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ABSTRACT 
 

The challenge of food security requires that agricultural production is no longer based on 
a narrow genetic material present in conventional crops. Whereas conventional crops 
have been genetically improved to suit management practices of the modern farmer, the 
future farmer requires that there be access to a wide variety of genetic material for 
economic exploitation and to respond to the challenges of climate change in a sustainable 
fashion. This study was designed to learn about production of wild water melon 
[Citrullus lanatus (Thunb.) Matsumura and Nakai] from seed germination, seedling 
establishment and field crop production. The specific objectives of the study were (a) to 
determine the effect of water stress on three landraces of watermelon differing in seed 
colour and provenance during seedling establishment, (b) to determine the effect of 
planting date on crop growth and yield under field conditions, and (c) to relate proline 
accumulation to water stress in wild watermelon. Three seedlots, ‘B’, ‘DB’ and ‘VDB” 
were derived from seeds collected from subsistence farming communities of the Eastern 
Cape, and KwaZulu-Natal. Following one season of seed production in Pietermaritzburg, 
KwaZulu-Natal, seeds were tested for germination capacity, before seedlot response to 
water stress was determined in three substrates made of pine bark, a 1:1 mixture of fine 
sand and pine bark and fine sand only. The substrates were kept at 75% FC, 50% F.C and 
25% F.C., to create varying levels of water regimes during 12 weeks of seedling growth 
in a glasshouse (16/21oC (day/night) and 60% RH). Leaf proline content was determined 
at seedling harvest. Crop production under field conditions occurred at one site with three 
planting dates late September 2008, November 2008 and January 2009, respectively. 
There were significant differences among seedlots with respect to seed quality and 
seedling yield, which consistently showed that B > VDB > DB. The differences in 
seedlots continued in the same order even in response to field conditions. Wild 
watermelon was responsive to water stress during seedling growth, but high water 
regimes compromised water use efficiency. Proline accumulation correlated with water 
stress. The best plant growth and yield under field conditions was obtained when planting 
occurred in September, followed by November and January plantings, respectively. Early 
planting was also associated with high crop growth rate and larger fruit size. It is 
concluded that despite being a desert crop, wild watermelon responds to water deficits 
during seedling growth. Results of field studies cannot be conclusively used to determine 
crop response to water stress, although they gave a good indication of crop response to 
different conditions of rainfall and temperature at the study site from September to 
March. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 
 

Wild vegetables played a significant role in the early history of South Africa. It was their 

abundance at the Cape and their health-giving properties that induced the Dutch and 

English ships to call there on the way to the East Indies in the early 1600s, and 

eventually, the establishment of a food garden, at the recommendation of Jan van 

Riebeeck and the survivors of the wreck of Haarlem, in 1647 (Fox & Norwood Young, 

1982). Since the early 1900s, when many (social) studies of the life and customs of the 

black tribes of southern Africa were undertaken, there have been few records of South 

African indigenous plant’s food properties. However, evidence for the role of wild 

vegetables in food security has been shown in Africa elsewhere. Agricultural scientists 

and development communities in South Africa have largely neglected wild vegetables 

traditionally used by native Africans in South Africa. In a country that is confronted by 

HIV/Aids, malnutrition and poverty, wild vegetables should be seriously considered as 

important sources of minerals and vitamins. Agricultural scientists and nutritionists 

should work together towards a food production system that enhances the value of 

indigenous fruits and vegetables. 

1.1.1 Crop distribution and description 
Wild watermelon [Citrullus lanatus (Thunb.) Matsumura and Nakai] is indigenous to 

south-west Asia and throughout Africa (Fox & Norwood Young, 1982; Shosteck, 1974). 

Other English names for it include bitter melon, colocynth, common wild melon of South 

Africa and desert melon. The crop is also cultivated or found in a semi-wild state in the 
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warmer parts of the world. In South Africa, the melon is often cultivated as an intercrop 

with maize in homestead gardens (Fox & Norwood Young, 1982). Typical features of 

wild watermelon are shown in Figure 1.1. The crop is a prostrate, spreading annual vine 

with many herbaceous, longitudinally grooved, straw-coloured, stout stems, up to 3 m 

long, hairy when young, becoming smooth later (Whitaker & Davis, 1962). Tendrils are 

bifid, in the axils of the leaves. Leaves are rough to the touch, ovate, rigid, dull green, 

hairy on the veins and deeply three-lobed. The lobes are obvate, oblong or linear and the 

margins are finely serrate. Male flowers are campanulate, up to 300 mm in diameter, 

hairy, greenish on the side, pale yellow inside. Female flowers are solitary and yellow. 

The fruit is globes to ellipsoid or oblong, smooth, pale green or grayish-green. It is juicy 

with a pink or reddish pink flesh. Seeds may be black, dark brown, brown, white or 

mottled (McDonald & Copeland, 1997). Many varieties of the crop occur mainly because 

of the ability of the cucurbits to cross-pollinate within the same species. 

 

Figure 1.1 Typical vine, flower and fruit of Citrullus lanatus (Kirkbrde, 1993). 
 

Watermelons can be grown almost anywhere, They require warm, dry weather for 

maximum production and are particularly sensitive to frost (McDonald & Copeland, 

1997).  

 

http://rds.yahoo.com/_ylt=A0WTb_hI63ZLFiIAs8eJzbkF;_ylu=X3oDMTBwdjhvcThqBHBvcwM0BHNlYwNzcgR2dGlkA0kwMDFfNzA-/SIG=1goo2bg4c/EXP=1266171080/**http:/images.search.yahoo.com/images/view?back=http://images.search.yahoo.com/search/images?_adv_prop=image&va=citrullus+lanatus&fr=yfp-t-887&w=250&h=188&imgurl=content6.eol.org/content/2008/10/07/06/70838_large.jpg&rurl=http://www.eol.org/pages/584423&size=16k&name=Citrullus+lanatu...&p=citrullus+lanatus&oid=9d917cbd7fb01902&fr2=&no=4&tt=772&sigr=10vqsqbo6&sigi=11m1ha2q7�
http://rds.yahoo.com/_ylt=A0WTb_hI63ZLFiIAtMeJzbkF;_ylu=X3oDMTBwdnA4NGZ2BHBvcwM1BHNlYwNzcgR2dGlkA0kwMDFfNzA-/SIG=1gc1f2bom/EXP=1266171080/**http:/images.search.yahoo.com/images/view?back=http://images.search.yahoo.com/search/images?_adv_prop=image&va=citrullus+lanatus&fr=yfp-t-887&w=400&h=368&imgurl=lvgira.narod.ru/im/citrullus_lanatus.jpg&rurl=http://lvgira.narod.ru/aust/citrullus_lanatus.htm&size=44k&name=citrullus+lanatu...&p=citrullus+lanatus&oid=b1ca716ae564e572&fr2=&no=5&tt=772&sigr=11hgj9h0e&sigi=118l2�
http://rds.yahoo.com/_ylt=A0WTb_hI63ZLFiIAt8eJzbkF;_ylu=X3oDMTBwaWdvNHF2BHBvcwM3BHNlYwNzcgR2dGlkA0kwMDFfNzA-/SIG=1i233ih8k/EXP=1266171080/**http:/images.search.yahoo.com/images/view?back=http://images.search.yahoo.com/search/images?_adv_prop=image&va=citrullus+lanatus&fr=yfp-t-887&w=500&h=390&imgurl=farm2.static.flickr.com/1045/3173828383_1b4007e676.jpg&rurl=http://www.flickr.com/photos/23630893@N08/3173828383/&size=197k&name=Citrullus+lanatu...&p=citrullus+lanatus&oid=01f7b0d310ba0bac&fr2=&fusr=turdusprosop.�
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1.1.2 Crop uses 
In South Africa, wild watermelon is eaten by various African tribes. The seed can be 

ground and made into bread. Often, it is the only source of water in the desert in the dry 

season when no standing water is available (Moradi & Younesi, 2009). The Koi and San 

tribes are known to use the fruits as their sole source of water for months on end as they 

consist of 90% water, and can keep for as long as a year in some cases (Bawa & Bains, 

1977; Hour et al., 1980; Wani et al., 2006). Bantus in Botswana cut the fruits into slices 

and dry them on frames in the sun (Hasan, 1993; Godawa & Jalali, 1995). All the tribes 

in the Eastern Cape and KwaZulu-Natal use the crop as a staple food either fresh or dried. 

It is peeled, cut into pieces, boiled and mixed with mealie-meal. The young tender leaves 

and fruits can also be cooked, seasoned with salt and used as a relish for other foods 

(Whitaker & Davis, 1962). Zulus, use the variety known as ikhabe raw, but the variety 

known as ibhece is boiled before eating. Throughout the world, melons have a large 

variety of uses from fresh salads and deserts to pies, vegetable entrees, snack food, and 

ornamental decorations (Lazos, 1986; El-Adaway & Taha 2001; Wani et al., 2006). 

Seeds are a potential source of protein (Oyenga & Fetuga, 1975; Teotia & Ramakrishna, 

1984; Kamel et al., 1985; Sharma et al., 1986; Lasztity et al., 1986; Wani et al., 2006) 

and lipids (Lazos, 1986; El-Adaway & Taha 2001; Wani et al., 2006). Because of its high 

content of pectin, the fruit is popular as a constituent of jams and jellies (Van Wyk & 

Gericke 2000). In the Kalahari, the fresh fruits are used as a stock feed in times of 

drought (Van Wyk & Gericke, 2000).According to Benzioni (1997) fruits are used for 

making jam and other gelled preserves. Wild and early watermelons were extremely 

bitter, but this was eliminated quickly under cultivation with the selection of seed and 

http://en.wikipedia.org/wiki/Pectin�
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cross-pollination. Existing varieties in KwaZulu-Natal and Eastern Cape have completely 

lost bitterness (Fox & Noorwood Young, 1982). 

 

 1.2 Environmental requirements 
That wild watermelon originates in the desert or dry areas of Southern Africa suggests 

that it may be drought tolerant. However, studies on its drought tolerance are not easily 

accessible in the literature. Definition of drought is really more subtle and complex 

according to West (2008). However, Oval Myers et al. (1986), defined drought as a 

sustained period of time without significant rainfall.  It is not purely a physical 

phenomenon that can be defined by the weather. Rather, at its most essential level, 

drought is defined by the delicate balance between water supply and demand. Whenever 

human demands for water exceed the natural availability of water, the result is drought. 

Drought can be caused by too little precipitation over an extended period, and can also be 

caused by increased demand for the available supply of usable water even during periods 

of average or above average precipitation (Smith, 2006). 

  

Another factor that can affect water supply is a change in water quality. If some of the 

available water sources become contaminated, either temporarily or permanently, that 

decreases the supply of usable water, makes the balance between water supply and 

demand even more unsafe, and increases the likelihood of drought. (West, 2008) 
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There are meteorological and agricultural definitions of drought. West (2008) added the 

hydrological drought. Therefore, there are three conditions that are generally referred to 

as drought:  

Meteorological drought: This type of drought occurs when there is a prolonged period of 

below average precipitation, which creates a natural shortage of available water.  

Agricultural drought: This type of drought occurs when there isn’t enough moisture to 

support average crop production on farms or average grass production on rangelands. 

Although agricultural drought often occurs during dry, hot periods of low precipitation, it 

can also occur during periods of average precipitation when soil conditions or agricultural 

techniques require extra water.  

Hydrological drought: This type of drought occurs when water reserves in aquifers, 

lakes and reservoirs fall below an established statistical average. Again, hydrological 

drought can happen even during times of average or above average precipitation, if 

human demand for water is high and increased usage has lowered the water reserves 

Although agricultural drought often occurs during dry, hot periods of low precipitation, it 

can also occur during periods of average precipitation when soil conditions or agricultural 

techniques require extra water (West 2008). Drought conditions often provide too little 

water to support food crops, through either natural precipitation or irrigation using 

reserve water supplies. The same problem affects grass and grain used to feed livestock 

and poultry. When drought undermines or destroys food sources, people go hungry. 

When the drought is severe and continues over a long period, famine may occur.  All 

living things must have water to survive. People can live for weeks without food, but 

only a few days without water (West 2008). 
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1.2.1 Effects of drought on crop growth 
Water deficit is one of the most important environmental factors restricting plant growth 

and productivity (Boyer, 1982), and the genetic improvement of stress tolerance in plants 

is an urgent challenge for the future of agriculture (Khush, 1999).Water deficit-induced 

damage in plants is closely associated with reactive oxygen species (ROS) (Kawasaki et 

al., 2000). The production of ROS, such as superoxide radicals and hydrogen peroxide, is 

significantly enhanced under water stress conditions where the light energy captured by 

the leaves is far in excess of that required for Photosynthetic assimilation. Drought stress 

induces an ArgE-related polypeptide and causes massive accumulation of the free amino 

acid citrulline in the leaves (Kawasaki et al., 2000). It would thus be useful to determine 

the physiological function of the accumulated citrulline under conditions where the plants 

are subjected to severe drought. Wild watermelons (Citrullus lanatus sp.) from the 

Kalahari Desert exhibit exceedingly high tolerance to drought and excess light stresses, 

and have been used as an excellent model system for studying how C3 plants survive 

severe environmental stresses (Yokota et al., 2002). The uniqueness of this plant is 

exemplified by its accumulation of a novel compatible solute, citrulline (Kawasaki et al., 

2000), which is one of the most potent scavengers of hydroxyl radicals (Akashi et al. 

2005). Moreover, a number of unique genes are up-regulated in wild watermelon leaves 

during stress (Akashi et al. 2005), making this plant an attractive source of useful genetic 

traits for molecular approaches to the breeding of crop plants. However, in order to 

analyze these genes further using advanced techniques such as gene knockout by RNA 

and measurement of gene expression with chimeric promoter-reporter systems, 

development of an efficient transformation system is needed. 
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Sugar content and sweetness are the critical factors in determining the quality of the 

many cultivars of melons.  The accumulation of sugars takes place in the later stages of 

fruit development and can be slowed by excessive rains or severe drought, nutrient stress, 

or by disease and insect damage to the foliage of the plants. 

According to Kawasaki et al (2000), the results from their research showed that in the 

analysis by two-dimension electrophoresis of leaf proteins, seven spots were newly 

induced after watering stopped. One with the molecular mass of 40 KDa of the spots was 

accumulated abundantly. The cDNA encoding for the protein was cloned based on its 

amino-terminal sequence and the amino acid sequence deduced from the determined 

nucleotide sequences of the cDNA exhibited homology to the enzymes belong to the 

ArgE/DapE/Acy1/Cpg2/YscS protein family (including acetylornithine deacetylase, 

carboxypeptidase and aminoacylase-1). This suggests that the protein is involved in the 

release of free amino acid by hydrolyzing a peptidic bond. As the drought stress 

progressed, citrulline became one of the major components in the total free amino acids. 

Drought-tolerant wild watermelon accumulates high levels of citrulline in the leaves in 

response to drought conditions. Eight days after withholding watering, although the lower 

leaves wilted significantly, the upper leaves still maintained their water status and the 

content of citrulline reached about 50% in the total free amino acids. The accumulation of 

citrulline during the drought stress in wild watermelon is a unique phenomenon in C3-

plants. The results suggested that the drought tolerance of wild watermelon is related to 

(1) the maintenance of the water status and (2) a metabolic change to accumulate 

citrulline. 
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Crop species differences in drought resistance depend on the type of economic product of 

the species. For example, species producing leafy vegetables have little drought 

resistance compared with tuber crops, which are less resistant to drought compared with 

grain crops (Condon & Hall, 1997). Where economic yield is a reproductive organ, 

resistance to drought depends on the stage of reproductive development, the type of 

economic product, and the determinancy of the plant. Plants are often more drought 

resistant during the vegetative stage than during early flowering or fruit development 

stages. Plants producing dry grain are more resistant to late season drought than those 

producing fleshy fruit, which require high turgor (Condon & Hall, 1997). 

1.2.1 Wild watermelon as a possible drought tolerant crop 
In the study done by Akashi et al. (2005) there is evidence that wild watermelon plants 

inhabit the Kalahari desert in Botswana, and exhibits exceedingly high drought tolerance. 

The plants kept the photosynthetic apparatus intact during prolonged drought in strong 

light, suggesting that there are mechanisms present which make the plant tolerant to 

oxidative stress arising from excessive light energy falling on the leaves (Miyake & 

Yokota, 2000; Kawasaki et al., 2000). 

 

For a period of dry weather to affect a plant community, the rainfall deficit must lead to a 

soil water deficit and ultimately to a plant water deficit. The degree to which a rainfall 

deficit is translated into soil water deficit depends on the rate of evaporation during the 

rain-free period, and on the physical and chemical characteristics of the soil. The degree 

to which a particular soil water deficit influences the plant again depends on the degree of 

aridity of the atmosphere (Jones , 1992). However; it also depends on a number of plant 
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characteristics that influence water uptake by the crop, the rate of transpiration and 

response of the crop to the water deficit so generated. It is the degree to which the crop 

can withstand the rainfall deficit that constitutes its drought resistance. Drought resistance 

is the generic term used to cover a range of mechanism whereby plants withstand periods 

of dry weather.  

 

Three primary types of drought resistance have been identified (Condon & Hall, 1997). 

Drought escape: The ability of a plant to complete its life cycle before a serious plant 

water deficit develops. 

Drought tolerance at high tissue water potential: The ability of a plant to endure periods 

of rainfall deficit while maintaining high tissue water potential. Many reviewers (Levitt, 

1980; Arnon, 1975; O’Toole & Chang, 1978), for convenience, simply refer to this as 

drought avoidance. 

Drought tolerance at low tissue water potential: The ability of a plant to endure rainfall 

deficit at low tissue water potential.  

 

Citullus lanatus grows well on well drained soil and seeds require soil temperatures of 21 

to 35oC to germinate. Root growth is impeded by compacted soil (Smith, 2006). Citrullus 

lanatus withstands drought better than most melons. The crop has the ability to tolerate 

severe drought/high light stress conditions despite carrying out normal C3-type 

photosynthesis. However, in order for a plant to maintain high water content as water is 

extracted from soil, either a greater volume of soil can be tapped or the water within a 

particular volume of soil can be extracted to a greater extent. This can be achieved by 
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roots growing deeper or, where low densities prevail by an increase in root density 

(Condon & Hall, 1997). Wild watermelon has a good rooting pattern and density and 

hydraulic conductance to maintain water uptake (Smith, 2006). 

1.3 Agronomy 

The deep taproot allows 

the plants to be extremely drought tolerant once established, with plants rarely dying 

without fruiting (Condon & Hall, 1997). The root system of the plant is a deep, spreading 

fibrous semi-taproot system that extends six meters or more below the soil surface 

(Condon & Hall, 1997).   

 

 

Seed germination of vegetables, sown either in the field or in a transplant production 

system, is a critical step conditioning the economic success of the crop. Seed quality 

(viability and vigor) can have a profound influence on the establishment and the yield of 

a crop. The survival and performance of seeds after sowing is affected by physical, 

mechanical, chemical and biotic factors. Temperature, light, drought, flooding and 

gaseous environments are physical factors which influence seedling emergence (Khan et 

al., 1979; Hegarty, 1979; Thomas, 1981). Low temperature after the sowing of many 

warm-season vegetables can lead to asynchronous seedling emergence (Kotowski, 1962; 

Thompson, 1974). Poor field emergence and erratic stands lead to increased variation in 

plant development, which can result in yield reductions. Healthy plants with well 

developed root systems can better withstand adverse conditions and a vigorous early 

seedling growth has bean shown to be associated with higher yields (Harris et al., 2000). 
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The vigor of seeds can be improved by techniques generally known as seed priming, 

which enhance the speed and uniformity of germination (Moradi & Younesi, 2009). 

 

1.3.1 Planting  
Since wild watermelon is a traditional crop of Bantu peasants in sub-Saharan Africa, the 

agronomic practices for its production have not been determined. However, data are 

available for curcubits in general. The time of planting is delayed until the danger of frost 

is over (McDonald and Copeland, 1997). In cool areas, it is best to plantt trailing 

curcubits in October (possible September to December) in South Africa (Smith, 2006). In 

warm areas, ideal planting is between September and November, although it is possible 

to plant from August to January. In hot areas, planting is ideal from August to December 

(possible July to March). Late crops may be infected with viruses through insect vectors 

at early growth stages.  

 

Because of the irregular, flat seed shape, the modern day seed industry coats seeds, so 

that precision planting can be accomplished. Direct seeding using drills into rows that are 

91-122 cm apart is practiced (McDonald and Copeland, 1997). Seeding rates of 2 to 3 kg 

ha-1 for gem squashes and butternuts, and 4 to 6 kg ha-1 for Hubbards and pumpkins are 

common (Smith, 2006). Direct seeding is usual done at two to three seeds per station, and 

then thinned to one plant after emergence. Seeds can be grown in seedling trays, although 

this practice is not common (McDonald and Copeland, 1997). Gems and butternuts are 

spaced at 300 – 500 mm x 1200 – 1800 mm, and Hubbards and pumpkins at 500 mm X 

2000 – 2700 mm. Gems have a growing period of 85 to 90 days, butternuts 90 to 100 
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days, Hubbards, 100 to 115 days and pumpkins 120 to 130 days (Smith, 2006). Wild 

melons have an growing period similar to that of pumpkins (Fox & Noorwod Young, 

1982). 

 

1.3.2 Fertilisation 
Optimum growth requires soils with high organic matter and a pH of 6.5 or above. The 

organic matter is often supplied by green manure crops that are turned under before they 

reach maturity and become woody. It is difficult to provide a specific fertilization 

recommendation, because of the diversity of soils on which the crop successfully grows. 

However a fertilization regime of 400, and 800 kg ha-1 2:3:4 (30), for low and high 

fertility soils, respectively, at planting has been recommended (Smith, 2006). At six 

weeks after emergence, Smith (2006) recommended 250 and 150 kg ha-1

1.3.3 Weed and pest control 

 LAN, for low 

and high fertility soils, respectively. Acid saturation should not exceed 1% or liming will 

be necessary to avoid aluminium toxicity. 

 

According to Smith (2006), the most common pests are American bollworm, pumpkin 

flies, ladybird, aphids and nematodes. Diseases include powdery mildew, leaf spot, 

various fruit rots and mosaic virus. Chemical weed control is used, but land management 

and mechanical cultivation are less expensive and more certain. 

1.3.4 Irrigation 
Although wild watermelon is a desert plant, curcubits require high levels of water during 

vigorous vegetative and reproductive growth. Even in areas where rainfall is plentiful, 
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periodic droughts substantially reduce yields and irrigation can be necessary (McDonald 

& Copeland, 1997). Furrow irrigation is preferable, but when overhead irrigation is used, 

it should be applied early in the day to permit the vegetation to dry out prior to nightfall 

and thereby minimize fruit rotting and foliar diseases (Smith, 2006).  

 

The crop’s total water requirements are modest, but there are certain phases when 

adequate moisture is more vital than others. A medium water stress can be tolerated 

during early vegetative growth and fruit yield to same extent. Drought sensitivity 

increases in the late vegetative period when the vines which will bear flowers and fruits 

develop. A huge loss in fruit occurs as a result of drought stress at flowering stage.  The 

most drought-sensitive stage is at flowering which is usually spread over 15-20 days, and 

the ensuing period of three to four weeks when the fruits develop and swell. Water stress 

during ripening can cause the flesh to become more fibrous and less flavoursome 

(Whitmore, 2008).          

                            

 1.4. Proline content in relation to plant water stress 
 

Proline is an amino acid that is found in many proteins (especially collagen). Water 

deficit in leaf tissue affects many physiological processes, ultimately reducing yield. 

Drought stress is one of the major factors causing profit loss of the sugar beet crop 

(Pidgeon et al., 2001; Tognetti et al., 2003). Proline appears to be the most widely 

distributed metabolite accumulated under stress conditions (Delauney & Verma, 1993). 

The increase of proline concentration in response to water deficit is a well-documented 
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fact (Hanson et al, 1977; Hasegawa et al., 1994, Van Rensburg & Kruger, 1994), and a 

large body of data indicates a positive correlation between proline accumulation and 

enhanced tolerance to drought and salt stress (Liu & Zhu, 1997). Other experimental 

evidence suggests that proline accumulation is a symptom of stress injury rather than an 

indicator of stress tolerance (Liu & Zhu, 1997). Nevertheless, proline accumulation 

seems to be a useful index of drought stress in plants (Ain-Lhout et al., 2001). 

 

In the study done by Kawasaki et al. (2000), it was suggested that protein is involved in 

the release of free amino acid by hydrolyzing a peptidic bond. As the drought stress 

progressed, citrulline became one of the major components in the total free amino acids. 

Eight days after withholding watering, although the lower leaves wilted significantly, the 

upper leaves still maintained their water status and the content of citrulline reached about 

50% in the total free amino acids. The accumulation of citrulline during the drought stress 

in wild watermelon is a unique phenomenon in C3-plants. These results suggest that the 

drought tolerance of wild watermelon is related to (1) the maintenance of the water status 

and (2) a metabolic change to accumulate citrulline

It is believed that proline accumulation could represent a compensatory mechanism for 

better plant survival during a period of drought stress, based on the role of proline as an 

osmotic regulator Proline protects enzymes from being denatured (Paleg et al. 1984). 

Proline act as a reservoir of nitrogen and carbon sources (Fukutaku & Yamada, 1984). 

Proline can even act as a stabiliser of the machinery for protein synthesis (Kardpal & 

Rao, 1985). However, some reports indicate no correlation between proline accumulation 

. 

 



 15 

and drought stress resistance (Tully et al., 1979) and others show higher proline 

accumulation in varieties which are not resistant to drought (Ilahi & Dorffling, 1982). 

Furthermore, Ilahi & Dorffling (1982) suggested that proline accumulation is mediated 

by abscisic acid (ABA), since transient increments of ABA seem to precede proline 

accumulation in some plant species. Moreover, in many, but not all plants, exogenous 

application of ABA to turgid leaves causes proline accumulation. On the other hand, 

experiments with barley plants exposed to salt stress showed an increase in the free 

proline pool in leaves without increase in ABA.  

This study was designed to test the hypothesis that the growth and yield of wild 

watermelon is responsive to changes in water content, and the response is genotype 

related. Seed colour is an important morphological character of local genotype 

(landraces).  

 

1.5 Problem statement, study objectives and structure 

In the contemporary era of climate change it is becoming more imperative to look to a 

wide range of food, fibre and medicine sources. South Africa has a number of indigenous 

crops about whom there is no sufficient agronomic knowledge to advise farmers. Wild 

watermelon exists in South Africa in modern forms that are more palatable (not bitter). 

Although it is likely that these types are genetically similar, maintenance of 

morphological traits such as seed and rind colour suggests that they may have different 

responses to environment.  
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The specific objectives of the study were: 

1. To determine the effect of water stress on three varieties of watermelon differing 

in seed colour and provenance during seedling establishment,   

2. To determine the effect of planting date on crop growth and yield under field 

conditions, and  

3. To proline accumulation to water stress in wild watermelon. 

The study was conducted during 2008 and 2009 at the University of KwaZulu-Natal, 

Pietermaritzburg, using material that was collected from three sites in KwaZulu-Natal 

and the Eastern Cape. The thesis is structured so that the literature review (Chapter 1) is 

followed by three chapters containing results from a laboratory study to determine seed 

germination capacity (Chapter 2), and observation of wild melon growth and yield during 

three planting dates differing in terms of environmental conditions, including water 

availability (Chapter 3). Each chapter contains a separate discussion section. 

Consequently, a short overall discussion and conclusion on the findings is presented in 

Chapter 4. 
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CHAPTER 2 

SEED GERMINATION CAPACITY AND SEEDLING QUALITY UNDER 
THREE MEDIA IN SEEDLING TRAYS 

  

2.1 Introduction 
 

As a reproductive unit, a seed must be able to germinate and establish seedlings 

(McDonald & Copeland, 1997). Germination is a measure of the physiological quality of 

the seed lot. According to the International Seed Testing Association (ISTA, 1999), there 

are three aspects of quality that affect a seed lot’s performance: viability, germination and 

vigour. Viable seeds are those that are alive and have the potential to germinate when 

exposed to favourable germination conditions (Bewley & Black, 1994). When a 

germination test is conducted, those seeds that fail to germinate must be subjected to a 

viability test to determine whether they are alive or dead. In some instances, non-

germinating seeds are soft, swollen, and decayed, indicating that they are dead and 

nonviable. In other instances, seeds may not germinate because of any number of 

dormancy mechanisms and are considered viable. Such seeds are normally firm and 

physiologically sound. A high incidence of viable seeds indicates the potential for 

germination and establishment of a seedling, but it does not ensure it (Bewley & Black, 

1994).  

 

All germinable seeds are viable. The Association of Official Seed Analysts (AOSA, 

1996) defines germination as “the emergence and development from the seed embryo of 

those essential structures which, for the kind of seed in question, are indicative of  the 

ability to produce a normal plant under favourable conditions”. This definitions 
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supersedes the commonly understood purpose of a germination test, which initially was 

to provide an indication of field performance of a seed lot. Today, it is more important 

that germination test results are reproducible among testing laboratories and this 

objective is more easily accomplished under favourable conditions where even weak 

seeds are afforded every opportunity to germinate (Bewley, 1997). Such an approach 

permits the comparison of seed quality for various seed lots and allows the orderly inter-

province and international movement of seeds across boundaries, since seed germination 

results are a product of standardised testing methods.  

 

Cucurbit seeds require high temperatures for successful germination and seedling 

emergence (Harrington & Minges, 1954; Hegarty, 1973). In the study completed by 

Simon et al. (1976), cucumber (Cucumis sativus L.) seeds germinated rapidly at 20oC, but 

the time to 50% germination at 14oC decreased substantially and below 11o

For the purposes of this study, seed germination test was necessary to compare the 

quality of seed lots derived from three locations in two provinces of South Africa. In the 

context of a broader study into drought tolerance of watermelon, it was critical to 

investigate the physiological aspects associated with young seedlings, in terms of their 

performance under different media. One of the aspects of early plant establishment 

physiology is accumulation of proteins that may be responsive to water stress. Protein is 

the most critical component contributing to the nutritional value of food (Pandey & 

C only a small 

percentage of the seeds germinate. Germination of watermelon seeds likely requires 

similar conditions as those for cucumber (ISTA, 1999). 
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Budhathoki, 2007). Its determination allows identification of specific genes or chemicals 

that may be associated with plant response to environment (Sawhney & Singh, 2000; 

Young, 1963).  

 

Wild water melon is believed to be water stress tolerant (Yokota et al., 2002). This crop 

from Kalahari Desert exhibits exceedingly high tolerance to drought and excess light 

stresses. The uniqueness of the plant is exemplified by its accumulation of a novel 

compatible solute, citrulline (Kawasaki et al., 2000), which is one of the most potent 

scaverngers  of hydroxyl radicals (Akashi et al., 2001; 2004). Moreover, a number of 

unique genes are up-regulated in wild watermelon leaves during stress (Akashi et al 

2004). Plant responses to water stress involve complex processes which occur at the 

molecular level. Stomatal closure through the action of abscisic acid (ABA) is an early 

response to water stress in plants. ABA also causes an increase in hydrogen peroxide 

(H2O2) production, which serves as a signalling intermediate to promote stomatal closure 

(Zhang et al., 2001). The accumulation of proline is a widespread plant adaptation to 

water stress (Hanson et al, 1977; Hare et al., 1998). Proline aids in stabilizing sub-cellular 

structures such as membranes and proteins. Proline accumulation in leaves of rice plants 

was higher in stress tolerant plants than in stress sensitive plants (Ilahi & Dorffling, 

1982). The objectives of this study were to determine seed performance of wild 

watermelon seed lots derived from various locations in South Africa under laboratory 

conditions and to assess early establishment of the seedlings grown in seedling trays 

containing media that vary with respect to water holding capacities.   
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2.2 Materials and methods 

 

2.2.1 Plant material and its provenance 
 

Seeds of wild watermelon were donated by subsistence farmers from different sites in 

KwaZulu-Natal and Eastern Cape. Whereas seeds were generally of the same size, they 

differed distinctly in seed colour. Henceforth, the seed lots will be referred to as ‘Red’, 

‘Brown’ and ‘Dark brown’, respectively (Figure 2.1).  ‘Brown’ (B) was collected in June 

2008 from one homestead in Centane, Eastern Cape. Centane is located about 50 km east 

of East London, along the coast, on the cool subtropical coastal zone of South Africa. 

‘Dark Brown’ (DB) was collected in August 2008 from one homestead at Tugela Ferry, a 

semi arid part of the KwaZulu-Natal midlands. ‘Very Dark Brown’ (VDB) was collected 

from one homestead at Umbumbulu, about 40 km north-west of Durban, a warm sub-

tropical part of South Africa.  All seeds were derived from the 2005/2006 rainfed summer 

crop. The material colleted from the three locations was used to produce fresh seed lots 

during the 2006/2007 season at Pietermaritzburg, KwaZulu-Natal (29o35′S 30o25′E). 

Long term climatic data for the three source locations and the production site are 

summarised in Table 2.1. 

 

Figure 2. 1 Physical characteristics of seedlots used in this study. 

Brown (B) Dark Brown (DB) Very Dark Brown (VDB) 
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Table 2. 1 Mean climatic data for seedlot provenances compared with 
Pietermaritzburg, the study site, estimated from Smith (2006). 
 

Location Altitude 
(m) 

Seasonal 
rainfall 

Mean annual 
precipitation 
(mm) 

Mean 
annual 
temperature 
(o

Drought 
occurrence 
(%) 

C) 

Average 
duration 
of frost 
period 
(days) 

Centane 0 - 600 Year round 800 - 1000 17.5 - 20 10 Frost free 

Umbumbulu 0 - 600 Summer > 1000 20 -22.5 10 Frost free 

Tugela Ferry 600-1200 Summer 600 - 800 17.5 - 20 10 Frost free 

Pietermaritzburg 600 -1200 Summer 800 - 1000 

 

17.5 - 20 10 1 - 30 

 

2.2.2 Germination test and seed vigour 
 

Seeds were surface-sterilized and germinated according to international seed testing rules 

(ISTA, 1999), using the paper towel method for cucumber germination test. Four 

replications of 50 seeds were used. Seedling size and normality were determined eight 

days after the initiation of germination for seed vigour determination (AOSA, 1996).  

 

2.2.3 Seedling production 
 

To simulate a nursery seedling establishment situation, seeds were planted in seedling 

trays (200 –celled) containing different growth media. The growth media were: fine sand 

sand (90.57 cm2 g-1), pine bark (typical nursery material; Bark Enterpises) and a 1:1 (v/v) 

mixture of sand and pine bark. . Each medium was watered to 75%, 50% and 25% Field 

Capacity (F.C.), respectively, throughout the growing period. Water regimes were 
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determined using a potentiometer (Seung and Pak, 2007). The experiment was designed 

as a factorial consisting of three seedlots (Brown, Dark Brown and Very dark Brown), 

three growing media (Sand, Mixture and Pine bark), three water regimes (75%, 50% and 

25% F.C.), and replicated three times. The experimental block was a 200-celled seedling 

tray split into three 60-celled units of one growing medium each, in which 60 seeds of a 

particular seedlot were planted (Table 2.2).  

 

Table 2. 2Experimental design for the seedling establishment experiment showing 
nine seedling trays, each one being an experimental unit split into three growing 
media [Sand, Mixture of sand and pine bark (Mix), and Pine bark (Pine) into which 
one seedlot (Brown (B) or Dark Brown (DB) or Very Dark Brown (VDB) were 
planted. Three water regimes (75% F.C., 50% F.C. and 25% F.C.) were separated 
by tray. The experiment was replicated three times to make 81 units.  
 

SandB MixB PineB 75% FC 

SandB MixB PineB 50% FC 

SandB MixB PineB 25% FC  

SandDB MixDB PineDB 75% FC 

SandDB MixDB PineDB 50% FC 

SandDB MixDB PineDB 25% FC  

SandVDB MixVDB PineVDB 75% FC 

SandVDB MixVDB PineVDB 50% FC 

SandVDB MixVDB PineVDB 25% FC  
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Each tray was watered to the same water regime. The nutrient content (mg l-1) of sand 

and pine bark was determined and found to differ (Sand: N= 800, P = 700, K = 600, Mg 

= 900 and Ca =1800; Pine bark: N ~0.01 = P; K 0.6 = Mg and Ca = 0.04. Plants were 

fertilised with Hoagland’s solution to supply adequate nutrients through the growing 

period (Modi & Cairns, 1994). The glasshouse used for seedling establishment was kept 

at 16/21o

2.2.4 Proline determination 

C (day/night) and 60% RH. Emergence was determined by counting the number 

of emerged seedlings on days 9, 10, 11 and 12 after seeding. Thereafter, seedlings were 

allowed to grow until the sixth week after emergence. On the sixth week, seedlings were 

harvested to determine seedling height, fresh weight, dry weight, root mass, and leaf area 

(Modi, 2007). Water use efficiency was determined by:  [seedling fresh mass – seedling 

dry mass)/ seedling dry mass] 100. 

 

Shoots were ground to a fine powder in a pre-chilled mortar under liquid nitrogen (N2). 

Samples of 0.5 g were mixed in 5 ml Tris-HCl buffer (pH 7.4) containing 250 mM NaCl, 

25 mM EDTA, 0.5% (w/v) SDS 10 mM β-mercaptoethanol and centrifuged (15000 rpm 

for 15 minutes) at 40C. The supernatants were collected and considered as leaf protein 

extract. Protein concentration was determined by absorbance at 595 nm with bovine 

serum albumin as standard. Proline accumulation in wild water melon leaves from both 

stressed and unstressed leaves was determined according to the method of Bates et al., 

(1973). 0.5 g samples of freeze-dried leaf tissue were homogenised in 10 ml of 3% 

sulfosalycic acid (w/v) and ultraturaxed for 60 seconds. The homogenate were then 

centrifuged at 11000 rpm for 10 min at 4°C. Supernatant were added to 2 ml of acid 
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ninhydrin and 2 ml of acetic acid. The mixture was incubated in a hot water bath (100°C) 

for one hour with constant shaking and the reaction terminated in ice. The reaction 

mixture was extracted with 4 ml toluene, and vortexed for 15-20 sec. The toluene phase 

was used to measure the absorbance at 520 nm (Beckman Coulter DU® 800). Toluene 

was used as a blank. A standard curve was used to determine the concentration of proline 

by using the formula: 

[(μg proline/ml x ml toluene)/ (115μg/μmole)]/ [(g sample)/5] = μmoles proline/g of dry 

weight material. 

2.2.5 Statistical analysis 
 

Genstat Statistical Package Version 9 was used to perform analysis of variance and to 

generate values of least significant differences (LSD), which were used to determine 

differences between treatments (P = 0.05). Analysis of variance table for each variable 

are presented in Appendix 2. Means of treatments that showed significant differences 

were summarized in graphs generated using Microsoft Office Excel and tables.  

 

2.3 Results and discussion 

 

2.3.1 Germination test and seed vigour 
 

There were significant differences (Appendix 2 A) between seed types with respect to 

seed germination capacity, but seed germination was low (Figure 2.1). ‘Dark Brown’ 

seeds displayed the lowest maximum germination (~ 40%) compared with the other two 

seedlots (~ 60%), which were not significantly different from each other (Figure 2.1). On 
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the last day of the germination test seedling size was used to compare seedlots for 

seedling size, and it was found that ‘Brown’ > ‘Dark Brown’ > ‘Very Dark Brown’ in 

terms of seedling length, but ‘Brown’ had a significantly lower seedling mass that the 

other two seedlots, which were not significantly different in terms of seedling mass 

(Table 2.3).  
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Figure 2. 2 Germination of wild watermelon seeds under laboratory conditions 
 

 
Table 2. 3 Seedling size of three wild melon seedlots on the eigth day of germiantion 
 
Seedlot Length (cm)  Fresh weight (g) Dry weight (g) 

Brown 21.1 11.1 5.1 

Dark Brown  20.8 14.0 5.3 

Very Dark Brown 19.1 12.9 5.1 

S.E. (Mean) 1.2 1.4 0.1 

 

For the purposes of seed marketing, seed germination capacity is a reliable measure of 

seed quality, and for most crops, it is generally expected to be at least 80% to ensure 
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good quality (OECD, 1994). The seedlots used in this study were freshly produced from 

seeds collected from rural areas. Prior to utilization they had been stored in well aerated 

brown paper bags at room temperature for about six months. Surface sterilization was 

performed to ensure that detrimental microorganisms were removed from seed surfaces. 

During the germination test there was no evidence of seed rot. Non-germinating seeds did 

show signs of imbibition, suggesting that their dormancy was not physical. No abnormal 

seedlings were observed among the germinating seeds. The information gained from the 

germination test was used to gain initial insights about seedlot quality with respect to 

germination capacity. Seeds the seedlots were not genetically improved, it was expected 

that their germination capacity would be low and variable. The maximum germination 

capacity of the seedlots was about 20% to 40% lower than the standard for seed 

marketing. This finding suggested that the seedlots would not be suitable for 

commercialization, but their use for crop production would require careful determination 

of seeding rates and thinning, if necessary. To determine seedlot performance, early in 

seedling establishment, under media and water conditions that are less favourable than 

the laboratory, seedling emergence, to mimic nursery conditions, was determined. 

2.3.2 Emergence and seedling establishment 
 

There were highly significant effects of seedlot, water regime (FC), interaction between 

water regime and growing medium (Media) and colour x water regime x media 

(Appendix 2 A).  The best performing seedlot in terms of seedling emergence was 
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‘Brown’, followed by ‘Very Dark Brown’, and ‘Dark Brown’, respectively (Figure 2.3).    

 

Figure 2. 3 Seedling emergence of different seedlots (B = Brown; DB = Dark Brown; 
VBD = Very Dark Brown). 
 

Red seeds displayed the highest emergence (~ 51%) followed by the dark seeds (~ 44%) 

and brown seeds (~34%), respectively (Figure 2.2). 

 

Except that there were significant differences between “Brown” and ‘Very Dark Brown’, 

the results of seedling emergence were in agreement with those of the germination test  

(Figure 2.2). This finding suggested that the favourable conditions of the laboratory test 

could be used with confidence to predict seed performance under a wide range of nursery 

conditions.  

 

As expected, 25% FC reduced seedling emergence by ~ 67% compared with 50% FC, 

which resulted in better emergence than 75% FC. However, there was not significant 

difference between the latter two water regimes (Figure 2.4).  
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Figure 2. 4 Seedling emergences at different water regimes (field capacity). 
 

Seedling emergence is preceded by a process of germination, whose critical first step is 

absorption of water for adequate imbibitions of seed tissues (McDonald and Copeland, 

1997). Adequate availability of respiratory air is also important for good germination. 

Radicle emergence occurs after a process of food reserve degradation by enzymes 

(Blackman et al., 1992). The germination process and its successful culmination as 

radical protrusion can be negatively affected by environmental conditions surrounding 

the seed. One of the well studied aspects of the environment during seed germination is 

osmotic potential. Xu et al. (1990) found that a low osmotic potential reduced 

germination capacity in lucerne, but there are osmoticum concentrations that promote 

protein synthesis of developmental proteins. In the present study the low water content 

regime (25% FC) is likely to have been associated with delayed imbibitions, and the 

highest one (75% FC), may have been associated with curtailed respiratory air. 
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Examination of the interaction of growth media and water regimes showed that the 

average performance shown in Figure 2.4 above, was mostly associated with the mixture 

of pine bark and sand (Figure 2.5).  Although sand displayed a similar trend to that of the 

mixture of sand and pine bark, there were no significant differences between water 

regimes, with respect to emergence in sand (Figure 2.5). Data shown in Figure 2.5 

suggested that the best seedling emergence was achieved in the mixture of pine bark and 

sand, with 50% F.C. 

 

 

 

 

Figure 2. 5 Interaction of planting media (Sand, Pine and Mixture of Sand and Pine) 
and soil water regimes (25% FC, 50% FC and 75% FC) for seedling emergence. 
 

The three-way interaction of colour x water regime x media is shown in Table 2.4. These 

data distinguished the relationships between treatment factors further by showing that 
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although ‘Dark Brown’ generally performed the poorest in terms of seedling emergence, 

its performance was significantly improved in the media consisting of the pine bark and 

sand mixture when seeds were subjected to 50% FC (~54% emergence). Interestingly, the 

poorest performance of ‘Dark Brown’ was displayed in the same medium, when seeds 

were supplied with 25% FC (~10% emergence). The best performing seedlot overall, 

‘Brown” was boosted by the combination of mixed growing medium supplied with 505 

FC (~69%), and it performance was not negatively affected on sand supplied with 75% 

FC (~64%).  

 

 

Table 2. 4 Interaction of growing media x water regime x seedlot for seedling 
emergence. 
 
      Growing media  
     Mix Pine  Sand 
‘Dark Brown’   25% FC   9.7  29.9  29.9 
    50% FC  54.2 37.5   39.5 
    75% FC  35.8 35.4  38.2 
 
‘Very Dark Brown’   25% FC  19.4 29.2   41 
    50% FC   69.4 33.3  54.1 
    75% FC  61.1  57.6  33.3 
 
 ‘Brown’   25% FC  20.8  41  54.1 
    50% FC   68.7 52.8  46.5 
   75% FC  59  52.7   63.8 
LSD (0.5%) = 8.89 
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2.3.3 Seedling size 
 
 
Seedlings were harvested six weeks after planting and seedling height, fresh weight, dry 

weight, root mass, and leaf area were determined. At harvest, leaves were sampled for 

protein extraction to determine proline content as explained in section 2.2.4. Seedling 

size was determined to mimic nursery conditions, in case the crop is established using 

seedling produced by a nursery. Normally, nurseries use pine bark and produce seedlings 

under conditions of adequate water and nutrients. The hypothesis of this section of the 

study was that pine bark and 50% F.C. would be ideal conditions or conditions closely 

mimicking the nursery. This study used controlled temperature conditions, which is not a 

general practice at nurseries, where a shade cloth is used to cover seedlings growing 

under ambient temperature conditions. Application of 25% F.C. and sand medium were 

aimed at introducing stressful conditions, in terms of water availability. Application of 

75% F.C. was expected to introduce luxury water consumption, which may have a 

negative effect on seedling’s ability to withstand stress. Proline content would be used for 

physiological determination of water stress in plant leaves.  

2.3.3.1 Seedling height 
 

Media and water regimes were the only ones to have significant effects on plant height 

(Appendix Appendix 2 B). Seedlings grown on pine bark were about 38% taller than 

those grown on the mixture of pine bark and sand, and about 70% taller than those grown 

on sand only (Figure 2.6). These findings suggest that the conditions for growth in pine 

bark were better than those found in the media containing sand. That is, sand 
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compromised the quality of pine bark as a media, in the mixture of sand and pine bark, 

and sand is a poorer medium than pine bark for growing seedlings. Although no study 

using the same parameters as used in the present study were found in literature, the 

response shown in Figure 2.6 was in agreement with findings of Ahuja et al. (1985). 

 

Figure 2. 6Seedling height of wild melon in response to growth media (Pine bark 
only = pine bark, Mix = 1:1 pine bark:sand; Sand = sand only). 
 

The higher the field capacity of the medium, the taller were the seedlings produced, and 

the tallest seedlings were grown with 75% F.C. (Figure 2.7). There was a difference of 

25% between seedling height associated with 75% F.C. compared to that associated with 

50% F.C. The seedling produced with 75% F.C. were also 37% taller than those produced 

with 25% F.C. (Figure 2.7). Interpreted with Figure 2.6, the results shown in Figure 2.7 

suggest that there was a positive correlation (R2 = 0.89) between changes in water content 

and changes in media type from pine bark to pure sand (Figure 2.8). 
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Figure 2. 7Seedling height of wild melon in response to media field capacity. 
 

 

Figure 2. 8 Relationship between growth medium quality from poor (sand) to very 
good (pine) and field capacity (from 25% to 75% F.C.) with respect to watermelon 
seedling height. 
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2.3.3.2 Seedling mass and leaf area 
 

Seedling fresh mass and dry mass were analysed separately (Appendices 2 C and D), and 

the results were different in some aspects (Appendices 2 C and D). For fresh mass, there 

were highly significant effects of water regimes, seedlots and media, but there was no 

significant interaction of these factors. For dry mass, there were highly significant effects 

of water regimes, seedlots and media, but there was also a highly significant interaction 

of water regime (FC) and media (Appendix 2 C). Comparison of the effects water 

regimes on seedling fresh mass are shown in Figure 2.9. The 25% FC produced the 

smallest seedlings compared to 50% FC and 75% FC, and the latter two were not 

significantly different. 

 
 

 
Figure 2. 9Seedling fresh mass of watermelon grown under three water content 
regimes in seedling trays. 
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There was no significant difference between seedlot ‘Brown’ and ‘Very dark Brown’, 

with respect to seedling fresh mass, but these seedlots produced seedlings that were about 

18% heavier than those of ‘Dark Brown” ( Figure 2.10). 

 

Figure 2. 10 Fresh mass of seedlings of three seedlots.  

In agreement with seedling height data, pine bark produced the heaviest seedlings, 

followed by the mixture of pine bark and sand, and lastly sand only (Figure 2.11).  

Although the difference between pine bark and the mixture was small (~14%), sand-

grown seedlings were ~ 50% smaller than those grown on pine bark only (Figure 2.11). 
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Figure 2. 11 Seedling fresh mass of seedlings grown on three different growth media 
(Pine bark only = pine bark, Mix = 1:1 pine bark:sand; Sand = sand only). 
 

The comparison of water regimes, media and seedlot, with respect to seedling dry mass, 

followed the same pattern as that of seedling fresh mass (Figures 2.12 - 2.14). Although 

seedling fresh mass and dry mass were derived from the same material, it was not a given 

fact that they should follow the same pattern in terms of their response to treatments. 

Since plants have a high composition of water and the level of water in a plant will 

depend on the amount of water in its environment, using dry mass as a measure of plant 

growth is more reliable than using fresh mass (Salisbury & Ross, 1992).  
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Figure 2. 12 Seedling dry mass of watermelon grown under three water content 
regimes in seedling trays. 
 
 
 

 
 
Figure 2. 13 Dry mass of seedlings of three seedlots.  
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Figure 2. 14 Seedling dry mass of seedlings grown on three different growth media 
(Pine bark only = pine bark, Mix = 1:1 pine bark:sand; Sand = sand only). 
 

The interaction data showed that there was consistency in the effect of pine bark, but for 

the mixture of pine bark and sand, and for pure sand, 50% FC produced equal size or 

heavier seedlings than both pine bark and sand (Figure 2.15). These results suggest that 

the performance of growing medium was dependent upon the existing water regime. 

 

Figure 2. 15 Interaction of growth media and water regime for seedling dry mass. 
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To understand the effectiveness of each treatment (seedlot, water regime and growth 

medium) in dry mass production, water use efficiency was calculated and shown in 

Figure 2.16. 

 

Figure 2. 16 Comparison of seedlots (B, VBD and DB), water regimes (25% FC, 
50% FC and 75% FC) and growth media for water use efficiency (WUE) to grow 
wild melon seedling over a period of six weeks in seedling trays. 
 

From Figure 2.16, it is evident that ‘there was no significant difference among seedlots 

with respect to WUE. Comparison of water regimes showed that there was no direct 

relationship between field capacity and WUE in that 25% FC > 75% = 50%.  Sand and 

the mixture of pine bark and sand had similar efficiencies, which were better than that of 

pine bark alone (Figure 2.16). The data shown in Figure 2.16 suggest that it would be 

more efficient to produce seedlings using anyone of the seedlots grown in a mixture of 

sand or in sand at 25% FC. However, the results shown in the previous sections for 

seedling height and mass showed that ‘Brown’ was generally the best performing seedlot, 
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followed by ‘Very Dark Brown’, and ‘Dark Brown was the worst performer. The best 

performing water regime was 75% and pine bark was the best medium. The results 

shown in Figure 2.16 suggest that there is a negative relationship between water use 

efficiency and yield. That the landrace which had the highest seedling yield is not the one 

with the best water use efficiency is in agreement with previous findings (Condon & 

Hall, 1997; Gwathmey & Hall, 1992; Le Roux et al., 1996; Ludlow & Muchow, 1990).  

 

Seedling root dry mass showed highly significant effects of all the treatments and their 

interactions (Appendix 2 E). The interactions selected for discussion were water regime x 

growing medium, seedlot x growing medium and seedlot x water regime (Figures 2.17 -

2.19). 

 

 

Figure 2.17 Seedling root mass response to water regimes (Filed capacity) and 
growing media [Mixture of pine bark and sand (1:1), Pine bark only and sand 
only)]. 
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Figure 2. 18 Seedling root mass response of three seedlots (B, VDB and DB) grown 
on thre media [Mixture of pine bark and sand (1:1), Pine bark only and sand only)]. 
 

 

Figure 2. 19 Seedling root mass response of three seedlots (B, VDB and DB) grown 
on three water regimes (Filed capacity). 
 

Pine bark displayed the highest seedling root dry mass compared with the other two 

media, and sand had the lowest root mass, but 75% FC had a tendency to improve rrot 

mass in pine bark and the mixture of pine bark and sand (Figure 2.17). ‘Brown’ showed 
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the highest root dry mass, but there were no significant differences between the other two 

seedlots (Figure 2.19). The performance of ‘Brown’ was more improved when grown on 

pine bark only, and ‘Dark Brown’ almost surpassed ‘Very Dark Brown’ when it was 

grown in pine only. There was no significant difference between 50% FC and 75% FC 

for the performance of ‘Brown’ and ‘Very Dark Brown’. On average, Very Dark Brown’ 

had the highest root dry mass than the other two seedlots across all water regimes. 

 

Determination of root:shoot ration on a dry mass basis (Figure 2.20) showed that pine 

bark produced the largest root mass per plant than the other media. The water regime that 

produced the highest root mass was 75% FC, and ‘Brown’ showed a significantly higher 

accumulation of dry mass in the roots than the other two seedlots. 

 

Figure 2. 20 Comparison of media (Pine bark, Mixture of pine bark and sand and 
Sand), water regimes (25%, 50% and 75% F.C.) and seedlots (B, VDB and DB) for 
root:shoot ratio in wild melon seedlings. 
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Media were the only significant main factor with respect to root length, in addition to the 

water regime x media interaction (Appendix 2 F). Changes in root length in relation with 

growth media are shown in Figure 2.21. 

 
 
Figure 2. 21 Seedling root length changes over three water regimes (Field capacity) 
in three growing media. 
 
 

It is evident in Figure 2.21 that at 25% F.C., pine bark had the lowest root length, but as 

the field capacty increased there was no significant difference between pine bark and the 

mixture of pine bark and sand (at 50% F.C.) and between pine bark and the other two 

water regimes (at 75% F.C.). The mixture of sand and pine bark did not differ 

significantly with respect to root length at any given water regime (Figure 2.21). 

The last measure of seedling size determined was the leaf area, for which there were 

highly significant effects of all the factors and their interactions (Appendix 2 G). For the 

purposes of this discussion, only the seedlot x media and the seedlot x water regime 

interactions were discussed (Figures 2.22 -2.23). The reason for this choice was based on 
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the need to avoid explanation of a trend that is repetitive to that of shoot height, which 

was very similar to that of leaf area. 

 
 
Figure 2. 22 Changes in wild melon seedling leaf area in response to field capacity 
and growing media (Pine bark only, 1:1 Mixture of pine bark and sand and sand 
only). Note: LSD (5%) = 2.8. 
 

 
 
Figure 2. 23 Changes in seedling leaf area of three seedlots (B, VDB and DB) in 
response to growing media (Pine bark only, 1:1 Mixture of pine bark and sand and 
sand only). 
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Figure 2. 24 Changes in seedling leaf area of three seedlots (B, VDB and DB) in 
response to field capacity (25%, 50% and 75% F.C.). 
 
As expected, based on the results of seedling height and mass above, pine bark produced 

the largest leaves, but its effect was the same as that of the mixture of pine bark and sand 

at 50% and 75% F.C. (Figure 2.22). Sand showed the lowest seedling leaf area, about 

33% less than the other two media across all water regimes (Figure 2.22), but there was a 

significant positive effect of water regimes even on sand.  

 

Overall, ‘Brown’ had the largest leaf area than the other two seedlots, but its performance 

was best pine bark, however the effect of pine bark was reduced by 27%  and 34%, 

respectively with VBD and DB (Figure 2.23). Across all seedlots, there was no 

significant difference between 50% FC and 75% FC and 25% FC almost consistently 

showed a 50% lower leaf area than the other two water regimes. 
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2.3.3.3 Proline determination 
 
There was a significant effect of all treatments and interactions, with respect to proline 

content in six week old watermelon seedlings (Appendix 2 H). In general, there was a 

negative correlation between the amount of proline in seedling leaves and the 

performance of media, water regimes and seedlots, with respect to any measure of seed 

size discussed in the preceding sections of this chapter (Figures 2.25 - 2.27). At any given 

water regime, sand was associated with the highest proline content than pine bark and the 

mixture of sand and pine bark (Figure 2.25). 

 

Figure 2. 25 Comparison of three growth media (Pine bark, Mixture of pine bark 
and sand and Sand only) across three water regimes (25%, 50% and 75% FC) with 
respect to proline content in six-week old wild melon seedlings. 
 
Whereas the general order of seedlot performance with respect to seedling size had been 

B > VBD > DB, the amount of proline was found to be DB> VDB> B (Figure 2.26). 

Seedlot performance, however, was influenced by media in that thre was no significant 

difference between them when seedlings were grown on sand. In addition, both pine and 

mixture of pine and sand showed improved proline contents in DB (Figure 2.27). 
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Figure 2. 26 Comparison of three growth seedlots) across three water regimes (25%, 
50% and 75% FC) with respect to proline content in six-week old wild melon 
seedlings. 
 
 

 
 
Figure 2. 27 Comparison of three growth seedlots) across three seedlots with respect 
to proline content in six-week old wild melon seedlings grown in different media 
(Pine bark, Mixture of pine bark and sand and Sand only). 
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Increased proline accumulation was reported in water-stressed sorghum (Yadav et al., 

2005), bell pepper (Nath et al., 2005), wheat (Hamada, 2000) and in salt-stressed 

Catharanthus roseus (Jaleel et al., 2007). Increased proline in the stressed plants may be 

an adaptation the purpose of which is to overcome the stress conditions. Proline 

accumulates under stressed conditions supplies energy forgrowth and survival and 

thereby helps the plant to tolerate stress (Chandrashekar &Sandhyarani, 1996). Under 

abiotic stress like ultra violet light the proline content showedan increase in wheat 

(Demir, 2000). NaCl stress showed increased proline content in rice(Lin et al., 2002) and 

peanut. Proline accumulation in plants might have a scavenger function and act as an 

osmolyte.  
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CHAPTER 3 

PLANTING DATE EFFECTS ON GROWTH AND YIELD OF WILD 
WATERMELON UNDER FIELD CONDITIONS 

 

3.1 Introduction 
 

Many factors interact to determine the number of healthy, autotrophic plants obtained 

from planting a given sample of seed (Melis, 1991). Germination under laboratory 

conditions often is a poor simulation of the rigors encountered in the field. Factors 

influencing seedling establishment under field conditions include the physical, chemical, 

and biotic properties of the soil; method, date and rate of seeding; and seed treatments. In 

addition, each of these factors interacts with the environmental factors of water, 

temperature, oxygen and light that regulate the rate of germination. 

 

Soil moisture conditions exert a dominant influence on stand establishment because of 

the modifying effects of moisture on soil properties. Soil structure, soil water potential, 

and seed-soil contact determine the rate of moisture uptake by the seed in soil. Increasing 

seed surface contact with liquid water decreases germination time and increases 

emergence percentage. Any factor reducing soil hydraulic conductivity or seed-soil 

contact reduces the rate of water uptake and delays germination and emergence.  

 

Seedling emergence under field conditions varies with soil moisture content, soil type, 

and plant species (McDonald & Copeland, 1997). Work with many crops shows that total 

emergence is affected only slightly by moisture tension from 0.05 to 0.3 MPa (Hunter & 
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Erickson, 1952; Hegarty, 1976; 1979). The number of emerging seedlings decreases 

rapidly at moisture tension grater that 0.7 MPa, and the time to maximum emergence 

increases as moisture stress increases. Many crop seeds are able to imbibe sufficient 

water at moisture near or slightly below the permanent wilting point to initiate 

germination, but not elongate. Insufficient aeration presumably limits germination at very 

high soil moisture conditions, since diffusion of oxygen is air is 10 00 times greater than 

in water at 20o

Emergence strength of individual seedlings varies from a low of 0.15 Newton for lucerne 

to a high of 2.9 Newtons for corn. Multiple seedlings in a group are able to rupture higher 

strength soil crusts. For example, studies show that the maximum thrust one , two and 

three cotton seedlings is 3.8, 5.8 and 8.5 Newtons, respectively. Similarly, subterranean 

clover, when seeded 2 cm deep in clumps of 1, 2 and 5 seeds has 28, 72 and 85% 

emergence. Large seeds exhibit greater emergence thrust, but they also encounter more 

soil resistance due to the greater surface area of their emerging seedling structures. 

Emergence data for many species and cultivars generally favours the large seeded-types 

when all other factors are equal. This is particularly true for the smaller-seeded grasses 

and legumes, where emergence from deeper plantings is promoted by large seed size, 

even though emergence force per gram of seed weight is slightly greater for small seeds. 

Large-seeded dicots occasionally fail to establish themselves as well as smaller  seeds of 

the same cultivar. However, this is usually due to differences in seed quality. Each seed 

quality for comparison of seed size is difficult to obtain from machine-harvested seedlots, 

because of mechanical injury problems. Large seeds normally exhibit more evidence of 

C.  
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injury than small seeds (Wanjura & Buxton, 1972). Rate of emergence depends more on 

soil temperature and moisture conditions than on planting depth (Tesar, 1984) 

 

Ellis et al. (1985) provided specific germination information and test recommendations. 

Poor field emergence and erratic stands lead to increased variation in plant development, 

which can result in yield reductions. Soil temperature and moisture are the major 

environmental determinants of seedling establishment with various planting dates. Early 

plantings in temperate regions usually are associated with favourable moisture supplies, 

but low soil temperature (Doneen & MacGillivray, 1943). Early-planted watermelons 

often have difficulty with seed germination and emergence is the soil is cold. Cultivars 

selected for cold germination ability would provide growers with better stands for crop 

production. The seeds of cucurbitaceous crops are non-endospermic and germination is 

epigeal. Cool, moist conditions favour pathogen development on seeds of low vigour by 

increasing days to emergence due to low temperature and increasing time for pathogen 

activity and ultimately reduce percentage of emergence. Planting date in non-irrigated 

warm climates frequently is determined by the onset of rains. In addition, soil 

temperature above 35oC, as well as the low moisture availability, may restrict 

germination of cool season species. Early spring soil temperatures in temperate regions 

decrease rapidly with soil depth. Early plantings should be shallower than later plantings, 

because temperatures are warmer near the soil surface, and soil moisture conditions are 

usually better early in the season (Fyfield & Gregory, 1989). Rate of emergence is closely 

correlated with early season soil temperatures measured at the seed depth. The emergence 

rate increases linearly from 5 to 25 oC for cool season crops to 10 – 35 oC for warm 
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season crops (Khan et al., 1979; Hegarty, 1979; Thomas, 1981). Low temperature after 

the sowing of many warm-season vegetables can lead to asynchronous seedling 

emergence (Kotowski, 1962; Thompson, 1974). As it has been reported (Fox & Norwood 

Young, 1982) wild watermelons survive severe droughts of Kalahari desert. Hence they 

are expected to thrive well under warm temperature conditions and be sensitive to cold. 

 

Plant response to water stress has been the subject of many books and reviews. It has 

been pointed out that the primary drought-induced strain in crop plants is simply cell 

dehydration, from which many effects arise. Resulting damage to essential plant 

processes can be reversible or irreversible depending on the severity of dehydration. As 

in chilling or high temperature situations, consequencies of membrane damage can be of 

several types. Damage to membrane bound enzymes usually means accumulation of 

metabolic intermediates or waste products to the extent that some are toxic. At the same 

time, photosynthesis can be slowed enough so that the plant literally starves or else the 

respiratory chain and its associated energy production are sufficiently disrupted to block 

normal cellular maintenance. If this stress persists long enough, effects are irreversible, 

and the plant dies. More often, mild to intermediate stress levels are important. In this 

regard, three excellent reviews by Bradford, 1994; Hall, 2001; Kramer and Boyer, 1995  

are available. 

 

Following an investigation into the seed and seedling performance of wild watermelon 

under laboratory and controlled glasshouse conditions (Chapter 2), it became important to 

determine how the crop would perform under field conditions where the environmental 
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factors are not controlled. Since both temperature and rainfall vary significantly from 

month to month in Pietermaritzburg (see Chapter 1), the hypothesis was that different 

planting dates ranging from the early planting in summer to late planting in January, 

would provide varying soil moisture conditions to allow testing of crop performance. The 

planting dates were selected to mimic what happens in the small-holder farming areas 

where the landraces of wild watermelon were collected (Professor A.T. Modi, University 

of KwaZulu-Natal, Personal communication). 

3.2 Materials and methods 

 
Seeds of wild watermelon were sourced as explained in section 2.2.1 above. Seeds were 

directly seeded in Inhoek Oatlands soil in Pietermaritzburg (Latitude -29.66763; 

Longitude 30.40599 ) under dryland conditions on three different dates, staggered: 25 

September 2008, 23 November 2008 and 20 January 2009. In anticipation of less than 

100% germination (see Figure 2.2 above) three seeds per station were planted and later 

thinned out to one seedling, one week after emergence. The thinning process was 

performed to establish uniform seedling size and 100% initial population per plot at a 

spacing of 50 cm within row and 200 cm between rows (Smith, 2006) in 16-m2 plots 

separated by a distance of 2 m. Before planting, soil samples were randomly taken to 

determine soil analysis (Table 3.1). Fertiliser application consisted of 50 kg ha-1 N, 20 kg 

ha-1 P and 0 kg ha-1 K according to the requirements for dryland production of water 

melon (Smith, 2006).  
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Table 3. 1 Soil fertility data for the field that was divided to plant from September 
2008 to January 2009. 
 
Parameter Amount 

Density (mg/ml) 1.04 

P (mg/l) 9 

K (mg/l) 185 

Ca (mg/l) 1556 

Mg (mg/l) 553 

Exchangeable acidity (cmolc 0.05 /l) 

Total cations (cmolc 12.84 /l) 

Acid saturation (%) 0 

pH (KCl) 5.64 

Zn (mg/l) 16.9 

Mn (mg/l) 7 

Cu (mg/l) 6.2 

Clay (%) 25 

Organic C (%) 1.6 

N (%) 0.21 

 

Each planting date (Main plot), was split into three seedlots (B, DB and VDB – see 

Figure 2.1) subplots, which were replicated three times. In each subplot, the sampling 

unit consisted of the three middle plants surrounded by border rows, and these were used  

to determine leaf number and vine length on the 2nd , 5th  and 8th  week from the planting 

date, when flowering began. Final yield was determined 135 days after emergence by 

fruit number per plot at senescence. Fruits were graded by size into small (< 2 kg), 
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medium (2 – 5 kg) and large > 5 kg). Gravimetric water content [%w = wet mass – oven 

dry mass ÷ oven dry mass) × 100] of the soil was determined from the top 30 cm of each 

sampling unit every week for 12 weeks. Genstat Statistical Package Version 9 was used 

to perform analysis of variance and to generate values of least significant differences 

(LSD), which were used to determine differences between treatments (P ≤ 0.05). 

Analysis of variance table for each variable are presented in Appendices 2 and 3.  

3.3 Results and discussion 
 

Changes in soil water content during the first 12 weeks of each cropping period are 
shown in Figure 3.1.  
 

 
 
Figure 3. 1 Changes in soil water content during the first 12 weeks of wild 
watermelon growth in each growing period starting in September, November and 
December, respectively. 
 
It is evident from Figure 3.1 that there were significant differences among cropping 

periods, with respect to soil water content. The crop that was planted early (September) 
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emerged under low soil moisture conditions (< 30%), but there was a steady increase in 

soil moisture as the rainfall increased from September to January Appendix 1). The 

November planting occurred under soil moisture conditions better than those of the 

September planting, but poorer than those of the January planting. The high moisture 

content at the start of the November and January plantings, was expected to result in 

faster seedling emergence, however, there were no significant differences between 

planting dates nor seedlots with respect to field emergence (Appendix 2 A). Despite the 

lack of differences in emergence, but crop growth for the September planting was 

sustained better by more rainfall and higher soil water content during the period when 

plants were growing faster in response to increasing leaf number and plant size (see 

sections 3.3.1 to 3.3.3 below). 

3.3.1 Plant growth 

Plant growth was determined using leaf number and vine length on different dates after 

emergence. Leaf number during plant growth was highly significantly response to 

planting date and the seedlots also differed significantly. In addition to the main effects of 

planting date and seedlot, there were also significant interactions of planting among the 

treatments and sampling times (Appendix 2 B). 

 
Seedlot B displayed the highest leaf number across planting dates (Figure 3.2). On 

average, the highest leaf number was obtained when the crop was planted in September, 

but planting in November favoured seedlot VDB the most, and DB displayed no 

significant differences in leaf number when planted in November and January (Figure 

3.2). 
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Figure 3. 2Comparison of three wild watermelon seedlots for leaf number during 
the first 8 weeks of growth under field conditions when planted in September, 
November and Jabuary, respectively. 
 

Although planting in September resulted in the highest leaf number, there was no 

difference between September and the other two dates two weeks after emergence 

(Figure 3.3). Both September and November plantings started to show better leaf number 

than the January planting five weeks after emergence, when they were not significantly 

different from each other (Figure 3.3). By the eighth week after emergence, there were 

significant difference among planting dates with September planting giving the highest 

leaf number, followed by November and January plantings, respectively (Figure 3.3).  
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Figure 3. 3 Changes in wild watermelon leaf number during the first 8 weeks of 
growth under field conditions when planted in September, November and Jabuary, 
respectively. 
 

An examination of the interaction between sampling dates and seedlots showed that there 

was no significant difference between seedlots B and VDB, with respect to leaf 

accumulation in the first eight weeks of plant growth, but seedlot DB was lagging behind 

them throughout the period observed (Figure 3.4). 

 

Figure 3. 4 Changes in wild watermelon seedlot leaf number during the first 8 weeks 
of growth. 
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The pattern of growth displayed by wild watermelon in this study (Figures 3.3 and 3.4) 

was typical of annual crop growth rate during the early exponential phase and the linear 

growth phase (Salisbury & Ross, 1992, Tesar, 1984). The data shown in Figures 3.3 and 

3.4 allowed estimation of leaf accumulation rate for each seedlot and for determination of 

the effects of planting date (Figure 3.5).  

 

 

Figure 3. 5 Estimated leaf accumulation rate for planting dates and seedlots during 
two phases of growth delineated in Figures 3.3 and 3.4, above. Phase 1 = weeks 2 to 
5; Phase 2 = weeks 5 to 8. 
 
 

It is clear from Figure 3.5 that the leaf number accumulation was slow during the first 

few weeks (Phase 1), but it increased rapidly from week 5 to week 8 (Phase 2). 

Comparison of planting dates showed that for phase 1 the rate in September was 5% 

greater than in November, and it declined further by 22%  in January (Figure 3.5). During 

the first phase, seedlot B showed the highest leaf accumulation rate at 5% and 30% 
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greater than that of VDB and DB, respectively. During phase 2 there was about 12% 

decline in leaf accumulation rate when planting occurred in November, compared with 

September, which further declined by 1.5% for the January planting (Figure 3.5). The 

consequence of the growth pattern shown in Figures 3.3 and 3.4, and explained in Figure 

3.5 is expected to be accompanied by a similar pattern for vine growth and to correlate 

with economic yield data. 

 

There was a significant effect of sampling date on vine number, but there was no other 

significant main effect. However, there was a significant interaction of planting date and 

seedlot (Appendix 2 C). The increase in vine number with time was expected (Figure 

3.6).  An interesting extrapolation of the data on Figure 3.6 was the determination of vine 

accumulation rate (Figure 3.7). 

 

 

Figure 3. 6 Average vines per plant accumulating in three wild watermelon 
landraces planted at different periods from September 2008 to January 2009 under 
field conditions. 
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Figure 3. 7 Estimated vine accumulation rate during two phases of wild watermelon 
growth under field conditions. Phase 1 = weeks 2 to 5; Phase 2 = weeks 5 to 8. 
 

The patter of vine accumulation was similar, but slower that than of leaf accumulation 

(Figures 3.3 and 3.4). From the perspective of planting dates, the comparison of leaf 

accumulation with vine accumulation rates during phase 1 showed that leaves 

accumulated at 81%, 80%, and 76% better than vines for September, November and 

January plantings, respectively. During phase 2, the differences between leaves and 

vines, in favour of the former, were 89%, 92% and 92%, for September, November and 

January plantings, respectively. 

 

The interaction data showed that seedlot B produced plants with 5% to 15% more vines 

than the other seedlots, when the crop was planted in September. However, the difference 

between B and other seedlots increased to about 24% to 30% for the November and 

January plantings (Figure 3.8). Although the November planting was second to the 
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September planting id vine accumulation, for seedlot DB, the November planting was 

associated with the lowest number of vines per plant (Figure 3.8).   

 

Figure 3. 8 Intearction between seedlots and planting dates for vine accumulation in 
wild watermelon. 
 

There was a significant difference among all treatments and their interactions with 

respect to vine length (Appendix 2 D). The interactions are presented in Figures 3.9  - 

3.11, below). 

 

From Figure 3.9, it is clear that September planting produced the longest vines. Seedlot 

performance varied with planting date. For the September planting, seedlot VDB 

produced about 10% more vines than B, and ~ 50% more than DB (Figure 3.9). For the 

November and January plantings, there was no significant differences between seedlots B 

and VDB, which had ~40% more vines than seedlot DB (Figure 3.9).  
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Figure 3. 9 Interaction between seedlots and planting dates for vine size in wild 
watermelon. 
 

The best response to planting in September, compared with the other planting dates, was 

clear from the perspective of weekly growth data (Figure 3.10). Planting in September 

resulted in ~ 45% more vine length than planting in November and January (Figure 3.10). 

 

Figure 3. 10 Interaction between sampling dates and planting dates for vine size in 
wild watermelon. 
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Performance of seedlots with respect to vine size started to differe on week 5 after 

planting, where B and VDB were significantly better than DB (Figure 3.11). By week 8 

there were significant differences among all seedlots, with DB showing the longest vines, 

followed by VBD and B, respectively (Figure 3.11).  

 

Figure 3. 11 Interaction between sampling date and seedlot (B, VDB and DB) for 
vine size in wild watermelon. 
 

Taking the data presented in Figures 3.10 and 3.11, vine growth rate was estimated 

(Figure 3.12). From Figure 3.2, it is evident that during the first three weeks of growth 

after week 2, there was most rapid growth in response to planting in September, 

compared with November (~50% less) and January (~68% less), respectively (Figure 

3.12). Although the September planting continued to have a significantly better growth 

rate during phase 2 (weeks 5 to 8). The differences between planting dates were less 

compared with the phase 1 growth rate (Figure 3.12). Seedlot differences were evident 

with respect to vine growth rate, where B > VDB > DB (Figure 3.12). It was strange to 

note that seedlot DB had a better growth rate during weeks 5 to 8 than weeks 2 to 5, 
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because the second phase would have happened in March, when both temperature and 

rainfall had started to decline (Appendix 1). 

 

Figure 3. 12 Estimated vine growth rate for planting dates and seedlots during two 
phases of growth delineated in Figures 3.10 and 3.11, above. Phase 1 = weeks 2 to 5; 
Phase 2 = weeks 5 to 8. 
 

3.3.2 Crop yield 
To determine crop production, both the number of fruits per plant and fruit mass were 

determined. There was a significant effect of planting date and seedlot, with respect to 

fruit number (Appendix 2 E). The highest number of fruits was obtained from the 

September planting, and this was ~32% greater than the fruits from the November 

planting, and ~64% more than the January planting (Figure 3.13). Grading the fruit 

revealed that there were fewer large fruit and size distribution differed with planting date 

(Figure 3.13). Whereas planting in September was associated with a significantly higher 

number of large fruits compared with the other planting dates, it resulted in the majority 

of fruits being small (Figure 3.13). The November planting was characterised by a 

predominance of medium size fruits. The January planting was characterised by the 
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fewest number of fruit compared with the September and November plantings, and a 

predominance of small fruits (Figure 3.13). 

 

 

Figure 3. 13 Fruit size distribution for wild watermelon in response to planting date. 
 

Comparison of seedlots for fruit number showed that B > VDB > DB, but size 

distribution differed among seedlots (Figure 3.14). For seedlot B,  about 60% of the fruits 

were medium-sized, 32% small and 8% large (Figure 3.14).  For VDB, 50% were 

medium 30% small and 20% were large. For DB, 54% were small, 29% medium and 

17% large (Figure 3.14). 

 

Fruit size was the highest when planting occurred in September, and the later it became 

the less it was (Figure 3.15). From September to November there was a 32% decline in 

fruit size, and it went down by 50% when planting was delayed to January (Figure 3.14). 
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Figure 3. 14 Fruit size distribution for three wild watermelon seedlots (B, VDB and 
DB). 
 

 

Figure 3. 15 Changes in wild watermelon fruit mass per plant in response to 
planting date. 
 

The average mass per seedlot is shown in Figure 3.16, and it indicates that DB fruits were 

25% greater than VDB fruits and 52% greater than B fruits (Figure 3.16).  
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Figure 3. 16 Average fruit mass per plant for three wild watermelon seedlots (B, 
VDB and DB). 
 

Using data shown in Figures 3.15 and 3.16, crop yield was estimated (Figures 3.17 and 

3.18). Crop yield decreased from 1368 t ha-1 for September planting to 247 t ha-1 for 

January planting, suggesting that wild watermelon is a long season crop. 

 

Figure 3. 17 Estimated wild watermelon crop yield in response to planting date. 
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Figure 3. 18 Estmiated yield of wild watermelon seedlots. 
  

The yield of the highest yielding seedlot, DB, was 14% and 36% greater than that of 

VDB and B, respectively, suggesting significant seedlot differences.  
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CHAPTER 4 

GENERAL DISCUSSION AND CONCLUSION 
 

4.1 Introduction 
 

During this study, no data on growth, development and response to varying conditions of 

water for wild watermelon were found in South Africa. The review of literature relied 

largely on generalizations and information about curcurbits. The study focused on 

collecting data about growth and development of wild watermelon under conditions 

ranging from laboratory seed germination, through to controlled glasshouse conditions 

and field conditions. The first part of the study, seed germination, was not concerned with 

crop response to water stress, rather, it was aimed at establishing the quality of seedlots 

for seedling establishment and field crop production. Under glasshouse conditions 

(chapter 2) a controlled situation of varying water availability was created comparing 

planting material ideal for nursery conditions (pine bark), and two other materials 

designed to have physical characteristics that are different from pine bark (1:1 mixture of 

pure sand and pine bark, and pure sand only. Under field conditions, the crop production 

was staggered over a wide range of period encompassing the start of the summer rainfall 

and autumn, so that the effects of natural conditions differing is soil moisture and 

temperature would be studied. Climatic data and soil moisture content were determined 

and used in the presentation of results (Chapter 2). As much as an attempt was made to 

produce data on the response of wild watermelon to water stress, the goal of collecting 

agronomic data that will be used in future studies to execute studies that will produce 
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data for modeling of wild watermelon growth and development under strictly planned 

irrigation response studies remained important. In this chapter the author provides an 

overall interpretation of the key findings of chapters 2 and 3, with a view to making 

recommendations for future research. 

 

4.2 Crop response to germination and water stress under controlled environment 
conditions 
 

Wild watermelon is not a “major crop”. In the context of South African agriculture, it is a 

minor, underutised crop, whose economic potential is yet to be fully exploited. Smartt 

and Haq (1997) refer to these crops as new crops, despite the fact that many of these 

crops have an ancient history of contributing to food security (Wallis, et al., 1989).  

 

The ability of seed to germinate is an important component of seed quality, together with 

genetic quality, seed purity and seed health. As a reproductive unit, a seed must be able to 

germinate and establish seedlings. Germination is a measure of the physiological quality 

of the seedlot. Three important aspects of this ability affect a seedlot’s performance: 

viability, germination and vigour (McDonald & Copeland, 1997). Viable seeds are those 

that are alive and have the potential to germinate when exposed to favourable 

germination conditions (McDonald & Copeland, 1997). When a germination test is 

conducted on healthy, clean seeds, those viable seeds that fail to germinate are considered 

dormant. It is concluded that the inability of wild watermelon seedlots to reach 100% 

germination in this study (Figure 2.2) was likely due to physiological dormancy. 

Physiological dormancy may be due to high levels of inhibitory hormones, eg., Abscisic 



 86 

acid or embryo immaturity (McDonald & Copeland, 1997. After-ripening of seeds by 

storing them at ambient temperatures for weeks or months helps to break physiological 

seed dormancy (AOSA, 1996). Confirmation that the seeds may have had physiological 

dormancy was confirmed by improved emergence under field conditions, following a 

further period of storage at ambient conditions before planting. 

 

Sensitivity of curcubits to water and temperature stresses has been reported (Lee et al, 

2003; Heuer, 1993; Moon et al., 2007). Blending of media for seedling production is also 

a common phenomenon in research for the nursery industry (Choi et al., 2007; Warncke, 

1986). In the present study, the blending of pine bark and sand improved seedling 

emergence under moderate soil water availability (Figure 2.5), but seedling growth was 

best supported in the pine bark only medium with 75% F.C. (e.g., Figures 2.6 and 2.11). 

The differences in response to media may have been due to the fact that the mixture of 

sand and pine bark, provided a combination of water availability and temperature that 

favoured seed germination. Optimum seed germination requires warm temperatures and 

water availability under well-aerated conditions. Pine bark may have been more suitable 

for supporting seedling growth than the mixture of pine bark and sand, and sand only, 

because of its high water holding capacity. When a root substrate is formulated and 

packed into a plug tray, large and small inter-aggregate pores are formed. The large pores 

act as air-filled porosity and the small pores contain water (Verdonck & Pennick, 1986). 

In the present study, the substrates were not analysed for porosity, but it is most likely 

that blending pine bark with sand resulted in the creation of a larger proportion of larger 

pores, which were less able to retain water than the smaller pores, which likely occurred 
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in a larger proportion or more balanced ratio in pine bark only. For this reason, it is 

concluded that using pine bark only provides suitable conditions of water content 

availability of seedlings and the increase in water status from 50% to 75% is beneficial. 

The mixture of sand and pine bark might be beneficial in situations where species that are 

very sensitive to soil water are grown. Being a desert crop, wild watermelon was 

expected to be less affected by the presence of sand in the media, in terms of growth and 

final seedling size. The estimation of water use efficiency, however, showed that the 

sand-based media were more efficient that the pine bark in the amount of water used to 

produce a unit of seedling dry mass (Figure 2.16). In addition, 25% F.C. was associated 

with more water use efficiency than 50% and 75% FC. These results suggest that wild 

watermelon can survive water stress and produce seedlings even under conditions of 

water stress. This conclusion requires a comparison of wild watermelon with other 

species. 

 

4.3 Crop response to planting dates of different rainfall content 
 

Climatic information is necessary for successful planning in agriculture. Various indices, 

such as water efficiency indices, thermal indices, heat units, etc., were developed in early 

attempts to relate climatic data more closely to factors such as crop growth rate, yield and 

production as required for land use planning and crop zonation. These usually involved 

accumulated temperature, some comparison of of rainfall with crop water requirements, 

and the length of the season with favourable indices (Bidinger and Johansen, 1986). This 

study relied on naturally occurring climatic conditions to determine the response of wild 
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watermelon to soil water content over three seasons created by planting at different times 

during the summer of 2008/2009. The period of crop growth from planting to full 

flowering of the last crop is depicted in Figure 4.1, using data in Appendix 1. The 

gravimetric soil water pattern was similar to the rainfall pattern for November and 

January plantings (Figure 3.1). 

 

 

Figure 4. 1 Temperature and rainfall during the period of plant growth 
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For the September planting, the soil water content pattern showed a persistence of high 

levels until the end of the season (Figure 3.1). The likely reason for the high soil water 

content for the September planting is that leaf cover reduced evaporation from the soil 

more effectively than it happened with then later plantings. The later plantings were 

associated with slow plant growth rate (Figures 3.5 and 3.12). The data in Figure 4.1 

could be used to predict plant growth and development that would be optimum between 

November and February. The results of this study, however, showed that planting in 

September resulted in the best plant growth and development and final yield.  

 

The theoretical determination of plant growth rate in this study allowed and 

understanding of biomass accumulation with time (Figures 3.5 and 3.12). Within a 

season, accumulation generally follows a sigmoidal curve.  Sigmoidal curves can be 

divided into early exponential phase of seedling growth, a grand period during 

midseason, and a final senescent phase (Cerrato & Blackmer, 1990). In this study, crop 

growth rate was measured only during the early exponential phase and part of the grand 

phase (Figures 3.5 and 3.12). It was shown that the highest crop growth rate and final 

yield occurred when the crop was grown over a long season, planting in September and 

harvesting in March. This period was associated with long periods of radiation and 

rainfall precipitation, which resulted in more fruits of larger size and higher final yield 

than when the crop was planted later in the season. It can be concluded that September is 

the best time to plant wild watermelon, because the crop is a relatively long season one. 
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The three landraces used in this study showed a consistent difference in performance, 

where the Eastern Cape variety (B)  produced better plant size and yield than the 

KwaZulu-Natal varieties (DB and VDB). The good performance of the Eastern Cape 

landrace could be explained on the basis of the data presented in Figure 2.1, where it is 

shown that the Eastern Cape provenance had a similar rainfall, temperature and drought 

occurrence to Pietermaritzburg, the study site.  Although landrace B showed better 

seedling performance under glasshouse and better plant growth and yield under field 

conditions, it cannot be generalized that it is the best one for growth under drought 

conditions. The seedling growth study included water stress conditions (25% F.C.), but 

the field conditions were not droughty, strictly speaking. Instead, the periods of growth 

differed in the amount of water and temperature availability, with the late planting 

(January) being associated with drier conditions during fruit development and maturation 

than the other two seasons. Although the November planting was associated with high 

temperature and rainfall, it did not produce the best yields. The reason for this anomaly 

was not investigated in this study. However, it may have to do with the crop being prone 

to leaf diseases and high respiration losses.  

 

The specific objectives of the study were (a) to determine the effect of water stress on 

three varieties of watermelon differing in seed colour and provenance during seedling 

establishment, (b) to determine the effect of planting date on crop growth and yield under 

field conditions, and (c) to relate proline accumulation to water stress in wild 

watermelon.  
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It is concluded that wild water melon seedlings were responsive to water stress under 

controlled environment conditions in that sandy media and 25% F.C. reduced seedling 

growth, but the crop displayed the ability to improve water use efficiency under water 

stress.  Crop yield improves under long season conditions. Leaf proline accumulation can 

be used as an indicator of water stress response. Therefore, the ability of a plant to 

simultaneously accumulate proline and withstand stress, could be used in the strategies to 

select for drought tolerance.  

Future studies should investigate the genetic differences between landraces and simulate 

drought under field conditions. Soil water content needs to be taken to deeper soil depths 

that are reached by the crop roots, and leaf area needs to be determined under field 

conditions. These data, together with climatic data, can be used to develop models for 

growth and development of wild watermelon under water stress conditions. 
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APPENDICES 
 

Appendix 1. Climatic data for the research site, Ukulinga Research Farm. Monthly 
averages and totals. Source: Agricultural Research Council, South Africa. 
 

Start Year Start Month End Year End Month 
2008 1 2009 12 

Comp# Station Name Latitude Longitude Altitude 
30160 PMBURG; UKULINGA RES STN -29.66763 30.40599 806 

Compno Year Month Tx Tn T Rain RHx RHn Rs U2 ET0 HU CU DPCU 
30160 2008 1 26.35 16.53 20.44 117.50 91.66 53.56 17.95 0.91 4.15 323.53 -601.50 0.00 
30160 2008 2 27.06 16.96 20.72 63.70 91.90 50.96 16.81 0.94 3.98 310.86 -591.00 0.00 
30160 2008 3 25.84 15.37 19.53 56.60 90.94 47.61 14.70 0.90 3.52 295.55 -511.50 8.00 
30160 2008 4 23.04 12.19 16.61 57.60 88.29 42.64 10.76 0.88 2.67 199.64 -225.00 56.00 
30160 2008 5 23.92 11.79 16.94 1.80 86.96 34.60 9.19 0.76 2.44 215.66 -260.00 52.50 
30160 2008 6 20.27 9.08 13.80 23.40 85.35 37.71 8.00 0.76 2.03 122.17 41.50 202.50 
30160 2008 7 22.04 8.55 14.36 0.30 74.00 23.58 9.73 0.76 2.60 148.06 -3.50 200.00 
30160 2008 8 23.85 10.22 15.80 5.20 84.84 28.51 11.64 1.16 3.11 182.76 -115.50 137.50 
30160 2008 9 24.23 9.55 16.12 41.60 82.17 27.91 14.72 1.46 3.84 194.79 -103.00 177.50 
30160 2008 10 22.85 12.44 16.47 53.30 91.78 52.75 13.61 1.06 3.22 200.64 -190.50 65.00 
30160 2008 11 24.17 14.43 18.18 68.30 92.63 55.97 15.29 1.05 2.93 245.26 -386.50 21.00 
30160 2008 12 26.16 16.25 20.17 142.20 91.90 54.73 17.16 1.03 3.38 314.97 -535.50 4.50 
30160 2009 1 24.72 16.22 19.71 116.40 93.20 65.99 15.24 0.75 2.42 291.34 -516.00 0.00 
30160 2009 2 25.95 16.28 20.06 115.10 92.67 58.41 15.53 0.75 3.02 281.61 -497.50 0.00 
30160 2009 3 25.54 15.32 19.49 50.70 91.65 52.88 15.60 0.73 3.01 294.08 -525.00 8.50 
30160 2009 4 25.10 13.09 18.01 19.10 88.13 42.59 13.08 0.66 2.54 241.36 -347.50 40.00 
30160 2009 5 22.81 11.46 15.92 22.10 87.43 39.59 10.01 0.63 1.84 65.18 -76.50 14.50 
30160 2009 6 20.88 9.20 12.50 346.80 81.40 31.03 12.84 0.92 2.11 45.06 33.50 99.00 
30160 2009 7 20.97 7.70 13.41 1.90 76.29 22.47 12.23 0.75 2.17 121.40 72.00 241.00 
30160 2009 8 22.72 9.13 15.13 42.60 86.00 29.00 13.53 1.21 2.63 167.18 -55.50 185.00 
30160 2009 9 23.02 10.59 16.57 23.10 87.40 38.10 13.90 1.11 2.89 200.11 -166.00 127.00 
30160 2009 10 22.77 12.77 16.81 119.50 91.71 53.32 14.45 0.93 2.76 211.15 -271.50 36.50 
30160 2009 11 23.68 13.67 17.40 72.80 88.00 52.11 14.00 1.05 2.84 222.39 -254.50 57.00 
30160 2009 12 24.25 14.99 18.83 139.20 92.77 59.98 14.58 0.92 2.94 273.66 -432.50 12.50 
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Appendix 1 (Continued) 

KEY NOTES  

ELEMENT DESCRIPTION UNIT STATION 
TYPE 

Tx Average Maximum Temperature °C AWS 
Tn Average Minimum Temperature °C AWS 
T Average Temperature [Calculated From Hourly Data] °C AWS 

Rain Average Total Rainfall [Calculated From Hourly Data] mm AWS 
RHx Average Maximum Relative Humidity % AWS 
RHn Average Minimum Relative Humidity % AWS 
Rs Average Total Radiation [Calculated From Hourly Data] MJ/m2 AWS 
U2 Average Wind Speed [Calculated From Hourly Data] ms AWS 

ET0 Average Total Relative Evapotranspiration [Calculated From 
Hourly Data] mm AWS 

HU Average Total Heat Units [Calculated From Hourly Data] Unitless AWS 
CU Average Total Cold Units [Calculated From Hourly Data] Unitless AWS 

DPCU Average Daily Positive Chilling Units [Calculated From 
Hourly Data] Unitless AWS 

Tx Average Maximum Temperature °C MWS 
Tn Average Minimum Temperature °C MWS 

Rain Total Rainfall mm MWS 
RHx Average Maximum Relative Humidity % MWS 
RHn Average Minimum Relative Humidity % MWS 
UTot Average Windrun Km/day MWS 
APan Total Daily Apan Evaporation mm MWS 
Suns Daily Wind Run KM/day MWS 
HU Average Heat Units [Not yet available] Unitless MWS 
CU Average Cold Units [Not yet available] Unitless MWS 

DPCU Average Daily Positive Chilling Units [Not Yet Available] Unitless MWS 
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Appendix 2  Analysis of variance tables for chapter 2 
 

A. Seedling emergence in nursery seedling trays 
  
Variate: Emergence 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  2597.4  1298.7  10.63   
  
Rep.*Units* stratum 
Seedlot 2  5461.7  2730.9  22.36 <.001 
Day 3  432.4  144.1  1.18  0.318 
FC 2  9505.7  4752.9  38.92 <.001 
Media 2  287.2  143.6  1.18  0.311 
Seedlot.Day 6  377.8  63.0  0.52  0.796 
Colour.FC 4  423.5  105.9  0.87  0.485 
Day.FC 6  226.4  37.7  0.31  0.932 
Seedlot.Media 4  728.1  182.0  1.49  0.206 
Day.Media 6  1400.5  233.4  1.91  0.080 
FC.Media 4  7909.1  1977.3  16.19 <.001 
Seedlot.Day.FC 12  237.0  19.8  0.16  0.999 
Seedlot.Day.Media 12  1288.0  107.3  0.88  0.569 
Seedlot.FC.Media 8  2638.1  329.8  2.70  0.008 
Day.FC.Media 12  114.4  9.5  0.08  1.000 
Seedlot.Day.FC.Media 24  240.3  10.0  0.08  1.000 
Residual 214  26136.0  122.1     
  
Total 323  60003.4       
 
 

B. Seedling height 
 
Variate: Seedling height (cm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  0.1667  0.0833  0.08   
  
Replication.*Units* stratum 
Media 2  20.2500  20.2500  20.40 <.001 
FC 2  42.2500  42.2500  42.57 <.001 
Seedlot 2  4.5000  2.2500  2.27  0.127 
Media.FC 4  0.2500  0.2500  0.25  0.621 
Media.Seedlot 4  4.5000  2.2500  2.27  0.127 
FC.Seedlot 4  0.5000  0.2500  0.25  0.780 
Media.FC.Seedlot 8  0.5000  0.2500  0.25  0.780 
Residual 52  21.8333  0.9924     
  
Total 80  94.7500       
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C. Fresh mass 
 
Variate: Fresh Weight (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  16.679  8.339  1.06   
  
Rep.*Units* stratum 
FC 2  26.339  13.169  1.67  0.017 
Seedlot 2  1.629  0.814  0.10  0.002 
Media 2  1898.202  949.101  120.69 <.001 
FC.Seedlot 4  33.437  8.359  1.06  0.384 
FC.Media 4  26.093  6.523  0.83  0.513 
Seedlot.Media 4  16.489  4.122  0.52  0.718 
FC.Seedlot.Media 8  110.534  13.817  1.76  0.107 
Residual 52  408.928  7.864     
  
Total 80  2538.329 
 

D. Dry mass 
 
Variate: Dry Weight (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.2373  0.1186  0.16   
  
Rep.*Units* stratum 
FC_% 2  2.3069  1.1535  1.52  0.028 
Colour 2  0.5928  0.2964  0.39  0.049 
Media 2  101.9573  50.9786  67.24 <.001 
FC_%.Colour 4  2.3575  0.5894  0.78  0.545 
FC_%.Media 4  14.6264  3.6566  4.82  0.002 
Colour.Media 4  1.4205  0.3551  0.47  0.759 
FC_%.Colour.Media 8  3.3269  0.4159  0.55  0.814 
Residual 52  39.4227  0.7581     
  
Total 80  166.2484 
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E. Root mass 
  
Variate: Root mass 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  0.0000500  0.0000250  0.10   
  
Replication.*Units* stratum 
Media 2  0.0142802  0.0142802  56.61 <.001 
FC 2  0.0254403  0.0254403  100.84 <.001 
Seedlot 2  0.0044955  0.0022477  8.91  0.001 
Media.FC 4  0.0080103  0.0080103  31.75 <.001 
Media.Seedlot 4  0.0059255  0.0029628  11.74 <.001 
%FC.Seedlot 4  0.0232355  0.0116178  46.05 <.001 
Media.FC.Seedlot 8  0.0235655  0.0117828  46.71 <.001 
Residual 52  0.0055500  0.0002523     
  
Total 80  0.1105527 

 

F. Root length 
 
Variate: Root length (cm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.2  0.1  0.00   
  
Rep.*Units* stratum 
FC 2  157.1  78.5  0.71  0.498 
Seedlotr 2  160.9  80.5  0.72  0.490 
Media 2  42010.5  21005.2  189.07 <.001 
FCSeedlot 4  129.2  32.3  0.29  0.883 
FC_Media 4  1864.3  466.1  4.20  0.005 
Seedlot.Media 4  92.5  23.1  0.21  0.933 
FC.Seedlot.Media 8  988.7  123.6  1.11  0.370 
Residual 52  5777.2  111.1     
  
Total 80  51180.5 
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G. Leaf area 
  
Variate: Leaf area 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  12.892  6.446  0.76   
  
Replication.*Units* stratum 
Media 2  200.789  200.789  23.82 <.001 
FC 2  6561.000  6561.000  778.25 <.001 
Seedlot 2  601.841  300.921  35.69 <.001 
Media.FC 4  1237.632  1237.632  146.80 <.001 
Media.Seedlot 4  212.933  106.467  12.63 <.001 
FC.Seedlot 4  214.588  107.294  12.73 <.001 
Media.FC.Seedlot 8  296.177  148.088  17.57 <.001 
Residual 52  185.470  8.430     
  
Total 80  9523.324  

 

H. Proline 
 
  
Variate: Proline Concentration 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.020691  0.010345  2.68   
  
Rep.*Units* stratum 
FC 2  25.886416  25.886416  6712.11 <.001 
Media 2  0.730709  0.730709  189.47 <.001 
Seedlot 2  2.076781  1.038391  269.25 <.001 
FC.Media 4  0.136052  0.136052  35.28 <.001 
FC.Seedlot 4  1.682771  0.841386  218.16 <.001 
Media.Seedlot 4  3.235433  1.617716  419.46 <.001 
FC.Media.Seedlot  
 8  1.341856  0.670928  173.97 <.001 
Residual 52  0.084847  0.003857     
  
Total 80  35.195555 
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Appendix 3: List of analysis of variance tables for Chapter 3 
 
A. Seedling emergence 
 
Variate: % Emergence 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  338.4  169.2  0.21   
  
Rep.*Units* stratum 
Date 2  1600.4  800.2  0.99  0.395 
Seedlot 2  1353.5  676.7  0.83  0.453 
Date.Seedlot  
 4  1472.3  368.1  0.45  0.769 
Residual 16  12995.0  812.2     
  
Total 26  17759.5 

 
B. Number of leaves 
 
  
Variate: No of leaves 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  3732.  1866.  1.36   
  
Rep.*Units* stratum 
Date 2  158659.  79329.  57.65 <.001 
Seedlot 2  41367.  20683.  15.03 <.001 
Week 2  247732.  123866.  90.02 <.001 
Date.Seedlot 4  105399.  26350.  19.15 <.001 
Planting_Date.Week 4  84709.  21177.  15.39 <.001 
Seed_colour.Week 4  23822.  5956.  4.33  0.004 
Date.Seedlot.Week 8  74079.  9260.  6.73 <.001 
Residual 52  71550.  1376.     
  
Total 80  811048.       
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C. Number of vines 
 
Variate: No of Vines 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  4.861  2.431  1.27   
  
Rep.*Units* stratum 
Date 2  9.492  4.746  2.47  0.094 
Seedlot 2  6.115  3.058  1.59  0.213 
Week 2  22.109  11.054  5.76  0.005 
Date.Seedlot 4  37.182  9.295  4.85  0.002 
Date.Week 4  7.755  1.939  1.01  0.410 
Seed_colour.Week 4  3.264  0.816  0.43  0.790 
Date.Seedlot.Week 8  3.903  0.488  0.25  0.977 
Residual 52  99.750  1.918     
  
Total 80  194.433 
 
D. Vine length 
 
Variate: Vine length 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  318.4  159.2  0.21   
  
Rep.*Units* stratum 
Date 2  65522.2  32761.1  43.47 <.001 
Seedlot 2  19882.4  9941.2  13.19 <.001 
Week 2  100249.2  50124.6  66.51 <.001 
Date.Seedlot 4  23270.1  5817.5  7.72 <.001 
Date.Week 4  9404.0  2351.0  3.12  0.022 
Seedlot.Week 4  11170.0  2792.5  3.71  0.010 
Date.Seedlot.Week 8  18997.7  2374.7  3.15  0.006 
Residual 52  39191.5  753.7     
  
Total 80  288005.5       
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E. Fruits  
 
Variate: fruits per plant 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  9.85  4.93  0.07   
  
Rep.*Units* stratum 
Date 2  1302.30  651.15  8.92  0.002 
Seedlot 2  19.85  9.93  0.14  0.044 
Date.Seedlot 4  218.81  54.70  0.75  0.573 
Residual 16  1168.15  73.01     
  
Total 26  2718.96 
 
 
F. Large fruits  
 
Variate: No Large Fruits plant 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.990  0.495  0.28   
  
Rep.*Units* stratum 
Date 2  46.113  23.057  13.18 <.001 
Seedlot 2  0.706  0.353  0.20  0.819 
Date.Seedlot 4  1.844  0.461  0.26  0.897 
Residual 16  27.992  1.749     
  
Total 26  77.644 
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G. Medium fruits  
 
Variate: Medium fruits plant 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  17.730  8.865  1.23   
  
Rep.*Units* stratum 
Planting_Date 2  219.607  109.803  15.29 <.001 
Seed_colour 2  7.113  3.557  0.50  0.618 
Planting_Date.Seed_colour  
 4  40.745  10.186  1.42  0.273 
Residual 16  114.918  7.182     
  
Total 26  400.113 
 
 
H. Small fruits  
 
Variate: Small fruits plant 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  32.27  16.13  0.54   
  
Rep.*Units* stratum 
Planting_Date 2  482.72  241.36  8.10  0.004 
Seed_colour 2  1.30  0.65  0.02  0.978 
Planting_Date.Seed_colour  
 4  79.33  19.83  0.67  0.625 
Residual 16  476.55  29.78     
  
Total 26  1072.17  
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I. Fruit mass 
 
Variate: Fruit Mass (kg) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  25.45  12.72  0.88   
  
Rep.*Units* stratum 
Date 2  723.44  361.72  24.93 <.001 
Seedlot 2  4.21  2.11  0.15  0.046 
Date.Seedlot 4  45.54  11.38  0.78  0.552 
Residual 16  232.17  14.51     
  
Total 26  1030.80       
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