed to elucidate these anomalous reactions.

The reaction patterns defining the B40 group of antigens with the Eleventh IHWS core sera set 2 are shown in Table 2. Similar conclusions can be drawn except that it was not possible to define BFU with set 2 sera.

The distribution of these antigens varies widely in different populations as can be seen in Table 3. In general, they are all low-frequency antigens with only a few notable exceptions. B61 and B48 have much higher frequencies in Eskimos and B60 and B48 are very high in Taiwanese aborigines.

Conclusions

The antigens in this group could be clearly Eleventh IHWS discriminated except for difficulty with B60 heterozygotes. The Eleventh IHWS sera confirmed earlier reports of the BFU antigen. No other suggested splits could be confirmed by serology.

Table 1. Reaction patterns with Eleventh IHWS sera (set 1)

Eleventh IHWS

serum

No.	Name	B13	B61	B60	B47	B48	BFU	B41
0343	LEP213	$+$						
0344	MID107	+						
0345	DDC213	$+$						
0346	PRR210	+	+	+	+			
0347	NOS208	+	+	+	+			
0348	FER206	+	+	+	+			
0349	DUQ209	$+$	+	+				
0350	TSU207	w	+	+				
0351	SAJ213		+	+				
0352	MYE204		+	+		+	+	$+$
0353	SAS205		+	+		+	+	+
0354	TSU209		+	+		+	+	+
0355	JUJ204			+				
0356	HSE207			+				
0357	NIT201			+		+	+	
0358	TOK222			+		+	+	
0359	AST107			+		+	+	
0360	AKA216					+		
0401	LEX201							+
0402	CEP204							+
0532	KOL602	$+$						
0533	DUP502	+						
0534	TER508	+						
0535	MUC604	+						
0536	WES608	+						
0537	GOL503	+						
0538	WES609	+						
		Bw4	Bw6	Bw6	Bw4	Bw6	Bw6	Bw6
No. of cells		140	266	202	17	88	3	47

W2.5.54 Serology: Antigen Society reports

Table 2. Reaction patterns with Eleventh IHWS sera (set 2)

Eleventh IHWS serum		B13	B61	B60	B47	B48	BFU	B41
No.	Name							
1307	DDC213	w						
1308	LEP213	+						
1309	MID107	+						
1310	PRR210	+	+	+	+			
1311	TOK214	+	+	+	+			
1312	DUQ209	w	+	+				
1313	SAJ212		+	+				
1314	FAU217			+				
1315	DDC221			+				+
1316	AST103		w	+		+	+	+
1317	HAJ115			+		+	+	
1318	AND214					+	+	
1319	KAW206					+	+	
1320	FTW210							+
1321	ENG201							+
		Bw4	Bw6	Bw6	Bw4	Bw6	Bw6	Bw6
No. of cells		91	80	175	16	32		31

Table 3. Frequency distribution in selected populations

Population	Code	BI3	B61	B60	B47	B48	BFU	B41
Black South Africa	10200	2.5	0.0	0.0	0.0	1.0	0.0	1.5
Black Zimbabwe	10204	2.0	0.0	0.0	0.0	0.0	0.0	2.0
Black USA	10400	1.8	0.4	2.2	0.0	0.0	0.0	2.7
Denmark	30111	2.3	1.6	9.4	0.4	0.8	0.0	1.9
France	30113	2.9	2.8	3.5	0.2	0.0	0.0	1.6
Italy	30117	3.2	1.3	0.8	0.6	0.2	0.0	1.3.
Japan	40101	2.0	11.1	5.5	0.0	2.8	0.5	0.0
Korea	40104	6.1	9.4	4.0	0.0	4.2	0.0	0.0
Chinese	40210	15.5	1.1	3.0	1.0	1.0	0.0	0.0
Eskimo	41102	0.0	30.0	0.8	1.7	8.9	0.0	0.4
Papua New Guinea Highland	20202	8.5	2.0	14.9	0.0	0.0	0.0	0.0
Taiwan Aborigine TAYA (local)		1.9	5.3	30.6	0.0	19.3	NT	0.0

NT, Not tested.

Fig. 1. Serograph of the B40 creg.

References

1. Svejgaard, A., Kissmeyer-Nielsen, F., and Thorsby, E. In Histocompatibility testing 1970 (ed. P. I. Terasaki), p. 153. Munksgaard, Copenhagen (1970).
2. Thorsby, E. In Histocompatibility testing 1972 (ed. J. Dausset and J. Colombani), p.639. Munksgaard, Copenhagen (1973).
3. Bodmer, J. In Histocompatibility testing 1975 (ed. F. Kissmeyer-Nielsen), p. 50. Munksgaard, Copenhagen (1975).
4. Dick, H. E. and Bodmer, W. F. In Histocompatibility testing 1977 (ed. W. F. Bodmer, J. R. Batchelor, J. G. Bodmer, H. Festenstein, and P. J. Morris), p. 178. Munksgaard, Copenhagen (1977).
5. Kissmeyer-Nielsen, F., Andersen, H., Hause, M., Kjerbye, K. E., Morgensen, B., and Svejgaard, A., Tissue Antigens 1, 74 (1971).
6. Dawkins, R. L. and Houliston, J. B. In Histocompatibility testing 1980 (ed. P. I. Terasaki), p. 456. UCLA Tissue Typing Laboratory, Los Angeles (1980).
7. Allen, F. H., Amos, D. B., and Batchelor, J. R. In Histocompatibility testing 1970 (ed. P. I. Terasaki), p. 49. Munksgaard, Copenhagen (1970).
8. Kawaga et al. Japanese Blood Program 9, 21 (1986). [In Japanese.]
9. Radvany, R. M. et al. In Immunobiology of HLA, Vol. 1. Histocompatibility testing 1987 (ed. B. Dupont), p. 209. Springer-Verlag, New York (1989).
10. Mervart, H., et al. In Histocompatibility testing 1984 (ed. E. D. Albert, M. P. Baur, and W. R. Mayr), p. - Springer-Verlag, Berlin (1984).

W5.16 Anthropology component

polymorphism, such as some form of balanced selection due to heterozygote advantage, as already suggested $[8,9]$. However, there are indications, from HLA class II analyses, that these factors have been very similar in most population groups, and therefore have not interfered with the differentiation patterns of allelic frequencies throughout the world [Tiercy et al., submitted]. This hypothesis remains to be tested for HLA class I loci as well.

Conclusions

Following the Fifth IHWS directed by J. Dausset in 1972 and devoted to population studies, the Eleventh IHWS held in Yokohama in November 1991 offered the opportunity to gather the largest HLA data set with identical methods in human populations from all over the world. Preliminary analyses of these data show that present HLA genetic differentiations are closely related to historical events and can therefore be used to reconstruct human peopling history. However, an important sampling effort should be made, such as incorporating evenly spaced areas of the world, especially on the African continent where population data are still lacking. Moreover, well defined and large samples should be preferred in order to compute unbiased estimations of allele and haplotype frequencies, and to relate the genetic results with other kinds of information, such as linguistic classifications and archaeological data records. These requirements were not entirely fulfilled in the African continent study reported here. This may explain some
of the discrepancies found between HLA class I and class II frequency patterns.

Acknowledgements

This work was supported by grants 31-27731.89 and 32-28784.90 of FNRS (Switzerland), and 900.814 of INSERM (France). We also acknowledge the distinguished technical assistance of the members of the Laboratoire d'Immunologie de Transplantation of the HCU in Geneva for work on the Mandenka samples and S. Aeschlimann for drawing the figures.

References

1. Powell, J. R., Levene, H., and Dobzhanski, T. Evolution 26, 553 (1972).
2. Gower, J. C. Statistician 17, 13 (1967).
3. Excoffier, L., Pellegrini, B., Sanchez-Mazas, A., Simon, C., and Langaney, A. Yearbook Phys. Anthropol. 30, 151 (1987).
4. Sanchez-Mazas, A. Unpublished PhD thesis, University of Geneva (1990).
5. Ehret, C. In From hunters to farmers. The cause and consequence of food production in Africa (ed. J. D. Clark and S. A. Brandt), p. 26. University of Califormia Press, Berkeley (1984).
6. Sanchez-Mazas, A., Graven, L., and Pellegrini, B. Bull. Cercle Genevois Archéol (In press).
7. Dard, P. Unpublished PhD thesis, University of Geneva (1991).
8. Hughes, A. L. and Nei, M. Nature 335, (1988).
9. Hughes, A. L. and Nei, M. Proc. natl. Acad. Sci., USA 86, (1989).

W5.4 HLA in southern African populations

M. G. HAMMOND, E. D. du TOIT, J. A. SACHS, C. KAPLAN, and K. MBAYO

The southern African populations tested for the anthropology component of the Eleventh International Histocompatibility Workshop (IHWS) consisted of 103 San (Bushman), 65 Khoi (Hottentots), 101 Zulus, 99 Shona, and 51 Zaireans.

It is believed that the Khoi-San diverged from the Negroid peoples and spread south and west from east or central Africa about 30000 years ago [1]. The Negroid peoples expanded southwards
through central and east Africa between 500 and 1500 years ago. They can be divided into chiefdoms or tribes such as the Shona and Ndebele, resident predominantly in Zimbabwe, and the Zulu, Sotho, and Xhosa in South Africa. The San, Khoi, Shona, and Zulu from southern Africa as well as a population from Zaire in central Africa were selected for the Eleventh IHWS anthropology component.

Anthropology component W5.17

Table 2. HLA gene frequencies derermined by DNA typing

	Gene frequencies (\%) in population (ethnic code no.)				
HLA-	$\begin{aligned} & \text { San } \\ & (10201) \end{aligned}$ $(n=108)$	Khoi (10202) ($n=113$)	Zulu (10200) $(n=84)$	$\begin{aligned} & \text { Shona } \\ & (10204) \\ & (n=82) \end{aligned}$	col.1:? Bold itatic/itajic throughout
DRB1					
1501	1.4	27.0	6.5	0.0	
02LU	0.0	2.7	0.0	0.0	
1503	0.0	0.0	0.0	13.3	
0301	1.9	7.9	5.6	7.7	
0302	0.4	0.9	18.6	4.4	
0401	41.2	14.2	3.0	0.7	
0404	4.6	6.6	0.6	0.0	
04CT	4.6	0.0	0.0	0.0	
0405	0.0	0.5	0.6	3.7	
1101	1.4	0.9	21.0	NT	
DQA1					
0101	0.9	11.5	5.9	16.7	
0201	0.0	0.4	5.3	6.9	
03	60.6	25.7	9.1	4.2	
0401	5.1	1.8	19.2	6.3	
DQB1					
0601	0.0	0.4	0.0	0.0	
0602	12.5	26.5	21.5	30.4	
0301	4.6	5.8	16.7	9.0	
0302	46.8	15.0	2.9	1.2	
0402	6.9	8.4	19.6	7.1	

01	46.2	30.4
02	40.3	35.0
02 A	5.6	
02 B	1.1	

DPB1

0101	23.1	18.1	29.7	26.2
0401	28.2	9.7	9.9	2.8
0402	11.6	31.4	17.9	21.9
1801	0.0	0.9	5.1	11.6
CT1	5.1	1.9		
CT2	12.9	2.8		
CT3	6.9	1.4		
CT4	2.8	0.9		

W5.18 Anthropology component

alleles were detected by this technique-DRBI 02LU, DRB1 04CT, DPA1 02A and 02B, and four new alleles at the DPB1 locus.
Table 3 lists representative haplotypes that exhibit
Table 3. Representative haplotypes showing linkage disequilibrium

San	$\begin{aligned} & \mathrm{A} 30, \\ & \mathrm{~A} 23, \\ & \mathrm{~A} 43, \end{aligned}$	Civ4, Cw6, Cw7	$\begin{aligned} & \text { B58, } \\ & \text { B58, } \\ & \text { B7, } \end{aligned}$	$\begin{aligned} & \text { DR13, } \\ & \text { DR4, } \\ & \text { DR4, } \end{aligned}$	
Zulu	$\begin{aligned} & \mathrm{A} 23, \\ & \mathrm{~A} 30, \end{aligned}$	$\begin{aligned} & \text { CW-, } \\ & \text { Cw-, } \end{aligned}$	$\begin{aligned} & \mathrm{B} 70, \\ & \mathrm{~B} 42, \end{aligned}$	$\begin{aligned} & \text { DRII, } \\ & \text { DR3, } \end{aligned}$	$\begin{aligned} & \text { DQ7 } \\ & \text { DQ4 } \end{aligned}$
Shona	$\begin{aligned} & \mathrm{A} 30, \\ & \mathrm{~A} 30 \end{aligned}$	CwCw6,	$\begin{aligned} & \text { B45, } \\ & \text { B58, } \end{aligned}$	$\begin{aligned} & \text { DR1, } \\ & \text { DR15, } \end{aligned}$	$\begin{aligned} & \text { DQ1 } \\ & \text { DQ1 } \end{aligned}$
Zaire	$\begin{aligned} & \mathrm{A} 30, \\ & \mathrm{~A} 28, \end{aligned}$	Cw6, Cw4,	$\begin{aligned} & \mathrm{B} 58, \\ & \mathrm{~B} 53, \end{aligned}$	DRII, DR3,	$\begin{aligned} & \mathrm{DQ1} \\ & \mathrm{DQ} 2 \end{aligned}$

linkage disequilibrium and are typical of these populations.

Acknowledgements

We wish to acknowledge the South African Medical Research Council and the University of Cape Town Ethics and Research Committee for financial support.

Reference

1. Botha, M. C., du Toit, E. D., Jenkins, T., van Leeuwen, A., d'Amaro, J., Khan, P. M., van der Steen, D. D., van Rood, J. J.. and van der Does, J. A. Histocompatibility testing 1972 (ed. J. Dausset and J. Colombani), p. Munksgaard, Copenhagen (1973).

W5.5 HLA in North American and South American Negroids

PETER STASTNY and JORGE KALIL

It has been known for some time that AfricanAmericans have many HLA variants and combinations of HLA class I and class II alleles that are rare or not observed in other ethnic groups $[1-6$]. Among the class I specificities observed in these populations are HLA-A23, A28, A30, A33, A34, A36, A74, B42, B45, B53, B58, B70, B71, and B72. A variety of class II alleles, including subsets of DR8, DR11, DR12, DR13, and DR14, are known to occur in American Negroid subjects and a number of class II combinations (such as DR18, DQ4; DR11, DQ11, DQ1, etc.) are characteristic of this population.

The Eleventh International Histocompatibility (IHWS) data set included corrected data on 348 North American (NA) and 113 South American (SA) Negroid individuals for whom serologic typing was available. DNA typing results were analysed in panels of 124 NA and 42 SA Negroid samples.

Results and discussion

Class I antigens

At the HLA-A locus prevalent alleles were A23, A28, A30, A33, A34, and A36. Among HLA-B locus antigens B42, B45, B53, and B70 were prominent. Cw4 was the highest frequency allele at the HLA-C locus in both populations. The blank alleles in NA and SA Negroid populations were higher than in Caucasian populations. The frequency of A-locus blank genes was 5.1 and 8.5 per cent, respectively, for the B locus 3.0 and 2.8 per cent of genes were blank, and for the C locus 38.0 and 28.4 per cent of blank genes were found. A comparison of frequencies with those in West Africans and NA Caucasoids is shown in Table 1.

W11.1.24 Complement component
Table 3 (continued)

Haplotypes					Ethnic groups:						
B	Bf	C4A	C4B	DR	ARM	UKR	URA	UZB	IYE	SAC	MXM
53	S	3	1	4	-	-	-	2.6	-	-	-
52	S	$3+2$	Q0	15	2.1	-	-	-	-	-	-
57	S	6	1	7	-	-	-	-	2.9	-	-
58	F	3	1	13	-	-	-	-	-	2.0	-
62	S	3	1	4	-	-	-	-	2.2	-	-
63	F		2	13	-	-	-	-	-	2.0	-
63	S	3	1	4	-	-	-	-	-	2.0	-

'Eight HLA-B blank haplotypes are not listed here.
'ARM, Armenians; UKR, Ukrainians; URA, Urallcs; UZB, Uzbeks; IYE, Iyers; SAC, South African Caucasoids; BRA, Brazilians; MXM, Mexican Mestizos.

References

1. Alper, C. A., Boenisch, T., and Watson, L. J. exp. Med. 135, 68 (1972).
2. Suzuki, K., Harumoto, T., Ito., S., and Matsumoto, H. Electrophoresis 8, 481 (1987).
3. Mauff, G., Alper, C. A., Dawkins, R., Doxiadis, G., Giles, C. M., Hauptmann, G., Rittner, C., and Schneider, P. M. Complement Inflamm. 7, 261 (1990).
4. Sim, E. and Cross, J. Biochem. J. 239, 763 (1986).
5. O'Neill, G. J. Vox Sang. 47, 362 (1984).
6. Giles, C. M., Fielder, A. H. L., Lord, D. K., Robson, T., and O'Neill, G. J. Immunogenefics 26, 309 (1987).
7. Gorgi, Y., Amold, D., Uring-Lambert, B., Bardi, R., Ayed, G., and Hauptmann, G. Tissue Antigens 35, 217 (1990).

W11.6 Complement polymorphism in African Blacks

M. G. HAMMOND, A. MARCELLI and J. C. POIRIER

Only two African Black populations were tested for Bf and C4 as part of the Eleventh International Histocompatibility Workshop (IHWS). They were not tested for C2. The two populations tested were 100 Zulus from southern Africa (SAF-HAM) and 101 people from Mali in West Africa (FRA-DDC). Bf typing was by immunofixation after agarose gel electrophoresis [1]. C4 typing was by electrophoresis of samples pre-treated with carboxypeptidase B and neuraminidase type VI and immunofixation with anti-C4

Results and discussion

The gene frequencies are shown in Table 1. BfF and $\mathrm{BrS07}$ have a higher frequency in West Africans. C4A1 has a high frequency in West Africa while C4A6 has a higher frequency in southern Africa. The frequency of C4AQ0 seems high in southern Africa, but this
frequency is an estimate based on the frequency of heterozygotes. C4B3 has a higher frequency in southern Africa.
The joint occurrence of alleles at different loci are referred to as complotypes ànd the common complotypes are often a reflection of the high frequency of some alleles. Linkage disequilibrium between alleles is of greater interest as an indication of selective pressures in the population.
Table 2 lists those combinations of antigens at three loci that show linkage disequilibrium in the two populations studied here. There are noticeable differences in the complotype distribution in the two populations and some complotypes are only present in one or the other population.
The strong negative linkage disequilibrium between C4A3 and C4B3 (Table 3) is present irrespective of the Bf allele and seems specific for Africa, because in those populations where C 4 B 3 is present there is nof linkage disequilibrlum. The complotype consisting of the most

Table 1. Gene frequencies of Bf and C 4 polymorphisms

	South Africa Zulu $(n=100)$	West Arrica Mali $(n=101)$
Bt		
F	0.605	0.712
F1	0.060	0.024
F085	0.010	0.0
S	0.305	0.202
S07	0.020	0.059
C4A		0.113
I	0.005	0.039
2	0.015	0.638
3	0.580	0.034
4	0.005	0.019
5	0.005	0.019
6	0.057	0.196
Other	0.0	0.133
Q0	0.333	
C4B		0.722
I	0.458	0.084
2	0.128	0.099
3	0.235	0.0
4	0.0	0.0
5	0.0	0.094
Q0	0.179	

Table 2. Complotypes showing positive linkage disequilibrium (LD)

Bf	C4A	C4B	South Africa		West Africa	
			Frequency (\%)	LD	Frequency $(\%)$	LD
S	A3	BI	15.5	7.4	18.0	7.7
F	Q0	B3	13.9	9.1	4.7	3.8
S	A3	B2	5.9	3.6	1.3	0.1
F	Q0	B2	5.0	2.4		
FI	A3	BQ0	4.2	3.6		
F	A6	B3	2.2	2.0		
F	A3	Q0	7.2	0.8	13.0	6.5
F	At	B1			9.3	4.6
S07	A3	B1			6.6	2.4
S	Q0	B1			5.3	1.9
F	A5	B2			1.9	1.8
S07	A2	BI			1.7	1.6

Table 3. Complotypes showing negative linkage disequilibrium (LD)

Bf	C4A	C4B	South Africa		West Africa	
			Frequ (\%)	LD	Freq (\%)	LD
F	A3	BI	13.7	-2.6	19.1	-6.4
F	A^{3}	B3	4.6	-3.8		
S	A3	B3	2.0	-2.0		

Table 4. Linkage disequilibrium with HLA-B and HLA-DR

HLA-B	Bi	C4A	C4B	HLA-DR
South Alrica				
7	S	A3	B1	15
8	S	A3	BQ0	10
42	F	AQ0	B3	3
44	S07	A6	B1	11
58	F1	A3	B1	14
70				11
West Africa				
18	S	A3	B1	13
42	S07	A3	B1	3
45	F	AQ0	B1	-
49	-	A3	B1	7
51		AQ0	BQ0	1
53				

frequent alleles at each locus (BfF, C4A3, C4BI) shows significant negative linkage disequilibrium in Africa and also in Mexico and Italy but not in other European populations. In Oriental populations there is significant positive disequllibrium.
The linkage disequilibrium with HLA-B and HLADR antigens (Table 4) is also different except for the well known B42, DR3 (0302) association. Of interest is the C4A6 disequilibrium with B44 and DR11 in southern Africa.

It would be interesting to investigate the role of C4 null genes in the pathogenesis of malaria because of the marked linkage disequilibrium between C 4 Q 0 , and B53 in the light of the recently described association of B53 with protection from severe malaria [3].

Conclusions

Bf gene frequencies in Africa are quite different from those in Caucasian and Oriental populations. The most frequent C 4 alleles in African populations are also the most frequent in other populations but some alleles (e.g. C4A1, C4B3) that are rare in other populations have a higher frequency in African Blacks.

References

1. Mauff, G., Hummel, K., and Pulverer, G. Z. Immunitätsforsch. 150, 327 (1975).
2. Sim, E. and Cross, S. J. Biochem. J. 239, 763 (1986).
3. Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., Bennett, S., Brewster, D., McMichael, A. J., and Greenwood, B M. Nature 352, 595 (1991).

W11.7 Complement polymorphism in North and South American Negroids

NANCY L. DELANEY, ROBERT MCLEAN, TOSHIO MAZDA and KATSUSHI TOKUNAGA*

The two Negroid populations studied in this report are a North American group of 75 from Baltimore, Maryland, USA obtained by Dr Wilma Bias of The Johns Hopkins University School of Medicine and a South American group of 158 from Guapi, Colombia on the Pacific coast of South America obtained by Dr Shunro Sonoda, Kagoshima University, Japan. Both groups were obtained as normal controls and/or for the anthropology component of the Eleventh International Histocompatibility Workshop (IHWS).

C4 phenotypes were determined by classical electrophoretic techniques [1,2] using EDTA samples treated with neuraminidase and carboxypeptidase B, a glycine-barbital buffer system, followed by immunofixation. Haemolytic overlay was used to confirm questionable C 4 phenotypes.

The comparison of complement types in these populations yields the following similarities and differences.

Results and discussion

Table 1 shows the frequencies of Bf and C 4 alleles in North and South American Negroids. Only two alleles differ significantly: $\mathrm{C} 4 \mathrm{~A}^{*} 1$ and $\mathrm{C} 4 \mathrm{~A}^{*} \mathrm{Q} 0 . \mathrm{C} 4 \mathrm{~A}^{*} 1$ was present in 10 per cent of the North American Negroid population but in less than 1 per cent of the South American sample. Of the data collected for the IHWS, the highest population frequency for $\mathrm{C} 4 \mathrm{~A}^{*} 1$ was

Table 1. Allele frequencies of factor $B(B f), C 4 A$, and C4B in North and South American Negroid populations (ethnic codes 10400 and 10600, respectively)

	Allele frequency (\%)		
	N. American Negroid $(n=75)$	S. American Negroid $(n=158)$	
Locus			
Bf	50.7	51.6	NS
F	2.6	1.9	NS
F1	46.7	45.9	NS
S	0.0	0.6	NS
S07	0.0	0.0	NS
Other			
C4A	9.9	0.3	0.00005
A1	3.3	2.2	NS
A2	0.9	79.9	NS
A3	2.0	3.7	NS
A4	2.2	0.0	NS
A5	0.7	0.3	NS
A6	0.0	0.3	NS
A3 +2	2.5	0.3	NS
Other		17.2	0.00001
Q0	74.5		
C4B	14.0	79.5	NS
B1	2.6	8.2	NS
B2	0.0	3.8	NS
B3	0.0	1.6	NS
B4	0.0	0.0	NS
B5	8.9	0.7	NS
Other		6.3	NS
Q0			

NS, Non-significant.

[^18]
DNA STUDIES OF HLA

p230 Paulsen G, Markussen G, Acton RT, Tiercy JM, Hammond MG and Fauchet R. RFLP Standardization Report for DR Beta/Hind III: In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p598-600.
p234 Paulsen G, Markussen G, Barger BO, Fauchet R, Hammond MG and Tiercy JM. RFLP Standardization Report for DP Beta/HindIII In: Dupont B (ed). Immunobiology of HLA, Volume 1: Histocompatibility Testing 1987. New York: Springer-Verlag, 1989. p662-663.
p237 Hammond MG. Correlation between serology and DNA typing. In: Chandanayingyong D (ed). Proceedings of the Annual Scientific Meeting of ASEATTA Dept of Transfusion Medicine, Mahidol University, Bangkok 1991.
$D P \beta$

G. Paulsen, ${ }^{1}$ G. Markussen, ${ }^{1}$ B.O. Barger, ${ }^{3}$ R. Fauchet, ${ }^{2}$ M.G. Hammond, ${ }^{5}$ and J.M. Tiercy ${ }^{4}$

Thiny-two bands were identified by RFLP in the DP beta/HID system as shown in Table 1 and in Figure 1. The distribution among core cell lines of 16 bands with
high DPB specificity is shown in Table 2. A crosshybridization table for the HLA class II/HID system can be found in the DR Beta/HID report.

[^19]Table 1. Standard Bands in the DRBeta/HID System

Band	kb	Locus a	Frequency b	\% Faint	56^{d}	32^{d}		
I	9.66	1	2	2	0	0.029	0.000	
2	9.65	1	0	2	0	0.014	0.000	
3	8.44	1	0	2	0	0.257	0.000	
4	7.17	1	2	0	0	0.300	0.000	
5	6.94	2	3	1	0	1.000	1.000	
6	6.10	1	0	0	0	0.071	0.000	
7	3.84	1	0	0	0	1.000	1.000	
8	3.43	1	2	1	11	0.071	0.000	
9	3.32	1	0	2	0	0.143	0.000	
10	3.13	1	0	0	0	0.300	0.000	
11	3.02	1	2	3	0	0.071	0.000	
12	2.96	1	0	2	0	0.500	0.000	
13	2.89	1	0	1	0	0.529	0.000	s
14	2.85	1	0	2	0	0.171	0.000	5
15	2.70	1	0	0	0	0.057	0.000	
16	2.60	1	2	0	0	0.129	0.000	
17	2.55	1	0	0	0	0.057	0.000	
18	2.51	1	3	2	0	0.429	0.000	
19	2.49	1	3	2	0	0.443	0.000	
20	2.36	1	0	0	0	1.000	0.361	
21	1.83	1	2	0	0	0.029	0.000	
22	1.72	1	0	0	0	0.014	0.000	
23	1.68	1	2	1	0	0.343	0.000	
24	1.63	1	2	1	0	0.414	0.000	
25	1.58	1	2	1	0	0.171	0.000	
26	1.44	1	2	1	0	0.300	0.000	
27	1.30	2	1	2	0	0.086	1.000	
28	1.15	2	1	2	0	1.000	1.000	

${ }^{a}$ Locus assignment in the order DRB, DQB, DPB, DOB. 1 indicates high specificity: 2 and 3 indicate lower specificity.
${ }^{h}$ Band frequency in the core cell lines.
${ }^{c}$ Frequency of faint bands
${ }^{d}$ Discrepancies in faint bands (f) or strong bands (s) of the hidden duplicates (WS. ID. 9056 and 9032).

Table 3. Cross-Hybridization Table-Enzyme: HID-Probe: HLA Class II Beta

DRB	kb	DQB	kb	DPB	kb
		1	$\underline{12.80}$	1	13.07
		2	11.42	3	11.66
1	9.66	3	9.76	4	9.76
2	9.65	.		5	9.64
3	8.44	-		6	8.59
4	7.17	7	7.24		
5	6.94	8	7.08	7	7.05
		10	5.48	9	5.43
		11	5.13	10	$\underline{5.06}$
8	3.43	15	3.47	14	3.50
		16	3.41	15	3.42
9	3.32			16	3.37
		17	3.30	17	3.31
		19	3.20	18	3.42
11	3.02	20	3.09	19	3.09
12	2.96			20	2.99
13	2.89			21	2.90
14	2.85			22	2.83
16	2.60	25	2.62		
18	2.51	26	2.52	23	2.51
19	$\underline{2.49}$	27	2.50	24	2.50
21	$\underline{1.83}$	28	1.79		
23	$\underline{1.68}$	29	1.70	27	1.68
24	1.63	30	1.66	28	1.65
25	1.58	31	1.61	29	1.60
26	1.44	32	1.51	30	1.48
27	1.30	33	1.35	31	1.32
28	1.15	34	1.19	32	1.17

Underline denotes primary locus assignment.

Table 2. Distribution of Bands With High DR Beta Specificity in the DRB/HID System

Table 2. Continued

		Band number																								
		0	0	0	0	0	0	0	0	1	1	1	1	1 4	1 5	1	7	1	1	2	2	2	2	2	$\frac{2}{5}$	2 6
w's ID	DR	1	2	3	4	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0			3			
9032	4			2	2		8			2			1						2	8						
9032	4			2	2		8			2			1						2	8					1	1
9075	9				2		8			2			1					2		8		2	I			1
9102	1					2	8	1			3									8						1
9003	1					2	8	1			3									8						
9004	1					2	8	1			3									8						
9005	1					2	8	1			3									8						
9006	1					2	8	1			3									8						
9010	15						8		3									2		2			1			
9011	15						8		3									2		2			1			
9082	15						8		3									2		2			1			
9017	15						8		3									2		2				1		
9013	15						8		3									2		2				1		
9014	15						8		3									2		2				1		
9008	15						8		3									2		2				1		
9009	2						8		1									2		2				2		
9016	16						8		1									2		2				2		
9019	3						8					3	3				2		2	8			1			
9020	3						8					3	2				2		2	8			1			
9018	3						8					3	2				2		2	8				1		
9022	3						8					3		2		2			2	8				1		
9023	3						8					3		2		2			2	8				1		
9088	3						8					3		2		2			2	8				1		
9021	3						8					3		2					2	8				1		
9036	11						8					3	3			2			2	8			1			
9037	11						8					3	2			2			2	8			1			
9039	11						8					3	3			1			2	8			1			
9042	11						8					3	2			2			2	8			1			
9043	11						8					3	3			2			2	8			1			
9060	13						8					3	3			2			2	8			1			
9105	11						8					3	3			1			2	8				1		
9045	1/1/2						8					3	2				2		2	8	1			1		
9038	12						8					3	3						2	8	2		1			
9040	11						8					3	2						2	8			1			
9054	14						8					3	3						2	8			1			
9061	14						8					3	3						2	8			1			
9057	14						8					3	3						2	8			1			
9058	13						8					3		2					2	8			1			
9062	13						8					3		2					2	8			1			
9065	13						8					3		2					2	8			1			
9064	14						8					3		2					2	8				1		
9055	6						8					3		2	2				2	8			1			
9059	13						8					3		2	2				2	8			1			
9063	13						8					3		2	2				2	8			1			
9056	13/14						8					3		2	2				2	8			1			
9056	13/14						8					3	2		2				2	8			1			
9066	8						8					3								8				1		
9067	8						8					3								8				1		
9068	8						8					3								8				1		
9069	8						8					3								8				,		
9070	8						8					3								8				1		
9071	8						8					3								8				,		
9072	8						8					3								8				1		
		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
		1	2	3	4	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	

Bands designation: $1-3=$ increasing intensity; $8=$ faint.
distributed among the participating laboratories. The "variant" analyzed by FAU and TSB has been included in the report.
The DRw53 association of two fragments in accordance with bands 3 and 4 in the present report has previously been described. A fragment corresponding to standard band 3 was associated with a HLA restriction element, which seemed to be mure narrow than the serologically determined DRw53 specificity (1). This is in
agreement with the present standardization where band 3 was missing in two of seven HLA-DR7 core cell lines.

Reference

1. Paulsen G, Qvigstad E, Gaudernack G, Rask L, Winchester R , Thorsby E. Identification, at the genomic level, of an HLA-DR restriction element for cloned antigen-specific T4 cells. J Exp Med 1985;161:1569.

RFLP Standardization Report for DR Beta/MsPI

M. Segall, ${ }^{\text {' L. Schluender, }}{ }^{1}$ A. Arnaiz-Villena, ${ }^{2}$ N. Kashiwagi, ${ }^{3}$ and C. Mullẹ ${ }^{4}$

DRbeta/Mspl blots were received from four laboratories. In spite of the standardized technique, the overall intensity of the blots and the number of fragments detected were somewhat variable. Marker bands were remeasured where necessary and the data were pooled as follows:

1. Faint bands were listed as standard fragments when they were identified by at least two of the four laboratories.
2. Faint bands seen by only one laboratory, sometimes in only one lane, were not included. This was seen most often with bands of high kb and may have been due to incomplete digestion.
3. Discrepancies between blots were resolved in favor of the majority, or in favor of the positive identification when two labs recorded a band and two did not.
4. Faint bands in particular were sometimes resolved as a doublet in one labs blots, but appeared as a singlet in others. Such bands were considered as two standard fragments when they could be consistently resolved on the blots from at least two labs; otherwise they were considered as one band.
5. Because of small differences in measurement from blot to blot and from lab to lab, the standardized molecular sizes of cross-hybridizing bands were not always exactly the same. In addition, the pattern of positives and negatives of the same band with different crosshybridizing probes was not always identical. Therefore. cross-hybridizing bands were identified by

[^20]overlaying the pairs of autoradiographs of blots hybridized with the relevant probes.

The DRB/Mspl system identified 27 fragments on the core cell lines, as shown in Table I and the Figure I. Nine of these were uniquely seen with the DRB probe, and eight additional ones were strongest with DRB; one (fragment 6) was equally strong with DRB and DQB. In Figure I, the DRB-unique or "dominant" fragments are indicated by a dot next to the fragment number.

Table 2 shows all cross-hybridizing bands for Mspl with the class II beta probes; the "primary" assignment for each fragment is underlined (e.g., DRB fragment I was strongest with the DQB probe and was also seen with the DRB probe, but not with the DPB or DOB probes). It should be noted that the intensity of many fragments varied from lane to lane within a single blot in patterns that were not due to loading of different amounts of DNA in different lanes; hence, for example, a fragment with the strongest hybridization to the DRB probe would still be faint for certain lanes and might have a stronger signal with the DQB probe in certain lanes. Fragments detected with only one probe are not shown in Table 2.

Discrepancies for the "hidden duplicates" (9056 and 9032) were due to faint bands or to difficulties in reading fainter blots where a fragment was not identified by all four labs. As mentioned above, some of the fragments could not be identified or doublets resolved on all blots, largely due to relatively dark background in some blots. Fragments 14a, 21a, and 22a (see Figure 1) were clear on one lab's blots, very faint on a second lab's, and could not be identified on the other two. Fragment 27 was classified by the computer analysis as freq $0.000 . \%$ faint 0.000 , although this fragment was identified by two labs in exactly the same manner as Fragments 23,24, 25, and 26; it has the same presence/absence pattern as Fragment 26.

wS ID No.	Fragment No.																	
	Cell	1	2	3	5	6	9	10	11	12	13	14	15	16	17	18	19	20
9067	BTB								-								8	
9068	BM9																8	
9071	OLGA																8	
9070	LUY													8				8
9072	SPACH	8										*						
9066	TAB089																	
9069	MADURA																	

I $=$ Single intensity: $2=$ double intenstit: $8=$ faint.

RFLP Standardization Report for DR Beta/HindIII

G. Paulsen, ' G. Markussen, ${ }^{1}$ R.T. Acton, ${ }^{2}$ J.M. Tiercy. ${ }^{3}$ M.G. Hammond. ${ }^{4}$ and R. Fauchet ${ }^{2}$

Twenty-eight bands were identified by RFLP in the DRB/HID system, as shown in Table 1 and Figure I. The distribution among core cell lines of 25 bands with high DRB specificity is shown in Table 2.

Paricipating Laboratories: SCATSB.' USSUAB. ${ }^{2}$ FRAFAU. ${ }^{3}$ SAFHAM, ${ }^{4}$ FRAJEA ${ }^{3}$

A cross-hybridization table for the HLA class II/HID systems is indicated in Table 3. Bands 13 and 14 had almost identical migration, but were decided to be two distinct fragments. The same decision was made for bands 18 and 19. This made the band number assignment of these bands difficult.

Regarding WS. ID. 9037 (RFLP gel load number 26). DNA from two different cell lines seems to have been

Figure 1. RFLP of 25 DNA samples run in 0.9% agarose gel. Representative core bands are shown on the right. The WS. ID. of the core cell lines is shown from the left following marker
and marker 2: 9013.9033, 9004, 9018. 9055, 9063. 9022.9043, 9023, 9006. 9005, 9050, 9056. 9104. 9051, 9047. open lane. 9075, 9061. 9067, 9038, 9008, 9106, 9032, 9072, and 9052.

Table 1. Standard Bands in the DP Beta/HID System

Band	kb	Locus ${ }^{\text {a }}$	Frequency ${ }^{\text {b }}$	\% Faint ${ }^{\text {c }}$	$56^{\text {d }}$	$32^{\text {d }}$
1	13.07	0120	0.086	1.000		
2	12.57	0010	1.000	1.000		
3	11.66	0129	1).080	1.000		
4	9.76	1220	0.014	1.000		
5	9.64	1020	0.014	1.000		
6	8.59	1020	0.257	1.000		
7	7.05	2310	1.000	0.000		
8	5.47	0010	1.000	0.000		
9	5.43	0210	0.586	0.000		s
10	5.06	0210	0.543	0.000		
11	4.36	. 0010	1.000	1.000		
12	4.10	0010	0.014	1.000		
13	4.00	0010	0.986	1.000		
14	3.50	1210	0.071	0.000		
15	3.42	0120	0.171	1.000		
16	3.37	1020	0.114	0.000		
17	3.31	0120	0.643	1.000		
18	3.24	0120	1.000	1.000		
19	3.09	1230	0.071	1.000		
20	2.99	1020	0.514	1.000		
21	2.90	1010	0.514	1.000	f	
22	2.83	1020	0.171	0.769	f	
23	2.51	1320	0.385	1.000		
24	2.50	1320	0.442	1.000		
25	1.86	0010	0.986	0.000		
26	1.81	0010	0.014	0.000		
27	1.68	1210	0.342	0.000		
28	1.65	1210	0.414	0.000		
29	1.60	1210	0.171	0.000		
30	1.48	1210	0.300	0.000		
31	1.32	2120	1.000	1.000		
32	1.17	2120	1.000	1.000		

${ }^{\text {L}}$ Locus assignment in the order DRB, DQB, DPB. DOB; 1 indicates high, 2 and 3 lower specificity.
${ }^{b}$ Band frequency in the core cell lines.
${ }^{c}$ Frequency of faint bands.
${ }^{d}$ Discrepancies in faint bands (f) or strong bands (s) of the hidden duplicates (WS ID 9056 and 9032).

Table 2. Distribution of Bands With High DPB Specificity in the DP Beta/HID System

WS	DR	DP	Band No.														
			00	00	09	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	1	$\begin{aligned} & 2 \\ & 1 \end{aligned}$		$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 22 \\ & 78 \end{aligned}$	2		
ID			27	8					$\begin{aligned} & 1 \\ & 4 \end{aligned}$								
9006	I	1	82	2	2		8	8	2		2						
9004	1	4	82	2	2		8	8	2		2						
9005	1	-	82	2	2		8	8	2		2						
9002	1	4	82	2	2		8	8	2		2						
9058	13	1	82	2	2		8	8			2		1				
9040	11	3	82	こ	2		3	8		8	2		1				
9082	15	4	82	こ	2		8	8			2		1				
9065	13	4	82	2	2		8	8			2		1				
9055	6	5	82	2	2		8	8			2		1				
9010	15	-	82	2	2		8	8			2		1				
9037	11	-	82	2	2		8	8		8	2		1				
9042	11	-	82	2	2		8	8		8	2		I				
9054	14	-	82	2	2		8	8		8	$?$		1				
9021	3	1	32	2	2		8	8			2			1			
9023	3	1	82	2	2		8	8			2			1			

Table 2. Continued

$\begin{aligned} & \text { WS } \\ & \text { ID } \end{aligned}$	DR	DP	Band No.														
			$\begin{aligned} & \overline{0} 0 \\ & 27 \end{aligned}$		$\begin{aligned} & 0 \\ & 78 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 11 \\ & 23 \\ & \hline \end{aligned}$	$\begin{array}{ll} 1 & 1 \\ 3 & 4 \end{array}$	$\begin{aligned} & 12 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$		$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 22 \\ & 78 \\ & \hline \end{aligned}$		2
9014	15	4	8	2	22	2		8		8		2	2		1	1	
9067	8	4	8	2	22	2		8		8		2	2			1	
9069	8	4	8	2	21	1		8.		8		2	2			1	
9088	3	1.4	8	2	22	2		8		8		2	2			1	
9070	8	1.4	8	2	22	2		8		8		2	2			1	
9016	16	-	8	2	22	2		8		8		2	2			1	
9051	7	4	8	2	22	2		8		8						1	
9052	7	4	8	2	22	2		8		8	8	2				1	
9025	4	4	8	2	21	1		8		8							1
9028	4	4	8	2	22	2		8		8							1
9031	4	4	8	2	22	2		8		8	8	2					1
9107	4	5	8	2	22	2		8		8		82					I
9091	4	-	8	2	22	2		8		8	8	82	2				1
9092	4	-	8	2	22	2		8		8	8	82	2				1
9064	14	-	8	2	22	2		8		8		2	2			1	
9057	14	4	8	2	22	2		8		8	8	82		1	1		
9072	8		8	2	21	1		8		8	1	12	2			1	
9062	13	4	8	2	21	12	28	8		8		2	2		1		
9011	15	2.4	8	2	22	22	28	8		8		2	2		1		
9045	11/12	2,4	8	2	21	12	28	8		8	8	2				1	
9009	2	3.4	8	2	21	12	28	8		8		2	2			1	
9013	15	-	8	2	22	22	28	8		8		2	2			1	
9007	4/16	3,4	8	2	22	22	28	8		8						1	
9106	7	,	8	2	21	12	28	8		8		2				1	
9032	4	2	8	2	21	12	28	8		8		2					1
9032	4	2	8	2	2		28	8		8	8						
9020	3	2	8	2	2		28	8		8	8	2		1	1		
9036	11	2	8	2	2		28	8		8	8	2		1	1		
9038	12	2	8	2	2		28	8		8	8	2		1	1		
9039	11	2	8	2	2		28	8		8	8	2		1	1		
9063	13	2	8	2	2		28	8		8		2	2	1	1		
9059	13	3	8	2	2		28	8		8		2	2	1	1		
9061	14	4	8	2	2		28	8		8					1		
9019	3	-	8	2	2		28	8		8	8	2		1	1		
9043	11	-	8	2	2		28	8		8	8			1	1		
9056	13/14		8	2	2		28	8	8	8		2	2	1	1		
9056	13/14		8	2	2		28	8	8	8	8	2		1	1		
9075	9	4	8	2	2		28	8	8	8	8			1	1		
9068	8	2	8	2	2		28	8	8	8		2	2		1		
9018	3	3	8	2	2		28	8	8	8	8	2			1	I	
9022	3	3	8	2	2		28	8	8	8		2			1		
9105	11	2	8	2	2		28	88	8		8	2					
9071	8	3	8	2	2		28	8	8	8		2	2		1	,	
9008	15	2.4	8	2	2		28	8	8	8		2			1		
9017	15	2,4	8	22	2		28	8	8	8		2	2		1	,	
9066	8	-		22	2		28	8	8	8		2			1		
9104	11			22	2		28	8	8	8	8				1		
9047	7	-	8	22	2		28	8	8	8					1		
9048	7	-		22	2		28	8	8						1		
9050	7	2	8	22	2		28	8	8						1		
9029	4	2	8	22	2		28	8	8			2					1
9030	4	3	8	22	2		28	8									
9026	4	$+$	8	22	2		28	8									
8033	$+$	4	8	22	2		28	8	8		8	2					
9034	4	-	8	22	2		28	8	8		8	-				1	
9003	1	-	8	22	2		28	8		2		2					
9060	13	-	8	22	2		28	8	8	8	8		1	1			
			0	00	00	01	11	11	11	1	12	2	2	2	2	-	
			2	78	89	90	01	12	23	$3+$	$+1$	5		7	8	9	

Bands designation: $1-2=$ increasing intensity, $8=$ faint.

Figure 1. RFLP in the DP beta/HID system of 19 DNA samples run in 0.9% agarose gel. Representative core bands are shown in the figure numbered on their right side. The W'S ID of the core cell lines are from the left following marker 1 and marker 2: 9013, 9033. 9004. 9063. 9022, 9043. 9023, 9006, 9005, 9050. 9056, 9104. 9051, 9047. 9106. 9032. 9072. 9052. and 9020.

RFLP Standardization Report for DP Beta/MspI

M. Segall, ${ }^{1 *}$ L. Schluender, ${ }^{1 *}$ A. Arnaiz-Villena, ${ }^{2}$ N. Kashiwagi, ${ }^{3}$ and C. Muller ${ }^{4}$

DP beta/Mspl blots were received from four laboratories and were analyzed as detailed in the report on DR Beta/Mspl. The DP beta/Mspl system identified 20 fragments on the core cell lines (Figs. 1 and 2). Nine of these fragments were unique to DPB. and three were crosshybridizing but strongest with DPB, as shown in Table 2 of the report on DR Beta/Mspl. Unique fragments are

[^21]are not shown in that table. DPB-dominant or unique fragments are indicated in Figures 1 and 2 with a dot next to the fragment number.

Discrepancies for the "hidden duplicates" (9056 and 9032) were found in bands identified by only two or three of the participating laboratories and generally involved faint bands. Fragments 17 and 18, which were both unique to DPB, were separable on one labs blots and are cenainly a doublet, but could not always be clearly distinguished on the blots of other labs.
Presence/absence data for the polymorphic DPB fragments are shown in Table 1; the cells are arranged in order by DPw specificity. Fragments 2 and 3 both were positive in 6/8 DPwl (both were negative with cell \#9022); fragment 2 also was positive with 1/2 DPw5. Fragment 13 was positive with $16 / 16 \mathrm{DPw} 2$ and 1 DPw 4 .

CORRELATION BETWEEN SEROLOGY AND DNA TYPING

M.G. Hammond. ${ }^{1}$

The Eleventh International Histocompatibility Workshop included a protocol for testing DNA using sequence specific oligi-nucleotide probes (SSOP). We were able to test 92 African Blacks by this technique as well as the standard serological method.

There was very close agreement by these two methods but the discrepancies need to be studied further. There were nine cells in the DR 1, 2, 10 group and two differences.

There was almost total agreement in the DR53 group of DR4, 7 and 9. Only one sample tested positive with SSOP's for DR4 and negative by serology. The DR52 group of DR 3,5, 6 showed several discrepancies especially the splits of DR 6 (DR 13 and DR 14). It seems probable that the serological definition of the narrow antigens is not clear cut.

In the DQ group of specificities, the most recently defined antigen - DQ4 also had many discrepancies. There were four cells positive by DNA testing and negative by serology and six cells where the opposite occurred.

[^22]CORRELATION BETWEEN SEROLOGY AND DNA TYPING

Specificity	AFRICAN			BLACK	
	!	+ +	Sero + DNA -	Sero- DNA +	--
DR 3	$!$	37	2	1	48
DR 5(11)	$!$	40	0	2	46
DR 5(12)	$!$	8	1	0	79
DR 6(13)	$!$	22	2	1	63
DR 6(14)	$!$	3	2	0	83
DR 8	$!$	4	0	0	84
	$!$				
DR 52	$!$	80	0	0	8
DR 4	$!$	5	0	1	82
DR 7	$!$	12	0	0	76
DR 9	$!$	3	0	0	85
	$!$				
DR 53	!	21	0	0	67
DR 1	$!$	3	1	0	84
DR 2(15)	$!$	11	0	0	77
DR 2(16)	$!$	0	0	0	88
DR 10	$!$	3	0	1	84
	$!$				
DQ 1	$!$	59	1	1	27
DQ 2	!	25	1	1	61
DQ 3 7)	$!$	26	1	2	59
DQ3(8)	1	5	1	0	82
DQ 4	!	26	6	4	52
	!				

D			N	A			
1	2	2	5	7	8	8	
0	8	8	7	0	6	6	
0	0	0	0	0	0	0	
1	1	1	1	1	1	2	DR DRB

DR10

SEROLOGY															D NA				
															1	3			
6	6	6	6	6	6	6	8	8	8	8	8				0	7			
1	1	1	1	1	1	1	1	1	2	3	4	D	D	D	0	0			
0	1	2	3	4	5	6	7	8	0	9	1	R	A	R	8	8	DRB	DRB	
w	+	+	+	+	+	w	w	+	+	+	+	10			+	+	1001		3 cells

DR3

SEROLOGY

6	6	6	6	6	6	6			
2	3	3	3	3	3	3		D	D
	0	1	2	3	4	5		R	R
R									

D $\mathrm{N} A$
$\left.\begin{array}{llll}2 & 7 & & \\ 8 & 0 & & \\ 0 & 0 & & \\ 7 & 4 & & \text { DRB } \\ & \text { DRB }\end{array}\right]$

+	+	+	+		+	3		+	+	0301		9 cells
+	+	+	+		+	3			+	0302		28 cells
+	+	+	-		+	3	13		-		1302	1 cell
+	+	+	+		+		11				1101	1 cell

$1113 \quad-\quad+\quad 030211011$ cell

DR4

\qquad

DR6

0602
0602
06020603
0605
22 c
1 ce
2 ce
5 ce
4 ce
1 ce
7 ce

0402

02010301

DO2

DQ3

SEROLOGY																		D	N	A				
																	5	4	2	2	5			
7	7	8	8	8	8	8	8	8	8	8	8	8					7	5	6	6	7			
5	6	0	0	0	0	0	0	0	0	0	1	1	D	D	D		0	0	0	0	0			
9	0	1	2	3	4	5	6	7	8	9	0	1	Q	Q	Q		6	1	2	3	7	DQB	DQB	
+	+	+	+	+	+	+	+	+	+	+	+	+	7				+	+	+	-	-	0301		24 cells
+	+	$+$	$+$	+	+	+	$+$	+	+	+	+	+	7	8			+	+	+	+	+	0301	0302	2 cells
+	+	$+$	$+$	+	-	-	-	w	W	W	W	+		8			+	-	-	-	.		0302	3 cells
$+$	$+$	$+$	$+$	+	$+$	+	+	$+$	+	+	+	+	7		1		-	-	-	+	-			1 cell
-	+	+	+	+	-	-	-	+	+	+	+	+		8	1		-	-	W	-	-		- 02	1 cell
-	-	-	-	-	-	-		-	+	+	+	-			1	4	+	+	+	+	-	0301	- 06	t cell
+	-	-	-	-	+	-	-	-	-	-	-	-			1	4	+	+	-	+	-	0301	02	1 cell

SEROLOGY									D	N	A	DQB DQB		
										2	2			
8	8	8	8	8	8				7	3	3			
1	1	1	1	5	5	D	D	D	0	0	0			
2	3	4	5	0	2	Q	Q	Q	8	1	2			
+	+	+	+	+	+	4			+	-	+	0402		26 cells
+	+	+	+	+		4			-	-				6 cell
	+	-	w	+					+	-	+	0402		4 cell

DQ4															
	SEROLOGY										N				
										5	2	2			
$!$	8	8	8	8	8	8				7	3	3			
!	1	1	1	1	5	5	D	D	D	0	0	0	D	D	D
CELL!	2	3	4	5	0	2	Q	Q	Q	8	1	2	Q	Q	Q
32 !	8	8	8	8	8	8	4		7	1	1	1		0301	0302
41 !	8	8	8	6	8	8	4		1	1	1	1		0602	0603
44 !	8	1	8	8	1	1	4		1	1	1	1		0501	0602
52 !	8	6	6	1	1	6	4		1	1	1	1		0301	0602
57 !	8	8	8	8	1	1	4		1	1	1	1		0501	0602
72 !	8	8	8	8	8	6	4		1	1	1	1		0201	0301
+															
26 !	8	8	1	1	1	1		2	7	8	1	8	0402		0301
36 !	8	1	1	1	8	8		1	3	8	1	9	0402		-
49 !	1	1	1	6	6	8		1	7	8	1	8	0402		0602
69 !	1	1	1	6	1	1		1	-	8	1	8	0402		0603

Part II

HLA AND DISEASE

Chapter 1 Introduction 244
Chapter 2 Cancer 245
Chapter 3 Diabetes mellitus 312
Chapter 4 Rheumatoid arthritis 369
Chapter 5 Foeto-maternal 392
Chapter 6 Other diseases 417

The number of investigations into associations between HLA and disease increased dramatically with the discovery that HLA B27 confers a relative risk for ankylosing spondylitis enormously greater than any other genetic polymorphism. More than 500 diseases have now been investigated and the strongest patterns of association are with auto-immune diseases. However, all the early work was done on Caucasian populations and my investigations were aimed at discovering if these associations with specific antigens were present in different races.

Part II contains forty four papers dealing with the relationship between HLA and several diseases in the different races. I was particularly interested in those diseases which occurred more commonly in the Black and Indian communities than in Caucasian populations because the distribution of HLA antigens varies greatly in the different races.

Chapter 2 contains eight papers dealing with the relationship of HLA to cancer. The prospective study of cancer in black patients showed an interesting association between cancer of the oesophagus and HLA B45 but a follow-up study could not confirm the original finding. These published reports led to an invitation to contribute a chapter to a book, 'Cancer of the Oesophagus'. Other publications include a similar prospective study in Indians and the research carried out while I was Visiting Professor at the National Taiwan University in Taipei.

Diabetes mellitus has strong associations with the HLA system and the ten papers in Chapter 3 reflect the initial studies of Class I antigens and later reports covering Class II antigens as well as some interesting findings in noninsulin dependant diabetes. Another auto-immune disease, rheumatoid arthritis, was investigated as part of collaborative studies included in the International Histocompatibility Workshops and followed by detailed reports of HLA associations in Blacks and Indians.

The remaining 19 publications cover a wide variety of topics from unusual diseases such as tropical spastic paraparesis to paternity tests and even the possible influence of HLA on mate selection.

HLA AND CANCER

p246 Vos GH, Hammond MG, Vos D, Grobbelaar BG, Auslander HP, and Marescotti G. An evaluation of humoral antibody responses in patients with carcinoma of the cervix. J Obs Gyn 79: 1040, 1972
p254 Vos GH, Hammond MG and Marescotti G. Changeable lymphocytotoxic antibody activity in patients with cervical carcinoma. Vox Sang 28: 285, 1975
p262 Hammond MG, Appadoo B and Brain P. HLA and cancer in South African Negroes. Tissue Antigens 9: 1, 1977
p269 Hammond MG, Appadoo B and Brain P. HLA and cancer in South African Indians. Tissue Antigens 14: 296, 1979
p276 Hammond MG and Angorn B. HLA and cancer of the oesophagus in South African Negroes. Tissue Antigens 16, 254. 1980
p278 Hammond MG. HLA and cancer of the oesophagus. In: Pfeiffer CJ (ed) Cancer of the Oesophagus Vol 1, Chapter 11. C R C Press. Boca Raton, Florida. 1982
p289 Hammond MG, Hsu M-M, Ko J-Y, Hsieh R-P, Yang C-S. Preliminary results of HLA Class I and Class II antigens in Chinese with nasopharyngeal carcinoma. In: Ablashi DV et al (eds) Epstein-Barr Virus and Human Diseases, p407. Humana Press, Clifton, New Jersey. 1991.
p295 Bodmer JG, Tonks S, Oza AM, Mikata A, Takenouchi T, Lister TA and collaborating centres. 11th International Histocompatibility Workshop Hodgkin's Disease Study. In: Tsuji K (ed) HLA 1991 Oxford University Press, Oxford (in press)

an EVALUATION OF HUMORAL ANTIBODY RESPONSES IN PATIENTS WITH CARCINOMA OF THE CERVIX

BY
G. H. VOS, M. G. HAMMOND, D. VOS, B. G. GROBBELAAR, H. P. AUSLANDER and G. MARESCOTTI

Reprinted from
The Journal of Obstetrics and Gynaecology of the British Commonwealth
Vol. 79, No. II, November 1972

AN EVALUATION OF HUMORAL ANTIBODY RESPONSES IN PATIENTS WITH CARCINOMA OF THE CERVIX

BY
G. H. Vos
M. G. Hammond
D. Vos
AND
B. G. Grobbelaar
Natal Institute of Immunology, 149 Prince Street, Durban, South Africa
H. P. Auslander*
AND
G. Marescotti \dagger
Department of Obstetrics and Gynaecology, University of Natal Medical School, Durban, South Africa

Summary

Tumour tissue from patients with inoperable cervical carcinoma was studied to determine the significance of humoral antibody involvement. Comparative elution studies using normal and cancerous tissues revealed that various classes of immunoglobulin and complement, either singly or in combination could only be recovered from the cancerous tissues. Some cancer tissue eluates possessed antibodies which sensitized normal lymphocytes by the cytotoxicity test suggesting the host's recognition of structural modification of the tumour cell. It is possible that the various classes of immunoglobulin found in cancer tissue eluates represent antibodies to cytoplasmic constituents, cell membranes or antigen-antibody complexes. It was found that the serum from the cancer patients possessed a significantly higher incidence of "non specific" lymphocytotoxic antibodies than the controls. Our inahility to associate these antibodies with specificities for normal histocompatibility antigens suggests that this type of antibody may symbolize humoral responses towards a combination of tumour-related and normal transplantation antigens. It seems apparent that their activity is of an autoimmune nature capable of altering the in vivo functions of the cell-mediated immune mechanism.

There is evidence to show that neoplasia in man can stimulate a host's immunological response towards tumour-associated antigens (Gold and

[^23]Freedman, 1965; Hellström et al., 1971). In experiments on rodents by Möller (1963) and Batchelor (1968) it was found that the formation of humoral antibodies to tumour-associated antigens blocked the rejection of these cell lines and could lead to their enhanced growth. As a result the tumour apparently remains inaccessible to the host's cell-mediated defense mechan-
ism. Failure of the host to reject tumour cells has also been said to be due to a severely impaired cellular immune system (Keast, 1970; Alexander and Fairley, 1967). The concept that some cancers may develop as a result of a breakdown in "immunological surveillance" at a time when humoral antibody synthesis to foreign structures of the cancer cell remains active, prompted the present study which measures antibody responses in patients with cervical carcinoma.

A working hypothesis was the acceptance that (a) the recovery of various immunoglobulins from tumour cells reflects the stimulated activity of the host towards altered cell constituents and that (b) the recognition of increased antibody activity to histocompatibility antigens by the lymphocytotoxicity test can be regarded as a host's response to a hybridized antigen on the surface membranes of tumour cells. Evaluation of these serological parameters was carried out on Southern African Negro women with carcinoma of the cervix and a representative number of controls.

Mater!als and Methods
 Patients Investigated

Two groups of women with histologically confirmed squamous cell carcinoma of the cervix were examined: (a) patients with active disease tested before treatment and (b) patients who had confirmed carcinoma of the cervix but were symptom-free five years ifter treatment.

Preparation of Soluble C.toplasmic Tissue Eluates

Specimens of cervical tissue were obtained from patients with inoperable cervical carcinoma. For purposes of control normal cervical tissue was obtained from hysterectomy specimens. Pieces of tissue, approximately 20 g . in weight were stored in liquid nitrogen immediately after collection. For the preparation of cytoplasmic eluate, 5 g . (solid mass) of tissue in isotonic saline was homogenized at low speed in a tissue blender. The separation of tissue mass into microscopically recognized clusters of intact cell particles was essential for efficient removal of capillary protein by saline washings. Four saline washings were considered sufficient. Complete disruption of a 50 per cent suspension
of the washed cells in saline was obtained by insonation at 25 kc per second for ten minutes in a vessel standing in iced water. On microscopy the tissue mass then appeared as remnants of broken nuclei and membrane particles. From then on the cervical tissue was treated in a similar manner to washed red cells sensitized in vivo by acquired haemolytic anaemia autoantibodies. Antibody globulins, when present on the tissue, were recovered by the ether elution procedure of Vos and Kelsall (1956), modified only in that four volumes of ether was added directly to the saline suspension of the disrupted tissue. The recovered eluate was dialzyed against phosphate buffered physiological saline ($0 \cdot 15 \mathrm{M}$, pH 7.1) for 24 hours at $4^{\circ} \mathrm{C}$. Particulate matter present after dialysis was removed by centrifugation and the eluate stored as a lyophilized product.

Determination of Immunoglobulin Characteristics

In view of the relatively low concentration of protein recovered from 5 g . of tissue mass (Table I), the immunoglobulins were characterized by the passive protein coupling procedure of Gold and Fudenberg (1967). A concentration of 2 mg . per ml . of protein was found most suitable for the coating of saline-washed group O red cells with 0.0375 M (one per cent) chromic chloride solution diluted to 1 in 20 in a $0 \cdot 15 \mathrm{M}$ solution of sodium chloride. The coated cells and appropriate antiserum were mixed together on agglutination plates and allowed to stand for two hours. Monospecific antisera to IgG, IgA and IgM heavy chain were used to determine the presence of different immunoglobulins. Anticomplement sera (C3 and C4) were kindly donated by Dr. L. D. Petz, Harkness Community Hospital, San Francisco.

Lymphocytotoxicity Test

For the determination of lymphocytotoxic antibodies a selected panel of 18 cell donors was used. The tests were done on Falcon microtest trays using the two-stage procedure recommended by the National Institutes of Health. Thus one μ l. of serum and one μ l. of cells were placed into each well under paraffin oil. After 30 minutes at room temperature 5μ. of unabsorbed rabbit complement was added to the

Table I
Reactions of various specific antisera to cells coated with preparations of cytoplasmic protein obtained from cervical tissue taken from 4 mormal and 8 patients with carcinoma of the cervix

* Group O red cells were coated with tissue eluate containing 2 mg . per ml. of protein. 1, 2, 3, 4 denotes intensity of agglutination reaction. 0 denotes no agglutination.
cell-serum mixture. After a further 60 minutes at room temperature $5 \mu \mathrm{l}$. of freshly prepared trypan blue (0.6 per cent) in saline was placed into each well and left to stand for a further 15 minutes. After this time the excess dye was flicked off and the cells examined with an inverted microscope. Sertuln which killed lymphocytes with known HL-A anligen determinants, e.g. HL-A7 positive cells but not HL-A7 negative cells were identified as containing "specific" anti-HL-A. Cytotoxic antibody activity which could not be identified as "specilic" when tested against the panel of 18 known HL-A cell types were classified as "non-specific". Similar methods for defining lymphocytotoxic antibodies into "specific" or "non-specific" reagents have been reported by Waters et al. (1971) and Kreisler et al. (1971).

Results

To establish whether humoral antibodies were bound to tumour cells, eluates from a number of normal and cancerous cervical tissues were examined. By our method of recovering protein from cervical tissues, which is a modification of
the method used to study the characteristics of autoantibodies in acquired haemolytic anaemia (Vos et al., 1971). it was found that the cancerous tissue contained on a mass equivalent basis more protein than the non-cancerous tissue (Table I). Following passive coating of the protein onto red cells and evaluating their agglutination reactions for various antisera it was found that the tumour eluates often possessed a variety of immunoglobulins. These immunoglobulins were predominantly of the lgG class occurring either singly or in combination with IgM and complement component C3. No definite reactivity for anti-C4 was evident in this small series of cases. The low concentration of protein found in normal cervical tissue eluates could not be classified as immunoglobulins.
Assuming that the immunoglobulins recovered from the cancerous cervical tissues were antibodies capable of sensitizing other cell lines we then measured the presence of lymphocytotoxic antibody activity. Using a selected panel of eighteen lymphocyles which were used routinely to characterize HL-A antibody specificities it was found that four out of the eight cancerous
tissue eluates lysed lymphocytes by the cytotoxicity test (Table II). In tissue eluates CS and GB the reactions were extremely intense for all panel cells, whilst tissue eluates MU and RU only reacted with a small number of the cells. In spite of this variation the reactions could not be classified as "specific" antibodies for known HL-A determinants. Although the cancerous tissues possessed recognizable immunoglobulins (Table 1) only some were found to have lymphocytotoxic antibody activity. It is hoped that further studies will determine why this difference exists.
The significance of finding cytotoxic antibodies in the cancerous tissue eluates led us to compare the incidence of these antibodies in patients with carcinoma of the cervix and in a large number of healthy women. It was important to classify antibodies capable of recognizing known combinations of HL-A types from those lacking these characteristics. Table III shows our findings in 69 Southern African Negro women with histologically confirmed squamous cell carcinoma of the cervix tested prior to treatment, 33 women examined five years after successful treatment and 1000 healthy women of the same race. There were no significant differences observed in the incidence of HL-A "specific" cytotoxic antibodies between the cancer patients
and the controls ($\mathrm{X}^{2} 0.04, \mathrm{P}>0.8$). However, some inexplicable variation in the incidence of HL-A "specific" antibodies was observed between those cancer patients examined prior to treatment (21.7 per cent) and those who were symptom free five years after treatment ($3 \cdot 0$ per cent).

In a comparative evaluation of "non specific" lymphocytotoxic antibodies the cancer patients were found to possess a significantly higher incidence of "non specific" cytotoxic antibodies than the controls ($\mathrm{X}^{2} 55 \cdot 48, \mathrm{P}<0 \cdot 001$). Although it may be that the increased incidence of "non specific" cytotoxic antibodies observed among the five-year-cure series was influenced by therapy, this could not be so for the patients tested prior to treatment.

We could not establish the presence of HL-A "specific" antibodies in patients with "non specific" cytotoxic antibodies by testing their serum at various dilutions. However, selective absorption studies may help to determine the nature of these unusual antibodies.

DISCUSSION

Numerous studies have demonstrated that tumour antigens can be found in a variety of neoplasms (Prehn, 1968; Boyse et al., 1968;

TABLE II
Lymphocytotoxic antibody activity in preparations of normal and cancerous cervical tissue eluate

[^24]Table III
The incidence of HL-A "specific" and "non-specific" lynphocytotoxic antibodies
in patients with cervical carcinoma and healthy women used as controls

Lymphocytotoxic antibody activity	Cervical cancer patients						Controls		Cancer patients versus controls
	69 patients tested prior to treatment		33 patients symptom-free five years after treatment		All cancer patients (102)		1000 multiparae		
HL-A specific	15	21.7\%	1	3.0\%	16	15.6\%	149	14.9\%	$\mathrm{X}^{2} 0.04, \mathrm{P}<0.8$
Non-specific	16	23.1\%	10	30.3\%	26	25.4\%	54	5.4\%	$\mathrm{X}^{2} 55.48, \mathrm{P}<0 \cdot 001$

Goid et al., 1968; Jehn et al., 1970; Alexander, 1972). Under normal circumstances the presence of cell lines which differ in genetic composition from the host should induce in rivo an immune response resembling a homograft reaction. The inability of the host to do so may be due to a profound defect in cell-mediated immunity. Cancer studies in rodents (Möller, 1963) have shown that humoral antibodies actually block the rejection phenomen thereby enabling the tumour cell line to proliferate in the host. Evidence for linking tumour growth with the presence of a similar humoral antibody blocking mechanism was reported by Hellström et al. (1971). In the studies of Gold et al. (1968) the formation of rabbit antibodies to carcinoembryonic antigens and the actual finding of similar antibodies in patients with carcinoma suggested that tumour growth may be enhanced by an active humoral antibody responsiveness.

Using cancerous cervical tissue for the evaluation of humoral antibody involvement, we found that they contained a much greater concentration of cell-bound protein than noncancerous tissues. These abnormally high levels of protein contained a variety of immunoglobulins, indicating the presence of some form of humoral antibody activity towards the tumour. Although no delailed sludies were carried out to characterize the specificity of these antibodies, our preliminary investigations established that only some tumour tissue eluates possessed intense lymphocytotoxic activity, suggesting that the recovered immunoglobulins constitute antibodies with a variety of characteristics.

It has been shown that the presence in vivo of antigen-antibody determinants can result in the
formation of other antibodies to these complexes (Harboe et al., 1965; Abbruxxo and Christian, 1961; Kano and Milgrom, 1968). This activity is said to be influenced in vivo by antibodies which have been subjected to molecular transformation during their interaction with antigens. It can therefore be assumed that humoral antibodies to immune complexes may also be generated in patients with active cancer, as a consequence of released antigen-antibody determinants during the prociss of tumour cell necrosis. A factor to be considered in the development of secondary humoral antibody responses, particularly in proliferating carcinomas, is the overwhelming presence of released antigen-antibody complexes and their corresponding antibodies which may enhance tumour growth more effectively than the antibody which initially sensitized the surface antigen. And so the question arises whether the "blocking factors" described by Hellstrom and Hellstrom (1970) actually represent the primary antibody response to tumourrelated surface antigen or the product of subsequent responses to a variety of antigenantibody determinants.

Although the presence of "non specific" lymphocytotoxic antibodies does not provide any definite information concerning their role in tumour biology, their implication as a product of tumour immunology cannot be ignored. This is evident from the observation that "non specific" lymphocytotoxic antibodies were more often found among patients with carcinoma than in the controls ($\mathrm{P}<0 \cdot 001$). To classify them as tumourrelated antibodies requires the acceptance that they possess a marked degree of cross-reactivity for normal histocompatibility determinants. That this is so is obvious from their ability to
react with lymphocytes from normal donors (Table II). It is possible that these "non specific" antibodies may have developed through a sequential process of immune responses by altered tumour antigen presentation. A similar explanation for the variability in antibody responses was recently reported in studies concerning the specificities of autoantibodies in acquired haemolytic :In:cmias (Vos et al., 1971).
Although our findings: indicane that "non specific" cytotoxic antibodies are autoimmune in nature and therefore capable of abrogating the function of the host's own cell-mediated immune system, they do not appear to have impaired the function of the non-hhymus or bursa analogue dependent lymphocyles which take part in the formation of circulating immunoglobulin antibodies. If unrestricted synthesis of lgG and lgM immunoglobulins does occur, with specificities towards cancer lissue and crossreactivity towards thymus-derived lymphocytes, it might be that the bursa analogue dependent lymphocytes lack some of the transplantation antigens which are commonly present on the thymus-derived cell lines. In studies concerning
autoantibodies in patients with acquired haemolytic anaemia it has become apparent that the active synthesis of various classes of humoral antibodies towards red cells is specifically directed against the Rhesus genome (Vos et al., 1971). By contrast this is seldom found in lymphoid tissue (Gurner and Coombs, 1958; Lawler and Shatwell, 1962). These observations are to some extent analogous to the concept proposed for the activity of "non specific" cytotoxic autoantibodies observed among cervical cancer patients becuause only selectivity would allow the antibody-producing cell clones to survive the effects of their own antibodies.

Figure I outlines the basic concepts discussed in this study.

Acknowledgements

The authors thank Professor D. Crichton of the Department of Obstetrics and Gynaecology, University of Natal, Durban, for his permission to study patients with cervical cancer at the University Hospital.

This study was supported in part by the South African Medical Research Council.

Fig. 1
Diagram of immunological events suggested by this study of patients with carcinoma of the cervix.

References

Abruzzo, J. L., and Christian, C. L. (1961): Journal of Experimental Medicine, 114, 791.
Alexander, P. (1972): Nature, 235, 137.
Alexander, P., and Fairly, G. H. (1967): British Medical Bulletin, 23, 86.
Batchelor, J. R. (1968): Cancer Research, 28, 1410.
Boyse, E. A., Old, L. J., Stockert, E., and Shigeno, N. (1968): Cancer Research, 28, 1280.

Gold, P., and Frectman. S. O. (1965): Journal of

Gold, P., Gold, M., and + reedman, S. O. (1968): Cancer Research, 28, 1331.
Gold, E. R., and Fudenberg. H. H. (1967): Journal of Immunolog.s. 99, 859.
Gurner, B. W., and Combs. R. R. A. (1958): Vox Sanguinis, 3, 1.3.
Harboe, M., Rau, B., and Aho, K. (1965): Jommal of Experimental Medicine, 121, 503.
Hellström, l., and Hellström, K. E. (1970): International Jominal of Cancer, 5, 195.

Hellström, I., Hellström, K. E., Sjögren, H. O., and Warner, G. A. (1971): International Journal of Cancer, 7, 1.
Jehn, V. W., Nathanson, L., Schwartz, R. S., and Skinner, M. (1970): New EnglandJownal of Medicine, 283, 329.
Kano, K., and Milgrom, F. (1968): Transplantation. δ, JJ.
Keast, D. (1970): Lancet, 2, 710.
Kreisler, M., Naito, S., and Terasaki, P. I. (1971): Transplantation Proccediugs, 3, 112.
Lawler, S. D., and Shatwell, H. S. (1962): Vox Sanguinis, 7, 488.
Möller, G. (1963): Journal of the National Cancer Institute, 30. 1177.
Prehn, R. T. (1968): Cancer Research, 28, 1326.
Vos, G. H., and Kelsall, G. A. (1956): British Journal of Hecmatolog.', 2, 342.
Vos, G. H., Petz, L. D., and Fudenberg, H. H. (1971): Journal of Imımunology, 106, 1172.
Waters, H. O., Smith, G. S., Fishkin, B., Tanaka, K. R., and Walford, R. L. (1971): Transplantation Proceedings. 3. 145.

Changeable Lymphocytotoxic Antibody Activity in Patients with Cervical Carcinoma ${ }^{1}$

G. H. Vos, M. G. Hammond and G. Marescotti
Natal Institute of 1mmunology, Durban, and District Hospital, Empangeni, Zululand

Abstract

In patients with cervical carcinoma examined over an extended period of time we observed lymphocytotoxic antibody activity more often in patients with terminal invasive carcinoma than in patients with preinvasive carcinoma. Antibody activity was very variable and it is postulated that this may reflect in vivo consumption of such antibodies as a consequence of qualitative or quantitative variations in cancerous tissue mass. In almost all instances we were unable to establish the specificity of the lymphocytotoxic antibodies with respect to known histocompatibility antigens. This suggests that their activity may be directed against a nucleus of HL-A determinants present in all buman cell lines.

Introduction

In a previous study we found that extracts from cervical cancer tissues sometimes contain antibodies which sensitize normal lymphocytes by the cytotoxicity test [11]. It was suggested that this reaction represented a host's humoral antibody response to a structural modification of the tumour cell membrane. On the basis of population studies patients with cervical tumours also possessed a significantly higher incidence of so-called 'non-specific' lymphocytotoxic antibodies than a comparable control series of women of the same race ($p<0.001$). The term 'non-specific' implies only that the structure or the origin of the corresponding antigens is not yet known. A more accurate description of these antibodies may be 'non-HL-A'. The demonstration that these cytotoxic antibodies can lyse lymphocytes of almost all normal subjects who are not suffering from the same disease also indicates that there is at this stage only an indirect association between the frequent occurrence of 'non-HL-A' antibodies and cervical tumours.
${ }^{\text { }}$ This study was supported by a grant from the South African Medical Research Council.

Received: July 1, 1974; accepted: September 2, 1974.

By performing lymphocytotoxic antibody tests on stored samples of serum from the same patients collected over several weeks we were able to obtain a profile of the reaction pattern of these antibodies among patients with both invasive and preinvasive cervical tumours.

Materials and Methods

Subjects. Samples of blood were collected at weekly or fortnightly intervals from multiparous Southern African Negro women with histologically confirmed carcinoma of the cervix. Of the 14 patients studied 9 had developed invasive carcinomas with distant metastases of the bowel, bladder, vagina, vulva and kidneys and 5 were recognized to possess a preinvasive variety of carcinoma. Patients who required blood transfusions or immediate anti-tumour therapy during these follow-up studies were not included in the final analysis. Both groups of women had delivered a comparable number of livebirths, e.g. preinvasive carcinoma patients 4.7 livebirths/mother as opposed to 4.2 livebirths/ mother among the invasive carcinoma patients. No reliable information could be obtained with respect to the number of abortions experienced by the two groups of women. Routine tests for treponemal infections confirmed the absence of syphilitic conditions in all the women examined.
finfhocytotoxicity test. The presence of cytotoxic antibodies to peripheral lymphocytes wills determined by testing the patient's serum against a selected panel of 23 cell donors using the modified two-stage microcytotoxicity test of Brand et al. [4]. Over 40% kill of the viable lymphocytes of each donor was accepted as a positive result. The specificity of the lymphocytotoxic antibody was resolved by testing the serum against lymphocytes having many different HL-A genotypes. Cytotoxic antibodies which could not be identified as 'specific' when tested against a large panel of known HL-A cell types were classified as 'non-HL-A'.

Absorption method. To absorb serum containing lymphocytotoxic antibodies, leucocytes and platelets were obtained from 50 ml of ACD blood. The red cells were removed by dextran sedimentation and the plasma layer was centrifuged at $2,000 \mathrm{~g}$ for 20 min . The cells were washed four times in isotonic sodium chloride solution buffered to $\mathrm{pH} 7.2-7.3$ with Sorensen buffer. 1 ml antiserum was added to the packed cells and absorption was carried out for 60 min at $37^{\circ} \mathrm{C}$ with regular agitation of the test tube to prevent settling of the cells.

Results

To establish the serological characteristics of the lymphocytotoxic antibodies found among patients with carcinoma of the cervix uteri, follow-up studies were performed on the same patients to elucidate the complexity of the antigen involved in the formation of the so-called 'non-HL-A' lymphocytotoxic antibodies. Table I details the results of this retrospective study

Table I. Lymphocytotoxic antibody test: a follow-up study on patients with localized and disseminating carcinoma of the cervix

Patient	Age	Lymphocytotoxic antibody tesis (\%) on day										Type of cervical carcinoma
		1	6	12	18	24	30	36	42	48	54	
M. P.	48	0^{1}	0	0	0		0		13	0	0	localized
K. P.	40	0	0	0	0		0	0		0	0	localized
L. S.	38	0		0	0	10	0	0	0	15	0	localized
B. T.	36	20	0	0		0		0	0	0	0	localized
J. N.	41	0	0		0	0	0	0	0		0	localized
N. N.	70	0	0		13	13		61	87	100	100^{2}	disseminating
M. D.	49	0	0	17	10	100	100	100	100			disseminating
S. M.	56	96		74		65	40	22	9	9		disseminating
M. B.	58	65		48		26		9		0		disseminating
N. R.	48	0	0		39		61		94		100	disseminating
M. L.	52	87		13		4		0		0		disseminating
H. H.	42	100	100		100		95		100	100	100	disseminating
T. M.	46	80		74		60		53		38	24	disseminating
R.B.	50	0	0		0		30		60	100	100	disseminating

${ }^{1}$ Absence of cytotoxic antibodies.
${ }^{2}$ Ability of serum to react with lymphocytes of all 23 panel cells represents 100% positive reaction (see table II, patient N . N., as an example).

Table II. Lymphocytotoxic antibody activity in patient N. N.

Follow-up samples	Known lymphocyte panel																							Percent positive reaction	Specificity
	1		34		5	6	7	8	9	10		1213		14	1516		1718		19	20212223					
24-9	--	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	
30-9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	
8-10	-	-	-	8^{1}	-	-	-	-	-	-	-	-	-	8	-	-	-	-	-	-	-	8	-	13	anti-HL-A12
15-10	-	-	-	8	-	-	-	-	-	-	-	-	-	8	-	-	-	-	-	-	-	6	-	13	anti-HL-A12
26-10	8	8	6	6	6	6	8	8	8	6	6	-	-	6	-	-	-	-	-	-	6	6	8	61	non-HL-A
30-10	8	8	8	8	8	8	8	8	8	8	8	8	-	8	8	6	6	6	-	-	6	6	8	87	non-HL-A
8-11	8	8	8	8	8	8	8	8	8	8	8	8	8	6	8	8	8	8	6	8	8	8	8	100	non-HL-A
14-11	8	8	8	8	8	8	8	8	8	8	8	8	8		8	8	8	8	8	8	8	8	8	100	non-HL-A

${ }^{1} 8$ denotes $90-100 \%$ kill of lymphocytes; 6 denotes $40-75 \%$ kill of lymphocytes.
${ }^{2}$ Ability of serum to react with lymphocytes of all 23 panel cells represents 100% positive reaction.

Table III. Lymphocytotoxic antibody follow-up study on patient S. M.

for 5 patients with localized tumours and 9 patients with disseminating tumours. The findings indicate that lymphocytotoxic antibodies were more frequently found in patients with disseminating cervical carcinoma and that such antibodies could either show a progressive increase or decline in activity as the disease progressed. The frequent absence of measurable cytotoxic antibodies in the serum of patients with localized tumours appeared as a distinguishing feature of antibody activity between the two groups.

The: formation of a specific variety of HL-A antibody before the rapid development of a non-HL-A type of antibody was observed on one occasion (table II; patient N. N.). This patient initially lacked lymphocytotoxic antibody activity, then on two occasions cytotoxic antibodies for lymphocytes possessing HL-A12 determinants were detected. Subsequently the lymphocytotoxic reactions lacked specificity. Absorption experiments using cell lines lacking HL-A12 determinants failed to separate the non-HL-A cytotoxic antibody from the specific antibody. This suggests that continued in vivo immunization, perhaps by the growing neoplasm, has altered the initially specific nature of the antibody.

A different pattern of cytotoxic antibody behaviour was observed for patient S. M. (table III). Strong cytotoxic antibody of the so-called 'non-HL-A' variety was detected on first examination. During follow-up studies the intensity and characteristics of the cytotoxic antibody reactions gradually changed until the presence of a 'specific' variety of antibody (anti-W-5) was clearly evident. It seems improbable that this change in antibody activity was due to her sudden inability to make antibodies. A more likely explanation would be the increased availability or accessibility of the corresponding antigen through advancing tumour growth or increased blood circulation through the tumour mass. Either way one would have to assume that this loss of 'non-HL-A' antibody activity reflects in vivo consumption of the antibodies and not reduced synthesis. The gradual loss of 'non-HL-A' antibody activity observed in this patient also happened to take place without affecting the continuous appearence of the 'specific' variety of HL-A antibody. This again suggests that some form of in vivo consumption of 'non-HL-A' antibody activity is involved.

Discussion

A significant feature of the investigation was the almost complete absence of measurable lymphocytotoxic antibody activity in patients with localized cervical tumour and the remarkably variable antibody activity found in
patients with terminal disseminating cervical carcinomas. If this changeable cytotoxic antibody activity is due to in vivo consumption of the antibody rather than sudden variations in synthesis, then a combination of progressive tumour growth and changes in availability or accessibility of antigen sites may be the major cause of the transient appearance of the antibody. The variable pattern of cytotoxic antibody behaviour also recalls the changes of antibody reactivity commonly found among patients with autoimmune diseases $[5,8,10]$. In our previous study [11] we showed that the 'non-HL-A' type of antibody can be recovered from the patient's own cervical cancer tissue. This indicates that the activity is directed against cancerous tissues as well as normal lymphocytes. Whether the 'non-HL-A' antibodies do have autoimmune activity in vivo or merely act as anti-tumour membrane antibodies will be the subject of further investigation.

We suspect that the development of lymphocytotoxic antibodies among patients with cervical carcinoma occurs at a very late stage of the disease and that the initial defect is associated with a fundamental change in cervical cell growth. In this respect strong evidence has recently been presented to implicate herpes virus type 2 (HSV-2) with carcinoma of the cervix [1, 3, 9]. It has also been established that cervical tumour cells possess DNA sequences which are in part related to the HSV-2 genome [2, 6]. It. was suggested that if the repe 2 herpes virus has oncogenic potential for human cervical tissue that some of its function may be associated with the transformation of cells from normal to neoplastic cell lines [7]. The immunological reaction of the host against its own tumour may in this situation be very similar to a reaction of the host against allogeneic tissue graft. However, these studies suggest that intensification of humoral antibody activity may protect rather than prevent tumour cell proliferation. It is conceivable that progressive tumour growth may be facilitated by the presence of cytotoxic antibodies which are capable of blocking the effect of Tcell activity. On the other hand, no attempts have so far been made to determine whether herpes virus type 2 infection can cause a primary defect in Tcell function. Until such investigations are described no definite conclusion with respect to the 'blocking antibody' hypothesis can be reached.

References

1 Aurelian, L.; Royston, I., and Davis, H. J.: Antibody to genital herpes simplex virus: association with cervical atyphia and carcinoma in situ. J. nat. Cancer Inst. 45: 455 (1970).

2 Aurelian, L.; Stranberg, J. D.; Melendez, L. V., and Johnson, L. A.: Herpesvirus type 2 isolated from cervical tumour cells grown in tissue culture. Science 174: 704 (1971).

3 Aurelian, L.; Schumann, B.; Marcus, R. L., and Davis, H. J.: Antibody to HSV-2 induced tumor specific antigens in serum from patients with cervical carcinoma. Science 181: 161 (1973).
4 Brand, D. L.; Ray, J. G.; Hare, D. B.; Kayhoe, D. E., and McClelland, J. D.: Preliminary trials towards standardization of leucocyte typing; in Terasaki Histocompatibility testing, p. 357 (Munksgaard, Copenhagen 1970).
5 Dacie, J. V.: The haemolytic anaemias, congenital and acquired. II. The auto-immune haemolytic anaemias; 2nd ed., vol. 2 (Grune \& Stratton, New York 1962).
6 Frenkel, N.; Roizman, B.; Cassai, E., and Nahmias, A.: A DNA fragment of herpes simplex 2 and its transcription in human cervical cancer tissue. Proc. nat. Acad. Sci., Wash. 69: 3784 (1972).
7 Green, M.: Oncogenic viruses. Annu. Rev. Biochem. 39: 701 (1970).
8 Milgrom, F. and Witersky, E.: Autoantibodies and autoimmune diseases. J. amer. Med. Ass. I8I: 706 (1962).
9 Nahmias, A. J.; Josey, W. E.; Naib, Z. M.; Luce, C. F., and Guest, B. A.: Antibodies to herpesvirus hominis types 1 and 2 in humans. Amer. J. Epidem. 91: 547 (1970).

10 Vos, G. H.; Petz, L. D., and Fudenberg, H. H.: Specificity and immunoglobulin characteristics of autoantibodies in acquired hemolytic anemia. J. Immunol. 106: 1172 (1971).

11 Vos, G. H.; Hammond, M. G.; Vos, D.; Grobbelaar, B. G.: Auslander, H. P., and Marescotri, G.: An evaluation of humoral antibody responses in patients with (n: inuma of the cervix. J. Obstet. Gynaec. brit. Cwlth. 79: 1040 (1972).

HLA and Cancer in South African Negroes

M. G. Hammond, B. Appadoo and Peter Brain
The Natal Institute of Immunology, Durban, South Africa

Abstract

Five hundred patients with cancer were tested for 32 HLA antigens and the antigen frequencies compared with those of 500 control subjects matched for race, sex and age. Although the overall frequencies showed no significant differences, detailed analysis with regard to site of cancer, age and the number of antigens detected at cach locus revealed significant differences. Phenotype tables and haplotype frequencies have been included.

Received for publication 4 May, accepted 1 September 1976

There are significant differences in the frequencies of HLA antigens in various races. The Negroes of South Africa have higher frequencies of A28, A29, Aw30, Bw42, Bw 17 and TT than Caucasians and lower frequencies of $\mathrm{A} 1, \mathrm{~A} 11, \mathrm{~B} 5, \mathrm{~B} 27$ and Bw40 (Hammond et al. 1975). The overall cancer incidence in South African Negroes is similar to that in Caucasians but there are differences in the incidence rates for different sites of cancer. A survey of cancer in Durban Negroes (Schonland \& Bradshaw 1968) showed that cancer of the esophagus is the commonest male malignancy and it has the highest reported incidence in the world. Cancer of the liver and lung are the next most frequent in males. In females, cancer of the cervix has the highest incidence and is nearly four times more frequent than in Caucasians.

Materials and Methods

Blood samples were taken from 500 confirmed cancer cases over a period of 18 months. Confirmation was obtained by cytology, histology or hematology. Blood samples were also taken from 500 control subjects, not suffering from malignancies, matched for race, age and sex and 180 antisera were used to define 13 antigens at the A locus, 17 at the B locus and two at the C locus. Their specificity was confirmed during the Sixth Histocompatability Workshop by testing them in parallel with the workshop sera against the cells of 100 unrelated Negroes of the Zulu tribe (Hammond et al. 1975). The N.I.H. standard microcytotoxicity test was used throughout.

Supported by a grant from the National Cancer Association of South Africa.

Results
Table 1 gives the antigen frequencies in controls, cancer cases and in subgroups according to site of cancer. Table 2 shows the percentage frequency of individuals with only one detectable antigen at the first and second locus in relation to age and
site of cancer. Tables 3-6 give the phenotype distributions at each locus in the cancer patients and in the control group. Gene frequencies were estimated from Table 1 using the formula $G=1-\sqrt{1-\mathrm{f}}$ where f is the antigen frequency, and the χ^{2} between observed and expected fre-

Table 1
Percentage frequency of HLA antigens

						Control	Cancer
	500	500	Cervix	Oesophagus	Breast	Lung and larynx	Liver
			101	61	41	35	
HLA-A1	5.0	8.4	9.8	6.9	9.8	2.4	$17.1^{* *}$
HLA-A2	20.6	22.0	16.1	28.7	19.7	24.4	17.1
HLA-A28	21.2	20.4	23.1	17.8	27.9	22.0	14.3
HLA-A3	14.2	13.8	18.2	12.9	18.0	4.9	5.7
HLA-A11	0.2	0.2	0	0	0	0	0
HLA-Aw23	17.2	18.4	23.1	17.8	19.7	9.8	17.1
HLA-Aw24	4.8	7.0	5.6	8.9	4.9	7.3	14.3
HLA-Aw25	15.6	14.2	9.1	18.8	13.1	29.3	11.4
HLA-Aw26	9.0	9.4	8.4	11.9	6.6	4.9	8.6
HLA-A29	17.0	18.0	18.9	16.8	18.0	14.6	20.0
HLA-Aw30	39.4	33.6	37.1	36.6	26.2	24.4	31.4
HLA-Aw31	11.4	12.8	9.8	8.9	16.4	19.5	17.1
HLA-Aw32	1.8	2.4	0.7	1.0	3.3	2.4	2.9
1 antigen	22.6	19.0	20.3	12.9	16.4	29.3	22.9
HLA-B5	1.2	2.0	3.5	0	1.6	0	0
HLA-Bw35	6.2	5.6	4.9	4.0	4.9	4.9	11.4
HLA-B18	3.8	4.6	4.2	5.9	4.9	0	8.6
HLA-Bw15	4.2	3.2	4.2	4.0	1.6	0	2.9
HLA-Bw16	3.2	2.0	0.7	2.0	1.6	4.9	5.7
HLA-Bw21	0.6	1.4	2.8	2.0	1.6	0	0
HLA-B7	17.8	20.0	20.3	19.8	26.2	17.1	20.0
HLA-Bw22	0	0	0	0	0	0	0
HLA-Bw42	25.0	25.2	30.1	24.8	19.7	12.2	25.7
HLA-B27	0.6	0.2	0	0	0	0	0
HLA-B8	15.8	15.4	16.8	13.9	21.3	4.9	17.1
HLA-B14	5.2	5.0	7.0	4.0	3.3	7.3	2.9
HLA-B12	15.8	13.2	11.2	15.8	8.2	17.1	14.3
HLA-TT	7.2	8.0	6.3	$15.8 * *$	4.9	7.3	5.7
HLA-B13	4.8	3.4	2.1	4.0	4.9	2.4	2.9
HLA-Bw17	41.2	41.0	36.4	42.6	45.9	48.8	34.3
HLA-Bw40	1.0	1.2	0	0	0	2.4	2.9
1 antigen	42.8	40.4	44.1	36.6	37.7	51.2	34.3
HLA-C2	13.0	12.4	9.1	15.8	6.6	24.4	20.0
HLA-C3	6.0	9.2	8.4	7.9	11.5	7.3	8.6

[^25]Table 2
Percentage frequency of individuals with only one detectable antigen at the first and second locus in relation to age and site of cancer

	Controls			All cancers		Cervix		Oesophagus		Breast		Lung \& larynx		Liver	
	Age	< 40	>60	<40	>60	<40	>60	< 40	>60	<40	>60	<40	>60	<40	>60
	Number	161	89	140	98	52	15	15	24	16	14	10	15	9	9
1 antigen at A locus		23	21	22	15	23	13	7	8	13	36	40	$7{ }^{*}$	33	22
1 antigen at B locus		47	43	38	37	37	40	20	29	25	43	80	33**	56	33
1 antigen at both A		,													
and B loci		13	11	9	6	8	0	0	0	6	14	40	7*	22	11

[^26]Table 3
A locus pbenotypes of 500 cancer patients

HLA-A	1	2	3	w23	w24	w25	w26	. 11	28	w29	w30	w31	w32	Blank
1	2	3	6	3	1	3	5	0	3	6	8	1	1	
2		15	13	8	4	8	6	1	14	11	18	9	0	
3			8	6	0	3	4	0	9	5	12	2	1	
w23				12	1	8	4	0	10	7	21	10	2	
w24					1	3	2	0	2	7	9	4	1	
w25						9	0	0	8	11	11	7	0	
w26							1	0	6	7	9	1	1	
11								0	0	0	0	0	0	
28									7	12	21	8	2	
w29										6	16	2	0	
w30											27	14	2	
w31												6	1	
w32													1	
Blank														1

quencies was calculated. Table 7 shows the most common haplotype frequencies for the controls and cancer patients.

Discussion

There are no significant differences in the HLA antigen frequencies when comparing all the cancer cases with the controls. When
considering various sites of cancer, however, there are differences worthy of comment. HLA-A1 has a significantly higher frequency in cancer of the liver than in the controls and the antigen TT is significantly increased in cancer of the esophagus. The probabilities are both less than 0.005 , but when corrected for the number of antigens tested they are no longer significant.

Table 4
A locus phenotypes of 500 control subjects

Table 5
B locus phenotypes of 500 cancer patients

Table 6
B locus phenotypes of 500 control subjects

HLA-B	7	8	12	13	14	17	27	w5	w10	w15	w16	w18	w21	w22	w42	TT	Blank
51	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	1	
7	24	4	10	3	0	14	1	6	1	2	4	2	0	0	16	2	
8		26	9	4	2	17	0	1	0	1	1	0	0	0	11	2	
12			15	2	4	25	0	2	0	3	1	2	0	0	5	0	
13				4	0	6	0	2	1	0	0	1	0	0	1	0	
14					4	9	0	1	0	0	0	3	0	0	0	3	
17						71	1	5	1	4	2	2	0	0	39	9	
27							1	0	0	0	0	0	0	0	0	0	
w5								4	0	0	0	0	1	0	7	2	
w10									1	0	0	0	0	0	1	0	
w15										7	0	1	0	0	2	1	
w16											2	1	1	- 0	4	0	
w18												6	0	0	0	1	
w21													0	0			
w22													1	0	0	0	,
w42														0			
TT			\cdot												35	3	
Blank																12	
$\chi_{136}^{2}=17$																	9
$0.025>p$	0.0																

The frequency of individuals with only one detectable antigen at the first or second locus ranges from 12.9% at the first locus for patients with cancer of the esophagus to 51.2% at the second locus for patients with cancer of the lung or larynx. The frequency of 12.9% is significantly different from that in the controls ($\mathrm{p}<0.05$) and this might mean that individuals who are heterozygous at the first locus are more susceptible to cancer of the esophagus. Moreover, this frequency is significantly different from the frequency of 29.3% in patients with cancer of the lung or larynx ($\mathrm{p}<0.02$). At the second locus the same trend is apparent but the differences are not significant. Gerkins ct al. (1974) and Macurova et al. (1975) presented data indicating increased heterozygosity in aged persons. Table 2 shows that there are no significant differences in the frequency of individuals with or without cancer in the age groups less than 40 or greater than 60 . However, the frequencies in patients with cancer of the lung or larynx show significant differences between those younger than 40 and those older than 60. At the A locus the difference is significant at the 0.05% level while at the B locus $\mathrm{p}<0.02$. This might mean that young people who are homozygous at the A or B loci or at both are more susceptible to cancer of the lung or larynx. Thus we may say that among Negroes with cancer, those who are homozygous at the A or B locus or at both may be more liable to cancer of the lung or larynx while those who are heterozygous may be more likely to get cancer of the esophagus. Unfortunately the numbers of individuals in these subgroups are small and the statistical inferences should be treated with great reserve.

Table 7 shows the most common haplo-

Table 7
Haplotype frequencies in cancer patients and controls (All values $\times 10^{3}$)

Haplotype		Controls	Cancer
Aw 30	Bw 42	75^{*}	67^{*}
A 28	Bw 17	37	38
Aw 30	Bw 17	34	32
A 2	Bw 17	31	39
Aw 25	Bw 17	30	11
A 3	Bw 17	28	34^{*}
Aw 30	B 8	25	19
Aw 25	B 12	22^{*}	17^{*}
A 29	B 12	19^{*}	23^{*}
Aw 26	Bw 17	18	19
A 1	B 7	17^{*}	24^{*}
A 3	B 8	14	22^{*}
A 2	Bw TT	13^{*}	17^{*}
A 29	B 13	13^{*}	13^{*}
Aw 24	B 7	12^{*}	22^{*}
Aw 31	Bw 35	9	11^{*}

* Absolute value of Δ greater than twice the S.E.
type frequencies for the controls and cancer patients calculated from the phenotypes by the method of Mattiuz et al. (1970). The most common haplotype is Aw30, Bw42 which might be called a negroid haplotype in the same way that A1, B8 is a Caucasoid haplotype. Several other haplotypes show significant linkage disequilibrium, notably $\mathrm{A} 1, \mathrm{~B} 7$; $\mathrm{A} 2, \mathrm{TT}$; A24, B7; Aw25, B12; A29, B12; A29, B13.

References

Gerkins, V. R., Ting, A., Menck, H. T., Casagrande, J. T., Terasaki, P. I., Pike, M. C. \& Henderson, B. E. (1974) HLA heterozygosity as a genetic marker of long-term survival. J. Nat. Cancer 52, 6, 1909.

Hammond, M. G., Appadoo, B. \& Brain, P. (1975) HLA antigens in Bantu and Indians. Histocompatibility Testing 1975, Munksgaard, Copenhagen.
Macurova, H., Ivanyi, P., Sajdlova, H. \& Trojan, J. (1975) HLA antigens in aged persons. Tissue Antigens 6, 269.
Mattiuz, P. L., Ihde, D., Piazza, A., Ceppellini, R. \& Bodmer, W. F. (1970) New approaches to

the population genetic and segregation	Address:	
analysis of the HLA system. Histocompati-	M. G. Hammond	
bility Testing 1970	p. 193. Munksgard,	P.O. Box 2356
Copenhagen.	Durban 4000	
chonland, M. \& Bradshaw, E. (1968) Cancer in	South Africa	
the Natal African and Indian 1964-66. Int.		
J. Cancer 3, 304.		

HLA and Cancer in South African Indians

M. G. Hammond, B. Appadoo and Peter Brain
The Natal Institute of Immunology, Durban, South Africa

Abstract

Two-hundred-and-forty-nine Indian cancer patients were tested for 39 HLA antigens and the antigen frequencies were compared with those of 603 control subjects. Comparisons were also made between cancer patients and controls for each ethnic group and for each site of cancer. There was an increase in the frequency of the HLA antigens A11 and Bw52 in patients with malignancies. Heterozygosity at the B locus was significantly increased in patients with cancer of the breast. The Aw24, B17 haplotype was also associated with breast cancer.

Received for publication 11 January, revised, accepted 5 March 1979

A survey of cancer in the Negro and Indian populations of Durban (Schonland \& Bradshaw 1968) showed that the overall cancer incidence in females of both races and in Negro males is as high as in most Western countries, but Indian males have a low overall cancer incidence which is not readily explained. We have previously reported our findings with regard to HLA and cancer in South African Negroes (Hammond et al. 1977a). The Indian population can be divided into four major ethnic groups and we have shown that there are differences in the frequencies of the HLA antigens in these groups. (Hammond et al. 1974).
immigrants who arrived about a century ago to work on the sugar plantations. They are composed of Dravidians from Southern India and Aryans from Northern India. In South Africa, the Dravidians can be divided into Tamil and Telegu speakers while the Aryans can more conveniently be divided by religion into Hindus from the north-east (mostly Hindi speaking) and Muslims from the north-west. Intermarriage between these four groups is rare and there has been almost no admixture with other races. (Mistry 1965).

The Indian population of greater Durban is over 430,000 and the proportion of each ethnic group is roughly as follows:

Race	Religion Aryan	Language	Percentage
		1. Hindi	26
	(b) Muslim	2. Gujerati	3
		1. Urdu	9
		2. Gujerati	3

(b) Muslim
2. Gujerati

3

The Indian Population
 The Indians of Natal are the descendents of

Supported by a grant from the National Cancer Association of South Africa.
0001-2815/79/090296-07 \$02.50/0@ 1979 Munksgaard, Copenhagen

Dravidian

$$
\begin{array}{lll}
\text { (a) Hindu } & \text { 1. Tamil } & 38 \\
& \text { 2. Telegu } & 12
\end{array}
$$

Others
All Indians who were classified as "other" have been omitted from this survey.

Blood samples were taken from 249 confirmed cancer cases over a period of 2 years. Confirmation of carcinoma was obtained by cytology or histology and confirmation of leukemia by hematology. Controls consisted of 603 unrelated donors or staff members, 140 of whom have been typed with workshop sera and another 250 who were typed concurrrently with the cancer patients. Two-hundred-and-ten antisera were used to define 14 antigens at the A locus, 22 at the B locus and three at the C locus. Their specificity was confirmed during the Sixth and Seventh Histocompatibility Workshops. The subdivision of Bw40 in Indians into Bw40.1, Bw40.2, and of B5 into four components was reported at the Seventh Workshop (Hammond et al. 1975, 1977b). In this report, B5 cells that were not Bw51 or Bw52 were classed as Bw5 IND. The N.I.H. standard microcytotoxicity test was used throughout.

Results

The control group, 250 unrelated donors typed concurrently with the cancer patients were matched for age, sex and racial subgroup. A comparison of antigen frequencies between this control group and another group of 353 unrelated donors showed no significant differences and consequently the data were combined to provide a larger control population.

The numbers of patients and controls in each of the four racial subgroups are shown in the column headings of Table 1. The Tamil and Telegu results are combined in.
the Dravidians, and Hindi and Muslim are combined to form the Aryan category. The total is shown in the column "Total Indians".

The significance of the difference between the frequency of each antigen in the control group and in the cancer patients for each of the four racial groups was calculated using a computer program for 2×2 chi-squares. If the difference was significant the calculations were repeated using Yates' correction or, if any number in the 2×2 table was less than 10 , Fisher's exact method was used. The same procedure was followed in examining the total population and the Dravidian and Aryan sub-groups. The frequencies that were still significantly different are marked with asterisks in Table 1.

We then looked in more detail at those antigens which showed significantly different frequencies. In Table 2 the frequencies of these antigens in patients with cancer of the breast and patients with cancer of the cervix are compared with the control group. Fisher's exact method was used to calculate probabilities.

Gene frequencies were estimated from Table 1 using the formula $g=1-\sqrt{1-\mathrm{f}}$ where f is the antigen frequency, and the haplotype frequencies were estimated from the phenotype data by the method of Mattiuz et al. (1970).

Discussion

Significant differences between the antigen frequencies in patients and controls are marked with asterisks in Table 1. However, when corrected for the number of antigens and the four race groups (39×4) only one shows borderline significance. The very high frequency of A11 in Tamil cancer patients has a chi-square value of 14.35 and

Table 1
HLA antigen frequencies in per cent

	TAMIL		TELEGU		HINDI		MUSLIM		DRAVIDIAN		ARYAN		TOTAL INDIANS	
	$\begin{aligned} & \text { Controls } \\ & 288 \end{aligned}$	$\begin{gathered} \text { Cancer } \\ 118 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 122 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 40 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 133 \end{gathered}$	Cancer 66	$\begin{gathered} \text { Controls } \\ 60 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 25 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 410 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 158 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 193 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 91 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 603 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 249 \end{gathered}$
Al	30.6	26.3	35.2	47.5	16.5	24.2	23.3	24.0	32.0	31.6	18.7	24.2	27.7	28.9
A2	30.6	41.5	41.0	22.5	21.1	27.3	35.0	44.0	33.7	36.7	25.4	31.9	31.0	34.9
A3	15.3	14.4	12.3	5.0	17.3	6.1	8.3	8.0	14.4	12.0	14.5	6.6	14.4	10.0
A11	25.0	44.1**	25.4	20.0	37.6	36.4	15.0	24.0	25.1	38.0*	30.6	33.0	26.9	36.1*
Aw 23	0.7	0.8	2.5	0	0	1.5	0	0	1.2	0.6	0	1.1	0.8	0.8
Aw 24	29.2	24.6	18.9	42.5*	30.8	27.3	33.3	28.0	26.1	29.1	31.6	27.5	27.9	28.5
A25	1.7	2.5	1.6	2.5	1.5	1.5	3.3	4.0	1.7	2.5	2.1	2.2	1.8	2.4
A26	8.0	4.2	4.9	7.5	3.8	3.0	11.7	4.0	7.1	5.1	6.2	3.3	6.8	4.4
A28	13.9	8.5	9.0	12.5	20.3	15.2	15.0	16.0	12.4	9.5	18.7	15.4	14.4	11.6
A29	0.7	1.7	0.8	0	0.8	1.5	0	0	0.7	1.3	0.5	1.1	0.7	1.2
Aw 30	3.1	4.2	4.9	7.5	3.0	7.6	6.7	12.0	3.7	5.1	4.1	8.8	3.8	6.4
Aw 31	2.4	2.5	2.5	0	6.0	4.5	5.0	4.0	2.4	1.9	5.7	4.4	3.5	2.8
Aw 32	2.1	0.8	3.3	2.5	3.0	3.0	3.3	4.0	2.4	1.3	3.1	3.3	2.7	2.0
Aw 33	7.3	3.4	5.7	0	6.0	10.6	5.0	8.0	6.8	2.5	5.7	9.9	6.5	5.2
1 antigen	29.5	20.3	32.0	30.0	32.3	28.8	35.0	20.0	30.2	22.8	33.2	26.4	31.2	24.1
B5	37.8	31.3	36.0	52.5	37.6	27.2	33.3	36.0	37.3	36.7	36.3	29.7	37.0	34.2
B7	15.6	11.9	13.9	- 5.0	6.8	10.6	10.0	8.0	15.1	10.1	7.8	9.9	12.8	10.0
B8	5.9	5.1	6.6	10.0	3.8	1.5	8.3	0	6.1	6.3	5.2	1.1	5.8	4.4
B13	6.9	5.1	9.0	5.0	6.0	4.5	3.3	4.0	7.6	5.1	5.2	4.4	6.8	4.8
B14	0	0	'0	0	0	1.5	3.3	0	0	0	1.0	1.1	0.3	0.4
B15	9.7	13.6	12.3	10.0	13.5	13.6	11.7	24.0	10.5	12.7	13.0	16.5	11.3	14.1
B16	2.1	7.6	2.5	2.5	2.3	1.5	1.7	0	2.2	6.3	2.1	1.1	2.2	4.4
B17	22.9	30.5	23.0	32.5	16.5	21.2	16.7	16.0	22.9	31.0	16.6	19.8	20.9	26.9
B18	1.4	2.5	2.5	0	5.3	6.1	5.0	4.0	1.7	1.9	5.2	5.5	2.8	3.2
Bw21	1.7	0	1.6	0	2.3	4.5	1.7	4.0	1.7	0	2.1	4.4	1.8	1.6
Bw 22	2.8	6.8	2.5	10.0	1.5	3.0	1.7	12.0	2.7	7.6	1.6	5.5	2.3	6.8*
B27	1.7	0.8	0	0	6.8	0	3.3	4.0	1.2	0.6	5.7	1.1	2.5	0.8
Bw 35	18.8	13.6	25.4	7.5	18.8	18.2	21.7	32.0	20.7	12.0	19.7	22.0	20.4	15.7
B37	4.9	5.9	4.1	2.5	2.3	7.6	0	0	4.6	5.1	1.6	5.5	3.7	5.2

Table 1 (Continued)

	TAMIL		TELEGU		HINDI		MUSLIM		DRAVIDIAN		ARYAN		TOTAL INDIANS	
	$\begin{aligned} & \text { Controls } \\ & 288 \end{aligned}$	$\begin{gathered} \text { Cancer } \\ 118 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 122 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 40 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 133 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 66 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 60 \end{gathered}$	Cancer 25	$\begin{gathered} \text { Controls } \\ 410 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 158 \end{gathered}$	$\begin{gathered} \text { Controls } \\ 193 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 91 \end{gathered}$	$\begin{aligned} & \text { Controls } \\ & 603 \end{aligned}$	Cancer 249
Bw40.1	17.0	14.4	24.6	10.0	12.8	21.2	16.7	12.0	19.3	13.3	14.0	18.7	17.6	15.3
Bw 40.2	13.5	18.6	9.0	20.0	15.8	21.2	0	4.0	12.2	19.0	10.9	16.5	11.8	18.1
Bw42	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bw44	9.4	5.9	4.1	15.0	21.1	19.7	18.3	20.0	7.8	8.2	20.2	19.8	11.8	12.4
Bw45	0	0	0	0	0	0	0	4.0	0	0	0	1.1	0	0.4
Bw51	20.8	16.1	26.2	25.0	18.8	4.5*	13.3	8.0	22.5	18.4	17.1	5.5*	20.8	13.7
Bw52	10.5	12.7	5.7	25.0*	15.0	10.6	15.0	20.0	9.0	15.8	15.0	13.2	11.0	14.9
Bw5 IND	4.5	0.8	1.6	0	1.5	7.6	5.0	8.0	3.7	0.6	2.6	7.7	3.3	3.2
Bw 53	2.1	1.7	2.5	2.5	2.3	4.5	0	0	2.2	1.9	1.6	3.3	2.0	2.4
1 antigen	27.8	25.4	23.0	17.5	27.1	16.7	43.3	16.0	26.3	23.4	32.1	16.5*	28.4	20.9
Cw2	1.4	4.2	0.8	0	3.8	1.5	0	0	1.2	3.2	2.6	1.1	1.7	2.4
Cw 3	6.6	14.4	9.8	7.5	10.5	9.1	6.7	8.0	7.6	12.7	9.3	8.8	8.1	11.2
Cw4	8.0	2.5	9.0	0	4.5	1.5	0	8.0	8.3	1.9*	3.1	3.3	6.6	2.4

* uncorrected $P<0.01$.
** uncorrected $P<0.0005$.

Table 2
HLA antigen frequencies in per cent

	TAMIL			TELEGU					
	$\begin{gathered} \text { Control } \\ 288 \end{gathered}$	$\begin{gathered} \text { Breast } \\ 53 \end{gathered}$	$\begin{gathered} \text { Cervix } \\ 25 \end{gathered}$	$\begin{gathered} \text { Control } \\ 122 \end{gathered}$	Breast 14	Cervix 11			
A11	25.0	43.4*	52.0*	25.4	21.4	27.3			
Aw24	29.2	32.1	20.0	18.9	57.1*	18.2			
Bw22	2.8	7.5	12.0	2.5	7.1	18.2			
Bw51	20.8	9.4	28.0	26.2	14.3	45.5			
Bw52	10.5	13.2	8.0	5.7	42.9**	18.2			
1 antigen	27.8	13.2	32.0	23.0	0	27.3			
	HINDI			MUSLIM			DRAVIDIAN		
	Control	Breast	Cervix	Control	Breast	Cervix	Control	Breast	Cervix
	133	30	16	60	11	3	410	67	36
A11	37.6	40.0	37.5	15.0	27.3	33.3	25.1	38.8	44.4
Aw24	30.8	23.3	37.5	33.3	54.5	0	26.1	37.3	19.4
Bw22	1.5	6.7	0	1.7	0	0	2.7	7.5	13.9*
Bw5 1	18.8	6.7	0	13.3	18.2	0	22.5	10.4	33.3
Bw5 2	15.0	6.7	18.8	15.0	18.2	0	9.0	19.4	11.1
1 antigen	27.1	10.0	18.8	43.3	18.2	33.3	26.3	10.4*	30.6

	ARYAN			INDIAN		
	$\begin{gathered} \text { Control } \\ 193 \end{gathered}$	Breast 41	Cervix 19	Control 603	$\begin{gathered} \text { Breast } \\ 108 \end{gathered}$	Cervix 55
A11	30.6	36.6	36.8	26.9	38.0	41.8
Aw24	31.6	31.7	31.6	27.9	35.2	23.6
Bw22	1.6	4.9	0	2.3	6.5	9.1*
Bw51	17.1	9.8	0	20.8	10.2	21.8
Bw52	15.0	9.8	15.8	11.0	15.7	12.7
1 antigen	32.1	12.2	21.1	28.4	11.1***	29.3

* Uncorrected $P<0.01 . \quad$ ** Uncorrected $P($ exact $)=0.00046$.
*** Uncorrected P (exact) $=0.00005$.
a P value after correction of 0.078 . Table 2 shows that the frequency of A11 is increased in both cancer of the breast and cancer of the cervix in Tamils. The increase of Aw24 in Telegu patients with breast cancer is not significant after correction.

The inverse relationship between. Bw51 and Bw52 in cancer of the breast and
cancer of the cervix is most noticeable in the Telegu although the same trend is seen in the Tamil. Bw51 has an increased frequency in cancer of the cervix, while Bw5 2 is increased in cancer of the breast. The increase is greatest in Telegus with breast cancer. This relationship is not found in the Aryan Indians. Bw 22 shows an increase

Table 3
Haplotype frequencies with significant linkage disequilibrium. (All values $\times 10^{3}$)

	TAMIL		TELEGU		HINDI		MUSLIM		DRAVIDIAN		ARYAN		INDIAN	
	$\begin{gathered} \text { Control } \\ 288 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 118 \end{gathered}$	$\begin{gathered} \text { Control } \\ 122 \end{gathered}$	Cancer 40	$\begin{gathered} \text { Control } \\ 133 \end{gathered}$	Cancer 66	$\begin{gathered} \text { Control } \\ 60 \end{gathered}$	Cancer 25	$\begin{gathered} \text { Control } \\ 410 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 158 \end{gathered}$	$\begin{gathered} \text { Control } \\ 193 \end{gathered}$	$\begin{gathered} \text { Cancer } \\ 91 \end{gathered}$	$\begin{gathered} \text { Control } \\ 603 \end{gathered}$	Cancer 249
1,17	62**	67*	96**	106	27	40	28	36	72**	76*	27	39	57**	62*
1,37	20**	0	16	0	7	12	0	0	19**	0	5	9	15**	2
2, 40.1	37*	41	41	0	5	28	45	35	39*	28	17	29	32*	28
24, 7	30	16	21	9	0	27	9	17	28*	14	9	25	18	18
24, 17	0	17	0	12	0	0	0	10	0*	16	0	0	0^{*}	8
24, 52	20	0	6	8	28	37	25	57	16	0	27	42	20*	13
33, 44	13*	8	4	0	. $26{ }^{*}$	29	7	18	10*	6	20*	26	13**	14*

* Absolute value of $\Delta>2$ S.E.
** Absolute value of $\Delta>3$ S.E.
in all cancer patients and this increase is seen in both types of cancer, except in Muslims.

The frequency of individuals with only one detectable antigen at the B locus is reduced in cancer of the breast in all four ethnic groups and when considering the Indians as a whole the exact $P=0.00005$. This should be multiplied by eight (four ethnic groups $\times 2$ loci) to give a $P=0.0004$, but even if we were to consider the individuals with only one detectable antigen as possessing some rare, as yet serologically undectable antigen, and apply a correction of $39 \times 4 \times 2$ we arrive at a $P=0.016$. However, this low frequency means that more of these patients are heterozygous at the B locus in contrast to patients with cancer of the cervix who have frequencies similar to the control population.

Gerkins et al. (1974) investigated the number of antigens present at each locus in old and young people with and without cancer. The results showed a trend towards homozygosity in cancer patients but the results included all types of cancer. In an earlier study of HLA and cancer in South African Negroes (Hammond et al. 1977) we did not find any significant differences in the number of antigens detected at the A or B loci in cancer of the breast but heterozygosity at the A locus was increased in cancer of the esophagus.

Table 3 shows the haplotype frequencies with significant linkage disequilibrium. The A1, B17 haplotype is the most common and typical of Asian Indians, with the highest frequency occurring in the Telegu speaking Dravidians from Southern India. The contrast in frequency of the $A 1, B 37$ haplotype and the $A w 24, B 17$ haplotype is noteworthy. Cancer patients do not show the significant linkage disequilibrium that is evident in the control population. The
delta value is positive for the $A 1, B 37$ haplotype but it is negative for the $A 24$, $B 17$ haplotype. The presence of the $A w 24$: B17 haplotype may indicate susceptibility to cancer of the breast because the frequency of this haplotype was .024 in all Indians with cancer of the breast and .044 in Dravidians with cancer of the breast, whereas there were no patients with cancer of the cervix who had the antigens Aw24 and B17 together.

References

Gerkins, V. R., Ting, A., Menck, H. T., Casagrande, J. T., Terasaki, P. I., Pike, M. C. \& Henderson, B. E. (1974) HLA Heterozygosity as a genetic marker of long-term. survival. J. Nat. Cancer Ins. 52; 6, 1909.
Hammond, M. G., Appadoo, B. \& Brain, P. (1974) Subdivision of HLA5 and comparative studies of the HLA polymorphism in South African Indians. Tissue Antigens 4, 42.
Hammond, M. G., Appadoo, B. \& Brain, P. (1975) HLA antigens in Bantu and Indians. Histocompatibility Testing 1975. Munksgaard, Copenhagen.
Hammond, M. G., Appadoo, B. \& Brain, P. (1977a) HLA and cancer in South African Negroes. Tissue Antigens 9, 1.
Hammond, M. G., Appadoo, B. \& Brain, P. (1977b) HLA antigens in South African Negroes and Indians. Histocompatibility Testing 1977, Munksgaard, Copenhagen.
Mattiuz, P. L., Ihde, D., Piazza, A., Ceppellini, R. \& Bodmer, W. F. (1970) New approaches to the population. Genetic and segregation analysis of the HLA system. Histocompatibility Testing 1970, Munksgaard, Copenhagen.
Mistry, S. D. (1965) Ethnic groups of Indians in South Africa. S. Afr. Med. J. 39, 691.
Schonland, M. \& Bradshaw, E. (1968) Cancer in the Natal African and Indian. Int. J. Cancer 3, 304.

Address:
M. G. Hammond

Natal Institute of Immunology
P.O. Box 2356

Durban, 4000
South Africa

HLA and Cancer of the Esophagus in South African

 NegroesM. G. Hammond and B. Angorn
Natal Institute of Immunology and University of Natal Medical School, Durban, South Africa

Received for publication 1 February, accepted 14 March 1980

In a previous investigation (Hammond et al. 1977) we found an increased frequency of HLA-Bw45 in Negroes with cancer of the esophagus (uncorrected $P<0.005$). This was not significant after correcting for the number of antigens tested but nevertheless we felt that a follow-up study was necessary because of the very high incidence of this cancer in the Negro population and the relatively high frequency of HLA-Bw45 in Negroes compared to other races.

A further 153 patients with confirmed cancer of the esophagus were HLA typed using almost the same set of 180 sera as in the original investigation. Table 1 shows the antigen frequencies of the two groups of patients, the total number of patients and the controls.

The frequency of HLA-Bw45 in the second group of patients was not significantly different from the frequency in controls, which means that our original observation was probably due to chance. In the first group there was also a signifi-
cant decrease in the frequency of patients with only one detectable antigen at the A locus but this was not confirmed in the second group.

Acknowledgments

We wish to acknowledge the expert technical assistance of Mrs F. Buckle and Mr J. Govender.

This work was supported by a grant from the National Cancer Association of South Africa.

References

Hammond, M. G., Appadoo, B. \& Brain, P. (1977) HLA and cancer in South African Negroes. Tissue Antigens 9, 1-7.

Address:

Dr. M. G. Hammond
Transplantation Unit
The Natal Institute of Immunology
P.O. Box 2356

Durban, 4000
S. Africa

Table 1
Percentage frequency of HLA antigens in Negroes
with cancer of the esophagus

HLA	$\begin{gathered} \text { Group I } \\ \quad 101 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Group II } \\ & 153 \\ & \hline \end{aligned}$	Total 254	$\begin{gathered} \text { Controls } \\ 756 \\ \hline \end{gathered}$
Al	6.9	7.2	7.1	5.8
A2	28.7	17.6	22.1	20.1
A3	12.9	11.1	11.8	13.5
All	0	0	0	0.1
Aw23	17.8	17.6	17.7	19.2
Aw24	8.9	6.5	7.5	3.3
A 25	18.8	15.7	16.9	13.9
A 26	11.9	12.4	12.2	7.5
A 28	17.8	18.3	18.1	20.0
A 29	16.8	16.3	16.5	16.7
Aw30	36.6	37.3	37.0	39.6
Aw31	8.9	10.5	9.8	12.6
Aw32	1.0	4.6	3.2	1.6
1 Antigen	12.9	24.8	20.1	26.2
B 5	0	1.3	0.8	2.7
B 7	19.8	24.8	22.8	16.0
B 8	13.9	19.6	17.3	13.9
B 13	4.0	2.0	2.8	4.8
B 14	4.0	4.6	4.3	6.1
B 15	4.0	0.7	2.0	5.8
B 16	2.0	2.6	2.4	2.4
B 17	42.6	32.7	36.6	38.1
B 18	5.9	8.5	7.5	3.8
Bw21	2.0	2.6	2.4	0.5
Bw22	0	0	0	0
B 27	0	0	0	0.3
Bw35	4.0	5.2	4.7	7.3
B 40	\bigcirc	1.3	0.8	1.6
Bw42	24.8	25.5	25.2	27.7
Bw44	15.8	17.6	16.9	16.0
Bw45	15.8	7.2	10.6	6.4
1 Antigen	36.6	47.1	42.9	46.2
${ }^{\text {a }}$ Hammond	977).			

Cancer of the

Esophagus

Volume I

Editor
Carl J. Pfeiffer, Ph.D.
Professor of Gastrointestinal Physiology
Faculty of Medicine
Memorial University of Newfoundland St. John's, Newfoundland, Canada
CRC Series on Gastrointestinal Disease
Editor-in-Chief
Carl J. Pfeiffer

CRC Press, Inc. Boca Raton, Florida

Chaper 11

I! A AND CANCER OF THE ESOPHAGUS

M. G. Hammond

TABLE OF CONTENTS
I. The HLA System 140
II. HLA and Disease 140
III. HLA and Cancer of the Esophagus 140
References 148

1. THE HLA SYSTEM

The major histocompatibility system of man is called HLA. It refers to a genetic region on the shent arm of chromosome 6^{1} that plays a dominant role in the survival of grafts. The letcis HL stand for Human Leukocyte and the A originally stood for the A locus, but in 1975 HLA was made the official designation for the whole region. ${ }^{2}$

At first only two loci were recognized, A and B, and these two have been studied the most. Nearly all the work on transplantation, disease associations, and population studies has been done on antigens of the A and B loci. The C locus was first proposed in 1970,' but because of difficulties in defining the antigens, only eight have so far been recognized. ${ }^{4}$ The D locus was included in 1975^{2} and more recently, the DR (Drelated) locus has been defined using B lymphocytes. ${ }^{3}$

Each well-defined antigen is identified with a letter for the locus and a number. Historically, the numbers used for the A and B loci do not overlap but the C, D, and DR antigens are numbered starting with one. Antigens identified during the International Histocompatibility Workshops are prefixed with a W, and when complete agreement is reached, the W is dropped. Table 1 lists the currently identifiable antigens at each locus.

A haplotype is the combination of closely linked HLA genes on the same chromosome transmitted from parent to child. Two haplotypes; one from each parent, embody all the HLA genes in any individual. Thus, there is a maximum of two A and two B loci antigens present. In those individuals where only one antigen is identified at a locus, there is a strong probability of homozygosity. ${ }^{6}$

Not all the genes have been defined but the combined frequency of unidentified genes is only about 2% at the A locus and about 4% at the B locus in European populations, while in other populations the frequency of unidentified genes is larger.'

The frequencies of individual antigens vary widely in different population groups and Table 2 compares the antigen frequencies in Caucasians, Negroes, and Asian Indians. It is noteworthy that some antigens are restricted to certain populations.

Linkage disequilibrium is the phenomenon of two genes occurring on the same haplotype significantly more frequently than would be expected by chance. Thus, the AI and $\mathbf{B 8}$ genes are present on the same chromosome in the Caucasian population about four times more frequently than would be expected from random matings. Table 3 shows that linkage disequilibrium between two genes can be characteristic of some populations.

11. HLA AND DISEASE

The histocompatibility locus (H-2) of mice has been shown to be involved in susceptibility to cancers ${ }^{5}$ and the discovery that specific immune response genes, Ir, are located in the $\mathrm{H}-2$ complex of mice ${ }^{9}$ led to numerous studies in man.

Kourilsky et al. ${ }^{10}$ and Amiel et al." were the first to study the HLA antigens of patients with malignant diseases, but in general only weak associations have been found between III, A antigens and cancer. The combined relative risk of the antigen, HLA A1, in 25 independent investigations of Hodgkin's disease was highly significant but the risk of 1.38 was not nearly as great as that found for some HLA antigens and nonmalignant diseases such as ankylosing spondylitis, ${ }^{12}$ where the combined relative risk was 87.4 in Caucasians.

III. HLA AND CANCER OF THE ESOPHAGUS

The overall cancer incidence in South African Negroes is similar to that in Cauca-

Table 1
WHO-RECOGNIZED HLA SPECIFICITIES (BROAD SPECIFICITIES ARE SHOWN IN BRACKETS)

HLA-A	HLA-B	HLA-D
AI	B5	Dwl
A2	B7	Dw2
A3	B8	Dw3
A9	B12	Dw4
Al0	B13	Dw5
All	B14	Dw6
Aw23 [9]	B15	Dw7
Aw24 [9]	Bw16	Dw8
A 25 [10]	B17	Dw9
A 26 [10]	B18	Dw10
A28	Bw21	Dw11
A29	Bw22	Dw12
Aw30	B27	
Aw31	Bw35	
Aw32	B37	
Aw33	Bw38 [16]	$\begin{gathered} \text { HLA- } \\ \text { DR } \end{gathered}$
Aw 34	Bw39 [16]	
Aw36	B40	DRI
Aw43	Bw41	DR2
	Bw42	DR3
	Bw44 [12]	DR4
	Bw45 [12]	DRS
HLAC	Bw46	DRw6
	Bw47	DR7
Cwl	Bw48	DRw8
Cw2	Bw49 [21]	DRw9
Cw3	Bwso [21]	DRwi0
Cw4	Bws [5]	
Cw5	Bw52 [5]	
Cw6	Bw53	
Cw7	Bws4 [22]	
Cw8	Bw5s [22]	
	Bw56 [22]	
	Bws7 [17]	
HLA-B	Bws8 [17]	
	Bw59	
Bw4	Bw60 [40]	
Bw6	Bw61 [40]	
	Bw62 [15]	
	Bw63 [15]	

sians, but there are differences in the incidence rates for different sites of cancer. A survey of cancer in Durban Negroes by Schonland and Bradshaw ${ }^{13}$ showed that cancer of the esophagus is the most common male malignancy and that it has, in this population, one of the highest reported incidences in the world. They reported an age-adjusted incidence rate of 26.1 per 100,000 for Negro males and 8.3 for Negro females.

Our first investigation determined the HLA antigens of 500 confirmed cancer cases

Table 2
 PERCENTAGE FREQUENCY OF HLA ANTIGENS IN THREE RACIAL GROUPS

	$\begin{gathered} \text { Caucasian } \\ 1100 \end{gathered}$	Negro 1000	Asian Indians 706
Al	29.7	6.5	27.2
A2	45.3	21.3	32.0
A3	29.6	13.3	14.4.
A11	12.4	0.1	27.1
An 23	1.9	18.4	0.6
Aw 24	16.8	3.9	27.5
A 25	3.7	15.3	2.0
A26	4.9	8.5	6.2
A28	8.7	20.3	14.3
A29	5.5	16.3	1.0
Ax.30	4.5	37.6	4.0
A 4.31	5.2	10.9	3.4
A 4.32	2.3	1.8	2.4
Aw33	$0.8{ }^{\circ}$	$0.7 *$	$7.8{ }^{\circ}$
One antigen	28.7	25.1	30.2
B7	26.2	18.2	12.5
B8	22.0	14.1	6.2
B13	4.6	4.8	6.5
B14	7.2	6.2	0.3
B15	12.0	5.2	10.8
Bw 16	3.2	2.3	2.4
1117	7.5	38.5	21.5
B18	2.5	4.0	3.3
Bu. 21	1.0	0.8	2.0
Bu22	4.6	0	2.7
B27	6.3	0.3	2.3
Bu. 35	12.5	6.5	21.5
B37	0.7	0	4.2
Bu41	0.3 *	1.0^{*}	$0{ }^{*}$
Bw42	0	25.5	0
Bw44	28.9	16.4	11.8
Bw45	0.9	7.6	0.1
Bw46	$0{ }^{*}$	$0 \times$	0 *
Bu.51	9.5*	1.8*	21.2*
Bw52	1.4	0	10.1
BSIND	0	0	3.1
Rws 3	0.3	2.2	1.7
Bw60	13.2	1.2	16.9
Bw61	0.2	0	12.2
One antigen	35.2	43.4	26.8
Cw 1	8.0^{*}	5.0^{*}	0 *
Cw2	6.0	1.2	14.1
Cw3	14.6	8.8	7.7
Cw4	$14.3{ }^{\circ}$	15.0*	14.0 *
Cws	12.0*	2.0*	4.0^{*}

over an 18 month period. ${ }^{14}$ The most common malignancy was cancer of the cervix (143 cases), followed by cancer of the esophagus with 101 cases. Table 4 compares the frequency of HLA antigens in these patients with the frequency in 500 control subjects who were typed concurrently. The frequency of the antigen HLA Bw45 is significantly

Table 3
CHARACTERISTIC HAPLOTYPE FREQUENCIES ($\times 10^{3}$) IN THREE DIFFERENT RACES
$\left.\begin{array}{lccc}\text { Caucasian } \\ \mathrm{N}=1000\end{array} \mathrm{Negro} \begin{array}{c}\text { Indian } \\ \mathrm{N}=1000\end{array}\right) \mathrm{N}=706$
greater in patients with cancer of the esophagus ($p<0.005$), but in studies of this kind a correction must be applied by multiplying the probability by the number of comparisons. In this case the frequencies of 32 antigens were compared and the resulting probability was no longer significant. The frequency of patients with only one detectable antigen at the A locus was 12.9%. This is significantly different from the frequency in the controls at the 5% level and this might mean that individuals who are heterozygous at the A locus are more susceptible to cancer of the esophagus. Data has been presented ${ }^{15.16}$ indicating increased heterozygosity in aged persons, but Table 5 shows that both young (<40 years) and old (>60 years) groups of patients have a decreased frequency of homozygosity compared to controls.

These findings prompted a follow-up investigation and an additional 141 confirmed cases in Durban were tested. Epidemiological studies have shown that the Transkei and Ciskei (part of the hinterland of the port of East London) are regions with a very high incidence of esophageal cancer. ${ }^{17}{ }^{18}$ Dr. E. F. Rose of the National Research Institute for Nutritional Diseases has sent 67 blood samples to us for HLA typing. The total of 309 was divided into two groups for analysis: 93 Xhosas, Fingoes, and others who originated from the high-incidence areas of Transkei and Ciskei, and 216 Zulus. Analysis of the 1000 random controls revealed that 55 were Xhosa but there were no significant differences between the frequencies of the HLA antigens of Xhosa and Zulu. This is not surprising because all sub-Saharan Negroes are broadly alike in genetic constitution. ${ }^{19}$
Table 6 delineates the antigen frequencies in both groups of patients and in all the patients, while in Table 7 selected frequencies are shown in more detail. The antigen, A10, consists of A25 and A26. We see that the increased frequency of A10 in the total group of patients is caused by the increased frequency of A26 and also that this increase is due to the significant increase in Xhosas. Correcting the probability by mul-

Table 4
 PERCENTAGE FREQUENCY OF HLA ANTIGENS IN 101 PATIENTS
 WITH CANCER OF THE ESOPHAGUS COMPARED WITH CONTROLS

	$\begin{aligned} & \text { Convols } \\ & 500 \end{aligned}$	Cancer of the esophagus 101
A)	5.0	6.9
A2	20.6	28.7
A3	14.2	12.9
All	0.2	0
Awi 23	17.2	17.8
Aw24	4.8	8.9
A 25	15.6	18.8
A. 26	9.0	11.9
A 28	21.2	17.8
A29	17.0	16.8
Aw. 30	39.4	36.6
Aw31	11.4	8.9
A4. 32	1.8	1.0
Aw. 33	N.T.	N.T.
One antigen	22.6	12.9
B7	17.8	19.8
B8	15.8	13.9
B13	4.8	4.0
B14	5.2	4.0
B15	4.2	4.0
B16	3.2	2.0
B17	41.2	42.6
B18	3.8	5.9
Bu21	0.6	2.0
B27	0.6	0
Bw35	6.2	4.0
Bw42	25.0	24.8
Bw44	15.8	15.8
Bw45	7.2	15.8
Bwis	1.2	0
Bu53	N.T.	N.T.
Bw60	1.0	0
One amtigen	42.8	36.6
Cw2	13.0	15.8
Cw3	6.0	7.9

tiplying by the number of antigens tested yielded a $p<0.016$ and a relative risk of 2.8. The frequency of A26 in the small number of Xhosa controls was only 9.1% so that the increase in Xhosa patients does not seem to be because of an increased frequency of the A26 antigen in the Xhosa population.

The initial findings of an increase in Bw45 and increased heterozygosity was not confirmed in the larger sample but the increased frequency of Cw2 reaches borderline significance (after correction, $p<0.033$) in the total group of patients with a relative risk of 1.7.

Haplotype frequencies were estimated from the population data by the method of Mattiuz et al., ${ }^{20}$ and some of these are shown in Table 8. There are no significant

Table 5
PERCENTAGE FREQUENCY OF INDIVIDUALS WITH ONLY ONE DETECTABLE ANTIGEN AT THE FIRST AND SECOND LOCUS IN RELATION TO AGE

Table 6
PERCENTAGE FREQUENCY
OF HLA ANTIGENS IN
XHOSA AND ZULU PATIENTS
WITH CANCER OF THE
ESOPHAGUS

	Xhosa (93)	Zulu (216)	Total (309)
A1	20.4	6.5	6.1
A2	11.8	11.8	21.4
A3	17.2	18.5	11.3
Aw23	5.4	6.9	6.5
Aw24	12.9	18.1	16.5
A25	20.4	13.0	15.2
A26	18.3	17.6	17.8
A28	12.9	16.7	15.5
A29	41.9	37.5	38.8
Aw30	8.6	9.3	9.1
Aw31	5.4	2.8	3.6
Aw32	19.4	20.3	20.1
One antigen	24.7	22.7	23.3
B7	14.0	18.1	16.8
B8	0	3.2	2.3
B13	8.6	4.2	5.5
B14	6.5	1.4	2.9
B15	4.3	2.8	3.2
B16	37.6	34.3	35.3
B17	8.6	6.5	7.1
B18	1.1	2.8	2.3
Bw.21	2.2	0	0.6
B27	8.6	4.6	5.8
Bw35	2.2	0.5	1.0
B40	23.7	25.5	24.9
Bw42	7.5	18.1	14.9
Bw44	8.6	10.6	10.0
Bw45	3.2	0.5	1.3
Bw51	8.9	44.5	43.7
One antigen	38.7	22.2	22.0
Cw2	21.5	12.0	11.0
Cw3	8.6		

Table 7
SELECTED ANTIGEN FREQUENCIES IN IATIENTS WITH CANCER OF THE ESOPHAGUS

	Controls (1000)	Cancer of the esophagus			
		Xhosa (93)	Zulu (216)	Total (309)	
A25	15.3	12.9	18.1	16.5	
A 26	8.5	20.4***	13.0	15.2**	
A 10	23.8	33.3	31.1	$31.7{ }^{*}$	
One antigen at A locus	25.8	19.4	20.3	20.1	
Bw4s	7.6	8.6	10.6	10.0	
Cu 2	14.1	21.5	22.2^{*}	$22.0 * *$	
Uncorrected $n^{\circ}$$\cdots 0.005$$\cdots 0.001$					
\cdots-* 0.0005					

Table 8
HAPLOTYPE FREQUENCES ($\times 10^{3}$) IN PATIENTS WITH CANCER OF THE ESOPHAGUS

	Xhosa (93)	$\begin{aligned} & \text { Zulu } \\ & \text { (216) } \end{aligned}$	Total (309)
A1. B	21	28^{*}	26°
A2, Bwas	26	26°	26°
A3, B_{8}	20	15	17
Au24, B7	21	25°	24°
A $25 . \mathrm{Bw} 44$	3	26	19
A26, B17	44	17	25
A29, B13	0	$14 *$	10^{*}
A29. Bw44	27	26	27^{*}
Aw $30 . \mathrm{Bw} 42$	83°	66°	710
Aw31. Bw3s	4	9	7

differences between patients and controls. In another study of HL \grave{A} antigens and cancer in the Indian population of Durban ${ }^{20}$ we found only 18 cases of esophageal cancer out of a total of 250 patients (Table 9). The small numbers necessitated the use of Fisher's exact method ${ }^{21}$ for calculating probabilities and only the increased frequency of Aw32 was significant with $p=0.01$. However, when corrected for the number of antigens tested, this was no longer significant. The HLA and Disease Registry ${ }^{12}$ provided data on the HLA antigen frequencies in Caucasians with cancer of the esophagus. ${ }^{22}$ The increased frequency of HLA B7 carried a relative risk of 2.4 but after correction this was not significant. Also shown in Table 9 are the frequencies found by Hashemi et al. ${ }^{23}$ in Iranians living in the Caspian littoral, an area noted for the high incidence of esophageal cancer. ${ }^{24}$ A preliminary report (quoted by Simons and Amjel ${ }^{25}$) of a significant increase of B40 in 71 patients was not confirmed in this larger series. Their detailed analysis of the four ethnic groups studied showed an increase of B18 in Persians with cancer of the esophagus but they suggest that this may be a chance event.

Table 9
 PERCENTAGE FREQUENCY OF HLA
 ANTIGEN IN CAUCASIANS, ASIAN INDIANS, AND IRANIAN PATIENTS WITH CANCER OF THE ESOPHAGUS

HLA		Caucasian ${ }^{22}$ $(N=47)$	Asian Indian ${ }^{20}$ ($\mathrm{N}=18$)	$\begin{aligned} & \text { Iranians }{ }^{21} \\ & (\mathrm{~N}=151) \end{aligned}$
Al		27.7	5.6	22.5
A2		51.3	33.3	22.5
A 3		36.2	16.7	27.8
All		4.3	22.2	12.6
Au23\}	12.8		5.6	29.1
Aun 24			16.7	
Au 25 \}	10.6		0	12.6
Au26)			0	
A28	33.8	12.8	16.7	9.3
A29)		4.3	0	
Au30		4.3	16.7	
Au.31,		N.T.	11.1	
Ax.32		12.8	16.7	
An.33)		N.T.	16.7	
B7		44.7	11.1	7.9
B8		8.5	0	5.3
B13		8.5	5.6	2.6
1314		12.8	0	7.9
1315		8.5	11.1	3.3
B16		N.T.	11.1	6.6
B17		6.4	22.2	6.6
B18		8.5	0	12.6
Bu21		0	5.6	6.6
Bu22		4.3	5.6	11.9
B27		6.4	0	2.0
B4.35		12.8	16.7	33.8
837		N.T.	0	2.6
Bw.44	40.4		16.7	10.6
Bu. 45			5.6	10.6
Bw51	8.5			35.1
Bu'52			27.8	3 . 1
BSIND		N.T.	0	N.T.
Bw 53	8.5	N.T.	5.6	N.T.
Bw60			16.7	113
Bw61)			11.1	1.3.

This needs to be confirmed. Thus it would appear that if there is a "susceptibility" gene within the HLA region, then it must be associated with different HLA antigens in different populations.

REFERENCES

1. Francke, U. and Pellegrino, M. A., Assignment of the major histocompatibility complex to a region of the short arm of human chromosome 6, Proc. Natl. Acad. Sci. U.S.A..74, 1147, 1977.
2. WHO-IUIS Terminology Committee, Nomenclature for factors of the HLA system, in Histocompatibility Testing 1975. Kissnmever-Nielsen, F., Ed.. Munksgaard, Copenhagen, 1975, 5.
3. Sandberg. L., Thorsby'. E., Kissmeyer-Nielsen, F.. and Lindholm, A., Evidence of a third sub-locus within the HLA chromosomal region, in Histocompatibility Testing 1970, Tcrasahi. P. I., Ed., Munksgaard. Copenhagen, 1970, 165.
4. WHO-IUIS Terminology Committee, Nomenclature for factors of the HLA system, in Histocompatibility Testing 1980. Terasaki, P. I., Ed. Munksgaard, Copenhagen, 1980.
5. WHO-IUIS Terminology Commiltee, Nomenclature for factors of the HLA systern, in Histocompalibility Testing 1977, Bodmer, W. F., Ed., Munksgaard, Copenhagen, 1977.
6. Kissmeyer-Nielsen, F, and Thorsby, E., Human Iransplantation antigens, Transplant. Rev., 4, 155, 1970.
7. Pickbourne, P., Piazza, A., and Bodmer, W. F., Population analysis, in Histocompatibility Testing 1977. Bodmer. W'. F.. Ed.Munksgaard, Copenhagen, 1977, 259.
8. Lilly, F., The influence of H -2 type on gross virus leukemogenesis, TranspI. Proc., 3, 1239, 1971.
9. Benacerraf, B. and Katz, D. H., The nature and function of histocompatibility linked immune response gencs. in Immuneqenctics and Immunodeficiency, Benacerraf, H., Ed. Medical and Technical Publishing, London. $1975,117$.
10. Kourilsky, F. M., Dausset, J., Feingold. N., Dupuy, J. M., and Bernard, J., Leucocyte groups and acute leukaemia, J. Natl. Cancer Insi., 41, 81, 1968.
11. Amiel, J. L., Study of the leucocyte phenotypes in Hodgkin's disease. in Histocompatibility Testing 1967. Munksgaard, Copenhagen. 1967, 79.
12. Ryder, L. P., Andersen, E., and Svejgaard, A., HLA and Disease Regisiry Third Report. Munksgaard, Copenhargen, 1979.
13. Schonland, M. and Bradshaw, E., Cancer in the Natal African and Indian 1964-66, Int. J. Cancer, 3, 304, 1968.
14. Hammond, M. G., Appadoo, B., and Brain, P., HLA and Cancer in South African Negroes. Tissue Antigens,9,1. 1977.
15. Gerkins, V. R., Ting, A., Menck, H. T., Casagrande, J. T., Terasaki, P. I., Pike, M. C.. and Henderson, B. E., HLA heterozygosity as a genetic marker of long-term survival, J. Nall. Cancer Inst., 52. 6, 1909, 1974.
16. Macurova, H., Ivanyi, P., Sajdlova, H., and Trojan, J., HLA amigens in aged persons, Tissue Antigens, 6, 269, 1975.
17. Warwick, G. P. and Harington, J. S., Some aspects of the epidemiology and eliology of esophageal cancer with particular emphasis on the Transkei. South Africa, Adv. Cancer Res., 17, 81, 1973.
18. Robertson, M. A., Harington, J. S., and Bradshaw, E., The cancer pattern in African gold miners, Br. J. Cancer, 25, 395, 1971.
19. Tobias, P. V., The biological invalidity of the term Bantu, S. Afr. J. Sci., 67, 517, 1971.
20. Hammond, M. G., Appadoo, B., and Brain, P., HLA and Cancer in South African Indians, Tissue Antigens, 14, 296, 1979.
21. Fisher, R. A., Statistical Methods for Research Workers, 10th ed. . Oliver \& Boyd, Edinburgh, 1946.
22. Terasaki, P. I., Perdue, S. T., and Mickey, M. R., Genetics for Human. Cancer, Raven Press, New York, 1977, 321.
23. Hashemi, S.. Dowlatshahi, K., Day, N. E., Kmet, J., Takasugi, M., Mohagheghpour, N., and Modabber, F. Z., Esophageal cancer studies in the Caspian Littoral of Iran: introductive assessment of the HLA profile in patients and controls. Tissue Antigens, 14, 422, 1979.
24. Kmet, J. and Mahboubi, E., Esophageal cancer in the Caspian Littoral of Iran: initial studies, Science, 175, 846, 1972.
25. Simons, M. J. and Amiel, J. L., HLA and malignant diseases, in HLA and Disease, Dausset, J. and Svejgaard, A.. Eds., Munksqaard, Copenhagen, 1977, 212.

Epstein-Barr Virus and Human Disease • 1990

Edited by
D. V. Ablashi, A. T. Huang, J. S. Pagano, G. R. Pearson, and C. S. Yang

Technical Editor
Kristinë L. Ablashi

Humana Press • Clifton, New Jersey

PRELIMINARY RESULTS OF HLA CLASS I AND CLASS II ANTIGENS IN CHINESE WITH NASOPHARYNGEAL CARCINOMA

M.G. Hammon ${ }^{1}{ }^{*}$, M.M. Hsu ${ }^{2}$, J.Y. Ko 2, R.P. Hsieh ${ }^{3}$
and C.S. Yang ${ }^{1}$
Graduate Institute of Microbiology ${ }^{1}$ Departments of
Otolaryngology ${ }^{2}$ and Clinical Pathology ${ }^{3}$,
College of Medicine,
National Taiwan University. Taiwan, ROC

INTRODUCTION

Simons et al. (1) were the first to report an association between nasopharyngeal carcinoma (NPC) and HLA antigens in Chinese patients. Expanded studies on 153 patients by Simons et al. (2) showed a borderline increase in HA A2 and Bw46. Simons et al..(3) reviewed the data collected during the Second Asia-Oceania Histocompatibility Workshop with respect to NPC in Chinese. The close linkage disequilibrium between Bw46 and DRw9 in controls was not seen in NPC patients but there was a high frequency of blanks. The HLA profile showed differences between newly diagnosed patients and long-term survivors.
${ }^{\dagger}$ This study was supported by a grant from National Science
Council (NSC78-0412-B002-125) Taiwan, Republic of China

* Present address: Transplantation Unit, The Natal Institute of Immunology, P.O.Box 2356 Durban 4000, Rep. of South Africa.

These interesting findings led to the inclusion of NPC as one of the diseases studied in the Third Asia-Oceania Histocompatibilty Workshop and the report by Chan et al. (4) confirmed the previous findings in southern Chinese and also reported that HLA B17(58) had a lower frequency in long term survivors. In contrast northern Chinese showed none of these associations but instead showed an increased frequency of HLA B35.

A comprehensive review by Simons (5) points out that the original findings have been amply confirmed in several reports of both overseas Chinese and in mainland Chinese but only in southern Chinese patients

MATERIALS AND METHODS

SUBJECTS

Patients and controls were of Chinese descent and resident in Taipei. The patient group consisted of 74 unrelated confirmed cases of nasopharyngeal carcinoma who were attending the ENT clinic at the National Taiwan University Hospital.. The control group consisted of 200 unrelated random staff, blood donors and parents of patients awaiting transplantation. Class II antigens were determined in 97 controls.

HLA TYPING

Lymphocytes were isolated on a density gradient and T and B cells were separated by means of nylon wool columns (6) in the first phase of the investigation. Many of the patients, however, had very low lymphocyte counts and we changed to using immunomagnetic beads (Dynal) for separating B cells (7). The yield of B cells was significantly improved but we were still unable to perform satisfactory HLA Class II typing on all the patients.

A complete set of Tenth International Histocompatibility Workshop antisera was used in a two-stage microlympho-cytoxicity test (8) to determine the HLA antigens in the patients. Antigen assignment was based on the Antigen Society reports in the proceedings of the Tenth Workshop (9). Commercial typing trays designed for use in Oriental populations (One Lambda) were used in parallel and appeared satisfactory for nearly all specificities. Some difficulty in antigen assignment was found for A30/A31 and Bw57/Bw62/Bw75 when they occurred together. The antigen frequencies of the control population was based on typing with these commercial trays.

ANTIBODY TESTS:
Antibodies against EBV early antigens (anti-EA) and viral capsid antigens (anti-VCA) in IgG and IgA were tested by the indirect immunofluorescent techniques (10).

RESULTS AND DISCUSSION

The frequency of HLA A2 was increased in the patients $(62.2 \%$ vs $47.0 \%, \mathrm{p} 0.05$) and although the corrected p -value was not significant, this confirms earlier reports. The frequency of B46 was increased but this was not significant. There were no singificant differences at the C locus. HLA DR9 was increased (27.3% vs 21.7%) but not significantly so and there were no differences at the $D Q$ locus. These figures are in agreement with previous reports of increased frequencies of A2, B46 and DR9. The difference was greatest with A2 and least with DR9, giving the impression that the A locus has the most influence. The joint occurrence of combinations of these antigens in patients and controls showed increasing relative risks up to a value of 2.3 for the combination of $\mathrm{A} 2, \mathrm{~B} 46, \mathrm{DR} 9$.

A very interesting finding was the decreased frequency of the All antigen in patients (33.8% vs $60.0 \%, \mathrm{p} 0.0005$). This may indicate a protective effect that is in linkage disequilibrium with this A locus antigen although Svejgaard et al (11) has explained the difficulties in establishing a negative correlation. Table 1 shows the frequency of selected HLA antigens in all patients and in three broad categories. Patients in group A are descendants of families who have lived in Taiwan for many generations. Group B are from the central provinces on the mainland and group C are Cantonese. It is difficult to establish statistical significance with small numbers as happens when subdividing into small groups but some interesting trends have emerged. The A2, B46 and DR9 antigens do not have increased frequencies in patients from the central provinces. This agrees with the report of Chan et al. (4) HLA All was decreased in all groups. B57 was increased in patients with origins on the mainland but not in those from Taiwan. The joint occurrence of A2, B46, DR9 was more frequent in patients from Taiwan. Dividing the patients according to the extent of the carcinoma showed that B46 and DQwl were greatly increased in patients where the cancer had a limited spread whereas DR9 was not. HLA B57 was increased in all stages (Table 2).

Not all the patients were tested for the presence of antiEA and anti-VCA in IgA an IgG. As shown in Table 3, DR9 was decreased in those patients with antibodies. The difference in frequency for B46 was less marked and was not observed for A2. HLA All was not present in patients with anti-EA and markedly decreased in patients with anti-VCA in IgG. Thus, it seems that Chinese with All who make antibodies are less likely to develope NPC. An interesting finding was the increase in B13 and DRw6 in patients with antibodies and a decrease in patients with low titre of antibodies. There was also an inverse relationship between DQwl and DQw3 in patients with and without antibodies which may be caused by linkage disequilibrium with DRw6 and DR9.

> 410. Hammon et al.

Table 1. Selected antigen frequencies in NPC patients

	RANDOM	ALL	A	B	C
N=	200	74	54	9	11
A2	47	62	67	33	64
All	60	34	35	33	27
B35	5	9	7	0	27
B46	22	31	39	11	9
B57	2	19	7	33	27
Cwll	18	16	20	0	9
DR9	22				
DQwl	38	53	53	13	11
D\#w3	75	62	67	25	44

A2 B46

DR9 $10 \quad$| | 21 | $25 \quad 13 \quad 11$ |
| :--- | :--- | :--- | :--- | :--- |

$A=$ Taiwan
$\mathrm{B}=$ Central mainland $\cdot \mathrm{C}=$ Cantonese

Table 2 Selected antigen freqencies in NPC patients

	RANDOM	I	II	III	IV
N=	200	6	30	16	12
A2	47	67	50	75	58
All	60	50	43	19	42
B35	5	0	7	19	17
B46	22	50	23	44	8
B57	2	17	20	19	17
Cwll	18	17	10	25	8
DR9	22	0	28	36	10
DQwl	38	80	55	57	30
DQw3	75	20	62	50	70
A2 B46 DR9	10		0	21	29
I, II, III, IV Stages of NPC					0

Table 3 Antigen frequencies in NPC patients with antibodies

	RANDOM	ALL	lgA EA	lgG EA	lgA VCA	IgG VCA
$\mathrm{N}=$	200	74	7	7	18	26
A2	47	62	71	86	56	69
All	60	34	0	0	22	15
B13	5	9	29	29	28	19
B46	22	31	14	29	22	27
DRw6	11	12	43	29	22	17
DR9	22	27	0	14	6	9
DQwl	38	53	86	71	56	61
DQw3	75	62	29	43	39	48
A2B46DR9	10	21	0	15	0	4

The calculations to estimate haplotype frequencies only showed significant linkage disequilibrium in the total group because of the small numbers involved when considering subgroups. Significant linkage disequalibrium was present for A2, B46 andB46, DR9 in both control groups, and patients, but for A33, B57 and B57.Dr3, it was only present in the patients, and in fact, the frequency of these latter pairs was extremely low in the random controls.

REFERENCES

1. M.J. Simons, G.B. Wee et al., Lancet I: 142-143 (1975). 2. MJ Simons, GB

Wee et al., Natl Cancer Inst Monogr 47:147-151 (1977).
3. M.J. Simons, S.H. Chan et al., Proceedings of the Second Asia and Oceania Histocompatibility Workshop Conference. Immunopublishing, Toorak, Australia p369 (1981).
4. S.H. Chan,C.T. Chew et al., Aizawa M(ed). HLA in Asia-Oceania. Hokkaido, University Press, Hokkaido Japan p396 (1986).
5. M.J. Simons. Hawkins BR (eds.) Human leucocyte antigens in Chinese.

Hong Kong University Press, Hong Kong (1987).
6. J.A. Danilov, G. Ayoub et al., Terasaki, P.I. (ed) Histocompatibility Testing 1980. Los Angeles, UCLA Tissue Typing Laboratory, p287 (1980).
7. F. Vartdal, G. Gaudernack et al., Tissue Antigens 28: 301 (1986).
8. K.K. Mittal, M.R. Mickey et al., Transplantation 6: 913 (1968).
9. B. Dupont (ed) Immunobiology of HLA, vol 1, Histocompatibility Testing 1987. Springer-Verlag, New York (1989).
10. A. Kawamura, M. Takada et al., Gann 61, 55-71 (1970)
11. A. Svejgaard, P. Platz et al., Transplant Rev. 22:3 (1975)

Table 1: CENTRES INVOLVED IN THE 11TH WORKSHOP HODGKIN'S DISEASE STUDY

LABORATORIES N COLLABORATION WITH CLINICAL CENTRES
S. Tonks, J. G. Bodmer Imperial Cancer Research Fund, U. K.
W. M. Howell, S. Devereux Southampton University Hospitals, UK
G. M. Taylor, D. Gokale

St. Mary's Hospital, UK
C. Loeliger, P. Kuehl

University Hospital Eppendorf, Germany
G. Pellegris

Instituto Nazionale Tumori, Italy
K. Takacs, Gy. Petranyi

Nat. Inst. Haematology \& Blood Transfusion, Hungary
E. Gazit

The Chaim Sheba Medical Centre, Israel
E. du Toit, R. Martell

Provincial Lab. for Tissue Immunology, South Africa

M. G. Hammond
Natal Institute of Immunology, South Africa
R. Liang, T. Wong, V. Chan
Queen Mary Hospital, Hong Kong
W. Klitz / *A. Begovich
University of California / *Cetus Corporation, USA
G. Woodfield, M. Roberts
Auckland Regioal Blood Center, New Zealand
A. Mikata, T. Takenouchi
Chiba University, Japan
J. D. Bignon
Centre de Transfusion Sanguine, France

A. M. Oza, T. A. Lister

St. Bartholomew's Hospital, U.K
D. Cunningham

Royal Marsden Hospital, UK.
E. Robinson, N. Haim

Rambam Medical Centre, Israel
P. M. Chen

Veterans General Hospital, Taiwan
E. Ferreira,

Hospital de Clinicas, Brazil
J. M. A. Whitehouse, J. Sweetenham

University of Southampton, UK
D. Crowther, P. Woll

Christie Hospital, UK
W. Zeller, D. K. Hossfeld/*W. Kuse

University Hospital Eppendorf/ *St. Georg Hospital Hamburg, Germany
G. Bonadonna

Instituto Nazionale Tumori, Italy
Zs. Molnar, S. Eckhardt
National Institute of Oncology, Hungary
I Ben-Bassat
The Chaim Sheba Medical Centre, Israe]
P. Jacobs, C. Johnson
University of Cape Town Medical School, South Africa
F. J. T. D. Fernandes-Costa

Natal Institute of Immunology, South Africa
R. Liang, D. Todd, T. K. Chan

Queen Mary Hospital, Hong Kong
S. Horning, S. Rosenberg

Stanford University School of Medicine, USA
V. Harvey, P. Thompson, P. Browett

Auckland Hospital, New Zealand

11th International Histocompatibility Workshop Hodgkin's Disease Study.

J. G. Bodmer ${ }^{\text {I }}$, S.Tonks ${ }^{\text {I }}$, A.M. Oza ${ }^{2}$, A. Mikata ${ }^{3}$, T. Takenouchi ${ }^{3}$, T. A. Lister ${ }^{2}$ \& collaborating centres.

1 Tissue Antigen Laboratory, Imperial Cancer Research Fund, 44, Lincoln's Inn Fields, London WC2A 3PX, U.K.
2 ICRF Medical Oncology Unit, St. Bartholomew's Hospital, 45, Litle Britain, West Smithfield, London EC1A 7BE, U.K.
3 Deparment of Pathology, Chiba University School of Medicine, 1-8-1 Inohana, Chiba City, Chiba 280, Japan.

Introduction

Amiel (1), in his introduction to the first study of the human histocompatibility (HLA) antigens and disease, postulated that as susceptibility to the Gross virus, which gives rise to spontaneous leukaemias in mice, associates with the mouse histocompatibility (H 2) antigens (2), the same mechanism might operate in human susceptibility to viral disease. As Hodgkin's Disease (HD) was suspected to be of viral origin, a suggestion that has been in, out and is now back in fashion (3), this was the disease chosen for this first study. Careful analysis of the serological results indicated that one antigen, then called 4 C , related to what are now called B35, B5 and B18, was significantly raised in patients with HD .

Since then a number of other studies have confirmed the association with these and other Class I HLA antigens (4-10). If data from several studies are pooled an increase in susceptibility to HD is seen in association with HLA-A1, B5, B8 and B18 (10). Nevertheless the relative risks were small and variable in the random patient studies and so the most convincing evidence for the role of HLA in susceptibility to HD came from studies of multi case HD families with more than one affected member, in which an excess of HLA identity between pairs of affected sibs was observed (11). Following the early HLA Class I studies, Class II, specifically HLA-DR alleles, were investigated in HD but no significant associations were seen (10,12,13). As improved methods of typing for HLA-DP were developed, such as restriction fragment length polymorphism (RFLP) $(14,15)$, it was decided to investigate the possibility that alleles at this locus might reveal a Hodgkin's Disease susceptibility gene. In 1989 Bodmer et al (16) described the results of a study using RFLP to type a small number of patients and controls. In this study a significant decrease in a fragment associated with DPw2 was seen in patients compared to controls along with a non-significant increase in a fragment associated with DPw3, 5 and 6.

Following the pilot study mentioned above, an international collaboration was set up as part of the 11th International Histocompatibility Workshop to study the association of HLA-DPB with Hodgkin's Disease using a panel of sequence specific oligonucleotide (SSO) probes in conjunction with the techniques of enzymic amplification of DNA and dot blotting. Twenty officially named DPB alleles were defined by DNA sequencing techniques $(17,18)$.

This study was carried out at two levels, firstly to look for an association between HLA-DPB and overall susceptibility to Hodgkin's Disease and secondly to look for associations of particular alleles with the clinical course of the disease. There is evidence for impaired immunity at presentation in Hodgkin's Disease, and this may correlate adversely with survival (19). The role of HLA in immune function is well established and this could make HLA alleles possible factors in determining survival in patients with Hodgkin's Disease. Some of the early published studies analysed HLA results according to survival, HLA-Al and B8 being found in increased frequency in long term survivors. The HLA types in long term survivors can be compared with those of patients who died shortly after the onset of disease to explore the role of HLA in influencing disease progression. For example in an early study investigating HLA in Hodgkin's Disease, Falk and Osoba (4) found an increase in antigens A1, B5, formerly A5, and B8, formerly A8, in patients with Hodgkin's Disease as a whole, B8 being particularly prevalent in patients who had survived more than 5 years. In addition, the frequency of HLA-A3 was increased in patients with recent onset, suggesting that this could be associated with poor prognosis. Osoba and Falk studied prospectively 79 previously untreated patients who were diagnosed between 1972 and 1973 at The Princess Margaret Hospital, Toronto. The HLA phenotype Aw19 was found to be a highly significant prognostic factor, on univariate as well as multivariate analyses and was independent of stage, age, histology or sex (20). The significance of HLA-Aw19 was also confirmed by comparing the frequency of this antigen between patients in good and bad survival groups. Another recent study reported a significant increase in HLA-B5 in patients who relapsed (21). This is of interest as a preliminary analysis of the patients reported by Osoba et al (20) had also associated this antigen with poor survival, being present relatively frequently in patients who had died within three years of diagnosis (22).

Thus examination of a possible correlation of the frequency distribution of HLA-DPB alleles with clinical parameters is an important component of the study.

The HLA-DPB typing was carried out at the DNA level using a panel of 25 sequence specific nucleotides (SSOs) as described in the Hodgkin's Disease abstract (Tonks et al volume II). A total of 741 patients with Hodgkin's Disease and 686 controls from 17 centres in 12 countries were included in the typing analysis. Table 1 shows a list of the collaborating clinical centres and laboratories involved. The populations included Caucasoid, Black and Oriental patients with ethnically matched controls.

Methods

The clinical centres were asked to provide their collaborating tissue typing laboratory with an EDTA blood sample, $5-10 \mathrm{mls}$ of serum and clinical details for each patient. They were also asked to provide histological slides for central analysis. The laboratories extracted DNA from the blood samples provided and HLA-DPB typed both the patient and controls according to the workshop protocol (DNA Methodology report, this volume). Eight homozygous typing cells were sent to each laboratory for typing as controls. The completed typing data were then sent to the disease study organisers along with copies of the autoradiographs and the clinical pro-formas for analysis. The HLA-DPB alleles were assigned using a computer program designed by A. Wasik and J. G. Bodmer (ICRF). Relative risks and χ^{2} were calculated on the patients and controls to whom alleles had been assigned (23). Data from each centre was analysed against their matched controls and then data from ethnic groups compared (table 2). Using the scores for each SSO, $\chi 2$ and RR for different sequence motifs were also calculated.

The information obtained from the clinical questionnaires (table 3) was used to construct a clinical database. All completed pro-formas were checked at St. Bartholomew's Hospital for any obvious inconsistency. Clinical information for analysis was available on 551 patients from 12 centres. Survival analyses could not be performed on the entire set of data as all patients typed were alive relatively recently, at least at the time of venesection. Historical data from patients treated and followed-up at St. Bartholomew's Hospital was used to illustrate the differences between the population studied for this workshop and an 'unselected' population.

Proportions of patients achieving complete remission (CR) in different prognostic groups were compared using the χ^{2} test with Yates's correction (24). Duration of remission curves were plotted using standard life table methods (25) and compared using the log rank method (26). The significance of prognostic factors in determining the achievement of CR was evaluated by logistic
regression analysis, whereas duration of $C R$ differences were determined using a stepwise linear regression method based on Cox's proportional hazards model (27).

Results

a. Overall analysis

Analysis of the data comparing the frequencies of HLA-DPB alleles in patients and controls was carried out for each patient group separately (table 2). In addition, sets of data from closely related populations were combined if the heterogeneity between the them was shown to be small. On this basis the nine sets of data from centres in Britain, France, Germany, Italy, Hungary and the U.S.A were combined into a relatively homogeneous Caucasoid group and data from Taiwan and Japan were combined into an Oriental group.

Increased risk with DPB1*0301 in Caucasoids

The combined Caucasoid population, made up of the European and American patients (544) and controls (464), showed the allele DPB1*0301 to have an increased risk (RR $1.95, \mathrm{P}<1 \%$) for Hodgkin's Disease. This confirmed the observation of an increase in the RFLP fragment associated with DPw3 seen in the pilot study (16). Two individual data sets in which this allele was seen to be significantly increased were from France ($\mathrm{RR} 6.19, \mathrm{P}<1 \%$) and Germany ($\mathrm{RR} 2.69, \mathrm{P}<5 \%$), though all the other data showed a trend towards an increase in this allele in patients compared to controls (Table 2). No other allele showed a disturbed frequency in the combined Caucasoid data.

Decreased risk with DPB1*0401 in Orientals

The DPB1*0401 allele was seen to be significantly decreased (RR $0.148, \mathrm{p}<1 \%$) in patients compared to controls in the Oriental population, consisting of the data from Japan and Taiwan. The same observation was made in several other individual data sets, particularly from Japan, and the U. K (Marsden).

Individual patient groups

No significant associations were seen in the South African data as a whole, however in an independent analysis of 21 Cape Coloureds Jacobs et al (workshop communication) calculated the RR to be 3.8 for $\operatorname{DPB} 1 * 0301$, in agreement with the prior hypothesis.
Two data sets from Israel were analysed. A trend towards an increase in the DPB1*0401 was seen. However, there were technical difficulties in the assignment of DPB alleles in one of the sets (from Haifa) and since the controls were used for both groups, these results are not conclusive.

The previously reported decrease in DPB1*0201, while seen in the German data was not confirmed overall.

Hypervariable region analysis

Since HLA-DPB alleles have the interesting property of being composed of a relatively small number of variable stretches of sequence, or motifs, which are shuffled to form the different alleles, a given motif may be found in several different alleles. Therefore if the susceptibility site were encoded by a particular sequence motif, a higher relative risk would be expected with this motif than with any of the alleles containing it. Analysis of these sequence motifs, based on probe frequencies, while confirming the results of the allele analysis, did not reveal any more significant correlation between susceptibility to HD and a single motif than that seen in the allele analysis. SSOs DPB3502 (FV) and DPB5504 (DED) both specific for DPBl*0301 showed a significant increase in some groups; for example DPB5504 was significantly increased in the French and German data, while DPB3502, was significantly increased in the Hungarian data. In the combined Caucasoid group a number of motifs associated with the DPB1*0301 allele were significantly increased; DPB0902 (VYQL), DPB3502 (FV), DPB5504 (DED), DPB6502 (QKDL), DPB6903 (LLEEK), DPB7602 (M) and DPB8503 (DEAV). SSOs specific for the DPB 1*0401 allele showed the same trend as the allele in the Oriental populations; the probe DPB3501 (FA) was significantly reduced in the combined Oriental data and also in the Japanese and the U. K. (Marsden) data.

Linkage disequilibrium

Since the level of recombination between the DP and DR loci is now estimated to be about 1% (28) the question arises whether an association of HD with alleles at other HLA loci would have been seen in this study. In the 11th Workshop DP DNA report (this vol) significant linkage disequilibria were seen between DPB1*0301 and both DRB1*0301 and DRB 1*1302 in random Caucasoids and between DPB1*0401 and DRB1*1302 in Japanese. This indicates that DRB1*1302 is associated with the DPB1*0301 allele, increased in HD in Caucasoids, but with DPB1*0401 in Oriental patients, where this allele is reduced in HD. Data on HLA loci other than DP were available only on a small number of patients in this study but in the French data which showed a significant relative risk for DPB1*0301, there was no significant linkage disequilibrium with DPB1*0301 in the patients although linkage disequilibria were seen in the French controls with both DR 3 and B18.

In the overall analysis of linkage disequilibria (LD) between DP alleles and alleles at other loci, data from random individuals from other populations in the 11th Workshop were studied. These were: France (192 individuals), Italy (359), Germany (65), UK (44), U.S.A (123) and Japan (314). For the HLA-A locus no alleles were found in significant LD with DPB1*0301 in Caucasoids or with DPB1*0401 in Japanese. For HLA-B only very weak LD were seen for DPB1*0301 with B7 and B50 in Italy and B27 in France. A weak non significant LD was seen in Japanese between B44 and DPB*0401.

b Clinical analysis

To discover whether any HLA-DPB allele was associated with clinical state or progression of the disease, subsets of the patients were compared.

Characteristics of the overall patient population are shown in table 4.

HLA-DPB and remission rate

The overall complete remission rate was high (79.5\%). If patients in equivocal complete remission (29) are included, the remission rate is 89%. The proportion of patients who do not respond to initial therapy is very small (1.5%), considerably lower than in other published series. The duration of remission is long, being significantly better in comparison with all previously untreated patients treated at St Bartholomew's Hospital over a 24 year period (figure 1a). This, coupled with the fact that all these patients are alive, demonstrates the significant, albeit inadvertent, selection of patients in this study. The distribution of patients is heavily skewed towards a predominance of survivors, in a good prognostic group.

The duration of remission in patients with different HLA-DPB alleles was compared. On univariate analysis HLA-DPB1*0901 was associated with with shorter overall duration of remission (figure 1b). In the Japanese population, where this allele is most prevalent, the remission duration of the eight patients with DPB1*0901 was significantly less (Figure 1c). There was no significant correlation between HLA-DPB1*0301 (Figure 1d) or other HLA-DPB alleles and remission duration.

HLA-DP and other clinical features

The distribution of HLA-DPB alleles in patients who had a positive family history of Hodgkin's Disease was identical to the overall distribution.

There was a statistically significant increase in the frequencies of HLA-DPB1*0202 and DPB1*0501 in patients with Lymphocyte Deplete Hodgkin's Disease; however, this histological subtype is the least common one and as numbers are small, this finding should be treated with caution.
There was no correlation between HLA-DPB type and stage, extent of disease, outcome to initial therapy, presentation blood count, serum albumin or erythrocyte sedimentation rate.

Discussion.

The most interesting and significant findings to emerge from this study were
a] an increased frequency of DPB1*0301 in Caucasoid patients compared with controls.
b] a decreased frequency of DPB1*0401 in Oriental patients compared with controls.
c] shorter remission duration associated with HLA-DPB1*0901.
While it is impractible to carry out a prospective study on patients to ascertain the relationship of HLA type to disease progression, an alternative approach is available; to type a cohort of patients retrospectively, using stored material. This was performed for a group of patients with poor prognosis from St. Bartholomew's Hospital. The results (unpublished data) showed a highly significant increase in the frequency of HLA-DPBI*0901 in this group, compared with patients in follow up (largely composed of 'survivors') or normal controls. The poor remission duration associated with HLA-DPB1*0901 in these patients provides independent verification of this Workshop result. This finding also suggests that DPB1*0901 or a gene in strong linkage disequilibrium with it predicts a poor outcome.

In conclusion it appears from this study that the HLA association with Hodgkin's Disease, up until now most securely indicated by HLA concordance in affected sibs, is to be found closer to the HLA-DPB locus than to other loci previously studied. This is confirmed by the analysis of linkage disequilibria of DPB1*0301 and *0401 in random donors from the populations studies which show that there are no HLA-A, B or DR alleles consistently in strong LD with these DPB alleles and which might be considered candidates for the primary association with Hodgkin's Disease.

Though the relative risks seen with DPB alleles are highly significant, the increased risk overall is still relatively modest. It is therefore possible that future studies which will be directed towards confirming these results should also examine genes near to HLA-DP which have been shown to be polymorphic (Nomenclature report). The interesting suggestion that DPB1*0901 is associated with
poorer remission duration will be further investigated for both its immunological and clinical implications.

Acknowledgements

We would like to thank M. Fleetwood, A. Wasik and J. Lim for their invaluable help in data analysis and W. F. Bodmer for helpful discussions on the initial design and analysis of the study.

Table 2: Relative Risk analysis of DPB1*0301 and DPB1*0401 alleles

Country	Group	$\begin{gathered} \text { No. } \\ \text { Patients } \end{gathered}$	No.Controls	DPB1*0301 allele				DPB1*)401 allele			
				RR	95\% C. L.	$\chi 2$	Sig.	RR	95\% C. L.	$\chi 2$	Sig.
United	London (Bart's)	38	65	1.537	0.59, 4.02	0.78		0.804	(0.34, 1.93	0.24	
Kingdom	Sutton (Marsden)	32	[65]	2.524	0.98, 6.49	3.73		0.265	(0.11, 0.63	8.97	**
	Southampton	55	85	1.359	0.62, 3.00	0.58		0.784	(0.38, 1.62	0.43	
	Manchester	39	40	1.556	0.51, 4.73	0.61		0.595	0.22, 1.61	1.06	
France	Nantes	69	49	6.191	2.08, 18.46	9.36	**	0.478	0.21, 1.07	2.57	
Germany	Hamburg	53	59	2.699	1.10, 6.63	4.72	*	1.943	0.89, 4.26	2.78	
Italy	Milan	31	19	2.804	0.73, 10.77	2.30		0.778	0.24, 2.48	0.18	
Hungary	Budapest	39	40	1.386	0.53, 3.62	0.45		0.519	0.20, 1.36	1.81	
${ }^{1}$ Comb ${ }^{1}$ Comined	Stanford	188	107	1.614	0.92, 2.83	2.81		1.789	1.09, 2.93	5.36	*
	Caucasoid populations	544	464	1.955	1.46, 2.62	20.36	***	0.903	0.70, 1.16	0.63	
Japan	Chiba	48	43	2.000	0.49, 8.24	0.93		0.149	0.04, 0.60	7.25	**
Taiwan	Taipei	17	20	4.072	0.43, 39.01	1.52		0.146	0.02, 1.13	3.49	
${ }^{2}$ Combined	Oriental populations	65	63	2.440	0.74, 8.02	2.16		0.148	0.05, 0.47	10.55	**
South Africa	Cape Town, Durban	30	99	1.418	0.46, 4.40	0.37		0.488	0.20, 1.19		
Israel	Haifa	44	32	4.667	0.77, 28.43	2.83		3.000	1.17, 7.68	5.32	*
[srael	Tel Hashomer	32	[32]	4.801	0.75, 30.89	2.77		2.963	1.08, 8.15	4.50	*

J Duplicate controls $\quad *$ significant at the 5% level $\quad * *$ significant at the 1% level $\quad * * *$ significant at the 0.1% level
Heterogeneity χ^{2} for DPB1 $1 * 0301=6.42$ for 9 degrees of freedom
: Heterogeneity $\chi 2$ for DPB1 $* 0401=0.18$ for 2 degrees of freedom

Table 3: Clinical Information

Age
Ethnic Origin
Family History (Hodgkin's, Non-Hodgkin's or other malignancy)
History of Infectious Mononucleosis
Histology
Date of Diagnosis
Stage, clinical/pathological
Number of sites of disease
Therapy details
Outcome
Recurrence details
Pre-treatment:
Erythrocyte Sedimentation Rate
Serum Albumin
Full blood count with differential
Blood group

Table 4: Characteristics of the overall patient population
TOTAL 551
HISTOLOGY
Nodular Sclerosis 281
Lymphocyte Predominant 62
Mixed Cellularity 136
Lymphocyte Deplete 21
Unspecified 21
STAGE
I 88
II 203
III 152
IV 73
? 35
B SYMPTOMS 212
OUTCOME
Complete Remission 400
Complete Remission (u) 46
Partial Remission 47
Fail 8
Early Death 2
Not specified 48
RECURRENCE 78
INFECTIOUS MONONUCLEOSIS
YES 36
NO 392

Figure legends:
Fig. 1a
Remission duration of patients in HLA study compared with all patients treated at St. Bartholomew's Hospital, London.
Fig. 1b
Remission duration of patients with the DPB1*0901 allele compared with the rest.
Fig 1c
Remission duration of Japanese patients with and without the DPB1*0901 allele.
Fig 1d
Remission duration of patients with the $\mathrm{DPBl} * 0301$ allele compared with the rest.

References

(1) Amiel, J. In Histocompatibility Testing 1967; (Ed. J. Dausset, J. Colombani)) p. 79 , Munksgaard, Copenhagen, (1967).
(2) Lilly, F., Boyse, E. A. and Old, L. J. Lancet ii, 1207, 1964.
(3) Weiss, L. M., Movahed, L. A., Warnke, R. A. and Sklar, J. N. Engl. J. Med. 320, 502, 1989.
(4) Falk, J. and Osoba, D. Lancet ii, 1118, 1971.
(5) Thorsby, E., Bratlie, A. and Engeset, A. In Histocompatibility Testing 1972.; (Ed., P. I. Terasaki), Munksgaard, Copenhagen, (1973).
(6) Kissmeyer-Nielsen, F., Kjerbye, K. E. and Lamm, L. U. Transplant Rev 22, 168, 1975.
(7) Kissmeyer-Nielsen, F., Lamm, L. U., Kjerbye, K. E., Bjotn Jensen, K., Nordentoft, A. M., Thorling, K. and Hastrup, J. In Histocompatibility Testing 1972; (Ed., J. Dausset), Munksgaard, Copenhagen, (1973).
(8) Bodmer, W. F. Natl. Cancer Inst. Monogr. 36, 127, 1973.
(9) Bjorkholm, M., Holm, G., Johansson, B., Mellstedt, H. and Moller, E. Tissue Antigens 6, 247, 1975.
(10) Hors, J. and Dausset, J. Immunol Rev 70, 167, 1983.
(11) Dausset, J., Colombani, J. and Hors, J. Cancer Surv 1, 119, 1982.
(12) Hansen, J. A., Joung, C. W., Whitsett, C., Case, D. C., Jersild, C., Good, R. A. and Dupont, B. In HLA and Malignancy; (Ed., G. P. Murphy), p. 217 A. R. Liss, New York, , (1977).
(13) Welsh, K. I., Amlot, P. and Batchelor, J. R. Tissue Antigens 17, 91, 1981.
(14) Bodmer, J., Bodmer, W., Heyes, J., So, A., Tonks, S., Trowsdale, J. and Young, J. Proc Natl Acad Sci U S A 84, 4596, 1987.
(15) Hyldig, N. J., Morling, N., Odum, N., Ryder, L. P., Platz, P., Jakobsen, B. and Svejgaard, A. Proc Natl Acad Sci 84, 1644, 1987.
(16) Bodmer, J. G., Tonks, S., Oza, A. M., Lister, T. A. and Bodmer, W. F. Lancet 1, 1455, 1989.
(17) Koster, d., Hs, Kenter, M. J., D'Amaro, J., Luiten, R. M., Schroeijers, W. E., Giphart, M. J. and Termijtelen, A. Immunogenetics 34, 12, 1991.
(18) Bugawan, T. L., Angelini, G., Larrick, J., Auricchio, S., Ferrara, G. B. and Erlich, H. A. Nature 339, 470, 1989.
(19) Rijswijk, v. R., de Meijer, A., Sybesma, J. P. and Kater, L. Cancer 57, 1489, 1986.
(20) Osoba, D., Falk, J. A., Sousan, P., Ciampi, A. and Till, J. E. Cancer 46, 1825, 1980.
(21) Prazak, J. and Hermanska, Z. Eur J Haematol 43, 50, 1989.
(22) Falk, J. and Osoba, D. Prog Clin Biol Res 16, 205, 1977.
(23) Svejgaard, A. Mild. C.. Nielsen. L. S. and Bodmer, W. F. Tissue Antigens 4, 95, 1974.
(24) Armitage, P. Statistical Methods in Medical Research Halstead: (1971).
(25) Kaplan, E. S. and Meier, P. American Statistical Association Journal 53, 457, 1958.
(26) Peto, R., Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., Mantel, N., McPherson, K., Peto, J. and Smith, P. G. Br J Cancer 35, 1, 1977.
(27) Cox, D. R. J. Roy. Statistical Society 34, 187, 1972.
(28) Begovich, A. B., McClure, G. R., Helmuth, R. C., Fildes, N., Bugawan, T. L., Erlich, H. A. and Klitz, W. J. Immunology in press, 1992.
(29) Lister, T. A., Crowther, D., Sutcliffe, S. B. et al. J. Clin. Oncol. 7, 1630, 1989.

Fig. le. remission duration - 'dp' patients vs Sbh 'Controls'

Fig. io remission duration - dp 0901 vs rest

ng id. REMISSION DURATION - DP 0301 vs REST

HLA AND DIABETES MELLITUS

p313 Hammond MG and Asmal AC. HLA and insulin dependent diabetes in South African Indians. Tissue Antigens 15: 244, 1980
p318 Hammond MG and Asmal AC. HLA and insulin dependent diabetes in South African Negroes. Diabetologia 19, 101. 1980
p320 Svejgaard A, Platz P, Ryder LP, Bertrams J, Bodmer JG, Brautbar C, Acton RT, Bartova A, Bashir H, Ceppellini R, de Mouzon A, Guttman RD, Hammond MG, Hansen JA, Juji T, Kastelan A, Kreisler JM, Moller E, Mayr WR, Raffoux C, Rubinstein P, Saito S, Sucia-Foca N, Tiilikainen A, Tsuji K and Arnaiz-Villena A. Joint Report: Insulindependent Diabetes In: Terasaki PI (ed) Histocompatibility Testing 1980 p638. UCLA Tissue Typing Laboratory, Los Angeles. 1980
p339 Bashir H, Juji T, Moffitt P, Amos DB, Kostyu D, Chen RB, Chiewsilp P, Fong R, Hammond MG, Hirota M, Sasazuki T, Vaidya M, Mehra N, Woodfield G, Ye YG, Kirk R, Dawkins RL and Elliott RG. Diabetes Mellitus In: Simons MJ, Tait Bd (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p332. Immunopublishing, Toorak, Australia, 1983
p350 Omar MAK, Hammond MG and Asmal AC. HLA A, B, C and DR antigens in young South African Blacks with Type I (insulin-dependent) diabetes mellitus. Diabetologia 26, 20-23. 1984
p354 Omar MAK, Hammond MG, Rajput MC and Asmal AC. HLA A, B, C and DR antigens in young South African Indians with insulin-dependent diabetes mellitus. S. Afr. Med. J. 66, 765-767. 1984
p357 Omar MAK, Hammond MG, Seedat MA and Asmal AC. HLA antigens and non-insulin dependent diabetes mellitus in young South African Indians. S. Afr. Med. J. 67, 130. 1985
p360 Omar MAK and Hammond MG. The HLA system and diabetes mellitus. Editorial S. Afr. Med. J. 68, 333. 1985
p362 Naidoo C, Jialal I, Hammond MG, Omar MAK and Joubert SM. HLA and NIDDM in the Young. Diabetes Care 9, 436. 1986
p365 Omar MAK, Hammond MG, Motala AA and Seedat MA. HLA Class I and II antigens in South African Indians with NIDDM. Diabetes 37, 796. 1988

HLA and Insulin Dependent Diabetes in South African Indians

M. G. Hammond ${ }^{1}$ and A. C. Asmal ${ }^{2}$
${ }^{1}$ The Natal Institute of Immunology and ${ }^{2}$ University of Natal Medical School, Durban, South Africa

Abstract

The HLA antigens of 44 Asian Indians with juvenile-onset, insulin-dependent diabetes were determined. The frequency of HLA-B8 was increased but that of HLA-B15 was not. There was a significant increase in the frequency of some of the subdivisions of B5.

Received for publication 27 August, accepted 10 September 1979

Studies of the HLA system in diabetes mellitus have broadened our insight into the role of genetic mechanisms in its development and have highlighted the significant genetic heterogeneity of the disorder (West 1978, Fajans et al. 1978, Cahill 1979). Most of these studies have been carried out on white Caucasian populations and have shown that, whereas insulindependent diabetès (IDDM) has certain clear associations with the HLA antigens B8, B15 and B18 (Nerup et al. 1977), noninsulin dependent diabetes does not have such direct relationships.

Studies of the HLA system in nonCaucasian populations have revealed an association between HLA-B8 and IDDM in Black Americans (Cahill 1979), but no association between either B8 or B15 and diabetes in Japanese. In contrast, in the latter group, diabetes has been associated with Bw54, a variant of Bw22 (Kawa et al. 1977, 1978), and with B12 (Nakao et al. 1977). In addition, both groups of workers also reported a decreased incidence of B5
in their diabetics. Kawa et al. (1979) reported that the decreased incidence of B5 was due to the significant decrease in the frequency of Bw52.

Within the European Caucasian population itself there is considerable variation in the distribution of HLA antigens (Cahill 1979). There have been few (if any) studies of the HLA relationship to IDDM in nonEuropean Caucasian populations.

Material and Methods

The diabetic subjects were seen either at the King Edward VIII Hospital, Durban, which is the main teaching hospital of the University of Natal, or at one of the satellite hospitals in the group. The IDDM patients were characterized by onset under 35 years and a dependence on insulin for control of symptoms and for the prevention of basal ketosis (West 1978). The antigen frequencies were compared with those found in. a healthy control population, many of whom were typed for Inter-

* Supported in part by a grant from the South African Medical Research Council (MGH).
national Workshops (Hammond et al. 1975, 1977).

The Indian subjects studied represent two ethnic subgroups - the Aryans and the Dravidians - whose predecessors came to South Africa more than 100 years ago from north and south India, respectively (Mistry 1965).

A total of 180 antisera were used in a two-stage microlymphocytotoxicity test to determine the HLA antigens of 44 Indians with IDDM. Lymphocytes were isolated on a Ficoll-Hypaque density gradient.

Results

Table 1 shows the antigen frequencies in Aryans, Dravidians and in all the Indian patients compared with the controls. HLA-B5 has been subdivided into Bw51, Bw52 and B5 IND. This last category probably includes the specificity $\mathrm{Bu}=$ 8W59. The distribution of antigens at the A and B loci conform to Hardy-Weinberg equilibrium. Estimates of haplotype frequencies are not very reliable for small numbers but no linkage disequilibrium was evident. Some haplotypes are shown in Table 2.

Probabilities were calculated by χ^{2} or, if any of the numbers in the 2×2 table were less than 4, by Fisher's exact method. Probabilities have been corrected by multiplication by the number of antigens tested.

There were no significant differences at the A locus. At the B locus, HLA-B8 was increased in the total Indian sample (13.6% vs 5.9% N.S.) this being due to the high frequency in Dravidians (21.7% vs 6.4%), but was not significant after correction for the number of antigens tested. The frequency of B15 was unaltered. The frequency of B13 was also increased in the total Indian sample but this was due to the
higher incidence in Aryans (19.1% vs 4.8%). This difference was not significant.

None of the Indians with IDDM was found to have B40.1 but the corrected probability was not significant. B40.2 was increased, but the frequency of B40 overall was approximately the same in the total Indian sample. This inverse relationship in the subdivisions of B40 was also seen in the subdivision of B5. Bw52 was significantly increased in Dravidians with IDDM (corrected $P<0.04$) and B5 IND was significantly increased when considering all Indians (corrected $P<0.02$), while Bw51 was decreased. The same trend was also present in Aryan Indians. The splitting of B5 and B40 into subdivisions still poses problems which may be solved in the future by better sera and International Workshops. These results should therefore be treated with reserve. The overall increase of $\mathrm{B} 5(43.2 \% \mathrm{vs} 34.2 \%)$ contrasts with the decrease of B5 observed in European Caucasians (Nerup et al. 1977) and in Japanese (Kawa et al. 1979, Nakao et al. 1977).

Discussion

Studies on White Caucasian populations have shown that both HLA-B8 and B15 are associated with an increased risk of IDDM. Rotter \& Rimoin (1978) have hypothesized that there are two distinct forms of IDDM, one associated with B8 and characterized by autoimmunity, microangiopathy and a stronger association with the D locus antigen Dw3. It has also been noted that B7 and Dw2 have lower than normal frequencies in B 8 positive diabetics. The B15 type is characterized by antibody response to exogenous insulin and a stronger association with the C locus antigen, Cw3, but it now appears that these

Table 1
Percentage frequency of HLA antigens in Indians with JOD

HLA	ARYAN		DRAVIDIAN		TOTAL INDIAN	
	Control	JOD	Control	JOD	Control	JOD
	N 208	21	424	23	632	44
A1	18.8	23.8	32.2	26.1	27.9	25.0
A2	25.5	23.8	34.2	34.8	31.3	29.6
A3	14.9	9.5	14.4	13.0	14.6	11.4
A11	31.3	28.6	25.7	30.4	27.5	29.6
Aw23	0	0	0.9	4.4	0.6	2.3
Aw24	30.8	33.3	25.2	30.4	27.1	31.8
A25	2.4	9.5	1.7	0	1.9	4.6
A 26	5.8	4.8	6.6	0	6.3	2.3
A28	18.3	23.8	12.5	0	14.4	11.4
A29	1.0	0	0.7	0	0.8	0
Aw30	3.9	14.3	4.0	4.4	4.0	9.1
Aw31	5.3	0	2.6	0	3.5	0
Aw32	2.9	0	2.4	0	2.5	0
Aw33	7.2	14.3	7.6	13.0	7.4	13.6
One antigen	32.2	14.3	29.3	43.5	30.2	29.6
B7	7.2	14.3	15.1	8.7	12.5	11.4
B8	4.8	4.8	6.4	21.7*	5.9	13.6
B13	4.8	19.1	7.8	4.4	6.8	11.4
B14	1.0	0	0	0	0.3	0
B15	12.5	9.5	10.1	13.0	10.9	11.4
B16	2.4	0	2.1	0	2.2	0
B17	17.8	19.1	22.9	8.7	21.2	13.6
B18	5.8	0	1.7	4.4	3.0	2.3
Bw21	1.9	0	1.7	8.7	1.7	4.6
Bw22	1.9	0	2.8	0	2.5	0
B27	5.3	0	1.2	4.4	2.5	2.3
Bw35	20.2	4.8	20.8	8.7	20.6	6.8
B37	2.4	14.3	5.0	0	4.1	6.8
B40.1	10.6	0	14.9	0	13.4	0
B40.2	13.9	38.1*	16.5	17.4	15.7	27.3
Bw42	0	0	0	0	0	0
Bw44	19.7	14.3	8.3	13.0	12.0	13.6
Bw45	0.5	0	0	0	0.2	0
B5	33.7	28.6	34.4	56.5	34.2	43.2
Bw5 1	23.6	4.8	21.9	8.7	22.5	6.8
Bw52	7.7	9.5	8.7	30.4**	8.4	20.5*
Bw53	1.4	4.8	2.1	0	1.9	2.3
B5 IND	2.4	14.3	3.8	17.4*	3.3	15.9**
One						
antigen	32.2	28.6	26.4	30.4	28.3	29.6

* Uncorrected $P<0.01$.
**Corrected $P<0.04$.

Table 2
Selected baplotype frequencies $\left(\times 10^{3}\right)$ in Indians with JOD

Haplotype	ARYAN		DRAVIDIAN		total indian	
	Control	JOD	Control	JOD	Control	JOD
	208	21	424	23	632	44
1, 17	27	44	70**	19	56**	30
1, 37	7	47	19*	0	15**	22
24,7	0	14	27*	45	17	31
24, 52	19	0	16	54	17*	21
30, 13	7	47	7	0	7*	22
33, 44	18	21	12*	20	14*	20

* $\Delta>2$ SE.
** $\Delta>$ 3SE.
are secondary to the increase in Dw4 (Christy et al. 1979). When both B8 and B15 are present their effect is additive.

In the present study, B8 and not B15 was associated with IDDM. This association was confined to the Dravidians and the relative risk (RR) was 2.5 which is the same as that found in European Caucasians. It is known that the northern populations of India were subjected to successive waves of infiltration of Mongoloid races from the northeast. These waves did not penetrate to the south of India, which is occupied by Dravidian races who originated in western Asia and settled in India in prehistoric times.

The Aryans with IDDM show similarities with Japanese, i.e. there is no increase in the frequency of B8, B15 or B5, while the Dravidian patients show an increase in B8, as found in European Caucasians and an increase in Bw52 which is the opposite of the finding in Japanese.

References

Cahill, G. F. (1979) Human evolution and insulindependent (IDD) and non-insulin dependent diabetes (NIDD). Metabolism 28, 389.
Christy, M., Green, A., Christau, B., Kromann, H., Nerup, J., Platz, P., Thomsen, M., Ryder, L. P..
\& Svejgaard, A. (1979) Studies of the HLA system and insulin-dependent diabetes mellitus. Diabetes Care 2, 209.
Fajans, S. S., Cloutier, M. C. \& Crowther, R. L. (1978) Clinical and etiological heterogeneity of idopathic diabetes mellitus. Diabetes 27, 1112.

Hammond, M. G., Appadoo, B. \& Brain, P. (1975) HLA antigens in Bantu and Indians. Histocompatibility Testing 1975, p. 173. Munksgaard, Copenhagen.
Hammond, M. G., Appadoo, B. \& Brain, P. (1977) HLA antigens in South African Negroes and Indians. Tissue Antigens 10, 230.
Kawa, A., Nakamura, S., Kono, Y., Maeda, Y. \& Kanehisa, T. (1979) A negative association of HLA Bw5 2 with Graves' disease and insulindependent diabetes mellitus with juvenileonset among Japanese population. Experientia 35, 547.
Kawa, A., Nakazawa, M., Kono, Y., Sakaguchi, S., Nakamura, S. \& Kanehisa, T. (1978) HLA Bw54. and B5 in Japanese diabetics with juvenile-onset and insulin dependency. Experientia 34, 669.
Kawa, A., Nakazawa, M., Sakaguchi, S. Nakamura, S., Kono, Y., Hazeki, H. \& Kanehisa, T. (1977) HLA system in Japanese patients with diabetes mellitus. Diabetes 26, 591.
Mistry, J. D. (1965) Ethnic groups of Indians in South Africa. S. Afr. Med. J. 39, 691.
Nakao, Y., Fukunishi, T., Koide, M., Akasawa, K., Ikeda, M., Yahata, M. \& Imura, H. (1977) HLA antigens in Japanese patients with diabetes mellitus. Diabetes 26, 736.
Nerup, J., Cathelineau, Cr., Seignalet, J. \& Thomsen, M. (1977) HLA and endocrine

diseases. In HLA and Disease, eds. Dausset,	Address:
J. \& Svejgaard, A., p. 149. Munksgaard,	M. G. Hammond, M.D.
Copenhagen.	Natal Institute of Immunology
Rotter, J. I. \& Rimoin, D. L. (1978) Hetero-	Div. of Natal Blood Transfusion Serivce
geneity in diabetes mellitus - update. Diabetes	10 Robin Road
27, 599.	Pinetown 3600
West, K. J. (1978) Epidemiology of diabetes and	P.O. Box 2356, Durban 4000
its vascular lesions. Elsevier, New York.	South Africa

HLA and Insulin-dependent Diabetes in South African Negroes

M. G. Hammond ${ }^{1}$, A. C. Asmal², and M. A. K. Omar ${ }^{2}$
${ }^{1}$ Natal Institute of Immunology and ${ }^{2}$ University of Natal Medical School, Durban, South Africa

Abstract

Summary. The HLA antigens of 57 South African negroes with juvenile-onset, insulin-dependent diabetes were determined. The frequency of B8 was increased (29.8% vs 13.9%) as was the frequency of B14 (17.5% vs 6.1%). The frequency of patients with either one of these cross-reactive antigens was significantly increased after correction for the number of antigens tested (45.6% vs 19.2%, P (corrected) <0.005).

Key words: HLA, insulin-dependent diabetes, negroes.

Numerous studies of the HLA system in diabetes have shown clear associations between insulindependent diabetes mellitus (IDDM) and certain HLA antigens. Increased frequencies of HLA B8, B15, B18, Cw3, Dw3, Dw4, DRw3 and DRw4 have been found in white Caucasian populations with this disease [1]. An association between HLA B8 and IDDM has also been found in South Africa Indians [2] and in American Blacks [3, 4], but not in Japanese with IDDM $[5,6]$.

Materials and Methods

The diabetic patients attended the Diabetic Clinic of the King Edward VIII Hospital, Durban which is the main teaching hospital of the University of Natal Medical School. The patients were characterised by an acute onset of illness below 35 years old, and a dependence on insulin for control of symptoms and prevention of ketosis [7]. They were typed over a two year period for the HLA-A-B-C antigens and the frequencies were compared with those found in a healthy control population, many of whom were typed for International Workshops [8,9]. The Negro population of Durban consists mainly of Zulus and the patients and controls studied by us were of pure descent. A total of 180 antisera were used in a two-stage microlymphocytotoxicity test [10] to determine the HLA
antigens of 57 Negroes with IDDM. Lymphocytes were isolated on a Ficoll-Hypaque density gradient [11]. Frequency differences were tested for significance with a X^{2} test (without Yates' correction) and the resulting probabilities corrected by multiplication by the number of antigens tested.

Results

Table 1 shows the antigen frequencies in the IDDM patients compared with the controls. The distribution of alleles at the A and B loci conform to HardyWeinberg equilibrium.

There were no significant differences between diabetics and control subjects at the A and C loci. The frequency of HLA B8 was increased in the diabetics (29.8%) compared to the controls (13.9%) but this was not significant after correction for the number of antigens tested. The frequency of HLAB 14 , on the other hand, was significantly increased even after correction (17.5% vs $6.1 \%, \mathrm{P}$ (corrected) <0.04). As HLA-B8 and B14 form part of a crossreacting group, the number of patients and controls with either of these antigens were compared. The difference in the frequencies (45.6%) was highly significant ($\mathrm{P}_{\mathrm{c}}<0.004$). The relative risk (3.5) was about the same as for B 14 alone (3.3) but greater than the relative risk for B8 alone (2.6).

There was a slightly stronger negative association between Bw 42 and IDDM. The relative risk was 0.25 and the uncorrected $p<0.005$. This was no longer significant after correction for the number of antigens tested.

Discussion

Nerup et al. [12] discuss the possibility that there are two genes conferring increased risk of IDDM: one associated with B8 and the other with B15 or B18. In

Table 1. Percentage frequency of HLA antigens in Negroes with insulin-dependent diabetes mellitus (IDDM)

HLA	Control $\mathrm{n}=756$	$\begin{aligned} & \text { IDDM } \\ & \mathrm{n}=57 \end{aligned}$		Control $\mathrm{n}=756$	$\begin{aligned} & \text { IDDM } \\ & \mathrm{n}=57 \end{aligned}$
A1	5.8	7.0	B7	16.0	22.8
A2	20.1	14.0	B8	13.9	$29.8{ }^{\text {a }}$
A3	13.5	10.5	B13	4.8	3.5
Al1	0.1	0	B14	6.1	$17.5{ }^{\text {b }}$
Aw23	19.2	26.3	B15	5.8	1.8
Aw24	3.3	3.5	B16	2.4	3.5
A25	13.9	5.3	B17	38.1	21.1
A26	7.5	7.0	B18	3.8	5.3
A28	20.0	24.6	Bw21	0.5	1.8
A29	16.7	12.3	Bw22	0	0
Aw30	39.6	36.8	B27	0.3	0
Aw31	12.6	10.5	Bw35	7.3	3.5
Aw32	1.4	8.8	B37	0	0
Aw33 ${ }^{\text {d }}$	2.7	3.5	Bw60	1.6	3.5
Only one	23.6	29.8	Bw61	0	0
antigen detected			Bw41 ${ }^{\text {d }}$	2.1	3.5
Cwl ${ }^{\text {d }}$	0	1.8	Bw42	27.7	$8.8{ }^{\text {a }}$
$\mathrm{Cw} 2^{\text {d }}$	18.5	21.1	Bw44	16.0	14.0
$\mathrm{Cw} 3^{\text {d }}$	9.6	17.5	Bw45	6.4	10.5
$\mathrm{Cw} 4{ }^{\text {d }}$	15.8	17.5	Bw51	2.7	0
Cw5 ${ }^{\text {d }}$	4.1	3.5	Bw52	0	0
			Bw53	3.4	3.5
B8+B14	19.2	$45.6{ }^{\text {c }}$	Only one antigen detected	41.1	45.6

${ }^{2} \mathrm{P}<0.005$
${ }^{1} \mathrm{P}<0.001$
${ }^{\text {c }} \mathrm{P}<0.0001$
${ }^{\mathrm{d}} \mathrm{N}=146$ (Number of controls)
all the Caucasian populations studied to date the association with B 8 has been a constant finding. The relationship with B15 and/or B18 has been confined to certain population groups. The association of these antigens appears to be secondary to the increased frequency of DRw3/Dw3 and DRw4/Dw4 [1, 13].

This study has demonstrated an increased frequency of B8 and of B14 in South African Negroes with IDDM. Since these antigens form a cross-reacting group it is probable that the same susceptibility gene is associated with either of these antigens in Negroes. Alternatively, it may be postulated that another susceptibility gene, associated with B15 or B18 in Caucasians, is linked to B14 in Negroes. This latter explanation seems less likely.

The Bw42 antigen has been detected only in Black populations. It is, however, one of the crossreacting antigens associated with B 7 which may be linked to some protective mechanism against IDDM [12]. The protective effect is not associated with HLA B7 in Negroes, indeed, the frequency of the
antigen is greater in the IDDM group than in the controls. The relatively low frequency of Bw42 in Negroes with IDDM may have a bearing on the low prevalence of IDDM in Negroes. Alternatively, it may be a reflection of the increased frequency of B8 and B14. The difficulties of establishing the significance of a negative association between HLA and disease have been discussed by Svejgaard et al. [13].

Acknowledgements. The authors acknowledge the expert technical assistance of Mrs. F. Buckle and Mr. J. Govender. This work was supported in part by a grant from the South African Medical Research Council (M. G. H.).

References

1. Ryder LP, Andersen E, Svejgaard A (1979) HLA and disease registry, third Rep. Munksgaard, Copenhagen
2. Hammond MG, Asmal AC (1979) HLA and insulin-dependent diabetes in South African Indians. Tissue Antigens
3. Cahill GF (1979) Human evolution and insulin dependent (IDD) and non-insulin dependent diabetes (NIDD). Metabolism 28: 389-393
4. Duquesnoy RJ, MacDonald MJ, Mullins P, Hackbarth SA, Trasman HS, Levitsky LL (1979) Increased frequency of HLA-Dw3 in North American Black patients with juvenile onset diabetes. Tissue Antigens 13: 369-372
5. Kawa A, Nakazawa M, Sakaguchi S, Nakamura S, Komo Y, Hazeki H, Kanehisa T (1977) HLA system in Japanese patients with diabetes mellitus. Diabetes 26: 591-595
6. Nakao Y, Fukunishi T, Koide M, Akasawa K, Ikeda M, Yahata M, Imura H (1977) HLA antigens in Japanese patients with diabetes mellitus. Diabetes 26: 736-739
7. West KJ (1978) Epidemiology of diabetes and its vascular lesions. Elesevier, New York
8. Hammond MG, Appadoo G, Brain P (1975) HLA antigens in Bantu and Indians. In: Kissmeyer-Nielsen F (ed) Histocompatibility testing 1975. Munksgaard, Copenhagen, p 173-178
9. Hammond MG, Appadoo B, Brain P (1977) HLA in NonCaucasian populations. In: Bodmer WF (ed) Histocompatibility testing 1977. Munksgaard, Copenhagen, p 407-408
10. Terasaki PI, McClelland JD (1964) Microdroplet assay of human serum cytotoxins. Nature 204: 998-1000
11. Boyum A (1968) Separation of leucocytes from blood and bone marrow. Scand J Clin Lab Invest 21: 97
12. Nerup J, Cathelineau Cr, Seignalet J, Thomsen M (1977) HLA and endocrine disease. In: Dausset J, Svejgaard A (eds) HLA and disease. Munksgaard, Copenhagen, p 149-167
13. Christy M, Green A, Christau B, Kromann H, Nerup J, Platz P, Thomsen M, Ryder LP, Svejgaard A (1979) Studies of the HLA system and insulin-dependent diabetes mellitus. Diabetes Care 2: 209-214
14. Svejgaard A, Jersild C, Staub Nielsen L, Bodmer WF (1974) HLA antigens and disease. Statistical and genetical considerations. Tissue Antigens 4: 95-105

Received: December 20, 1979,
and in revised form: March 18, 1980
M. G. Hammond

Natal Institute of Immunology
P. O. Box 2356

Durban, 4000
South Africa

Joint Report: Diabetes

$\begin{aligned} & \text { Grove } \\ & \text { Code } \end{aligned}$	Inventlgator:	Inatitutione
BEa	Bertimen, J., Mromaki, M., Mintion, U., MAere, W., KXoter, A., Sodomerm, P .	st. Clirabeth Hoapltel, (atem
		 i) Koldohllink, Henoll 3) ferdinond Geuprbruch Mouplle1, Mupartel, Cemany
800	Bocher, J.C., Denitala, A .	
вan	Breutbar, c. ${ }^{1}$, turon, 2. ${ }^{2}$, Kasp, M. ${ }^{\text {² }}$	1) Laboratory of Imenohematology, Hederath, Univerelty Hoeqltel,
		2) laresi Counsilising Canter for Juvenile Diaboties, Bollineon Medjcel Center, loreol
bag	Action, R.I., Bergar, B.D., Moermen, J.M., Murphy, c.C., Reitnemer, P.J.	hallic Hoolth, Univeroity of hlabean, biralinghen, USA
Brt	Bertove, A.	
-5H	Beohli, M., Doren, I., Molniter, M., Meiteth, C.	Itame Irping tebaratory, ned Crone olood iranafusion Sarvice, Sydnay
	Moffil, P., Beacment, P., Mitchel, P.	Diabotie stablifiation ond Cacetion Cont ra, Noweratio, NSW, huatralie
ct ${ }^{\text {P }}$		1) Begel Iratituta for 1 mamology, Saltrariond
	Bargor, ${ }^{2}$, Merl, 1.m.'	2) Basel Kantonepiltel, Sultierland 3) Clister madiea Univeralte al Pares, italy
DCH	Nouron, 4. de, onvyon, E.	
	```Guilimen, P., Marnobia. P., Marilion, M.,```	Prectitioners of the Fremeth Beaque ores.
cur		1) Irantaplentation Service, Royd Vietorle Hoaditel, Montronl, Dubbec
		2) Hontrail Chlldren'e Hoepltel, Comeda
NH	Hemmend, M.G.	The Metal Irelltute of tmmmology, Durben, South Africe
HMN		1) Hiatocomptibility taboratary, Pugat Scomit flond Ceriter, sretile, wobhington   2) Ulebelan Rataerth Conter, Univaralty of kashienston, USA
sus		1) Blood Iranufuaion Sarvies, Tohyo Univarelty Hompital,   2) Dept. Gf Podibtrice, lokyo Yomen a Medical Colloge   3) tistlonal chlldime thoepltel, tobyo, Jopan
kas		1) Iiasue Iyping Contre, Univeralty of legrab,      3) Dept. of Padietrice, Cerarel Hoopital, split   4) Dept. of Pedietrice, Modical Feculey, Univerilty of logros   3) Dept. of Pedietilict, Hadicel faculey, University of Ljubljone, Yugoslevte
kRT	Kreteler, J.M., Morano, C., Pablo, R. de	Imamology Centre, CJinjca Puerte de Miorro, Modrid
	Majos, E., Monzeno. P.	Dept. of Disbetes, clinice Puerte de Hierro, Medrid, Spain
not	maller, e. ${ }^{1}$, Peream, ${ }^{\text {a }}{ }^{2}$	1) Dept. of Citinical imemology, Hudinge Univereity Hospitel  
NYR		1) Iralitute for flood Grow serology, Univerefty of vians   2) 11. Hodicel CJinicel, thiverolty of Vimpra, Austrit
N	Rarioun, c. ${ }^{1}$, Stresfr, t. ${ }^{1}$, oubry, c. ${ }^{2}$	1) teboratolite d'lmamo-Hanatologite, Centre Rogional de Irensfuaton sanguine Ft d'haretologie de Nency  
R48	Mutinutaln, P., Folk, C.	
	Cimebrig, F .	
Sa1/SA5		1) Pirat Dept, of Surgery, Sethool of Hedicine, Kyumbe Univeralty, Fuhuok a   2) Dept. of thasen Gonetice, Modicel farearch lnatitute, lokyo Kodical end Dental Undveresty, hapen
sur	Sucluras, N.	Dopt. of Pathology, Coluntio Univerilly. Pmanrilk, USA
5 K	Platr, P., Jokobem, D.र., 月уder, L.f., themem. M. . Svijgatro, A.	
	Gramen, A., Houge, $\boldsymbol{H}$.	Univerelity inalitut of cilinical Genotice, Odenen
	1 men t.u.	
	Morup, J., Chisaty, M.	
111	Thilikainen, A., Koakialee, S., Lohki, K.-L.. hling, H .	
,	Akertion, H.K., muatomon, A.	Dopt. or Podiatrice, Univeresty of Dulu
	Ilomen, $\mathbf{j}$.	
	welle, 2.p.	Dopt. of Clinical cometice, Univaraity of istraingram, England
1su	Toust, K .	Iramplantation Immology Conter. Jokei Unlvaraity, sehool of Medicise, Kenagema, Jupen
vil	Arneiz-vilione, A., Mognalio, J.R., Bootolio, A. Serromo-Alog, M. ${ }^{1}$, Duyome, 1. ${ }^{1}$, Sentri, A. ${ }^{1}$, riander, B.	Imanology Center, Contro [epecial Remen y Cajal, Meorid   1) Centro Remon y [ajol, Madrid   i) Crue Moje, Modrld, Sois


sllow the lieting of oll there funde.

# INSULIN-DEPENDENT DIABETES MELLITUS 

\author{

1. Sueqard, P. Platz, and L.P. Ryder <br> Rigshospitalet, Copenhagen, Demmark
}

## Introduction

Since the discovery of Simal and Blajchman (1) of an association between insulindepmolent diabetes mellitus (IDDM) and HLA-B15 and later between both B15 and B8 and IDDM (2), a large number of studies has been carried out on HLA and IDDM (3,4 for references). These studies have shown that there are even stronger associations between IDDM and HLA-DW3 and DW4 than with B8 and B15, respectively $(5,6)$, and that HLA-DR3 and DR4 seem to be increased to the same extent as DW3 and DW4 (7). HLA typing of affected sibpairs has shown a considerable increase of HLA identical sibpairs and a strong decrease of sibpairs not sharing HLA haplotypes (8).

Various genetic modele have been advanced to explain these observations: (a) a resssive model with incomplete penetrance $(9,10)$ (b) a dominant model with incomplete penetrance (11), and (c) more complicated models involving two HLA-linked susceptibility genes associated with HLA-DW3 and 4, respectively (12), and perhaps even an HLA-DW2-associated gene conferring resistance $(13,14)$. When the IDDM part of the 8th Workshop was planned it was uncertain which of these models fitted the findings best although evidence against both the dominant and the recessive models was available (3).

## Plans for the IDDM study

The plans for the IDDM part of the 8th Workshop were prepared by a committee consisting of $A$. Green and $M$. Hauge, University of Odense; M. Christy and J. Nerup, Steno Memorial Hospital, Copenhagen; and the authors of this report. The major goal of the IDDM study was to provide more data which would enable the distinction between various genetic models of IDDM. In addition, we had the following scopes: (a) to study the HLA associations in various ethnic groups, (b) to investigate whether the HLA association(s) differ between familial and nonfamilial cases, and $(c)$ to search for heterogeneity within IDDM in relation to the HLA determinants associated with IDDM.

To approach these goals, we recommended that investigators participating in the study (a) select a homogeneous population living in a defined gengraphical area; (b) include all patients who had diamis.l 10DM rluring a certain period in that area; (c) detemme which of these patients had at least one affected sib; (d) randomly select 10 to 20 affected sibpairs and type them and their parents; and (e) randomly select and type 30 to 40 patients having no first degree relatives affected with ID[MM but having one or more unaffected sibs aged 20 or more at the time. Obviously, this procedure was not possible for all investigators. In particu-
lar, complete determination was difficult although desirable because earlier studies (15) indicated that the ascertainment method might influence the results. The call for studying affected sibpairs was abandoned for investigators studying particularly interesting ethnic groups, e.g., African and American Blacks, Japanese, and Basques. The reason for not typing healthy sibs or the parents of nonfamilial cases was to save serum and time and seemed justified because the information inherent in such relatives is limited.

The following diagnostic criteria for IDDM were recommended: the disease should have onset before age 40 , and should be idiopathic, ketosis-prone, and the patients should be nonobese and insulin-dependent (i.e., not just insulin treated).

The clinical information required on all diabetics typed appears from the punch card format shown in Table 1 (this card was first called 'DM' but later ' 44 ' by the Los Angeles analyzers).

The family history requested for each propositus is exemplified in Table 2.

## Participants and data obtained

Table 3 gives the names and institutions of the investigators of the 24 groups participating in this study and Table 4 summarizes the number of propositi used in this analysis. In some cases, more data were received but not analyzed because the information received was ambiguous. It appears that 636 nonfamilial, 158 familial, and 85 'unknown' propositi were included in the study. Because parents, affected sibs, and sometimes unaffected sibs were also typed for the familial cases, the total number of typings performed exceeds 1200. These typings include both HLA-A,B,C, and DR typings, although the latter were not always successful. In addition, we sought and obtained information from the participants about the HLA-A,B,C, and DR types of about 1600 controls, most of whom were typed with the 8th Workshop sera.

## Results

Familial versus nonfamilial IDDM. Only a limited number of groups had studied and given information about sufficient numbers of both nonfamilial cases (group B patients) selected according to the strict criterion of at least one healthy sib aged 20 or more and patients with affected first degree relatives (group A patients). It appears from Table 5 that there are no significant differences between these two groups concerning the frequencies of the DR3 and DR4 antigens or the DR3,4 phenotype although there is a tendency to a higher frequency for each of these

## Joint Report: Diabetes

antigens and in particular for the DR3,4 phenotype among the familial propositi. Huwever, when the phenotypes involving only DR3 and/or DR4 were pooled, there was a significant difference between familial and nonfamilial cases. Nevertheless, because all the differences in Table 5 are quite small and because most data sets did not allow distinction between familial and nonfamilial cases, it was
considered justified (and necessary) to pool familial and nonfamilial cases in most of the remaining analyses.

HLA-B versus DR associations. These associations were studied in a number of Caucasian populations. Table 6 summarizes the results of these analyses. It appears that DR3 is significantly increased both in B8 positive and in B8 negative patients compared to B 8 positive and B 8 negative

Table 1. Patlent coding form.


## Joint Report: Diabetes

controls. In contrast, B8 is not increased either in DR3 positive or in DR3 negative patients compared to the corresponding control groups. Accordingly, it can be concluded that the deviation seen for B8 in 1DDM is entirely secondary to the imetease of DR3. In analogy, the increases of B15 and 1318 ippoar to be secondary to increases of DR4 and DR3, respectively, and the decrease of $B 7$ is secondary to that of DR2 (the significant decrease of B7 in DR2 positive patients may be considered a chance deviation). The significant heterogeneity seen in some of these comparisons is probably due to the fact that the associations between DR antigens and IDDM and between HLA-B antigens and DR antigens vary considerably among the populations studied.

Because of these elw...aitens and hecause the time available for the analyses liws, athel limited, we decided to concentrate the remaining studies on the DR antigens alone.

Unfortunately, sufficient control materials allowing us to analyze the DR3 versus the $\mathrm{BfF}_{1}$ frequencies were not available.

DR antigen frequencies (Table 7). For the patients, we have shown both the Los Angeles and the local DR antigen assignment, but because local DR antigen assignments were used for the controls, we have also used local assignments for the patients in the calculations of relative risks. The following picture emerges: DR1 shows no significant deviations in any population; DR2 is decreased in all populations studied; DR3 is increased in almost all populations except perhaps the Japanese. The highest relative risk is seen for the Basques but it is also high for Yugoslavians and nonAshkenazi Jews; DR4 is uniformly increased in all populations including the Japanese. The relative risk for DR4 positives is generally higher than for DR3 positives; DR5 was decreased in most populations; DRW6 was not analyzed because this antigen was poorly defined by the disease serum set; DR7 was decreased in most populations; and DRW8 showed no significant deviations in Caucasians but was significantly increased in Japanese.

In brief, DR4 was increased in all IDDM patients studied throughout the world and DR3 was increased in all

Table 2
IDDM - Family sheet.

TYPING LAB COOE:
PEDIGREE NO. IF TYPED IH EIGTH WORKSHOP:

	10-no. if typed in 8. workshop	$\begin{aligned} & \text { Sex } \\ & \mathcal{F}=\text { female } \\ & M=\text { male } \end{aligned}$	Ethnic group Use 8. workshop code	Year of birth	Ion-diabetic=NIf DH, Y. of diagn.IDOHIother types   of OH,	Alive =A   If deceased   Y. of death	HLA-phenotype if typed outside   8. workshop	Comments
Proband								
Father								
Mother		F						
1. sibling   2. sibling   3. sibling etc.					-			
1. child   2. child   etc.								

[^27]
## Joint Report: Diabetes

Table 4.

No. or propositl 1n:

LAB-code	8 Hecode	Ethnic Group	sporadic	ramilial	affected gibships	unknown	Normel controls
DER	21	Germen	59	15	14	17	53
800	19	English					44
BRA	24	Aslik. Jen	33	4	3		35
$\cdots$	25	nom-A. jew	25	10	4		36
BRG	02	Amer. Black	25	7	111	*	
${ }^{-1}$	11	Amer.Cauc.		9			74
BRT	17	Czeck.	${ }^{9}$	4	12		57
ESH	14	Australian	23	11	10		57
CEP	30	Fine.	23 19	+	1		44
DEM	"34"	1-,... $n$	4 ?	2	2		
GUT							54
HAM	01	Mr.ilag	31	1		4	41
"	13	As.ind.	16	1			
HAN						2	104
JUJ	06 31	Japanese	54 32	10	8	53	63
KRE	29	5 j ¢nish	29	12	10		52
MOL	26	Suredi :h	20	2	1		83
myr	15	Austrian			1		150
RAF					17		133
Rus	02	Amer. Black	5	1			$\begin{cases}26 & \text { Spenish } \\ 25 & \text { non-" }\end{cases}$
"	"34"		20				
${ }^{\prime}$	00	urknown	5				
SAI	06	Japanese	29	1			
Suf							
SVE	26	Donish	44	20	20		174
111	32	rinnish	17	13	6		116
ISU	06	Japaneas	64				116
VIL	29	Spaniah	24	24	10		
Total			636	158	134	05	1.591

Table 5. Familial versus non-familial IDDM.


Familial cases involved one or inore affected firat degree relatives (uaually aiba) in addition to the propositus. Non-familial caaes had no affected firat degree relatives and at least one healthy aib at the age of 20 or mora. Odds ratio were calculated for the frequencies of the phenatyper indicated in familial veraus non-familial cases.
$x^{2}$ aign. $=$ chi squaig ( $1 \mathrm{~d} . f$. ) for the devietion of the odde ratio from unity.
$x^{2}$ heteroy. $=$ chi equare for heterogeneity between the individual odde ratios.
F : $\mathrm{p}<.05$
The comperisons under "DRw3" and "DRw4" involve all DRw3-positive and DRw4-positive patients againat DRw3-negative end DRw-negative patients, respectively. The "DRw3,4" comperison comperes the DRw3,4-phenotype againat all other phenotypea, In the "DRw3 and/or 4 alone" comperison, patients having only DRw3 and/or 4 (but no other detectable DR antigens) were tested against the remaining patienta.

Table 6. HLA-B versus DR associations (Caucasians).

	gens	Lab.		Odds Ra			
B	DR		B-pos.	B-neg.	DR-pos.	DR-neg.	
8	3	BER	3.00	2.77	1.17	1.08	
		BSII	2.24	3.16	1.59	2.24	
		DEM	1.89	17.02*	. 60	5.36	
		KAS	3.26	27.05*	. 19	1.59	
		IYY	1.21	1.87	1.30	2.00	
		SVE	3.85	$5.58{ }^{*}$	. 56	. 81	
		TIL	. 55	4.09	. 42	3.18	
		MOL	3.00	1.51	1.22	: 61	
		VIL	16.33	4.58	1.50	. 42	
		Combined	2.21	4.93	. 76	1.44	
			5.53	70.38	1.47	$1.31$	
			$5.63$	$19.03$	$8.67$	$4.43$	$x^{2}$ het.
				B			d.f.
15	4	EER	4.22	5.46*	. 75	. 97	
		- BSH	19.00	3.35	4.05	. 71	
		DEM	25.00	5.91*	1.06	. 25	
		XAS	17.00	12.47*	. 41	. 30	
		MYR	3.21	5.16*	. 70	1.13	
		SVE	45.00*	4.70*	2.81	. 29	
		IIL	21.00	12.76**	1.05	. 64	
		MOL	4.37	16.69*	. 63	2.42	
		VIL	7.00	5.97*	. 53	. 45	
		Combined	7.79	6.07	1.16	. 77	
			35.73	125.78	$.471$	$761$	
			$7.41$	$7.18$	$12.14$	$4.64$   8	$x^{2}$ het.
18	3			3.83*	1.07	3.48	
		BSH	65.00*	2.76	4.57	. 19	
		DEM	10.43	B.01*	2.25	1.73	
		KAS	2.14	13.26*	. 27	1.67	
		TIL	3.00	1.92	1.00	. 54	
		MOL	2.33	1.78	3.53	2.70	
		VIL	15.92*	3.52	1.58	. 35	
		Combined					
			15.07	47.51	1.78	$\begin{array}{r} 1.68 \\ .60 \\ \hline \end{array}$	
			$9.80$	${ }_{6}^{11.27}$	7.35	$9.76$	$\chi^{2}$ het.   d.f.
7	2						
		BSH	. 27	. .36	1.80 .65	1.54 .86	
		DEM	. 14	. 07	. 69	.86 .33	
		KAS	.02**	. 76	. 24	11.57*	
		MYR	.04*	. 28	. 26	2.07	
		SVE	. $09 \times$	.06*	. 50	1.07	
		TIL	. 15	. 27	. 29	. 54	
		HOL	. 22	1.12	. 31	1.58	
		VIL	. 44	3.57	. 18	1.47	
		Combined	. 13	. 37	. 46	1.28	$x^{2} \operatorname{sign}$.
			37.37	19.12	4.42	1.54	$\hat{x}^{2}$ sign.
			${ }_{8}^{6.44}$	30.09 8	4.25	14.64	d.f.

Explanation: Odds ratios in column "B-pos" give the risk of developing JDOH
for Individuals having both the B and DR antigen in question as compered to controls having both antigens. For example, for "BER" the odds ratio of 3.00 for "B-pos," is the risk of IOO, for Dw3-positives among B8-pas. patients compared to BB-pos. controls 1.e. Dw3 is increased even in B8-pos. patients. In analogy, or 3

B8 is not increased in $0 R 3$. patients (odds ratio $=2.77$ ), while 1.17 and 1.09 , respectively).

## Joint Report: Diabetes

Table 7. $D R$ antigen frequencles.


Table 7 continued.

Antigen	Lab.	Patien	$L_{N}^{L \cdot \bar{A}}$	Patients,	$\begin{aligned} & \text { local } \\ & \mathrm{N} \end{aligned}$	Controls, Inc.	$\begin{aligned} & \hline \text { rel. } \\ & \text { risk } \\ & \hline \end{aligned}$
DR 7				12.2	74	5.753	2.1
	BER			12.2 5.9	17	$25.0 \quad 44$	. 3
	800			3.9 15.4	13	36.574	4
	IRT	7.7	13	15.4	36	17.557	. 2
	13511	2.9	34	2.8	42	20.663	. 1
	KAS		18	2.4 10.8	37	34.652	. 3
	KRE			10.8	22	10.883	. 5
	HOL			20.8	53	26.0150	. 8
	MYR	4.7	64	4.7	64	24.1174	. 2
	SVE			3.3	30	10.249	. 4
	VIL	18.2	44	18.8	48	17.1137	
Combined				436		p. significance $=10^{-4}$   P. heterog. $=.02$	
OR 8	\&fR					2.344	. 8
	000	0	17	0	17	2.34	
	BRI	30.8	13			5.357	. 7
	BSH	2.9	34	2.8	42	4.863	1.2
	KAS	5.5	18	4.8	42		
	KRE			4.5	22	3.6 B3	1.6
	BYR						1.3
	SVE.	9.4	64	9.4 3.3	64	$2.0 \quad 49$	1.6
	$\begin{aligned} & \text { TII. } \\ & \text { VIL } \end{aligned}$	2.3	44	0	48		
				259		$470 \quad 1.19$	
				p. significance   p. heterog.	e > . 05		
				$>$. 05			

Table 7 continued. Special groups.


Table 7 continued. Special groups.

Antigen		Lab.	rotients :	L.A.	Potients $\%$	ocal	Controls,	N	rel. risk
DR	3	DEM			87.8	49	34.1	44	12.7
		RUB/34			30.0	20	19.2	26.	1.8
		mas ${ }^{\text {an }}$	41.2	17	40.5	37	13.0	46	$4.3 \%$
		'以爯?	65.1	30	65.7	35	14.3	35	10.4 m
		[...1)	27.3	10	25.0	16	9.8	41	3.0
		3ng $/ 02$	43.3	30	37.5	32	13.9	36	3.5
		HAM/01		14.	41.9	31.	33.3.	54	1.4
		JuJ	3.7	54	3.6	55	0	104	9.8
		ISU	0	61	0	64	1.7	116	. 4
		SAI§			6.9	29	1.9	792	4.6
Combined Jap. 5						145	p. Bignificance $=$   p. heterogen.		3.25
									. 02
DR	4	DEM			34.7	49	6.8	44	$6.4 *$
		RUB/34			80.0	20	34.6	26	6.8 m
		BRA/24	88.2	17	78.4	37	37.0	46	5.9
		BRA/2S	83.3	30	85.7	35	20.0	35	21.1
		HAM/13	54.5	11	56.3	16	4.9	41.	20.0 mrm
		BRG/02	40.0	30	40.6	32	5.6	36	9.6
		MAH/OI		14.	35.5	31	7:4	54	6.3.**
		3 J	53.7	54	58.2	55	46.2	104	1.6
		150	78.7	61	82.8	64	47.4	116	5.2.0+m
		5AIS			B6. 2	29	40.7	792	8.3 knf
Combined Jap. 5					145		p. Bignificance $=$   p. heteraaen.		1: $5 \times 10^{-8}$
					. 003				



## Joint Report: Diabetes

Table 7 continued. Special groups.

Antigen	Lab.	$\left[\begin{array}{l} \text { Potic } \\ \vdots \end{array}\right.$	${ }^{\prime}{ }_{N}^{1}$	$\begin{gathered} \text { Patien } \\ \underset{\sim}{0} \end{gathered}$	${ }_{\mathrm{N}}^{\mathrm{N}} \mathrm{lal}$	$\begin{gathered} \text { Controis, } \\ \% \end{gathered}$	${ }^{10 c a}$	rel.   risk
DR 8	$\begin{aligned} & \text { DEM } \\ & \text { RUB } / 34 \end{aligned}$			2.0	49	0	44	2.8
	BRA/24	5.9	17	2.7	37	4.3	46	. 7
	BRA/25	0	30	2.9	35	2.9	3'	1.0
	HAM/13	9.1	11	0	16	2.4	41	. 8
	.BRG/02	3.3	30					
	HAM/01		14	6.5	31	1.9	54	3.0
	JuJ	24.1	54	18.2	55	13.5	104	1.4
	ISU	27.9	61	28.8	59	8.5	116	$4.3 \ldots$
	SAI§			44.8	29	16.8	792	$4.0 *$
Combined Jap. § 145						$\begin{array}{ll}  & 3.0 \\ \text { p. aignificance }= & 3.1 \times 10^{-6} \\ \text { P. heterogen. }> & .05 \end{array}$		

L.A. $=$ Los Angeles, "local" = local antigen assignment.

The special ethnic groups were as follows: DEM=Basques; RUB/34='Spanish', Puerto Rican;
ORA/24=Ashkenazi Jews; BRA/25=Non-Ashkenazi Jews; HAH/13=Asian Indians ('Tamil'); BRG/02= Anerican Blacks; HAM/O1=African Blacks (Zulu). JUJ, TSU, and SAJ = Japanese.
Combined estimates of relative risks have been calculated for the Caucasian groups not listed as special, and for the three Japanese groups. One, two, and thrce asteriscs indicate significance at the $5, l$, and .1 per cent level, respectively. These p-valucs and thase for the combined estimates are uncorrected.
$\oint$ No local controls were received from SAJ's laboratory and so we have used los Angeles controls for these data which is not strictly correct because these controls include those from JUJ and TSU but the crror(s) are unlikely to be large.

Table 8. Relative risks for some DR phenotypes.

	$\begin{aligned} & \text { bins vs } \\ & \text { R. } \mathrm{rl} . \end{aligned}$	$\begin{gathered} (0+x) \\ x^{2} \end{gathered}$	$\begin{aligned} & 3.4 \\ & 12.11 . \\ & \hline \end{aligned}$	$\begin{gathered} (1+x) \\ x^{2} \end{gathered}$	$\begin{aligned} & 4 \mathrm{va} \\ & \mathrm{R} . \mathrm{R} . \end{aligned}$	$\begin{array}{r} (0+x) \\ \quad x^{2} \end{array}$	$\begin{array}{ll} 3, & x \\ \text { ח. } 1 . \end{array}$	$\begin{gathered} (0 . x) \\ x^{2} \\ \hline \end{gathered}$	$4, x \vee 8(0+x)$	
BER	9.6	34.0	24.5	14.5	10.3	14.0	4.7	6.5	10.3	14.0
BOD	10.2	4.6	14.4	8.5	10.4	4.7	1.3	. 1	3.2	2.5
BRA-A	10.2	3.9	42.8	17.7	23.8	15.2	7.3	4.1	9.3	9.1
-Non-A	114.3	12.6	190.6	25.2	42.5	13.8	5.4	2.3	20.0	9.9
BRT	2.7	. 6	14.5	8.9	10.6	11.3	2.2	. 7	11.8	7.9
B514	11.4	8.6	43.0	20.7	16.0	9.9	. 6	. 3	. 6	.2
CEP	10.4	4.3	137.9	21.3	56.0	12.0	12.9	7.8	10.0	6.0
KAS	47.4	14.1	1027.0	30.5	43.9	10.5	20.0	12.8	20.8	12.3
KRE	14.7	12.1	99.7	17.1	7.2	4.0	2.0	. 9	2.7	8.5
MOL	8.3	4.7	24.6	13.0	28.3	14.5	1.1	. 11	13.2	7.4
MYR	7.6	12.0	13.1	18.4	9.2	17.7	1.6	. 6	4.1	8.8
SVE	9.2	10.5	80.1	45.4	17.0	22.2	4.4	4.7	5.2	6.1
TII	. 0	. 1	15.0	14.6	9.2	9.4	1.4	. 1	12.8	12.0
VIL	25.2	12.8	14.3	19.7	20.6	10.8	5.3	6.9	6.9	10.1
Comblnod riak	10.53		33.06		15.05		3.32		6.32	
$x_{i}^{2}$	102.71		253.48	:	164.38		31.20		92.54	
$x^{2}$	84.7		21.91		6.55		16.71	.	16.32	
d.f.	13		13		13		13	.	13	
-95	6.68		21.49		10.39		2.16		4.34	
+95	16.59		311.16		24.18		5.07		9.20	
RUB Span.	15.0	3.2	21.0	7.0	9.0	4.5	3.9	1.4	17.2	9.6
DCH	123.7	25.1	326.6	23.4	10.6	4.1	9.1	9.5	10.6	5.4
HAM-As. Ind.	1.8	. 2	38.2	9.4	20.0	10.7	2.3	. 8	5.5	2.5
MAM-Art.Bl.	1.2	. 1	11.0	7.3	43.4	10.9	3.3	3.2	1.7	. 3
BRC-Arn. Bl .	14.5	7.9	43.4	10.1 .	81.9	14.6	2.3	1.1	2.9	1.1
	DRD va (0+X)		4,8 vs $(0+X)$		$4 \mathrm{vg}(0+x)$		B, $x$ vs $(0+x)$		4, $x$ ve (0+X)	
JuJ	1.0	. 6	25.1	14.9	3.5	$8 . \mathrm{B}$	1.8	. 6	1.7	
15U	9.5	7.1	13.0	18.9	5.9	14.5	6.11	4.6	4.2	9.2
Jap. Conlifnedr	lskJ.144		$16.2$		4.43		3.18		2.0	
$\times 2$	5.57		33.4		22.5		3.92		0.73	
${ }_{\text {x }}{ }^{2}$	2.11		6.30		. 69		1.26		1.65	
-95	11.26				2.39		1.01		1.41	
+95	11.73		41.63		8.18		9.97		5.49	

[^28]
## Joint Report: Diabetes

Caucasian patients, in American Blacks, but not significantly in African Blacks or Japanese. An increase of DRW8 in Japanese patients may sulistitute for the increase of DR3 in Caucasian patients. It should be pointed out, lowever, that the definitions of DR4 and DRW8 in Japanese are not as clear as in Caucasians. Finally, the decrease of DR2 is a characteristic of all populations studied. However, a number of DR2 positive IDDM patients were observed, but about $75 \%$ of these were either DR3 or DR4 positive. The frequency of patients lacking both DR3 and 4 ranged from 2.4 to $20.8 \%$ in Caucasians, 20.0 to $30.8 \%$ in Blacks, and was $37.5 \%$ in Asian Indians. In Japanese, 6.9 to $21.8 \%$ of the patients lacked both DR4 and DRW8. The associations were the same in the two sn:res

The relative risk for some $D R$ pheriotypes (Table 8). ' $X$ ' indicates antigens DR1, 2, 5, 7, and DRW8, and ' 0 ' indicates absence of detectable $D R$ antigens. The relative risks were calculated against the absence of DR3 and 4 in patients and controls. It can be seen that the DR3,4 phenotype has the highest risk in Caucasians and DR4, DRW8 the highest in Japanese. However, when calculating the relative risks for the DR3 and DR4 phenotypes, it should be noted that the DR3 and DR4 phenotypes comprise both homozy. gotes (DR3,3 and DR4,4) and heterozygotes (DR3,0 and DR4,0). It seems likely that the relative risks for thesc
heterozygotes are of the same order of magnitude as those for DR3,X and DR4, $X$, which are much lower than for the DR3 and DR4 phenotype, while the relative risks for the true homozygotes, DR3,3 and DR4,4, probably are higher. Nevertheless, when the HLA-DR genotype distribution of propositi who had been reliably HLA-DR genotyped by family studies (mainly familial cases) was analyzed, the picture seen in Table 9 emerged. Here patients who might be DR3,0 and DR4,0 heterozygous were classified as DR3,3 and DR4,4 homozygotes. When comparing these patient genotype frequencies with those expected in Caucasian controls on the basis of gene frequencies obtained from the analysis by Baur and Danilovs it appears that the relative risk for the DR3,4 heterozygotes by far exceeds that for each of the two homozygotes. Unfortunately, significant testing of the relative risks in Table 9 was difficult because the control frequencies were obtained indirectly via gene frequencies. Another weakness is that the patient samples were obtained from different populations showing considerable variations in their associations between HLA-DR and IDDM.

Affected sibpairs. It can be seen from Table 10 that there were 134 families with at least two affected sibpairs; in 12 families there were more than two affected sibpairs and in these cases we selected the two eldest affected sibs

Table 9. HLA-DR genotype distribution of propositi with familial IDDM

[12 Gemotype	IDOM		Controls	Relative   Risk
	Number	Per cent	Per cent.	
315	4			
		10.7	1.2	97.9
$3 / 3$ or 3/0	8			
3/4	46	41.1	2.6	173.6
$4 / 4$ or $4 / 0$	4			
	7	9.8	1.4	76.9
$3 / x$ or $3 / 0$	8	7.1	16.9	4.6
$4 / \mathrm{X}$ or $4 / 0$	29	25.9	18.5	15.4
$x / \mathrm{X}, \mathrm{x} / \mathrm{O}$, and $\mathrm{D} / \mathrm{O}$	6	5.4	59.3	( 1.00 )
lotal	112			

[^29]
## Joint Report: Diabetes

for analysis; in nine familiter one of the parents was also affected. When HLA-DR typing failed, sibpairs were classified by ABC antigens. Not all affected sibpairs could be unequivocally assigned as sharing 2,1 , or 0 haplotypes, and the doubtful pairs were divided with weights according to the proportions between the unequivocal pairs sharing 2, 1, or 0 haplotypes. The 'adjusted total' was used in the analysis according to the formula of Thomsen and Bodmer (9). The results of this analysis are shown in Figure 1 , where we have also included the results of previously published data. There is to our knowledge no overlap
between these published data and the Workshop material. It appears that the Workshop material shows almost precisely the same distribution between pairs sharing 2,1 , and 0 haplotypes as that seen in the published data. In the combined material, $59 \%$ share both, $37 \%$ share one, and $5 \%$ share no haplotypes. The abscissa of the figure is the frequency of the putative 'diabetes gene' while the ordinate is the chi square (with 2 df ) for the goodness of fit between the observed distribution of the three classes (sharing 2, 1, and 0 haplotypes) and those expected according to the two simple hypotheses, dominant and

Table 10. Affected sibpair: number of haplotypes shared (IBD)*

LAB. code	2	(1-2)	1	(0-1)	0	N
BER	5	1	6	2		14
BRA	5				2	7
BRG	4	2	4	1		11
BRT	1					1
BSH	8	1	2		1	12
CEP	4	3	2		1	10
DEM	1		1			2
GUT	1		1			2
MAM	1					」
KAS	4		3		1	8
	5	2	1		1	10
KRE	5	2	1			1
14OL	1					1
MYR	1					1
Rat	5	5	6	1		17
SUF	1	.				1
SVE	11		8	1		20
III	3		3			6
VIL	6	1	2	1		10
```A: no wller first degree rel. offer- ted```	54	14	36	6	3	113
```B: gdditional sib's affected (first pair included)```	9	0	1	0	2	12
```C: 㫙fecled parent(s)```	5	1	2	0	1	9
Total	68	15	39	6	6	1 sm
Adjusted. totel	78	-	49	-	7	134

* IBD $=$ Identical by descent

Explana!lon:
Not all sibpairs could unambitiously be classified as sharing 2 , 1 or zero of the parental haplotypes (IBD), and thus two subgroups for doubtful cases had to be considered.
A typical example is that one of the parents carries only $A 1, B 8, D R 3$ and can have given two indistinguishable haplotypes to the children.
The two doubtful subgroups were later divided with weights according to the proportions between the definite cases sharing 2,1 and zero haplotypes, thus giving the "adjusted total".

Joint Report: Diabetes

recessive (both with or without complete penetrance). It appears that the minimum X^{2} for the dominant model is 16.9 ($P<0.001$) which makes this model unlikely. The minimum $X^{2}=0.44$ for the recessive model does not correspond to significant P values, but if a X^{2}-value of 5.99 ($\sim P=0.05$) is used, the lowest acceptable frequency of the 'diabetes gene' is 0.234 .

A number of HLA recombinants was seen in the family material. However, because we were informed by one investigator that at least one family was included because it contained a recombinant child and because attempts to rule out extrapaternity (by typing for other genetic markers) had generally not been done, we did not estimate the recombination fraction(s).

Figure 1. Analysis of haplotype distribution of affected sibpairs.

Number of shared hapiotypes	2	1	0
8th Workshop study number (I)	78	49	7
Other data*	$\frac{76}{154}$	$\frac{48}{97}$	$\frac{5}{12}$
Total (II)	158.6	36.9	4.6

Absclssa Gene frequency for the putative 'diabetes susceptiblity gene' (D).
Ordinate: X^{2} (2 d.f.) for the goodness of fit between the observed distribution (58.6, 36.9, and 4.6\%) with those expected to the dominant (DOM) and recessive (REC) models.

Curves 'I' are for the Workshop data alone and curves 'II' are for all available data.
The minimum X^{2} for curve 'II DOM' is 16.9 at a gene frequency of 0.04 while the minimum X^{2} for 'II REC' is 0.44 at a gene frequency of 0.30 .
*Other data: Barbosa et al (19) (18 pairs), Cudworth (20) (40 pairs), Moller and Persson, personal communication (8 pairs), Ryder et al (3) (28 palrs), Splelman et al (11) (15 pairs + nonpublished pairs), Suciu-Foca et al (21) (14 palrs).

Finally, the segregations of the A1-B8 and A2-B15 haplotypes were studied: both male and female patients received each of these hapl \cdots irs apually forequently from the fathers and the mothers. lim: lindings of Cudworth et al (16) could thus not be confirmed in the Workshop study.

Age-at-onset and HLA-DR Earlier studies (15) have indicated that DR4 positive patients tend to have an earlier onset of IDDM than other patients and, accordingly, we analyzed the frequencies of various HLA-DR phenotypes for patients with various ages-at-onset (Table 11). Only Caucasian patient samples of reasonable size have been included. When testing the six different DR phenotypes in the four age-at-onset groups (0 to 10,11 to 20,21 to 30 , and >30 years) in a 6×4 contingency table, highly significant $\left(P<10^{-4}\right)$ heterogeneity was found, indicating that the DR associations vary between the four groups. There is no significant difference between the two groups with onset before 21 years or between the two groups with onset over 20 years, but there is significant ($\mathrm{P}<0.025$) difference between the groups with onse! 11 to 20 and 21 to 30 years, respectively, and a highly significant ($\mathrm{P}<0.001$) difference between onset less and more than 20 years. Accordingly, an age-at-onset about 20 years divides the entire material into two groups with different phenotype distributions: the DR3, X, DR3, and DRWX, X phenotypes show increased frequencies with increasing age-at-onset, whereas the

DR3,4, DR4, and perhaps the DR4, X phenotypes decrease. It may be noted that the differences between the two groups with onset before and after 20 years is unlikely to be due to a decreasing frequency of DR3,3 and DR4,4 homozygotes because the DR3 phenotype frequency actually showed an increase whereas the DR4 phenotype frequency did not change notably until onset after 30 years. One criticism which may be raised against this analysis concerns the fact that we have had to pool different patient samples in order to get sufficient numbers in each group. This may explain some of the heterogeneity because the different samples were truncated differently in terms of age-at-onset, but it seems unlikely that this should explain all the heterogeneity.

Age-at-onset and BfF ${ }_{1}$ type. Seven laboratories (BER, BSH, DEM, KAS, RUB, SVE, TII) provided information on 258 Bf typed propositi (22.5% were F_{1} positive). There was a trend that the age-at-onset was lower for the F_{1} positive patients than for the F_{1} negatives but the difference was not significant.

Month-at-onset and HLA-DR. Two laboratories (BER and SVE) provided information about month-at-onset for all patients studied and Figure 2 shows the distribution of month-at-onset for various HLA-DR3 and 4 phenotypes. It appears that DR4 positive patients significantly more frequently had onset in the last three months of the year

「able 11. HLA-DRW phenotype frequencies (/) in four age-at-onset groups.

Aqe [Fw:	$\begin{aligned} & 0,15 \\ & 3,8 \end{aligned}$	$\begin{gathered} 0-1 \\ 3 \end{gathered}$	3,4	4	4.1	x, x	N
EER	20.0	40.0	0.0	40.0	0.0	0.0	5
BSH	0.0	22.2	55.6	22.2	0.0	0.0	9
KAS	24.1	6.9	48.3	6.9	10.3	3.4	29
MSOL	0.0	14.3	28.6	35.7	14.3	7.1	14
MYR	0.0	12.5	12.5	50.0	25.0	0.0	8
SVE	12.5	4.2	37.5	37.5	8.3	0.0	24
TII	0.0	3.1	43.8	18.8	18.8	15.6	32
VIL	0.0	11.1	33.3	11.1	38.9	5.6	18
sum	7.9	9.4	38.1	23.0	15.8	5.8	139
Aqe at onsel: 11-20							
TRu:	3,1	3	3,4	4	411	1, x	N
QEf	13.5	13.5	21.6	16.2	21.6	13.5	37
BSH	0.0	0.0	69.2	15.4	0.0	15.4	13
KAS	16.7	16.7	41.7	0.0	25.0	0.0	12
MOL	0.0	0.0	33.3	33.3	16.7	46.7	6
HYR	5.0	0.0	30.0	20.0	25.0	20.0	20
SVE	5.0	12.5	45.0	20.0	10.0	7.5	40
T1I	0.0	0.0	27.3	36.4	27.3	9.1	11
VIL	10.0	20.0	50.0	10.0	0.0	10.0	10
sum	7.4	9.4	37.6	18.1	16.1	11.4	149

For the cormarisur lietween sums (4x6 table):
$X^{2}=47.13$ with 15 d.f., $p=4 \times 10^{-5}$.
If the Dfiw X, X phenotype is excluded from the amalysis: $x_{2}^{2}=32.0$ ($p<.00 \mathrm{~S}$) indicating that the ovorall heterogeneity 1 a not solely due to an increase of the $D R_{w} X, X$ phenotype with increseing mge-at-onset. If phenotypes Involving DRw are excluded: $x_{6}^{2}=4.1$ (n.s.) indicating ORw4 ls oxcluded.

Joint Report: Diabetes

compared to DR4 negatives. When less complete data from other laboratories (MOL, MYR, KAS, and VIL) were analyzed in a similar way, the same trend was observed, but it was not significant $(P=0.21)$. It should be noted that the difference seen in. Finure 2 may well be a chance deviation because many $\cdot 1!\cdots \cdot!$ mombinations of months can be made and, accordinyly, we only consider this observation a lead for further studies: it definitely needs confirmation.

Anti-slet cell antibodies (ICA). Four laboratories (BER, DEM, MYR, RUB) provided information on 172 patients investigated for ICA, usually several years after diagnosis. Fifty-six patients had ICA. The frequencies of DR3 and 4 did not differ between patients with and without ICA. However, these data are probably not suited for testing possible differences.

Hardy-Weinberg equilibrium in patients and controls It can be shown by algebra that Hardy-Weinberg structure for HLA antigens may be present in a patient sample if a disease is recessive and if the patients are ascertained by their disease from a background population in HardyWeinberg equilibrium with respect to HLA and the disease locus (3). Moreover, there should not be an excess of DR3,4 heterozygotes if the inheritance is intermediate
(Ryder, unpublished data). All patients and control samples of reasonable sizes were tested for Hardy-Weinberg equilibrium using the gene counting method of maximum likelihood, and it appears from Table 12 that in almost all samples there is a slight excess of DR3,4 (Caucasians and Blacks) or DR4,DRW8 (Japanese) heterozygotes among the patients, whereas the controls show no such excess.

Discussion

This study has confirmed earlier observations of association between IDDM and DR3 and 4 in Caucasians including Jews, Basques, and Asian Indians. Moreover, an association with DR4 has been demonstrated for the other ethnic groups studied: African and American Blacks and Japanese. The association between DR4 and IDDM thus seems to be universal. In contrast, the association with DR3 seems only to hold for Caucasians and Blacks whereas this antigen appears to be substituted by DRW8 in Japanese IDDM patients. A limited number of DR2 positive patients were observed but this antigen still shows the strongest negative association with IDDM. Most DR2 positive patients were either DR3 or DR4 positive. In Caucasians, only about 10% of the patients carry neither DR3 nor 4.

It appeared that the deviations seen for HLA-B7, B8,

Figure 2. Month-at-onset for various DR phenotypes.

Figure 2. Month-at-onset for various DR phenotypes
Data from the two only complete sets of data (BER and SVE) are shown. $1=$ January, $2=$ February etc. 24% of 88 DR4. positive patients and 4% of 46 DR4-negative patlents had onset during the last three months of the year ($\mathrm{P}=0.003$).

Joint Report: Diabetes

Table 12. Hardy-Welnberg (DR3,4)

Table 13. Genetic models for IDDM
HLA Genes alone
A) One Locu

> a) two alleles: $D=$ 'diabetes' gene
> d = normal allele
> Genotypes: $D / D \quad D / d \quad d / d$
> Penetrance: $\quad \begin{array}{lll}f_{2} & f_{1} & f_{0}\end{array}$.
> 1) dominant $\quad f_{2}=f_{1} \nsim, f_{0}=0$
> 2) recessive $f_{2}>0, f_{1}=f_{0}=0$
> 3) intermediate $f_{2}>f_{1}>0, f_{0}=0$
b) three (or more) alleles: more camplicated models which may imvolve overdominance, etc.
B) Two or more loci: Carplicated models which may imvolve ocaplementation, epistasis, etc.

HIA and Non-HIA Cenes

A) HIA genes may be necessary (a sine qua non)
B) HIA genes may not be necessary in all cases

Joint Report: Diabetes

B15, and B18 are entirely commitary to deviations of DR2, 3, and 4 (Table 6).

There were rather small differences between familial and nonfamilial IDDM concerning DR associations - in fact, statistical significance was only obtained when pooling patients having only DR3, DR4, or both. The small magnitude of these differences indicatos that HLA plays approximately the same role in nonfamilial as in familial IDDM. In both cases, HLA seems to play a major role in the predisposition.

Table 13 lists various yenelic models which may explain the genetics of IDDM (and of other HLA related disorders). The models have been listed in increasing order of complexity. The first three models (dominant, recessive, and intermediate) involve only two alleles at one locus within the HLA system: a 'diabetes' susceptibility allele, D, and a normal allele, d. The differences between these three models are due to different penetrances for the three genotypes: D/D, D/d, and «.i. Models involving three (e.g., two different susceptibility genes and one normal allele) or more alleles at one locus give rise to more complicated situations which become even worse if two or more loci are involved. When clarifying the genetics of a disorder it seems rational first to exclude the simpler models before attempting to fit the more complicated ones. The major problem with the complicated models is that they involve so many variables that it is possible io fit almost every model by changing one or more of these variables.

The Workshop more than doubled the number of HLA-typed affected sibpairs available. Although the distribution of pairs sharing two, one, or no HLA haplotypes did not change, the increasing number made it possible to exclude the dominant model and provided strong indirect evidence against the recessive one because the minimal 'diabetes' gene frequency compatible with the observations was 0.234 . This would correspond to a minimum frequency of $(0.234)^{2}=0.055$ of homozygotes in the population and, since the frequency of IDDM is 0.003 (17), the penetrance for these homozygotes would be only 0.003/0.055= 0.055 or 5.5% which is much too low. Indeed, it is not higher than the frequency of IDDM among siblings of all IDDM propositi (18), which it obviously should be because only a fraction of these sibs would be homozygous and susceptible. Accordingly, we think that these results are incompatible both with a dominant and with a recessive mode, which confirms earlier analyses using the same approach (3). However, thes results in Figure 1 do not rule out the possibility that the 'diabetes' gene (D) may act in an intermediate way with a dose effect giving higher penetrance for homozygotes than for heterozygotes (i.e., the third model in Table 13).

The intermediate model involves certain predictions which may be used to test its validity. Firstly, it may be predicted that if heterogencily exists within IDDM then
this heterogeneity should reflect differences between the two 'diabetes' genotypes, D/D and D/d. Although we cannot determine these genotypes, it is inherent in the intermediate model that the 'diabetes' gene (D) must be positively associated with HLA-DR3 and DR4 fand negatively associated with DR2), and most D/D homozygotes would be either DR3/3 or DR4/4 homozygous or DR3/4 heterozygous. Accordingly, these DR genotypes may be used as markers for homozygosity on the postulated 'diabetes' locus. As pointed out by W.F. Bodmer (personal communication), an intermediate model with a high penetrance in homozygotes and a low penetrance in heterozygotes would imply an overweight of homozygotes among familial cases and an overweight of heterozygotes among nonfamilial cases. Evidence that this is so can be seen from Table 5 which shows that there is an excess of the phenotypes DR3, DR4, and DR3,4 in familial cases as compared with nonfamilial cases. However, the excess is not striking and barely significant.

A more pronounced heterogeneity was found when the DR phenotypes were analyzed for patients in various age-at-onset groups (Table 11). However, this heterogeneity is probably not due to differences between D/D homozygotes and D / d heterozygotes (i.e., to a dose effect according to the intermediate model) because patients who had only DR3 or DR4 did not have earlier onset than DR3, X or DR4, X patients, respectively. Accordingly, we think that the age-at-onset heterogeneity may reflect different etiological mechanisms for the different DR phenotypic groups. It is possible that the high frequency of DR3 and 4 negative patients in the older age-at-onset groups to some extent may reflect the existence of phenocopies (e.g., misclassification of non-IDDM patients as IDDM patients) but we do not think that this can explain all the heterogeneity, mainly because the DR3 and DR3,X phenotypes show steady increases with increasing age-at-onset. In fact, when disregarding DR4 positive patients, DR3 is equally increased in all age-at-onset groups. It seems likely to us that the heterogeneity observed may be due to the possibility that two different HLA factors, one associated with DR3 and one with DR4, each confers susceptibility to IDDM by its own mechanism. The DR3-associated factor may exert its effect "throughout life" while that associated with DR4 may act mainly in young individuals. The main reservation concerning this conclusion is that the different patient samples on which Table 11 was based were truncated in different ways, and we think it necessary that the hypothesis should be tested in a few homogeneous populations.

The analysis of ICA did not provide any evidence for heterogeneity in this material.

Other predictions which can be made on the basis of the Intermediate model relate to the distribution of DR phenotypes among the patients. Firstly, it can be shown by
algebra (Ryder, unpublished) that under this model there should be no excess of DR3,4 heterozygotes among the patients. It appears from Table 12 that there was a small but almost universal excess of DR3,4 heterozygotes. Secondly, it can also be shown by algebra that the intermediate model should not lead to a relative risk for DR3,4 heterozygotes which is higher than both the relative risk for DR3,3 homozygotes and the relative risk for DR4,4 homozygotes (Svejgaard, unpublished). It appears from Table 9 that the relative risk for DR3,4 heterozygotes is almost twice as high as that for the two homozygotes. However, both of these statements are based on the assumption that the patients are drawn from a background population which is in Hardy-Weinberg equilibrium both for DR and for the 'diabetes' locus. Whereas this may be true for DR it may not be the case for the 'diabetes' locus because the fertility of IDDM patients is probably reduced. Nevertheless, these findings, together with the age-at-onset heterogeneity, make us reluctant to accept the intermediate model. However, before leaving all three two-allele models and accepting more complicated ones (Table 13), we feel that more HLA studies focusing on possible heterogeneity of IDDM in homogenow mpulations are indicated because the weakness of the 8 th Workshop data is the cause for the possible heterogeneity between the various populations studied.

Finally, we wish to stress that the analyses performed are not exhaustive because the time available was rather limited.

Conclusions

IDDM is associated with DR4 in all populations studied (Caucasian, Black, and Japanese) and with DR3 in most populations. About 90% of Caucasian IDDM patients are either DR3 and/or DR4 positive. In Japanese, DRW8 may substitute for DR3. IDDM may occur in DR2 positive individuals, but usually only when DR3 or 4 is present, too.

The associations observed for HLA-B8, B15, B18, and $B 7$ are secondary to the DR associations.

Some DR phenotype associations may be stronger in familial than in nonfamilial IDDM, but the differences are minor.

The distribution of haplotype sharing (two, one, or none) among affected sibpairs is incompatible with a dominant mode of inheritance for IDDM susceptibility and leads to an unacceptable, high gene frequency for the recessive model but does not rule out an intermediate model.

The DR phenotype associations show significant heterogeneity between groups of patients with different ages-at-onset: DR4 is mainly associated with early age-atonset IDDM whereas DR3 is equally associated with IDDM at all ages. This observation argues against the intermediate model.

The relative risk for DR3,4 heterozygotes is higher than for DR3,3 and DR4,4 homozygotes and there is an excess of DR3,4 heterozygotes when the patient samples are tested for Hardy-Weinberg equilibrium. These observations are also incompatible with the intermediate model.

More studies concerning possible heterogeneity of IDDM in homogeneous populations are warranted before the intermediate model may be finally disproved and before more complicated models are accepted. It is apparent from the Workshop study that the method of ascertainment should be very cleariy defined in future studies.

Acknowledgements

We are greatly indebted to all the participants of this study for their splendid cooperation, to Dr. P.I. Terasaki and his coworkers for providing computer printouts, and to Drs. A. Green, M. Hauge, N. Holm, J. Nerup, and M. Christy for invaluable advice during the planning of this study and during the analysis. The analysis was aided by grants from the Danish Medical Research Foundation, and the Dagmar Marshall Foundation. We are grateful to Mrs. C. Dam-Sorensen and Mrs. E. Schacht for excellent secretarial assistance and to Mrs. 13.K. lakobsen for evaluating some of the DR typing reactions.

REFERENCES

1. Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973, 22:429.
2. Nerup J, Platz P, Anderson OO, et al. HL.A antigens and diabetes mellitus. Lancet 1974, 2:864.
3. Ryder LP, Christy M, Nerup J, Platz P, Svejgaard A, Thomsen M. HLA studies in diabetes. In Treatment of Early Diabetes 1979, Camerini-Davalos RA, Hanover B, eds, Plenum Press, New York, 1979, 41.
4. Christy M, Green A, Christau B, et al. Studies of the HLA system and insulin-dependent diabetes mellitus. Diabetes Care 1979, 2:209.
5. Thomsen M, Platz P, Anderson OO, et al. MLC typing in juvenile diabetes mellitus and idiopathic Addison's disease. Transplant Rev 1975, 22:125.
6. Nerup J, Cathelineau C, Seignalet J, Thomsen M. HLA and endocrine diseases. In HLA and Disease, Dausset J, Sveigaard A, eds, Munksgaard, Copenhagen, 1977, 149.
7. Batchelor JR, Morris PJ. HLA and disease. In Histocompatibility Testing 1977, Bodmer WF, et al, eds, Munksgaard, Copenhagen, 1978, 205.
8. Cudworth AG, Woodrow JC. Evidence for HL-A linked genes in 'juvenile' diabetes mellitus. Brit Med J 1975, 2:133.
9. Thomsen G, Bodmer W. The genetic analysis of HLA and disease associations. In HLA and Disease, Dausset

Joint Report: Diabetes

J, Svejgaard A, eds, Munksgaard, Copenhagen, 1977, 84.
10. Rubinstein P, Suciu-Foca N, Nicholson JF. Genetics of juvenile diabetes mellitus. A recessive gene closely linked to HLA-D and with 50 percent penetrance. N Engl J Med 1977, 297:1036.
11. Spielman RS, Baker L, Zmijewski CM. Inheritance of susceptibility to juvenile onset diabetes. In Genetic Analysis of Common 1!:?:s Applications to Predictive Factors in Coronary Disease, Sing CF, Skolnick M, eds, Alan R. Liss, New York, 1979, 567.
12. Svejgaard A, Platz P, Ryder LP, Nielsen LS, Thomsen M. HL-A and diseases associations - a surver. Transplant Rev 1975, 22:3.
13. Platz P, Jakobsen B, Dickmeiss E, et al. Ia and HLA-D typing of patients with multiple sclerosis (MS) and insulin-dependent diabetes (IDD). Tissue Antigens 1977, 10:192.
14. Ilonen J, Herva E, Tiilikainen A, Aakerblom HK, Koivukangas T, Kouvalainen K. HLA-DW2 as a marker of resistance against juvenile diabetes mellitus. Tissue Antigens 1978, 11:144.
15. Svejgaard A, Christy M, Nerup J, Platz P, Ryder LP, Thomsen M. HLA and autoimmune disease with special reference to the genetics of insulin-dependent diabetes. In Genetic Control of Autoimmune Disease, Rose NR, et al, eds, Elsevier, North Holland, New York 1978, 101.
16. Cudworth AG, Wolf E, Gorsuch , AN, Festenstein H. A new look at HLA genetics with particular reference to type-1 diabetes. Lancet 1979, 2:389.
17. Green A. 1980, In preparation.
18. Degnbol B, Green A. Diabetes mellitus among first and second degree relatives of early onset diabetics. Ann Hum Genet 1978, 42:25.
19. Barbosa J, King R, Noreen H, Yunis EJ. The histocompatibility system in juvenile, insulin-dependent diabetic multiple kindreds. J Clin Invest 1977, 60:989.
20. Cudworth AG. Type I diabetes mellitus. Diabetologia 1978, 14:281.
21. Suciu-Foca N, Rubinstein P, Nicholson J, et al. Juvenile diabetes mellitus and the HLA system. Transplant Proc 1979, 11:1309.

Diabetes Mellitus

H. Bashir, Red Cross Blood Transfusion Service, Sydney, Australia, T. Juji, Women's Medical College Hospital, Tokyo, Japan, P. Moffitt, Diabetic Education and Stabilization Centre, Newcastle, Australia.

Contributing Laboratories

HLA
Professor D.B. Amos/Dr. D. Kostyu, Duke University Medical Centre, Durham NC U.S.A.
Professor R.B. Chen, Shanghai Second Medical College, Shanghai, The People's Republic of China
Dr. P. Chiewsilp, Ramathibodi Hospital, Bangkok, Thailand
Dr. R. Fong, Wellington Hospital, Wellington, New Zealand
Dr. M. Hammond, The Natal Institute of Immunology, Durban, South Africa
Dr. M. Hirota, Nagasaki University School of Medicine, Nagasaki, Japan
Professor T. Sasazuki, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo
Professor M. Vaidya/Dr. N. Mehra, All-India Institute of Medical Sciences, New Delhi, India
Dr. G. Woodfield, Blood Transfusion Service, Auckland, New Zealand
Professor Y.G. Ye, Institute of Immunology, Beijing, The People's Republic of China
$\mathrm{GLO}_{2} \mathrm{Br}, \mathrm{C}_{2}$
DI. R. Kirk, John Curtin School of Medical Research, ANU, Canberra, Australia

Gin
Dr. G. Woodfield, Blood Transfusion Service, Auckland, New Zealand
Auto Antibodies
Professor R.L. Dawkins, Royal Perth Hospital, Perth, Australia
Islef-cell antibodies
Dr. R.G. Elliott, School of Medicine, Auckland University, Auckland, New Zealand
The association between IDDM and HLA is well established although the mode of inheritance of the discase remains far from clear. Extensive studies have been carried out in European Caucasians, in Japanese and in American Blacks but studies in other populations and ethnic groups have been much less extensive. A number of interesting facts emerged from the 8th International Workshop. It appeared that the association with DR4 was universal, that with DR3 not so and DRw 8 appeared to substitute in Japanese. The increase in frequency of the B locus alleles appeared to be secondary to those of the DR locus, but they were of interest because of their heterogeneity.

The 2nd AOHWS provided a unique opportunity to document the HLA associations with JDDM widely in the region.

Reports of associations between NIDDM and HLA have been isolated and in general have been confined to special forms of diabetes in selected populations. It was thought that significant data could emerge from the study of selected patient groups which would not fulfil the críteria for IDDM, and thus it was decided to include such groups in the study.

The aims of the study were:

1. To document the association of HLA antigens and IDDM in populations within the Asia-Oceania region. It was decided that in this workshop, Caucasian patients would not be studied to maximise the availability of serum for non-caucasoid studies.
2. To examine the heterogeneity of the disease by careful documentation of clinical features, age of onset and complications and the correlation of these with HLA and other markers.
3. To study other specially selected groups of diabetic subjects. Criteria for acceptance of patients was as follows:
(a) IDDM - onset <40
idiopathic
kctosis-prone
non-obese
insulin-dependent
(b) NIDDM - no criteria were established except that patients studied should be relatively homogencous.
In both cases, it was requested that sufficient patients with age and sex matched controls be typed for the sludy to be self-contained.

Clinical data were requested as outlined in the Disease Card (Table I) for patients with IDDM; a further special card was generated for NIDDM.

Results

IDDM. No families were studied. The number of unrelated patients and controls typed in each laboratory is indicated in Table 2. In almost all laboratories the numbers studied were small and sampling error is inevitable. Despite some heterogeneity it was decided to pool the data from the two laboratories typing Chinese, the two laboratories uping Japanese and the two laboratories typing Indians and to analyse this as well as the data from individual laboratories. In this way, all possible associations would be visualised. In some cases associations were gained by pooling, in some, lost. In Tables 3 to 7 the phenolype frequencies of all antigens showing any significant change in frequency in any patient group are shown and the corresponding Relative Risk and probability values are shown in Table 7. Phenotypic frequencies of C_{2}, Bf and GLO are shown in Table 8 . (im studies will be reported elsewhere.

Chinese. Positive associations were shown with DR3 (RR 3.5) and DRW9 (RR 9.3) in the Shanghai Chincse (CHE) with BfF in the Peking Chinese (YGE), and DR3 (RR 3.1) and DRw9 (RR 6.7) in the combined Chinese. DR4 was not increased. Some of the observed differences between the two Chinese populations may be due to the small samples studied and it will be of interest to extend the observations to larger samples in both centres. The association of DR 3 with IDDM in Peking confirms the observation of Maeda et al. in Taiwanese Chinese (1), and marks a distinctive difference between the Chinese and lamance IDDM patients.
fapanese. llw, were no pocitive associations in the Nagasaki patients (HIR) but the Tokyo (SAS) study showed positive associations with Aw 24 (RR 8.7), B40 (RR 4), Bw. 54 (RR 4.8) and with IOR4 (RR 4). In the combined Japanese, the association was sustained with Aw24 (RR 6.1) and demonstrated with DRw9 (RR 2.96).

Indians. In the North Indians, strong positive associations were found with Bw49 (RR 12.7), DR3 (RR 19.5) and BIS, (RR 9.2), an extemely rare allele. These findings are striking and identily a susceptible haplotype in this population. DR4 was also significantly increased in the patioms (RR 4.5).

The posipive associations in the South African Indians were with Bw60 (RR 6.6), Cw3 (RR 10) and DR3 (RR 5.2). Although B8 was increased, the increase did not reach significant levels. There was no difference in the frequency of the B5 splits, Bu:5I, Bw52 and $B u$ in patients and controls. This was an unexpected finding but may have been due to the lack of discriminatory antiscra or to the selection of subjects from predominantly Arsan rather than Dravidian stock. Hammond has previously reported significant associations with B8, BwS2 and Bu in Dravidian Indians (2).

Thais. There were no significant associations in the Thais although both DR4 and DRw9 were slightly increased. This small study should be regarded as preliminary and a large sample will meed to be typed before definite conclusions can be reached.
Maoris. WDM 1 is excessively rare in Polynesians who are prone to develop the insulin independent form of the disease. Nevertheless six patients were found for this study. Although it wóuld be imappropriate to report antigen frequencies in this small sample, it is of special interest. Three of the six patients were DR3 positive, another two DR4 positive and the sixth DR9 positive. Two of the DR3 positive individuals were also B8 positive, and both the DR4 positive individuals were B40 positive. It is possible that, as in the Chinese, IDDM is associated in the Maoris with DR3, however these patients may reflect Caucasoid admixture and a larger study to clarify this will be of interest.

Clinical Sudies

An attempt was made to analyse the clinical data with regard to severity and the occurrence of the complications of diabetes, even though numbers of patients were small and data often incomplete. No significant associations with ketonuria, ptoteinuria, retinopathy or neurological signs were found with any antigen in any population.

Furthermore, no correlations could be found with the level of control as assessed by the attending plisician.
Age of senset was analysed in all groups, and the only significant association found was for DRt and onset below twenty years of age in the Peking Chinese.

Patients from three laboratories VAI, HIR, CHI were semened for anto antibodies. The screen comprised the following antibodies: anti muclear factor, smooth muscle, striational muscle, mitochondria, heart, thyroid and thyroglobulin.

Three patients only were positive for any of these, all were North Indians and their relevant details are as follows:

	Years of					
	Anlibody Delected	Titre	Age al Onsel	Treatment Since Diag. nosis	138	DR3
VAl Ill	Parietal	1/125	29	8	+	+
VAl 120	Seriational	1/5	15	2	+	+
YAl 134	Parietal	1/25	13	1	$+$	$+$

Islet-cell ambibody wh were carried out on the Japanese, Indian and Thai patients and all were ncgative.

Mature Onset Diabetes

Two populations were studied, Pima Indians and Maoris. In both cases, the disease was associated with obesity and inappropriate diet. It was not insulin dependent and age of onset varied. The incidence of MOD in the Maori is now known, but it is extremely high in the Pima, reaching 69% in women between the ages of 55 and 64 years (3).

There were no significant associations with any HLA antigens in the Pima. However, the extremely high frequency of DR3 in both patients (80%) and controls (70%) is of considerable interest and raises a number of important questions about the contribution of this antigen to the extreme propensity of the Pima to develope diabetes. It will be of interest to study other North American Indian Tribes which do not have this susceptibility, for their DR status, especially those which may be ethnically close neiglibours of the Pima.

There acte mo significan associations in the Maori either but only eleven patients were stadion and definite conchasions cannot be reached. However it was of interest that eight of the eleven individuals were either DR3 or DR4 positive, wo of the three remaining were I)Rw9 positice and one DRW8 positive. B8 and 3315 were not delected in any of the patients. B4t) (Bw 60 and 61) were slighty incteased.

No clinial detaiks were supplied for either group both of which are insolved in on going stuclics.

Conclusions

Although the majority of patient groups studied was too small for definite conclusions to be drawn, a number of significant or suggestive findings emerge which warrant further sludy. These include:

1. The association of IDDM with DR 3 and DRw9 in Chinese.
2. The possible association of IDDM in Japanese with DRw9.
3. The association of Bw4y and DR3 and the rare allele BIS, in the North Indians, and of DR3, Bw60 and Cw3 in the Asian Indians.
4. In all ethnic groups except the Thais DR2 was decreased although this was significant in only three laboratories.
5. No associations were found for mature onset diabetes, but the very high frequency of DR3 in the Pima and their extreme susceptibility to diabetes raises a number of interesting questions.

References

1. Maeda H., Takekuchi F., Juji T., Akanuma Y., Kasuga Y.E., Lee K. Kosaka K. and Tsai S.H. HLA DRw3 in juvenile onsel diabetes mellitus in Chinese. Tissue - Antigens. 15, 173. 1980.
2. Hammond M.G. and Asmal A.C. HLA and insulin dependent diaberes mellitus in South African Indians. Tissue Antigens. 15, 244, 1980.
 Copentagen. 345. 1972

Achnowledgemems

We would like 10 gratefully acknowledge the assistance of Philip Grimm, Diane Bovard and Ame Banasik in the preparation of this report, our clinical colleagues for their contribution and the patients for their co-operation and understanding.

Table 2
2nd nollws - Diabetic Study

Participusne moratorics

Laboratory	Ethnic Group	Type of Diabetes	$\begin{aligned} & \text { No. of } \\ & \text { ratients } \end{aligned}$	Nes. ef Controls	Code
Chen - Shanghai Ye - Peking Sasazuki - rokyo Hirota - Nagasaki Chiewsilp - Bangkok hammond - Durban Vaidya/Mehra - N. Delhi Woudfield - Nuckland	Chinese Chinese Japanese Japanese Tha i Asian Indians North Indians Polynesians - Maori	IDON IIUM IDDM IDDH IDDM IDUM IDDM IDDM	35 15 15 14 13 20 36 6	$\begin{aligned} & 53 \\ & 15 \\ & 75 \\ & 36 \\ & 20 \\ & 35 \\ & 40 \end{aligned}$	Che YGY SAS HIR CHI IINM VAI woo
Fong - Wellington Amos/Kotisu - Durhan	$\begin{aligned} & \text { Polynesians - Maori } \\ & \text { N.A. Indians - Pima } \end{aligned}$	$\begin{aligned} & \text { MOD } \\ & \text { MOD } \end{aligned}$	$\begin{aligned} & 11 \\ & 39 \end{aligned}$	$\begin{aligned} & 79 \\ & 53 \end{aligned}$	$\begin{aligned} & \text { FON } \\ & \text { AMOO } \end{aligned}$

Antigen Erequencies

\therefore Locijs

	Fts	Conts	Fts	Conts	Pts	Conts	Pts	Conts
YGY Chinese	. 067	. 067	. 667	. 733	. 133	. 133	.133	. 533
CuE Chinese	0	. 019	. 516	. 423	. 091	. 365	. 485	. 404
Combined Chinese	. 021	. 029	. 563	. 493	. 104	.313	.375	. 433
SnS Japanese	0	. 013	. 400	. 387	0	0	. 867	. 427
Hfl Japanese	0	0	.142	. 500	. 071	. 111	. 786	. 472
Combined Japanese	0	. 009	.276	. 432	. 034	. 036	. 828	. 441
Clli Thai	0	0	. 460	. 600	. 460	. 300	.460	. 350
HAPM Asian lndians	. 100	. 400	.300	. 286	. 250	. 286	. 350	. 200
VnI North Indians	. 139	. 350	. 444	. 225	. 083	. 300	. 222	. 250
Combined Indians	: 125	. 373	. 393	. 253	. 143	. 293	. 268	. 227
MOD								
	\bigcirc	. 076	. 455	. 430	. 455	. 329	. $545{ }^{\text {- }}$. 557
Nutu : , me lutiane	0	0	. 700	. 808	0	0	. 600	. 462

Table 4

		Pts	Conts	Fts	Conts	Pts	Conts										
	IDDM YGY Chinese CHE Chinese Combined Chinese	$\begin{aligned} & .067 \\ & .063 \\ & .064 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & .333 \\ & .156 \\ & .213 \end{aligned}$	$\begin{aligned} & .533 \\ & .300 \\ & .354 \end{aligned}$	$\begin{aligned} & .333 \\ & .313 \\ & .319 \end{aligned}$	$\begin{aligned} & .133 \\ & .360 \\ & .308 \end{aligned}$	$\begin{gathered} 0 \\ .031 \\ .021 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & .067 \\ & .125 \\ & .106 \end{aligned}$	$\begin{aligned} & .133 \\ & .080 \\ & .092 \end{aligned}$	*		$\begin{aligned} & .200^{\star} \\ & .188 \\ & .191 \end{aligned}$	$\begin{aligned} & .067 \\ & .120 \\ & .108 \end{aligned}$
$\underset{N}{\underset{N}{n}}$	SAS Japanese HIR Japanese Combined Japanese	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ .071 \\ 0 \end{gathered}$	$\begin{aligned} & .200 \\ & .111 \\ & .180 \end{aligned}$	$\begin{aligned} & .666 \\ & .429 \\ & .552 \end{aligned}$	$\begin{aligned} & .333 \\ & .389 \\ & .351 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & .053 \\ & .056 \\ & .054 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} .067 \\ 0 \\ .034 \end{gathered}$	$\begin{aligned} & .133 \\ & .111 \\ & .126 \end{aligned}$	$\begin{aligned} & .067 \\ & .071 \\ & .069 \end{aligned}$	$\begin{aligned} & .186 \\ & .111 \\ & .162 \end{aligned}$	$\begin{aligned} & .333 \\ & .286 \\ & .31 Q \end{aligned}$	$\begin{aligned} & .103 \\ & .306 \\ & .162 \end{aligned}$
	CHI Thai	0	0	0	10	. 300	. 105	. 300	. 263	0	0	. 100	. 105	0	0	0	0
	HAM Asian Indians VAI North Indians Combined Indians	$\begin{aligned} & .250 \\ & .306 \\ & .286 \end{aligned}$	$\begin{aligned} & .057 \\ & .125 \\ & .093 \end{aligned}$	$\begin{gathered} 0 \\ .056 \\ .036 \end{gathered}$	$\begin{aligned} & .058 \\ & .200 \\ & .133 \end{aligned}$	$\begin{aligned} & .450 \\ & .167 \\ & .268 \end{aligned}$	$\begin{aligned} & .200 \\ & .175 \\ & .187 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ .222 \\ .143 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & .150 \\ & .056 \\ & .089 \end{aligned}$	$\begin{aligned} & .250 \\ & .257 \\ & .253 \end{aligned}$	$\begin{aligned} & .100 \\ & .056 \\ & .071 \end{aligned}$	$\begin{aligned} & .114 \\ & .125 \\ & .120 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
	MOD FON POLy. Maori AMO N. Am. Indians	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} .101 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{gathered} .076 \\ 0 \end{gathered}\right.$	$\begin{gathered} .728 \\ 0 \end{gathered}$	$\begin{gathered} .442 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ .125 \end{gathered}$	$\begin{aligned} & .013 \\ & .275 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$.455^{*}$ 0	$\begin{gathered} .139 \\ 0 \end{gathered}$			

2nd nuHWS - Diabetic Study

Antigen Frequencies

C Locus

Table
2nd AOHNS - Diabetic Study
Antigen Frequencies

	DR2		DR3		DR4		DR8		DR9		DR10	
	Pts	Conts										
IDDM												
YGY Chinese	. 333	. 133	. 467	. 267	. 267	. 267	. 200	. 200	. 333	.133	0	0
CHE Chinese	. 094	. 366	. 375	. 146	. 281	. 366	. 188	. 220	. 563	. 122	0	0
Combined Chinese	. 170	. 304	. 404	. 179	. 277	. 339	. 234	. 214	. 489	. 125	0	0
SAS Japanese	0	. 333	0	0	. 750	. 333	. 200	. 213	. 533	. 280	0	0
HIR Japanese	. 071	. 277	0	0	. 214	. 417	. 071	.444	. 429	. 194	0	0
Combined Japanese	. 034	. 317	0	0	. 448	. 366	. 138	. 275	. 483	. 242	0	0
CHI Thai	. 500	. 267	. 125	. 133	. 125	. 067	0	0	. 125	. 067	0	0
HAM Asian Indians	. 200	. 343	. 400	. 114	. 350	. 371	. 250	. 086	. 050	. 086	. 050	. 029
VAI North Indians	. 111	. 375	. 806	. 175	. 389	. 125	. 056	0	. 028	. 075	. 028	. 075
Combined Indians	. 143	. 360	. 661	. 147	. 375	. 240	. 125	. 040	. 036	. 080	. 036	. 053
MOD												
FON POLy. Maori	0	. 074	. 182	. 162	. 636	. 427	. 090	. 250	. 182	. 118	0	0
AMO N. Am. Indians	. 086	. 133	. 800	. 696	. 061	. 182	. 114	. 111	. 029	0	0	0

Table 7
Sianificant Relative Risk Estimate (p values ${ }^{+}$)

	Chinese			Japanese			Indian		
	YGY	CHE	Combined C.	SAS	HIR	Combined J.	VAI	HAM	Combined I.
$\begin{array}{r} A \cdot 1 \\ 2 \\ 3 \\ 11 \\ w 24 \end{array}$	$.13^{*}$.17**	$.25^{* *}$	$8.7^{* *}$	$.17{ }^{\circ}$	$6.1^{* * *}$	$\begin{aligned} & .30^{*} \\ & 2.8^{*} \\ & .21^{*} \end{aligned}$		$.24^{* *}$ $.40^{*}$
$\begin{array}{r} 8 \quad 8 \\ 15 \\ 40 \\ w 49 \\ w 51 \\ w 54 \end{array}$				4.3* 4.8^{*}			$\begin{gathered} 12.7^{* *} \\ .18^{\star} \end{gathered}$	+3.3*	$\begin{gathered} 3.9^{* *} \\ 2.7^{*} \\ 14.0^{* * *} \\ .29^{*} \end{gathered}$
$\begin{array}{r} C w 3 \\ w 4 \end{array}$. 10 **	.07***			\cdot		10.6**	
$\begin{array}{cc}\text { DR } & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 7 \\ & 8 \\ & 9\end{array}$		$\begin{gathered} .18^{*} \\ 3.5^{*} \end{gathered}$ $9.3^{* *}$	$3.1 *$ $6.7^{* *}$	$\begin{aligned} & .12^{\star \star} \\ & 4.0^{\star} \end{aligned}$	$.10^{*}$	$.08^{* * *}$ 3.0^{*}	$\begin{gathered} .21^{* *} \\ 19.5^{* *} \\ 4.5^{* *} \\ .22^{* *} \end{gathered}$	5.2**	$\begin{gathered} .30^{* *} \\ 11.3^{* * *} \end{gathered}$ $.28^{* *}$
$\begin{array}{rr} B E \quad F \\ S l \end{array}$	7.43*					. 29 *	$9.2 *$		8.4***

$t=p$ value estimated from 2×2 contingency table

* = <.05, ** $=$ <.01, *** $=<.001$
$\uparrow=$ Relative risk for Bw60 is 8.9**

Table 8
 Distribution of other chromosome 6 Markers in

		GLO			C2			Factor B				
		1	2	other	a	b	c	\because \%	Bff	BfSI	Bffl	0tier
Chinese												
ygy	Pts.	. 333	1.000	0	0	0	$\therefore .000$. 300	. 533	. 067	0	\div
	Conts.	. 154	1.000	0	0	0	$\therefore .000$. 333	. 133	. 067	0	0
CHE	Pts.	. 257	. 971	0	. 029	. 057	. 971	. 371	. 206	. 029	0	0
	Conts.	. 151	1.000	0	. 038	. 038	$\therefore .000$. 381	. 245	. 038	0	0
Combined 0.	pts.	. 280	. 980	0	. 020	. 040	. 980	. 918	. 306	. 041	0	0
	Conts.	. 152	1.000	0	. 029	. 029	$\therefore .200$. 971	. 221	. 044	0	0
Japanese												
SAS	Pts.	. 200	1.000	0	0	. 067	1.000	1.000	. 200	0	0	0
	Conts.	0	1.000	0	0	. 100	1.000	1.600	. 600	0	0	0
HIR	pts.	. 143	. 929	0	0	. 071	1.000	. 923	. 154	0	0	0
	conts.	. 172	1.000	0	0	. 033	1.000	1.000	. 367	0	0	0
Combined J.	Pts.	. 172	. 966	0	0	. 069	1.000	. 964	. 179	0	0	0
	conts.	. 07	1.000	0	0	. 050	1.000	1.000	. 425	0	0	0
Indians												
HAM	Pts.	. 474	. 895	0	0	. 053	. 105	. 684	. 632	. 053	0	0
	conts.	NT										
VAI	Pts.	. 758	. 875	0	0	. 174	1.000	. 760 :	. 600	. 240	0	U
	Conts.	1.000	1.000	0	0	. 167	1.000	. 767	. 500	. 033	0	0
Combined I.	Pts.	. 465	. 884	0	0	. 119	. 595	. 727	. 614	. 159	0	0
	Conts.	1.000	1.000	0	0	. 167	1.000	. 767	. 500	. 033	0	0
Thais												
CHI	Pts.	. 417	1.000	0	0	. 077	1.000	1.000	. 231	0	0	0
	Conts.	. 263	1.000	0	0	. 100	1.000	1.000	. 050	0	0	0

HLA-A, B, C and DR antigens in young South African blacks with Type 1 (insulin-dependent) diabetes mellitus

M.A.K.Omarl', M. G. Hammond ${ }^{2}$ and A.C.Asmal ${ }^{1}$
'Department of Medicine, Unischs il Natal. Durban and 'Natal Institute of hmmonogy. Pinctonn. South Afric:a

Abstract

Summary. The HLA status of South Arrican black Type 1 (in-sulin-dependent) diabetic patients with age of onset under 35 years was compared with that of healthy black control subjects. HLA-A. 13 and C antigens were determined in 94 patients and 995 control subjects, while DR typing was carried out on 56 patients and 195 control subjects. There was a significant increase in the frequency of DR4 in patients as compared with control subjects ($\rho<0.01$: relative risk 3.4). DR3/DR4 heterozygosity was associated with a greater relative risk for developing Type 1 diathetes mellitus (3.7) than the

presence of DR3 alone (relative risk 1.6). A significant negative association was observed between the presence of BW42 and Type 1 diabetes in this population sample ($p<0.04$; relative risk (0.3). A similar trend was observed with regard to DR2, the corrected p value just attaining statistical significance ($p<0.05$; relative risk 0.1).

Key words: HLA-A, B, C DR antigens, Type 1 diabetes, South African blacks, B8/B14, DR4, BW42, DR2, DR3/DR4.

The association betweer Type 1 (insulin-dependent) diabetes mellitus and the HLA system has been documented in many studies involving different population groups. HLA antigens associated with Type 1 diabetes in White Caucasoids include CW3, CW4, B8, B15, DW3, DW4, DR3 and DR4 [1]. In the Japanese, the disease has been associated with HLA-DYT and BW54 [2, 3] while in South African Indians an association with $B 8$ has been shown [4]. Other studies have shown a relationship with DR3 and DR4 in American blacks [5] and with either B 8 or B 14 , which arr cross-reacting antigens, in South African blacks fil. 11 dius evident that there are differences in the specific allelic associations anong various ethnic groups.

There is little information on the relationship between Type 1 diabetes mellitus and antigens at the D locus of the HLA systems in populations other than Caucasoids. Therefore a group of South African blacks with the disease was studied to evaluate the frequencies of HLA-A, B, C and the recently-discovered serologicallydetected DR antigens, which appear to be controlled by genes located at the same locus as the HLA DW antigens [7]

Patients and methods

All the patients and control subjects were blacks of Zulu descent. HLA-A, B, and C antigens were determined in 94 patients with Type 1 diabetes and 995 control subject. whila HLA-1)R antigens were de-
termined in 56 patients with Type 1 diabetes and 195 controls. Classification of patients as having Type 1 diabetes was based on the revised criteria recommended by the National Diabetes Data Group and the WHO: all had always been dependent on insulin for control of symptoms and prevention of basal ketosis [8, 9].

A total of 180 antisera were used in a two-stage microlymphocytotoxicity test to determine HLA-A, -B, and -C specificities. Lymphocytes were isolated on a Ficoll-Hypaque density gradient [10]. HLA-DR specificities were determined in an extended incubation microlymphocytotoxicity test, using T-cell-depleted, B-cell-enriched lymphocytes. The frequency differences between the patients and controls were tested for significance by means of the chi-squared test (without Yates correction). The resulting probabilities were multiplied by the number of specificities tested in order to determine the corrected value [11].

Relative risk was calculated according to the method of Woolf [12].

Results

At the A and C loci there was no difference in the frequency of any of the antigens between patients and control subjects. The lower frequency of A30 in patients (23.4% versus 38.4%) was not significant after correcting for the number of antigens being tested (Table 1).

The frequency of B14 was increased in patients as compared with control subjects (12.8% versus 5.2%), but this was not significant after correcting the p value (Table 2). Similarly the frequency of B8, although increased in patients (22.3% versus 12.8%), did not attain significance level after correction for the number of an-

Table 1. Percentage frequencies of HLA-A and - B antigens in patients and control subjects

HLA antigen	Percentage frequency in	
	Control sublejects $(n=995)$	Diabetic patients $(n=94)$
AI	6.5	7.5
A2	21.1	25.5
A3	12.5	13.8
All	0.1	0
AW23	17.5	24.5
AW24	5.1	4.3
A25	14.3	8.5
A26	9.2	7.5
A28	20.6	23.4
A29	18.1	18.1
AW30:	38.4	23.4 rr 0.5
AW31	7.1	8.5
AW32	2.3	6.4
AW33	1.6	1.1
One antigen	25.5	27.7
B5	1	!
137	19.9	18.1
$138^{\text {h }}$	12.8	22.3
1314	5.2	12.8 rr 2.7
B8/B14 ${ }^{\text {c.d }}$	17.7	.34.0 or 2.4
B13	4.1	5.3
B15	5.11	6.4
B16	3.1	1.1
B17	38.6	36.2
B18	4.2	6.4
BW21	1.2	1.1
BW 22	0.1	0
B27	0.4	0
BW35	6.2	3.2
B 37	0	0
BW 40	0.8	0
BW41	2.1	9.6
BW 42	24.8	9.6 rr 0.3
BW 44	16.0	11.7
BW45	7.7	9.6
BW53	1.3	1.1
BW	19.1	14.9
One Antigen	36.1	30.9

${ }^{3} p$ uncorrected <0.005; ${ }^{\text {b }} p$ uncorrected <0.05; ${ }^{c} p$ uncorrected <0.001; ${ }^{\mathrm{d}} p$ corrected <0.04; $\mathrm{rr}=$ relative risk
tigens tested (Table 1). Since HLA-B8 and -B14 form part of a cross-reacting group of antigens, the presence of either of these antigens in the patients was compared with that in the control subjects. The difference is highly significant (34% versus $17.7 \%, p<0.04$, relative risk 2.4 ; Table 1).

There was a lower frequency of HLA-BW42 in patients as compared with control subjects (9.6% versus 24.8%, relative risk 0.3), the difference being significant even after correction for the number of antigens tested (Table 1).

At the DR locus, Type 1 diabetes mellitus in the black patients was associated with a significant increase in the frequency of DR4 (32.1% versus 12.3%; relative risk 3.4) even after correcting the p value (Table 2). The frequency of DR2 is lower in patients than in control

Table 2. Percentage frequencies of DR antigen in patients and control subjects

HLA antigen	Percentage frequency in	
	Control subjects $(n=195)$	Diabetic patients $(11=56)$
DR1	2.6	7.1
DR2 ${ }^{\text {a }}$	21.0	3.6 rr 0.1
DR3	34.4	42.9 rr 1.3
DR4 ${ }^{\text {b }}$	12.3	32.1 rr 3.4
DR5	33.9	17.9
DR6	15.9	10.7
DR7	12.3	23.2
DR8	1.0	3.6
DR9	0.5	1.8
DR10	2.6	1.8
One antigen	63.6	55.4
DR3/DR4	2.5	8.9 rr 3.7
DR3/any other antigen	14.3	16.2
DR3/DR blank	21. 4	16.2
DR4/any other antigen	8.9	4.6
DR4/DR blank	12.5	5.5

Table 3 Linkage disequilibrium between HLA-B locus antigens and HLA-DR locus antigens

		Control subjects			Diabetic patients		
		Haplotype frequency $\times 10^{3}$	$\triangle \times 10^{3}$	Δ / SE	Haplotype frequency $\times 10^{3}$	$\Delta \times 1$	$\triangle / S E$
DR3	BW42	72	51	$3.4{ }^{18}$	3.1	18	$0.7{ }^{\text {c }}$
DR2	B7	48	35	2.7 *	8	6	$0.6{ }^{\text {c }}$
DR3	B8	34	21	$1.7{ }^{\text {c }}$	65	37	$1.2{ }^{\text {c }}$
DR5	B7	34	13	$0.8{ }^{\text {c }}$	53	45	1.9
DR5	B17	15	-27	$1.2{ }^{\text {c }}$	50	36	$1.4{ }^{\text {c }}$

$\Delta / \mathrm{SE}=\mathrm{delta} /$ standard error
${ }^{\mathrm{a}} p<0.01$; ${ }^{\text {b }} p<0.05$; ${ }^{\text {c }}$ not significant
subjects (3.6% versus 21%), the difference just attaining a level of statistical significance after correction for the number of antigens being tested (Table 2). The frequency of DR3 is only slightly higher in patients than in control subjects, there being no significant difference.

HLA-DR3 and DR4 were found together in 8.9% of patients and in only 2.5% of control subjects (relative risk 3.7; Table 2). Thus the relative risk of DR3/DR4 heterozygosity was much greater than that for DR3 alone (relative risk 1.3) but only slightly higher than that for DR4 alone (relative risk 3.4).

The occurrence of specific $D R$ antigens together with certain B locus antigens in the same haplotype is. shown in Table 3. Whereas there are significant linkage disequilibra between DR2 and B7 $(\Delta \times 1000=35$, $p<0.05$ and between DR3 and BW42 $(\triangle \times 1000=51$; $p<0.01$) in control subjects, these phenomena are not seen in the patients $(\Delta \times 1000=18, p>0.05$ and $\Delta \times 1000=6, p>0.05$ respectively; Table 3). The HLADR3/B8 haplotype is present in a greater proportion of
diabetic patients (6.5 "in) than control subjects (3.4%) but there is no signilicant linkage disequilibrium in either group (Table 3).

Discussion

In white Caucasoids two distinct forms of Type 1 diabetes have been recognised and these may be distinguishable on the basis of HLA studies [13]. There is an autoimmune variety which is associated with DR3 and DW3 and less strongly with B8 [13]. The other type has an earlier age of onset ant linds to be associated with DR4 and DW4, but less strongly with B15 and CW3 [1].

The present study has demonstrated a significant association between Type 1 diabetes in South African blacks and the presence of HLA-DR4. Such an association has been observed in virtually all the ethnic groups studied thus far [14]: However, an association with DR3 could not be shown among the Zulu patients here, unlike the findings in European Caucasoids [1] and American blacks [5]. It is possible though that such a relationship is still present but masked by the relatively small sample size.

The presence of DR3/DR4 heterozygosity in South African blacks was associated with a much greater susceptibility to Type 1 diabetes than that associated with possession of DR3 alone, but in comparison with DR4 alone, DR3/DR4 did not greatly increase the risk. In white Caucasoids, however, the relative risk associated with possession of both DR3 and DR4 has been found to be much greater than that associated with DR3 alone or DR4 alone [1]. Studies in white Caucasoids have established a negative correlation between Type 1 diabetes and the presence of DR2. Such a trend was also observed among the South African blacks with Type 1 diabetes, the corrected p value being significant at the 0.05 level. In addition, there was a significant negative correlation with BW42 in these patients. It is difficult to gauge the significance of such findings at present, since a decreased frequen wif an antigen as opposed to an increased frequency : to become evident [15]. The negative correlation between B7 and Type 1 diabetes shown in white Caucasoids [1] was not seen in the black patients described here, nor has it been observed in American blacks [5].

Previously it had been shown that there was a close correlation between Type 1 diabetes in South African blacks of Zulu origin and the presence of either B8 or B14, which are cross-reacting antigens, thus raising the possibility that the same susceptibility gene might be associated with either of these antigens in this population group [6]. The findings in this study, which was extended to involve a larger number of patients, confirmed such a relationship.

The black patients with Type 1 diabetes did not show any increase in the frequencies of CW3, B15, and B18 as has been found in European Caucasoids, nor of

BW54 and B12 as observed in Japanese [1-3]. Studies in American blacks or Nigerians have not shown any significant association at the B locus [15-17]. Patel et al did find an increased frequency of B8 in the former, but the corrected p value was not significant [18], as has been the case with the black patients reported in this study.

In a study on a small number of Nigerians with Type 1 diabetes none of the patients had A 30 , whereas it was present in 15% of the 226 controls [17]. Such a trend has also been observed in this study done on patients who are ethnically related to Africans in the rest of Africa [19].

Linkage disequilibrium between antigens of the B locus and those of the DR locus was observed in this study, but the degree to which this phenomenon occurred was different in control subjects and patients DR2 and B7 were found together far more frequently in the former. However, the frequency of B7 if present alone does not differ much between patients and control subjects, thereby supporting the well-known conclusion that the relationship between Type 1 diabetes and the HLA system is stronger at the D locus than the B locus [1].

Linkage disequilibrium involving the DR3 - B8 haplotype, which has been a constant finding in white Caucasoids [1], was not a significant finding in the black patients studied here. However, a signilicant association was seen between DR3 and BW42 in the black control subjects, whilst the frequency of this haplotype was much lower in the patients.

Acknowledgement. This study was supported by South African Medi cal Research Council.

References

1. Christy M, Green A, Chuistau B, Kromann H, Nerup J, Platz P. Thomsen M. Rydẹn LP, Svejgaard A (1979) Studies of the HLA system and insulin-dependent diabetes mellitus. Diabetes Care 2 : 209-214
2. Kawa A, Nakazawa M, Sakaguchi S, Nakamuras S, Komo Y, Hazeki H, Kanehisa T (1977) HLA system in Japanese patients with diabetes mellitus. Diabetes 26: 591-595
3. Nakao Y, Fukunishi T, Koide M, Akasawa K, Ikeda M, Yahata M, Imura H (1977) HLA antigens in Japanese patients with diabetes mellitus Diabetes 26: 736-739
4. Hammond Mi G, Asmal AC (1980) HLA and insulin-dependent diabetes in South African Indians. Tissue Antigens 15: 244-248
5. Rodey GE, White N, Fraser TE, Duquesnoy RJ, Santiago JV (1979) HLA - DR specificities among Black Americans with juve nile onset diabetes. N Engl J Med 301: 810-8t2
6. Hammond MG, Asmal AC, Omar MAK (1980) HLA and insulindependent diabetes in South African Negroes. Diabetologia 19 101-102
7. Platz P, Thomsen M, Svejgaard A, Cudworth AG, Woodrow JC, Nerup J (1978) More on the genetics of juvenile diabetes. N Engl J Med 301: 810-812
8. National Diabetes Data Group (1979) Classification and diagnosis of diabetes mellitus and other categores of glucose intolerance. Diabetes 28: 1039-1057
9. WHO Expert Committee Report on Diabetes Mellitus (1980) Second Report. Technical Report Series No 646, World Healtll Organization. Geneva
10. Boyum A (1967) Sepamaion of teucocytes from blood and bone marrow. Introduction. Scand I (lin Lab Invest 21 (Suppl) 97: 7-10s
11. Svejgaard A. Jersild L. Stanh-Niclson L, I3odmer WF (1974) HLA antigens and disease. Statistical and genetical considerations. Tissue Antigens 4: 95-105
12. Woolf B (1955) On estimating the relation between blood group and disease. Amn Hum Genet 19: 251-253
13. Nerup J, Andersen OO, Christy M. Platz P, Ryder L. Thonisen M. Svejgaard A (1976) HLA, autoimmunity, virus and the pathogenesis of jurenile diabetes mollitus. Acta Findacimol (Suppl 1) (Copenh) 83 (Suppl 205): 167.-175
14. Svejgaard A. Platz P, Ryder LP (1980) Insulin-dependent diabetes mellitus In: Terasaki Pl (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory. Los Angles, pp 653-689
15. Svegaard A, Hansen M, Iersild C, Platz P, Ryder BP, Staub-Nielson L. Thomsen M (1975) The HLA system. An introductory survey. Monogr Genet 7: 1-100
16. Duquesnoy RJ, MacDonald MI, Mullins P, Hackbath SA. Tras-
man HS. Levitsy LL (1979) fncreased frequency of HLA-DW. in North American Black patients with juvenile-onset diabetes. Tissue Antigens 13: 369-372
17. Famuyiwa OO, Nwabuebo IE, Abioye AA (1982) Pattern of histocompatibility (HLA) distribution among Nigerian (West African black) diabetics. Diabetes 31: 1119-1122
18. Patel R, Ansari A. Covarrubias (1977) Leucocyte antigens and disease III. Association of HLA-B8 and HLA-BW15 with insulin-dependent diabetes in three different population groups. Metabolism 26: 487-492
19. Tobias PV (1971) The biological invalidity of the term Bantu. S Afr J Sci 67: 517-520

Received: 5 April 19s3
and in revised form: 24 october 1983

Dr. M.A. K.Omar
P.O. Box 17039

Congella 4013
Natal
South Arrica
study is short, non-invasive and inexpensive and can be repeated many times during the average stay in hospital. The radiation dose is well within the safety limits prescribed by most hospital radiation safety committees. Previous reports have shown a strong negative correlation between the degree of steatorrhoea measured by 4 -day stool fat collections and the peak excretion rate of breath ${ }^{4} \mathrm{CO}_{2}$ after the " C -labelled fat test. ${ }^{2}$
This test made it possible to demonstrate a general significant improvement ($21 / 2$ times) in fat absorption after supplementation with 8 tablets of pancreatic extract (equivalent to 96000 U lipase). It is generally accepted that antacids and histamine-2 blockers reduce steatorrhoea when given with pancreatic enzymes containing in excess of 30000 U lipase. ${ }^{4}$ The failure of such manipulations to increase absorption in our patients could be explained by the unique design of the encapsulated enzymes used. In addition to pancreatic enzymes, they have an outer coat of bromelin - a proteolytic enzyme - designed for release in the acid medium of the normal stomach. The enteric-coated pancreatic enzymes are then released into the duodenum where they are activated by the relatively higher pH . This would also explain why in the patient with achlorhydria the simultaneous administration of acid actually increased fat absorption.
In conclusion, our findings would suggest that in order to optimize control of pancreatic steatorrhoea, gastric acid studies
should always be performed initially and enteric-coated preparations should be reserved for those patients with normal or high secretion rates. The use of the ${ }^{14} \mathrm{C}$ fat test permits a rapid assessment of the adequacy of therapy. The resulting improvement in fat absorption might then be expected to improve the depleted nutritional state of patients with chronic pancreatitis.

We thank Mr C. van der Plank and the pharmacy staff at the King Edward VIII Hospital for assistance in preparing the labelled fat test meal.

REFERENCES

1. Abt AF, von Schuching SL. Fat utilisation test in disorders of fat metabolism. Bull Johns Hopkins Hosp 1966; 119: 316-330
. Kaihara S, Wagner HN. Measurement of intestinal fat absorption with ${ }^{14} \mathrm{C}$ labelled tracers. J Lab Clin Med 1968; 71; 400-411.
2. Goff JS. Two-stage triolein breath test differentiates pancreatic insufficiency from other causes of malabsorption. Gastroenterology 1982; 83: 44-46.
3. DiMagno EP: Controversies in the treatment of exocrine pancreatic insulfciency. Dig Dis Sci 1982; 27: 481-484
4. Newcomer AD, Hofmann AF, DiMagno EP et al. Triolein breath test: a sensitive and specific test for fat malabsorption. Gastroenterology 1979; 76: 6-13.
5. Jclliffe DB. Assessment of the Nutritional Status of a Community (WHO Monograph Series No. 53). Geneva: WHO, 1966.

HLA A, B, C and DR antigens in young South African Indians with insulin-dependent diabetes mellitus

M. A. K. OMAR, M. G. HAMMOND, M. C. RAJPUT, A. C. ASMAL

Department of Medicine, University of Natal, and Natal Institute of Immunology, Durban
M. A. K. OMAR, M.D., F.C.P. (S.A.), M.R.C.P
M. G. HAMMOND, PH.D.
M. C. RAJPUT, M.B., F.C.P. (S.A.), M.R.C.P
A. C. ASMAL, M.D., PH.D., F.C.P. (S.A.), M.R.C.P.

Studies of the relationship between insulin-dependent diabetes mellitus (IDDM) and the HLA system have shown clear associations between the disease and certain HL.A antigens. High frequencies of HLA B8, B15, B18, Cw3, Cw4, Dw3, Dw4, DR3 and DR4 have been found in Whites with the disease. Studies in other population groups have shown an association with B12 and B54 among the Japanese, ${ }^{2,3}$ and with DR3 and DR4 among American Blacks. ${ }^{4}$ Thus it can be seen that there are differences in the specific allelic associations among the various ethnic groups.

In a previous article a strong association between IDDM and HLA B8 among South African Indians was reported. ${ }^{5}$ The present study was undertaken to evaluate the relationship between IDDM in Indians and HLA A, B and C antigens and the serologically detected DR antigen which appear to be controlled at the same locus as the $\mathrm{D} w$ antigens. ${ }^{6}$

Subjects and methods

The patients and controls were all Indians, descendants of Indians who migrated from the Indian subcontinent towards the latter half of the last century. They comprised North Indians of Aryan descent and South Indians of Dravidian descent. As far as could be ascertained none of them was of mixed descent. All the patients were diagnosed as having IDDM on the basis of the revised criteria recommended by the National Diabetes Data Group and the World Health Organization, i.e. they had always depended on insulin for the control of symptoms and prevention of basal ketosis. ${ }^{7,8}$ Sixtyrubly mients were typed for HLA A, B and C antigens, while DR specilicities were determined in 35 of these. The frequencies of HLA A, B and C antigens in the patients were compared with those in a group of 760 healthy Indian controls, while the frequency of HLA DR antigen was compared with that determined in 235 healthy controls.

A total of 180 antiscra was used in a two-stage microlymphocytotoxicity test to determine HLA A, B and C specificities, the lymphocytes being isolated on a Ficoll-Hypaque density gradient. ${ }^{9}$ Typing for DR specificities was performed by means of an extended incubation microlymphocytotoxicity test using T-cell-depleted B-cell-enriched lymphocytes. The differences in frequencies in the patients and the controls were tested for significance by means of the chi-squared test (without Yates' correction). To determine the corrected P value the resulting probabilities were multiplied by the number of antigens tested. ${ }^{10}$ Relative risk was calculated according to the methods of Woolf."

Results

Results are shown in Tables 1 - III. At the A locus there is an increase in the frequency of Aw24 in patients compared with controls, even after the P value is corrected ($42,6 \% \mathrm{v} .26,8 \%$; corrected $P<0,04$). The frequency of B8 antigen is higher in patients than in controls ($19,1 \%$ v. $6,8 \%$), the difference being significant even when the P value is corrected (corrected $P<$ 0,04). There is no difference between patients and controls as regards the frequency of B7 antigen.

As regards the D locus, there is a significant increase in the frequency of DR3 in patients compared with controls ($31,4 \% \mathrm{v}$. $12,8 \%$; corrected $P<0,035$; relative risk 3,1). The frequencies of

TABLE I. PERCENTAGE FREQUENCY OF SELECTED HLA ANTIGENS IN INDIANS WITH IDDM AND IN CONTROLS		
	\% frequency	
HLA antigen	Controls $(N=760)$	Patients $(N=68)$
Aw24*	26,8	42,6 (RR 2,2)
A25	2,1	2,9
A26	6,8	11,8
A10	8,9	14,7
A29	0,9	2,9
B7	12,6	16,2
B8*	6,8	19,1 (RR 3,2)
B15	9,1	13,2
Bw60	11,5	10,3
Bw61	17,9	20,6
Bw40	29,3	30,9
Bw51	16,3	14,7
Bw52	13,4	13,2
B5	29.7	27,9
- Uncorrected $P<0.001$; corrected $P<0,04$. RR - relative risk.		

TABLE II. PERCENTAGE FREQUENCY OF HLA DR ANTIGENS IN PATIENTS AND CONTROLS		
	\% frequency	
HLA antigen	$\begin{aligned} & \hline \text { Controls } \\ & (N=235) \end{aligned}$	Patients $(N=35)$
DR1	5,1	0,0
DR2	41,3	28,6
DR3*	12,8	31,4 (RR 3,1)
DR4	20,9	37,1
DR5	17,5	20,0
DR6	9,4	14,3
DR7	29,4	14,3
One antigen	63,8	54,3
DR3/DR4	8,6	1,3 (RR 7,25)
DR3/any other antigen	20,0	8,6
DR3/DR blank	2,9	2,6
DR4/any other antigen	17,1	13,7
DR4/DR blank	11,4	5,6
*Uncorrected $P<0.05$; corrected $P<0.035$. $R R=$ relative risk.		

DR4 and DR2 in patients and controls did not differ significantly. However, the presence of DR3/DR4 heterozygosity is associated with a much greater relative risk $(7,25)$ than is the presence of DR3 alone.

Comparison of the two Indian subgroups, viz. North (Aryan) Indians and South (Dravidian) Indians, shows an increased frequency of HLA B8 in the former $(P<0,01)$, but the corrected P value was not significant. The increase in the frequency of B8 was particularly marked in the 29 North Indian patients in whom onset of IDDM was before the age of 30 years compared with controls ($20,7 \%$ v. $6,1 \%$; uncorrected $P<0,005$), the corrected P value falling just short of significance. The 23 Dravidians in whom onset of IDDM was before the age of 20 years also showed an increase in the frequency of this antigen compared with controls ($26,1 \% \mathrm{v} .7,3 \%$), but the difference just failed to attain significance after correcting for the number of antigens tested (uncorrected $P<0,005$).

HLA DR4 was strongly associated with IDDM among the Aryans compared with controls ($45,5 \%$ v. $9,1 \%$; corrected $P<$ 0,035 ; relative risk 8,3). There was a similar although weaker association with DR3 in this subgroup ($45,5 \%$ v. $12,1 \%$; relative risk 6); however, the difference was not significant when correcting for the number of antigens tested (uncorrected $P<$ 0,05). Although the frequency of DR7 appeared to be lower in patients than in controls as regards both Aryans and Dravidians, the difference was not significant.

Discussion

In Whites two distinct forms of IDDM have been recognized and these may be distinguished on the basis of HLA studies. ${ }^{112}$ There is an auto-immune variety associated with DR3 and Dw3 and less strongly s.o with B8. ${ }^{12}$ In the other type of IDDM age of onset is earlier, and it tends to be associated with DR4 and Dw4 and less strongly so with B15 and Cw3.'

A close correlation has been shown between IDDM in South African Indians and the presence of HLA B8. ${ }^{5}$ This study, extended to involve a larger number of patients, confirmed such a relationship. The significant association with the presence of DR3 observed was not surprising in the light of recent work suggesting that the relationship between IDDM and HLA B8 is secondary to the association with DR3. In Whites and American Blacks a relationship with DR3 has also been noted, ${ }^{1,4}$ although
table ili. PERCENTAGE FREQUENCIES OF HLA DR ANTIGENS AND SELECTED A AND B ANTIGENS IN THE INDIAN SUBGROUPS

HLA antigens	Of frequency in Aryans				$\%$ frequency in Dravidians			
		Patients with onset at			Controls	Patients with onset at:		
	Controls	$<20 \mathrm{yrs}$	$<30 \mathrm{yrs}$	$<35 \mathrm{yrs}$		$<20 \mathrm{yrs}$	$<30 \mathrm{yrs}$	$<35 \mathrm{yrs}$
A and B antigens \dagger	$N=246$	$N=17$	$N=29$	$N=31$	$N=491$	$N=23$	$N=30$	$N=33$
A1	21,1	23,5	27,6	25,7	34,0	13,0	16,7	18,2
Aw24	24,4	47,1	41,4	41,9	28,7	47,8	46,7	42,4
A29	0,8	11,8***	6,9	6,5	1,0	0,0	0,0	0,0
B7	9,8	17,7	17,2	16,1	14,5	17,4	16,7	18,2
B8*	6,1	23,5*1	20,7**2	19,4*3	7,3	26,1**4	20,0	18,2
B15	7,3	17,7	10,3	9,7	9,6	13,0	16,7	18,2
Bw60	11,0	5,9	10,3	9,7	12,0	8,7	10,0	12,1
Bw61	14,2	23,5	20,7	22,6	19,1	17,4	20,0	21,2
Bw40	25,2	29,4	31,0	32,3	31,1	26,1	30,0	33,3
DR antigen \ddagger	$N=66$	$N=6$	$N=11$	$N=11$	$N=166$	$N=14$	$N=18$	$N=20$
DR1	12,1	0,0	0,0	0,0	2,4	0,0	0,0	0,0
DR2	37,9	50,0	36,4	36,4	42,8	21,4	27,8	25,0
DR3	12,1	33,3	45,5*5	45,5*	12,7	21,4	16,7	20,0
DR4	9,1	33,3	45,5**6	45,5**	25,3	35,7	38,9	35,0
DR5	16,7	16,7	9,1	9,1	18,1	26,8	27,8	30,0
DR6	3,0	16,7	18,2	18,2	11,5	14,3	16,7	15,0
DR7	33,3	33,3	18,2	18,2	28,3	14,3	11,1	10,0
One antigen	75,8	16,7	27,3	27,3	59,0	64,3	61,1	65,0
$\begin{aligned} & \therefore P<0.01 \\ & \therefore P<0.005 . \end{aligned}$								
$\cdots P<0.0001$. ${ }^{1}+\mathrm{F}$ Out patients and 23 cor \ddagger Four patients and 3 cont Relative risk: $1=3.6$; $2=$	be grouped. grouped. $4.5: 5=6.0 ;$							

in the latter group a signifirn" aramiation with B^{8} has not been found. ${ }^{4,13}$

Population studies so far have demonstrated a close correlation between IDDM and the presence of HLA DR4 in virtually all ethnic groups. ${ }^{14}$ In contrast, such a relationship could not be established here if all the Indian patients studied were compared with controls. However, in the Aryan subgroup a significant association was seen, although the small number of patients studied calls for caution in reaching any definite conclusion. The relationship between the presence of DR3 and IDDM was also seen in Aryans.

In contrast, neither DR3 nor DR4 tended to be associated with the disease in Dravidians. Notwithstanding the relatively small number of patients studied, there was a trend towards a much greater relative risk in patients showing DR3/DR4 heterozygosity compared with those possessing DR4 alone or even DR3 alone. Such findings have been well documented in studies on Whites with IDDM. ${ }^{1}$ The association between IDDM and HLA Aw24 seen in this study has not been observed in other populations. This appears to support the concept that the disease is heterogeneous also in terms of HLA associations.

A significant negative cortelation between IDDM and the presence of HLA B7, DR2 and DR7, which has been observed in Whites, ${ }^{1,15}$ was not seen in the Indian patients. Srikanta et al., ${ }^{16}$ however, have observed a significant decrease in the frequency of B7 in North Indians of India. Moreover, South African Blacks with IDDM also have a lower frequency of DR2. ${ }^{17}$

Indians with $1 D D M$ do not show increased frequencies of Cw3, B15 and B18, as has been observed in Whites,' or of Bw54 and B12, found in Japanesc. ${ }^{2,3}$ Such findings serve to emphasize the ethnic variability in the association between IDDM and the HLA system.

The demonstration of a close correlation between IDDM and the presence of DR3 and B8 antigens raises questions as to the importance of auto-immunity in the pathogenesis of IDDM in Indians. In this respect the determination of islet cell and other antibodies could provide useful clues. Studies are in progress to
evaluate the presence of such antibodies and their relationship to HLA antigens.

This study was supported by the South African Medical Research Council.

REFERENCES

1. Christy M, Green A, Christau B et al. Studies of the HLA system and insulin-dependent diabetes mellitus. Diabetes Care 1979; 2: 209-214.
2. Kawa A, Nakazawa M, Sakaguchi S et al. HLA system in Japanese patients with diabetes mellitus. Diabetes 1977; 26: 591-595.
3. Nakao Y, Fukunishi T, Koide M et al. HLA antigens in Japanese patients with diabetes mellitus. Diabetes 1977; 26: 736-739.
4. Rodey GE, White N, Frazer TE, Duquesnoy RJ, Santiago JV. HLA-DR specificities among Black Americans with juvenile onset diabetes. N EnglJ Med 1979; 301: 810-812.
5. Hammond MG, Asmal AC. HLA and insulin-dependent diabetes in South African Indians. Tissue Antigens 1980; 15: 244.
6. Platz P, Thompsen M, Svejgaard A et al. More on the genetics of juvenile diabetes. N Engl 7 Med 1978; 198: 1200-1201.
7. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979; 28: mellitus and
1039-1057.
8. World Health Organization Expert Committee. Report on Diabetes. WHO Tech Rep Ser 1980; 646: 8-14.
9. Boyum A. Separation of leucocytes from blood and bone marrow. Introduction. Scand 7 Clin Lab Invest 1968; 21: suppi 97, 7.
10. Svejgaard A, Jersild L, Staub-Nielson L, Bodmer WF. HLA antigens and disease: statistical and genetical considerations. Tissue Antigens 1974;4:95-105.
11. Wool B. On estimating the relation between blood group and disease. Ann Hum Genet 1955; 19: 251-253.
12. Nerup I, Andersen OO, Christy M et al. HLA, autoimmunity, virus and the pathogenesis of juvenile diabetes mellitus. Acta Endocrinol (Suppl) (Copenh) 1976; 83: suppl 205, 167-175.
13. Duquesnoy RJ, MacDonald MJ, Mullins P, Hackbarth SA, Trasman HS Levitsy LL. Increased frequency of HLA DW3 in North American Black patients with juvenile-onset diabetes. Tissue Antigen 1979; 13: 369-372.
14. Sveigaard A, Platz P, Ryder LP. Insulin-dependent diabetes mellitus. In: Terasaki P1, ed. Histocompatibility Testing 1980. Los Angeles: UCLA Tissue Laboratory, 1980; 653-689
15. Cudworth AG, Wold E. The genetic sysceptibility to type 1 (insulindependent) diabetes mellitus, Clin Endocrinol Metab 1982; 11:389-408.
16. Srikanta NK, Mehra MC, Caidya AN, Malaviya AN; Ahuja MMS. HLA antigens in type I (insulin dependent) diabetes mellitus in North India. Metabolism 1981; 30: 992-993.
17. Omar MAK, Hammond MG, Asmal AC. HLA A, B, C and DR antigens in South African Blacks with insulin-dependent diabetes mellitus. Diaberologia 1984; 26: 20-23.

HLA antigens and non-insulin-dependent diabetes mellitus in young South African Indians

M. A. K. OMAR, I?. HAMMOND, M. A. SEEDAT, A. C. ASMAL

It has recently become quite clear that the genetic mechanisms involved in the pathogenesis of insulin-dependent diabetes mellitus (IDDM) and non-insulin dependent diabetes mellitus (NIDDM) are quite distinct from each other. ${ }^{1,2}$ Therefore, while an association between IDDM and certain HLA agents has been established in numerous studies involving various population groups, ${ }^{3-6}$ the relationship between IDDM and the HLA system is not clear.
Studies confined to young Indians with IDDM have shown an increased frequency of HLA B8. ${ }^{6}$ This study was undertaken to evaluate the relationship between NIDDM in young Indians and the antigens of the HLA system.

Subjects and methods

Eighty-four Indians with NIDDM were studied. They comprised 40 Aryans (North Indian origin) and 41 Dravidians (South Indian origin); 3 could not be classified as either Aryan or Dravidian. The age of onset of the disease in all the patients

[^30]was under 35 years. Diagnosis of diabetes mellitus and classification as NIDDM were based on the revised criteria recommended by the National Diabetes Data Group and the World Health Organization's Expert Committee on Diabetes Mellitus. ${ }^{7,8}$ In all the patients the condition was controlled by means of diet (with or without oral hypoglycaemic agents) and they had never shown ketosis at any time. HLA A, B and C antigens were determined in all 84 patients and in 760 healthy controls. The latter included 491 Dravidians and 246 Aryans; 23 could not be classified into these two subgroups.

A total of 180 antisera were used in a two-stage microlymphocytotoxicity test to determine HLA A, B and C specificities, the lymphocytes being isolated on a Ficoll-Hypaque density gradient. ${ }^{9}$ The differences in frequencies in the patients and the controls were tested for significance by means of the chi-squared test (without Yates' correction). The resulting probabilities were then multiplied by the number of antigens tested in order to determine the corrected P value. ${ }^{10}$

Results

Results are shown in Tables I-III. Increased frequencies of HLA Aw24 and Bw6l are seen in the Indians with NIDDM. However, the differences were not significant when corrections were made for the number of antigens being tested. The increased frequency of B 15 in patients compared with controls ($19,0 \%$ v. $9,1 \%$) just fails to attain statistical significance if the P value is corrected (uncorrected $P<0,005$).

Among the Aryans there was a much higher frequency of HLA B15 in patients than in controls $(27,5 \%$ v. $7,3 \%$), the difference being significant even after correcting for the number of antigens tested (corrected $P<0,012$). No such difference was found between Dravidian patients and controls. Although. the frequency of Bw6l was also higher in Aryan patients than in Aryan controls ($P<0,05$), the corrected P value fails to attain statistical significance. Dravidians with NIDDM showed a higher frequency of HLA Aw24 $(48,8 \% \vee .28,7 \%)$, but the difference was not significant once the P value was corrected.

Discussion

Studies in whites with NIDDM have so far been unable to establish a clear relationship between the disease and the HLA system. ${ }^{3,11,12}$ In other population groups, however, such an association has been shown; ${ }^{13-15}$ an increase in the frequency of B35 has been shown in a study involving a small number of Xhosas with NIDDM, ${ }^{13}$ and in Pima Indians with the disease an association with HLA A2 has been shown (particularly in those in whom age of onset was under 35 years). ${ }^{14}$

Among the Indians reported in this study a higher frequency of Bw61 was found in patients than in controls (uncorrected $P<0,05$). Serjeantson et al. ${ }^{15}$ have shown the same thing in Fiji Indians with NIDDM. ${ }^{15}$ However, the findings of their study were significant even after correcting for the P value, whereas this was not the case with the patients reported here. None the 357

table I. percentage frequency of hla a and b ANTIGENS IN INDIANS WITH NIDDM AND IN CONTROLS \% frequency			TABLE II. PERCENTAGE FREQUENCY OF HLA A AND B ANTIGENS IN NORTH INDIANS (ARYANS) WITH NIDDM AND NORTH INDIAN CONTROLS \% frequency			table ill. percentage frequencies of hla a and b ANTIGENS IN SOUTH INDIANS (DRAVIDIANS) WITH NIDDM AND SOUTH INDIAN CONTROLS		
HLA antigen	Controls$(N=760)$	Patients$(N=84)$				HLA antigen	\% frequency	
			HLA antigen	Controls$(N=246)$	Patients		Controls	
A1	29,6	15,5			($N=40$)		($N=491$)	($N=41$)
A2	33,4	35,7	A1	21,1	17,5	A1	34,0	12,2
A3	10,9	15,5	42	33,3	32,5	A2	33,0	39,0
A11	27,9	26.2	A3	12,2	12,5	A3	10,2	19,5
A23	1,6	0,0	A11	31,7	30,0	A11	25,7	22,0
Aw24*	26,8 2,1	40,5	A 23.	1,6	0,0	A23	1,4	0,0
Aw26	2,1 6,8	2,4 4,8	Aw24	24,4	32,5	Aw24*	28,7	48,8
Aw28	12,6	7,1	Aw26	2,4	2,5	Aw25	1,8	2,4
Aw29	0,9	1,2	Aw28	5,3 13,0	5,0 12,5	Aw26	7,7 12,6	4,9
Aw30	3,7	3,6	Aw29	13,0 0,8	12,5 2,5	Aw28	12,6 1,0	2,4 0,0
Aw31	2,6	3,6	Aw30	3,7	5,0	Aw30	1,9	2,4
Aw32	4,0	4,8	Aw31	2,4	2,5	Aw31	2,9	4,9
Aw33	13,6	14,3	Aw32	4,9	5,0	Aw32	3,3	4,9
One antigen	23,4	25,0	Aw33	20,7	15,0	Aw33	10,2	9,8
B7 ${ }^{\text {B8 }}$	12,6 6,8	19,0	One antigen	22,4	25,0	One antigen	23,6	26,8
B13	6,8 6,6	10,7 4,8	B7	9,8	10,0	B7	14,5	29,3
B14	0,5	4,8 0,0	B8 ${ }^{\text {B13 }}$	6,1	7,5 2,5	B8	7,3	14,6.
B15**	9,1	19,0	B14	6,1 1,6	2,5 0,0	B13 B14	6,9 0,0	7,3 0,0
B16	3,7	3,6	B15*	7,3	27,5	B15	0,0	12,2
B 17 B 18	22,5	8,3	B16	4,9	2,5	B16	3,1	4,9
B18 Bw21	3,2	2,4	B17	18,7	10,0	B17	24,2	7,3
Bw21 Bw22	2,9	7,1	B18	3,3	2,5	B18	3,1	2,4
Bw22	3,8 1,8	1,2	Bw21	2,9	5,0	Bw21	2,9	9,8
Bw35	20,3	4,8 20,2	Bw22 Bw27	4,5	0,0	Bw22	3,3	2,4
Bw37	6,6	20,2 3,6	Bw 27 Bw35	3,3 25,6	5,0 22,5	Bw27	1,2 17	2,4
Bw41	0,4	0,0	Bw37 ${ }^{\text {¢ }}$	25,6 3,3	22,5 5,0	Bw35 Bw37	17,5 8,4	19,5 0,0
Bw42	0,0	0,0	Bw41	0,4	5,0	Bw41	8,4 0,4	0,0
Bw44	13,3	10,7	Bw 42	0,0	0,0	Bw42	0,0	0,0.
Bw45	0,3	0,0	Bw44	20,7	7,5	Bw44	9,4	12,2
Bw51	16,3	17,9	Bw45	0,4	0,0	Bw45	0,2	0,0
Bw52	13,4	10,7	Bw51	13,0	17,5	Bw51	18,1	19,5
Bw53	0,9	0,0	Bw52	15,0	10,0	Bw52	12,8	12,2
Bw60	4,9	3,6	Bw53	0,4	0,0	Bw53	1,2	0,0
Bw61***	11,5	7,1	B51	4,9	5,0	B51	4,5	2,4
BU	17,9 1,8	27,4	Bw60	11,0	2,5	Bw60	12,0	7,3
One antigen	19,1	16, ${ }^{1}$	Bw61** BU	14,2	30,0	Bw61	19,1	24,4
*Uncorrected $P<0,01$. **Uncorrected $\rho<0,005$; relative risk 2,4. ***Uncorrected $P<0.05$.			One antigen	1,6 21,1	0,0 275	BU	2,0	2,4
			*Corrected $P<0.012$; relative risk 4.8 . **Uncorrected $P<0,05$.				18,3	7,3
			*Uncorrected $P<0,007$; relative risk 2.4 .					

less, since both the Nanl Indians and the Fiji Indians have similar origins, identical HLA associations are not unexpected. Unlike Fiji Indians, Natal Indians do not show any linkage disequilibrium between Bw61 and Aw24.

The significant relationship between HLA B15 and NIDDM in North Indians is somewhat unexpected, since the same antigen has been associated with IDDM in whites. ${ }^{3}$ However, this finding serves to highlight the heterogeneity of diabetes mellitus. The fact that in Pima Indians a relationship with NIDDM has been shown at a different locus ${ }^{13}$ serves to emphasize the heterogencity of such associations, as has been shown in IDDM.

This study was supported by the South African Medical Research Council.

REFERENCES

1. Barnett AH, Eff C, Leslic RDG, l'yke DA. Diabees in identical twins: study of 200 pairs. Diabetologica 1981; 20: 87-9.3.
Gotilieb MS, Soeldncr IS, Kynct JL, Glcason RE. Oral glucose stimulated insulin release in non-diabetic twin siblings of diabctic twins. Diaberes 1974; insulin release
2. Christy M, Green A, Christau B et al. Studies of the HIA system and insulin-depencen diatectes mellitus. Diubetes Cure 1979; 2: 209-214.
Rodey GE White N, Frazer 'JE, Duquesnoy RJ, Sanciago JV. HLA-DR
3. Rodey GE, White N, specificitics among Bla
4. Hammond MG Asmal AC Omar MAK HLA and insulin-dependent diabetes in South African Negroes. Diuhetologica 1980; 19: 101-102.
5. Hammond MG, Asmal AC.. HLA and insulin-dependent diabetes in South African Indians. Tissue Antigens 1980; 15: 244.
6. National Diabetcs Data Group. Classification and diagnosis of diabetes mellitus and other catcgories of glucose intolerance. Diahetes 1979; 28; 1039-1057.
7. World Health Organization Expert Committee. Report on diabetes. WHO 8. Techn Rep Ser 1980; 646: 8-14.

Boyum A. Scparation of leucocytes from blood and bone marrow. Intro. Boyum A. Scparation Lab Invest 1968; 21: suppl 97: 7.
0. Svejgaard A, Jersild L, Staub-Nicisen. L, Bodmer WF. HLA antigens and disease: statistical and genetical considerations. Tissue Antigens 1974; 4: 95-105

1. Nclson PG, Pyke DA, Cudworth AG, Woodrow JC., Batchclor JR. Histocompatibility antigens in diabetic identical twins. Lancet 1975; ii: 193-194.
2. Platz P, Jakobsen BK, Thomsen BS et al. No evidence of linkage between HLA and maturity onset type of diabetes in young people. Diabetologica 1982; 23: 16-18.
3. Briggs BR, Jackson WP, Du Toit ED, Botha MC. The histocompatibility (HLA) antigen distribution in diabetes in Southern Arrican Blacks (Xhosa). Diaheies 1980; 29:68-71.
4. Knowles WC, Williams RC, Butier WJ, Petit DJ, Lisse JR, Mann DL
5. Knowles WC, Williams RC, Butict W J, Petit DJ, Lisse JR
HLA-A2 and type II diabetes. Diaberes 1981; 30: supp1 1, 219.
6. Serjcantson SW, Ryan DP, Ram P, Zimmet P. HLA and noninsulin dependent diabetes in Fiji Indians. Med J Aust 1981; 1: 462-463.

Postpartum-sterilisasies en die private praktisyn

V. P. DE VILLIERS

Summary

A postpartum programme of sterilization was initialed by private practitioners at the Paarl Hospital , 1968% The Unil was late takehover by the Unlversity of

 Thadicates that ± 200000 postpartum sterilizaztion Would be requested in South Arica, if the Paarly tiguras are projected to the rest of the country. The
 finanoove would be alar leaper procedures south
 un Wanted and unplañón blaths
SA Mod S 1985, 67: 132-133
SAMMod 1985, 67: 132-133.

Departement Verloskunde en Ginekologie, Universiteit van Stellenbosch, Parowvallei, en Paarl-hospitaal, Paarl, KP V. P. DE VILLIERS, f.r.c.o.G., Senior Lektor en Eerste Spesialis

Die Paarl-hospitaal is lank reeds gevestig as 'n sentrum vir postpartum sterilisasies.' Vanaf 1968 is hierdie klein operasie deur die algemene praktisyns van die Paarl beskikbaar gestel aan enige vrou wat hierdie ingreep vrywillig aangevra het. Sy het die basiese reg om permanente chirurgiese kontrasepsie aan te vra om sodoende te sorg dat sy en haar gesin teen enige verdere ongewenste en onbeplande swangerskappe beskerm word. ${ }^{2}$ Waardevolle ondervinding in die uitvoer van die ingreep is oor die jare opgedoen, en verskillende basiese tegnieke is ondersoek. ${ }^{3}$

Onlangs is 'n nuwe tegniek (die Filshie-klemaanwending) ondersoek met die oog op spoed van die prosedure, permanensie en die beste omkeerbaarheid. ${ }^{4.5}$ Die effek van buisafbinding op maandstondepatrone is al in 1975 deur die Paarl-hospitaal ondersoek en beskryf. ${ }^{2}$

Al hierdie bevindings is onlangs deur 'n groot multisentriese en meer wetenskaplik gefundeerde ondersoek bevestig. ${ }^{6}$ Sterilisasie veroorsaak nie maandstondeafwykings nie, maar aangesien elke vrou se maandstondepatroon veranderlik is, kan nieverwante veranderings natuurlik in die individuele geval voorkom. Postpartum-sterilisasies is so 'n veilige prosedure ${ }^{7}$ en het so 'n groot aanvraag in die Paarl geskep, dat 4704 vrouens teen die einde van 1983 reeds die operasie ondergaan het (ongeveer 20% van alle vrouens in die Paarl verlos). As die prosedure op 'n jong gesonde vrou uitgevoer word, is die risiko van dood minimaal.

The HLA system and diabetes mellitus

The HLA system, also known as the major histocompatibility complex, constitutes a complex group of antigens determined by genes located on the short arm of the sixth chromosome where they are closely linked with genes controlling various immune responses and some components of the complement cascade. HLA A, B, C and D antigens are determined by four different loci, each with a large number of alleles. The recently described DR antigens appear to be controlled at the same locus as the HLA D antigens. ${ }^{1-3}$

The HLA system is characterized by extreme polymorphism at each locus. At the same time pronounced linkage disequilibrium occurs between the various loci, that is, certain pairs of HLA antigens are found together in a population at a greater frequency than would be expected from multiplying their individual frequencies together.
In recent years numerous studies have shown clear associations between the HLA systems and various diseases.' Although the mechanisms through which HLA antigens confer disease susceptibility are obscure, several hypotheses have been suggested: (i) through direct effects of the HLA antigens (e.g. interference with ligandreceptor interaction on all cell surfaces); (ii) through effects of different but closely linked or functionally related genes in the HLA region (e.g. immune response genes); and (iii) through effects of genes in linkage disequilibrium with HLA by pure coincidence, the HLA antigens here being 'inert' markers.

After Nerup et al. ${ }^{4}$ had produced definite evidence showing an increased frequency of HLA B8 and BI5 in patients with insulin-dependent diabetes mellitus (IDDM), many studies using two approaches (viz. population studies and family studies) have provided unequivocal evidence of an association between IDDM and the HLA system. ${ }^{5}$

The antigens associated with IDDM in white Caucasian populations include HLA Cw3, Cw4, B8, B15, B18, D3, DR3m, D4 and DR4. ${ }^{4.5}$ In addition, a relationship has been found with complement factors $\mathrm{Bf}, \mathrm{C} 4$ and C 2 , which are determined at loci closely linked with the HLA complex. ${ }^{5}$ HLA B7 and D2, however, show a negative correlation with the disease. ${ }^{5}$

It has now become clear that the presence of certain D-locus antigens is far more important in determining susceptibility to IDDM than those at other loci, and that the latter associations, being secondary to those involving the D - DR antigens, could be explained on the basis of linkage disequilibrium. ${ }^{4.5}$ Thus the relationships between IDDM and HLA B8 and B15 are secondary to the presence of D3 and D4 respectively. Similarly, the degree of negative correlation is greater with DR2 than with B7.

On the basis of the HI A studies two distinct forms of 11)DM have been recognized in white Caucasoids.' There is an auto-immune variety, which is associated with Dw3 and less strongly so with B 8 , the presence of persistent islet antibodies, and an increased risk of micro-angiopathy. The other type which is associated with B15 and C3 appears to have an earlier age of onset
and to show an increased antibody response to exogenous insulin. It shows a stronger association with Dw4, and is not associated with auto-immune disease or persistence of islet-cell antibody. ${ }^{4.6}$ The presence of both B8 and D4 is characterized by an increased relative risk and an increased prevalence of the disease among twins, i.e. the presence of both allelic groups confers an additive risk of developing the disease.

Although little work has been done on non-Caucasoids, certain definite associations between IDDM and the HLA system have been established. The presence of DR4 or D4 appears to be a risk factor in virtually all ethnic groups studied so far. ${ }^{7}$ In addition, among Japanese the disease has been associated with HLA DYT and B54, in American blacks with DR3 and DR4, ${ }^{8-12}$ and in South African blacks of Zulu descent with HLA DR4 but not with DR3. ${ }^{13}$ In neither the Japanese nor the black groups studied in South Africa, Nigeria and America has a relationship between IDDM and B8 been shown, although such a relationship has been a constant finding in white Caucasoids. ${ }^{8-15}$

In South African Indians with IDDM a strong association with HLA B8 is shown. ${ }^{16}$ It is thus evident that there are differences in the specific allelic associations among various ethnic groups.

Since a decreased frequency of an antigen, as opposed to an increased frequency, requires a much larger sample size to become evident, ${ }^{17}$ studies in non-Caucasoids so far have not shown any obvious negative associations between IDDM and HLA antigens. None the less, possession of HLA DR2 or Bw42 does appear to protect against the development of IDDM in South African blacks. ${ }^{13}$ A negative correlation between the disease and HLA B7 has been shown in a group of Indians in India, ${ }^{18}$ but not in South African Indians.

So far almost all studies on white Caucasoids have shown no association between non-insulin-dependent diabetes mellitus (NIDDM) and the HLA system. ${ }^{4.5}$ In other population groups, however, such an association has been shown, although it is not as strong as with IDDM. In Fiji Indians with NIDDM a positive correlation with HLA Bw6l has been shown, as well as in Natal Indians in whom, however, the finding fails to reach statistical significance. ${ }^{19}$ Of particular interest is the association between HLA BI5 and NIDDM in Natal Indians of North Indian origin, since this antigen has been associated with IDDM in white Caucasoids. ${ }^{20}$ Other antigens that have been found to be associated with the disease are A2 in young Pima Indians and B35 in a small group of Xhosas. ${ }^{21,22}$ Among white Caucasoids only a Finnish group has shown an association between NIDDM and HLA antigens. ${ }^{23}$

In conclusion, there seems little doubt that diabetes mellitus is a hetcrogeneous entity even in terms of HLA associations.

The support of the South African Medical Research Council is gratefully acknowledged.

M. A. K. Omar
 M. G3 ${ }^{\text {Efommond }}$

1. Platz P, Thompscin M, Suejgarel A, Cudworth AC, Woodrow JC, Nedrup J. More on the genctics of juverile diabetes N Fingl Med 7 1978; 298: 12001-1201.
2. Rubinstcin 1), Sucin- Foca N, Nicholson fF. Genctics of jurenile diabetes mellitus: a recessive gene closely finked to FIL. \triangle D and 50 pereciut penctrance. N Fingli Mcd 1977; 297: 1036-1040.
3. Rumer J1, Rimoin DL. Hetcrogeneity in diabetes mellitus - update 1978 Evidenes for furber genetic hererogencity within juvenile-onset insulindependent diabetes mellitus. Dishetes 1978; 27: 599-608
4. Nerup J, Cathelncau C, Scignalet J, Thomsen M. LLLA and endocrine discases. In: Dausset J, Sveigaard Λ, eds. Wh. 1 and Disfasc. Copenhagen: Munksgaard, 1977: 149-167.
5. Christy M, Green A, Christan 13 it d. Sublies of the lll A system and insulin-dependent diabetes mellitus Hidtedes (irre 1979: 2: 209-214.
. Morris RJ, Vaugh H, Irvince W'] a al. [IL.A and pancreatic islet eell antibodies in diabetes. Lemort 1976: ii: 652-653.
6. Sueigatard A. llatz. P, Ryder I.I. Insulin-dependent diabetes mellitus. In: Terasake ['I, cd. Histicompailimioy Testing 1980. Los Angeles: UC.LA

7. Kava A, Nakazawa M, Sakaguch S of al. H1.A system in Japanese patients with diahetes mellitus. Diaheres 1977; 26: 591-595.
8. Nakao Y, Fukunishi I , Koide Al of dal. 11I.A amtigens in Japanese patients with diabeses mellitus. Ditharers 1977; 26: 736-739.
9. Okimoto K, Juyi 'I, Ishiha S. Marhyana II, Tohyama It, Kosaka K. MI. A BXe 54 ($B \mathbf{K} 22-\mathrm{J}, \mathrm{J}-\mathrm{I}$) antigen in juvenile onser diabetes mellitus in Japan. Tissuc Anrigcns 1978; 11: 418-422.
i1. Duquesnoy RJ, MacDonald MJ, Mullins I', Itackbarth SA, Iranman HS, Levitsk; LL. Increased frequency of IIL, D DW3 in North American Black patients with juvenile-onset diabcies. Tissur Antigens 1979: 13: 369-372.
10. Rodey GE, White N, I'razer TE, Duquesnoy RJ, Santiago JV. III.A-DR
specilities among Black Americans with juvenile-onsct diabetes. \mathcal{N} Engl y Mcd1979; 301: 810-812
11. Omar M MK, Hammond $M G, \Lambda$ smal $\wedge C . H_{1}, \wedge \wedge, B, C$, and DR antigens in young South African Blacks with wpe I (imsulin-dependent) diabces mellieus. Dioberolugia 1984; 26: 20-23.
12. Fanuyiwa OO, Nwabucho IE, Abiove AA. Patucrns of histocompatibility (111.A) alnong Nigerian (West African Black) diabetics. Diabctes 1982: 31: 1119-1122
13. Hammond MG, Asmal AC, Omar MAK, HLA and insulin-dependent diaboces in South African Negrocs. Diabethlegia 1980; 19: 101-102.
14. Omar MAK, Hammond MG:, Rajput MC, Λ smal AC: HLAA A, B, C and IDR antigens in young South African Indians with insulin-dependem diabetes mollitus. S A/r Mred f 198.1; 66: 765-767.
15. Sueggaard A, Ilansen M, Jersild Ca Matz I', Ryder BP, Staub-Nielsen Thomsen M. The HIA System: an introductory survey. Monegr Hum Genet 1975; 7: :-100.
16. Srikama N'K, Mchra MC., Vaidva AN, Malariva ΛN, Nhuja MMS. HIA antigens in type 1 (insulin-dependent) diabeies incllitus in North India. Metaholism 1981; 30: 992-993.
17. Scricantson SW, Ryan IDP, Ram P, Zimmet P. HLA and non-insulinderentent diabetes in Fiii Indians. Afrd \mathcal{f} Aus: 1981: 1: 462-463.
18. Omar MAK, Hammond MG, Secdat MA, Asmal AC. HLA amigens and mon-insulin-dependent diaberes mellitus in young South African Indians. S Afr Mcd 7 1985; 67: 130-132.
19. Knowles WC, Willians RC, Butler W'], Pesir DJ, Lisse JR, Mann DL. HILA AZ and type II diabeces. Diahetes 1981; 30: supp I, 219.
20. Briggs BR, Jackson WP, Du Toit ED, Botha MC The histocompatibility (FIL,A) antigen distribution in diabetes in Southern African Blacks (Xhosa). Diatetes 1980; 29:68-71.
21. Giroop 1., K゙oskimies S, l’elkonen R. Tolppanedn EM. fucreased frequency of 111A-CW4 in twpe II diabetes. Acta lindoerinol 1983; 104: 475-478.

Veertig jaar later

Dit is nou 40 jaar sedert die oorlogskanonne in Europa stil geword het en alhocwel elke beskaafde mens wil vergewe en vergeet, is dit nodig om oorsigtelik om te kvk en te out uit die toendertvdse lvding van enkelinge.
aan, wat eers duidelik word wanneer die geneesheer van die pasiënt se oorlogsverlede weet.
' n Neweprobleem van die KZ-sindroom asook die sogenaamde oorlogstressindroom is ' n bykomende angs

- Mohan, V., Snehalatha, C., Ramachandran, A.. Jayashree, R., and ' 'iswanethan, M.: Pancreatic beta cell function in tropical pancrentic diabet \because. Méab. Clin. Exp. 1983; 32:1091-92.

Fat Atrophy in Hurian Insulin Therapy

Fat stropiy is generally considered to be an immunologic reacticn to impurities contained in insulin preparations. ${ }^{1}$ It was seen fairly frequently before the introduction of highly purified insulins, but in recent years the incidence seems to have decreased markedly, probably due to the increased purity of currently available insulins. To my knowledge, fat atrophy has never previously been reported in patients receiving human insulin.
A 24-yr-old woman developed insulin-dependent diaberes in April 1983. She :\%. neqequenty stabilized on a single morning injection of purcine monccomponent insulin (6 U Actrap.d insulin and 15 U Monotard insulin, Novo, Johannesburg, South Africa) before breakfast with excellent diabetes corr.iol, as evidenced by intensive self-monitoring of blood glucc:c. She subsequently married and moved to another c, y but retarned to see me in January 1985 when she was experiencing proiblems with staphylococcal skin infections. Her insulin regimen was unchanged and her diabetes control remained good, with a glycosylated HbA_{k} level of 6.9% (normal range $5.8-8.8 \%$). At that stage she had noted small areas of fat artorhy on both thighs in areas distant from the skin infections. Examination revealed two shallow indentations, $1-2 \mathrm{~cm}$ in dia:neter, on the anterior aspect of both thighs. She was changed to the identical dose of semisynthetic human insulin (Novo Actrapid-i-iM and MonotardHM).
She returned to see me in September 1985 and reported that the areas of fat atmpin. A A enlarged. Examination showed a large area up to 5 cm dianeter and 1 cm deep on each thigh. Her diabetes control had remained good, with a glycosylated HbA_{k} of 5.9%. She was then changed to biosynthetic hunaan insuiin ('fumulin-R and Humulin-N, Eli Lilly, lr:fia.u.polis, IN) and has returned home to see whether the areas il tat atrophy wiil continte to progress or start : gres sing. I am awaiting follow-up when she next visits Cape Town.
This mi:st presumably be an extremely rare complication of iuman insulin therspy, and it would be interesting to know whether this has been noted elsewhere.
M. S. ROSMAN. FCP(SA)

Address correspondence to Dr. M. S. Fisman, 28 Gillian Parade, West Pyrable, New South Wales 207?, Australia.

[^31]
HLA and NIDDM in the Young

In the South African Indian the presentation of diabetes in the young is atypical in that insulin-dependent diabetes mellitus (IDDM) is rare, whereas non-insulin-dependent diabetes mellitus (NIDDM) in the young is common. ${ }^{1-3}$ This syndrome of NIDDM in the young is uniformly accepted to be a subset of NIDDM with the strongest genetic component and appears to segregate in an autosomal dominant fashion. ${ }^{4}$ In the previous studies in which the HLA status of Caucasoid patients with NIDDM in the young were investigated, this syndrome does not appear to be associated or linked to the HLA system. ${ }^{5-8} \ln$ an attempt to ascertain whecher the HLA system was involved in a non-Caucasian population, the HLA antigens of four Indian families with NIDDM in the young (25 members) were determined.
Twelve patients belonged to families in which NIDDM was transmitted via one parent through three successive generations. NIDDM in the young was categorized according n the following criteria: age $<30 \mathrm{yr}$ at diagnosis, duration of diabetes >2 yr (as defined by WHO criteria ${ }^{9}$). aketonuric but symptomatic presentation, and prevention of ketonuria and control of symproms without insulin therapy
HLA A-A, B, and -C antigens of all '?mily melr.bers were determined by the standard two-stage microlymphocytotoxicity test, ${ }^{10}$ by use of 180 local and exchanged sera to drfine the specificities. HLA-DR antigens were defined by the leng. incubation technique (Ninth International H_{1} itucomparibility Workshop) with 120 local and excharge sera. Lymphs. cytes were isolated on a Ficoll-Hypaque density gradient," and T - and B -cells were separated by means of straws containing nylon wool. ${ }^{12}$
The HLA haplotypes, ages, 2 -h plasma glucose levels (after 75 g oral glucose), and body mass indices of the families are shown in Table 1. It is evident that in none of the families did the diabetic state segregate with an HLA taplotype or a combinatior. of haplotypes. In addition, it appears that no HLA type is more frequent in the diabetic than in the nondiabetic family members.

In 1976, Neison and Pyke' strdied 13 diabetic and 9 nondiabetic members of families w't'? NIDDM in the young. They reported that the gene involved is not linked to the HLA-B locus. Curing the same year Barbosa ${ }^{13}$ suggested that there was ar. association between the HLA haplotypes A3 and BW15 and the hyperglycemic trait. He later confirmed this suggestion. ${ }^{14}$

Faber et al. ${ }^{6} \mathrm{HLA}$-typed a family with NIDDM in the young for A, B, C, and D antigens. They demonstrated that there was no association between specifici. HLA artigens and NIDDM in the young, whereas Platz et al.' performed HLA typing for A, B, and C antigens on 53 members of one family. They also concluded that there was no significant positive linkage of HLA type with NIDDM in the young. More recently, Barbosa ${ }^{8}$ sti:died 10 large families with NIDDM in the young and found that the disorder was neither associated nor linked

TABLE 1
HLA haplotypes in families with three generations of NIDDM in the young

Glucose (mmol/L)	$\underset{\left.i \mathrm{k} g / \mathrm{m}^{-1}\right)}{\mathrm{BMI}}$	$\begin{aligned} & \text { Age } \\ & (y r) \end{aligned}$	Generation	Family member	Condition of subject					
Family 1					NIDDM*					
			2.1		NIDDM	a	A2	C-	B51	DR -
21,0		48				b	A28	C-	88	DR3
7.9	25	$5 ?$	2.2	Father	Normal		A2	CW1	B37	DR10
						d	AI	Cw6	B57	DR7
7.6	22	3	3.1	Child 1 (M)	Normal	b	A28	Cw-	B8	DR3
						c	A2	Cwl	B37	DR10
5.7	20	21	3.2	Child 2 (M)	Normal	a	A28	$\mathrm{Cw}-$	B9	DR3
						d	Al	Cw6	B57	DR7
14,0	21	17	3.3	Child 3 (F)	NIDDM	b	A28	Cw-	B8	DR3
						c	A2	$\mathrm{Cwl}^{\text {c }}$	B37	DR10
4.9	19	13	3.4	Child 4 (M)	Normal	b	A28	$\mathrm{Cw}_{\text {- }}$	B8	DR3
						c	A2	Cwl	B37	DR10
3,9	19	12	3.5	Child 5 (M)	Normal		A2	$\mathrm{Cw}-$	B51	DR -
						d	Al	Cw6	B57	DR7
5.9	20	10	3.6	Child 6 (F)	Normal			$\mathrm{Ce}-$	B8	DR3
							Al	Cw6	B547	DR7.

Family 2			1.1
13.5	29	49	2.1
14.2	25	46	2.2
4.6	26	56	2.3
4.9	22	24	3.1
12,8	29	23	3.2
5.7	22	21	3.3
5.8	22	15	3.4

Grandmother Mother	NIDDM*NIDDM.	a	Al	$\mathrm{Cw}-$	B62	DR-
	NIDDM	b	AI	Cw-	B57	DR7.
Aunt		e	A33	$\mathrm{Cw}-$	B61	DR2
		f	A-	Cw -	B-	DR-
Father	Normal	c	A33	$\mathrm{Cw}-$	B61	DR2
		d	A1	Cw-	B17	DR ${ }^{-}$
Child 1 (F)	Normal	b	A1	Cw-	B57	DR7
		c	A33	Cw-	B61	DR2
Child 2 (F)	NIDDM	a	Al	Cw -	B62	DR-
		c	A33	Cw-	B61	DR2
Child 3 (F)	Normal	b	Al	$\mathrm{C}_{\text {w }}-$	B57	DR7
		c	A33	Cw^{-}	B61	DR2
Child 4 (M)	Normal	b	AI	$\mathrm{Cw}_{\text {W }}-$	BS7	DR7
		c	A33	$\mathrm{Cw}^{\text {- }}$	861	DR2

Family 3 20.0	24	65
18,0	$2 i$	38
6,9	22	36
5,8	26	45
13.0	39	15

1.1
2.1
2.2
2.3
3.1

Grandmocher	NIDDM
Mother	NIDDM
Aunt	Nurmal
Father	Normal
Child 1 (F)	NIDDM

	A2	Cw-	B60	
e	A-	Cw	B4	DR7
a	A2	Cw	B60	DR2
b	AI	Cwl	B5	DR1
	A2	Cw-	B60	DR2
	A-	Cw	B44	DR7
c	A24	$\mathrm{Cw}-$	B35	DR4
		Cw-	B5	DR-
	A1	CWI	BSS	DR

Family 4			1.1 Grandmuther 20,2	23

NIDDM ${ }^{*}$					
NIDDM	a	A28	Cw-	B52	DR2
	b	A31	$\mathrm{Cw}_{\text {w }}$	B51	TR2
Normal	c	A.	Cw-	B60	DR2
	d	A1	$\mathrm{Cw}^{\text {w }}$	B60	DR10
NIDDM	a	A28	$\mathrm{Cw}^{\text {w }}$	BS2	DR2
	c	A1	Cw	B60	DR2
NIDDM	b	A31	C\%-	B51	DR2
	c	A1	$\mathrm{Cw}_{\text {w }}$	B60	DR2
NIDDM	b	A31	Cw-	BS!	DR2
	d	Al	Cw^{-}	B60	DRI

M, male. Fo female; BMI, bxady mass index.
${ }^{\circ} \mathrm{Now}$ tested (died).
ro HLA types. Thus far all the studies were confined to Caucasoid patients. In an attempr to determine whether a similar situation per.j:ged in a non-Caucasoid population, we studied a migrant Asiza group. In our study, a further antigen HLA. DR was also reєasured. Similar findings were observed in this group of Indian patients. It thus appears that with respect to HLA status, NIDDM in the young in Indians is in no way different roint that which manifests itself in Caucasoids.
C. NAIDOO. MBCHB
I. JIALAL. MD
M. G. HAMMOND, PhD
M. A. K. OMAR, MD
S. M. JOUBERT, FRC(Pach)

From the S. A. Medical Research Council Preclinical Diagnostic Chemistry Research Unit, Department of Chemical Páthology, Natal Institute of Immurn; (N.G.H.); and the Department of Medicine (M.O.), Universty if Natal Medical School, P.O. Box 17039, Congella 4013, Republic of South Africa.

Address reprist requests to Dr. C. Naidoo at the above address.

REFERENCES

${ }^{1}$ Jacheron, W!. P. U.: Epiderniology of diabetes in South Africa. Adv. Merab. Disorders 1978; 9:112-46.
${ }^{2}$ Asmal, A: C., Dayal, B., and lialal, 1.: Non-insulin-dependent diaberes mellitus with early onset in Blacks and Indians. S. Afr. Mrd. J. 1981; 60:93-96.
'Jialal, l., Jouber, S. M., Asmal, A. C., and Jenkins, N.: The insulin and glucose response to an oral glucase load in non-insulin: dependent diabetes in young. S. Afr. Med. J. 1982; 61:351-54.
${ }^{1}$ Fajans, S. S.: Heterogeneity between various familes with non-insulin-dependent diabetes of the MODY tye. In Genetics of Diabetes Mellirus. Kobberling, J., and Tatterall, R. B., Eds. New York, Academic, 1982:251-60.
'Nelson, P. G., and Pyke, D. A.: Genetic diaberes nor linked to the HLA locus. Br. Med. J. :976; 1:196-97.
${ }^{6}$ Faber, O. K., Thomas, is. a inker, C., Plac, P., and Svejgaand, A.: HLA antigens in a family with maturity onset type diabetes mellitus. Acta Endocrinol. 1978; 88:329-38.
${ }^{7}$ Plat, P., Jakobsen, B. K., Svejgaard, A., Thomsen, B. S., Jensen, K. B., Henningsen, K., and Lamm, L. V.: No evidence for linkage between HLA and maturity onset type of diabetes in young people. 「'stetologia 1982; 23:16-18.

- Barbosa, J.: No linkage between HLA and maturity occee hyperglycaemia in the young. Diabetologia 1983; 24:137.
- WHO Expert Committee on Diaberes Mellitus. Second Report (Geneva 1980). Tech. Rep. Ser. 646:10-12.
${ }^{10}$ Terasaki, P. I., and McLelland, J. D.: Microdroplet assay of human serum cytotoxins. Narure (Lond.) 1964; 204:998-1000.
' Boyum, A.: Separation of leucocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. 1968; 21 (Suppl.):97.
${ }^{12}$ Danilovs, J., Teraiak., P. I., Park, M. S., and Ayoub, G.: B Iymphocyte isolation by :irombin-nylon wool. In Histocompatibility Testing. Los Aingeles, UCLA Typing Laboratory, 1980:287-89.
"Barbosa, J.: HLA and diabetes mellitus. Lancer 1977; 1:906907.
"Barbosa, J., King, R., Goct, F. C., Noreen, H., and Yunis,
E. J.: HLA and maturity-onser type of hyperglycacmia in the young. Arch. Inrem. Med. 1978; 138:90-03.

Multiple Herpetic Whitlows in a Child Performing Self-Monitoring of Blood Glucose

Self-monitoring of blood glucose (SMBG) has become the recommended tool for management of type I diabetes. In our diabetes clinic we have noted no bacterial infections of any significance in the 400 patients using this procedure 2-4 times daily over a period of 4 yr. Ryan et al. ${ }^{1}$ described two cases of digital sepsis with osteomyelitis and gangrene eventually requiring amputation in immunocompromised hosts undergoing dialysis or renal transplantation. Knezevic and Mastaslia ${ }^{2}$ reported a similar case. This communication concerns a proven case of multiple digital herpes simplex whitlows in a boy performing SMBG on a regular basis for 3 yr .
J.F., a 9 -yt-old boy requiring insulin since the age of 20 mo and also mildly asthmatic, developed painful erythematous, indurated, and vesicular lesions on the tips of the middle three fingers of each hand (Figure 1). There was moderate bilateral enlargement of the epitroclear and axillary lymph nodes, general malaise, anorexia, and low-grade fever. A crusted herpetic lesion was noted on the lower lip and the patient had a history of recurrent labial herpes for 1 yr before this event. On admission the child's blood glucose was 416 $\mathrm{mg} / \mathrm{dl}$ and he required intensified insulin treatment. There was no ketosis or acidosis.

TABLE 1
Immunologic investigations on patient and mother

Tests	Patient	Mother	Normal range
lgG (mg/d)	1225	1400	700-1600
lgM (mg/di)	105	74	36-260
lgA (mg/di)	295	155	46-490
$\lg \mathrm{D}$ (mg/di)	C.ó	1.0	0-41
1 gE (U / ml)	800	65	0.3-215
C3 (mg/di)	135	129	88-252
$\mathrm{C4}(\mathrm{~ms} / \mathrm{dl})$	25.5	36	13-72
CH5O classic (U / ml)	141	158	90-160
CH5O altemative (U / ml)	17	27	13-30
Rheumatoid factor	Positive	Negarive	Negative
Antinuclear antibody	Negative	Negative	Negative
E rosertes (\%)	78	81	65-88
CKT3 (\%)	$6 ;$	64	51-87
OKT4 (\%)	38	28	15-52
OKT8 (\%)	21	14	13-44
B cells (\%)	16	12	6-14
PHA response (cpm)	184.233	171,766	$>150,000$

HLA Class I and II Antigens in South African Indians With NIDDM

MAHOMED A.K. OMAR, MICHAEL G. HAMMOND, AYESHA A. MOTALA, AND MAHOMED A. SEEDAT

The relationship between the HLA system and non-insulin-dependent diabetes mellitus (NIDDM) in South African Indians, a migrant Indian group, was evaluated by testing HLA-A, $-B$, and $-C$ antigens in 184 patients and 1444 control subjects and HLA-DR antigens in 104 patients and 330 control subjects. There was a significant Increase in the frequency of HLA-Bw61 in patients compared with control subjects (27.7 vs. 18%, $P=.00155$), although the degree of assoclation was not very strong (relative risk 1.7). A similar association has been noted in Fiji Indians, another migrant Indian group. However, no relationship could be established at the DR locus. It is suggested that the relatively high frequency of the Ewfictillele in South African Indians could, in the presence of some environmental factor like obesity, confer increased susceptibility to NIDDM. Diabetes 37:796-99, 1988

South African Indians, like other migrant Indian groups, show a high prevalence of non-insulindependent diabetes mellitus (NIDDM) (1). On the basis of studies showing a high concordance rate of the disease in identical twins, there is little doubt that genetic factors play a role in the pathogenesis of the disease, although the precise mechanism remains obscure (2). Previous studies have highlighted the paucity of any relationship between NIDDM and the HLA system of antigens among Caucasians (3-6). Data based on the detection of only HLA class I antigens (HLA-A, -B, and -C) have shown some associations in young Pima Indians, Chinese, certain Pacific population groups, young South African Indians of northern Indian origin, and South African Blacks of Xhosa descent

[^32](6-13). HLA-Bw61 has been shown to be associated with the disease in a small study involving Fiji Indians, another migrant Indian group, but no relationship has been eslablished at the HLA-DR locus (9). Apart from this and a small family study showing no association between NIDDM of the young in Indians and HLA class II (HLA-DR) antigens (14), data on any possible association between classic NIDDM and HLA class II antigens in non-Caucasian populations are virtually nonexistent. Our study was therefore undertaken to evaluate the relationship between NIDDM and HLA class I and II antigens in a lärge group of South African Indians with NIDDM.

PATIENTS AND METHODS

One hundred eighty-four unrelated subjects with NIDDM, diagnosed and classified on the basis of the revised World Health Orgànization diagnostic criteria, were selected for the sludy (15). They were patients attending the Diabetes Clinic of King Edward VIII Hospital, which is a teaching hospital attached to the University of Natal Medical School. The mean age at diagnosis was $48 \pm 10 \mathrm{yr}(\mathrm{SD})$ with a range of $35-$ 70 yr , and the mean duration of disease was $10 \pm 6 \mathrm{yr}$ with a range of $2-30 \mathrm{yr}$. None of the patients had ever had ketosis, and their diabetes had been controlled by diet alone or by diet and oral hypoglycemic agents for $\geq 2 \mathrm{yr}$. They did not have malnutrition-related diabetes, which is extremely rare in this population group (16). In addition, 1444 healthy control subjects with no history of diabetes mellitus were studied, none being a first- or second-degree relative of other control subjects or of the patients studied. Becausè the control sublects did not undergo a glucose tolerance test, it is possible that the odd case of asymptomatic diabetes was missed in this group. However, because virtually all HLA studies have similar control data, our control group should be a reasonable basis for comparison.

The sex distribution of the diabetic subjects was 149 women and 35 men and that of the control subjects was 626 women and 818 men. Thus, owing to the relatively small number of diabetic men, it would be difficult to evaluate any

TABLE 1
Frequency of HLA-DR (class II) antigens and genes in South African Indians

Antigen	Control subjects$(n=330)$		Patients$(n=104)$	
	Antigen frequency (\%)	Gene frequency	Antigen frequency (\%)	Gene frequency
DR1	5.2	0.0263	8.7	0.0444
DR2	39.7	0.2234	48.1	0.2795
DR3	13.0	0.0672	11.5	0.0592
DR4	20.6	0.0189	24.0	0.1282
DR5	16.1	0.0840	14.4	0.0747
DRw6	14.2	0.0737	18.3	0.0961
DR7	28.2	0.1526	22.1	0.1173
DRw8	2.4	0.0120	7.7	0.0392
DRw9	0.6	0.0030	1.0	0.0050
DRw10	8.8	0.0450	11.5	0.0592
One antigen	50.9	0.2034	32.7	0.0966

sex-dependent differences in HLA distribution among the palients. The reason for the female predominance among the diabetic subjects may lie in women being more likely than men to seek medical attention for the disease. This reason notwithstanding, however, previous epidemiological studies involving this population group have established a higher prevalence rate of NIDDM in women $(1,16)$.
The Indians in Natal are descendants of migrant Indians who emigrated from India between 1860 and 1911. All were born in Natal and represent third, fourth, and fifth generations. They can be divided into two major groups, Dravidians from southern India and Aryans from northern India (17). The Dravidian Indians in Natal are mainly Tamil and Telugu speaking. The Aryan Indians are more conveniently divided by religion into Hindus from the northeast and Muslims from the northwest. The Hindus in Natal are mainly Hindi speaking, although there are a few Gujarati speakers. The Muslims speak mainly Urdu, but there are also Gujarati speakers (17). There has been virtually no intermarriage between the indians and other ethnic groups in South Africa because of the Group Areas Act (an apartheid legislation).

The control group comprised randomly selected staff and blood donors, many of who had been typed for International Histocompatibility Testing Workshops. Both the patient and control groups had similar socioeconomic backgrounds.

The HLA class I antigens were determined in all patients and control subjects by a two-stage lymphocytotoxicity test (18) with 180 antisera. They consisted of local sera that have been requested for use in International Histocompatibility Testing Workshops, local sera that have been verified with International Workshop sera, and sera that have been exchanged with other laboratories worldwide. Similarly, 120 sera helped to define the class II antigens on B-lymphocyte enriched lymphocyte suspensions prepared with the aid of straws packed with nylon wool (19). The class 11 antigens. were determined in 104 patients and 330 control subjects (Table 1).

The definition of Bw60 with operationally monospecific antisera is clear, but the definition of Bw61 depends on the difference in reaction patterns between the broad antigen B40 and Bw60 $(20,21)$. This means that it is not possible to
detect Bw61 in the presence of Bw60, and, therefore, $\sim 3 \%$ of the patients with both Bw660 and Bw61 were counted as having Bw60 and a "blank." Thus, the frequency of Bw61 was underestimated by $\sim 3 \%$ in the patients and by $\sim 2 \%$ in the control subjects. However, the antigen frequencies in Table 2 have not been modified because there are many other cross-reacting groups where antigens may be "hidden," e.g., A10, B5, B15, and further corrections would have been necessary to allow for homozygosity.

Differences in HLA frequencies were tested for signifi-
TABLE 2
Frequency of HLA class I antigens and genes in South African Indians

Antigen	Control subjects$(n=1444)$		$\begin{aligned} & \text { Patients } \\ & (n=184) \end{aligned}$	
	Antigen frequency (\%)	Gene frequency	Antigen frequency (\%)	Gene frequency
A1	28.7	0.1556	20.7	0.1094
A2	31.5	0.1723	35.3	0.1956
A3	12.7	0.0656	14.1	0.0731
A11	27.8	0.1502	25.5	0.1368
A23	1.3	0.0065	0	0
A 24	28.7	0.1556	35.3	0.1956
A235	1.7	0.0085	1.6	0.0080
A26	6.6	0.0335	4.4	0.0222
A28	12.8	0.0661	11.6	0.0587
A29	1.2	0.0060	1.6	0.0080
A30	3.2	0.0161	2.7	0.0135
A31	3.5	0.0176	8.2*	0.0418
A32	4.4	0.0222	3.3	0.0166
A33	14.3	0.0742	15.2	0.0791
Aw36	0.3	0.0015	0	0
One antigen	21.3	0.0478	20.7	0.0409
B7	13.2	0.0683	16.3	0.0851
B8	6.2	0.0314	10.3	0.0528
B13	7.1	0.0361	6.0	0.0304
B14	0.5	0.0025	0	0
B15	10.1	0.0518	11.4	0.0587
B16	3.5	0.0176	3.8	0.0191
B17	21.3	0.1128	12.0	0.0619
B18	3.8	0.0191	3.8	0.0191
B21	3.4	0.0171	3.8	0.0191
Bw22	4.3	0.0217	3.3	0.0166
B27	2.1	0.0105	3.8	0.0191
B35	20.9	0.1106	20.1	0.1061
B37	5.9	0.0299	3.8	0.0191
Bw41	0.3	0.0015	0	0
Bw47	0.2	0.0010	1.1	0.0055
Bw42	0	0	0	0
B44	12.7	0.0656	12.0	0.0619
B45	0.3	0.0015	0	0
B51	16.7	0.0873	19.6	0.1033
Bw52	13.9	0.0720	12.5	0.0645
Bw53	0.8	0.0040	0.5	0.0025 '
851	3.5	0.0176	2.7	0.0135
Bw60	11.5	0.0592	10.9	0.0566
Bw61 \dagger	18.0	0.0944	$27.7 \dagger$	0.1497
Bw70	3.3	0.0166	1.6	0.0080
One antigen	16.8	0.0488	13.0	0.0269
Cw1	5.7	0.0290	7.6	0.1087
Cw2	3.8	0.0192	1.6	0.0080
Cw3	11.4	0.0587	10.3	0.0529
Cw4	15.7	0.0818	22.8	0.1214
Cw5	1.4	0.0070	1.6	0.0080

table 3
HLA antigen Irequencies in control subjects

Antigen	Antigen frequency in subjects (\%)	
	<35 yr old	>35 yr old
A1	28.1	30.1
A2	31.6	31.3
A3	12.7	12.5
A11	27.5	28.8
A23	1.4	1.1
A24	28.8	28.6
A25	1.7	1.6
A26	6.1	8.0
A28	13.4	10.9
A29	1.4	0.3
A30	2.1	6.4
A31	3.7	2.6
A32	4.4	4.5
A33	16.0	9.4
One antigen	20.8	22.7
B7	13.3	12.8
B8	6.0	6.6
B13	6.5	9.0
B14	0.6	0.26
B15	10.9	6.1
B16	3.7	26.7
B17	21.2	22.0
B18	3.2	5.6
B21	3.4	3.5
Bw22	5.5	0.80
B27	2.3	1.33
B35	21.6	18.9
B37	5.7	6.4
Bw41	0.3	0.26
Bw47	0.2	0.26
Bw42	0.0	0.0
B44	12.7	12.5
B45	0.3	0.26
B51	16.5	17.1
Bw52	14.2	12.8
Bw53	0.4	1.8
B51	3.1	4.5
Bw60	10.6	14.2
Bw61	17.7	18.9
Bw70	4.0	1.2
One antigen	16.1	18.7
Cw1	5.6	5.8
Cw2	3.6	4.5
Cw3	11.4	11.5
Cw4	15.6	15.8
Cw5	1.0	2.4
DR1	5.7	
DR2	39.7	40.0
DR3	11.7	26.6
DR4	19.7	30.0
DR5	19.3	16.6
DRw6	10.7	50.0
DR7	26.0	50.0
DRw8	2.3	3.3
DRw9	0.3	3.3
DRw10	8.0	16.6
One antigen	50.0	60.0

cance with the x^{2}-test (without Yates' correction), and the probability was corrected by multiplying the P value by the number of comparisons made, i.e., the number of different antigen tests (22). When an antigen was shown to be associated with NIDDM in a population group elsewhere, an uncorrected P value $<.01$ was considered significant
$(22,23)$. Relative risk was calculated according to the formula recommended by Woolf (24).

RESULTS

The frequencies of various HLA antigens in patients and control subjects are shown in Tables 1 and 2. At the A, C, and DR loci there were no significant differences in the frequency of any of the antigens between patients and control subjects. There was a significant increase in the frequency of Bw61 in patients compared with control subjects (27.7 vs . $18 \%, P=.00167$). Despite the fact that the corrected P value fell short of statistical significance ($P=.0689$), the difference remains significant, due to a prior hypothesis, because the same antigen has been shown to be associated with NIDDM in another migrant Indian group (12,23).

Although increased frequencies of HLA-A31 and -Cw4 were seen in the patients compared with control subjects, the differences were not significant when the P value was corrected.
There were no significant differences in the frequencies of any of the HLA antigens between control subjects <35 yr and those $>35 \mathrm{yr}$ (Table 3).

DISCUSSION

Although a relationship between insulin-dependent diabetes mellitus (IDDM) and the HLA system of antigens has been clearly established, their association with NIDDM remains controversial ($3,6,25$). Caucasians show an inconsistent relationship at the class I locus of genes (6). Pooled data from several independent studies have shown a significant association with HLA-B8, and a study in Scandinavia has established a relationship at the Cw4 locus $(6,26)$. South Airican Indians, however, show a significant increase in the frequency of HLA-Bw61. This finding is of particular interest in light of a previous study showing an association between the same antigen and NIDDM in Fijian Indians (10), another migrant population group with the same origin as South African Indians, i.e., India. The uncorrected P value in the latter study ($P=.01$) was much higher than that in this study ($P=.0015$). In contrast, the relative risk in the Fijian study was higher (4.8), possibly because of the relatively lower frequency of HLA-Bw61 (9%) in the control group and the smaller number of patients ($n=58$) and control subjects ($n=47$) studied. Young South African Indians with NIDDM have also been found to show a somewhat weak relationship at the Bw61 locus (11).

The frequency of HLA-Bw61 is much higher among Indians originating from the Indian subcontinent compared with Caucasians or Blacks (27). In fact, it is virtually nonexistent among Black population groups (27). Thus, it is tempting to speculate that the high prevalence of diabetes in South African Indians compared with other population groups is due to the increased frequency of this antigen. Yet, Indians from southern India and northern India, in whom the frequencies of Bw61 are as high as 16% and 15%, respectively (27). show much lower prevalence rates of NIDDM $(28,29)$, thereby seemingly negating such a hypothesis. However, it is possible that in the presence of an environmental factor, e.g., obesity, which appears to be a risk factor for diabetes among South African Indians (1), HLA-Bw61 confers in-
creased susceptibility to the disease, at least in a proportion of subjects.
Like IDDM, NIDDM also seems to be characterized by differences in the specific allelic associations among the various ethnic groups. Thus, South African Indians with NIDDM do not show an increased frequency of $A 2$ as seen in Pima Indians (7), of B54 as seen in the Chinese (8), of B22 as seen in Micronesians and Polynesians (9,29), or of Bw62 (B15) as seen in Papuans (New Guinea; 13) In addition, no relationship could be established with HLA-Bw41, which shows a weak association with NIDDM in South African Xhosas (12). At the C locus, there was a weak association with HLA-Cw4 (P.013, uncorrected; P.598, corrected), which shows a strong relationship with NIDDM in Scandinavians (26; P.002, corrected). In regard to the age distribution of the control subjects, only 26% were $>35 \mathrm{yr}$ of age, when the mean age of the diabetic subjects was 48 yr . Hence, based on the observation that the prevalence of diabetes increases with age, it is quite possible that further signiticant associations (e.g., HLA-A31) would have manifested themselves had there been a larger number of older control subjects. Despite these limitations, there appeared to be no significant differences between the HLA distribution of control subjects $>35 \mathrm{yr}$ and those $<35 \mathrm{yr}$ of age.
In most population groups studied thus far, IDDM shows a stronger association with the class II antigens than with the class I antigens $(3,6,25)$. South African Indians with NIDDM, however, do not show such a tendency, because no relationship could be established with any of the HLA class II antigens. Caucasians with the disease also do not show any consistent relationship involving HLA class II antigens (6). In regard to other population groups, i.e., Melanesians, Polynesians, Papuans, Pima Indians, and Indians from India, published data on the relationship between NIDDM and HLA class II antigens are not available.

REFERENCES

1. Omar MAK, Seedat MA, Dyer RB, Motala AA, Rajput MC, Jouber SM: The prevalence of diabetes mellitus in a large group of South African Indians. S Afr Med J 67:923-26, 1985
2. Barnett AH, Eff C, Leslie RDG. Pyke DA: Diabetes in identical twins: a study of 200 pairs. Diabetologia 20:87-93. 1981
3. Rotter JI, Rimoin DL: Diabetes mellitus: the search for genelic markers. Diabetes Care 2:215-26, 1979
4. Platz P, Jakobsen BK. Thomsen BS. Jensen KB. Henningsen K: No evidence of linkage between HLA and matu:ity onset type of diabetes in young people. Diabetologia 23:16-18, 1982
5. Arnaiz Vellena A, Rodriguez De Cordoba S, Dujorne IL, Regueiro JR,

Bootello A, Serrano-Rios M: HLA factors in non insulin dependent diabetes mellitus. N Engl J Med 303:1065, 1980
6. Tiwari JL. Terasaki PI: Endocrinology. in HLA and Disease Associations. New York, Springer-Verlag. 1985, p. 210-12
7. Williams RC, Knowles WC, Butler WJ, Pettit DJ, Lisse JR, Bennett PH, Terasaki PI: HLA-A2 and Type II (insulin independent) diabetes mellitus in Pima Indians: an association of aliele frequency with age. Diabetologia 21:460-63, 1981
8. Zhao T, Chi Z, Waug H. Shen M, Zhou B, Bu K: HLA and diabetes mellitus in China. Chin Med J (Engl Ed) 95:609-12, 1982
9. Serjeantson SW, Ryan DP, Zimmet P, Taylor R, Cross R, Charpin M, Gonidec G: HLA antigens in four Pacific populations with non-insulin dependent diabetes mellitus. Ann Hum Biol 9:69-84, 1982
10. Serjeantson SW, Ryan DP, Ram P. Zimmet P: HLA and non-insulin dependent diabetes in Fiji Indians. Med J Aust 1:462-63, 1981
11. Omar MAK, Hammond MG, Seedat MA, Asmal AC: HLA antigens and non insulin dependent diabetes mellitus in young South African Indians. S Afr Med J 67:130-32. 1985
12. Briggs BR, Jackson WPU, DuToit ED, Botha MC: The histocompatibility (HLA) antigen distribution in diabetes in Southern Arrican Blacks (Xhosa) Diabetes 29:68-71, 1980
13. Bhatia K, Patel M, Gorogo M: Type 2 (non-insulin dependent) diabetes mellitus and HLA antigens in Papua, New Guinea. Diabetologia 27:37073, 1984
14. Naidoo C, Jialal I, Hammond MG, Omar MAK, Joubert SM: HLA and NIDDM in the young. Diabetes Care 9:436-38. 1986
15. WHO Expert Committee: Diabetes Mellitus. 2nd report. Geneva, World Health Org., 1980, p. 8-12 (Tech. Rep. Ser. 646)
16. Omar MAK, Asmal AC: Patterns of diabetes mellitus in young South African Blacks and Indians. Trop Geogr Med 36:133-38. 1984
17. Mistry SD: Ethnic groups of Indians in South Africa. S Afr Med J 39:691, 1965
18. Terasaki PI, McClelland JD: Microdriplet assay of human serum cytoxins. Nature (Lond) 204:998, 1964
19. Danilovs JA, Ayoub G. Terasaki PI: B lymphocyte isolation by thrombinnylon wool. In Histocompatibility Testing 1980. Terasaki PI, Ed. Los Angeles. Univ. of California Press, 1980
20. Goldmann SF, Middleton D, Kennedy LJ: Antigen report: HLA-Bw60. In Histocompatibility Testing 1984. Albert ED, Baur MP, Mayr WR, Eds. Berlin, Springer-Verlag, 1984, p. 167
21. Goldmann SF, Middleton D, Kennedy LJ: Antigen report: HLA-Bw61. In Histocompatibility Testing 1984. Albert ED. Baur MP, Mayr WR, Eds. Berlin. Springer-Verlag, 1984. p. 168
22. Svejgaard A, Jersild L. Staub-Nielsen L, Bodmer WF: HLA antigens and disease: statistical and genetical considerations. Tissue Antigens 4:95105, 1974
23. Tiwari JL, Terasaki PI: HLA and Disease Associations. New York, Springerverlag. 1985, p. 20
24. Wooll B: On estimating the relation between blood group and disease. Ann Hum Gen 19:251-53, 1955
25. Christy M, Green A, Christau B, Kromann H, Nerup J, Platz P, Thomsen M, Ryder LP. Svejgaard A: Studies of the HLA system and insulin-dependent diabetes mellitus. Diabetes Care 2:209-14, 1979
26. Groop L. Koskimies S, Pelkonene R, Topaaned EM: Increased irequency of HLA-Cw4 in type II diabeles. Acta Endocrinol 104:475-78, 1983
27. Kamura H, Kohara S, Shimizu K, Azaka T: Antigen report. In Proc AsiaOceania Histocompatibility Workshop 1986. Aizawa M, Ed. Hokkaido, Japan, Hokkaido Univ. Press, 1986, p. 117-22
28. Ashok A, Ahujamms, Wasir HS: Prevalence of IGT. diabetes mellitus and cardiovascular risk factors in semi-urban populations of North India using WHO criteria (Abstract). Diabeles Res Clin Pract (Suppl. 1):526, 1985
29. Serjeantson SW, Owerbach D, Zimmet P, Nerup J, Thoma K: Genetics of dlabetes in Nauru: effects of foreign admixture, HLA antigens and the insulin-gene-linked polymorphism. Diabelologia 25:13-15, 1983

HLA AND RHEUMATOID ARTHRITIS

p370 Stastny P, Barger BD, Batchelor JR, Bertrams J, Betuel H, Botha MC, Braun WE, Carpenter CB, Darke C, Dawkins RL, Engelfriet CP, Fauchet R, Festenstein H, Gazit E, Gorodezky C, Hammond MG, Hansen JA, Juji T, Mayr WR, Mayer S, McConnachie PR, Oh JH, Perez-Rojans GE, Petranyi GG, Radvany R, Rodey GE, Sasazuki T, Sucia-Foca N, Walford R and Winchester RJ. Joint Report: Rheumatoid Arthritis. In: Terasaki PI (ed) Histocompatibility Testing 1980 p681. UCLA Tissue Typing Laboratory, Los Angeles. 1980
p376 Christiansen FT, Komori K, Dawkins RL, Mehra M, Bashir H, Sekiguchi S, Saito H, Mehra M, Hammond MG, Chandanayingyong D, and Chan SH. Rheumatoid Arthritis In: Simons MJ, Tait Bd (eds) Proceedings of the Second Asia-Oceania Histocompatibility Workshop p348. Immunopublishing, Toorak, Australia, 1983
p382 Mody GM, Hammond MG and Naidoo PD. HLA associations with rheumatoid arthritis in African blacks. J Rheum 16:10 13261989
p385 Mody GM, Hammond MG, et al. HLA and rheumatoid arthritis in South African Indians. (submitted).

RHEUMATOID ARTHRITIS

P. Stastny

University of Texas, Dallas, Texas

On behalf of the participating groups:

1. B.D. Barger, R.T. Acton, J.C. Bennett, J. Halla, T. Traylor, The University of Alabama in Birmingham, Birming. ham, Alabama.
2. J.R. Batchelor, G. Panayi

Hammersmith Hospital and Guys Hospital, London, England.
3. J. Bertrams, I. Stroehmann

Elisabeth-Krankenhaus, Essen and Medizinische Universitäts Klinik, Bonn, West Germany.
4. H. Betuel, E. Lejeune

Centre de Transfusion Sanguine and Hôpital de Charpennes, Lyon, France.
5. M.C. Botha, E.D. du Toit, B.R. Briggs, OL. Meyers, P. Klemp, P. Smith
Provincial Blood Grouping Laboratory and Groote Schuur Hospital, Cape Town, South Africa.
6. W.E. Braun, M A. Khan

Cleveland Clinic and Cuyahoga County Hospital, Cleveland, Ohio.
7. C.B. Carpenter, D.N. Glass

Peter Bent Brigham Hospital and Robert B. Brigham Hospital, Boston, Massachusetts.
8. C. Darke, M.F. Wagner

Blood Transfusion Center, Cardiff and MRC Pneumo: coniosis Unit, Llandough Hospital, Penarth; Wales.
9. R. Dawkins, P.J. Zilko, E.T. Owen Royal Perth Hospital, Perth, Western Australia.
10. CP. Engelfriet, W. Hissink Muller

Central Laboratory of the Netherlands, Red Cross
Blood Transfusion Service and Reuma Rehabilitation Centre, Amsterdam, Holland.
11. R. Fauchet, E. Legall, C. Jezequel

Centre Regional de Transfusion Sanguine and Pediatric Clinic A, Hốpital de Rennes, Rennes, France.
12. H. Festenstein, I. Roitt

The London Hospital Medical College and Middlesex Hospital, London, England.
13. E. Gazit, M. Yaron, S. Weiss, B. Fishel

Tissue Typing Lab, Slieba Medical Center, Tel Hashomer and Rokach Hospital, Tel-Aviv, Israel.
14. C. Gorodezky, M.C. Lavalle, L. Castro-Escobar, J.M. Miranda Limon, A. Escobar-Gutierrez
Laboratorio de Investigaciones Immunologicas and
Hospital de Especialidades, Centro Medico La Raza, Mexico, D.F.
15. M.G. Hammond, W.G. McNeill, P D. Naidoo

Natal Blood Transfusion Service, Durban, South Africa
and Department of Medicine, University of Natal, Congella, Natal.
16. J.A. Haņsen, R.F. Wilkins

Puget Sound Blood Center, Harborview Medical Center, and the University of Washington, Seattle, Washington.
17. T. Juji, K. Tamimoto, II. Mitsui, M. Ohkumi

Tokyo University Hospital and Nihon University Hospital, Tokyo, Japan
18. W.R.Mayr, O. Scherak

Institut für Blutgruppenserologie and II Medizinische Universitäts Klinik, Universität Wien, Wien, Austria.
19. S. Mayer, M.N. Tongio, L. Asch, D. Storck

Centre de Transfusion Sanguine and Hôpital Civil de Strasbourg, Strasbourg, France.
20. P.R. McConnachie

Memorial Medical Center, Springfield, Illinois.
21. J.H. Oh, J.A. Goldman

Grady Memorial Hospital, Atlanta, Georgia
22. G.E. Perez-Rojas, P. Armas, M. Rodriguez

Unidad Immunologia Clínica, Caracas, Venezuela
23. G.G. Petranyi, L. Hodinka, K. Meretey, E. Gyodi, Z. Balogh, B. Gomor, E. Roman
Institute of Haematology and Blood Transfusion and Institute of Rheumatology and Physiotherapy, Budapest, Hungary.
24. R. Radvany, F. Schmidt

Departments of Surgery and Medicine, Northwestern University Medical School, Chicago, Illinois.
25. G.E. Rodey, B. Schwartz

Division of Laboratory Medicine, Barnes Hospital, St. Louis, Missouri.
26. T. Sasazuki, N. Ohta, Y. Kozaki, C. Abe, Y. Shiokawa and T. Abe
Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
27. P. Stastny, S. Moore, C.W. Fink

Departments of Internal Medicine and Pediatrics, The University of Texas Health Science Center at Dallas, Dallas, Texas.
28. N. Suciu-Foca, J.C. Jacobs

Departments of Pathology and Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York.
29. R. Walford, H.E. Paulus

UCLA School of Medicine, Los Angeles, California
30. R J. Winchester, A. Gibofsky

Rockefeller University, New York, New York.

Joint Report: Rheumatoid Arthritis

Rheumatoid arthritis (RA) patients present with a variety of syndromes. There are marked differences in the severity of the arthritis and in the prominence of other features such as episcleritis, vasculitis, peripheral neuropathy, pulmonary disease, hypersplenism, and nodule formation. A minority of patients with typical adult RA can be distinguished because they do not make rheumatoid factor (AF). In children the disease takes three main forms:
(a) systemic onset with fever; (b) polyarticular onset, sometimes associated with rheumatoid factor and nodules; and (c) pauciarticular onset.

In previous studies (1-6) including that of the 7th International Histocompatibility Workshop (7), HLA.DW4 and DR4 were found to be increased in adult RA in Caucasians having erosive arthritis by X-ray and with positive RF tests. This increase was not observed in patients with

Table 1. HLA-DR antigens in unrelated adult RA patients.

Group Studied	Number Subjects	OR1	DR2	Antigen Frequency (\%)				DR7	DRH8
				DR3	DR4	DR5	DRN6		
Caucasians									
Control RA	662	17.4	24.9	21.0	24.9	19.2	6.3	22.4	6.8
	329	20.1	13.4***	16.1	47.4***	7.3 ***	2.4*	14.3**	3.7
Japanese									
Control RA	192	10.7	35.6	1.9	40.7	3.4	9.5	0.6	16.8
	104	15.4	24.0*	0.0	62.5***	4.8	8.7	0.0	21.4
Negroes									
Control	193	10.9	35.2	29.5	9.8	26.4	12.4	19.7	20.2
RA	56	17.9	28.6	16.1	35.7***	10.7*	0.0 *	21.4	16.1

Table 2. HLA.DR antigens in unrelated adult RA patients of other ethnic groups.

juvenile rheumatoid arthritis (JRA) (8).
For the present study patients were classified using the criteria of the American Rheumatism Association for adult RA (9) and those of the JRA criteria subcommittee (10) for children with arthritis. Detailed clinical information was collected on all patients submitted to the study. The final diagnostic classification was performed by computer on the basis of objective criteria and verified by the participating clinicians. Data on RF included information about number of tests on record, time between first and last test, consistency of results, and average titer. Adult patients with negative RF tests were required to have been tested at least twice and to meet criteria for classification as either definite or classical adult RA.

Unrelated Adult RA. As in previous studies small deviations were observed in the frequencies of some HLAA, B, and C antigens in patients with adult RA. The important differences were in the antigens of the HLA-DR series. No data on HLA-D typing was submitted. In the major population groups (Table 1) the highly significant increase of HLA-DR4 was uniformly present. Several antigens were decreased including DR2, DR5, DRW6, and DR7. Similar changes, with a major increase of DR4, were also observed in the Hungarian population and in Latinoamericans typed in Mexico and Venezuela (Table 2). The remaining three populations in Table 2, did not show an increase in DR4.

There were no significant differences in antigen frequencies when the patients were separated by sex (Table 3) or age of onset of disease (Table 4).

To evaluate the possibility of a relationship between HLA.DR antigens and severity of RA, three approaches were taken. Clinical activity was evaluated on the basis of morning stiffness, joint pain, joint tenderness and joint swelling (11), the most severe functional grade was determined according to Steinbrocker and coworkers (12), and
the relative rate of progression was scored by the clinicians as slow, moderate, or rapid. Data obtained by the last method are shown in Table 5. There was no evidence from any of these analyses of a correlation between severity of disease and the HLA-DR antigens in patients with definite or classical adult RA. The absence of correlation between severity of disease and presence of DR4 may depend in part on the selection of a patient population having only definite or classical RA and has been observed previously in such groups $(13,14)$.

The majority of adult RA patients had positive tests for RF. In addition, 46 RF negative Caucasian patients were accepted in the study according to criteria given above. Interestingly, the frequency of DR4 in this group of definite or classical RA without RF was no different from that of controls (Table 6). To further examine the relationship between RF and HLA, the RF positive group was subdivided according to RF titer. Patients with high titer RF had a higher frequency of DR4 than those with low titer (Table 6).

Thus, it appears that seropositive and seronegative RA are separate diseases with different immunogenetic factors. These findings confirm earlier reports by Jaraquemada and coworkers (15) and Dobloug and coworkers (16) who observed correlation between presence of RF and DR4. In view of the data suggesting correlation between DR4 and titer of RF, the possibility of an effect of DR4 on the immune response to autologous lg G should be considered. However, it is known that most normal individuals can make both $\lg M$ and $\lg G R F$ if properly challenged (17) and DW4 was not increased in patients having RF due to conditions other than RA (18).

Groups of patients having extraarticular manifestations of RA were small, with the exception of those with subcutaneous nodules (Table 7). When the HLA-DR antigens

Table 3. HLA-DR antigens in RA patients in relation to sex.

Subset Studied	Number Subjects	OR1	DR2	Antigen Frequency (\%)				DR7	ORW8
				OR3	OR4	OR5	ORW6		
Caucastans									
Male Female	$\begin{aligned} & 105 \\ & 189 \end{aligned}$	18 23	11 16	19	44	05	05	16	06
Japanese									
Male Female	20 84	15	00*	00	80	10	10	00	30
	84	16	30	00	58	04	08	00	19
Negroes									
Male	${ }^{6}$	17	17	33	17	17	00	17	33
	49	18	31	14	39	10	00	22	14

Joint Report: Rheumatoid Arthritis

Table 4. HLA-DR antigens in RA patients in relation to age at onset of disease.

Age at Onset	Number Subjects	DRI	OR2	Antigen Frequency (\%)				DR7	DRW8
				OR3	OR4	OR5	ORW6.		
Caucasians									
1/-39 yrs	92	18	15	13	41	11	02	16	04
>40 yrs	202	22	14	15	47	05	03	15	04
Japanese									
17-39 yrs	39	05	26	00	64	05	10	00	13
>40 yrs	65	22*	23	00	62	05	08	00	27
Hegroes									
17-39 yrs	23	13	30	17	39	13	00	35	13
>40 yrs	33	21	27	15	33	09	00	12	18

Table 5. HLA-DR antigens in RA patients in relation to rate of progression of the disease.

Progression Score	Number Subjects	DRI	DR2	Antigen Frequency (x)				087	DRWE
				OR3	DR4	OR5	ORW6		
Caucasians									
1	80	20	19	16	46	11	01	24*	04
2	132	22	13	16	45	08	04	11	05
3	75	20	13	09	45	03	01	13	D4
Japanese									
1	34	27	24	00	59	00	09	00	27
2	48	13	21	00	65	06	13	00	21
3	18	06	28	00	67	11	00	00	17
Negroes									
1	20	10	10	25*	30	15	00	20	30
2	23	26	39	09	39	09	00	13	09
3	12	17	42	17	33	08	00	33	08

Table 6. HLA-DR antigens in Caucasian RA patients in relation to rheumatoid factor.

Group Studied	$\begin{gathered} \text { RF } \\ \text { Status } \end{gathered}$	Number Subjects	DR1	DR2	Antigen Frequency (\%)				DR7	DRw8
					DR3	OR4	DR5	ORW6		
Controls	--	662	17	25	21	25	19	06	22	07
RA	Neg	46	24	17	13	24	13	02	26	02
RA	Pos	227	20	13	17	52***	06	03	13	02 04
RA	Low	76			18	39				
RA	Med	117	17	11	18 09	52	13 03	05 03	15 10	03
P ¢	High	48	29	13	15	58(*)	- 04	00	10 17	088

*** $p<0.001$ for difference from controls
(*) p <0.05 for difference between low and high titer groups
were compared in each case with the RA population without the extraarticular condition in question, few significant deviations were observed. Two groups of patients with pulmonary disease developing in coal miners were submitted by Darke: patients with pulmonary nodules (Caplan's syndrome) appeared to have an increase in DR3; patients with pulmonary fibrosis had an increase in DR1 (Table 7). Neither of these would be significant if the P values were corrected for the number of antigens tested. Further studies will be of interest.

Family studies in adult RA. Family studies were performed by the following laboratories: Batchelor, Braun, Dawkins, Engelfriet, Hammond, Sasazuki, and Stastny. There were 28 families with at least two members having adult RA and meeting the criteria established for the study.

The frequency of DR4 in these families was quite high, but there was no difference between the affected and the unaffected first degree relatives (Table 8). The families contained 67 sib pairs. In 21 cases the index case and the sib both had RA; in 45 instances the sib was unaffected (Table 9). The distribution of shared haplotypes was different in the two groups. There were only three affected sibs that shared no haplotype with the primary case. One was from a family in which seven sibs had the disease, with two affected haplotypes inherited from a DR4 homozygous mother. The other two were instances of RF positive propositi having sibs who were RF negative (Table 9).

These results appear to confirm the different nature of factor positive and factor negative RA. If the three subjects are not considered then all the affected sib pairs shared at least one haplotype, whereas among the unaffected sibs 22% had no haplotype in common with the index case. This difference between affected and unaffected sibs suggests a major effect of HLA genes on the development of RA.

Unrelated JRA. Data on JRA were submitted by seven laboratories (Table 10). The overall frequencies of HLA.DR antigens in Caucasians with JRA showed an increase in DR5 and DRW8. The frequency of DR4 was not elevated. HLA-DR5 appeared to be highest in the systemic onset group. DRW8 was increased in patients with pauciarticular and polyarticular onset.

Previous results had shown the absence of DW4 and DR4 and the increased frequency of DW/DRW8 among patients with JRA (19). The increased frequency of DW/DR5 has also been recently observed $(20,21)$. Because of the clinical heterogeneity of JRA, large numbers of patients are needed and careful attention must be given to their classification. Further work will be needed to clarify the relationships of the clinical subsets with HLA-D and DR.

REFERENCES

1. Stastny P. Mixed lymphocyte culture typing cells from patients with rheumatoid arthritis. Tissue Antigens 1974, 4:571.
2. Stastny P. Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest 1976, 57:1148.
3. Stastny P. Association of the B-cell alloantigen DRW4

Table 8. HLA-DR4 in 28 families with multiple cases of adult rheumatoid arthritis.

| Primary
 Type | Case
 No. | Relatives
 Type | Affected
 No. | | | Normal
 DR4t | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. | DR4+ | | | | | | |

Table 9. Inheritance of HLA haplotypes among sibs in 28 families with multiple cases of adult rheumatoid arthritis.

Type of Slbs	Number	Shared Ilaplotypes					
		2		1			0
		N	(\%)	N	(\%)	N	(\%)
Affected	21	7	(33)	11	(52)	3*	(14)
Norma 1	45	11	(24)	24	(53)	10	(22)

* Two were rheumatoid factor negative; one was from a family in which 7 sibs had the disease.

Table 7. HLA-DR antigens in Caucasian RA patients in relation to extraarticular manifestations.

Extraarticular Condition	Number Subjects	DR1	DR2	Antigen Frequency (\%)					
					DR4	DR5	DRw6	DR7	DRw8
Serositis	17	41	06	12	53	00	00	00	
Eye Lesions	23	17	09	22	48	00	09	17	05
Sjögren's	17	35	12	24	35	00	00	12	18
Vasculitis	19	42	16	26	42	00	00	12	18
Subcut. Nod.	117	21	11	15	50	03	03	16	05
Pulm. Nod.	21	24	05	33*	50 29	00	05	15	06
Pulm. Fibrosis	12	50**	08	17	29 33	00	05 00	24 08	05

[^33]with rheumatoid arthritis. N Engl J Med 1978, 298:869.
4. Panayi GS, Wooley P, Batchelor JR. Genetic basis of rheumatoid diseases: HLA antigens, disease manifestations, and toxic reactions to drugs. Br Med J 1978, 2:1326.
5. Roitt IM, Corbett M, Festenstein H, et al. HLA.DRW4 and prognosis in rheumatoid arthritis. Lancet 1978, 1:990.
6. Thomsen M, Morling N, Snorrason E. HLA-DW4 and rheumatoid arthritis. Tissue Antigens 1979, 13:56.
7. Batchelor JR, Morris PJ, eds, HLA and disease. Rheumatoid arthritis. In Histocompatibility Testing 1977, Bodmer WF, et al, eds, Munksgaard, Copenhagen, 1978, 218.
8. Stastny P, Fink CW. Different HLA-D associations in adult and juvenile rheumatoid arthritis. J Clin Invest 1979, 63:124.
9. Ropes MW, Bennett GA, Cobb S, Jacox R, Jessar RA. 1958 revision of diagnostic criteria for rheumatoid arthritis. Bull Rheum 1958, 9:175.
10. Brewer EJ, Bass J, Baum J, et al. Current proposed revision of JRA criteria. Arthritis Rheum 1977, 20 (Suppl): 196.
11. Srinivascan R, Miller BL, Paulus HE. Long-term chrysotherapy in rheumatoid arthritis. Arthritis Rheum 1979, 22:105.
12. Steinbrocker O, Traeger CH, Batterman RC. Therapeutic criteria in rheumatoid arthritis. JAMA 1949,

140:659.
13. Husby G, Gran JT, Ostensen M, Johannessen A, Thorsby E. HLA.DRW4 and rheumatoid arthritis. Lancet 1979, 1:549.
14. Stastny P. HLA-D in the rheumatic disease. J Reticuloendothelial Soc 1979, 26:601.
15. Jaraquemada D, Pachoula-Papasteriadis C. Festenstein H, et al. HLA-D and DR determinants in rheumatoid arthritis. Transplant Proc 1979, 11:1306.
16. Dobloug JH, Forre O. Thorsby E. HLA-DRW4 and rheumatoid arthritis. Lancet 1979, 1:548.
17. Carson DA, Bayer AS, Eisenberg RA, Lawrence S, Theofilopoulos A. IgG rheumatoid factor in subacute bacterial endocarditis: relationship to lgM rheumatoid factor and circulating immune complexes. Clin Exp Immunol 1978, 31:100.
18. Engleman E, Sponzilli EE, Batey ME, Ramchran S, McDevitt HO. Mixed lymphocyte reaction in healthy women with rheumatoid factor: lack of association with HLA-DW4. Arthritis Rheum 1978, 21:690.
19. Stastny P, Fink CW. Different HLA-D associations in adult and juvenile rheumatoid arthritis. J Clin invest 1979, 63:124.
20. Suciu-Foca N, Godfrey M, Jacobs J, et al. Increased frequency of DRW5 in pauciarticular JRA. This volume.
21. Fink CW, Stastny P. Results of serologic HLA-DR typing in juvenile arthritis and adult RA. Arthritis Rheum, In press.

Table 10. HLA-DR antigens in Caucasian patients with juvenile arthritis (JA).

| LAB | Onset' | No. | DR1 | DR2 | DR3 | DRA | DR5 | ORW6 | OR7 | ORW8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^34]
Rhacumatoid Arthritis.

 Medical Science, Ansari Nagar, New Delhi, India.
 Sydney and Newcastle, N.S.IV Sehiguchi Nishikai, Kamasaki, lapan. Sato Nakamura, Iukuoka, lapan. Neha: Vadya, New Delhi, !ndia. Hammond Nadoo, Durtan, Soulb Africa. Chandandingyong laminuhi, Banghok, Thailand. Chan-I cng, Singapore.
Publication Number 8120 from the Deparments of Clinical Immonology Royal lerth Hospital and Queen Elizabeth II Medical Centre, Perth, Westen Australia.

Bachground

In the Eighth International Workshon, the increased prevalence of DR4 in theumatoid arlhritis (RA) was confirmed in Caucasoids, Japanese and Negroids. This increase was however not observed in Jews while in Asian Indians the findings were inconclusive (Stastny, 1980). There were no studies of South East Astan ethnic groups. Altempts to relate disease severity, age of onset or sex with DR4 were negative though I)R 4 was only increased in the "seronositive" rhemmatoids. Chromosome 6 markers oher ham HL \hat{A} were not studied and there was no attempt to identify a particular haplotype associated with disease.
In this study, the following major questions were considered:
(i) Is DR4 associated with disease in a number of ethnic grouns in the South East Asian region when the disease delinition is well standardized?
(ii) Does I)R4 relate to disease severity, sex or scropesitivity?
(iii) Is there another chromosome 6 marker strongly associated wih RA and can a unique disease associated haplotype be identified?
In this report, we present our findings in relation to these questions.

Methods

Patients included in this study were required to have symmetrical small joint symovitis (tenderness and swelling) involving at least PIP, MCP, wrist or M[P joins with at least one joint from each side involved, together with radiological crosions lypical of $R \wedge$, at least involving PIP, MCP, wrist or MTP joints, while the exclusions listed in the \triangle R \wedge criteria were not to be present.

In addition, sera were sent to the Perth Laboratory to enable a standardized testing for rheumatoid factor using the Rheumaton (Deneer) test. Whenever possible, additional EDTA plasma samples were collected for complement allotyping.

Results and Discussion

The numbers studied in the various ethnic groups are shown in table 1. Insufficient numbers of Chinese were typed though additional cases will be studied. In all groups females were predominant and, as shown in table 1 , most were seropositive based on the testing of the avalable serum sample on the laboratory's submission when this information was available. Scropositivity was considered an important requirment for disease definition and for confirmation in a study involving a number of different cellires.

DR4 Dcfinition

In this W'orkshop, definition of DR4 was complicated by a lack of monospecific sena. Essentially two monspecifie sera 634 and 813 were used as key sera. Other longer DR4 sera 631, 633, 636, 640 and 811 (with DR7 and or DR W9 extras) were also used. These criteria are very similar to those recommended by the DR4 antigen chaiman. The reaction patterns of these defining sera were not diffetent between RA patients and controls. Cells wih incomplete DR gping data or unsuitable DR serological data (eg apparent presence of triplets or hyper reactive cells) were excluded in the analysis.

HLA Amigen Frequencies

The frequncies of DR antigens in the various racial groups are presented in table 2. A highly significant increase of DR4 is present in Caucasoids (in both laboratory groups
and the combined (iata) and in Asian Indians from the Vaidya laboratory. There was only a marginal increase in DR4 in those Asian Indians residing in Africa and typed by Dr llammond. This group may represent a more heterogeneous population derived from different regions of the Indian subcontinent and further radiological and serological studies of disease criteria are needed. Interestingly, Woodrow et al (1981) failed to show an increase in DR4 in Asian Indians residing in England, though information regarding diagnostic criteria was lacking.
In the Japarese, the results are less clear. In one laboratory (SAl) there was an increased frequency of DR4 (81% versus 51% in controls. $R R=4.1 x^{2}=4.62$). However, in the combined Japanese data the frequency of DR4 in RA was $67.1 \%_{0}$ (table 2), which though similar to that found in the 8ih International Workshop RA study 62.5%, $\mathrm{n}=104$) was not significantly higher than in controls where the frequency of DR4 seemed unexpectedly high. For example, the frequency of DR4 in the total Japanese discase study controls including laboratories SAI and SEK was 39.1% ($n=371$) which is also similar to frequency in the controls of the 8th International Workshop RA study (40.7\% $0 \mathrm{n}=792$). Taken together with previous reports (Stastny 1980, Nakai et al, 1981) it is apparent that the frequency of DR4 is increased in Japanese rheumatoids.

In Thais, there was a slight but not statistically significant increase in DR4 (RR 1.8, X^{2} 0.52). Interestingly there was a similar non significant increase in DR9 (table 2). Given the present frequencies, it would require about four times the numbers of patients and controls to show a statistically significant (at the 5% level) increase in DR4. These data suggest that Thais RA may be exceptional in that they do not show a strong association with DR4 though further cases are required. On the other hand these patients did appear to have rtteumatoid arthritis: they had a symmetrical polyarthritis, most were seropositive and x - rays show typical symmetrical erosions in the majority.
As reported in previous studies there was a decrease in the frequency of DR7 in all racial groups except Japanese and a decrease in DR2 in Caucasians, Asian Indians and Japanese. These were mostly not significant and apparently secondary to the increased frequency of DR4.

The only signilian devaninm of he HIA A B C antigens occurred in Cancasians
 versus 22.99°) wese slightly increased. These increases were not significall when corrected for the number of antigens stndied and are apparently secondary to the known linkage disequilibriun between these antigens and DR4.

Relationship to Sex and Seropusitivits
When avaikable, all cases were lested for rheumatoid factor on the serum samples provided and classified on this basis as seropositive or seronegative. The frequency of DR4 wastsimilar in both groups as shown in table 3. DR4 was not associated with seropositivity in the Thai patients.

Data on the presence of rheumatoid factor at any stage during the clinical course were incomplete and inadequatley standardized. However, data from the Cancasoid and indian latoratorics suggest a relationship between DR4 and high titre rheumatoid factor.

The influence of sex on the prevalence of DR4 is shown in table 4. The numbers of males are small but there is no obvious sex difference.

Complement Markers

Suitable typing has only been undertaken on Caucasoid patients. A rare C4B allele designated C4B3 has been observed in 7 out of 43 patients but none of the Caucasoid controls smidied an rat of the Second AOHWC (table 5). The phenotypes of these individuals ate presented in lable 6 . All seven individuals share the antigens $\mathrm{BFS}, \mathrm{C} 4 \mathrm{~A} 3$, C2C and DR4, six of the seven having BW62. These results suggest that RA is associated with a rare laplotype (BW62), BFS; C4A3; C4B3; C2C; DR4. Whether similar rare haplotypes can be identified in any other racial groups awaits further study.

Conclusion

The data prescnted while confirming the strong association of DR4 with RA in some races adds support to the view that DR4 is not associated with RA in all races. Accordingly, the firding of an association with C4B3 and a parlicular haploype in Caucasoids is of great interest and may allow the identification of high risk haplotypes.

Table 1

PARTICIPATING LABORATORIES, PATIENT HUMBERS AND FREC:UEMCY OF SEROPOSITIVITY

* by perth lab. testing on submitted servm samples.
t BY SUBMITTING LABORATORY CODING ON CARO 16
includers only riose tested ror dr antigens
n/a not available.

3. Woudrow,
a study of the populations. Brit. Ned. J. 1981 283, 1287-1288
4. Woodrow, J.C., Nichol, F.E., and Saphiropoulos, G.: DR antigens and rheumatoid arthritis
References $\begin{aligned} & \text { 1. Nakai Y.. Wakacaka A.. Aizawa M., Hakura K., Nakai H.,and Ohashi A.: HLLA and }\end{aligned}$

HLA-DR ANTIGEN FREQUENCY IN PATIENTS WITH RA AND CONTROLS

\# Disease controls from Labs. BAS. DAW, ROB, TAI were used.
@ DRW6 related antigens were excluded from this table.

1) $R R=4.7 \mathrm{X}^{2}=17.9 \quad \mathrm{p}<5 \times 10^{-5}$
2) $R R=13.7 \mathrm{x}^{2}=23.12 \mathrm{p}<10^{-5}$
3) $R R=0.25 \mathrm{X}^{2}=8.7 \quad \mathrm{p}<5 \times 10^{-3}$

HLA-DR4 IN RA --RELATION TO RHEUMATOID FACTOR STATUS*

	BAS	DAW	VAI	SEK	SAI	DCA	HAM
sero- positive sero- negative	$9 / 11(828)$	$12 / 16(758)$	$13 / 20(658)$	$13 / 22(598)$	$12 / 16(758)$	$2 / 17(113)$	N/A

*: Based on Perth Lab. testing.

HLA-DR IN RA - RELATION TO SEX

SEX	CAUCASIAN			Japanese			ASIAN INDIAN	AFRICAN INDIAN	THAI
	DAW	bas	total	SEX	SAI	total	VAI	ham	DCH
F	$\begin{aligned} & 23 / 31 \\ & (748) \end{aligned}$	$\begin{aligned} & 5 / 7 \\ & (718) \end{aligned}$	$\begin{aligned} & 28 / 38 \\ & (738) \end{aligned}$	$\begin{aligned} & 24 / 36 \\ & (67.18) \end{aligned}$	$\begin{aligned} & 13 / 16 \\ & (818) \end{aligned}$	$\begin{aligned} & 37 / 52 \\ & (718) \end{aligned}$	$\begin{aligned} & 20 / 31 \\ & (658) \end{aligned}$	$\begin{aligned} & 9 / 25 \\ & (363) \end{aligned}$	$\begin{aligned} & 4 / 23 \\ & (198) \end{aligned}$
M	$\begin{aligned} & 1 / 4 \\ & (258) \end{aligned}$	$\begin{aligned} & 5 / 6 \\ & (838) \end{aligned}$	$\begin{aligned} & 6 / 10 \\ & (608) \end{aligned}$	$\begin{aligned} & 3 / 7 \\ & (438) \end{aligned}$	$\begin{gathered} 3 / 4 \\ (758) \end{gathered}$	$\begin{aligned} & 6 / 11 \\ & (558) \end{aligned}$	$\begin{array}{r} 5 / 6 \\ (838) \end{array}$		$\begin{aligned} & 3 / 8 \\ & 1388 \end{aligned}$

Table 5

Association of C4B3 with RA in Caucasoids

C4B3

RA	7	36

NON RA $0 \quad 53$
P. 20.005

Table 6

Caucasian RA Patients - C4 B3 Positive

	A	A		,		B			C4A	C4B	C 2		
$J A C$	2,		3,	5	62,		S	S	3	3	C	4	3
FAU			3,	2	62,		S	S	3	31	C	4	1
R1D	1,		3,	7	62,	8	S	S	3	31	c	4	
GIB			3,	5	62,		S	S	3	3	C	4	
CAR	3		3,		62 ,		S	F	3	3	C	4	
MUN	2		3		62.	50	S	F	3	3	C	4	
JUN	1		6,		8 ,	37	S	F	3	31	C	4	

HLA Associations with Rheumatoid Arthritis In African Blacks

GIRISII M. MOUY, MICIIAEL G. HAMMOND, and PREMILLA DEVI NAIDOO

Abstract

Ahsromet. The IILA-A, B, C and DR antigens were determined in a group of 100 blacks with classical or definite rhemmatoid arthritis (RA) in Durbant. Soull AFrica. Fifty-six of these palients $R A\left(x^{2}=77.2 ; p<0.0001\right)$. The fiequesty of DR4 in RA was 44% in comparison with 10% in controls (relative risk 7.4). An musual [imding was a sigmificant increase in the frequency of IILA-138 in $\mathbf{3 5 \%}$ of patients with RA compared $\mathbf{t o} 12.5 \%$ of controls ($1<0.0001$; relative risk 3.8). There was no linkage disequilibrium between DR4 and 138 to explain the latter association. (I Rhctumatol 1989:I6:1326-8)

Koy Indeving Terms:
RIIEUMATOID ARTIIRITS BLACKS HLA-DR4 HLA-B8

The IILA-DR4 antigen is associated with chemmatoid arthritis (RA) in Cancasians. American blacks and many other populations' '. However, normal frequencies of DR4 have been reported in Asians in Britain ${ }^{3}$ and Jews ${ }^{5}$. American and African blacks with ankylosing spondylitis have a lower prevalence of JILA-B27 than Caucasians'. Our survey was undertaken to determine whether the HL \wedge associations with RA in African blacks were similar to Caucasians and American blacks or whether there were genetic differences.

materials and methods

 the rheumatolngy clinic at lise King Edward VIII Iospital in Durban. South Africa were studicd. All the patients were of Zulu descem. The nean age of the patients was 43.7 years (range 211066 years) and the female:maic ration was 3.8:1.
The IItA-A. B and C anligens were idemificd using a 2 stage lymphorefotoxicity lest ${ }^{x}$ and 180 antisera. The HLA-DR and DQ antigens were defincd with 120 antisera on B cell enriched lymplocyle suspensions prepaned by the use of straws packed with nylon worl ${ }^{9}$. The HLA-A.B.C and DR antigens were determined in alt 100 patients. The DQ antigens were also tesled dering the comuse of the study and were determined in 56 patients.

The comtrol group eomsisted of hlond donors and staff who were also of Zulu descent. The HLA.A.B and C antigens were determined in 1985 controls, IDR antigens in 513 and DQ antigens in 340 controls.

The difference in frequency of the various anligens between patients and controls were tested for significance hy means of the χ^{2} test (withou Yates' correction). The resulting probabilities were multiplied by the number of ILA specificities tested to determine the enrrected value. Relative risk was

[^35] culated by the metherds ol Mathiuz. of all'.

RESULIS

There was no significant association of RA with any of the HLA-A and C antigens. The frequency of the IILA-B antigens in controls and patients with RA are shown in Table 1. There was a significant increase in the prevalence of HLAB8 which was noted in 12.5% of the comtrols and 35% of patients with RA ($p<0.0001$; relative risk 3.8). There was no linkage disequilibrium between DR4 and B8 to explain the increased frequency of B 8 .

The results of the DR and DQ antigens are shown in Table 2. There was a significant association of DR4 with RA (x^{2} $=77.2 ; p<0.000 \mathrm{I}$). There was no significant increase in the frequency of the DQ antigens. The results of some of the haplotype frequencies in patients with RA and controls are slown in Table 3.

DISCUSSION

A significant association between HLA-DR4 and RA, which has been reported in American blacks, Caucasians and other populations, is confirmed in Arrican blacks ${ }^{1-5}$. The prevalence of DR4 in controls and patients with RA is about 30 and 70%, respectively, in Caucasians ${ }^{12}, 7$ and 22% in American blacks ${ }^{1}$ and 10 and 44% in African blacks. Therefore, although American and African blacks with RA show a significant association with DR4, the frequency of DR4 is fower in both patients with RA and controls in comparison with Caucasians.

The DR3 and DR4 subsets and DQw4 were not tested at the time of this study. There was no increase in the frequency of DQw3 in our patients with RA. The DR4-DQw3 haplotype showed signilicant linkage discquilibrium in the African black controls as noted in oller populations ${ }^{13}$. However, there was no linkage disequilibrium between DR4 and DQw3 in the African blacks with RA. Singal, et a/14 have shown

Table I. HLA-B antigens in commols and parioms with RA

III. A migens	$\begin{gathered} \text { Comencols } \\ (1 \mathrm{n}=1985) \end{gathered}$	RA Paticms $(\mathrm{Ol}=\mathrm{lO}(\mathrm{O})$	i^{2}	$\mathrm{R}-\mathrm{R}^{*}$
	\%	$\%$		
B7	22.4	$26.10)$	0.70	1.2
B8	12.5	35.0)	41.11	3.8
1313	3.4	$3 .(k)$	0.04	0.9
B14	5.5	$5 .(0)$	0.05	0.9
1315	3.4	4 (0)	0.11	1.2
1316	3.6	1.00)	1.90	0.3
817	37.2	34.00	0.41	0.9
B18	5.5	8.(x)	108	1.5
B21	2.0	$3 .(5)$	0.52	1.5
822	0.1	0.00	0.05	0.0
827	0.3	0. (k)	0.30	0.0
B35	6.9	10.00	1.39	1.5
B37	0.1	0.00	0. 10	0.0
B4I	1.9	$3 .(\mathrm{K})$	0.65	1.6
B42	21.3	$1+(4)$	3.03	0.6
B +4	15.3	12.00	0.79	0.8
B45	9.2	4.00	3.18	0.4
B47	0.1	0.06	0.10	0.0
B48	0.1	0.0\%	0.05	0.0
B5I	1.3	1.00	0.05	0.8
B52	0	0.(k)	0	0
8.53	1.5	0.00	1.53	0.0
B51	0	0.00	0	0
B60)	0.1	1.00	5.36	10.00
B61	0.1	0.00	0.05	0.0
B70	23.5	20.00	0.64	0.8

*R-R: relative rish

Table 2. HLA-DR and DQ anigens in controls and patiens

III.A.I)R Antigens	Controls $\begin{gathered} (n=5 \mid 3) \\ \% \end{gathered}$	RA Piticnis $\begin{gathered} (11=10(0) \\ \% \end{gathered}$	x^{2}	R-R
DRI	4.7	4.0	0.09	0.8
DR2	24.2	15.0	4.01	0.6
DR3	35.3	31.0	0.68	0.8
)R4	9.6	44.0	77.17	7.4
DR5	32.2	22.0	4.198	0.6
DRw6	17.9	15.0	0.50	0.8
DR7	15.4	15.0	0.01	1.0
DRw8	3.9	3.0	0.19	0.8
DR9	1.8	00	0.78	0.0
1)RwJO	2.1	6.0	4.64	2.9
HIA-DQ Antigens	$\begin{gathered} (10=340) \\ \% \end{gathered}$	$(n=56)$ \%		
DQwI	62.7	44.6	6.50	0.5
DQw2	22.4	28.6	1.04	1.4
DQw3	30.0	35.7	0.74	1.3

Table 3. Estimated haplonge frequencies in controls and paticoms wilh RA

haplotype	Frequency/10, (0)0	Delta	Delu/SE*
Patients			
ORA-IOQw3	89	31	0.7
DRA P88	37	-12	-0.4
DR3-138	49	16	0.6
1)R3 318 LS 2	48	36	2.1**
1)R+-317	110	63	2.2**
Controls			
ORH-I)(2w 3	25	20	2.8**
[)R-138	2	-1	-0.2
1)R3-138	30	18	2.5**
DR3-8w42	63	42	$4.5 * * *$
UR4-B17	16	5	0.7

* SE - standard error.
** $p<0.05$.
*** $p<0.01$.
that all DR4 positive patients with RA carried the DQw3.1 subtype in comparison with 19% of heatily DR4 positive controls. We did not study the DQw3 subtypes in cur patients and therefore there may still be an association between DR4 and DQw3.I.

An unusual finding in the African blacks with RA was the significant increase in the frequency of the ILLA-B8 antigen which is associated with many other autoimmone diseases ${ }^{15}$. The significant linkage disequilibrium hetween DR4 and BI7 in the patients bun not in controls may reflect differences in the frequencies of the Class III complement genes which lie hetween the B and DR loci.

ACKNOWLEDGMENT

We thank Sr. J. Shaw and the stafl of the Natal listitute of Jmmonology for their assistance.

REFERENCES

1. Stastny P: Association of the B-cell alloantigen DRwd with rheumatoid arthritis. N Engl J Mesl 1978:298:869-71.
2. Jaraquemada D, Ollier $-W$, Awad J, at at: HLA and rhematoid arthritis: a combined amalysis of 440 British subjects. Am Rhcum Dis 1986:45:627-36.
3. Woodrow JC. Nichol FE, Zaphiropoulos G: DR antigens and rheumatoid arthribis: a sululy of two populations. Br Med J 1981:283:1287-8.
4. Alarcon GS, Koopman WJ. Acton RT, Barger BO: DR4 antigen distribution in blacks with rhemmatod arhrinis. J Khemmatol 1983;10:579-83.
5. Schilf B, Mizrathi Y, Orgad S, Yaron M, Gazit E: Associationt of HIA-Aw3I and HI.A-DRI with atult rhematoid arthritis. An" Rhern" Dis 1982:41:403-4.
6. Chalmers IM: Ankylosing spondylitis in African bhacks. Athritis Rhcum 1980:23:1306-70.
7. Ropes MW, Bennell GA, Cobb S. Jacox R, Jessar RA: 1958 revision of the diagnostic criteria for rhemmatoid arthritis. Butl Rhemen lis 1958:9:175-6.
8. Mittal KK, Mickey MR. Singal DP, Terasaki PI: Seromping lior homotransplantation. XVIII. Reffnement of microdroplet 1ymplocyte cytotoxicily test. Trunsplammion 1968:6:913-27.
9. Damibo JA. Ajoub (i, Terasaki Pl: Joint report: B lymphocyle isolation by Honombin-nylem weol. In: Tcrasaki PI, cd. Mistriomponihility 7caing 1980. Los Angeles: UCLA Tissue Typing Lahematory. 1980:287-8.
10. Sveigaind A. Platz. F. Rydei LF, Stabb-Nielsen L. Thomsen M: IfLA and discase associations - a survey. Transplam Rev 1975:22:3-4.3.
11. Malliuz ML. Ihole D. Pizazan A. Ceppellini R, Bodmer WF: New appoaches bo the promation genefic and segregation analysis of the III, A system. In: Terasaki PI. cd.
 Typing Laboralory. 1970:193.
12. McCusker CF. Singal DP: Molecular relatiomships between the class it amigens susceptibility to rheumatoid arthritis (editorial). I Rhwomatel 1988;15:1050-3.
13. Wallin I, Carlsson B, Sum II, a al: A DRA-associated DRDQ haplotype is signilicanly assuciated with rheumatoid arthritis. Arthritis Rheum 1988:31:72-9.
14. Singal D. D'Somza M. Reid B. el al: IILA-DQ beta chain polymorphism in HLA-DR4 haploypes associated with themmatoid arthritis. Lamet 1987:2:1118-20.
15. Tisari Jl. Tcrasaki PI: MLA and Discase Associations. New York: Springer-Verlag. 1985.

HLA ASSOCIATIONS WITH RHEUMATOID ARTHRITIS

AMONG THE VARIOUS MIGRANT INDIAN COMMUNITIES

IN SOUTH AFRICA

G.M. MODY AND M.G. HAMMOND
Department of Medicine, University of Natal and King Edward VIII Hospital, Durban the Natal Institute of Immunology, Pinetown, South Africa.

SUMMARY

Rheumatoid arthritis (RA) in Indians has been shown to be associated with HLA DR4 in North India and with DR1 in the United Kingdom. We studied a migrant Indian population in South Africa to determine their genetic associations with RA. A group of 123 unrelated RA patients from three communities (Hindi, Muslims and Tamils) were studied. Only the Muslims showed a significant association with DR4 whereas the Hindi and Tamils showed a significant association with DR10. This survey shows that the Indian community is a heterogenous group regarding the HLA association with RA and different associations are noted in the various communities.

INTRODUCTION

The association of HLA DR4 with rheumatoid arthritis (RA) has been documented in Caucasians, American and African Blacks, Japanese and many other communities.

Mehra et al. ${ }^{1}$ have shown a strong association with DR4 in a group of 40 North Indian patients with RA in India. The frequency of DR4 was 70% in RA patients compared to 12% in controls. In the United Kingdom, Woodrow et al. ${ }^{2}$ studied a group of 35 Indians with RA and found a significant association with DR1 and not DR4; DR1 was detected in 60% of patients with RA compared to 17% of controls.

Indians from India first arrived in South Africa in 1860 to work in the sugar cane fields in Natal. Presently there are nearly one million Indians in South Africa. The three major groups of Indians are the Hindi and Muslims, who are North Indians of Aryan descent and Tamils, who are South Indians of Dravidian descent. Previous surveys have shown that there are differences in the prevalence of the various Class I antigens in control groups of Muslims, Hindi and Tamils in South Africa. ${ }^{3,4}$

This survey was undertaken to determine whether there were any differences in the genetic associations with RA among the various migrant Indian communities in South Africa when compared to Indians in India and the United Kingdom.

PATIENTS AND METHODS

A group of 123 unrelated Indians with classical or definite RA 5 who were attending the rheumatology clinic at King Edward VIII Hospital were studied. The study population consisted of 53 Tamils, 39 hindi and 31 Muslims. The mean age of the patients was 44.7 years and the female to male ratio was 5.8 to 1 . The number of patients and controls in the various communities who were studied for the HLA A, B, C, DR and DQ antigens is shown in Table 1. The control group consisted of 1458 normal adults who were either staff or randomly selected blood donors of Indian descent. HLA Class I antigens were determined in all patients and control subjects by a two-stage microlymphocytotoxicity test (1) with 180 antisera. They consisted of local sera that have been requested for use in International Histocompatibility Testing Workshops, local sera that have been verified with International Workshop sera and sera that have been exchanged with other laboratories worldwide. Similarly, 120 sera were used to define the Class II antigens on B-lymphocyte enriched lymphocyte suspensions prepared with the aid of straws packed with nylon wool (2). The Class II antigens were determined in 446 control subjects except that there were only 319 control subjects that were tested for HLA DQ antigens. Although over 2000 individuals have been tested for HLA DQ locus antigens in our laboratory the majority were Caucasoid or patients with selected diseases. As a consequence, only 319 normal, healthy Indian individuals have been tested for HLA DQ antigens. The difference in the frequency of each antigen in patients and controls was tested for significance by means of the chi-squared test (without Yate's correction). The resulting probabilities were multiplied by the number of specificities tested to determine the corrected value. Relative risk was calculated according to Woolf et al. ${ }^{8}$. Haplotype frequencies were calculated by the method of Mattiuz et al. ${ }^{\circ}$.

RESULTS

There were no significant associations of RA with the HLA C locus antigens in any of the Indian communities. The HLA antigens which showed a significant association in the different communities are summarised in Table 2.

The Tamils showed a significantly increased frequency of HLA A2, B37 and DR10 and although DR2 was also increased, the difference was not statistically significant. The Hindi patients showed a significant increase only in DR10. They also had an increase of B44 and a reduction in the frequency of DR5. The Muslims showed a significant association with B21 and DR4.

DISCUSSION

When the results of the HLA associations with RA in our study are compared with Indians from North India ${ }^{1}$ and the United Kingdom ${ }^{2}$, we note that a significant association with DR4 was only seen in North India and in our Muslim patients.

In the United Kingdom Woodrow et al. 2 found an increased frequency of only DR1 among their Indian patients. At the time of their study only DR1 to DR7 were being tested. Since then DR8 to DR10 have been defined together with many splits and many DR1 antisera contain antibodies to DR10. Thus the increase in DR1 which was seen in The United Kingdom may be related to the increased DR10 which we saw in our Hindi and Tamil patients. A significant association with HLA DR1 and not DR4 has also been reported in Jews ${ }^{10}$.

Although American ${ }^{11}$ and African Blacks ${ }^{12}$ have also shown a significant association of DR4 with RA, the frequency of DR4 was only 22% and 44% in American and African blacks respectively. The frequency of DR4 in Caucasians ${ }^{13}$ with RA is about 70%. We have found that although there is a significant association of DR4 or DR10 in our Indian communities, the frequency of these antigens is less than 40% in all the communities. Thus there may be other subsets or epitopes which were not studied in this survey which may show a stronger association with RA.

Acknowledgements

Financial support for this project was obtained from the Arthritis Research Fund of the University of Natal and the South African Medical Research Council.
We wish to thank Sr. J. Shaw for her assistance and also the Consultants in the Rheumatology clinic who were involved in the care of the patients.

Address for correspondence
Professor Girish. M. Mody, Department of Medicine, University of Natal, 719 Umbilo Road, Durban 4001, South Africa.

NUMBER OF PATIENTS AND CONTROLS WHO WERE TESTED FOR THE VARIOUS CLASS 1 AND CLASS 2 ANTIGENS

HINDI MUSLIMS TAMILS

NUMBER STUDIED

HLA-ABC antigens

Patients	39	31	53
Controls	490	176	792

HLA-DR antigens
Patients
38
30
53

Controls
135
49
262

HLA DQw1-DQw3

Patients	33	25	43
Controls	100	25	194

Table 2

HLA ANTIGENS WHICH SHOWED A SIGNIFICANT ASSOCIATION IN INDIANS WITH RHEUMATOID ARTHRITIS

Antigen Controls \% Patients\% \quad R-R* Chi-square pValue

TAMILS

A 2	28	49	2,5	10,6	$<0,001$
B 37	7	23	3,8	15,8	$<0,001$
DR10	11	32	3,8	15,6	$<0,001$

HINDI

B 44	21	38	2,4	6,7	$<0,01$
DR10	7	32	5,8	15,6	$<0,001$

MUSLIMS

B 21	1	10	18,8	11,5	$<0,001$
DR4	6	37	8,9	11,9	$<0,001$

*R-R - relative risk

REFERENCES

1. Mehra NK, Vaidya MC, Taneja V, Agarwal A, Malaviya AN. HLADR antigens in rheumatoid arthritis in North India.

Tissue Antigens 1982; 20 : 300-302.
2. Woodrow JC, Nichol FE, Zaphiropoulos G. DR antigens and rheumatoid arthritis : a study of two populations.

Br Med J 1981; 293 : 1287-1288.
3. Wadee AA, Du Toit ED. HLA Frequencies in the Indian population of Johannesburg. SAfr Med J 1989; 76: 331-334.
4. Hammond MG, Appadoo B, Brain P. Subdivision of HLA 5 and comparative studies of HLA polymorphism in South African Indians. Tissue Antigens 1974; 4:42.
5. Ropes MW, Bennett GA, Cobb S, Jacox R, Jessar RA. 1958 revision of the diagnostic criteria for rheumatoid arthritis. Bull Rheum Dis 1958; 9 : 175-6.
6. Mittal KK, Mickey MR, Singal DP, Terasaki PI : Serotyping for homotransplantation. XVIII. Refinement of microdroplet lymphocyte cytoxicity test. Transplantation 1968; $6: 913-27$.
7. Danilov JA, Ayoub G, Terasaki PI. Joint report: B lymphocyte isolation by thrombin-nylon wool. In : Terasaki PI ed. Histocompatibility Testing 1980. Los Angeles: UCLA Tissue Typing Laboratory, 1980 : 287-8.
8. Woolf B. On estimating the relation between blood group and diseases. Am J Hum Genet 1955; $19: 251$.
9. Mattiuz PL, Ihde D, Pizazza, Ceppellini R, Bodmer WF : New approaches to the population genetic segregation analysis of the HLA system. In Terasaki PI ed. Histocompatibility Testing 1970. Los Angeles: UCLA Tissue Typing Laboratory, 1970:193.
10. Schiff B, Mizrachi Y, Orgad S, Yaron M, Gazit E. Association of HLA-AW31 and HLA-DR1 with adult rheumatoid arthritis.

Ann Rheum Dis 1982; 41 : 403-4.
11. Alarcon GS, Koopman WJ, Acton RT, Barger BO. DR4 antigen distribution in blacks with rheumatoid arthritis.

J Rheumatol 1983; 10 : 579-83.
12. Mody GM, Hammond MG, Naidoo PD. HLA associations with rheumatoid arthritis in African blacks.

J Rheumatol 1989; $16: 1362-1328$.
13. Jaraquemada D, Ollier W, Awad J et al. HLA and rheumatoid arthritis : a combined analysis of 440 British subjects.

Ann Rheum Dis 1986; $45: 627-36$.

HLA AND FOETO-MATERNAL RELATIONS

p393 Brain P and Hammond MG. Association between histocompatibility type and the ability to make $\mathbf{R h}$ antibodies. Eur J Imm 4, 223. 1974
p396 Johnson N, Moodley J and Hammond MG. Human leucocyte antigen status in African women with eclampsia. Brit J Obs Gyn 95, 877. 1988
p399 Johnson N, Moodley J and Hammond MG. HLA Status of the Fetus Born to African Women with Eclampsia. Clin and Exper Hyper in Pregnancy B9 (3): 311. 1990
p410 Hammond MG. HLA and mate selection. (submitted to Human Immunology)
P. Brain and M.G. Hammond

The Natal Institute of Immunology, Durban

Association between histocompatibility type and the ability to make anti-Rh antibodies

The HL-A types of Rh-negative women with and without anti-Rh antibodies were examined. In those who made Rh antibodies, there was an excess of HL-A1, and a deficiency of HL-A2 and W10, approaching the conventional level of significance. There was, however, a highly significant lack, in the antibody-making group, of subjects with only one antigen detected the first (LA) locus. The capacity to make anti-Rh antibodies and that to make cytotoxic anti-HL-A antibodies were strongly correlated.

1. Introduction

We started this investigation because Jerne [1] had predicted that the ability to make antibodies against certain nonhistocompatibility antigens should be correlated with histocompatibility type, and further, that individuals possessing a wide range of histocompatibility alleles should be able to make a wider variet y of antibodies against nonhistocompatibility

[^36]antigens than individuals with a smaller assortment of histocompatibility alleles. The major histocompatibility system of man (HL-A) is determined by genes at two closely linked loci, called "LA" and "FOUR". Jt occurred to us, therefore, that a subject who was heterozygous at both these loci, and thus had at least four different HL-A factors, might be expected to make a wider variety of antibodies more readily than a subject who was homozygous at one of the loci (three factors), and particularly than one who was homozygous at both loci (two factors). An earlier attempt by one of us [2] to show this effect with the isoagglutinins of the $A B O$
blood group system was inconclusive. We decided, therefore. to examine next the ability to make anti-R h antibodies in terms of HL-A type. We chose this system because Molifison. Frame and Ross [3] have show that some Rh negative women make these antibodies readily: whereas others, given the same stimulus by intravenous injection of Rh positive cells, make anti-Rhantibodjes with difficulty or not at all. About 50% of women fall into cach of the two groups. and the difference is presumably genetically determined. Such control. of course, need not in this case be of the kind postulated by lerne: Mollison et al. suggest that it may be connected with Rh genotype. and it might equally well be due to the effect of an inmmene response gene belonging to neither the HL-A nor the $R \mathrm{~h}$ system. The system was attractive to us, however, because it seemed to provide a clear distinction between two classes of individuals in the ability to make a particular antibody, and because we were equipped to test for both the Rh and the HL-A factors.

In this paper, therefore, we compare the HL-A types of two groups of Rh negative women, those who made Rh antibodies and those who did not. We looked both for a specific effect of particular HL-A alleles, and for the effect of homozygosity or heterozygosity at one or both loci, on the ability to make anti-Rh antibodies. As an afterthought, we decided to examine also the frequency with which the two groups of women made antibodies against HL-A antigens, since such antibodies, like those in the Rh system. are frequently made during pregnancy against antigens which the fetus, but not the mother, possesses.

2. Materials and methods

There were 96 women in the group of Rh negative subjects who made antibodies against factors included in the Rh system. Exact data on pregnancies was available for 93 of them, who had had a total of 344 pregnancies, a mean of 3.7 per subject. The control group consisted of 78 Rh negative women whose husbands were all Rh positive; none had had fewer than two pregnancies, and Rh antibodies had been sought in all pregnancies, but never detected. This group had a total of 233 pregnancies, mean 3.0. Since ABO incompatibility between fetus and mother has been thought [4] to influence sensitization to Rh antigens, we obtained where possible the $A B O$ groups of the husbands (those of the women were known). Such data for both partners were available in respect of 63 women in the group making antibodies; 71% of the couples were compatible, in the sense that the mother could not bear by that husband a child incompatible with herself in terms of ABO. In the control group there were data for 50 couples, of whom 60% were compatible. This difference between the groups was not significant at the conventional level ($\chi^{2}=1.6$ for 1 d.f., $p=0.2$). The random population cited for reference in Table 1 consisted of 454 normal unrelated blood donors and staff members of either sex; none of them had been examined because of any disease, or for pregnancy. All the subjects in all three groups were Caucasians of Western European origin.

Rh grouping and antibody detection were done by conventional methods in the laboratories of a large transfusion service. HL-A typing was by the two-stage microcytotoxicity test [5]; 60 sera were used to test for the following antigens: first (LA) locus: HL-A1, 2, 3, 9, 10, 11, 28; W19, 29, 31; second (FOUR) locus: HL-A 5, 7, 8, 12, 13, 14, 17, 27; W5, 10, 15, 22.

At the same time, the serum of every woman in the firs two groups was examined for cytotoxic anti-HL-A antihodies. using a panel of cells from 12 donors selected to possess all the antigens mentioned above. The data were transferred to punch cards and a computer program was used 10 calculate phenotype and gene frequencies, with haplotype and delta (gametic association) values from phenotypic data according to Mattiuz et al. [6]

3. Results

Table 1 shows the phenotype frequencies of the HL-A antigens in the two groups and in the random Caucasian population. The proportions of women in the two groups who made cytotoxic HL-A antibodies are also compared. The symbols ' X ' and ' Y ' are used to indicate subjects in whom only one antigen was detected at the first and at the second locus respectively. The χ^{2} values are for comparisons between the frequencies of HL-A antigens in the two groups of Rh negative women, but probabilities obtained from tables of χ^{2} have been corrected as described by Walford [7] by multiplying them by the reciprocal of the frequency of the specificity concerned in the general population.

Table 1. HL-A antigen frequencies in Rh negative women with and without Rh antibodies, and in the general population

Antigen	Random Caucasian population (454 subjects) (\%)	$\begin{aligned} & \text { With } \\ & \text { With } \\ & \text { anti } \\ & \text { (96 } \\ & \text { jod } \\ & \text { No. } \end{aligned}$	negat anti-Rh dies b- (\%)	ive wo with antib (78 jec No.	nen ut anti dies b- (\%)	χ^{2}	$\stackrel{\mathrm{P}}{<}$	$\underset{\text { cected }}{\substack{\text { Cor- }}}$
HL-A 1	30.6	39	40.7	18	23.1	6.02	0.025	. 08
HL-A 2	45.2	38	39.6	46	59.0	6.48	0.025	. 06
HL-A 3	29.7	38	39.6	21	26.9	3.08	0.1	. 33
HL-A 9.	16.3	23	24.0	9	11.5	4.42	0.05	. 31
HL-A10'	9.0	1	1.0	3	3.9	1.51		
HL-A10"		6	6.3	4	5.1	0.08		
HL-A11	11.7	13	13.5	9	11.5	0.16		
HL-A28	7.9	8	8.3	6	7.7	0.02		
W19	9.0	3	3.1	3	3.9	0.07		
W29	4.0	3	3.1		2.6	0.05		
W31	3.3	3	3.1	3	3.9	0.07		

X (only one antigen detected
at first locus)

	33.3	17	17.7	32	41.0	11.57	0.001	.003
HL-A 5	9.9	9	9.4	9	11.5	0.22		
HL-A 7	25.1	24	25.0	15	19.2	0.82		
HL-A 8	22.0	32	33.3	14	18.0	5.24	0.025	0.11
HL-A12	29.1	26	27.1	30	38.5	2.55		
HL-A13	6.2	4	4.2	3	3.9	0.01		
HL-A14	5.1	10	10.4	8	10.3	0.00		
HL-A17	8.8	5	5.2	1	1.3	1.99		
HL-A27	8.4	3	3.1	4	5.1	0.45		
W5	15.2	17	17.7	6	7.7	3.76		
W10	15.0	3	3.1	11	14.1	7.01	0.01	.06
W15	10.8	11	11.5	10	12.8	0.08		
W22	3.3	6	6.3	3	3.9	0.51		

41.1	42	43.8	42	53.9	1.76	
Cytotoxic						
HL-A antibodies	16/9	17.2	1/78	1.3		$0.00028^{\text {a }}$

Table 2. Ilaplotype frequencies with coefficients of gametic association (0) and standard crrors (S.E.) in Rh negative women with and without anti-Rh antibodies, and in the general population (all figures $\times 10^{3}$)

	Random Caucasian population					egative	come	n withou Rh a bodies	
Haplotype I	Freq.	S.E.	\triangle	Freq.	S.E.	\triangle	Freq.	S.E.	\triangle
HL-A 1/8	87	14.9	67.8	120	34.5	78.0	64	39.5	52.9
HL-A 2/12	73	14.4	31.7	48	29.1	17.1	130	44.0	52.2
HL-A 3/7	63	14.0	41.5	78	31.5	48.5	39	37.5	24.3
ILL-A 1/17	20	12.3	12.0	20	26.5	13.5	6	34.6	5.6
W 29/HI-A 12	216	12.1	12.9	16	26.2	13.4	13	35.2	10.1
HL-A 2/W 10	30	12.7	10.1	3	24.8	-0.8	10	34.9	-16.3
W 28/HL-A12	29	11.8	2.1	10	25.6	1.9	39	37.5	30.8
HL-A 9/W 10	10	11.9	3.8	4	24.9	1.7	31	36.8	27.0

4. Discussion

We do not know, of course, that all the women in the control group have had the opportunity of making anti-Rh antibodies; some, with husbands heterozygous for Rh, may never have had an Rh positive fetus. It is safe to say, hovever, that a good proportion of them will have been exposed to R hantigens.

Of the individual HL-A factors studied, HL-AI, 2 and WIO show differences in frequency between the two groups that approach the conventional level of significance, and a more extensive study inight give interesting results. The only highly significant difference obtained, however, is in the proportions from the two groups having only one antigen detected at the first locus. Sucli subjects are far less common in the group that made antibodies than in the control group. We may safely assume that many of the subjects in whom only one antigen was detected at one locus are in fact homozygous for that antigen and not heterozygous for it and an unknown factor, since we have antisera against all the known factors that occur commonly in Caucasians. At the second locus this effect is less marked, though the figures show the same trend. Such an effect of homozygosity might be expected from Jerne's theory. Our finding, however, that the ability to make Rh antibodies was strongly correlated in this study
with the capacity to make antibodics in the HL-A system, would not be expected at all. It probably has quite a different explanation. One possibly is that fetal material, bearing both Rh and HL-A antigens, crosses the placenta readily in some women and not in others; but this will not explain Mollison's nomesponding women, who teceived their antigens by intravenous injection. Another might be that some preguant women respond more readily than others to any' foreign antigens on the fetus, owing to the lessencd activity of some mechanism whose function it is to damp down nonspecifically the immune response: such mechanisms have been described by several authors, for example Hill et al. [8]

We do not feel that we ought to try to explain our findings at this stage: if the effects of individual HL-A factors, and particularly of homozygosity at one or both loci, are subsequently confirmed by other studies, we may then profitably consider whether they are a direct effect of HL-A genotype, or of an immune response gene linked to HL-A. Since we have exhausted our material, it will not be possible for us to carry out such studies in the near future: we are therefore publishing this prelininary report in the hope that other laborat ories will investigate the subject.

This work was supported by a grant to P.B. from the Medical Research Council of South Africa.

Received June 26, in revised form November 11. 1973

5. References

1 Jernc, N.K., Eur. J. Immunol. 1971. I: 1.
2 Brain, P., Transplantation 1972. 13:530.
3 Mollison, P.L., Frame, M. and Ross, M.E., Brit. J. Haematol. 1970. 19: 257.

4 Levine, P., J. Hered. 1943. 34: 71.
5 Brand, D.L., Ray, J.G., Hare, D.B., Kayhoe, D.E. and McClelland, J.D.. in Terasaki, P.I. (Ed.) Histocompatibility' Testing, Munksgaard, Copenhagen 1970, p. 357.
6 Mattiuz, P.L., Hhde, D., Piazza, A., Ceppellini, R. and Bodner, W.F., in Terasaki, P.I. (Ed.) Histocompatibility Testing, Munk sgaard. Copenhagen 1970, p. 193.
7 Walford, R.L., Zeller, E., Combs, L. and Konrad, P., Transplant. Proc. 1971. 3: 1297.

8 Hill, C.A.St., Finn, R. and Denye, V., Brit. Med. J. 1973. 3: 513.

Human leucocyte antigen status in African women with eclampsia

NICHOLAS JOHNSON, JACK MOODLEY, MICHAEL G. HAMMOND

Abstract

Summary. Investigation of the HLA system in 53 African eclamptic or imminently eclamptic women showed that they were significantly more likely to be heterozygous at the B locus than were normal controls. This did not apply to the A or D related loci.

Abstract

The aetiology of eclampsia remains unknown, but suggestions that it may be an immunogenetic disorder date back to the beginning of the century (Beer \& Need 1985). Redman et al. (1978) reported that women who had only one detectable surface antigen determined by the HLA-B locus were at an increased risk of developing pre-eclampsia in pregnancy. This work has yet to be confirmed. To examine this association, we studied the HLA system in women who developed eclampsia and compared it with that found in the normal population.

Patients and methods

The study included 53 black African women from Zululand admitted to the labour ward of King Edward VIII hospital who had systolic blood pressures greater than 160 mmHg and diastolic blood pressures greater than 115 mmHg , gross oedema and at least $2+$ proteinuria by standard turbinometric methods in a catheter specimen of urine. Forty-two patients had already suffered at least one seizure before

[^37]admission and the remaining 11 all complained of headache, nausea and visual disturbances. All were either irritable or had intellectual clouding and an independent observer described those who had not had a seizure as being hyper-reflexic with clonus before therapy. Patients with a history of neuropathology, diabetes, hypertension, renal disease, recurrent miscarriage or a recent blood transfusion were all excluded. Patients who were still proteinuric or hypertensive ($>140 / 90 \mathrm{mmHg}$) 12 days after delivery were also excluded. Three patients with eclampsia did not know their parents, but the remainder denied that they could be the product of consanguineous marriage or matings.
The control group for the A and B locus of the HLA system consisted of 1416 blood donors of the same tribe and resident within the same hospital catchment area and 412 of them also acted as controls for the DR locus.
The HLA, A, B and DR antigens were determined by a two-stage lymphocytotoxicity test (Terasaki \& McClelland 1964). Patients with only one antigen per locus were considered to be homozygous at that locus. Frequency differences between the eclamptic patients and the controls were tested for significance with the χ^{2}-test. The formula given by Haldane (1956) was used to combine data from the available published series with the data presented. Relative risk was defined as the number of times more often the disease occurred in women positive for that antigen than in those negative for that antigen (Woolf 1955).

Results

Clinical details of the subject group are recorded in Table 1. Women with eclampsia or imminent

Table 1. Clinical details of patients with eclampsia

Variable	Number
No. of patients	53
No. with previous viable pregnancy	$26(49 \%)$
Nulliparous	$27(51 \%)$
Preterm labour (<35 weeks gestation)	$26(49 \%)$
Age (years)	
<20	16
$20-24$	21
$25-30$	11
>30	5
Maternal deaths	1^{*}

*Intracranial haemorrhage.
eclampsia were less likely to have only one detectable antigen at the B locus than were the normal population, the difference was statistically significant ($P<0.01, \chi^{2}=7.4$). The relative risk in patients in whom both antigens were detected at the B locus is thus increased to $2 \cdot 3$. This does not apply to the A locus or at the DR locus (Table 2). No specific A, B or DR antigen occurred more commonly in eclamptic patients.

Discussion

Two antigen types are inherited, one from each parent. If only one antigen can be detected, then it can be inferred that the individual has either inherited the same antigen from each parent, thus making her homozygous at that locus, or that she has an antigen yet to be discovered. As it is believed that over 98% of the B locus antigens are known to us, the finding of a single B locus antigen is presumed to be synonymous with homozygosity. Pregnant Zulu women suffering from eclampsia or imminent eclampsia are less likely to have only one detectable human lymphocyte antigen at the B locus than are the normal, healthy population from the same tribe and district. Our eclamptics are more likely to be heterozygous at the B locus. It is perhaps signifi-
cant that women born of a consanguineous relationship, and thus relatively homozygous, have some protection from developing eclampsia in pregnancy (Stevenson et al. 1976). However, heterozygosity in eclamptics does not occur at the A or DR locus, this observation is unlikely to be related.

Our data contradict the findings of Redman et al. (1978). They studied 80 Oxfordshire women suffering from pre-eclampsia and computed a P value of 0.025 supporting an association between pre-eclampsia and homozygosity at the B locus. Simon et al. (1980) also reported that French pre-eclamptic patients were relatively homozygous, but they only recruited 26 patients (six were homozygous) and their control group was limited to 16 men, none of whom was homozygous. However, Persitz et al. (1983) investigated 40 women in Israel, and Scott et al. (1976) studied 46 women from Iowa with eclampsia and pre-eclampsia and both studies failed to show such a relation. It is difficult to understand why English pre-eclamptic patients should tend towards homozygosity at the A and more particularly at the B locus yet Africans with eclampsia are more likely to be heterozygous. An immunogenetic explanation seems unlikely. It is true, however, that some disorders are associated with an HLA type only in certain races, e.g. HLA-B54 is associated with juvenile diabetes mellitus in Japanese, but not in Caucasians. No condition yet described is associated with such marked polarization as demonstrated here. If the explanation of such conflicting results is not within the different racial study groups then it may be with the disease. We have presumed that pre-eclamptics become eclamptics and therefore the two groups are comparable. However, patients presenting with acute eclampsia may have a different genotype compared with those presenting with proteinuric hypertension in pregnancy. Finally, it must be noted that 30% of our control population are

Table 2. Frequency of human leucocyte antigen (HLA) homozygosity in patients with eclampsia and in normal controls

	Eclamptic patients		Normal controls	
HLA locus	n	$19 / 53$	$(\%)$	n
A	$7 / 53$	$(35 \cdot 8)$	$374 / 1416$	$(26 \cdot 4)$
B	$22 / 53$	$(13 \cdot 2)$	$435 / 1416$	$(30 \cdot 7)^{*}$
DR	$(41 \cdot 5)$	$223 / 412$	$(54 \cdot 1)$	

[^38]homozygous. This remarkably high figure may be a reflection of African tribal society and the immobility of its members due to political and economic constraints. Such nuclear communities are not a feature of Oxfordshire, Iowa or France.

The history of HLA associations with certain diseases has been a major breakthrough in our understanding of the genetics of many diseases. The exciting work by Redman et al. (1978) associating pre-eclampsia with homozygosity at the B locus promoted many ideas and strengthened the immunogenetic interest in the subject. It is not clear why in African women we found a significant association between heterozygosity and eclampsia, just the opposite of what we expected. If all the available literature is gathered it conflicts and when it is summated no trend emerges. Eclampsia is either independent of HLA status or the association is so complicated it defies present comprehension.

References

Beer, A. E. \& Need, J. A. (1985) Immunological aspects of pre-eclampsia/eclampsia. Birth Defects 21 (5), 131-154.

Haldane, J. B. S. (1956) The estimation and significance of the logarithm of a ratio of frequencies. Ann Hum Genet 20, 309-311.
Persitz, E., Oksenberg, J., Amar, A., Margalioth, E. J., Cohen, O. \& Brautbar, C. (1983) Histocompatibility antigens, mixed lymphocyte reactivity and severe pre-eclampsia in Israel. Gynecol Obstet Invest 16, 283-291.
Redman, C. W. G., Bodmer, J. G., Bodmer, W. F., Beilin, L. J. \& Bonnar, J. (1978) HLA antigens in severe pre-eclampsia. Lancet ii, 397-399.
Scott, J. R., Beer, A. E. \& Stansty, P. (1976) Immunogenetic factors in preeclampsia and eclampsia; erythrocyte, histocompatibility and Y-dependent antigens. JAMA 235, 402-404.
Simon, P., Fauchet, R., Menault, M. et al. (1980) HLA A, B and DR antigens in pre-eclampsia: preliminary results. Kidney Int 17, 705-706.
Stevenson, A. C., Say, R., Ustaoglu, S. \& Durmus, A. (1976) Aspects of pre-eclamptic toxaemia of pregnancy, consanguinity and twinning in Ankara. J Med Genet 13, 1-8.
Terasaki, P. I. \& McClelland, J. D. (1964) Microdroplet assay of human serum cytotoxins. Nature (Lond) 204, 998-1000.
Woolf, B. (1955) On estimating the relation between blood group and disease. Ann Hum Genet 19, 251253.

Received 6 April 1987
Accepted 10 February 1988

HLA STATUS OF THE FETTS BORN TO AFRICAN WOMEN WITH ECLAMPSIA

Nicholas Jonnson, Jack Moodley(*), Mike G Farmond: s)
Department of Obstetrics and Gynaecology,
St James's University Hospital, Leeds, England.
(*) University of Natal, Congella 4013
Durban, South Africa.
(\$) Natal Blood Transfusion and Transplant Service, Department of Immunology, Pine Town, Durban, South Africa.

ABSTRACI

The HIA status of 37 babies who were bom to African mothers suffering from eclampsia was detemined. The 835 antigen was more prevalent in babies bom to eclamptic mothers than one would expect ($p=0.01$). The number of shared antigens between mother and baby at the A and B locus was similar to that of a nomal population.

INTRODUCTION

There is no published evidence to support the hypothesis that eclampsia has an association with any matemal human leucocyte antigen (GIA). Combining the literature (2,12-14,16-19) a total of 330 pre-eclamptic or eclamptic mothers have been studied and no HIAA association with the disease has emerged. Two hundred and seventeen fathers have
been studied and they are indistinguishable fram the nomal population. However there are no studies of babies born to eclamptic mothers and there are only two papers reporting on the infant delivered to pre-eclamptic mothers. Scott et al (18) measured the HLA status at the A locus in 10 babies bom to pre-eclamptic mothers and no trend emerged. Kilpatrick et al (14) studied 41 cases of mild and severe pre-eclampsia and suggested an association with the fetal DR4 antigen.

Cooper et al (8) recently examined the inheritability of eclampsia and concluded that the fetal genotype influences the susceptibility to the disease. He presumes that these genes are the human leucocyte antigen (HLA) genes or are linked to the HLA system and this prompted us to analyse our data regarding the HLA status of African babies borm to eclamptic mothers.

PATIENTS AND MEIHODS

Thirty seven black African females of Zulu origin who presented with a diagnosis of eclampsia or severe pre-eclampsia were studied over a one year period. only mothers with all the classic features of the disease were included (systolic blood pressure greater than 160 mm of mercury, a diastolic pressure greater than 115 mm of mercury; gross oedema and at least 2 pluses of proteinuria measured on
a catheter specimen of urine with Ames sticks). Thirty mothers had already suffered at least one seizure before admission, the remaining seven all had irritability or intellectual clouding and were hyperreflexic with clonus. Mothers with previous hypertension (booking blood pressure $>140 / 80$) or a past history of renal disease or those who had not fully recovered by the seventh post-partum day to an aproteinuric nomotensive state were excluded. As far as possible, samples were collected consecutively but 11 cases were lost, either because insufficient blood was obtained ($n=4$) or because of administrative reasons (mothers delivering late on Eriday night or on Saturday; $n=7$).

The $H I A, A, B$ and $D R$ antigens were detemined by a 2 stage lymphocytotoxicity test (21) on 20 ml of cord blood. obtained at the time of delivery. In 3 cases of stillbirth, cord blood was insufficient and blood was taken by cardiac puncture from the stillbom infant. We were unable to measure the patemal HIA antigens.

The prevalence of the A and B locus on the HLA systern in the nomal population was detemmed by analysing 1416 blood donors of the same tribe and resident within the same hospital catchment area. Four hundred and twelve of these also acted as controls for the $D R$ locus. If onily 1 antigen per locus could be detected, patients were considered to be homozygous at that locus.

Statistical analysis was performed by Chi squared testing. As this the first study of its kind, we had no preconceived hypothesis to test and therefore multiple camparisons were performed and the p value was corrected by the Bonferoni inequality method (10).

RESULTS

The frequency of the HLA antigens in the normal population and in the fetus born to eclamptic mothers is shown in table I. The B35 and the B14 antigen were more prevalent in babies bom to sufferers fron eclampsia than one would expect (B35 frequency $=22 \%$ compared with 6.7% in the controls - Chi squared $=12.2, \mathrm{p}$ corrected for multiple comparisons of the mean $=0.01 ;$ B14 frequency $=16 \%$ compared with 7.5% in the control population - Chi squared $=7.1 ; \mathrm{p}=$ 0.2 when corrected for multiple comparisons of the mean). The B8 antigen frequency was lower in babies born to eclamptics but this probably occures by chance (Chi squared $=5.6, \mathrm{p}$ corrected for multiple comparisons of the mean $=0.5$). When compared with a control group babies born to eclamptic mothers showed no variation in the number of antigens at any locus and no specific A or D related antigen recurred more commonly. The sample includes 3 neonatal deaths and 3 fresh stillbirths.

DISCUSSION

The evidence that there is an immogenetic aetiology to eclampsia is overwhelming (5.15). However there is also some evidence that there is a direct genetic component to the aetiology of the disease. Eclampsia has a familial trait (3,4,7), is commoner if the subject's parents are from different racial stock (1) and there is some protection from the disease if the mother is the product of a consanguineous mating (20).

This genetic link has been investigated by examining the matemal histocompatability complex. Jenkins et al (:2) suggested that pre-eclampsia may be more cammon if the mother and father possess the same HLA antigens and Redman et al (i?) did suggest an excess of homozygosity at the B locus but this has not been confimed (13).

Examination of family trees involving cases of eclampsia suggest that the inherited susceptibility of the disease may be linked to the fetus rather than the mother (B^{\prime}.

Our finding that the frequency of B35 antigen is significantly increased in the fetus borm to an eclamptic mother (22% compared with 5.7%) adds further support to the suggestion that the disease may be influenced by the genetics of the conceptus. As Coovadia et $a 1$ (9) has demonstrated that

TABLE I Distribution of human lymphocyte antigens

IOCUS A	FEIUS	CONTROL
ANTIGEN	$n=37$	1416
1	2.7\%	6.4\%
2	24\%	21\%
3	13\%	13\%
11	0\%	0.1%
23	22\%	18%
24	5.4%	4.93
25	16\%	14%
26	22\%	10%
28	16\%	218
29	14\%	17\%
30	22\%	37\%
31	2.7%	6.0%
. 32	2.7%	2.39
33	2.7%	2.2%
homozygous 35\%		267
LOCUS B	FETUS	CONIPOL
ANTIGEN	$\mathrm{n}=37$	1416
5	0\%	1\%
7	14\%	20\%
8	0\%	13\%
13	8.1\%	4%
14	16\%	6\%
15	2.7%	4\%
16	0%	3%
17	30\%	39\%
18	14\%	5\%
21	0\%	2\%
22	0\%	0.07%
27	0\%	0.3%
35	22\%	6.7%
37	0\%	0.07%
40	0\%	0.68
41	0%	1.5\%
42	14\%	24\%
44	19\%	15%
45	5.48	8.6%
47	0%	0.18
53	0%	1.6\%
70	24웅	14%
hamozygous	32%	30\%

TABLE I (continued)

LOCUS D	FEIUS	CONIROL
ANTIGEN	$n=20$	$n=412$
1	10%	5%
2	35%	24%
3	35%	36%
4	10%	10%
5	35%	35%
6	15%	15%
7	20%	15%
8	10	2.9%
9	0%	0.7%
10	0%	2.2%
homozygous 30%	5%	

neonates of Zulu decent are indistinguishable from the nomal blood donating members of the same society, our study and control groups áre likely to be representative of the fetus bom to eclamptic and non eclamptic mothers respectively. Therefore our finding invites speculation on a possible mechanism that would explain the disease association.

Because of linkage disequilibriun (HLA genes associated with other specific genes) any association between any FIA antigen and a disease means that either (i) the allele responsible for the expression for the HLA antigen is directly involved in the pathogenesis of eclampsia, or (ii) the HIA gene is associated with a second gene which is responsible for detemining eclamesia susceptibility.

If the HLA gene was pathogenic it would have to act as either a receptor for a noxious or infective agent, act as a
carrier for a carrier-hapten complex or thirdly, act as a antigen that is familiar to the mather thus inducing an autoimmune response (5). This explanation seems unlikely for the following reasons;

1) The trophoblast that is exposed to the mother is free of transplant antigens.
2) If pre-eclampsia depended upon a single fatal gene expressed on the fetal side the influence of parity would be difficult to explain.
3) It would be difficult to understand why exposing the mother to a blood transfusion or to her partners leucocytes decreases the incidence of the disease rather than increasing it (11). Thus our observed association is more likely to be due to the involvement of genes closely linked with the HLA complex. In other words the HLA genes are probably not involved with the causation of the disease but they are neutral markers of it. As the immune response genes and the HLA genes are spatially intimately related on the short arm of chromosome 6 and a functional link is known to exist in animals (22) it is plausible that there is an immune response gene associated with both the B35 antigen and eclampsia susceptibility.

The presence of the disease in only a small fraction of those carrying the antigen may be explained by the following. 1) The association is due to a second as yet undiscovered allele located at a different but closely linked locus and
this gene occurs with a different frequency than the B35 antigen.
2) Eclampsia is influenced by environmental factors and the fetal genotype cannot be expected to influence more that the susceptibility to the disease.
3) Other genetic factors not linked to the B35 antigen may contribute to the disease susceptibility.
4) Eclampsia is almost certainly a disease with a multifactorial aetiology and therefore the observed association may only be apparent in a subset of the population.

Unfortunately our current knowledge of inmunology and eclampsia permits little more than speculation. However it is possible that the fetal genotype may possess the genetic make up to influence pathology in the mother.

REFERENCES

1

1. Aldeman B W, Sperling R S, Daling J R. An epidemiological study of the immunogenetic aetiology of Pre-eclampsia. Br Med J 292:372-374 1986
2. Anichkora, S I, Vasilieva Z F, Grigorieva V V. Study of compatibility in married couples according to the HLA antigen system in nomal and complicated by late toxaemda pregnancy. Anush Ginekol 8; 20-23 1981
3. Anonymous Genetic control of pre-eclampsia. (Editorial) Lancet (i): 634-635 1980
4. Anonymous. Genetics of pre-eclampsia. (Editorial) Lancet (ii): 7781988
5. Batchelor J R and McMichael A J, Progress in understanding HTA. Br Med Bull 43 (1); 156-183 1987
6. Beer A E and Need J A. Immunological aspects of pre-eclampsia/eclampsia. Birth Defects. 21(5), 131-154, 1985
7. Chesley L C and Cooper D W. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclamptic women. Br J Obstet Gynaecol 93:898-908 1986
8. Cooper D W, Hill J A, Chesley L C Bryans, C I. Genetics control of susceptibility to eclampsia and miscarriage. Br J Obstet Gynaecol 95:644-653 1988
9. Coovadia H M, Wesley A, Hammond M G, Kiepiela P, Measles, histocompatibility leucocyte polymorphism and natural selection in humans. J Infect Dis 144 (2): 142-147 1981
10. Dunn O J. Multiple comparisons anongst means. An J stat Assoc 56:52-64 1961
11. Feeney $J, 1$ Tovey $L I$, Scott J, Influence of previous blood transfusion on the incidence of pre-eclampsia. Lancet (i) 874-875 1977
12. Jenkins D M, Need J A, Scott J S, Morris H, Pepper M. Human leucocyte antigens and mixed lymphocyte reaction in severe pre-eclampsia. B Med J 1: 592-544 1978
13. Johnson N, Moodley J, Harmond M G. Human leucocyte antigens status in
African women with eclampsia. Br J Óbstet Gynaecol 95; 877-879 1988
14. Kilpatrick D C, Liston W A, Jazwinska, E C, Smart G E. Histocompatibility studies in pre-eclampsia. Tissue Antigens 29; 232-236 1987.
15. Kitzmiller J L. Inmunological approaches to the subject of pre-eclampsia. Clin Obstet Gynecol 30 717-735 1977
16. Persitz E, Oksenberg J, Amar A, Margalioth E J, Cohen O, Brautbar C. Histocompatibility antigens, mixed lymphocyte reactivity and severe pre-oclampsia in Israel. Gynecol Obstet Invest 16:283-291 1983
17. Reciman C W G, Eociner J G, Boamer W F, Eeilin L J, Bonnar J. HLA antigens in severe pre-eclampsia. Lancet (ii) 397-399 1978
18. Scott J R, Beer A E, Stastny P. Inmunogenetic factors in pre-eclampsia and eclampsia; Erythrocyte, histocompatibility and Y dependent antigens. JAMA 235(4):402-404 1976
19. Simon P, Fauchet R, Menault M, Bombail D, Le Fiblec B, Panguy E et al HLA A, B, and DR antigens in pre-eclampsia: Preliminary results. Kidney Int 17: 705-706 1980
20. Stevenson A C, Ustuoplus S, Dumas Z, Aspects of pre-eclamptic toxaemia of pregnancy, consanguinity twinning in Ankara. J Med Genet 13; 1-8 1976
21. Terasaki P I and McClelland J D. Microdroplet assay of human serum cytotoxins. Nature (Lond), 204;998-1000 1964
22. Tiwari J L and Terasaki P I. HLA and disease associations. Pub Springer-Verlag, New York. (1985) p30.

HLA AND SELECTIVE MATING

Michael G Hammond ${ }^{1}$

Abstract

The selection of a mate by female semi-wild mice is influenced by the major histocompatibility complex (MHC) ${ }^{1}$. The role of the MHC in human mate selection is investigated by analysing the distribution of human leucocyte antigens (HLA) in couples. The frequency of sharing of HLA antigens showed no significant differences from that expected by chance but there are significant differences in the frequencies of some of the HLA B locus antigens in males selected by females with specific HLA antigens.

ABBREVIATIONS

MHC major histocompatibility complex
BSR basal sharing rate

INTRODUCTION

Potts et al. ${ }^{1}$ showed that female semi-wild mice selected males that were disparate for MHC. The lack of homozygous progeny can be explained if the female avoids mating with males that possess the same MHC antigens. Does this selection process occur in humans?

METHODS

The data base I chose for analysis consisted of 837 couples who were typed for HLA to determine paternity of their offspring. There were a further 27 males from paternity investigations involving two men. All subjects were Caucasian.
The number of couples who shared HLA antigens at the A, B or C locus was counted. The probability of two random people sharing HLA antigens was calculated using the formulae of Koyama et al. ${ }^{2}$ and defined as the basal sharing rate (BSR). The BSR was calculated using the gene frequencies in males, females and in the combined frequencies. The BSR was also calculated using the gene frequencies in 643 blood donors as a control population. The significance of the differences were determined with the chi-

[^39]squared test. Couples where the man was shown not to be the father were then removed from the data base and the calculations repeated.

Another data base was built up consisting of couples drawn from family studies performed for transplantation. Ninety one couples were analysed in the same way. The results are shown in Table 1.

RESULTS AND DISCUSSION

If selection by females is on the basis of avoiding males who possess the same MHC antigens, then the degree of sharing would be lower than that expected by chance. There were no significant differences in the sharing rate when comparing all possible pairwise combinations at each locus using the chi-square test. No significant differences were observed in couples where there was no exclusion. The sharing rate in family couples was slightly higher but not significantly so. If selection based on HLA was present, then two men selected by the same woman would be expected to have some HLA antigens in common. The sharing rate of 27 male pairs in this category was not significantly different.

However, this does not rule out the possibility that the MHC genes are involved in mate selection in human populations. Perhaps the possession of specific antigens forms the basis of selection? This was investigated by frequency analysis of the males chosen by females possessing specific HLA alleles. Those antigens which were significantly increased ($p<0.01$) in frequency in males are shown in Figure 1. If the increase was highly significant ($p<0.001$), the frequency is shown in a box. The matrix has 44 $x 44$ entries so that about 20 entries would be expected to be increased by chance and about two entries with $\mathrm{p}<0.001$ but there are 38 frequencies that are significantly increased and ten of these have a probability less than 0.001 . This indicates that at least some of the HLA antigens may be involved in mate selection.

Most of the increases are in the lower right quadrant of the matrix so that the HLA B locus antigens appear to be more influential. Linkage disequilibrium may account for significant increases at adjoining loci; e.g. the significant increase in the frequency of HLA B27 probably accounts for the increased frequency of Cw2. There are three entries on the diagonal. Do females with HLA A2, HLA B37 and HLA B51 prefer males with the same antigen? This contradicts the overall finding that there was no increase in shared antigens and may be due to chance. An analysis of frequencies that were significantly decreased produced a matrix (Figure 2) with only ten entries which is lower than would be expected. None of the decreases were significant at $\mathrm{p}<0.001$.

These findings suggest that in humans, females do not appear to select males on the basis of avoiding males with the same antigens as themselves or by avoiding males with a specific antigen but rather on the basis of selecting males with specific antigens, dependent on their own antigenic phenotype. The HLA B locus appears to be more important than HLA A or HLA C but another independent survey is needed to determine which of the more than 30 antigens at this locus are important for mate selection. It may also be that, as in the many disease associations that have been reported, the Class II antigens (HLA DR, DQ, DP) have a more important role.

References

1 Potts, W. K., Manning, C. J. \& Wakeland, E. K. Nature 352, 619621 (1991).
2 Koyama, M., Saji, F., Takahashi, M., Samejima, Y., Kameds, T., Kimura, T. \& Tanizawa, O. Tissue Antigens 37, 211-217 (1991).

Legends

Figure 1 Matrix showing percentage frequencies of HLA antigens that are significantly increased ($p<0.01$) in males selected by females with the HLA antigen shown at the top of the matrix. Frequencies in boxes are significantly increased with $p<0.001$. Significance was determined by the chi-squared test.

Figure 2 Matrix showing percentage frequencies of HLA antigens that are significantly decreased ($p<0.01$) in males selected by females with the HLA antigen shown at the top of the matrix. There were no frequencies significantly decreased with $p<0.001$. Significance was determined by the chi-squared test.

Table 1 Observed and expected sharing of HLA antigens in percent.

	HLA LOCUS		
Number of antigens tested	14	B 23	C
Observed in 864 couples	46.5	21.9	11.9
Observed in 653 couples with no exclusion	45.8	20.7	12.1
Observed in 27 male pairs	37.0	25.9	7.4
Observed in 91 families	47.3	30.8	6.6
BSR 864 males	43.2	22.8	10.9
BSR 837 females	43.6	25.3	10.9
BSR 1701 both	43.3	23.9	10.8
BSR 643 controls	40.3	27.1	10.5

*BSR Basal Sharing Rate calculated by the method of Koyama et al. ${ }^{2}$

HLA AND OTHER DISEASES

p419 Hammond MG and Moshal MG. HLA and duodenal ulcer in South African Indians. Tissue Antigens 15, 508. 1980
p421 Coovadia HM, Wesley A, Hammond MG and Kiepiela P. Measles, Histocompatibility leukocyte antigen polymorphism, and natural selection in humans. J. Inf. Dis. 144, 142. 1981
p428 Haffajee IE, Hammond MG and Moosa A. HLA antigens in black South African children with rheumatic heart disease. Ann. Trop. Paed. 2,17. 1982
p434 Norman RJ, Reddi K, Richards A, Hammond MG and Joubert SM. Male transmission of the gene for isolated gonadtropin releasing hormone deficiency. Fert. and Steril 43, 225. 1985
p438 Adhikari M, Coovadia HM and Hammond MG. Associations between HLA antigens and nephrotic syndrome in African and Indian children in South Africa. Nephron 41, 289. 1985
p442 Naito S, Kong FH, Hawkins BR, Mehra NK, Serjeantson SW and Hammond MG. Joint Report: HLA and Disease: SLE. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p364 Hokkaido University Press, Sapporo 1986
p446 Hawkins BR, Chan SH, Charoenwongse P, Guo SS, Hammond MG, Pei J, Sun YP, Tian D, Ye GY and Yi YN. Thyroid disease Joint Report. In: Aizawa M (ed) HLA in Asia-Oceania 1986 p369 Hokkaido University Press, Sapporo 1986
p452 Sewdarsen M, Hammond MG, Vythilingum S and Appadoo B. Histocompatibility Antigens in Indian patients with myocardial infarction. Tissue Antigens 29,21. 1987
p457 Maharaj B, Hammond MG, Appadoo B, Leary WP and Pudifin DJ. HLA A, B, C and DR antigens in black patients with rheumatic heart disease. Circulation 76, 259. 1987
p460 Omar MAK, Hammond MG, Desai RK, Motala AA, Abboo N and Seedat MA. HLA Class I and II antigens in South African blacks with Graves' disease. Clin Imm Immunopath 54;98 . 1990
p465 Maharaj B and Hammond MG. HLA-A, B, DR and DQ Antigens in Black patients with idiopathic dilated cardiomyopathy. Amer J Cardiology 65; 1402. 1990
p467 O'Farrell N and Hammond MG. HLA antigens in Donovanosis (Granuloma Inguinale). Genitourin Med; 67:400-402 1991
p470 Bhigjee AI, Bill PLA, Hammond MG and Windsor IM. HLA Profile and HTLV-I Associated Myelopathy (HAM/TSP) in Natal, South Africa. J Neurology, Neurosurgery and Psychiatry; 55:329-330 1992
p472 Hammond MG. Paternity calculations in court. (submitted to Forensic Science International).

HLA and Duodenal Ulcer in South African Indians

M. G. Hammond ${ }^{1}$ and M. G. Moshal ${ }^{2}$
${ }^{1}$ The Natal Institute of Immunology, and
${ }^{2}$ Research Institute for Disease in a Tropical Environment (MRC) and University of Natal/King Edward VIII Hospital, Durban, South Africa

Received for publication 19 December 1979, revised, accepted 14 February 1980

Clearly established genetic factors associated with duodenal ulcer are blood group O and non-secretor status. In a search for further genetic factors Rotter et al. (1979) determined the HLA antigens of 77 patients with duodenal ulcer and found a significant increase in the frequency of HLA-B5 in the $54^{\prime \prime}$ Caucasian patients. We therefore decided to test Indians with duodenal ulcer because the frequency of B5 in the Indian population is relatively high (34\%) and a survey of duodenal ulcer in Indians by Robbs \& Moshal (1979) has shown that Durban may be regarded as an area of high prevalence and that this disease is a major problem in the Indian population.

A total of 180 antisera were used in a two-stage microlymphocytotoxicity test to determine the HLA antigens of 94 Indians with duodenal ulcer (confirmed by endoscopy).

The antigen B5 IND was assigned to those B5 cells that are not Bw51 or Bw52 and probably includes the recently described antigen Bu (Laundy et al. 1978).

The antigen frequencies are listed in Table 1. The distribution of antigens at the A and B loci conformed to Hardy-Weinberg equilibrium. In contrast to the findings of Rotter et al. (1979), the frequency of B5 was decreased and the frequency of Bw51 was small enough to give an uncorrected P value of less than 0.01 . The frequency of Bw52 was approximately the same in the patients and the controls.

There was an increased frequency of B40.2 (uncorrected $P<0.01$) and a decrease in the frequency of B40.1. None of these differences retained their significance after correcting for the number of antigens tested. The splitting of B5 and B40 into subdivisions still poses problems which may be solved in the future by better sera and International Workshops.

Acknowledgments

We thank Mrs. F. Buckle and Mr J. Govender for expert technical assistance.

[^40]Table 1
Percentage frequency of HLA antigens in Indians with duodenal ulcer (DU)

HLA	Control	DU		Control	
	632	94	HLA	632	94
A1	27.9	30.9	B7	12.5	14.9
A2	31.3	29.8	B8	5.9	4.3
A3	14.6	11.7	B13	6.8	2.1
A11	27.5	31.9	B14	0.3	1.1
Aw23	0.6	0	B15	10.9	11.7
Aw24	27.1	31.9	B16	2.2	3.2
A25	1.9	2.1	B17	21.2	22.3
A 26	6.3	5.3	B18	3.0	1.1
A28	14.4	5.3	Bw21	1.7	2.1
A29	0.8	2.1	Bw22	2.5	4.3
Aw 30	4.0	3.2	B27	2.5	7.4
Aw31	3.5	2.1	Bw35	20.6	19.1
Aw32	2.5	0	B37	4.1	7.4
Aw33	7.4	12.8	B40	29.1	35.1
1 Antigen	30.2	30.9	B40.1	13.4	6.4
			B40.2	15.7	28.7*
			Bw42	0	0
			Bw44	12.0	10.6
			Bw45	0.2	1.1
			B5	34.2	25.5
			Bw51	22.5	10.6*
			Bw52	8.4	10.6
			Bw53	1.9	1.1
			B5 IND	3.3	4.3
			1 Antigen	28.3	25.5

* P (uncorrected) <0.01.

Details of ethnic subgroup and phenotype of each patient have been submitted to the HLA and Disease Registry.

References

Laundy, G. J., Entwistle, C. C. \& Hassenkamp, K. (1978) Bu - A new antigen at the HLA-B locus. Tissue Antigens 11, 121.
Robbs, J. V. \& Moshal, M. G. (1979) Duodenal ulceration in Indians and Blacks in Durban. S. Afr. Med. J. 55, 39-42.

Address:
M.G. Hammond, M.D.

Natal Institute of Immunology
P.O. Box 2356

Rotter, J. I., Rimoin, D. L. Gursky, J. M. Durban 4000 Terasaki, P. I. \& Sturdevant, R. A. L. (1979) South Africa HLA B5 associated with duodenal ulcer. Gastroenterology 73, 438-440.

MEASLES, HISTOCOMPATIBILITY LEUKOCYTE ANTIGEN POLYMORPHISM, AND NATURAL SELECTION IN HUMANS
H. M. COOVADIA, A. WESLEY, M. G. HAMMOND, and P. KIEPIELA

Measles, Histocompatibility Leukocyte Antigen Polymorphism, and Natural Selection in Humans

H. M. Coovadia, A. Wesley, M. G. Hammond, and
P. Kiepiela
From the Department of Pediatrics and Child Health, Medical School; and the Natal Institute of Immunology, University of Natal, Durban, South Africa

Abstract

Profound iymphocytopenia ($<2,000$ lymphocytes $/ \mathrm{mm}^{3}$) occurring within two days of rash iń 69 South African black children with measles predicted either death or progression to chronic lung disease in $51(77 \%)$ of 66 children who were followed for at least six weeks. Lymphocytopenia was significantly associated with the presence of histocompatibility leukocyte antigen (HLA) AW32 $(P=0.01)$, with a relative risk of 5.5 . There was a trend toward an association between the presence of particular antigens in the HLA complex and the various indices of humoral and cellular immunity studied. These findings are discussed in terms of variation in the clinical spectrum of the disease and in relation to the evolution of HLA polymorphism.

The consequences of infection with measles virus are recovery, chronicity, or death. This clinical spectrum is determined by the severity of immunoparesis at the onset of illness [1]. One component of this immunoparesis is the specific antibody response, which, if impaired, leads to severe disease if cell-mediated immunity is also impaired [2]. The ability of the human host to produce antibody to measles virus is controlled by genes linked to the histocompatibility leukocyte antigen (HLA) complex [3-5], but there is little evidence to suggest that clinical outcome is under a similar influence [5]. In both experimental animals [6, 7] and in humans [8-10], genes linked to the major histocompatibility complex control immune responsiveness and can therefore modify the course and outcome of infectious illnesses [1]-13].

It is believed that the extreme polymorphism of the HLA system has arisen during evolution through the process of natural selection [14]. Infectious diseases, which have taken a massive toll of human life throughout history, may have exerted selective pressure on antigens of the HLA complex. Several investigators have studied the association between particular antigens of the HLA

[^41]complex and infections [12, 15], but few [10, 16] have linked the HLA complex with the clinical features or immune responses of a disease that has been and still is a major human killer. Even in the absence of protein-calorie malnutrition, measles can be a severe disease in children in developing countries [17]. We report a study of the HLA system in relation to both clinical severity and immune responsiveness in children with measles.

Subjects and Methods

HLA frequencies were determined in 69 South African black children with severe measles.

Nutritional status. The nutritional status of the patients studied was satisfactory. All patients were between the 10th and 75th Harvard percentiles for weight [18], with serum albumin levels of $>30 \mathrm{~g}$ /liter and without any of the clinical features of protein-calorie malnutrition.

Age and sex distribution. The median age of the 33 female children was 12 months (range, 25 months); that of the 36 male children was about 16 months (range, 54 months).

Definition of severe measles. Severe measles was defined by the presence of a count in peripheral blood of $<2,000$ lymphocytes $/ \mathrm{mm}^{3}$ within two days of the appearance of rash. This degree and timing of lymphocytopenia have been shown to be indicative of subsequent death or progression to chronic chest disease in 77% of patients [17].

Outcome of measles. The clinical outcome was assessed six weeks after the onset of rash, when patients were classified as having recovered,
died, or developed chronic chest disease. Recovery or chronicity was determined by the presence or absence of pneumonia, respectively, detected radiologically [17]. Bronchopulmonary changes were graded on a total of 11 points; an abnormal score was $\geqslant 4$. Children with an abnormal score were classified as having chronic chest disease, and those with a score of <4 were classified as recovered. Chronic chest disease or death was a poor outcome, and recovery was a good outcome.

Control subjects. Because the attack rate for measles is almost 100%, the frequencies of particular HLA types among healthy adult black Africans, many of whom were studied for international workshops [19, 20], were used as the normal distribution. The African population of Durban, South Africa, consists mainly of Zulus, and the patients and control subjects were of pure descent. The possibility that a comparison of HLA frequencies in infants with HLA frequencies in adults may not be valid was investigated by comparing frequencies in normal infants (never infected with measles virus). Cord blood specimens from 51 black neonates and sera from 32 black infants younger than five years of age who were subjects of paternity disputes were tested for HLA types.

Immunologic tests. The results of immunologic tests (table 1) performed within 48 hr of the onset of measles rash were used for correlations with HLA typing. The criteria are based on previous observations of lymphocyte subpopulations [17] and are arbitrary cutoff points for titers of CF and HAI antibodies, inhibition index (see below), and levels of C3. Immune functions were categorized as good or poor.

HLA typing. The patients were typed for HLA-A, -B, and -C specificities using 180 antisera in a two-stage lymphocytotoxicity test [21]. Lymphocytes were isolated on a Ficoll-Hypaque density gradient. Differences in HLA frequencies were tested for significance with a χ^{2} test (without Yates's correction), and the resulting probabilities were corrected by multiplying by the number of antigens tested.

Lymphocyte subpopulations. Mononuclear cells were obtained from defibrinated peripheral blood that had been passed through columns of Ficoll-Hypaque. Lymphocyte subpopulations were counted in a single preparation by means of sheep erythrocytes and by an immunofluorescence method for detecting immunoglobulins [22]. Pe-

Table 1. Criteria used for categorizing immune functions in African children with severe measles within 48 hr of the onset of rash.

	Response	
Function	Good	Poor
CF antibody titer	$\geqslant 1: 8$	$<1: 8$
HAI antibody titer	$>1: 8$	$\leqslant 1: 8$
Inhibition index*	Positive	Negative
T cells (cells $/ \mathrm{mm}^{3}$)	$\geqslant 1,268$	$<1,268$
B cells $\left(\right.$ cells $\left./ \mathrm{mm}^{\prime}\right)$	$\geqslant 556$	<556
Null cells $\left(\mathrm{cell} / \mathrm{mm}^{3}\right) \dagger$	$\geqslant 116$	<116
$\mathrm{C} 3(\mathrm{mg} / 100 \mathrm{ml})$	$\geqslant 70$	<70

NOTE. The criteria are based on previous observations of lymphocyte subpopulations [17] and are arbitrary cutoff points for the other functions.

* See Subjects and Methods.
\dagger Cells lacking surface markers of B or T cells.
ripheral lymphocytes were classified as rosetting cells (T), fluorescing cells (B), cells with no markers (null), and those with both markers.
Antibodies to measles virus. Titers of CF antibody to measles virus were measured in sera by a microtiter method using specific antigen. Titers of measles-specific antibody were also measured by the HAI test with antigen from Behringwerke (Marburg, Federal Republic of Germany).

Inhibition of leukocyte migration. Leukocytes obtained by dextran sedimentation of whole blood that had been treated with heparin were incubated for 24 hr in agarose petri dishes in the presence or absence of measles virus CF antigen. The degree of migration was measured by projection. The percentage migration inhibition was calculated as follows: (the extent of migration with antigen/the extent of migration without antigen) $\times 100$. The percentage inhibition index was calculated as: 100% - the percentage migration inhibition.

C3. Levels of C3 in plasma were measured by radial immunodiffusion.

Results

The clinical outcome at six weeks could be assessed in 66 of the 69 children with severe measles. Five children died, the illness progressed to chronic chest disease in 46 children, and 15 children recovered.
There were no significant differences in the frequencies of HLA types among the 51 neonates, the 32 subjects of paternity disputes, and the 1,081

Table 2. Percentage frequency of individual antigens of the histocompatibility leukocyte antigen (HLA) complex in South African black children with severe measles and in control subjects.

HLA type	Controls $(n=1,132)$	Patients $(n=69)$
Al	6.4	11.6
A2	21.3	10.1
A3	13.1	7.2
All	0.1	1.4
AW23	18.4	14.5
AW24	3.8	4.3
A25	15.3	20.3
A26	8.8	11.6
A 28	21.1	26.1
A29	16.2	20.3
AW30	37.5	26.1
AW31	9.3	7.2
AW32	2.0*	10.1*
AW33	$2.7 \dagger$	4.3
One antigen \ddagger	24.0	24.6
B7	18.2	21.7
B8	14.1	10.1
B13	4.4	1.4
B14	5.7	1.4
B15	4.9	1.4
BW16	2.4	4.3
B17	38.7	44.9
B18	4.9	5.8
BW21	1.1	1.4
BW22	0	0
B27	0.3	0
BW35	6.3	7.2
B37	0	0
BW41	$2.1{ }^{\dagger}$	0
BW42	24.7	15.9
BW44	15.7	15.9
BW45	7.6	8.7
BW46	0	0
BW51	1.8	4.3
BW52	0	0
BW53	3.4	1.4
BW60	1.0	2.9
BW61	0	0
One antigen \ddagger	42.7	50.7

NOTE. Severe measles was defined by the presence of a count in peripheral blood of <2,000 lymphocytes $/ \mathrm{mm}^{3}$ within two days of the onset of rash. The control group comprised 1,081 randomly chosen adults and 51 neonates.

* $P<0.016$ (corrected for the number of antigens tested).
\dagger Of 146 controls.
\ddagger Only one antigen detected at the A or B locus.
randomly chosen adults. The AW32 antigen was found in two (3.9%) neonates and one (3.1%) of the infants younger than five years of age-three (3.6%) of the combined group. Nineteen (1.8%) of the 1,081 randomly chosen adults possessed the AW32 antigen. We therefore combined as the con-
trol group the randomly chosen adults and the neonates and excluded the infants tested in paternity disputes; the frequencies of HLA types in the control group were compared with those in the patients with severe measles.

There was a significant excess of HLA-AW32 in the group of 69 children with severe measles ($<2,000$ lymphocytes $/ \mathrm{mm}^{3}$) as compared with the control group (corrected $P=0.016$) (table 2). The relative risk of developing lymphocytopenia in individuals possessing HLA-AW32 was 5.5. None of the other HLA types examined showed significant variations between patients with measles and the control group when corrections were made for the number of antigens tested.

The distribution of HLA types in children with a good clinical outcome from severe measles was similar to that in those with a poor outcome, and neither clinical subgroup had a significantly different distribution of HLA types from that detected in normal persons. HLA-AW32 (as would be expected from its deviation from a normal distribution in the control group) was increased in comparison to the control group in both clinical subgroups.

No other individual HLA types and the parameters of immunity studied were significantly associated (table 3). However, there was a trend toward the presence of HLA-A1 in good responders in tests of humoral and cellular immunity-CF and HAI antibodies; T, B, and null cells; and inhibition index - and toward the presence of HLAAW32 in good responders for T, B, and null cells. There was a similar trend toward the absence of HLA-BW42 (a common HLA type in blacks) among good responders for CF and HAI antibodies and T and B cells. A25 and A29 antigens were associated with a poor response for some components of the immune response (table 3).
The presence of particular HLA-C types did not correlate with lymphocytopenia, clinical outcome, or immune responses.

Patients with a good T-cell response also had a good B-cell ($\chi^{2}=24.8$; uncorrected $P<0.0001$) and good null-cell ($\chi^{2}=6.4$; uncorrected $P<$ 0.02) response. Those with a good null-cell response also had a good B-cell response ($\chi^{2}=6.8$; uncorrected $P<0.01$).

Discussion

Measles, like most other infections, causes minor

Table 3. Percentage frequency of nine antigens of the histocompatibility leukocyte antigen complex in 69 South African black children with severe measles.

Immune function, response (n)	Al	A25	A29	AW30	AW32	B7	B18	BW42	BWS	Only one antigen at the B locus
CF antibodies 70.6										
Good (17)	17.6	17.6	17.6	29.4	5.9	17.6	1.8	5.9	0	70.6
Poor (37)	8.1	18.9	21.6	24.3	10.8	27.0	5.4	16.2	5.4	37.8
HAI antibodies 54.5										
Good (11)	27.3	9.1	9.1	36.4	9.1	36.4	9.1	0	0	54.5
Poor (24)	8.3	33.3	33.3	25.0	8.3	20.8	4.2	25.0	0	50.0
Inhibition index*										
Good (20)	25.0	25.0	15.0	35.0	5.0	30.0	0	15.0	5.0	55.0
Poor (15)	0	33.3	40.0	20.0	13.3	20.0	6.7	13.3	13.3	33.3
T cells										
Good (19)	21.1	5.3	5.3	31.6	21.1	21.1	5.8	5.3	10.5	57.9
Poor (37)	10.8	29.7	32.4	21.6	8.1	27.0	2.7	13.5	2.7	45.9
B cells										
Good (11)	27.3	0	0	36.4	27.3	18.2	9.1	0	0	63.6
Poor (42)	11.9	26.2	26.2	21.4	9.5	28.6	7.1	9.5	7.1	45.2
Null cells \dagger										
Good (16)	25.0	18.8	6.3	18.8	25.0	18.8	6.3	12.5	6.3	50.0
Poor (35)	11.4	20.0	28.6	28.6	8.6	25.7	8.6	8.6	5.7	51.4
C3										
Good (22)	13.6	18.2	13.6	18.2	13.6	31.8	9.1	22.7	4.5	40.9
Poor (40)	12.5	22.5	25.0	35.0	10.0	15.0	5.0	10.0	5.0	55.0

NOTE. Severe measles was defined by the presence of a count in peripheral blood of $<2,000$ lymphocytes $/ \mathrm{mm}^{3}$ within two days of the onset of rash. See table 1 for definitions of good and poor immune responses.
${ }^{*}$ See Subjects and Methods.
\dagger Cells lacking surface markers of B or T cells.
effects in the vast majority of children in the developed world. Among poorer nations, the adverse effects of protein-calorie malnutrition in children with measles result in high morbidity and mortality. However, even when protein-calorie malnutrition has been carefully excluded, measles remains a severe disease in a significant minority of hospitalized African children [17]. The proportion of this minority of children with severe measles can vary between communities, and the probable reason for this variation may be a genetic predisposition in some individuals to the development of severe disease. We have shown in the present report that this genetic tendency indeed may be the case.

Severe lymphocytopenia during exanthem in measles has been unequivocally demonstrated to be a reliable index of severity [1, 17]. More than three-quarters of children with counts of $<2,000$ lymphocytes $/ \mathrm{mm}^{3}$ at the onset of measles subsequently die or develop prolonged chest disease. This degree of lymphocytopenia, however, is detected in only a small proportion (9%) of all

African children with measles. ${ }^{1}$ The present study has shown that the development of severe lymphocytopenia in African children with measles is linked to the presence of HLA-AW32. The antibody response in humans with measles has also been reported to be under the control of genes linked to the HLA system [3-5]. Kreth et al. have demonstrated that there is a major histocompatibility complex-restricted killing of target cells infected with measles virus by cytotoxic T cells [23], but this observation was not confirmed by Perrin et al. [24]. There is suggestive, although not conclusive, evidence in measles-inexperienced populations vaccinated against measles virus to indicate that the febrile response may be influenced by HLA genes [5]. Taken together, these findings lead to the conclusion that HLA-linked genes determine immune responsiveness and may influence clinical outcome in measles. The results of

[^42]the current study reinforce the concept that within a community there is a group that is genetically susceptible to the development of severe measles. The degree of susceptibility might vary between populations, depending on the frequency of the HLA-linked susceptibility. The variation may be the effect of dissimilar historical and evolutionary pressures exerted on different populations. Because the linkage disequilibrium pattern for alleles at HLA loci differs among populations, susceptibility to severe measles may be detected with antigens other than HLA-AW32 in other populations.
Although we used profound lymphocytopenia as a marker of severe clinical measles, 23% of these children subsequently recovered. Associations with particular HLA types were not detected in the subgroup who recovered or in those who did not in comparisons between the subgroups and with the control group. The numbers in the subgroups were, however, small, so that factors other than lymphocytopenia could also have influenced the outcome. These factors may be under separate genetic control. The trend towards linkage between the presence of particular HLA types and the various parameters of immunity studied (table 3) supports this suggestion. Paradoxically, the presence of HLA-AW32, which is associated with severe lymphocytopenia, showed a trend toward good responses for T, B, and null cells (table 3). However, the tendency toward an association between the presence of HLA-AW32 and poor responses for CF antibodies and inhibition index and the failure to detect a correlation between clinical outcone and particular HLA types suggest that severe nieasles is only indicated by lymphocytopenia (and therefore the presence of HLAAW32); the outcome is the result of a more complex interplay of immune reactions [25] which the present study has not elucidated.

An important application of associating the presence of HLA types with particular diseases has been the classification of diseases into categories according to the degree of association with one or another locus of the HLA complex. Two examples are the association of ankylosing spondylitis with B-locus antigens and of autoimmune diseases with D- and DR-locus antigens [26]. Tests for detecting D- and DR-locus antigens were unavailable for this study. However, the association of occurrence of severe measles with an A-locus gene is unusual. Two diseases that have shown an
association with A-locus antigens are idiopathic hemachromatosis with HLA-A3 and pemphigus with HLA-A10. An explanation for this association may be found in Zinkernagel's hypothesis that clinical outcome is dependent on both host immune responsiveness and virus cytopathogenicity [27]. Accentuated host responsiveness results in autoimmune diseases, whereas low responsiveness predisposes to damage by acute virus infections. It is therefore not unexpected that susceptibility to the damaging effects of measles virus relates to a locus different from that associated with autoimmune diseases. The immune response to measles has been shown to be frequently associated with A-locus genes [4,5]. The finding of an association between severe measles and a particular HLA type suggests that during previous measles epidemics of catastrophic proportions, individuals without that HLA type or other linked types at this locus would have been favored for survival. This hypothesis would be an example of linkage disequilibrium in which HLA-AW32 occurs in combination with another susceptibility antigen more frequently than would be expected.

Although the relative risk for persons possessing HLA-AW32 of developing severe measles (5.5) is considerably less than that for persons possessing HLA-B27 of developing ankylosing spondylitis and for those possessing D-locus antigens of developing autoimmune diseases [28], it is similar to calculated risks for HLA types and other infectious diseases (for example, tuberculosis and leprosy) [15]. These relative values are in accordance with the idea that associations with particular HLA types are more likely to be detected in autoimmune diseases, which have little effect on the survival of the species, rather than with infectious diseases, which can have major effects [27].

The comparison of HLA frequencies between children with measles and adult control subjects is not inappropriate. The HLA distributions among neonates, infants, and adults of the ethnic group studied were similar, and the distribution of HLA types in the patients conformed to HardyWeinberg equilibrium ($\chi^{2}{ }_{91}$ for heterogeneity at the A locus $=89.25, P=0.5 ; \chi^{2}{ }_{120}$ for heterogeneity at the B locus $=93.4, P>0.95$).

The mechanisms of genetic control of lymphocytopenia in measles are not known. They could, however, involve some of the explanations reviewed by Svejgaard et al. [29] - in particular, those relating to immune response genes, molecular
mimicry, and virus receptor function. HLA-AW32 may in fact serve this last mentioned function.

We have demonstrated an HLA-linked genetic control (which is probably polygenic) or severe measles, discussed the findings in terms of variation in clinical spectrum of the illness among individuals and between communities, and noted the implications for evolution of HLA polymorphism.

References

1. Coovadia, H. M., Wesley, A., Brain, P., Henderson, L. G., Hallett, A. F., Vos, G. H. Immunoparesis and outcome in measles. Lancet 1:619-621, 1977.
2. Mitus, A., Enders, J. F., Craig, J. M., Holloway, A. Persisterice of measles virus and depression of antibody formation in patients with giant-cell pneumonia after measles. N, Engl. J. Med. 261:882-889, 1959.
3. Haverkorn, M. J., Hofman, B., Masurel, N., van Rood, J. J. HL-A linked genetic control of immune response in man. Transplantation Reviews 22:120-124, 1975.
4. Jersild, C., Ammitzboll, T., Clausen, J., Fog, T. Association between HL-A antigens and measles antibody in multiple sclerosis [letter]. Lancet 1:151-152, 1973.
5. Black, F. L., Pinheiro, F. de P., Hierholzer, W. J., Lee, R. V. Epidemiology of infectious disease: the example of measles. In Health and disease in tribal societies. Elsevier, Amsterdam, 1977, p. 115-135.
6. Benacerraf, B., McDevitt, H. O. Histocompatibility-linked immune response genes. Science 175:273-279, 1972.
7. Dorf, M. E., Balner, H., Benacerraf, B. Mapping of the immune response genes in the major histocompatibility complex of the rhesus monkey. J. Exp. Med. 142:673693, 1975.
8. Marsh, D. G., Bias, w. B., Hsu, S. H. Association of the HL-A7 cross-reacting group with a specific reaginic antibody response in allergic man. Science 179:691-693, 1973.
9. Greenberg, L. J., Gray, E. D., Yunis, E. J. Association of HL-A 5 and immune responsiveness in vitro to streptococcal antigens. J. Exp. Med. 141:935-943, 1975.
10. Spencer, M. J., Cherry, J. D., Terasaki, P. I. HL-A antigens and antibody response after influenza A vaccination: decreased response associated with HL-A type W16. N. Engl. J. Med. 297:13-16, 1976.
11. McDevitt, H. O., Oldstone, M. B. A., Pincus, T. Histo-compatibility-linked genetic control of specific immune responses to viral infection. Transplantation Reviews 19:209-225, 1974.
12. de Vries, R. R. P., Fat, R. F. M. L. A., Nijenhuis, L. E., van Rood, J. J. HLA-linked genetic control of host response to Mycobacterium leprae. Lancet 2:1328-1330, 1976.
13. Morris, P. J., Pietsch, M. C. A possible association be-
tween paralytic poliomyelitis and multiple sclerosis [letter|. Lancet 2:847-848, 1973.
14. Bodmer, W. F. Evolutionary significance of the HL-A system. Nature 237:139-145, 183, 1972.
15. Ryder, L. P., Andesson, E., Svejgaard, A. [ed.]. HLA and disease registry: 3rd report. Munksgaard, Copenhagen 1979, p. 18-19.
16. de Vries, R. R. P., Kreeftenberg, H. G., Loggen, H. G., van Rood, J. J. In vitro immune responsiveness to vaccinia virus and HLA. N. Engl. J. Med. 297:692-696, 1977.
17. Coovadia, H. M., Wesley, A., Brain, P. Immunological events in acute measles influencing outcome. Arch. Dis. Child. 53:861-867, 1978.
18. Vaughan, V. C. Growth and development. In W. E. Nelson, V. C. Vaughan, and R. J. McKay [ed.]. Textbook of Pediatrics. 9th ed. Saunders, Philadelphia, 1969, p. 39-54.
19. Hainmond, M. G., Appadoo, B., Brain, P. HL-A antigens in Bantu and Indians. In F. Kissmeyer-Nielson [ed.]. Histocompatibility testing. Munksgaard, Copenhagen, 1975, p. 173-178.
20. Hammond, M. G., Appadoo, B., Brain, P. HLA in nonCaucasian populations. In W. F. Bodmer [ed.]. Histocompatibility testing. Munksgaard, Copenlagen, 1977, p. 407-408.
21. Terasaki, P. I., McClelland, J. D. Microdroplet assay of human serum cytotoxins [letter]. Nature 204:998-1000, 1964.
22. Brain, P., Cox, J., Duursma, J., Pudifin, D. J. T and B lymphocytes in three population groups. Clin. Exp. Immunol. 23:248-251, 1976.
23. Kreth, H. W.. ter Meulen, V., Eckert, G. Demonstration of HLA restricted killer cells in patients with acute measles. Med. Microbiol. linmunol. (Berl.) 165:203-214, 1979.
24. Perrin, L. H., Tishon, A., Oldstone, M. B. A. Immunologic injury in measles virus infection. III. Presence and characterization of human cytotoxic lymphocytes. J. Immunol. 118:282-290, 1977.
25. Coovadia, H. M. Recent advances in the understanding of measles. South African Journal of Hospital Medicine 6:143-148, 1980.
26. Dausset, J. Clinical implications (nosology, diagnosis, prognosis, and therapy). In J. Dausset and A. Svejgaard [ed.]. HLA and disease. Munksgaard, Copenhagen, 1977, p. 296-310.
27. Zinkernagei, R. M. Association of disease susceptibility to major histocompatibility antigens. Transplant. Proc. 11:624-627, 1979.
28. Thomsen, M., Morling, N., Platz, P., Ryder, L. P., Svejgaard, A. HLA and disease. Transplant. Proc. 11:633637, 1979.
29. Svejgaard, A., Platz, P., Ryder, L. P., Neilsen, L. S., Thomsen, M. HL-A and disease associations - a survey. -Transplantation Reviews 22:3-43, 1975.

HLA antigens in black South African children with rheumatic heart disease

I. E. harfejee*. M. G. hammond \dagger ani A. MOOSA*
 of Natal. Durban. South Africa and +Natal Institute of Immunology. Durhan. South Africa

Reccived: 24 November 1981

Abstract

SUMMARY The high incidence of rheumatic heart discase (RHD) in black South African children has been attributed mainly to poor socio-economic status and over-crowding. In order to elucidate whether other factors, in particular genetic, were responsible, the HLA-status of 61 black children with rheumatic heart disease was compared with that of 1165 normal controls. Overall, no differences were found, except a higher incidence of HLA-B25 and BW51 in the group with rheumatic heart disease, when the difference was not of statistical significance. Moreover, when the patients were considered in two groups, viz.. (a) a "surgical" group which required cardiac surgery and (b) a "non-surgical" group in which cardiac failure was absent or could be easily controlled by medical therapy, the difference between the two groups was also not of statistical sigrificance, though there was a higher incidence of HLA-A10 (which includes HLA-A25 and A26) in the "non-surgical" group.

These data appear to agree with the results of other studies which found no significant association between HLA-status and RHD.

Introduction

It is well recognized that the incidence of rheumatic heart disease (RHD) in South African blacks is high. In 1972 the Soweto survey showed a prevalence rate of 6.9 per 1000 black children between the ages of two and 18 years (1). Chesler ct al. working at Baragwanath Hospital, Johannesburg. found an incidence of acute rheumatic fever of the order of 10.6 cases per 1000 paediatric admissions over a period of three years, of whom 87%, had carditis (2). In a recent joint survey of hospital admissions for rheumatic fever carried out in Cape Town. Durban and Johannesburg (3). carditis was present in 70% of black children presenting with rheumatic fever for the first time.

It has also been noted by various authors that rheumatic heart disease is much more severe in the

[^43]black child, and tends to occur at a relatively younger age (4). In the Baragwanath study (2), 13.4\% were below five years of age. Most workers attribute the high incidence of rheumatic heart disease in developing countries to overcrowding and poor socioeconomic status: the truth of this is undisputed. However, some reports $(5,6)$ indicate that there may be a familial susceptibility to the acquisition of group A-haemolytic streptococci and of rheumatic fever. Stevenson and Cheeseman (7). in a study of 462 families with 2038 children, found that inheritance was an important factor in rheumatic fever but that it did not follow a Mendelian pattern. Others have found a higher incidence of ABO non-secretors in rheumatic subjects than among healthy school children (8). although the numbers were too small to warrant definite conclusions. A lower frequency of blood group O has also been reported in rheumatic children (8-10). Recently, attention has been focused on a possible association between acute rheumatic fever and/or rheumatic heart disease on the one hand
and histocompatibility antigens (HLA-antigens) on the other (11-17) (Table I). Since these antigens are genetically inherited, a strong association between a particular HLA-antigen and a specific disease might favour predisposition to that disease in individuals possessing such an antigen. It will be observed from Table I that such an association has not been consistently reported by previous workers.

Because of the high incidence of rheumatic heart disease in black South Africans and of the tendency for many of them to develop severe or advanced cardiac lesions early in life, it was thought that HLAtesting in this particular group of individuals might shed some light on the subject.

Definitions

Materials and methods

From 24 April 1979 to 1 May 1980, 61 children, aged five to eleven, were admitted to the general paediatric wards of King Edward VIII Hospital, Durban, with rheumatic heart disease. Fifty-three had active carditis according to the Modified Jones Criteria (18). In one carditis was thought to be probably active, in two there was complicating infective endocarditis and in the remaining five, without active carditis, there were established mitral valvular lesions due to well-documented previous attacks of rheumatic carditis. None of the children were related. Children with acute rheumatic fever without carditis were not included in the study. In only one case was there a family history of "heart disease". In 54 there was no family history of either rheumatic fever or rheumatic heart disease, and in six no family history could be obtained. Thirteen of the 53 children with active carditis were seen during their first attack of carditis, and in a further eight the attack was probably the first. In 23, an active carditis was superimposed upon claronic rheumatic heart disease, in three the attack was thought to be probably a recurrence, and in six we were unable to ascertain whether their carditis was caused by an initial attack or a recurrence (Table II). Thus, at the time of investigation at least 28 children (probably 31) had established rheumatic heart disease with valvular lesions. Informed consent for investigation was obtained from the parents, and, in some cases where the child was old enough, from the patient.

HLA-Typing

The patients were typed for HLA A-B-C antigens using 180 antisera in a two stage lymphocytotoxicity test (19). Lymphocyles were isolated on a

Ficoll-Hypaque density gradient (20). Typing was for the following antigens: HL^-A1, 2, 3, 11, 25, 26, 28, 29; AW23, AW24, AW30, AW31, AW32 and AW33; HLA-B7, 8, 13, 14, 15, 17, 18, 27, 37; BW16. BW21, BW22, BW35, BW41, BW42, BW44, BW45. BW46, BW51, BW52, BW53, BW60 and BW61; and CW1, CW2, CW3, CW4 and CW5 (a total of 42 antigens).

The HLA antigen frequencies in 61 patients were compared with those in a healthy control population consisting of randomly chosen blood donors and staff, many of whom were typed for International Workshops (21,22). All the patients and controls were typed in the laboratories of the Natal Institute of Immunology using standardized National Institute of Health technique (23). The Negro population of Durban consists mainly of Zulus and the patients and controls studied by us were of pure descent. Comparisons of HLA frequencies in children and adults show no significant differences (24). The same applies to sex $(25,26)$ and to place of residence, i.e. whether rural or urban (27).

Statistical methods

HLA antigen frequencies in patients and controls were compared using the Chi square (χ^{2}) test. Yates' correction was used when expected values were less than four. The resulting probabilities were corrected (for multiple testing) by multiplying by the number of comparisons made, i.e. the number of different antigens tested. 5% was taken as the level of significance.

Results

Clinical data:

(i) Age of children: Figure 1 shows the age distribution of the 61 children; the peak at seven to nine years of age is in keeping with the findings of Nadas and Fyler (28). There was, however, an appreciable proportion of cases in the five to six year age group.
(ii) Sex: There were 34 males and 27 females, giving a male-to-female ratio of $1 \cdot 3: 1$.
(iii) Urban vs. rural place of residence: Thirty-two (52.5%) children came from rural areas and 29 (47.5%) from urban homes. The relatively large percentage of children from rural areas can probably be explained by the fact that King Edward VIII Hospital is a referral hospital serving the whole of Natal and K waZulu and that many cases are referred from outlying peripheral hospitals in the rural areas: overcrowding in rural huts is probably an additional lactor.

Table I HLA studies in patients with rheumatic fever or rheumatic heart disease, acquired valvular disease and cardiomyopathy

Authors	Race of patients	No. of patients	Disease	No. of HLA antigens tested	Findings
Falk J. A. et al. (11)	Caucasian (8 non-Caucasian)	76	*Rheumatic fever and/ or Rheumatic heart disease	17	\downarrow A 3
Caughey D. E. el al. (12)	(a) Caucasian	50	- Rheumatic fever \pm R.11.D.		$\downarrow \mathrm{A} 28 \quad \mid \mathrm{BW} 17$
	(b) Maori	50	*Rheumatic fever \pm R.II.D.	18	$\dagger \mathrm{A} 3 \quad \dagger \mathrm{B8} ; \quad \downarrow \mathrm{Al0}$
Leirisalo M. et al. (13)	Caucasian	109	Rheumatic fever (38% had Carditis) R.H.D.	24	†BW35 No association
Joysey V. C. et al. (14)	Caucasian	94	R.H.D.	21	1BW IS when compared to I group of controls but not when compared to 2 other control groups
Ward C.et al. (15)	Caucasian	58	Acquired valvular disease (i) No history of rheumatic fever (ii) With history of rheumatic fever	27	\dagger AW 30/31, ¢A29 No association
Murray G. C. et al. (16)	Caucasian (Mexican- American)	49	Rheumatic fever with arthritis Carditis in only 18% cases	32	No association
Matsumori A. et al. (17)	Japanese	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	Rheumatic heart disease Cardiomyopathy	22	No association ? some role in familial cases

*Percentage with carditis not mentioned

Table II Summary of cases admitted with active carditis

Active carditis: first attack 13
Active carditis: probable first attack 8
Active carditis superimposed on chronic RHD 23
Active carditis in patients with probable chronic RHD
Active carditis (uncertainty re first or repeat attack)
Total number of cases with active carditis
(iv) Other major manifestations of rheumatic fever: Of the 53 children with active carditis, only seven had associated polyarthritis, five rheumatic nodules, and three Sydenham's chorea either in the past or on subsequent admissions to hospital. No child had erythema marginatum. Sixteen children had joint pains only, without clinical evidence of arthritis, and four others gave a history of joint pains in the past.
(v) Cardiac lesions: The valvular lesions are summarised in Table III. It will be noted that mixed mitral valve disease accounted for 60% of the cases. Mitral stenosis, either as an isolated lesion or as the

Figure 1 Age incidence of black children with rheumatic heart discease (King Edward VIII Hospital, 24 April 1979 to 1 May 1980).
domiinant lesion in mixed mitral valve disease, was
present in 16% of the patients. This figure is much higher than that quoted by others (29). Pericarditis, as manifested by a friction rub, was present in eight (14.7%) of the 61 children.
(vi) Cardiac failure: $51(83.6 \%)$ of the 61 children were admitted in cardiac failure. Of these, nine had left ventricular failure, the remainder biventricular failure.
$\ln 21$ of the 51 patients with cardiac failure, active carditis was responsible; these patients later recovered when a negative C-reactive protein and return of a previously elevated ESR to normal indicated cessation of active carditis. In seven additional children on admission failure was precipitated by exertion: but subsequently when haemodynamic problems developed failure became persistent. In the remaining 23 children (of whom 13 had active carditis superimposed upon chronic rheumatic heart disease), failure was considered to be the result of haemodynamic disturbance caused by the valvular lesions. Cardiomegaly, as evidenced by a cardio-thoracic ratio of more than 0.50 on an antero-posterior chest radiograph, was present in $56(91.8 \%$) of the children. The vast majority of these, on admission (38 cases, or 62% of the total) had a cardio-thoracic ratio greater than 0.60 .

Table III Valvular lesions

Mixed mitral (Drominant mitral incompetence)	31
Mixed mitral (Dominant mitral stenosis)	6
Pure mitral incompetence	4
Pure mitral stenosis	4
Combined mitral and aortic incompetence	15
Aortic incompetence alone	1
Total	-

HLA-Studies

(i) Frequency: Table IV shows the percentage frequency of HLA A-B-C antigens in black Soutlt African children with rheumatic heart disease, compared with 1165 controls. A higher frequency of HLA-A25, A10 and BW51 was found in children with rheumatic heart disease, but the differences were not statistically significant (after correction).
(ii) Presence of only a single antigen at either the A or B locus: The number of children with only one detectable antigen at the A or B locus was compared with the control population (Table V). Again, no significant differences were shown, indicating that homozygosity for a particular HLA-antigen does not

Table IV Percemage frequency of HLA antigens in South, African negro children with rhoumatic heart discase and/or rherumatic carditis

HLA	$\begin{aligned} & \text { Control } \\ & 1165 \end{aligned}$	RHD/ Carditis 61	HLA	$\begin{gathered} \text { Control } \\ 1165 \end{gathered}$	$\begin{gathered} \text { Carditis } \\ 61 \end{gathered}$
A1	6.4	9.8	B7	18.2	21.3
A2	21.2	16.4	138	13.7	11.5
A3	13.2	11.5	B13	4.5	0
All	0.1	0	B14	5.8	4.9
AW23	18.5	19.7	B15	5.1	1.6
AW24	3.9	3.3	BW16	2.5	$3 \cdot 3$
A25	15.2	$24.6{ }^{1}$	817	38.8	41.0
A26	8.7	11.5	B18	4.6	8.2
A 10	23.9	$36.1{ }^{2}$			
A28	20.9	18.0	BW21	10	1.6
A 29	16.3	8.2	BW22	0	0
AW30	37.7	37.7	B27	$0 \cdot 3$	1.6
AW3I	9.5	8.2	BW35	6.2	4.9
AW32	$2 \cdot 1$	0	B 37	0	0
AW33*	2.7	1.6	BW41*	1.1	1.6
			BW42	24.6	23.0
Only 1 A antigen delected	26.1	29.5	BW44	15.8	14.8
	26.1	29.5	BW45	7.7	6.6
			BW46	0	0
CW1	$1 \cdot 2$	0	BW5I	1.7	$6 \cdot 6^{3}$
CW2	14.6	21.3	BW 52	0	0
CW3	8.8	6.6	BW53	$1 \cdot 3$	$3 \cdot 3$
CW4*	18.2	18.0	BW60	1.6	1.6
CW5*	1.7	$3 \cdot 3$	BW61	0	0
			Only I B anligen delected	45.8	42.6

RHD $=$ Rheumatic heart disease.

* Number of controls $=165$.
${ }^{1} x^{2}=3.9 P<0.05$ (uncorrected).
${ }^{2} \gamma^{2}=4.7 P<0.05$ (uncorrected).
${ }^{3} \chi^{2}=4.8 P<0.05$ (uncorrected).

Table V HLA and rheumatic heart disease/carditis patient with only a single detectable antigen at the A or B locus

	Controls $n=1165$ $\%$	RHD/Carditis $n=61$ $\%$
One HLA-A Antigen	26.1	29.6
One HLA-B Antigen	45.8	42.6

(No significant difference).
appear to be a factor in the predisposition rheumatic heart disease.
(ii) HLA-status in relation to severity of valuule lesions: The higher incidence of HLA-A25 in tt patients with rheumatic heart disease, though nc statistically significant, was further analysed accore

Table VI HLA-A25 and A26 in rheumatic heart disease (percentage frequency)

Normal controls	RHD "surgical".	RHD/carditis "non- surgical"	
IHLA-Antigen	$n=1165$	$n=19$	$n=42$ $\%$
A25	15.2	10.5	31.0^{*}
A26	8.7	5.3	14.3
A10	23.9	15.8	$45.3 \dagger$

Comparison with controls: * $x^{2}=7.7 \quad P<0.01 \quad$ (uncorrected).
$+y^{2}=10.2 \Gamma<0.005$ (uncorrected).
ing to the severity of the cardiac lesions. The children were subdivided into two groups, viz.
(a) Λ "surgical" group consisting of 19 children who required cardiac surgery due to severe haemodynamic problems. In 13 of them surgery was carried out after the acute carditis had subsided, the cause for the failure being residual valve disease. Three died before surgery could be performed; and the remaining three, though booked for surgery did not turn up.
(b) A "non-surgical" group which included all children without any haemodynamic problems and not in cardiac failure, as well as those who were in failure but were adequately controlled by medical means alone.

As shown in Table VI, though there was a much higher incidence of HLA-A25 and A26 (together known as HLA-A10) (30) in the "non-surgical" than in the "surgical" group, the difference was not statistically significant.

Discussion

A number of workers ($11-17$) have tried to show possible associations between HLA-status on the one hand and rheumatic fever and/or rheumatic heart disease on the other. As Table I shows, the results have been conflicting. This could be due to one or more of the following (16):
(a) Variation in patient selection: some workers grouped acute rheumatic fever (with or without carditis) and rheumatic heart disease together; others studied patients with acute rheumatic fever only. One study included heart disease prestmed to be due to rheumatic fever. We included only children with heart disease due either to well-documented
rheumatic Cever in the past or to active rheumatic carditis. Children with acute rheumatic fever but without carditis were excluded.
(b) Possible lack of racial homogeneity: it is known that certain HLA-associations are stronger in some races than in others, notably the association between HLA-B27 and ankylosing spondylitis, in which the frequency of this antigen in whites with this disease is 94% and in blacks only 48%. All our patients were black.
(c) The use of too few specific antisera in identifying the HLA-antigens, as well as the presence of cross-reacting antibodies: these can result in errors in detection of HLAantigens and in an inability to identify the total HLA-antigen complement on the cell surface. We used 180 antisera in this study.

Our results do not show any definite associations between rheumatic heart disease and HLA-status, though we found a higher incidence of HLA-A 25 and BW51 in our patients with rheumatic heart disease and carditis. Moreover, we found that the incidence of HLA-A 10 (which includes A25 and A26) (30), was higher, albeit not significantly, in the patients whose lesions were classified as "non-surgical" than in those with gross haemodynamic problems due ț lesions severe enough to warrant surgery. Thus on the figures obtained, it appears that there is no definite association between HLA-status and RHD, with or without active carditis, although there seems to be a trend towards a high incidence of HLA-A25 in that condition. A larger series might clarify the significance of this observation.

The incidence of only one detectable antigen at either A or B locus in patients with RHD was no different from that in the control population (Table V). Homozygosity for any particular HLA-antigen, therefore, is not likely to be a factor in the increased predisposition to RHD in the black South African child. This finding is at variance with that of Falk et al. (11) who found that the number of antigens detected on lymphocytes from rheumatic patients was significantly lower than that found on cells from non-rheumatic individuals, the majority of their patients, however, were of Caucasian origin.

Finally, the propensity for the black African child to develop RHD at an early age, with a high incidence of severe valvular lesions, is confirmed in this study. Overcrowding and poverty, the root causes of this malady, appear far more important than genetic
factors, although the latter cannot be excluded altogether as HLA-antigens at the D locus, and some at the C locus, were not tested for in this study.

The financial assistance given to IEH and AM by the South African Medical Research Council is gratefully acknowledged.

References

(I) McLaren MJ, Hawkins DM, Koornhof HJ et al. Epidemiology of rheumatic heart disease in black children of Soweto, Johannesburg. Br Med J 1975; 3: 474-7.
(2) Chesler E, Levin S, du Plessis L, Freiman I, Rigers M , Joffe N . The pattern of rheumatic heart disease in the urbanised Bantu of Johannesburg. S Afr Med J 1966; 40: 899-904.
(3) Winship WS. Personal communication, 1978.
(4) Schrire V. The racial incidence of heart disease at Groote Schuur Hospital, Cape Town. Part II. Hypertension and valvular disease of the heart. Am Heart J 1958; 56: 742-60.
(5) Wilson MG, Schweitzer MD, Lubschez R. The familial epidemiology of rheumatic fever: genetic and epidemiological studies. I. Genetic Studies. J Pediatr 1943; 22: 468-92.
(6) Wilson MG, Schweitzer M. Pattern of hereditary susceptibility in rheumatic fever. Circulation 1954; 10: 699-704.
(7) Stevenson AC, Cheeseman EA. Heredity and rheumatic fever: a study of 462 families ascertained ${ }^{\text {h }}$ by an affected child and 51 families ascertained by an affected mother. Ann Eugen London 1953: 17: 177-210.
(8) Clark CA, McConnell RB, Sheppard PM. ABO blood groups and secretor character in rheumatic carditis. Br Med J 1960; 1: 21-3.
(9) Glynn LE, Holborrow EJ. Relation between blood groups, secretor status and susceptibility to rheumatic fever. Arthritis Rheum 1961; 4: 203-7.
(10) Buckwalter JA, Neifeh GS, Auer JE. Rheumatic fever and the blood groups. Br Med J 1962; 2: 1023-7.
(1I) Falk JA, Fleischman JL, Zabriskie JB, Falk RE. A study of HLA antigen phenotype in rheumatic fever and rheumatic heart disease patients. Tissue Antigens. 1973; 3: 173-8.
(12) Caughey DE, Douglas R, Wilson W, Hassal IB. HLA-anligens in Europeans and Maoris with rheumatic fever and rheumatic heart disease. J Rheumatol 1975; 2: 319-22.
(13) Leirisalo M, Laitinen O, Tiilikainen A. HLA phenotypes in patients with rheumatic fever, rheumatic heart diseases and Yersinia arthritis. J Rheumatol (Suppl 3) 1977; 4: 78-83.
(14) Joysey VC, Roger JH, Ashworth F. et al. Parallel studies of HLA antigens in patients with
rheumatic heart disease and schleritis: comparisons with three control populations. J Rheumatol (Suppl 3) 1977; 4: 84-88.
(15) Ward C. Gelstorpe K, Doughty RW, Hardisty CA. HLA antigens and acquired valvular heart diseases. Tissue Antigens. 1976; 7: 227-31.
(16) Murray GC, Montiel MM, Persellin RH. A study of HLA antigens in adults with acute rheumatic fever. Arthritis Rheum. 1978; 21:6526.
(17) Matsumori A, Hirose K, Wakabayashi A. et al. HLA in hypertrophic cardiomyopathy and rheumatic heart disease. Japanese Circulation J. 1979; 43: 445-9.
(18) AdHoc Committee of the Council on Rheumatic Fever and Congenital Heart Disease: Jones criteria (revised) for guidance in the diagnosis of rheumatic fever. Circulation 1965; 32: 644.
(19) Terasaki PI, McClelland JD. Microdroplet assay of human serum cytotoxins. Nature 1964; 204: 998.
(20) Boyum A. Separation of leucocytes from blood and bone marrow. Scand J Clin Lab Invest 1968; 21: 97.
(21) Hammond MG, Appadoo G, Brain P. HLA antigens in Bantu and Indians. In: KissmeyerNielsen F. (ed) Histocompatibility Testing. Copenhagen: Munksgaard, 1975; 173-8.
(22) Hammond MG, Appadoo G, Brain P. HLA in non-Caucasian populations. In: Bodmer WF. (ed) Histocompatibility Testing. Copenhagen: Munksgaard, 1977; 407-8.
(23) Brand DL, Ray JG, Hare DB; Kayhoe DE, McClelland JD. Preliminary trials towards standardisation of leucocyte typing. In: Terasaki PI (ed) Histocompatibility Testing. Copenhagen: Munksgaard, 1970; 357.
(24) Coovadia HM, Wesley A, Hammond MG, Kiepiela P. Measles, histocompatibility leucocyle polymorphism, and natural selection. J Infect Dis 1981; 144: 142.
(25) Hammond MG. Unpublished data.
(26) Hammond MG, Appadoo G, Brain P. HLA and cancer in South African Negroes. Tissue Anligens 1977: 9: 1.
(27) Hammond MG. Personal communication.
(28) Nadas AS, Fyler DC. Paediatric Cardiology 3rd ed. Philadelphia: W. B. Saunders Company. 1972; Chapter 7.
(29) Aryanpur I. Naxarian I, Siassi B. Chapter 34: Rheumatic Heart Disease in developing countries. In: Moss AJ, Adams FH and Emmnouilides GC. (eds) Heart Disease in Infants, Children and Adolescents 2nd ed. Baltimore: Williams and Wilkins Company. 1977.
(30) World Health Organisation: I.U.I.S. Terminology Committee. Nomenclature for factors of the HLA system. In: Bodmer (ed) Histocompatibility Testing. Copenhagen: Munksgaard, 1977.

Male transmission of the gene for isolated gonadotropin-releasing hormone deficiency

Robert J. Norman, M.D.*
Kogie Reddi, M.B., Ch.B.* \dagger
Amanda Richards, M.B., Ch.B. \ddagger
Michael G. Hammond, Ph.D.§
Septimus M. Joubert, M.Sc., M.B., Ch.B.*
South African Medical Research Council Preclinical Diagnostic Chemistry Research Unit, University of Natal, Congella, and The Natal Institute of Immunology, Durban, Republic of South A/rica

Abstract

Three black women, daughters of the same father but three unrelated mothers, presented with isolated gonadotropin deficiency (IGD). Clinically, the patients had no midline defects and intact smell and taste senses. Biochenically, the essential feature was very low unstimulated and stimulated follicle-stimulating hormone and luteinizing hormone levels, even after priming with gonadotropin-releasing hormone ouer a 5-day period. Growth hormone response to insulin-induced hypoglycemia was somewhat blunted, but prolactin, cortisol, and thyroid-stimulating hornone responses were quite normal. All three patients had the $46, X X$ karyotype; clinical or biochemical aberrations could not be demonstated in any of the remaining family members. The disorder was, apparently, transmitted by the deceased father, who manifestly did not have an IGD deficiency nor any of the midline stigmata associated with IGD. The mode of inheritance seems most likely to be autosomal dominant with variabte. penetrance. Fertil Steril 43:225, 1985

The syndrome of isolated gonadotropin deficiency (IGD), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) has been well characterized in terms of the clinical and endocrine presentation. ${ }^{1,2}$ It is now generally recognized that the syndrome is the result of a congenital deficiency of hypothalamic gonadotropin-releasing hormone (GnRH). Kallman et al. ${ }^{3}$ first drew

Received March 2, 1984; revised and accepted September 24, 1984.
*Soutlı African Medical Research Council Preclinical Diagnostic Chemistry llesearch Unit, Department of Chemical Pathology, University of Natal.
\dagger Reprint requests: Dr. K. Reddi, Department of Chemical Pathology, University of Natal, P.O. Box 17039, Congella 4013, South Africa.
\ddagger Department of Obstetrics and Gynecology, University of Natal.
§Natal Institute of Immunology.
attention to an occurrence of the syndrome in three kindreds. Subsequently, reports suggested that the disorder was transmilled by female carriers to male offspring. ${ }^{4}, 5$
In this article, a black fimily is reported in which a father had three apparently affected daughters by three unrelated mothers.

Three half sisters presented to the gynecologic endocrine clinic within 12 months with delayed puberty and primary amenombea. They had the same father, but each had a different unrelated mother (Fig. 1).

CASE REPOIRTS

CASE I (11.6)

N. N. first presented to the gynecologic clinic at the age of 18 with primary imenorrhea and un-

Norman et al. Male transmission of gene for IGD

Figure 1
HLA status of family members studied. The probable HLA status of the decensed father was based on those of the children begotten by mother I.1.
derwent laparoscopy; an infantile uterus and normal ovaries and fallopian tubes were found. She was seen again at the age of 28 , when she was noted to be eunuchoid (arm span greater than height by 8 cm). There was scanty pubic and axillary hair, and breast development was retarded.

CASE 2 (II.1)

G. N. presented for the first time at the age of 20 with amenorrhea, no breast development, and scanty pubic and axillary hair and was also eunuchoid.

CASE 3 (II.7)

P. N. was 25 years old when she was seen at the clinic with features similar to those of patients 1 and 2.
There were no midline facial defects or anosmia in any patient. X-rays of the skull and ophthalmologic examination were normal in all three patients.

Unstimulated LH and FSH levels were less than the reference range in all three patients (reference range, LII, 3.5 to $30 \mathrm{mIU} / \mathrm{ml}$; FSH, 3 to $16 \mathrm{mIU} / \mathrm{ml}$). Plasma estradiol was low in all three patients (reference range, 30 to $80 \mathrm{pg} / \mathrm{ml}$).

There was no withdrawal bleeding after medication with medroxyprogesterone acetate (Provera, The Upjohn Company, Kalamazoo, MI), 15 $\mathrm{mg} /$ day for 5 days, but the patients did bleed on Ovral (0.05 mg ethinyl estradiol, 0.5 mg norgestrel; Wyeth, Isando, IRSA) withdrawal after 21 days of medication.

GnRH, $100 \mu \mathrm{~g}$, thyrotropin-releasing hormone (TRH, $200 \mu \mathrm{~g}$), and insulin tolerance tests (insulin, 0.1 to $0.15 \mathrm{U} / \mathrm{kg}$ body weight) were performed in all three patients. In addition, GnRH ($100 \mu \mathrm{~g}$) was given subcutaneously for 5 days, and the intravenous stimulation was repeated at the end of the period of priming. The GnRH test was also performed on all available nonaffected members of the family. Unfortunately, two of the mothers (I. 2 and I.3) were not available to be studied, and the father had died in 1980 of an unknown cause. Human leukocyte antigen (HLA) typing was performed as published previously. ${ }^{6}$

RESULTS

The genetic relationships and HLA status of each patient are shown in Figure 1. Each patient allegedly had the same father but a different mother (I.1, 2, 3). The presumed HLA status of the father was determined by study of the family members II. 1 to 5 . It is obvious from Figure 1 that the disorder is not linked to HLA type, and the disorder appeared to be transferred from father to daughters.
The results of the GnRH test in patients and relatives are shown in Tables 1 and 2. Although two of the affected patients demonstrated an increased response of LH to stimulation after priming, these values did not reach the reference "range concentrations for unaffected patients in the follicular phase of the cycle. Thyroid function was normal in the three patients, and dynamic testing of the hypothalamic-pituitary axis showed

Table 1. FSH and LH (Ull) Before and After-Injection of GnRH ($100 \mu \mathrm{~g}$)

Patient ${ }^{\text {a }}$	FSII					1.11				
	$-15 \mathrm{~min}$	0 min	15 min	30 min	60 min	$-15 \mathrm{~min}$	0 min	15 min	30 min	60 min
N. N. 3										
Pre	2.0	2.4	4.4	5.4	5.7	<3	<3	3.5	4.5	3.8
Post	2.0	2.2	1.4	2.0	1.3	<3	<3	14.0	17.0	9.6
G.N. ${ }^{\text {N. }}$										
Pre	<1.6	<1.6	3.2	6.1	8.1	<3	<3	4.1	3.2	< 3
Post	2.1	<1.6	3.5	5.9	7.1	<3	<3	7.6	12.0	12.8
P. M.										
Pre	<1.6	<1.6	<1.6	<1.6	<1.6	<3 <3	<3 <3	<3 <3	<3	<3
Post	<1.6	<1.6	<1.6	<1.6	<1.6	<3	<3	<3	<3	<3

${ }^{a}$ Pre, test done before priming; Post, test done after priming with $100 \mu \mathrm{~g}$ GnRH daily for 5 days.
normal responses to insulin-induced hypoglycemia and TRH stimulation. Serum and urine osmolality levels indicated that the posterior pituitary function was normal.

Prestimulation gonadotropin concentrations and levels after GnRH stimulation in other nembers of the family are shown in Table 2. Mother (I.1) is postmenopausal, and one of her daughters (II.2) was pregnant. Patient II.5, although 12 years old and prepubertal, had a normal adult pattern increase of FSH and LH.

All family members had a karyotype appropriate to the phenotypic sex.

DISCUSSION

In the present study, the probable HLA status of the deceased father was based on those of the children begotten by the mother 1.1 in Figure 1. The HLA typing of the two daughters born to mothers 1.2 and I.3, respectively, is consistent with the haplotype assigned to the presumed father: Objective evidence supporting the paternity claim of patients II. 6 and II.7, therefore, exists. If this is correct, this family is probably unique in-
asmuch as it demonstrates that the disorder can be transmitted by a male to his daughters without manifestly expressing the disorder himself. As far as could be ascertained, the father did not have other associated features of IGD, such as midline defects. It was not possible to establish whether subtle features, such as anosmia or hyposmia, were present in the deceased father.

Other studies ${ }^{5.7}$ have shown more than one member of the same family alfected by IGD, and in the majority of recorded instances female to male transmission appeared more likely. In the two kindreds described by Santen and Paulsen, ${ }^{5}$ male to male transmission of anosmia was clearly demonstrated, but they did not unequivocally show transmission of IGI). In both these families, male to male transmission, Hierefore, clearly excludes an X-linked condition.

In the present study tho mode of inheritance seems most likely to be autusontal dominant with variable penetrance. 'This is supported by the absence of the syndrome in patients II. 2 and II.5, coupled with the disorder being milder in the father and of varying severity in the three affected daughters. Autosomal recessive inheritance is

Table 2. FSH and LH (UII) in Members of the Family Shown in Figure 1^{n}

Case	FS11					1.11				
	$-15 \mathrm{~min}$	0 min	15 min	30 min	60 min	$-15 \mathrm{~min}$	0 min	15 min	30 min	60 min
$\begin{aligned} & 1.1 \mathrm{IJ.N.} . \\ & 47 \mathrm{yrs}) \end{aligned}$	153.2	73.1	187.0	157.7	223.0	110.1	107.3	$\because 200$	>200	>200
11.2 G. N. 20 yrs)	Pregnant					\bullet				
$\begin{aligned} & 11.3 \text { (G. N.. } \\ & 17 \mathrm{yrs}) \end{aligned}$	8.2	6.4	10.0	12.0	12.4	7.1	12.2	--	40.0	39.0
$\begin{aligned} & \text { H. } 4 \text { (G. N., } \\ & 15 \mathrm{yrs} \text {) } \end{aligned}$	6.0	4.4	6.t	7.1	8.6	- 7.0	5.5	40.8	42.6	32.4
$\begin{gathered} 11.5 \text { (C. N., } \\ 12 \mathrm{yrs}) \end{gathered}$	17.5	15.0	30.0	26.3	25.6	12.0	16.2	96.1	66.0	59.0

"GuRH ($100 \mu \mathrm{~g}$) was injected intravenously at time 0 .
most unlikely, because the thre mothers are unrelated. There is no aridence of HLA linkage of IGD in this study.

The present studs. Chorefore, confirms the heterogeneity of the symbume of IGD, in that the youngest affected patienl 11.11 was more severely affected than the ofore lwo. boh in terms of clinical features and the response to (inlill before and after priming of the piluitary gland. However, none of the patients showed iny of the associated features of anosmia, cleft palate, and hare lip; the present family may, indeed, have a condition unrelated to that of some of the patients reported in other series.

REFERENCES

1. Boyar RM. Finkelstein JW, Witkin M, Kapen S. Weitz. man E. Hellman L: Studies of endocrine function in "isolated" genadetropin deficiency. Metabolism 36:61. 1973
2. Spitz IM, Diamant Y, Rosen E, Bell J, Ben havid M. Polishuk W. Rabinowitz D: Isolated gonalolmpin deficiency. N Eingl J Med 291:10, 1974
3. Kallman FJ. Schoenfeld WA, Barrera SE: Ther penetir aspects of primary eunuchoidism. Am .J Mrot brfic 48:204. 19.14
4. Le Mamuand HS: Congenital hypogonadntropic hypugenadísm in five members of a family. Proc If Soc Med 47:4.12. 1954
5. Santen i2]. Paulsen CA: Hypogonadotropic hepogonadism: clinical study of mode of inheritance. J Clin Endocrinol Metal 35:.47, 1973
6. Hammond MC', Asmal AC', Omar MAK: H1A Isping and insulin-dependent diabetes in South African Negroes. Dialsetologia 19:101, 1980
7. Sparkes IRS, Simpson RW. I'aulsen CA: Familial hepmgn nadotropic hepogonadism with anosmia. Arch hutern Med 121:534, 1968

Associations between HLA Antigens and Nephrotic Syndrome in African and Indian Children in South Africa

M. Adhikari ${ }^{\mathrm{a}}$, H.M. Coovadia ${ }^{\text {a.b }}$, M.G. Hammond ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Paediatrics and Child Health, Medical School, University of Natal, and ${ }^{\mathrm{h}}$ Natal Institute of Immunology, Congella, South Africa

Key Words. Nephrotic syndrome • HLA associations • Children, Indian, African

Abstract

The nephrotic syndrome (NS) reported from Southern Africa is distinguished by unusual characteristics in African children and typical features among Indian children. A genetic basis for these differences is explored in 44 African and 33 Indian children with NS in this paper. HLA associations were detected in the 20 Indian children with minimal change NS (MCNS) and 12 African children with membranous NS. Previous studies of HLA antigens, which have all been performed on Caucasian children with MCNS or steroid-responsive NS (SRNS), have detected associations with HLAB and DR locus genes. In this report HLA Bw44, which is part of HLA BI2, was found to be significantly more frequent in Indian children with MCNS or SRNS than in controls (45 and 12%, respectively, $\mathrm{p}<0.04$; relative risk 5.8). In contrast, African children with membranous nephropathy had a significantly increased frequency of HLA Bw2l (15% in patients and 1% in controls, $\mathrm{p}<0.04$; relative risk 22.1). $\mathrm{HB}_{5} \mathrm{Ag}$ was positive in 9 of 11 patients tested in the latter group. We conclude that the interaction between heredity and environmental factors is central to the pathogenesis of membranous nephropathy and similar considerations may be important in the development of MCNS.

Introduction

The spectrum of nephrotic syndrome (NS) in Durban, South Africa, offers a study in contrasts between the expected pattern of the disease as seen in children in most parts of the world and that peculiar to African children in the non-malarious zones of Africa [l].

The former is illustrated by Indian children, the majority of whom have typical minimal change nephrosis (MCNS). In comparison, African children have 'obvious' glomerular lesions, of which one of the commonest types is membranous nephropathy. The aetiology is unknown in the majority of these children except for a likely causal relationship between $\mathrm{HB}_{5} \mathrm{Ag}$ and membranous NS [2-4]. Significant associations have been detected between specific HLA antigens and MCNS [5], steroid-responsive NS (SRNS) [6-8], with [8, 9], and without [5, 7, 9], atopy and focal glomerulosclerosis [10]. We therefore investigated a possible genetic predisposition to the development of discrete categories of NS in Indian and African children in South Africa.

Patients and Methods

HLA frequencies were determined in a total of 77 nephrotic children, of whom 33 were Indian and 44 African. The nephrotic syndrome was defined according to 3 criteria: hypo-albuminaemia ($<3 \mathrm{~g} / \mathrm{l}$), gross proteinuria ($>2 \mathrm{~g} / \mathrm{m}^{2} / 24 \mathrm{~h}$ or $3 \mathrm{~g} / 1$ on random samples) and severe oedema. Patients were routinely investigated for most of the known causes of the NS including the detection of $\mathrm{HB}_{s} \mathrm{Ag}$ by radio-immuno-assay. Steroid responsiveness was equated with MCNS in Indian children. This is in accordance with the practice adopted by other workers $[6,7]$ and was supported by the excellent outcome on follow-up (more than 5 years in all children).

Abstract

HLA Typing The patients were typed for HLA A, B and C specificities using 180 antisera in a two-stage lymplocytotoxicity test [11]. Lymphocytes were isolated on Ficoll-Hypaque density gradient. Differences in HLA frequencies were tested for significance with a χ^{2}-test (without Yates correction), and the resulting probabilities were corrected by multiplying by the number of antigens tested. The relative risk was calculated according to the method of Svejgaard et al. [12].

Controls

There were 952 African and 856 Indian normal adult controls.

Table I. Percentage frequency of individual antigens tested in the HLA complex in Indian minimal change nephrotic children and adult controls

HLA type	Controls ($\mathrm{n}=952$)	Patients ($\mathrm{n}=20$)
AI	28	30
A2	32	40
A3	14	10
All	27	15
Aw23	1	0
Aw24	29	15
A25	2	0
A26	7	0
A28	13	20
A29	1	0
Aw30	3	5
Aw31	3	0
Aw32	3	5
Aw33	10	25
One antigen	28	35
B7	13	15
B8	6	0
B13	7	10
B14	0.2	0
B15	10	30
Bw16	2	0
B17	21	20
B18	4	0
Bw21	2	5
Bw22	3	0
B27	2.	0
Bw35	20	20
B37	5	5
Bw41/7/8	0.2	0
Bw44 (12)	12	45*
Bw45 (12)	0.2	0
Bw51	19	10
Bw52	12	10
Bw53	1	0
Bw60	16	5
Bw61	15	20
Y	25	5

*Significant difference: corrected $p<0.04$.

The HLA distribution among neonates, infants and adults of the African subjects have been shown to be similar and conform to Hardy-Weinberg equilibrium [13].

Results

Of the 33 Indian and 44 African children, significant HLA associations were detected in 20 Indian children with MCNS and 12 African children with membranous nephropathy. Only these results will be presented. Four-

Table II. Percentage frequency of individual antigens tested in the HLA complex in African membranous nephrotic children and adult controls

HLA type	Controls ($\mathrm{n}=856$)	Patients ($\mathrm{n}=13$)
Al	6	8
A2	20	31
A3	13	0
All	0.2	0
Aw23	18	33
Aw24	5	0
A25	15	17
A26	9	8
A28	20	23
A29	18	23
Aw30	39	38
Aw31	8	8
Aw32	2	0
Aw33	1	0
One antigen	25	33
B7	19	4
B8	13	8
B13	4	0
B14	5	15
B15	5	8
Bwl6	3	0
B17	39 ,	31
B18	4	8
Bw21	1	15*
B27	0.4	0
Bw35	6	8
B37	0	0
Bw41/7/8	1	0
Bw42	25	0
Bw44 (12)	16	23
Bw45 (12)	8	0
Bw51	1	0
Bw52	0	0
Bw53	1	0
? 40	1	0
Bu	8	23
Y	37	15

*Significant difference: corrected $\mathrm{p}<0.04$.
teen of the Indian MCNS and II of the African membranous NS cases were males. The mean age of the Indian children was 4.9 years and Africans 8 years. All the African and 13 Indian children had renal biopsies and 7 of the Indian children were steroid sensitive. Nine of the 11 African patients with membranous nephropathy were positive for $\mathrm{HB}_{s} \mathrm{Ag}$.

The percentage frequency of individual antigens tested in the HLA complex in Indian MCNS and African membranous NS and their controls are shown in tables I

Table iII. Significant HLA associations

Race	HLA	Histological type	Corrected p	Relative risk
	Bw21	membranous minimal change	<0.04	22.1
Indians	Bw44			

Table IV. Studies of significant HLA associations with nephrotic syndrome: with special reference to relative risk

NS	HLA antigens	RR	Reference
SRNS	B12 (atopic)	-	Thomson et al. [9]
SRNS	AI, B8,(non-atopic)	-	Thomson et a. [9]
MCNS	B8	2.81	Nosset al. [5]
SRNS	B8	3.5	O'Regan et al. [7]
SRNS	DR7 (atopic)	4.4	de Mouzon-Cambonet al. [8]
MCNS	B13	4.65	Nosset al. [5]
MCNS	Bw44 (12)	5.8	present study
SRNS	DRw7	5.9	Alfiler et al. [6]
MEM	Bw21	22.1	present study

SRNS $=$ Steroid-responsive nephrotic syndrome; MCNS $=$ minimal change nephrotic syndrome; $\mathrm{MEM}=$ membranous; $\mathrm{RR}=$ relative risk.
and II, respectively. The frequency of HLA Bw44 was increased in Indian MCNS compared to controls (45 vs. 12%, respectively, $\mathrm{p}<0.04$; relative risk 5.8). The frequency of Bw2I was increased in African children with membranous nephropathy compared to healthy controls (15 vs. 1%, respectively, $\mathrm{p}<0.04$; relative risk 22.1). There were no significant association between HLA antigen frequencies and the other histological groups among either Indians and Africans. Number of patients in most of these sub-groups are, however, small. Results are summarised in table III. Table IV compares the relative risk of developing NS (MCNS or SRNS) with particular HLA frequencies documented in other reports. The current study reveals a relative risk for the development of MCNS in the Indian child, which is close to the highest reported, and an exceedingly high risk for developing membranous nephropathy in the African child.

Discussion

Previous studies of HLA associations and NS [5-9, 14] have all been performed on Caucasian children with MCNS or SRNS. Most of these studies report associa-
tions between NS and HLA B and DR locus genes, while some of these show that the relationships are more pronounced in the presence of atopy and occasionally correlate with response to therapy.

In different studies HLA BI2, HLA B8 and HLA DR7 have been significantly associated with SRNS. HLA BI2 and HLA DR7 have been assocjated with atopy in patients with this disease and a significant relationship was also detected between HLA B12 and a shortened remission after cyclophosphamide therapy.

In different races, different antigens are found in linkage disequilibrium. HLA B8 is in linkage disequilibrium with HLA DR3 [15] and HLA BI2 is in linkage disequilibrium with HLA DR7 in Caucasian populations [8]. The Indian population also shows linkage disequilibrium between these same antigens while in the African population different antigens are found in linkage disequilibrium [16].

We should perhaps note that the HLA BI2 antigen can be split into two parts, Bw44 and Bw45. The frequency of Bw45 in the Caucasian and Indian populations is so low that HLA Bw44 and HLA B12 can be regarded as synonymous. In the African population, however, the frequency of Bw45 is about 8% and HLA Bw44 is about $16 \%[16]$.

Alfiler et al. [6] found that the increased frequency of HLA DR7 was not accompanied by that of HLA BI2. In the present study the frequency of HLA Bw44 was significantly increased in Indian children with SRNS or MCNS (45% in patients vs. 12% in controls; $p<0.04$). The relative risk was 5.8. This means that the Indian child with HLA Bw44 is 5.8 times more susceptible to the development of MCNS as compared to an Indian child without HLA Bw44. This finding supports previous studies in Caucasian children $[8,9]$ in which an association with HLA B12 has been detected. Taken together, these results suggest that HLA DR7 (which was not tested in the current study) is probably the most important antigen in these relationships.

In contrast, the African children with membranous nephropathy had a significantly increased frequency of HLA Bw2l (15% in patients vs. 1% in controls; $p<0.04$). The relative risk in this group was 22.1. Therefore the African child carrying HLA Bw21 has a 22 -fold chance over a child without HLA Bw2l of developing membranous nephropathy. Caucasian adults with membranous nephropathy have been shown to have an increased frequency of DR3 [17]. There is good evidence to suggest that even within the same racial group, adult membranous nephropathy is dissimilar to the childhood form of the disease [17]. Therefore, our findings in African patients
cannot be compared with studies in these adults. In a previous publication, $\mathrm{HB}_{5} \mathrm{Ag}$ had been causally linked with membranous nephropathy in African patients [2]. The $\mathrm{HB}_{\mathrm{s}} \mathrm{Ag}$ has recently been regarded as an important cause of membranous nephropathy $[3,4]$. Some of these patients are included in this study: of 11 membranous patients tested, 9 were positive for $\mathrm{HB}_{s} \mathrm{Ag}$. The number of patients who were $\mathrm{HB}_{s} \mathrm{Ag}$ negative was too few to allow meaningful comparison in HLA frequencies between the two groups. The incidence of $\mathrm{HB}_{s} \mathrm{Ag}$ in Black adult males is 8.7%, females 3.9%, males $5-10$ years 20% and females $5-10$ years 21% [18] whereas in Indian technologists the incidence in the males was 0.85% and females 0.39% [19]. Figures are not available for Indian children. There is some evidence to suggest that there is a genetic predisposition to the development of $\mathrm{HB}_{\mathrm{s}} \mathrm{Ag}$ infection [20].

In brief, the association of Indian MCNS with Bw44 reinforces our earlier observation [1] that Indian children resemble other Caucasian children in nearly all respects for this disease. Further, the results obtained in African patients imply that there is a genetic susceptibility among children to the development of membranous nephropathy in response to $\mathrm{HB}_{5} \mathrm{Ag}$ infection. These conclusions suggest that both heredity and environment may be important in the pathogenesis of membranous nephropathy. It will be important to note whether the use of $\mathrm{HB}_{\mathrm{s}} \mathrm{Ag}$ vaccines will reduce complications, including membranous nephropathy, induced by this virus.

Acknowledgements

$H M C, M A$ and $M G H$ are in receipt of research grants from the Medical Research Council of South Africa. We wish to thank all our colleagues for their assistance with investigations of patients, and the Chief Medical Superintendent of King Edward VIII Hospital.

References

I Coovadia, H.M.: Adhikari, M.: Morel-Maroger, L.: Clinicopathological features of the nephrotic syndrome in South African children. Q. JI Med. 48:77-91 (1979).
2 Adhikari, M.; Coovadia, H.M.; Crystal, V.: Extramembranous nephropathy in Black South African children. Ann. trop. Paed. 3: 17-24 (1983).
3 Slusarczyk, J.: Michalak, T.; Nazarewicz-de Mezer, T.; Krawczyriski, K.; Nowoslawski, A.: Epimembranous glomerulonephritis associated with hepatitis B core antigen immune complexes. Am. J. Path. 98: 29-39 (1980).
4 Nagy, J.; Bajtai, G.; Brasch, H.: et al.: The role of hepatitis B surface antigen in the pathogenesis of glomerulopathies. Clin. Nephrol. 12: 109-116 (1979).

5 Noss, G.; Bachmann, H.J.; Olbing, H.: Association of minimal change nephrotic syndrome (MCNS) with HLA-B8 and B13. Clin. Nephrol. 15:172-174 (1981).
6 Alfiler, C.A.; Roy, L.P.; Doran, T.; Sheldon, A.; Bashir, H.: HLA DRw7 steroid responsive nephrotic syndrome of childhood. Clin. Nephrol. 14:71-74 (1980).
7 O`Regan, D.; O`Callaghan, U.; Dundon, S.; Reen, D.J.: HLA antigens and steroid responsive nephrotic syndrome of childhood. Tissue Antigens 16:47-51 (1980).
8 Mouzon-Cambon, A. de; Bouissou, F.; Dutau, G.; Barthe, P.H.; Parr, M.T.; Sevin, A.; Ohayon, E.: HLA-DR7 in children with idiopathic nephrotic syndrome. Correlation with atopy. Tissue Antigens 17:518-524 (1981).
9 Thomson, P.D.; Stokes, C.R.; Barratt, T.M.; Turner, M.W.; Soothill, J.F.: HLA antigens and atopic features in steroid responsive nephrotic syndrome of childhood. Lancet ii: 765-768 (1976).

10 Lenhard, V.; Dippell, J.; Müller-Wiefel, D.E.; Schröder, D.; Seidle, S.; Schärer, K.: HLA antigens in children with idiopathic nephrotic syndrome. Proc. Eur. Dial. Transplant. Ass. 17: 673-677 (1980).
11 Terasaki, P.I.; McClelland, J.D.: Microdroplet assay of human serum cytotoxins. Nature, Lond. 204:992-1000 (1964).
12 Svejgaard, A.; Platz, P.; Ryder, L.P.; Staub-Nielson, L.; Thomsen, M.: HLA and disease associations. Transplant. Rev. 22: 3-43 (1975).
13 Coovadia, H.M.; Wesley, A.G.; Hammond, M.; Kiepiela, P.: Measles, histocompatibility leukocyte antigen polymorphism and natural selection in humans. J. infect. Dis. 144: 142-147 (1981).

14 Trompeter, R.S.; Barratt, T.M.; Kay, R.; Turner, M.W.; Soothill, J.F.: HLA atopy, and cyclophosphamide in steroid responsive childhood nephrotic syndrome. Kidney int. 17: 113-117 (1980).
15 Bodmer, W.F.: Bodmer, J.G.: Evolution and function of the HLA system. Br. med. Bull. 34:309-316 (1978).
16 Terasaki, P.l.: Histocompatibility testing 1980, p. 955 (UCLA Tissue Typing Laboratory, Los Angeles 1980).
17 Mallick, N.P.; Short, C.D.; Manos, J.: Clinical membranous nephropathy (Editorial). Nephron 34: 209-219 (1983).
18 Vos, G.H.; Rose, E.F.; Marimuthu, T.: Hepatitis B antigen and antibodies in rural and urban Southern African Blacks. S. Afr. med. J. 57: 868-870 (1980).
19 Marimuthu, T.: Type B viral hepatitis in medical technologists. S.Afr. J. Med. Lab. Tech. 26:29-3I (1980).

20 Hillis, W.D.; Hillis, A.; Bias, W.B.; Walker, W.G.: Associations of hepatitis B surface antigenemia with HLA locus B specificities. New. Engl. J. Med. 296:1310-1314 (1977).

Accepted: January 16, 1985

Dr. M. Adhikari,
Department of Paediatrics and Child Health, Faculty of Medicine, University of Natal, PO Box 17039, Congella 4013 (South Africa)

Naito,S.*, Kong,F.H.**, Hawkins,B.R.***, Mehra,N.K.****, Serjeantson,S.W.***** and Hammond,M.G.******
*Department of Internal Medicine, Fukuoka University Medical School, Fukuoka Japan.
**North Tai Ping Road Hospital, Beijing, People's Republic of China.
Department of Pathology, Queen Mary Hospital Compound, Hong Kong. *Cellular Immunology Laboratory, Department of Anatomy, All India Institute of Medical Sciehces, New Delhi, India.
*****Jon Curtín School of Medical Research, Canberra, Australia. ******Natal Institute of Immunology, Durban, South Africa.

Introduction
Systemic lums arythematosus(SLE) is an autoimmune connective tissue disease that has shown associations with HLA antigens. Tiwari and Terasaki reviewed an overall increase in B8 and an association with DR2 and DR3 in Caucasians (1). A report by Hashimoto (2) showed a positive association with DR2 and another by Kameda (3) a negative association with DR4 in Japanese but these results were not confirmed yet. In this report, patients with SLE from various ethnic groups in the AsianOceania region were tested for HLA using the same set of typing sera to find out whether HLA was associated with SLE or not.

Materials and Methods
The HLA types of 46 Japanese, 26 Northern Chinese, 82 Southern Chinese and 23 Northern Indian patients were determined. In addition 15 Australian Caucasoids, 8 African Black, one Sichuan Chinese and one Southern Indian were determined during the 3rd AOH Workshop. The diagnosis of SLE was made according to the reviced criteria of the American Rheumatism Association (4). The frequency of each antigen in the patienl. groups was compared with that of normal controls in the corresponding ethnic group. Calculation were done only in Japanese, Northern Chinese, Southern Chinese and Northern Indian, because of the small number of patients in other ethnic groups. A subgroup of Japanese patients with nephritis (lupus nephritis ; LN) was also analysed. HLA Class III antigens were determined in the Japanese patients by Dr. Serjeantson and compared with those of Japanese normal controls. The statistical significance of the difference in frequency of each HLA antigen between patiens and controls was determined by chi square calculation and P value was corrected (PC) by multiplying by the number of tested antigens. Relative risk (RR), etiologic fraction (EF) and preventive fraction (PF) were calculated according to Svejgaard et al (5).

Results and Discussions
HLA antigens positively or negatively associated with SLE with a P value less than 0.05 are listed in the following Tables. In Table 1, HLA antigens associated with total SLE as well as lupus nephritis in Japanese are listed. The frequency of A24 was decreased and Bw6 was increased in SLE patients and A11, 431 and Bw54 were increased in the
subgroup with nephritis but the only difference that was still significant after correction was the decreased frequency of DQW3. The frequency of DR2 was higher in SLE than in controls ($46 \% \mathrm{vs} \mathrm{35} \mathrm{\%}$) in Japanese without significance. As shown in Table 2, the frequency of C4A3 and C4BO was lower in the patient group while C4AO was increased as has been reported in Caucasian patients (6). In Northern Chinese statistically higher occurrence of HLA-B15 and DR2 among patients with SLE was observed as shown in Table 3. CW1 and DQWI were also observed more frequently in SLE than controls, probably due to linkage disequilibrium. DR2 was also significantly more frequent in SLE in Southern Chinese. The tendency of higher occurence of B15 was observed, too, but it was not significant after correction (Table 4). The higher frequency of BWA in Southern Chinese was different from results of the other ethnic groups, in which rather BW6 was increased in frequency. Amongst the Indian patients, SLE was associated rather strongly with DR4 and B37, (Table 5). Since B37 is rather infrequent in Northern Indians the EF of this antigen was rather low. Almost 100% occurence of BW6 was observed in patients with SLE including the 15 Australian Caucasians and 8 African Blacks, except Southern Chinese patients as mentioned above.

Conclusion
HLA-DR2 was primarily associated with SLE in the Chinese and probably in the Japanese as well. DR4 was the primary antigen associated with SLE patients from Northern India. The association of C4AO, a class III antigen, with SLE in Japanese as well as in Caucasians is suggestive of a common:aetiology.

References

(1) Tiwari JL and Terasaki PI : HLA and disease association. p363 Springer-Verlag, 1985.
(2) Hashimoto H, Tsuda H, Matsumoto T et al : HLA antigens associated with systemic lupus erythematosus in Japan. J Rheumatol, 12:919,1985.
(3) Kameda S, Naito S, Tanaka K et al : HLA antigens of patients with systemic lupus erythematosus in Japan. Tissue Antigens, 20:221,1982.
(4) Tan EM, Cohen AS, Fries JF et al : The 1982 revised criteria for the classification of systemic lupus erytematosus. Arthritis Rheum, 25:1271,1982.
(5) Svejgaard A, Platz P and Ryder LP : HLA and disease 1982-A survey. Immunological Rev, 70:193,1983.
(6) Reveill JD, Arnett FC et al : Null Alleles of the Fourth Component of Complement and HLA Haplotypes in Familial Systemic Lupus Erythematosus. Immunogenetics. 1985;21;299-311

Table 1 HLA Antigens associated with SLE(Japanese)

HLA	Lisease	$\begin{aligned} & \text { Freq. (\%) } \\ & \text { in Pat. } \end{aligned}$	$\begin{aligned} & \text { Freq. (\%) } \\ & \text { in Cont. } \end{aligned}$	RR	EF	PF	P	.,Pc
A11	SLE	26	17	1.7	0.11	-	NS	NS
	LN	35		2.7	0.22	-	0.05	NS
A31	SLE	20	13	1.7	0.07	-	NS	NS
	LN	29		2.9	0.19	-	0.05	NS :
BW54	SLE	24	19	1.9	0.11	-	NS	NS
	LN	35		3.3	0.24	-	0.025	NS
BW6	SLE	100	89	,	-	-	0.025	NS
	LN	100			-	-	NS	NS .
A24	SLE	48	, 68	0.43	-	: 0.34	0.01	NS
	LN	47		0.42	-	0.39	NS	NS
DQW3	SLE	24	55	0.26	-	0.40	0.0002	0.005
	LN	18		0.17	-	0.46	0.003	0.05
		: SLE TOT : Lupus trol $N=40$	$\begin{array}{r} \mathrm{N}=46 \\ \text { ohritis } \end{array}$					

Table 2 HLA Class III Antigens associated with SLE(Japanese)

Class III	$\begin{aligned} & \text { Freq. }(\%) \\ & \text { in Pat. } \end{aligned}$	$\begin{aligned} & \text { Freq. }(\%) \\ & \text { in Cont. } \end{aligned}$	RR	EF	PF	P	Pc
C4A3	67	88	0.3	-	0.63	0.02	NS
C4AO	27 :	8	4.3	0.2	-	0.02	NS
C4BO	2	12	0.1	-	0.01	0.04	NS
Pat. : Patients with SLE $\mathrm{N}=55$ Cont. : Normal Control. $\mathrm{N}=50$							

Table 3 HLA Antigens associated with SLE(Chinese North)

HLA	Freq. (\%) in Pat.	Freq. (\%) in Cont.	RR	EF	PF	P	Pc
B15	50	20	4.0	0.37	-	0.0004	0.02
CW1	46	23	2.7	0.29	-	0.02	NS
DR2	69	33	4.4	0.53	-	0.0003	0.004
DQW1	84	59	3.7	0.61	-	0.02	NS
	SLE $N=26$						

Table 4 HLA Antigens associated with SLE(Chinese South)

HLA	Freq. (\%) in Pat.	Freq. (\%) in Cont.	RR	EF	PF	P	Pc
A10	0	7	0	-	-	0.009	NS
B15	33	21	1.8	0.15	-	0.02	NS
B16	16	7	2.3	0.09	-	0.02	NS
BW4	64	39	2.8	0.41	-	0.0003	0.01
BW6	98	82	12.3	0.90	-	0.002	NS
DR2	52	30	2.4	0.30	-	0.002	0.03
DR4	13	26	0.4	-	0.15	0.03	NS
DR5	15	27	0.4	-	0.15	0.04	NS
DQW1	67	48	2.2	0.37	-	0.006	NS
DQW2	11	4	3.0	0.07	-	0.02	NS
	SLE	N=61-82					

Table 5 HLA Antigens Associated with SLE(Indian North)

HLA	Freq. (\%) in Pat.	Freq. (\%) in Cont.	RR	EF	PF	p	PC
A23	8.7	0.8	11.5	0.07	-	0.02	NS
B37	17	0.8	25.6	0.16	-	0.0001	0.006
CW4	43	21	2.8	0.28	-	0.02	NS
DR4	47	7	11.5	0.43	-	0.00001	0.0001
DR7	0	24	0	-		0.008	NS
	SLE $N=23$				Control	$\mathrm{N}=123$	

Hawkins, B.R. ${ }^{1}$, Chan, S.H. ${ }^{2}$, Charoenwongse, P. ${ }^{3}$, Guo, S.S. ${ }^{4}$, Hammond, M.G. ${ }^{5}$,

1 University of Hong Kong, Hong Kong
${ }^{2}$ WHO Immunology Centre, National University of Singapore, Singapore
${ }^{3}$ Chulalongkorn University, Bangkok, Thailand
${ }^{4}$ Hunan Medical College, Hunan, China
5 Natal Institute of Immunology, Durban, South Africa
${ }^{6}$ Chinese Academy of Medical Sciences, Chengdu, China
${ }^{7}$ China-Japan Friendship Hospital, Beijing, China
${ }^{6}$ Beijing Medical College, Beijing, China
9 Institute of Basic Medicine, Beijing, China

Introduction

Thyrotoxic Graves' disease is a relatively common disorder in many ethnic groups and its association with the HLA system has been studied in some detail. Associations with B8 and DR3 have been shown consistently in Caucasians, and DR3 is particularly associated with relapse of the disease following withdrawal of therapy (see review in 11). In Japanese the disease is associated with B35 ${ }^{4,6}$, especially in patients with disease onset below the age of 30 years ${ }^{8}$ but there is no clear association with $H L A-D R$ antigens. Similarly in Chinese, there is a strong association with HLA Bw $46^{1,5}$ particularly in patients with early-onset disease, but there is no clear association with HLA-DR antigens. Also in Chinese there is evidence for an association with B5 in patients with disease onset above age 35 years ${ }^{5}$: Thyrotoxic periodic paralysis is a common complication of Graves' disease in Chinese and the association with HLA-Bw46 is particularly strong in patients with this complication ${ }^{5}$.

Hashimoto's thyroiditis is less common than Graves' disease in all ethnic groups, and rather less information is available on HLA associations with this disease. In moncasians there is a weak association with $B 8^{3}$ and a significant association with $D R 3^{7}$. In Japanese there is an association with B35 ${ }^{8}$ but there is no clear association with $H L A-D R$ antigens. In Chinese there is some evidence for an association of Hashimoto's thyroiditis with Bw46 and B5 ${ }^{12}$.

Aims of the study

1. Graves' Disease

HLA associations with Graves' disease are fairly clear in Caucasians but there is a need in non-Caucasians in the Region to:-
a) determine whether HLA associations exist in previously unstudied populations
b) clarify previously reported HLA-DR associations
c) confirm HLA associations with early and late onset disease
d) determine whether HLA associations exist with relapse following Withdrawal of therapy:
2. Hashímoto's thyroiditis

The major aims were to clarify and confirm previously reported HLA-B associations in non-Caucasians and to determine whether HLA-DR associations exist in these ethnic groups.

Contributors were invited to HLA type as many patients as practicable with Graves' disease and/or Hashimoto's thyroiditis using the $3 A O H$ serum set and to include an adequate number of normal controls. Since the major aim was to confirm or clarify previous findings, contributors were requested to use patients who had not been previously included in published surveys.

Contributors were requested to complete a brief questionnaire on each patient giving details of disease category, clinical features, age at onset, associated diseases, and history of relapse if therapy had been withdrawn.

Results

Table 1 provides a summary of the patient categories submitted by each laboratory. Unfortunately, some of the questionnaire data were not available at the time of preparation of this report and complete analyses were not always possible.
Graves' disease
Table 2 shows a comparison of antigen frequencies in controls and patients with Graves' disease for antigens shown to be of interest in previous studies. There was a slight increase in the frequencies of Bw46 and DRw9 in Northern Chinese patients but not at a statistically significant level. In Southern Chinese patients, however, there was a highly significant increase in the frequencies of DRw9 and Bw46 conferring relative risks of 2.6 and 2.2 respectively. In Thai patients there was an extremely significant excess of Bw46 (relative risk 4.0). In all ethnic groups studied B5 was shown to have a negative association with Graves' disease but in no case was this statistically significant.

In view of the small numbers of patients of other ethnic groups only speculative suggestions may be made as to possible HLA associations with Graves' disease in these ethnic groups. Of the 11 African Black patients 45.4% had A23 compared with 20.9% of controls, 54.5% had Bw5 compared with 39.2% of controls, and DR3 had the same frequencies in patients and controls 'as Bw58. Of the 8 Southern Indian patients 62.5% had A11 compared with 24.6% of controls and 62.5% had B35 compared with 26.6% of controls. In Northern Indian patients 6 of the $7(86 \%)$ had DR2 compared with 45% of controls.

Age at onset data was not available for the Southern Chipese patients with Graves' disease although it is reported elsewhere in this volume that the frequency of Bw46 was significantly higher in patients with disease onset below age 30 years ${ }^{2}$.

Table 3 shows the age at onset for Thai and Thai Chinese patients with Graves' disease. In both Thai and Thai Chinese patients it may be seen that Bw46 had an increased frequency irrespective of age at onset whereas the increased frequency of DRW9 appeared to relate particularly to early-onset disease.

There was insufficient data available to compare the HLA associations in patients with and without periodic paralysis or relapse following withdrawal of therapy.

Additional information on patients with Graves' disease included in this study is given in references 2 and 10.

Table 4 shows the frequencies of $B 5, B w 46$ and DRw9 in patients with Hashimoto's thyroiditis. In Southern Chinese both Bw46 and DRw9 were strongly associated with the disease, conferring relative risks of 3.1 and 2.6 respectively, whereas in Sichuan Chinese only Bw46 had a statistically significant association.

There were no statistically significant associations between Hashimoto's thyroiditis and Bw46 or DRw9 in either Thai or Thai Chinese.

There was no evidence for an association with B5 in any of the ethnic groups studied.

Additional information on patients with Hashimoto's thyroiditis studied as part of this Workshop is given in references 9 and 10. .

Conclusions

Graves' disease
Bw 46 has a statistically significant association with Graves' disease in Southern Chinese and Thais but not in Thai Chinese or Northern Chinese. DRw9 is strongly associated with Graves' disease in Southern Chinese but not in the other ethnic groups studied.

Hashimoto's thyroiditis
Bw46 is strongly associated with Hashimoto's thyroiditis in Southern Chinese and Sichuan Chinese but not in Thai or Thai Chinese. DRw9 is strongly associated with this disease in Southern Chinese but not the other ethnic groups studied.

Acknowledgements

We are grateful to our many colleagues who have contributed blood samples and patient data incorporated in this study.

References

1. Chan, S.H., Yeo, P.P.B., Lui, K. ̈̈., Wee, G.B., Woo, K.T., Lim, P. E Cheah, J.S. (1978) HLA and thyrotoxicosis (Graves disease) in Chinese. Tissue Antigens, 12, 109-114.
2. Chan, S.H., Yeo, P.P.B., Tan, S.H., Wee, G.B., Lui, K.F. E Cheah, J.S. (1986) . $1 /$ Bwi46 and DRw9 associations in Singaporean Chinese Gravè' dísease. Third Asia-Oceania Histocompatibility Workshop Conference. Abstract 119.
3. Earid, N.R., Barnard, J.M. E Marshall, W.H. (1976) The association of HLA with autoimmune thyroid disease in Newfoundland. The influence of HLA homozygosity in Graves', disease. Tissue Antigens, 8, 181-189.
4. Grumet, F.C., Payne, R.O., Konishi, J., Mori, T. E Kriss, J.P. (1975) HL-A antigens in Japanese patients with Graves' disease. Tissue Antigens, 6, 347-352.
5. Hawkins, B.R., Ma, J.T.C., Lam, K.S.L., Wang, C.C.L. E Yeung, R.T.T. (1985) Association of HLA antigens with thyrotoxic Graves' disease and periodic paralysis in Hong Kong Chinese. Clin. Endocrinol., 23, 245-252.
6. Kawa, A., Nakamura, S., Nakazawa, M., Sakaguchi, S., Kawabata, T., Maeda, Y. E Kanehisa, T. (1977) HLA-Bw35 and B5 in Japanese patients with Graves' disease. Acta Endocrinol., 86, 754-757.
7. Moens, H. E Farid, N.R. (1978) Hashimoto's thyroiditis is associated with HLA-DRw3. N. Engl. J. Med., 299, 133-134.
8. Nakao, Y., Kishihara, M., Baba, Y., Kuma, K., Fukunishi, T. E Imura, H. (1978) HLA antigens in autoimmune thyroid diseases. Arch. Int. Med. , 138, 567-570.
9. Pei, J., Yang, Zh., Zhu, D.Y., Hou, Zh. Ch., Sun, S.X., Mi, X.Y., Hang, L.H. E Han, L.Y. (1986) HLA and Hashimoto's thyroiditis in Sichuan Chinese. Third Asia-Oceania Histocompatibility Workshop Conference. Abstract 77.
10. Sridama, V., Charoenwongse, P., Kangwanshiratada, O. E Noppornpunth, V. (1986) HLA association and autoimmune thyroid diseases in Thai population. Third Asia-Oceania Histocompatibility Horkshop Conference. Abstract 78.
11. Tiwari, J.L. E Terasaki, P.I. (1985) HLA and disease associations. New York: Springer Verlag pp 214-220.
12. Yeo, P.P.B., Chan, S.H., Lui, K.F., Hee, G.B., Cheah, J.S. E Lim, P. (1983) HLA and Chinese patients with thyroid diseases. In Current Problems in Thyroid Research. Proceedings of the Second Asia and Oceania Thyroid Association Meeting, Tokyo, August 19-22, 1982 (eds. N. Ui, K. Torizuka, S. Nagataki \& M. Miyai), pp. 325-328. Excerpta Medica, Amsterdam.

Summary of data submitted to 3 AOH thyroid study

Ethnic origin	Lab Code	Number of patients studiedGravesdisease \quad Hashimoto's	
Northeru Chinese	SYP	45	-
	YGY	26	-
Southern Chinese	CSH	62	-
	HAW	-	48
Sichuan Chinese	PEJ	-	59
Thai Chinese	CHA	36	18
Thai	CHA	55	27
African Blacks	HAM	11	-
Southern Indian	HAM	8	-
Northern Indian	HAM	7	-

Table 2
$\frac{\text { Distribution of selected HLA antigens }}{\text { in patients with Graves disease }}$

Ethnic origin	Antigen	Patients obs \%		Controls obs of		RR**	x^{2}
Northern Chinese	B5 Bw46 DRw9	($\mathrm{n}=71$)		($n=430$)			
		13	18.3	92	21.4	0.8	0.19
		15	21.1	55	12.8	1.8	2.86
		25	35.2	105	25.3	1.7	3.15
Southern Chinese		($\mathrm{n}=62$)		($n=407$)			
	B5	5	8.1	65	16.0	0.5	2.1
	Bw46	28	45.2	112	27.6	2.2	7.18
	DRw9		51.6	120	32.5	2.6	11.04
Thai Chinese		($n=36$)		($n=86$)			
	B5	2	5.5	7	8.1	0.6	0.01
	Bw46		36.1	17	19.8	2.3	2.83
	DRw9		30.5	22	25.6	1.3	0.12
Thai		($n=55$)		($n=138$)			
	B5	2	3.6	17	12.3	0.3	2.43
	Bw46	25	45.5	24	17.4	4.0	14.9
	DRw9	17	30.9	25	18.1	2.0	3.07

[^44]450

Table 3
$\frac{\text { Distribution of selected HLA antigens }}{\text { in patients with Graves }}$
early and late onset

Ethnic origin	Antigen	Early onset (<30 years) obs		Late onset (>30 years) obs \%		Con obs	Controls
Thai Chinese		$(n=19)$		$(n=17)$		($\mathrm{n}=86$)	
	B5 Bw46 DRw9		0	2	11.8	7	8.1
			36.8	6	35.3	17	19.8
			36.8	4	23.5	22	25.6
Thai		$(n=30)$		($\mathrm{n}=25$)		($n=138$)	
	B5	1	3.3	1	4.0	17	12.3
	Bw46	16	53.3	9.	36.0	24	17.4
	DRw9	12	40.0	5	20.0	25	18.1

Table 4

Distribution of selected HLA antigens
in patients with Hashimoto's thyroiditis

Histocompatibility antigens in Indian patients with myocardial infarction

'M. Sewdarsen, ${ }^{2}$ M. G. Hammond, 'S. Vythlingum and ${ }^{2}$ B. Appadoo
'Coronary Care Unit, R. K. Khan Hospital, Chatsworth and ${ }^{2}$ The Natal Institute of Immunology, Durban, RSA

Abstract

The frequency of HLA-A, B, C and DR tissue antigens in 103 Indian men aged 40 years or under who had experienced a myocardial infarction was compared with the frequency in 760 healthy Indian controls. No significant differences in antigen frequencies were found. The findings in this study provide no support for either a genetic or an immunological basis for myocardial infarction in young Indian men.

Received for publication 27 May, accepted 6 October 1986

Hypertension, hyperlipidaemia, smoking, diabetes mellitus are well known risk factors for the development of myocardial infarction (Kannel \& McGee 1979). The frequent occurrence of coronary events in family members is well established and suggests that genetic factors may contribute to the development of coronary artery disease (Epstein 1964). The mechanism by which heredity exerts an influence on the incidence of coronary artery disease has been questioned for many years. It is uncertain whether the familial aggregation of coronary heart disease is mediated by familial clustering of risk factors or by some unknown mechanism (Schweitzer et. al. 1962, McKwick 1959). The studies investigating the relationship of histocompability (HLA) antigens to the presence of coronary artery disease have not indicated a clear association (Scott et al. 1976, Logan et al. 1977). Significant correlations have been demonstrated between the frequency of the antigen HLA-B8 and A1-B8
and the death rate from coronary artery disease (Mathews 1975). Other investigators have been unable to confirm this association (Scott et al. 1976, Logan et al. 1977).

We therefore undertook this study in which the frequencies of HLA tissue antigens in young Indian males with myocardial infarction was compared with those in a healthy control group.

Material and methods

One hundred and three Indian male patients with myocardial infarction between the ages of 24-40 years (mean 36 yrs) were selected for HLA typing. The criteria for the diagnosis of myocardial infarction were bised on a history of chest pain supported by unequivocal electrocardiographic findings accompanied by a transient rise in creatine kinase activity. The myocardial infarction was presumed to be due
to coronary allierosclerosis. The presence of diabetes mellitus. hypertension, hyperlipidaemia (serum cholesterol $>6.5 \mathrm{mmols} / 1$) and history of coronary heart disease in first degree relatives were obtained from all patients. None of the patients were insulin dependent diabetics. Paticnts with valvular heart disease and cardiomyopathy were excluded. Of the 103 patients 48 were of North lndian origin (Aryans), 43 of South Indian origin (Dravidians) and 12 could not be classified into eitlier of these lwo groups.

HLA-A, B and C antigens were determined in all patients and in 876 controls. The latter comprised of 323 Aryans, 478 Dravidians, and 75 could not be chassilied. The IILA-DR antigens were detemmed in 93 patients (Aryans $=41 ;$ Dravidians $=41$. unclassified $=11$) and 165 controls (Aryans $=36 ;$ Dravidians $=121$; unclassified $=8$).
The patients were typed for IILA-A, B and C antigens using 180 antisera in a iwo-stage lymphocytoloxic lest (Terasaki \& McClelland 1964). HLA-DR amigens were detected on B lymphocytes with 120 antisera in a long incubation two-stage lymphocytotoxic test (Terasaki et al. 1978). Lymphocytes were isolated on a Ficoll-Hypaque density gradienl (Boyum 1968) and 7 and 13 cells separated by the nyIon wool method (Cerasaki el al. 1978).

All the patients and controls were typed in the laboratories of the Natal [nstitute of Immunology with antisera that have been used in International Workshops or obtained by serum exchange from other laboratories. (Hammond et al. 1975. 1977. 1980 a-e. 1984 a-e, 1986 a-c).

Statistical analysis was performed using the chi-squared test. The resulting probabilities were multiplied by the number of antigens tested to determine the corrected p value.

Table 1.
Frequency of IH. A - A and B antigens in Indian males will myocardial infarction.

IILA anligen	Frequency (\%)	
	Controls $(n=876)$	Patients $(n=10.3)$
Al	28.1	28.2
A2	30.9	31.1
A3	13.6	13.6
All	28.5	33.0
A23	1.3	1.9
A24	28.9	28.2
A25	1.7	1.0
A26	6.2	3.9
A28	12.3	13.6
A29	1.6	0.11
A30	2.3	1.9
A3!	3.8	5.8
A32	4.9	2.9
A 33	16.2	14.6
One antigen	19.8	20.4
137	13.4	7.8
B8	6.4	6.8
1313	6.4	6.8
1314	1.6	0.0
B15	10.4	12.6
1316	3.8	1.9
B17	21.2	19.4
B18	2.9	3.9
B21	3.5	3.9
1322	5.0	2.9
1327	1.9	3.9
1335	20.4	14.6
B37	6.1	5.8
B41	0.2	1.0
B42	0.1	0.0
B44	13.5	16.5
B45	0.2	0.0
B47	0.1	0.0
B.51	16.4	17.5
B52	14.3	14.6
B53	0.5	0.0
B60*	10.3	20.4
B61	19.0	20.4
B70	4.0	4.9
One antigen	15.9	12.6

Results

The frequencies of the HLA antigens in patients with myocardial infarction and in the control group are shown in Tables 1 and 2. At the A and DR loci no antigen showed an observed frequency significantly different from the conlrol population. At the B locus B 60 has a significantly greater frequency in the patients than the controls ($p<0.005$). This difference was not significant when correction was made for the number of antigens tested (50 antigens). Furthermore there was no significant difference in the frequency of IILA-A, B, C and DR antigens between patients with a history of diabetes, hypertension, hyperlipidaemia and coronary artery disease in first degree relatives as compared to those patients without these risk factors. Similarly, the frequency of HLA antigens studied was not significantly different in the Aryan and Dravidian patients and their respective control populations. However B7 and DRI antigens were observed to occur with decreased frequency in the Aryans with myocardial in-

Tuble 2.
Prequency of HLA-DR antigens in Indian males with myocardial infarction.

IILA antigen	Frequency Controls $(\mathrm{n}=165)$	(n) Patients $(\mathrm{n}=93)$
DR1	8.5	8.6
DR2	37.6	47.3
DR3	13.9	15.1
DR4	23.0	19.4
DR5	15.8	11.8
DR6	18.8	21.5
DR7	31.5	30.1
DR8	3.6	3.2
DR9	1.2	0.0
DR10	10.3	12.9
DR12	0.6	1.0
One anligen	35.2	30.1

farction as compared to the Aryan control group (0% vs 11.2% and 2.4% vs 19.5%, respectively) but this was not statistically significant when the p value was corrected for the number of antigens tested.

Discussion

Although associations between specific diseases and HLA antigens have been well documented for certain disorders (Ritzman 1976), no such clear association has yet been established between coronary artery disease and the HLA antigens. Stone et al. (1981) demonstrated a statistically significant frequency of HLA-BW 38 in patients with premature coronary artery disease but this statistical significance was lost when allowance was made for the number of antigens tested. The findings of Mathews (1975) were based on mortality figures.

Our data, in accordance with others have also failed to demonstrate a significantly increased incidence of any HA Antigens in patients with myocardial inlarction (Scott et al. 1976, Logan et al. 1977). Although the frequency of the antigen $111 . A-1360$ in the palients (20.4%) was significantly ligher than the controls (10.3%) the significance was lost when the p value was muliplied by the number of antigens (50) tested. Comparing the HLA profiles of North and South Indians revealed a similar trend viz no difference in the frequency of the IILA antigens between patients and their respective controls.

Our failure to demonstrate a significant increase in the frequency of any IILA antigen in patients with myocardial infarction probably serve to highlight the heterogenicity of factors involved in the genesis of coronary artery disease. Also it is possible that since we are dealing with a common disease the control population included individuals who would have later in life developed a myocardial infarction.

Also the genetic influence on any common disease may be affected by environmental factors (Rose 1977). Hence without proper control of these factors it may be difficult to identily genetically the high risk group for coronary artery disease.

In conclusion this study has demonstrated that there appears to be no clear association between the IHL \wedge antigens and myocardial infarction in young Indian men and hence gives no support for cither a genetic predisposition or for an immunological basis for myocardial infarction in our patients.

Acknowledgments

We thank the mursing staff of the coronary care unit for their co-operation, Dr. P. K. Naidoo, Medical Superintendent of the R. K. Khan Hospital for permission to publish and Miss T. Naidoo for secretarial assistance.

References

Boyum, A. (1908) Separation of leucocytes from blood and bone marrow. Scand J Lab Invest 21, 97-98.
Epstein, F. H. (19(4) Hereditary aspects of coronary heart disease. Am Heart J 67, 445-456.
Hamıond, M. G., Appadoo, B. \& Brain, P. (1975) HLA antigens in Bantu and Indians. In Histocompatibility Tessing 1975, ed. Kissmeyer-Nielsen, F. p. 173, Munksgaard, Copenhagen.
Hammond, M. G., Appatoo, B. \& Brain, P. (1977) HLA in non-Cancasian populations. In Histocompatibility Testing 1977, eds. Bodmer, W. F. et al. p. 407, Munksgaard, Copenhagen.
Hammond, M. G. (1980) Further splits of HLA B5. In Histocompatilility Testing 1980, ed. Terasaki, P. I. p. 758. UCLA Tissue Typing Laboratory. Los Angeles.
Hammond, M. (i. \& Apladoo, B. (1980b) Confirmation of Si^{-1} in Asian Indians. In Histocompatibility lesting 1980, cd. Terasaki, P. I. p. 844. UCLA Tissue Typing Laboratory, Los Angeles.

Hammond, M. G. (1980c) Hetetogeneity of HLA B40. In Mistocompatibility Testing 1980, ed.Terasaki,.P. I. p. 782. UCLA Tissue Typing Laboratory, Los Angeles.
Hammond, M. G. \& Lamm, L. (1980d) A/C crossover in a South African Indian family. In Histocompatibility Testing 1980, ed. Terasaki, P. I. p. 794. UCLA Tissue Typing Laboratory, Los Angeles.
Hammond. M. G. (1980e) HLA-Bw53. In Histocompatibility Testing 1980, ed. Terasaki. P. I. p. 429. UCLA Tissue Typing Laboratory, Los Angeles.
Hammond, M. G. (1983a) HLA-Bw35. In Proceedings of the Second Asia-Oceania Histocompatibility Workshop, eds. Simons, M. J. \& Tait, B. D. p. 112. Melbourne, Australia.

Hammond, M. G. (1983b) HLA-Bw53. In Proceedings of the Second Asia-Oceania Histocompatibility Workshop, eds. Simons, M. J. \& Tait, B. D. p. 65. Melbourne, Australia.

Hammond. M. G. (1983c) HLA-Cw4. In Proceedings of the Second Asia-Oceania Histocompatibility Workshop, eds. Simons, M. J. \& Tait, B. D. p. 138. Melbourne, Australia.

Hammond, M. G. (1983d) Subdivision of HLA-B15 in Indians. In Proceedings of the Second AsiaOceania Histocompatibility Workshop, eds. Simons, M. J. \& Tait, B. D. p. 413. Melbourne, Australia.
Hammond, M. G. (1983e) Anomalous reactions with Bw4 sera in Indian families. In Proceedings of the Second Asia-Oceania Histocompatibility Workshop, eds. Simons, M. J. \& Tati, B. D. p. 411. Melbourne, Australia.

Hammond, M. G., Betuel, H. \& Gebuhrer, L. (1984a) HLA-A29. In Histocompatibility Testing 1984, eds. Albert, E. D. et al. p. 126, SpringerVerlag, Berlin.
Hammond, M. G. (1984b) Definition of Bw53 in South African Indians. Ninth International Histocompatibility Workshop Newsletter VI, 6.
Hammond, M. G. (1984c) The HLA-A10 and Aw19 complex in South Arrican Indians and Negroes. Ninth International Histocompatibility Workshop Newsletter VII, 6.
Hammond, M. G. (1984d) HLA B15 complex in South African Indians. Ninth International Histocompatibility Workshop Newsletter VIII, 4.
Hammond, M. G. (1984e) Short Bw4I. Ninth International Histocompatibility Workshop Newsletter VIII, 9.
Hammond, M. G. (1986a) Antigen report A3. Pro-
ceedings of the Third Asia-Oceania Histocompatibility Workshop (in press).
Hammond, M. G. (1986b) Antigen report All. Proceedings of the Third Asia-Oceania Histocompatibility Workshop (in press).
Hammond, M. G. \& Appadoo, B. (1986c) HLA antigens in African Blacks. Proceedings of the Third Asia-Oceania Histocompatibility Workshop (iin press).
Kannel, W. B. \& McGee, D. L. (1979) Diabetes and cardiovascular risk factors: the Framingham study. Circulation 59, 8-13.
Logan, R. L., Oliver. M. F., McTavish, J., Darg, C. \& White, A. G. (1977) Histocompatibility antigens and myocardial infarction. Tissue Antigens 10, 361-363.
Mathews, J. D. (1975) Ischaemic heart disease: possible genetic markers. Lancet ii, 681-682.
McKwick, V. A. (1959) Genetic factors in cardiovascular disease: I The four major types of cardiovascular disease. Mod Concepts Cardiovasc Dis 28, 535-542.
Ritzman, S. E. (1976) HLA patterns and disease associations. JAMA 236, 2305-2309.
Rose, G. (1977) Ischaemic heart disease. J Med Genet 14, 330-331.
Schweitzer, M. D., Clark, G., Gearing, F. R. \&

Perera, G. A. (1962) Genetic factors in primary hypertension and coronary artery disease: a reappraisal. J Chronic Dis 15, 1093-1108.
Scott, B. B., McGuffin, P., Rajah, S. M., Stoker, J. B. \& Losowsky, M. S. (1976) Histocompatibility antigens and myocardial infarction. Tissue Antigens 7, 187-188.
Stone, P. H., Sherrid, M. V. \& Colm, K. E. (1981) Correlation of HLA types in premature coronary artery disease: an attempt to define independent genetic risk factors. Chest 79(4), 381-385.
Terasaki, P. 1. \& McClelland, J. D. (1964) Microdroplet assay of human serum cytotoxins. Nature 204, 998-1000.
Terasaki, P. I., Bernoco, D., Park, M. S., Ozturr, G. \& Iwaki, Y. (1978) Microdroplet testing for HLA-A, B, C, and D antigens. Am J Clin Pathol, 69, 103-120.

Address:
Dr. M. Sewdarsen
Dept. of Medicine
R. K. Khan Hospital

Private Bag X004
Chatsworth 4030
Soull Africa

HLA-A, B, DR, and DQ antigens in black patients with severe chronic rheumatic heart disease

Breminand Maharas, M.B., F.C.P.(S.A.), Michael G. Hammond, Ph.D., Brousthapathy Appadoo, Nat. Dip. Med. Tech., William P. Leary, D.Phil, F.r.C.P., and Dennis J. Pudifin, M.B., F.R.C.P.

Abstract

To determine whether genetic factors could be involved in the pathogenesis of rheunatic heart disease, we performed HLA-A and HLA-B typing in 120 black patients with severe chronic rheumatic heart disease requiring cardiac surgery, and HLA-DR and HLA-DQ typing in 103 and 97 of these patients, respectively. The HLA typing was done by a standard microlymphocytotoxicity method. Patients were 12 to 60 years old (mean 27.6 ± 14.5). No differences in HLA-A, HLA-B, and HLA-DQ frequencies betweell patients and controls were noted. HLA-DR I antigen was present in 12.6% of patients compared with 2.7% of normal control subjects (corrected $p<.045$; relative risk $=$ 5.2) and the HLA-DRw6 antigen was present in 31.1% of patients compared with 15% of control subjects (corrected $\mathrm{p}<.045$; relative risk $=2.6$). These findings suggest that genetically determined immune-response factors may play a role in the pathogenesis of severe chronic rheumatic heart disease.

Circulation 76, No. 2, 259-261, 1987.

THE HLA antigens, which are encoded by closely arranged genes on the short arm of the sixth chromosome, influence the predisposition to several diseases. ${ }^{\text {' }}$ Some diseases with initially weak associations with HLA-A and HLA-B antigens have been found to have stronger associations with HLA-DR antigens. ${ }^{2}$ Since a genetic predisposition to the development of rheumatic fever has been documented, ${ }^{3.4}$ and since there is little information on the relationship between antigens at the DR-locus of the HLA system and chronic rheumatic heart disease, we performed HLA typing in a group of black patients with this disease to determine whether genetic factors could be involved in the pathogenesis of rheumatic heart disease.

Patients and methods

HLA-A and HLA-B typing was carried out in 120 black patients with severe chronic rheumatic heart disease, as delined by the World Health Organization, ${ }^{5}$ who required cardiac surgery at the Cardiothoracic Surgical Unit. Wentworth Hospital, Durban, and HLA-DR and HLA-DQ typing was performed in 103 and 97 of these patients, respectively. The distribution of

[^45]valvular lesions was as follows: isolated mitral stenosis, 36 patients: mitral stenosis plus aortic incompetence, one patient; mitral stenosis and aortic incompetence with aortic stenosis (mixed aortic valve disease), one patient; mitral incompetence alone, five patients; mitral pluś aortic incompetence, 18 patients; mitral stenosis with mitral incompetence (mixed mitral valve disease), 32 patients; mixed mitral valve disease plus aortic incompetence. 17 patients; mixed mitral valve disease plus mixed aortic valve disease, three patients; mixed aortic valve disease, three patients; isolated aortic incompetence, four patients. In each case the rheumatic etiology of the valve lesions was confirmed by inspection of the valve at surgery or on histologic examination of the valve. Many patients were having their second or third operation. There were 80 female and 40 male patients between 12 and 60 years old. Their mean age was 27.6 ± 14.5 years; 60% of the patients fell within the 12 to 25 year age group. The control group consisted of 1416 normal adults for the HLA-A and HLA-B typing, 220 for the HLA-DR and 64 for the HLA-DQ typing. Although over 2000 individuals have been tested for the HLA-DQ locus in our laboratory the majority were Caucasoid or patients with selected diseases. ${ }^{6}$ As a consequence, only 64 normal healthy black individuals had undergone $D Q$ typing.

The HLA-A and HLA-B antigens were identified with a twostage lymphocytotoxicity test. ${ }^{7}$ These antigens were defined with 180 antisera. which consisted of local serum samples that had been requested for use in International Histocompatibility Workshops, local samples that had been verified by use in parallel with the International Workshop samples. and samples that had been exchanged with other laboratories worldwide. ${ }^{8-12}$ Similarly, 120 serum samples were used to define the HLA-DR and HLA-DQ antigens in B cell-enriched lymphocyte suspensions prepared with the use of straws packed with nylon wool. ${ }^{13}$

The differences in frequency of the various antigens between patients and controls were tested for significance by means of the chi-square test (without Yates' correction). The resulting probabilities were nultiplied by the number of HLA specific-

TABLE 1
Frequencies of HLA-A antigens (\%)

Antigen	Patients $(\mathrm{n}=120)$	Constrol subjects $(\mathrm{n}=1416)$
A1	9.2	6.4
A2	25.0	21.4
A3	14.2	12.6
All	0	0.1
A23	15.8	18.3
A24	2.5	4.9
A25/34	14.2	13.5
A26	14.2	10.5
A28	21.7	20.9
A29	18.3	17.1
A30	25.8	37.4
A31	7.5	6.0
A32	2.5	2.3
Aw33	2.5	2.2
One antigen	26.7	26.4

$\mathrm{p}=$ NS for all comparisons.
ities tested to determine the corrected value. Relative risk was calculated according to the method of Svejgaard et al. ${ }^{14}$

Results

The percentage of frequencies of the HLA-A, HLAB, HLA-DR, and HLA-DQ antigens in patients with

TABLE 2
Frequencies of HLA-B autigens (\%)

Antigen	Patients $(n=120)$	control $(\mathrm{n}=1416)$
B5	1.7	1.3
B7	20.8	20.4
B8	12.5	12.9
B13	3.3	3.8
B14	8.3	5.7
B15	5.0	4.0
B16	1.7	3.3
B17	42.5	38.6
B18	7.5	5.2
B21	4.2	1.8
Bw22	0	0.1
B27	0	0.3
B35	6.7	6.7
B37	0	0.1
B40	0	0.6
Bw41	1.7	1.5
Bw42	16.7	23.5
B44	12.5	15.0
B45	11.7	8.6
Bw53	0.8	1.6
Bw70	30.8	$24.6^{\text {A }}$
One antigen	11.7	20.4
P		

[^46]TABLE 3
Frequencies of HLA-DR antigens (\%)

	Patients $(n=103)$	Control subjects $(n=220)$	p value	pc value
Antigen	12.6	2.7	$<.0001$	$<.045^{\mathrm{B}}$
DR1	23.3	23.6	NS	
DR2	34.0	33.6	NS	
DR3	13.6	12.3	NS	
DR4	30.1	32.3	NS	
DR5	31.1	15.0	$<.0001$	$<.045^{\mathrm{C}}$
DRw6	15.5	12.3^{\wedge}	NS	
DR7	2.9	8.7^{\wedge}	NS	
DRw8	0	1.5^{\wedge}	NS	
DRw9	2.9	2.6	NS	
DRwl0	34.0	42.0	NS	
One antigen				

$\mathrm{pc}=$ corrected p value.
$A_{n}=138$.
${ }^{\text {日 }}$ Relative risk $=5.2$.
${ }^{C}$ Relative risk $=2.6$.
chronic rheumatic heart disease and the control subjects are shown in tables 1 to 4 . There was no difference in the frequency of any of the antigens at the A, B, and DQ loci between patients and control subjects.

The HLA-DRI antigen was found in 12.6% of patients compared with 2.7% of normal control subjects. This increased frequency of DR1 remained significant after correcting the p value (relative risk: 5.2). The frequency of HLA-DRw6 was also increased in patients compared with controls (31.1\% vs 15%), and this difference also remained significant after correcting the p value (relative risk: 2.6) (table 3).

Discussion

Associations between disease and the HLA system may involve class I (HLA-A, HLA-B or HLA-C) or class II (HLA-DR or HLA-DQ) antigens. In this study, no differences in frequency of any of the HLA-A, B, or DQ antigens in black patients with severe chronic rheumatic heart disease and control subjects were

TABLE 4
Frequencies of HLA-DQ antigens (\%)

Antigen	Patients $(\mathrm{n}=97)$	Control subjects $(\mathrm{n}=64)$
$\mathrm{DQw1}$	65.0	68.8
DQw2	21.7	23.4
DQw3	21.7	31.3
One antigen	92	76.5

[^47]found. Our observations support the impression obtained from analysis of previous studies ${ }^{15-21}$ that no association exists between rheumatic heart disease and any of the antigens at the A or B loci. Confirmation of a lack of an association between this disease and the HLA-DQ antigens will have to await further studies since these antigens were not tested in previous investigations.

However, we found an increased frequency of both HLA-DR I and HLA-DRw6 antigens in our patients with severe rheumatic heart disease; the differences in frequencies in patients and controls remained significant after correcting for the total number of HLA antigens tested. The corrected p value would be $<.01$ in each case if a correction were made only for the number of DR antigens tested, as is done by some workers. ${ }^{21-23}$

Our study shows that severe chronic rheumatic heart disease in blacks is associated with certain DR antigens. This implies that genetically determined im-mune-response factors may play a role in the pathogenesis of chronic rheumatic heart disease in some individuals. Support for this conclusion is provided by a recent report of an association between certain HLADR antigens and rheumatic fever;' the majority of patients in this study developed mitral and/or aortic incompetence.

We thank Prolessor B.T. Le Roux, Head of the Department of Cardiothoracic Surgery, Wentworth Hospital, Durban, for permission to study patients under his care and Mrs. Peta Gordon for typing the manuscript.

References

I. Stastny P, Ball EJ, Dry PJ, Nunez G: The human immune response region (HLA-D) and disease susceptibility. Immunol Rev 70: 113, 1980
2. Bodmer WFL, editor: The HLA system. Br Med Bull 34: 213, 1978
3. Patarroyo ME, Winchester RJ, Vejerano A, Gibofsky A, Chalem F, Zabriskie JB, Kunkel HG: Association of B-cell alloantigen with susceptibility to rheumatic fever. Nature 278: 173. 1979
4. Ayoub EM, Barrett DJ, MacLaren NK, Krischer JP: Association of class II human histocompatibility leucocyte antigens with rheumatic fever. J Clin Invest 77: 2019, 1986
5. World Health Organization: Prevention of rheumatic fever. WHO Technical Report Series, No. 342
6. Azaiwa M: HLA in Asia-Oceania 1986 (in press)
7. Mittal KK, Mickey MR, Singal DP, Terasaki PI: Serotyping for homotransplantation. XVIII. Refinement of microdroplet lymphocyte cytotoxicity test. Transplantation 6: 913, 1968
8. Hammond MG, Appadoo G, Brain P: HLA antigens in Bantu and Indians. In Kissmeyer-Nielsen F, editor: Histo-compatibility testing. Copenhagen, 1975, Munksgaard, p 173
9. Hammond MG, Appadoo G, Brain P: HLA in non-Caucasian populations. In Bodmer WF, editor: Histocompatibility testing. Copenhagen, 1977, Munksgaard, p 407
10. Hammond MG: HLA Bw53. In Terasaki PI, editor: Histocompatibility testing 1980. Los Angeles, 1980. UCLA Tissue Typing Laboratory, p 429
11. Hammond MG: HLA Bw35. In Simons MJ, Tait BD. editors: Proceedings of the Second Asia-Oceania Histocompatibility Workshop. Toorak, 1983, Immunopublishing. p 112
12. Hammond MG, Beluel H, Gebuhrer L: HLA A29. In Albert ED, Baur MP, Mayr WR, editors: Histocompatibility testing. Berlin, 1984, Springer-Verlag, p 126
13. Danilov JA, Ayoub G, Terasaki PI. Joint report: B lymphocyte isolation by thrombin-nylon wool. In Terasaki PI, editor: Histocompatibility testing 1980. Los Angeles, 1980, UCLA Tissue Typing Laboratory, p 287
14. Svegaard A, Platz P, Ryder LP, Staub-Nielsen L, Thomsen M: HLA and disease associations. Transplant Rev 22; 3, 1975
15. Falk JA, Fleischman JL, Zabriskie JB, Falk RE: A study of HLA antigen phenotype in rheumatic fever and rheumatic heart disease patients. Tissue Antigens 3: 173, 1973
16. Caughey DE, Douglas R, Wilson W, Hassal IB: HLA-antigens in Europeans and Maoris with rheumatic fever and rheumatic heart disease. J Rheumatol 2: 319, 1975
17. Leirisalo M, Laitinen O, Tiilikainen A: HLA phenotypes in patients with rheumatic fever, rheumatic heart diseases and Yersinia arthritis. J Rheumatol 4(suppl 3): 78, 1977
18. Joysey VC. Roger JH, Ashworth F. Parallel studies of HLA antigens in patients with rheumatic heart disease and scleritis: comparisons with three control populations. J Rheumatol 4(suppl 3): 84, 1977
19. Ward C. Gelsthorpe K, Doughty RW, Hardisty CA: HLA antigens and acquired valvular heart diseases. Tissue Antigens 7: 227, 1976
20. Haffejee IE, Hammond MG. Moosa A: HLA antigens in black South African children with rheumatic heart disease. Ann Trop Paedr 2: 17, 1982
21. Naito S, Kitajima K, Arakawa K: HLA and rheumatic heart disease in Japanese. Am Heart J 106: 1164, 1983
22. Fiorito S, Autore C, Fragola PV, Purpura M, Cannata D, Sangiorgi M: HLA DR 3 linkage in patients with hypertrophic cardiomyopathy. Am Heart J 111: 91, 1986
23. Oren A. Taljaard D, du Toit E: HLA A, B, C and DR antigens in insulin dependent diabetes mellitus (IDDM) in South African Negro (black) and Cape coloured people. Tissue Antigens 26: 332, 1985

HLA Class I and II Antigens in South African Blacks with Graves' Disease

Mahomed A. K. Omar, Michael G. Hammond, Rajesil K. Desai, Ayesifa A. Motala, Nazimuddin Aboo, and Mahomed A. Seedat
Department of Medicine, University of Natal, Durban, South Africa; Natal Institute of Immumology and Departmem of Chemical Pathology, University of Natal, Congella, South Africa

Abstract

A study was done to evaluate the relationship between Graves' disease and the HLA system in South African Blacks of Zulu descent. One hundred and three patients with Graves' disease and 1416 control subjects were typed for HLA \wedge, B, and C antigens while HLA DR antigens were done on 63 of the former and 330 of the latter. There was a significant increase in the frequency of HLA DR3 in patients compared to control subjects $(57.1 \%$ vs $36.1 \% ; P$ corrected $=0.014)$. A relationship was also seen at the DRI locus (14.3% vs $4.6 \% ; P$ corrected $=0.023$). © 1990 Academic Press. Inc.

INTRODUCTION

The association between Graves' disease and the HLA system has aroused considerable interest in recent years. High frequencies of HLA B8 and DR3 have been found in White Caucasoids with the disease, whereas associations with HLA B35 and HLA B46 have been slown in Japanese and Chinese, respectively (1-5). A previous study involving a South African Black group with Graves’ disease could not establish any definite relationship at the HLA Class I locus (6). Thus it can be seen that there appears to be an ethnic variability in the association between HLA antigens and Graves' disease.

The present study was undertaken to evaluate the relationship between HLA Class I and Class II antigens and Graves' disease in South African Blacks of Zulu descent.

PATIENTS AND METHODS

The patients studied were all Blacks of Zulu descent who had Graves' disease diagnosed on the basis of history, clinical, and biochemical signs of hyperthyroidism, the presence of a diffuse goiter on examination, and the finding of diffuse uptake of radiolabeled ${ }^{131} \mathrm{I}$ on a thyroid scan. The HLA status of the patients was compared to a group of unrelated healthy Black control subjects of Zulu descent. The control group comprised randomly selected staff and blood donors, many of whon have been typed for international histocompatibility workshops. There were 103 unrelated patients and 1416 unrelated control subjects who were typed for HLA A, B, and C antigens by means of a two-stage microlymphocytotoxicity test (7) using a total of 180 antisera.
HLA DR antigens were determined on 63 of these patients and 330 unrelated control subjects by means of a microlymphocytotoxicity test using B cell-enriched

Copyright © 199) by Academic l'ress, Inc.
lymphocytes prepared with the aid of straws packed with colton wool (8). These Class II antigens were defined using 120 antisera.

The sera used for typing the various Class I and II antigens consisted of local sera that have been requested for use in international histocompatibility workshops, local sera that have been verified by using in parallel with international workshop sera, and sera that have been exchanged with other laboratories worldwide.

Differences in HLA frequencies were tested for significance with the χ^{2} test (without Yate's correction) and the probability was corrected by multiplying the P value by the number of comparisons made, i.e., the number of different antigens tested (9). Relative risk was calculated according to the formula recommended by Woolf (10).

RESULTS

The results are shown in Tables 1-3. There was an increase in the frequency of HLA B8 in patients compared to control subjects (23.3% vs 12.9%) but the P value was not significant after a correction was made for the number of antigens tested. Similarly, the association with HLA B13 (9.7\% vs 3.8%) loses significance once the P value is corrected.

At the DR locus there is a significant increase in the frequency of DR3 $(57.1 \%$ vs 36.1%; P corrected 0.014), even after correction for the number of antigens

TABLE 1
Frequency of HLA Antigens in Patients and Control Subjects

Antigen $(n=103)$	$\begin{gathered} \text { Patients } \\ (n=103) \\ \% \end{gathered}$	$\begin{gathered} \text { Controis } \\ \begin{array}{c} n=1416) \\ \% \end{array} \end{gathered}$	Antigen	$\begin{gathered} \text { l'aticnts } \\ (11=103) \\ \% \end{gathered}$	$\begin{aligned} & \text { Controls } \\ & (n=1416) \\ & \% \end{aligned}$	Antigens	Patients $\begin{gathered} (n=63) \\ \% \end{gathered}$	$\begin{gathered} \text { Controls } \\ (n=330) \\ \% \end{gathered}$
$\wedge 1$	7.8	6,4	B5	1.0	1.3	DR $1^{\text {c }}$	14.3	4.6
$\wedge 2$	19.4	21,4	B7	22.3	20.4	DR 2	20.6	24,2
A3	9,7	12,6	B8 ${ }^{\text {a }}$	23,3	12.9	DR 3 ${ }^{\text {d }}$	57.1	36,1
			B13 ${ }^{\text {b }}$	9,7	2.3	DR 4	19.1	9.9
All	0	0.1	B14	11.7	5.7	DR 5	22.2	35.1
$\wedge 23$	27.2	18.3	B15	2.9	4,0	DRW 6	14,3	14.3
$\wedge 24$	3.9	4.9	B16	4.9	3,3	DR 7	12,7	15,3
A25/34	15,5	23.5	B17	38.8	38.6	DRW 9	0	0,5
A26	9.7	10.5	B18	3.9	5.2	DRW 10	1,6	2,4
$\wedge 28$	24,3	20.9	B21	1.0	1.8			
A29	13.6	17.1	BW22	0	1.0			
A30	39.8	37.4	B27	1,0	0.3			
A3I	5.8	6.0	B35	4,9	6.7			
A32	1.0	2.3	B37	0	0,1			
AW33	2.9	2.2	B40	1.0	0.6			
One antigen	19,4	26,4	BW41	1.9	1.5			
			BW42	16.5	23.5			
			B44	12.6	15.0			
			B45	7.8	8.8			
			BW53	0	1.6			
			BW70	19.4	24,6 ${ }^{\text {a }}$			
			One antigen	15,5	20.4			

Note. puc, \boldsymbol{P} uncorrected; pc, P corrected. RR, relative risk.
${ }^{7}$ puc $=0.003$; pe 0.12, RR 2.03.
${ }^{6}$ puc $=0.004$; pc 0.13, RR 2.69.
${ }^{\text {c }}$ рис $=0.002 ;$ pc 0.023. RR 3.48.
${ }^{d}$ puc $=0.001 ;$ pc 0.014, RR 2.35.
tested. In addition, a significant association is seen with DRI (14.3\% vs 4.6%; P corrected 0.023).

The occurrence of specific DR antigens together with certain B locus antigens in the same halotype is shown in Table 2. There is a significant linkage disequilibrium between DR3 B8. The high frequency of this laplotype in the patients with Graves' disease is due to the association of DR3 with the disease, while the increased frequency of HLA B8 can be explained by it being in linkage disequilibrium with DR3. In fact, as can be seen in Table 3, the primary association is with HLA DR3 since the strongest relationship is seen in HLA B8 negative patients.

Liakage disequlibrium was also seen between DR3 BW42, but not between DR3 B17.

DISCUSSION

The association between Graves' disease and HLA B8 and DR3 has been firmly established in White Caucasoids ($1-3,9$). Moreover, it has now becone clear that the presence of DR3 is far more important in determining susceptibility to Graves' disease than HLA B8 which is then associated with the disease by virtue of being in linkage disequilibrium with DR3 (1).
South African Blacks with Graves' disease, as shown in this study, certainly show a significant relationship with HLA DR3 and DRI. It appears that to date no other non-Caucasoid groups studied, viz: Japanese, Chinese, Thai, and American Blacks, has shown an association between Graves' disease and HLA DR3 (4, 5, 11, 12). These observations provide further support for the existence of heterogeneity in HLA associations relevant to Graves' disease.
A high frequency of HLA B8 was found in patients with Graves' disease compared to controls. Although the corrected P value was greater than 0.05 , this association does become significant when it is considered in the light of a priori hypothesis since the same antigen has been found to be significantly increased (P uncorrected <0.01) in a previous study involving another group of South African Blacks (6,9). Moreover, the association could well be a secondary phenomenon as this antigen occurs in linkage disequilibrium with DR3 as shown in this study.
Since both South African Blacks and American Blacks presumably have the same origin, the lack of any relationship at the DR locus among the latter is

TABLE 2
Linkage Disequilibrium between Selected HLへB8 Locus ^ntigens and HLA DR Locus Antigens

Haplotype	Control subjects			Patients with Graves ' disease		
	Haplotype frequency	$\begin{aligned} & \text { Delta } \\ & \times 10^{3} \end{aligned}$	Delta SE	Haplotype frequency	$\begin{aligned} & \text { Delta } \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & \text { Della } \\ & \text { SE } \end{aligned}$
DR 3 B8 ${ }^{\text {a }}$	30	18	2.5	86	39	1.1
DR3 BW42 ${ }^{\text {a }}$	62	42	4.5	88	53	1.9
OR3 B17 ${ }^{\text {b }}$	24	- 19	-1.4	50	- 30	-0.6

[^48]TABLE 3
Occurrence of HLA dr3 Together with Selected HLA b Locus Antigens in Patients with Graves' Disease

	DR 3 positive patients	DR 3 negative patients
B8 positive patients	$10(15.9 \%)$	$4(6.3 \%)$
B8 negative patients	$26(41.3 \%)$	$23(36.5 \%)$
BW 42 positive patients	$11(17.4 \%)$	$1(1.6 \%)$
BW 42 negative patients	$25(39.7 \%)$	$26(41.3 \%)$
B17 positive patients	$13(20.6 \%)$	$13(20.6 \%)$
BI7 negative patients	$23(36.5 \%)$	$14(22.2 \%)$

somewhat surprising (I2). Of interest also is the absence of any negative association with HLA B7 or BW42, as has been found in the previous study on South African Blacks (5). In addition, this study did not find an increase in HLA BI7, which is associated with Graves' disease in South Nigerians, another African Black group (2).

A previous study defined a clear association between insulin-dependent diabetes mellitus and HLA DR4 in South African Blacks of Zulu descent (14). However, no association was found with HLA DR3 (14). In contrast, Graves' disease affecting the same population group is associated with HLA DR3.

In conclusion, this study, having been the only one thus far to show a significant relationship between HLA DR3 and Graves' disease involving a non-Caucasoid group, underlines the need for more population-based studies involving groups other than Caucasoids to evaluate such associations.

REFERENCES

1. Farid, N. R. (Ed.), HLA in endocrine and metabolic disorders. In "Graves' Disease," p. 85, Academic Press, New York, 1981.
2. Farid, N. R., and Bear, J. C., The human major histocompatibility complex and endocrine disease. Endocr. Rev. 2, 50-86, 1981.
3. McKenna, R., Kearns, M., and Sugrue, D., HLA and hyperthyroidism in Ireland. Tissue Antigens 19, 97-99, 1982.
4. Nakao, Y., Kishihara, M., and Baba, Y., HLA antigens in autoimmune thyroid diseases. Arch. Int. Med. 138, 567-570, 1978.
5. Hawkins, B. R., Ma, J. T. C., Lam, K. S. L.. Wang, C. C. L., and Young. R. T. T., Association of HLA antigens with thyrotoxic Graves" disease and periodic paralysis in Hong Kong Chinese. Clin. Endocrinol. 23, 245-252, 1985.
6. Kalk, W. J., Maier, G., and Van Drimellen, M., [fL Λ antigens and Graves' disease in Black South Africans. Tissue Antigens 2, 7-15, 1983.
7. Terasaki, P. 1., and McClelland, J. D., Microdroplet assay of human serum cytotoxins. Nature (London) 204, 998, 1954.
8. Danilovs, J. A., Ayoub, G., and Terasaki, P. I., Joint report: B lymphocyte isolation by thrombinnylon wool. In "Histocompatibility Testing" (P. I. Terasaki, Ed.), UCLA Press, Los Angeles, 1980.
9. Svejgaard, A., Jersild. L., Staub-Nielsen, L.. and Badmer, W. F., HLA antigens and disease: Statistical and genetic considerations. Tissue Anfigens 4, 95-105, 1974.
10. Woolf, B., On estimating the relation between blood group and disease. Ann. Humr. Genel. 19, 251-253, 1955.
II. Tiwari, J. L.., and Terasaki, P. I., "HLA and Disease Associations," p. 20, Springer-Verlag, New York, 1985.
11. Sridama, V., Hara, Y., Fauchet, R., and DeGroot, L. J., HLA immunogenelic heterogeneity in Black American patients with Graves' disease. Arch. Intern. Med. 147, I, 1987.
12. Rapapoit, B., Approaching an understanding of the genetic basis for autoimmune thyroid disease. Arch. Intern. Med. 147, 213, 1987.
13. Ohat, M, A, K., Hammond, M. G., and Asmal, A, C., HLA A, B, C and DR anligens in South

Received February 27, 1989; accepted with revision July 24, 1989

HLA-A, B, DR, and DQ Antigens in Black Patients with Idiopathic Dilated Cardiomyopathy

Breminand Maharaj, MB, ChB, FCP(SA), and Michael G. Hammond, PhD

The HLA antigens, which are encoded by closely arranged genes on the short arm of the sixth chromosome, influence the predisposition to several diseases.' Some with initially weak associations with HLA-A and HLA-B antigens have been found to have stronger associations with HLA-DR antigens. ${ }^{2}$ Since a genetic predisposition to the development of idiopathic dilated cardiomyopathy has been postulated, and since there is little information on the relation between antigens at the DR and DQ loci of the HLA system and idiopathic dilated cardiomyopathy, ${ }^{3-5}$ we performed HLA typing in a group of

From the Department of Experimental and Clinical Pharmacology, University of Natal Medical School and Natal Institute of Immunology, Box 17039, Congella, 4013, Durban, South Africa. This study was supported in part by a grant from the South African Medical Research Council. Manuscript received November 20, 1989; revised manuscript received and accepted January 29, 1990.

Antigen	$\begin{aligned} & \text { Pts } \\ & (n=62) \end{aligned}$	Control Subjects $(n=1.416)$
A1	11.3	6.4
A2	27.4	21.4
A3	16.1	12.6
A11	0.0	0.1
A23	12.9	18.3
A24	3.2	4.9
A25/34	14.5	13.5
A26	9.7	10.5
A28	19.4	20.9
A29	12.9	17.1
A30	35.5	37.4
A31	4.8	6.0
432	3.2	2.3*
Aw33	8.1	2.2
One antigen	21.0	26.4
Difference not significant for all comparisons. - Uncorrected D <0.005.		

TABLE III Frequencies of HLA-DR Antigens (\%)				
Antigen	$\begin{aligned} & \text { Pis } \\ & (n=57) \end{aligned}$	Control Subjects $(n=412)$	p Value	Corrected p Value
DR1	12.3	4.6	<0.025	NS
DR2	29.8	24.0	NS	NS
OR3	28.1	36.2	NS	NS
DR4	7.0	10.0	NS	NS
DR5	38.6	35.2	NS	NS
DRw6	24.6	14.6	NS	NS
DR7	14.0	15.3	NS	NS
ORw 8	5.3	2.9	NS	NS
DR9	0.0	0.7	NS	NS
DRw10	8.8	2.2	<0.01	NS
DR1 + DRw10	21.1	6.8	<0.0005	<0.02*
One antigen	31.6	54.4	<0.002	NS
- Relative risk $=3.7$. $N S=$ not stgnificant.				

black patients with this disease to determine if immunogenetic factors could be involved in the pathogenesis of idiopathic dilated cardiomyopathy.

HLA-A and HLA-B typing was carried out in 62 black patients with idiopathic dilated cardiomyopathy who had been admitted and evaluated at King Edward VIII Hospital, Durban, and HLA-DR and HLA-DQ typing was performed in 57 of these individuals; all had evidence of global hypokinesis on echocardiography. None had any disease other than idiopathic dilated cardiomyopathy; habitual alcoholics and hypertensives were excluded. Coronary angiography was not performed in any of the patients because coronary artery disease is rare in the black population of South Africa. ${ }^{6.7}$ Patients were aged between 17 and 63 years. The control group consisted of 1,416 normal adult for the HLA-A and HLA-B typing, 220 for the HLA-DR typing and 198 for the HLA-DQ typing. Although over 2,000 individ? uals have been tested for the HLA-DQ locus in out laboratory, the majority were caucasoid or patients with

TABLE II Frequencies of HLA-B Antigens (\%)

Antigen	Pts $(n=62)$	Control Subjects $(n=1.416)$
B5	0.0	1.3
B7	29.0	20.4
B8	9.7	12.9
B13	1.6	3.8
814	1.6	5.7
B15	6.5	4.0
B16	4.8	3.3
B17	37.1	38.6
B18	3.2	5.2
821	1.6	1.8
Bw22	1.6	0.07
B27	1.6	0.3
B35	11.3	6.7
B37	0.0	0.01
B40	0.0	0.6
Bw41	1.5	1.5
Bw42	21.0	23.5
B44	14.5	15.0
Bw47/47	0.0	0.1
Bw53	0.0	1.6
Bw70	25.8	14.2
One antigen	17.7	30.7
Ditterence not signiticant lor av somparisons.		

TABLE IV Frequencies of HLA-OQ Antigens (\%)				
	Pts	Control Subjects		
Antigen	$(n=57)$	$(n=198)$		
DQw1	66.7	58.1		
OQw2	14.0	23.4		
DQw3	35.1	29.8		
One antigen	84.2	88.9		
Difference not signticant lor all comparisons.				

selected diseases. ${ }^{8}$ Only 198 normal healthy black individuals had undergone DQ typing.

The HLA-A and HLA-B antigens were identified with a 2-stage lymphocytotoxicity test. ${ }^{9}$ These antigens were defined with 180 antisera, which consisted of local serum samples that had been requested for use in International Histocompatibility Workshops, local samples that had been verified by use in parallel with the International Workshop samples and samples that had been exchanged with ot her laboratories worldwide. ${ }^{10-14}$ Similarly, 120 serum samples were used to define the HLA$D R$ and HLA-DQ antigens in B cell-enriched lymphocyte suspensions prepared with the use of straws packed with nylon wool. ${ }^{15}$ The difference in frequency of the various antigens between patients and control subjects was tested for significance by means of the chi-square test (without Yates' correction). The resulting p values were multiplied by the number of HLA antigens tested to determine the corrected p value. Relative risk was calculated according to the method of Svejgaard et al. ${ }^{16}$

The percentage frequencies of the $H L A-A, H L A-B$, HLA-DR and HLA-DQ antigens in patients with idiopathic dilated cardiomyopathy and the control subjects are listed in Tables I to IV. With respect to the differences noted, only the increased frequency of the closely related antigens, HLA-DRI and DRwlO (21.1 vs 6.8%), remained significant after correcting the p value (relative risk 3.7).

Associations between disease and the HLA system may invoive class I (HLA-A, B or C) or class II antigens (D-locus antigens). In this study, no differences in frequency of any of the HLA-A, B or DQ antigens between black patients with idiopathic dilated cardiomyopathy and control subjects were detected. However, we found an increased frequency of the HLA-DR1 and DRw10 antigens in our patients with idiopathic dilated cardiomyopathy; the differences in frequencies between patients and control subjects remained significant after correcting for the total number of HLA antigens tested. The corrected p value would be <0.005 if a correction were made only for the number of DR antigens tested, as is done by some investigators. ${ }^{17.18}$

Zerbe et al ${ }^{4}$ were unable to find an association between this disease and any of the class I and class II antigens in white patients. Another group observed an increased frequency of HLA-B27 and HLA-DR4 antigens and an underrepresentation of the HLA-DR6 in caucasoid patients with idiopathic dilated cardiomyopathy ${ }^{3}$; it is not stated whether the p values were corrected
for the number of antigens tested. An increased frequency of HLA-DR4 antigen was also noted in another group of caucasoid patients with this disease. ${ }^{5}$ Confirmation of a lack of an association between this disease and the HLA-DQ antigens will have to await further studies since these antigens were not tested in previous investigations.

Our study shows that idiopathic dilated cardiomyopathy in blacks is associated with certain DR antigens. This, together with the results of the study by Anderson et al ${ }^{3}$ and those of Limas and Limas, ${ }^{5}$ implies that genetically determined immune-response factors may play a role in the pathogenesis of this condition in some individuals.

1. Stastny P. Ball EJ. Dry PJ. Nunez G. The human immune response region (HLA-D) and disease susceptibility. Immunol Rev 1980:70:113-153. 2. Bodmer WF. The HLA system. Br Med Bull 19:8:34:213-216. 3. Anderson JL. Carlquist JF. Lutz JR. DeWill CW. Hammond EH. HLA-A. B and DR typing in idiopathic dilated cardiomyopathy. A search for immune response factors. Am J Cardiol 1984:53:1326-1330.
2. Zerbe TR, Kaufmann C. Colson Y, Duquesnoy R. Associations of HLA-A. B. DR antigens with primary disease in cardiac allograft recipients. Am J Cardiol 1988.61:1359-1361.
3. Limas CJ, Limas C. HLA antigens in idiopathic dilated cardiomyopathy. Br Hear! J 1989.62:379-383.
4. Powell SJ. Wrigh1 R. Cardiomyopathy in Durban. S Afr Med J 1965:39:10621066.
5. Adams EB. A Companion to Clinical Medicine in the Tropics and Subtropics. Oxford: Liniversity Press, 1970:109.
6. Hammond MC. Appadoo B. HLA antigens in African blacks. In: Azaiwa M. Natori T. Wakisaka A. Konoeda Y. eds. HLA in Asia-Oceania, 1986. Sapporo Hok kaido Linicersity Press. 1986:316-319.
7. Mittal KK. . Fickey MR. Singal DP. Teraski PI. Serotyping for homotrans. plantation. XVIII. Refinement of microdroplet lymphocyte cytmoxicity test. Transplamation 1968.6:913-927
8. Hammond MG, Appadoo G. Brain P. HLA antigens in Bantu and Indians. In: Kissmever-Nielsen F. ed. Histocompatibility Testing. Copenhager: Munksgaard. 1975:173-178.
9. Hammond MG. Appadoo G. Brain P. HLA in non-caucasian populations. In: Bodmer WF. ed. Histocompatibility Testing. Copenhagen: Munksgaard. 1977: 40%.
10. Hammond MG. HLA Bw53. In: Terasaki PI. ed. Histocompatibility testing 1980. Los Angeles: LCLA Tissue Typing Laborator: 1980.429-43?
11. Hammond MG. HLA Bw35. In: Simons :IJ. Tait BD. eds. Proceedings of the Sccond Asia-Oceania Histocompatibility Workshop. Toorak: Immunopub. lishing. 1983:112-114
12. Hammond MG. Betuel H. Gebuhrer L. HL.A A29. In: Albert ED. Baur MP. Mayr WR. eds. Histocompatibili!! Testing. Berlin: Springer-Verlag. 1984:126. 15. Danilov JA. Ayoub G. Tersakj PI. Joint report: B lymphocyte isolation by thrombin-nylon wool. In: Terasaki PI. ed. Histocompatibility Testing 1980. Los Angeles: UCLA Tissue Typing Laborator:. 1980:287-289.
13. Svejgaard A. Platz P. Ryder LP. Staub-Nielsen L. Thomsen M. HLA and disease associations. Transplant Rec 1975:22:3-43.
14. Fiorito S. Autore C. Fragola PV, Purpura M. Cannata D. Sangiorgi M. HLA DR 3 linkage in patients with hypertrophic cardiomyopathy. Am Heart J 1986:111:91-94.
15. Orren A. Taljaard D. du Toit E. HL.A-A. B. C and DR ancigens in insulin dependent diaberes mellitus (IDDM) in Sosth Arican Negro (black) and Cape coloured peoplc. Tissue Antigens 1985:26:332-339.

HLA antigens in donovanosis (granuloma inguinale)

Nigel O'Farrell, Michael Hammond

Abstract

Objective-To compare the frequencies of HLA antigens in patients with donovanosis and in controls. Design-IHA A Class I, Class II and DQ antigens were detected in patients with genital ulceration caused by donovanosis and in a control group. Setting-City Health STD Clinic, King Edward VIII Hospital, Durban, South Africa. Participants-Sixty (47 men, 13 women) patients with donovanosis. Results-HLA 357 was detected in nine of 60 (15%) with donovanosis and 75 of $1478(5 \cdot 1 \%)$ controls (R R $=3.3 \chi^{2}=11.0, p=0.001, p$ corrected $=0.026$). Conclusions-A possible link between donovanosis and HLA B57 could be explained by coexisting alleles or immune response genes in linkage disequilibrium altering disease susceptibility.

\section*{Introduction}

Donovanosis is a genital ufcerative disease (GUD) found in diverse geographical locations where poor socio-economic conditions prevail and is commoner in dark-skinned races.' Donovanosis is generally regarded as a sexually transmitted disease (STD) but the modes of infection and transmission are not yet established with certainty. The causative agent, Calymmatobacterium gramulomatis, has been isolated from faeces, and transmission through auto-inoculation is suggested. ${ }^{2}$ The organism possesses a capsule and is similar to klebsiella strains but its biochemical and bacterial characteristics are not well defined.'

Although previously thought to be uncommon in Southern Africa, donovanosis has recently emerged cases wote diannosed by the presence of Dunovan bodies on direct microscopy using the RapiDiff technique, ${ }^{5}$ a simple bench diagnostic staining method.

[^49]Most bacterial STDs are readily transmitted from male to female and female to male. However, variable transmission rates of infection with C granulomatis are reported from different populations. The prevalence of disease amongst regular sexual partners varies from 1% in the USA ${ }^{5}$ and 1% in Papua and New Guinea ${ }^{7}$ to 50% in India. ${ }^{8}$ The apparent racial predominance amongst blacks and variability in transmission suggests that host susceptibility factors may be relevant in the disease process.

No clear association between a single HLA antigen and a particular STD has been described but donovanosis has been suggested as one STD with a reasonable chance of such a link.. We therefore investigated the frequency of HLA antigens amongst Zulu patients with donovanosis attending a STD clinic in Durban.

Patients and Methods

Sixty Zulu patients (47 men, 13 women) attending the City Health STD Clinic at King Edward VIII Hospital, Durban with genital ulcerative lesions of donovanosis were entered into the study. Donovanosis was diagnosed by the detection of Donovan bodies on tissue smears stained with RapiDiff ${ }^{5}$ and examined by direct microscopy. Specific (TPHA) and non-specific (RPR) serological tests for syphilis were performed. Laboratory facilities for identifying herpes simplex virus, chancroid and lymphogranuloma venereum infections were unavailable.

The control group consisted of 1478 normal subjects who were either staff or randomly selected blood donors of the same ethnic origins as the patients. HLA Class I antigens were determined in all patients and control subjects by a two-stage microlymphocytotoxicity test ${ }^{\text {t" }}$ with 180 sera consisting of: 1 . local sera requested for use in international histocompatibility workshops; 2. local sera verified with international workshop sera; 3. sera exchanged with other laboratories worldwide.

Similarly 120 sera were used to define the Class II antigens on B -lymphocyte enriched lymphocyte suspension prepared with the aid of straws packed with nylon wool. " Class I I antigens were determined in 53 patients and 513 controls except that 111.11$)(2$ antigens were tested in 129 controls.

Statistics

Differences in HLA frequencies were tested for significance with the χ^{2} test and the probability

Table 1 Frequency of HLA Class I antigens in patients with donovanosis and normal controls

HLA	Controls		Donovanosis		x^{2}	Relalive risk
	$N=1478$	（呪）		60（\％）		
Al	123	（8．32）	3	（5－00）	0.85	06
A36	12	（0．81）	1	（1－67）	0.50	2.1
A2	358	（24．22）	15	（25．0）	0.02	1.0
A3	165	（11．16）	12	（20．0）	4.42	20
A23	281	（1911）	3	（500）	7.52	$0 \cdot 2$
A $2+$	81	（ 5 48）	6	（10）00）	2.21	19
A 25	55	（3．72）	0	（0．00）	2.32	0.0
A26	173	（11．71）	5	（8．33）	0.64	0.7
A34	124	（8．39）	6	（10．00）	0.19	1.2
A28	319	（21．58）	21	（35．00）	6.03	20
A29	213	（14．41）	7	（11．67）	0.35	0.8
A 30	455	（30．78）	16	（26．67）	0.46	0.8
A31	57	（3．86）	3	（5．00）	0.20	1.3
A 32	28	（1．89）	2	（3 33）	0.62	18
A 33	58	（392）	2	（3．33）	0.05	0.8
A43	2	（0．14）．	0	（0．00）	0.08	$0 \cdot 0$
A66	1	（0．07）．	0	（000）	$0 \cdot 04$	$0 \cdot 0$
B7	348	（23．55）	15	（25．00）	0.07	$1 \cdot 1$
B8	189	（12．79）	10	（16．67）	0.77	1.4
H13	45	（3．04）	1	（1．67）	0.38	0.5
B14	88	（5．95）	1	（1．67）	1.94	0.3
1318	80	（5．41）	1	（1．67）	1.62	0.3
1321	29	（1．96）	2	（3．33）	055	1.7
1322	5	（0．07）	0	（0：00）	0.04	00
B27	5	（0．34）	0	（0．00）	0.20	． 0.0
B35	109	（7．37）	8	（13．33）	2.91	$1 \cdot 9$
B37	2	（0．14）	0	（0．00）	0.08	0.0
B38	29	（1．96）	2	（3．33）	0.55	1.7
B39	24	（1．62）	1	（1．67）	0.00	1.0
1341	27	（1．83）	2	（3．33）	0.71	1.9
B42	296	（20．03）	12	（20．00）	0.00	10
B44	233	（15．76）	11	（18．33）	0.29	1.2
1345	139	（9．40）	1	（1－67）	4.17	$0 \cdot 2$
B47	1	（0．07）	0	（0．00）	0.04	0.0
B48	1	（0．07）	0	（0．00）	0.04	$0 \cdot 0$
1351	16	（1．08）	0	（0．00）	0.66	$0 \cdot 0$
1352	20	（1．35）	2	（3．33）	1.60	$2 \cdot 5$
B53	20	（1．35）	2	（3．33）	1．60）	$2 \cdot 5$
B57	75	(507)	9	（15．00）	11.00	3.3
1358	471	（31．87）	21	（35．00）	0.26	$1 \cdot 2$
1360	1	（0．07）	0	（0．00）	0.04	00
1362	10	（0．68）	0	（0．00）	0.41	00
1363	40	（2．71）	1	（1．67）	$0 \cdot 24$	0.6
1170	407	（27．54）	9	（15．00）	4.59	0.5

corrected by multiplying the p value by the number of comparisons made，that is，the number of antigens tested．${ }^{12}$ Relative risks were calculated according to the formulae recommended by Woolf．${ }^{13}$

Results

The frequencies of HLA A and B antigens in the patients and controls are shown in table 1 and of HLA DR and DQ antigens in table 2．HLA B57 was detected in nine of $60(15 \%)$ with donovanosis and 75 of $1478(5 \cdot 1 \%)$ controls $\left(R R=3 \cdot 3, \chi^{2}=11 \cdot 0, p=\right.$ $0.001, \mathrm{p}$ corrected $=0.026$ ）．HLA A23 was detected in three of $60(5 \%)$ with donovanosis and 281 of 1478 （ 19.0% ）controls（ R R $=0.2, \chi^{2}=7.5, p<0.01$ ，p not significant after correction）．

Positive serological tests for syphilis（TPHA and RPR were detected in 14 （ 10 men and four women）．

Table 2 Frequency of HLA Class II antigens in patients with donovanosis and normal controls

M1／A	Controls		Donovanosis		Relative risk
	$N=513$	（ 10 ）	$N=53(\%)$	x^{2}	
DRI	24	（4．68）	$1 \quad(1.89)$	0.89	0.4
DR2	124	（ $24 \cdot 17$ ）	$16 \quad(30 \cdot 19)$	0.93	1.4
I）R3	181	（35－28）	33 （3．10）	1.37	1.1
［）R•！	10	（1．うう1	5.401	10.87	0.6
い12う	11.5	（3110，	\therefore 吅！	$2 \cdot(13$	06
1）126	1）	（ 17.41$)$	1）$\quad(11 \cdot 32)$	1.47	$0 \cdot 6$
DR7	79	（15．40）	$10)(18.87)$	0.44	$1 \cdot 3$
DR8	20	（3．90）	$3 \quad(566)$	$0 \cdot 38$	1．5
I）R9	4	（0．78）	2 （3．77）	$4 \cdot 11$	$5 \cdot 0$
DR10	11	（2．14）	4 （7．55）	$5 \cdot 44$	$3 \cdot 7$
	$N=176$		$N=5.3$		
I）${ }^{\text {a }}$（1）	12？	4，0．3．？	（1） 5750 ）	0.04	0.9
1）（）W？	i）	，「！	$\because 11.2)$	0.07	13
	12	－13 3	1.0 （1）	（）． 86	1.4

Discussion

There are few reports linking HLA antigens and STDs．Amongst Chinese prostitutes in Singapore HLA AW19 and HLA B17 were associated with syphilis and gonorrhoea and HLA A11 and HLA B15 conferred relative resistance．${ }^{14}$ Behcet＇s disease， although not a STD，does cause genital ulceration and is associated with HLA B5．${ }^{15}$ The development of disease may be related to early sexual intercourse or adolescent infection．${ }^{16}$ Our findings of a possible link between HLA B57 and donovanosis and a trend towards resistance to disease with HLA A23 could be explained by co－existing alleles or immune response genes in linkage disequilibrium altering disease sus－ ceptibility．

Donovanosis is a STD about which little is known despite its recognition in the nineteenth century．It differs from most bacterial STDs in having a long incubation period and a variable transmission rate to regular sexual partners thereby suggesting inherent differences in host susceptibility．The causative organism C granulomatis shares some features of klebsiella strains including a prominent capsule but its bacterial characteristics are still not yet clearly defined．Klebsiella extracts are more likely to interact with HLA B27 than other HLA antigens producing an altered－self major histocompatibility complex that may trigger reactive arthritis．${ }^{17}$

Donovanosis has only recellly been recognised as a significant cause of GUD amongst the local Zulu population．${ }^{4}$ Whether this reflects a new epidemic or increased awareness following the introduction of a rapid diagnostic test is uncertain．Elsewhere in South Africa donovanosis occurs in East Transvaal amongst the S wazis ${ }^{18}$ but is otherwise uncommon．

The highest prevalence of donovanosis worldwide is in Dutch New Guinea and Papua New Guinea．${ }^{19}$ However，HLA B57 was not identified amongst
natives of the Highlands and Coastal Areas. ${ }^{20}$ Further studies of HLA status and donovanosis are required amongst population groups from endemic areas to clarify possible immunopathological mechanisms of disease and assess the role of genetic factors.

Address for correspondence: Dr Nigel O'Farrell, Lydia Department, St Thomas' Hospital, London SEJーい! ! !

1 D'Aunoy R, von Haam E. Granuloma inguinale. Am J Trop Med 1937;17:747-63.
2 Goldberg J. Studies on granuloma inguinale: VIl. Some epidemiological considerations of the disease. Br J Venereal Dis 1964;40:140-5
3 Kuhercki F^{2}. Granuloma inguinale (1)onovanosis). Sex Transm

 May-- June 1991, Heidelberg, West Germany.
5 OFarell N, Hoosen AA, Coctzee K, van den Ende J. A rapid stain for the diagnosis of granuloma inguinale (Donovanosis). Genitourin Med 1990;66:200-1.
6 Packer H, Goldberg J. Studies of the antigenic relationship of D granulomatis to members of the tribe Escherichiae. Am J Syphilis 1950;34:343-50.
7 Maddocks I, Anders EM, Dennis E. Donovanosis in Papua New Guinea. Br J Venereal Dis 1976;52:190-6.
8 Lal S, Nicholas C. Epidemiological and clinical reatures in 165 cases of granuloma inguinale. Br I Venereal Dis 1970;46: 461-3.

9 Kuberski 'l', Histocompatibility antigens and the sexually transmitted diseases. Sex Transm Dis 1980;7:203-s.
10 Terasaki PI, McClelland JD. Microdroplet assay of human serum cytotoxins. Nature 1964;204:998-1000.
11 Danilovs JA, Ayoub G, lerasaki PI. B lymphocyte isolation by thrombin-nylon wool. In: Terasaki P1, Ed. Histocompatibility Testing 1980. Los Angeles, University of California Press, 1980.

12 Sveigaard A, Jersild C, Nieisen LC, Bodmer WF. HLA antigens and disease: statistical and genetical considerations. Tissue Amigens 1974;4:95-105.
13 Woolf B. On estimating the relation between blood group and diseasc. Am" IHm" (ren 1955;19:251-3.
14 Chan S1H, 'Ian'l', Kunnudin A, Wee GB, Rajan VS. HLA and sexually transmited diseases in prostitutes. Br $/$ Venereal Dis 1979;55:207-10.
15 Ersoy F, l3erkel 1, Firat '1', Kazokoglu H. HLA antigens associated with Behcet's disease. Arch Dermatol 1977;113:1720-1.
16 Cooper C, Pippard EC, Sharp H, Wickham C, Chamberlain MA, Barker DJP. Is Behcet's disease triggered by childhood infection? Amm Rhion I) is 1989:48:421-3.
 disease. In: Lachmann PJ, Peters DK, eds. Clinical Aspects of limmmology, Val 1, Oxford: Blackwell Scienific Publications, 1982
18 Wistrand R, Wegerhoff F. Granuloma inguinale in the Eastern Transvaal. S Afr Med J 1985;67: 13-15.
19 Vogel LC, Richens J. Donovanosis in Dutch South New Guinea: History, evolution of the epidemic and control. Papua New Guinea Med J 1989;32:203-18.
20 Crane G, Bhatia K, Honeyman M, et al. HLA studies of Highland and Coastal New Guineans. Hum Immunol 1985;12:247-60.

Accepted for publication 1 August 1991
onset of activity (lorazepam). Similarly, for acute behavioural episodes such as violence the choices have generally been intramuscular lorazepam or antipsychotics such as haloperidol or chlorpromazine. In addition to delayed onset of effects, intramuscular antipsychotics have been associated with acute extra pyramidal side effects, orthostatic hypotension, and extreme sedation.

Over the past year we have used the benzodiazepine midazolam intramuscularly to treat patients with acute seizures or extreme behavioural episodes. In the United States midazolam is currently approved for use as a pre-anaesthetic agent, and not for treatment of seizutes.' It has, however, been successfully used in clinical situations to treat acute seizures including status epilepticus, and severe behavioural problems often with almost inimediate effects. ${ }^{2-7}$ Midazolam is a highly lipophilic water soluble drug which allows for excellent intramuscular absorption and rapid CNS penetration. Intramuscular (IM) administration can result in sedation within five to 15 minutes with peak effects noted within 30-60 minutes. The drug possesses a short half-life of 1.5 to 3.5 hours, although in some patients residual psychomotor effects may be noted for up to eight hours. Although there have been reports of respiratory problems with the intravenous administration of midazolam, especially in elderly patients, this has not been reported after intramuscular use. Warnings of respiratory problems specifically only mention intravenous administration.
After previously published reports of success with IM midazolain for the treatment of acute seizures and behavioural emergencies, we have been treating patients with this medication. We present four cases involving clinical use of IM midazolam, two for acute seizures and two for behavioural control.
Case 1: A 26 year old white male suffered a head injury on the 9 February 1985 secondary to a motor vehicle accident. The patient has had persistent problems widh late onset prolonged seizures which often needed admission to hospital for acute treatment despite receiving intranuscular lorazepam. These admissions averaged at least one per month between 1989-90. In early 1990 lorazepam was switched to IM midazolam 10 mg . Since the change to midazolam, no further admissions have been necessary for treatment of acute seizures, despite no significant changes in the primary anticonvulsant drug treatment.
Case 2: 122 year old white male suffered a head injury on 2 January 1986 when he was hit by a car. He developed frequent and prolonged late-onset seizures, both focal and generalised. On 3 April 1990 he developed right-sided twitching of the face and extremities for seven to 10 minutes, without secondary generalisation. IM midazolam 15 mg stopped the seizures "within five minutes." On 25 June 1990 he developed prolonged generalised tonic-clonic seizures. IM midazolam 15 mg was administered and the seizures ceased within five minutes with the patient falling asleep. Sedation was the only reported adverse effect.
Case 3: A 52 year old black male suffered a head injury in May 1987 secondary to a fall. Post traumatically he developed seizures, and patanoid psychosis with prolonged agitated, aggressive, and combative behaviours. On 6 April 1990 he became euphoric, paranoid, very agitated and threatened physical abuse to staff members. He refused medications and also cigarettes. After IM midazolam

5 mg he fell asleep for one hour and awoke amnesic about the episode.

Case 4: A 39 year old black male, had primary behavioural problems including chronic violence to others and agitation. The patient has had a chronic idiopathic seizure disorder since 1980. In 1988, he developed an episode of status epilepticus leading to anoxic encephalopathy with resulting severe cognitive impairment, chronic paranoid psychosis, aggressive behaviours, and visual and auditory hallucinations. Intramuscular midazolam has been used on numerous occasions to treat agitation resulting in alleviation of agitation and violence as well as a reduction in psychosis without significant sedation or long term "after effects." These positive effects have lasted for a day, sometimes for eight to 12 hours.

Although seizutes after brain injury can sometimes be self-limiting, the known rapid onset of midazolam and our knowledge of these patients' seizute histories makes this possibility unlikely. While some patients (such as case 4) may respond to very low doses, the general dosage guideline for midazolam is 0.15 to $0.30 \mathrm{mg} / \mathrm{kg}$. ${ }^{2}$
Side effects were reported ranging from slight lethargy to sleep. In most cases, this lasted for one to two hours and the patients' recovery was uneventful. Only case 4 demonstrated prolonged effects-even at a very low dose. Intramuscular midazolam appears to be a safe, rapidly effective drug for treatment of both acute seizures and behavioural emergencies and deserves further study.

BRUNO A WROBLEWSKI Greenery Rehabilization Center, and Deparimert of Rethabititation Mes 7iffs University School of Medicine, Doston, MAA,

ANTHONY R JOSEPLI

Deparement of Psychioury,
Harvard Medical School,
Boston, MA, USA
Correspondence to: Dr Wroblewski.

1 Versed: Product information. Nutley NJ, Hoff-man-LaRoche, 1986.
2 Egli M, Albani C. Relief of status epilepticus after IM administration of the new ShortActing benzodiazepine midazolam. 7welth Ubrld Congress of Neurology, 20-25 September 1981, Kyoto, Japan. Princeton, Excerpta Medica, 44 (abs 137).
3 Jawad S, Oxley J, Wilson 1, Richens ^. A pharmacodynamic evaluation of midazolam as an antiepileptic compound. I Neurol Neumisurg S'sychiarry 1986;49:1050-4.
4 Galvin GM, Jefinek GA. Midazolan: an effective intravenous agent for seizure control. Arch Fimerg Med 1987;4:169-72.
5 Mayhue FE. IM nuidazolam for starus epilepticus in the Emergency Department. Ann Emerg Med 1988;17:643-5.
6 Von Albert HH. Midazolam for the treatment of states of restlessness and excitation. In: Steffens J, ed. Midazolam in anesthesiology. Int Symposium Darmstadt, 28-29 October 1983. Basle, Switrerland: Roche Scientilic Service, 1986:255-58.
7 Mendoza R, Dienderedjian AHI, Adams J, Ananth J: Midazolam in acute psychotic pacients with hyperarousal. 7 Clin Psychiatry 1987;48:7, 291-2.
8 Bond WS, Mandos LA, Kurtz MB. Midazolam for aggressivity and violence in three mentally retarded patients. Am J Pychiatry 1989;146:7, 925-6.
9 Dundee JW, Halliday NJ, Harper KW. Midazolam. Λ review of its pharmacological properties and therapeutic use. Drugs
$1984 ; 28: 519-13$.

HLA profile and HTLV-1 associated myelopathy (HAM/TSP) In Natal, South Africa

Myelopachy associated with HTLV-I (HAM TSP) is an important cause of neurological disability in the Zulus in Natal.' To explore the role of host factors in the pathogenesis of this disorder we examined the HLA profiles in $40 \mathrm{HAM} / \mathrm{JSP}$ patients. The results were also compared with two antibody positive patients with adult T-cell leukaemia/lymphoma (ATLL). The control group consisted of normal adults who were either staff or randomly selected blood donors of the same ethnic origin as the patients. Class I antigens were tested in 1848 controls, DR antigens in 556 and DQ in 340.
Standard techniques ${ }^{23}$ using 180 antisera for Class I antigens and 120 antisera for Class II antigens, were employed. Differences in HLA frequencies were tested for significance with the Chi square test (without Yates's correction) and the probability was corrected by multiplying the P -value by the number of comparisons made, that is, the number of antigens rested. ${ }^{\text {. Relative risks }}$ were calculated according to the formulae recommended by Woolf.' The difficulties of establishing negative correlations which may indicate a "protective" antigen have been discussed by Sveigaard et al. ${ }^{\text {© }}$ Haplotype frequencies were estimated by the method of Mattiuz et al. ${ }^{7}$
The HLA frequencies of the large number of controls was typical of the Southern African black population. There was virtual absence of N11, B22, B40, Bw54, Bw52, Cwl and DR9 whilst high frequencies of A23, A30, Bw42, B58, B70, Cw2 and DR5 were observed. In the patient group an increased frequency of only one antigen-Bw57-reached statistical significance (table) at the 1% level after correction for the number of Class 1 antigens tested. The increased frequencies of A24 (12.5% vs 6.0 $\%$), B7 (32.5% vs 23.4%) and DR2 (37.1% vs 24%) were of borderline significance.
There were no significant differences in the frequencies of HLA C and HLA DQ antigens. The joint occurrence of $\triangle 24, B 7, D R 2$, DQwl was found in $3 / 35$ patients ($8 \cdot 6 \%$) but was present in only 3.1% of the control group. The two patients with lymphomal leukamia had the following antigens: HLA A2, A30, B8, B-, Cw2, Cw-, DR7, DR-, DRw53, DQwi and DQw- and HLA Aw31, A-, B35, B45, Cw-, DRw8, DRw52, DQw3, DQw -. There were no significant differences in the estimated haplotype frequencies between patients and controls.

In contrast to our largely negative fundings Usuku et al ${ }^{7}$ found specific HLA haplotypes in 70% of their HAM patients. Furthermore, none of the HAM associated HLA hapolotypes were seen in ATLL. The joint occurrence of A24, B7, DR2, DQw1 found in 8.8% of our patients, has been reported by the Japanese, although DR2 was usually found with different B-locus antigens. The other HLA antigens associated with HAM/ TSP in the Japanese ${ }^{\text {R }}$-A11, Bw54, Bw52, are not found in the Zulus. Also those antigens associated with ATLL in Japanese are tare in the local black population.
There is accumulating evidence that the neurological injury in HAMVTSP is immune mediated.' ${ }^{\text {' }}$ A more refined examination of the HLA system may yet prove fruitful. The recent molecular genetic study by Usuku et al ${ }^{\prime \prime}$ showed a relationship between a particular amino acid sequence of the HLLA-DR I

Table MHC Class I antigen frequencies in Zulu control subjects and patients with HAM/TSP.

	Conerol $N=1848$	\%	$\begin{aligned} & \text { HAMITSP } \\ & \mathrm{N}=40 \end{aligned}$	\%	CHI-SQ	R-R
B7	432	23.3	13	32.5	1.81	1.6
B8	235	12.7	7	17.5	0.80	1.5
B13	62	3.3	2	5.0	0.32	1.5
B14	112	60	2	$5 \cdot 0$	0.08	0.8
B18	95	$5 \cdot 1$	3	7.5	0.44	1.5
B21	35	1.8	0	00	0.77	$0 \cdot 0$
Bw22		$0 \cdot 0$	0	00	0.02	0.0
B27	8	0.4	0	$0 \cdot 0$	0.17	$0 \cdot 0$
B35	135	7.3	3	7.5	0.0	1.0
B37	2	01	0	0.0	0.04	0.0
B38	32	1.7	1	2.5	0.13	15
B39	29	1.5	0	0.0	0.64	0.0
Bwal	33	1.7	0	0.0	0.73	0.0
Bw42	368	19.9	6	15:0	0.60	0.7
B44	303	16.4	8	200	0.37	1.3
B45	174	9.4	1	2.5	2.23	0.2
Bw47	2	0.1	0	0.0	0.04	0.0
Bw48	1	$0 \cdot 0$	0	0.0	0.02 0.72	0.0 2.3
B51	20	$1 \cdot 0$	0	2.5	0.72	2.3
Bw52	1	0.0	0	$0 \cdot 0$	0.02	0.0
Bw53	29	1.5	0	0.0	0.64	0.0 4.2
Bw57	88	4.7	7	17.5	13.29	4.2
Bw58	585	31.6	8	20.0	2.47	0.5
Bw60	1	0.0	0	00	0.02	0.0
Bw61	0	00	0	$0 \cdot 0$	-	
Bw62	12	0.6	0	0.0	0.26	00
Bw63	43	$2 \cdot 3$	0	0	0.95 6.18	0.0
Bw70	512	27.7	4	10.0	$6 \cdot 18$	0.3

$\mathrm{N}=$ number; $\mathrm{R}-\mathrm{R}=$ relative risk.
chain and the succeptibility to HAM. We have already established control frequencies in the Zulus for HIA polymorphism using PCR amplified DNA, dot-blots and oligonucleotide probes and hope to embark on a project to determine if any of these DNA markers are relevant to HAM TSP.

A I BIIGJEE
P L A BILL
Neurology Unit, Department of Medicine, Wentworth /Hospizal, Private Bag, Jocobs 4026, South Africa

M G HAMMOND 7ransplantation Unit,
7he Natal Institute of Imminology; Box 2356, Durban I M WINDSOR Department of Virology, University of Natal Medical School, Durban, Sowh Africa.

Correspondence to: Dr Bhigjee

1 Bhigjee MI, Kelbe C, Haribhai HIC et al. Myelopathy associated with human T cell lymphotropic virus type I (HTLV-I) in Natal South Arica. Brain 1990;113:1307-20.
2 Terasaki PI, McClelland JD. Microdroplet assay of human serym cytotoxins. Nature 1964; 204:998.
3 Danilovs JA, Nyoub G, Terasaki PI. B lymphocyte isolation by throbin-nylon wool. In Terasaki PI, ed. Histocopatibility testing. Los Angeles: University of Califonnia Press, 1980:287-8.
4 Svejgaard A, Jersild L, Staub-Nielsen L, Bodmer WF. HLA antigens and disease: statistical and genetical considerations. Tissue Antigens 1974;4:95-105.
5 Woolf B. On estimating the relation berween blood group and disease. Amn Hum Gen 1955;19:251-3.
6 Sveigaard A, Platz P, Ryder LF et al. IILA and disease associations-a survery. In: Moller G, ed. HLA and disease, (Iransplant Rev 22). Copenhagen, Munksgaard 1975:3-41.
7 Matiuz I'L, Ihde D, I'imzza A, es al. New approaches to the population genetics and segregation analysis of the $11 L \Lambda$ system. In: Terasaki Pl, ed. Histocopatibility sesting. Copenhagen: Munksgaard, 1970:193-206.
8 Usuku K, Sonoda S, Osame M, et al, HILA haplotype-linked high immune responsiveness aghinst HTLV-I in HTLV-I associated myelopathy: Comparison with adult T-cell leukemia/Lyphoma. Ann Neurol 1988;23 (Suppl):S143-50.
9 Kawai HI, Nishida Y, Takagi M et al. HTLV-I
associated myelopathy with adule T-cell leukemia. Neumogy 1989;39:1129-31.
10 Dalgleish A, Richardson J, Matutes E, et al. HILV- infection in tropical spastic paraparesis: lymphocyte culture and serological response. AlDS Res Hum Retroviruses 1988; 4(b):475-85.
11 Usuku K, Nishizawa M, Matsuki K, et al. Association of a particular amino acid sequence of the HLA-DR I chain with IITLVI associated myelopathy. Eur I Immuenol 1990;20:1603-6.

Extrapyramidal symptoms in a patient

 treated with fluvoxamineA 77 year old woman had a longstanding history of recurrent major depressive episodes. She was treated with several tricyclic and heterocyclic antidepressants. Approximately six months before she came under our care, she started taking neuroleptics for the first time in her life. Flupenthixol 1 mg three times daily was prescribed in combination with the tricyclic antidepressant melitracene for a major depressive episode with psychotic features.

After a few months, marked orofacial involutary movements were noted. All psychoactive drugs were discontinued and the orofacial dyskinesia disappeared gradually over the following month. The depression relapsed, however, and treatment was started with fluvoxamine, a serotonin-reuptake inhibiting antidepressant. The initial dose of 50 mg was gradually increased to 200 mg . By the time she had been on fluvoxamine for six weeks, she was transferred to our psychogeriatric ward.
On initial neurological examination, a mild akinetic-rigid syndrome and hyperactive tendon reflexes were found. Blood pressure fell from $130 / 80$ to $90 / 50 \mathrm{~mm} \mathrm{Hg}$ when the patient changed from the supine to standing position. \triangle CT scan showed mild generalised brain atrophy with a slightly more pronounced cerebellar atrophy. The akineticrigid syndrome deteriorated considerably over the following eight months, eventually leading to multiple falls. No tremor was
noted. Meanwhile, the depressive symptoms had substantially improved. As an explanation for her neurological symptoms, a multiple system atrophy was suspected, although Parkinson's disease was also considered.

Before starting a drug trial with levodopa, we wanted to rule out the possibility that the Parkinsonism was drug-induced. Fluvoxamine was therefore reduced to a daily dose of 100 mg . The extrapyramidal symptoms had already markedly decreased one week later. The fluvoxamine was now completely withdrawn, resulting in an almost complete disappearence of the extrapyramidal symptoms over a period of two weeks. One month after the cessation of fluvoxamine, only a mild decrease in arm swing was left; the hyperactive tendon reflexes were unchanged. The orthostatic hypotension had also disappeared. An MRI scan of the brain showed mild atrophic changes and some periventricular and deep subcortical white matter hyperintensities. There was no signal attenuation in the putamen on T2-weighted images as has been described in striatonigral degeneration and other multisystem atrophies. Neither were there changes in the posterior fossa suggestive of olivopontocerebellar atrophy. A rechallenge with the offending drug was considered unacceptable because of the risk of serious injury when falls reoccurred.
Our patient presented with a severe aki-netic-rigid syndrome and orthostatic hypotension almost completely reversible after withdrawal of the antidepressant fuvoxamine which she had been taking for several months. Extrapyramidal and autonomic side effects are not usually described with this selective serotonin-reuptake inhibitor. As far as we know, the occurrence of orthostatic hypotension is very unusual with this drug that has no known antagonist activity for alfaadrenergic receptors. The association between selective serotonin-reuptake inhibitors and extrapyramidal side-effects as well as akathisia has already been reported, however, although mainly for fluoxetine. ${ }^{1-3}$ A possible explanation is that increased serotonergic activity may exert an inhibitory action on nigrostriatal dopaminergic neurons." Preexisting compromised nigrostriatal function caused by Parkinson's disease, other degenerative neurological disorders or dopamineblocking agents might predispose patients to this adverse effect. Our patient had no such conditions. A causative role for the neuroleptics she had taken some months before the treatment with fluvoxamine is very unlikely because the extrapyramidal syndrome reached its maximum severity almost one year after the complete withdrawal of the antipsychotics. Finally, it could be argued that a dose of 200 mg of fluvoxamine is relatively high for an elderly patient, adding to the risk of developing side-effects.

Clinicians should be aware of this rare but potentially serious neurological complication of treatment with selective serotonin-reuptake inhibiting antidepressants, especially in patients with pre-existing neurological disease or already compronised extrapyramidal function due to neuroleptic medication.

V wils
Mamingenstraat 3 ,
B 3000 Leuter,
Belgium

1 Ciraulo DN, Shader R!. Fluoxetine drug-drug interactions: I. Antidepressants and antipsychotics. J Clin Psychophormacology 1990; 10:48-50.

PATERNITY CALCULATIONS IN COURT

To the Editor:

Li and Chakravarti [1] introduce their article with the observation that "the purpose of conducting genetic marker tests ... is to ascertain whether the accusation (of paternity) is true or false". This is the crux of the issue and the results of any tests should only be used to help the court make its decision.

If the tests exclude the accused man then the court uses this information to decide that the accusation is false. If the tests do not exclude the accused, then the court still has to decide whether the accusation is true or false. If the accusation is indeed false, but not revealed by the tests, then the accused man has been chosen at random as far as his genetic make-up is concerned. Thus, the question to be asked is "what is the probability that a man, chosen at random and subjected to the same tests, would not be excluded". This is not the same as Steinberg's [2] contention that the question to be asked is "what is the probability that an accused male among the non-excluded males is the father". In fact, it is not reasonable to ascribe different probabilities to different non-excluded males, when ANY of the non-excluded males could be the father. I must emphasise that "not reasonable" is in the context of court proceedings and not in an academic environment.

Dodds [3] states that "... the legal profession prefer the probability that a random man would not be excluded...". The legal correspondent of the British Medical Journal [4] describes a case where "The evidence was to the effect that 998 out of 1000 men tested at random would have been excluded from paternity by the test".

If several men are tested to determine the paternity of one child, and none of the men can be excluded, then the "probability of a random man not being excluded" applies equally to all the men. Therefore, from a legal point of view, none of the men can be considered more likely than any of the other men because of his phenotype. Jaffee [5] makes the point that you only need to cast a reasonable doubt on the case against the accused man. The court will have to decide on other grounds or ask for additional tests to be carried out.

The probability of paternity, the likelihood of paternity, the paternity index and/or other statistics are based on gene frequencies. The probability that a random man would not be excluded should be based on phenotype frequencies. In the HLA system, haplotype frequencies are often used but even when gene frequencies at each locus are used the calculations are not a true reflection of "a random man not being excluded".

The complexity of the HLA system and the phenomenon of linkage disequilibrium within this complex gives rise to incorrect interpretations if gene frequencies or haplotype frequencies are used.

The difficulty is best illustrated with an example:
My database consists of over 26,000 HLA typed people.

Random Caucasian population	$\mathrm{N}=2268$
A 2	$=48.63 \%$
B 7	$=26.15 \%$
	$=272 / 2268$
Observed (direct count) number of people with both antigens	
	$=11.99 \%$
Estimated $\quad \mathrm{HF}=3.39 \%$	
	$=77 / 2268$

Haplotype frequencies were estimated by the method of Mattiuz et al. [6].
If a child receives A 2 and B 7 from his father then any man with these two antigens can not be excluded

$$
\text { i.e. a probability of } \quad \begin{aligned}
272 / 2268 & =0.1199 \\
& =11.99 \% \quad \text { Ratio } 1: 8.3
\end{aligned}
$$

Using estimated HF's the probability is $\quad=0.0339$

$$
=3.39 \% \quad \text { Ratio } 1: 29.5
$$

After many paternity investigations, it is likely that several cases would have occurred where the biological father must have possessed the antigens HLA A2 and HLA B7 and the accused men would all have been assigned a probability of 3.39% (the frequency of men with the A2 and B7 antigens on the same chromosome), whereas, in fact, some of those men should have been excluded because they do not carry the A2 and B7 antigens on the same chromosome. We know this is so because 11.99% of random men have both antigens but the haplotype frequency is only 3.39%.

Now, the question arises, which of the men should be excluded? Probability theory tells us that

$$
(272-77) / 272=71.69 \%
$$

of the accused men carry the A2 and B7 alleles on different chromosomes, so that seven out of ten men should be excluded by probability theory. The probabilty using HF's could be modified, which would result in a probability somewhere between 3.39% and 11.99% but then seven of the ten men would be worse off while the other three would be better off. Aicken and Kaye [7] quote Essen-Moller to make the point that every individual decision must be granted perfect independence.

The judge should not be presented with a probability that is "on the average" correct, because he has to decide each case individually. It is therefore preferable to use the probability that a random man possesses these two alleles (on any chromosome) for all cases.

Therefore, the probability of 11.99% should be used for all the men in these cases. Alternatively, full family studies must be done on each man to determine his haplotypes and then, and only then, can estimated haplotype frequencies be used.

Naturally, in each individual case the true probability is 3.39% and some theorists modify this result with the probability of the alleles being found on the same chromosome but this is only of academic interest and should not be used in a court of law.

Many laboratories do not have large databases of phenotype date and rely on published tables of allele and haplotype frequencies. However, using the formulae of Mayr and Pausch [8] it is possible to calculate backwards from frequency tables to phenotypes.

M.G. HAMMOND

Natal Institute of Immunology, PO Box 2356, DURBAN 4000, SOUTH AFRICA.

REFERENCES

$1 \quad$ Li CC and Chakravarti A (1988) An expository review of two methods of calculating the paternity probability. Am J Hum Genet. 43:197-205

2 Steinberg AG (1987) Letter to the editor. Am J Hum Genet 41:900-901

3 Dodds BE (1980) When blood is their argument Medicine, Science and the Law 29: 231

4 Legal Correspondent Medicolegal (1986) Blood tests and paternity BMJ 292:262

5 Jaffee LR (1978) Comment on the judicial use of HLA paternity test results and other statistical evidence: a response to Terasaki J Family Law 17: 457

6 Mattiuz PL, Ihde D, Piazza A, Ceppellini R and Bodmer WF (1970) New approaches to the population genetic and segregation analysis of the HLA system. In: Histocompatibility Testing 1970 (ed PI Terasaki) Munksgaard, Copenhagen p193-206

7 Aicken M and Kaye D (1983) Some mathematical and legal considerations in using serological tests to prove paternity In: Inclusion probabilities in paternity testing (ed RH Walker) American Association of Blood Banks, Arlington p155-169.

8 Mayr WR and Pausch V (1975) Die berechnung der vaterschaftsaus-schluffchance im HLA system Z Immun-Forsch 150: 447

[^0]: Received: August 6, 1970; accepted: January 5, 1971.

[^1]: 'Supported by a grant from the South African Mondiend Inverarth Comeneil (1'. B.).

[^2]: Supported by a grant from the South African Medical Research Council.

[^3]: *Date received: 16 October 1969

[^4]: ${ }^{1}$ Supported by a grant from the South African Medical Research Council to H.J.D. and from the CSIR to A.C.

[^5]: 1 Bainer, H.: Leukocyte antigens of man and subhuman primates; in Proc. Xith Eur. Conf. on Animal Blood Groups and Biochemical Polymorphism, Warsaw 1968, pp. 6787 (Junk, The Hague 1963).
 2 Balner, h.; Dersjant, H.; Vreeswijk, W. van; lemuwen, A. van, and Rood, J.J. vAN: Identification of chimpanzee leukocyte antigens (ChL-A) and their relation to HL-A. Transplantation II: 309-317 (1971).

[^6]: * Serum 337 was negative in 3 Japanese cells.

[^7]: ucla Tissue Typing Laboratory
 Los Angeles, California

[^8]: 4 Antigens in parentheses show that only some cells were positive

[^9]: Histoconmpatibility Testing 1984
 Edited by E. D. Alhert clal.
 o. Springer-Verlag Berlin Heidelherg 1984

[^10]: Reporting Laborotories: GERALB.' ANZDCH. ${ }^{2}$ USITHP.' (HIZHA.' SAFHAM.' JAPNAI"
 Participating Laboratories: ANZCRS. ANZTAT. BENBER, SAFDUT. UKIAST. UKIBRS. UKIFES. US7POL, NCYMRV

[^11]: Sprimer Virsan Vew Yiord Jux mmunahulane , il HI.A
 vilume:

[^12]: Reponing Laboratories: US7HAN,' NCYYUN, ${ }^{2}$ BENENG. ${ }^{3}$

[^13]: Reporting Laboratory: ANZCH1'
 Purticipating Laborutories: EAEMYR. ${ }^{2}$ FRAPRR, 'JAPHAS, ${ }^{*}$ JAPAIZ," JAPNAl." JAPJUJ,' FRAJEA. ${ }^{*}$ US6BRN"

[^14]: - Spronecr Verlut vicu hioth lax'

 bilume:

[^15]: Reporting Laboraton: $\mathrm{IT}^{\prime} \mathrm{ICNG}^{\prime}$
 Purficipating Laboratories: ITICON, ${ }^{2}$ IT2FER, ${ }^{3}$ SAFDUT, ${ }^{4}$ SAFHAM, ${ }^{3}$ IT2GAN. ${ }^{6}$ EAEMYR, ${ }^{1}$ ITIMTT, ${ }^{n}$ NCYMRV, ${ }^{9}$ ITIPUR ${ }^{10}$

[^16]: This work was partly supported by "Regione EmiliaRomagna: Progetti di ricerca sanitaria finalizzata" and parly by Lagitre S.R.L., Milano (One Lambda, Los Angeles).

[^17]: *ALL sera listed in this table reacted positively with PHA-activated lymphocytes.

[^18]: On behalf of Wilma Bias and Shunro Sonoda.

[^19]: Parricipating Laboratories: SCATSB,' FRAFAU, ${ }^{2}$ US5UAB, ${ }^{3}$ FRAJEA, ${ }^{\text {S }}$ SAFHAM ${ }^{3}$

[^20]: Parricipating Laboratories: L'S2BAC.' FRAARN, ${ }^{2}$ JAPKSH. ${ }^{\prime}$ GERMUC ${ }^{\wedge}$
 This is publication $\# 498$ from the Immunobiology Research Center. University of Minnesota. Minneapolis. Minnesota 55455. USA. The work was supported in part by Juvenile Diabetes Foundation Grant \#186175 and March of Dimes Birth Defects Foundation Grant $\# 6-196$.

[^21]: Participating Laboratorics: US2BAC, ' FRAARN. ${ }^{2}$ JAPKSH. ${ }^{3}$ GERMUC4
 *This is publication $\$ 496$ from the Immunobiology Research Center. University of Minnesota. Minneapolis, Minnesota 55455. USA. Supported in parr by Juvenile Diabetes Foundation Grant $\$ 186175$ and March of Dimes Birth Defects Foundation Grant \#6-496.

[^22]: ${ }^{1}$ Natal Institute of Immunology, Durban, South Africa

[^23]: * Present address: Department of Health and Rehabilitative Services, Jacksonville, 32201, Florida, U.S.A.
 \dagger Present address: Grey's Hospital, Pietermaritzburg, Natal, South Africa.

[^24]: + Denotes strongly positive reaction, 90 to 100 per cent kill of lymphocytes.
 $(+)$ Denotes moderate positive reaction, 40 to 70 per cent kill of lymphocytes.
 * Ability of eluate to react with lymphocytes of all panel cells represents 100 per cent kill.

[^25]: * uncorrected p <0.05
 ** uncorrected $p<0.005$

[^26]: * $\mathrm{p}<0.05$
 ** $\mathrm{p}<0.02$

[^27]: This scheme should be filled out for each proband typed as part of the workshop (isolated as well as famillal cases). Typing lab code $=$ positions 3-5 of Card 01; Pedigree no. a positions 35-36 of Card 01.
 If information on more than three generations is available, please fill out more sheets.
 Note: Information on all non-diabetic relatives is also required (sex, year of birth, death, etc.), irrespectively whether they are alion now or not.

 Please give name, full address and phone number of the person who filled out this sheet:

[^28]:

[^29]: All patients who might be $\underline{D R H 3 / 3}$ or $4 / 4$ homozygous have been classified
 as if they were homozygous. In contrast, the corresponding frequencies for
 controls invalves only homozygotes. Control genotype frequencies were e:jtmaled from control gene frequencies assuming Hardy-Heinberg equilibritun. These gene frequencies are "averages" between European and North Americari values (Baur \& Danilovs, this volume): $p 3=.110, p 4=.120$, $p x+p o=.770$. The relative risks were calculated against the genotypes not involving DRw3 or 4 .

[^30]: Department of Medicine, University of Natal, and Natal Institute of Immunoloys, Durban
 M. A. K. OMAR, m.D., F. I. い m.R.C.p (Present address: Joslin Diabetes Center, Boston, Mass., USA)
 M. G. HAMMOND, ph.d
 M. A. SEEDAT, m. с сhb, m.r.c.
 A. C. ASMAL, m.d., PMI). F.C.P. (SA), M.R.C.P. (Present address: Joslin Diabetes Center, Boston, Mass., USA)

[^31]: reference
 ' Huntley, A. C.: The cutancous manifestations of diabetes mellitus. I. Am. Acad. Dermatol. 1982; 7:427-55.

[^32]: From the Department of Medicine, University of Natal, and the Natal Institute of Immunology, Natal, South Africa.
 Address correspondence and reprint requests to Professor M.A.K. Omar, Department of Medicine. University of Natal, P.O. Box 17039, Congella 4013, South Africa.
 Received for publication 11 August 1986 and accepled in revised form 18 November 1987.

[^33]: $p<0.05,{ }^{* *} p<0.01$ for difference between subset with extraarticular manifestation and RA patlents without it.

[^34]: 'Classification according to cilnical form of onset: Pauci - Pauciarticu-

[^35]: From the Deporment of Medicine. Uniretsity of Natal, Durban and die Natal hssitute of Immmology. Pinctown. Soulh Africa.
 Fomulation and the Arthitis Rescarch Fiund of the University of Notal. G.M. Mody: MD. MRCP, Senior Lecturer. Department of Medicine. University of Natal: M.G. Hammend, PhD, Head, Transplantation Unit. Notal hastime of Immmology: P.D. Naidoo, FCP (SA). Senior Leemer. Deparmem of Medicine, University of Natal.
 Adlinews requests for roprims to Dr. G.M. Mods: Drparment of Mrdicine. University of Natal, P.O. Box 17039. Comgella 4013, Soudh Arica.
 Submitred March 22. 1989 rmvision acraped Inly 20.1989.

[^36]: Comespondence: Peter Brain, The Natal Institute of Immunology, P.O. Box 2356, Durban, South Africa

[^37]: Department of Obstetrics and Gynaecology, University of Natal, PO Box 17039, Congella 4013, Durban, South Africa
 NICHOLAS JOHNSON Registrar
 JACK MOODLEY Professor
 Natal Blood Transfusion Services, Pinetown, South Africa
 MICHAEL G. HAMMOND Director of Natal Transplant Services
 Correspondence: N.. Johnson, Department of Obstetrics and Gynaecology, St James's University Hospital, Leeds LS9 TTF

[^38]: Significance of difference between the two groups. * $P<0.01, \chi^{2}=7.4$.

[^39]: ${ }^{1}$ Natal Institute of Immunology, PO Box 2356, Durban, South Africa.

[^40]: Supported in part by a grant from the South African Medical Research Council (MGH).

[^41]: Received for publication September 8, 1980, and in revised form May 7, 1981.
 Dr. Coovadia was the recipient of funds from the Medical Research Council for South Africa.

 We thank R. Cooper and M. Stretton for technical assistance and E. Steyn for typing the manuscript.
 Please address requests for reprints to Dr. H. M. Coovadia, Department of Pediatrics and Child Health, Medical School, University of Natal, P.O. Box 17039, Congella 4013, South Africa.

[^42]: ' H. M. Coovadia, "Host Allergic Response in Children with Measles Infection," M.D. thesis, University of Natal, Conge!la, Durban, South Africa, 1977, p. 85.

[^43]: Correspondence to: I. E. I affejec. Deparment of Paediatrics and Child Health. Faculty of Medicine. University of Natal. P.O. Box 17039. Congelli, Durban, 4013, South Africa.

[^44]: : RR = Relative risk

[^45]: From the Departments of Clinical and Experimental Pharmacology and Medicine, Facully of Medicine. University of Natal and Natal Institute of Immunology, Durban. South Africa.

 Supported by grants from the Faculty of Medicine Rescarch Fund and South African Medical Research Council.
 Address for correspondence: Dr. B. Maharaj, Depariment of Clinical and Experimental Pharmacology, Facully of Medicine. P.O. Box 17039. Congella 4013, Durban. South Africa.

 Received Nov. 18, 1986; revision accepted April 16, 1987.

[^46]: $\mathrm{p}=\mathrm{NS}$ for all comparisons.
 ${ }^{\wedge} \mathrm{n}=220$.

[^47]: $p=N S$ for all comparisons.

[^48]: ${ }^{a}$ Signilicant linkage disequilibrium.
 ${ }^{\text {b }}$ No significant linkage disequilibrium.

[^49]: City Itanh Sill Department, King Edward VIf Ilospital, Congella, Durban, South Africa Nigel ()larrell
 Transplantation Unit, Natal Institute of Immunology, I'inetown, Natal, South Africa
 Michael llammond

