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ABSTRACT

Eskom is the major electricity supplier in South Africa and medium term forecasting within
the company is a critical activity to ensure.that enough electricity is generated to support the
country’s growth, that the networks can supply the electricity and that the revenue derived

from electricity consumption is managed efficiently. This study investigates the most suitable

major municipalities within Kwa-Zulu Natal.



PREFACE

The experimental work described in this dissertation was carried out in the Department of
Statistics and Biometry, University of Natal, Pietermaritzburg, from January 1994 to March

1997 under the supervision of Professor Linda Haines.

These studies represent original work by the author and have not otherwise been submitted
in any form for any degree or diploma to any University. Where use has been made of the

work of others it is duly acknowledged in the text.
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1. GENERAL INTRODUCTION

The aim of this study is to find the most suitable forecasting technique for predicting monthly
electricity consumption, one year ahead for the major municipalities within Kwa-Zulu Natal..
The group of customers used in the present study tend to display fairly stable, repetitive
electricity consumption patterns which lend themselves to statistical modelling methods. The
higher electricity consumption during the winter months is caused by aﬁ increase in heating
and irrigatidn applications and the colder the area, the more exaggerated this increase. The
three forecasting methods which have been studied in depth in the present study are
exponential smoothing, ARIMA and state space modelling. The exponential smoothing
method is a simple, well established method, ARIMA modelling requires more skill to apply
than exponential smoothing and the application of Kaiman filtering techniques to state space
models is straight forward, delivering pleasing results. Various options within each method
are explored and using the time series of monthly electricity consumption for major

municipalities, the results of these methods are analysed and compared.

Chapter 2 introduces the theory and modelling techniques for the exponential smoothing
method, ARIMA and state space models and briefly explores the relationships between these
three methods. Chapter 3 introduces the time series used in this study and then looks at the
application of the above mentioned methods to these series and compares their forecasting

accuracy. The conclusions drawn from the study are presented in Chapter 4.



2. THEORY

2.1 INTRODUCTION

This thesis is concerned with time series involving monthly data which exhibit a trend and
multipl'icative seasonality, i.e. seasonality that is proportional to the level of the series. The

theory discussed in the present chapter is therefore related primarily to such series.

A complete time series is denoted by Yl,...,Y,, ...‘,YT where T represents the length of the

series. The forecast of an observation Y., at k lags ahead of a time t, given the series

Y, ,is denoted by Y, _,, . and the one-step ahead forecast error at time t is

e LR S

expressed as e,:Y,—)ﬂ’H_1 .
2.2 EXPONENTIAL SMOOTHING

2.21 INTRODUCTION

The exponential smoothing method involves the calculation of forecasts based on a weighted
average of past observations, with more weight being placed on the recent than on the early
observations in the series. The method was introduced by Brown and Holt in the 1950's in
the context of constant series and extended to time series with trend and seasonality by Holt

and Winters (see Chatfield, 1978; Gardner, 1985; Chatfield and Yar, 1988)

The methbd of exponential smoothing is well esfablished and widely used (Granger and
Newbold, 1977; Chatfield, 1989; Janacek and Swift, 1993). ts main advantages are that it is
easy to implement, that the amount of data storage and computation required is minimal and
that no complicated procedures involQing madel identification are necessary. Its chief
disadvantage is its very simplicity in that there is no obvious model implied by the method

and thus that confidence limits to predictions and forecasts cannot be clearly formulated. Ad



hoc procedures for finding such confidence limits have been reported by Chatfield and Yar

(1991), but are not well established.

2.2.2 SIMPLE EXPONENTIAL SMOOTHING

Consider a time series Y ,....,Y, that does not exhibit trend or seasonality. A sensible one-

step-ahead forecast at time t is then given by the weighted average

N

Y _.=af +a(l-a), +a(l-a)’Y +...a(-a) ¥ _+. .

1=t

=af +1-a)Y

tlr-1
where ¢ is termed the smoothing parameter and lies between 0 and 1,i.e. 0 < o < 1.

The weights a(l—a)’ ,j=0, 1, 2,......, are exponentially decreasing as j increases, hence

the term exponential smoothing, and sumto 1, i.e.
a+a(l-a)+a(l-a) ... =Y a(l-a) =1,
j=Nn
For values of @ close to 1 most weight is placed on recent observations and for values of

a close to”0, more weight on past observations.

In practice, for a given value of @, the one-step-ahead forecast at time t is computed as

N

Y,‘”, =al +(1-a),

where the initial value Y”0 is unknown and is usually taken to be the first observation, Y], or

the average of the first few observations. However, the value of « is generally unknown
and must therefore be estimated. A sensible, albeit ad hoc approach to its estimation is io
choose that value of @ to minimise a suitable criterion involving the forecast error, such as

the mean sum of squared one-step-ahead errars, written

| ! .
MSE = ——— - :
SE T—m+1§(y’ Y ) (2.1)



or the mean absolute percentage error, which does not penalise extreme values as severely

as the M.S.E., expressed as

(2.2)

Note that the first m-1 points are excluded from the calculation of these criteria in order to

A

reduce the effect of the initial value, ', .

2.2.3 HOLT-WINTERS METHOD

The Holt-Winters method of forecasting takes into account the level, trend and seasonality of
a time series and is a generalisation of simple exponential smoothing. There are two such
methods, one for additive seasonality and the other for muitiplicative seasonality and only
the latter is considered here. The level, trend and seasonality of the smoothed series are
updated as new observations become av;:\ilabl_e in @ manner similar to that of simple
exponential smoothing. Specifically for a time t and monthly seasonality, the level is updated

according to the equation

L=aY /S, .)+(1-a)L, +T, ).
the trend as
T=y(L-L_)+0-9)T_,
and the seasonal term as
S=06Y,/L)+(1-6)S,,,.
where « , ¥ and & are smoothing parameters for updating the level, trend and seasonal

indices respectively, and are restricted to lie between 0 and 1. The closer a parameter is to 1,
the more weight fhat is given to recent data when updating the corresponding level, trend or
seasonal terms. These three updating equations are invoked successively to provide, at time

t, the one-step-ahead prediction

Yr+]u: (L1+T1)Sr~1271



and the k-steps-ahead prediction

)l/rvk:t: (L1+le)Sl—12vk -

As with simple exponential smoothing, appropriate initial values L, T, and S, are required

and there are a number of options available for calculating these (Chatfield, 1988). For

example, data from the first year can be used to provide the estimates

' 2y,
=0, and §=— =1, 12,

2 ZY,

t=1

data for the first two years to provide the values

24 24 12

DY, ZY,/]Z - Y,/2 12(Y +Y )
L=+ . T,=15 7’=‘ LS E— j=1.12

24 12 Z.Yr

t=1

or all the data can be used to calculate the starting values,

T T 12 p-1

ZY: ( ZYI_ZYI) lzzylzx-j
L=1— T="=-"=—"ad §=—0 j=1,..12

T T G- / !

T
2.7
t=]

(2.3)

(2.4)

(2.5)

where p is the number of years in the series. The latter approach is used by a number of

statistical packages including Statistica, but is clearly not suited to series in which the initial

trend is steeply upwards or downwards compared to the average trend for the complete

series. For large valuesof « , ¥ and &, or if a series is extremely long, the effect of the

starting parameters on the forecast is very small. If, on the other hand, the parameters are

small, the starting values will influence the forecast significantly.

The parameters « , ¥y and § are also unknown and must be estimated. As for simple

exponential smoothing, an empirical approach to selecting parameters , based on minimising

the forecast error criteria M.S.E. or MAAP.E. as given in expressions (2.1) and (2.2), is



invoked. For seasonal data, a forecast is often required for the ensuing twelve months and
thus it would seem sensible to minimise the error of forecasting over that period (Chatfield
and Yar, 1988) using for example the mean sum of squared twelve-steps-ahead error defined

by

. 1 1 T N . -
M.S.E. (12) = [mJ(E]ZZ(YW—YW)- (2.6)

t=m j=1



2.3 ARIMA MODELS

2.3.1 INTRODUCTION

Autoregressive integrated moving averages (ARIMA) models were developed in 1970 by Box
and Jenkins as powerful and fiexible tools for modelling time series. The methodology
underpinning these models is well established (see for examp|e Vandaele, 1983,

Cryer, 1986), and is outlined briefly below.

2.3.2 MODEL OVERVIEW

Consider a time series Y, ,t=1,...,T, which is weakly stationary, i.e. for which the mean and

variance are constant through time. Then an ARMA model comprising p autoregressive and

q moving average terms can be represented by

Y =gY +pY b Y, 7,02 0,2, . 0,7

p-p g7 t-q°
where the series Z,,t=1,....,T, is a sequence of independent, identically distributed random
variables i.e. white noise, and the terms ¢, i=1,...,p and Bj , j = 1,...q are autoregressive

and moving average parameters respectively. The model can be expressed more succinctly

as ¢(B)Y = O(B)Z, where B is the backward shift operator defined by BY =Y, , and the

-1
roots of the polynomials @¢(B) and @(B) are restricted to lie outside the unit circle in order

to ensure stationarity and invertibility respectively. Such a mode! is denoted ARMA (p,q).

A non-stationary time series exhibiting a trend can be transformed into a staiionary series by

differencing, i.e. by introducing W = VY where V =1~ B, and the series W, can then

be modelled as an ARMA(p,q) model. Such a model is termed an autoregressive integrated
moving average model and is denoted ARIMA(p,d,q). If the variance of a time series is non-
stationary, then it is common to transform the series into a stationary one by taking

logarithms of the observations.



ARIMA models can be extended quite naturally to incorporate seasonality. In particular, the

general multiplicative seasonal ARIMA model is given by

8 ,(B)YD, (B*)W =6,(B)O,(B™)Z,,
where W =VVLEY,, D represents the order of the seasonal difference operator and

V., =(-B"). The terms ®,(B ") and ©,(B ') are polynomials in the seasonal
lags of order P and Q respectively and the roots of these polynomials are again restricted to
lie outside the unit circle in order to satisfy stationarity and invertibility requirements

respectively. Such a model is termed ARIMA(p,d.q)x(P.D,Q),, .

In addition to the autoregressive and moving average parameters, ARIMA modeils can also
include a constant corresponding to the mean of the series when there are no autoregressive

parameters in the model and to the intercept otherwise. The constant can be included in the

ARIMA model by replacing W, with W =6 .

2.3.3 MODELLING

The Box-Jenkins methodology for ARIMA modelling of a time series consists of three stages,
1. Model identification.

2. Parameter estimation.

3. Diagnostic checking and mode! validation.

'f the model is found to be unacceptable after checking the diagnostics, the procedure is

repeated from stage 1.

Identification
The model identification step relies on the autocorrelation and partial autocorrelation
functions. The autocorrelation p, is the correlation between observations a given time k

apart and is defined by



Cov(¥ Y 1)
[var(y yar(r, )"

p,=Corr(Y Y ,.,) = for k=0, +1, +2, .. .

and a graph of the autocorrelations p, against the lag k is termed the autocorrelation

function (ACF). In practice, the sample autocorrelation is calculated as

S (¥ PNV - T)

yo= A=l for k=0, £1, £2,.......

Z(YI—Y)Z

where T is the length of the series. For a white noise series the autocorrelations o, are all

1
zero and in practice, for large T, 7, is approximately normally distributed as N(O,—T-), and an

approximate 95% confidence interval for an individual r, is thus given by

(_%/T%/Tj Alternatively, the approximation for the standard error of r, can be

1(T-k
further refined by to 7[ﬁj which is the method used in this study. The partial

autocorrelation is the correlation between Y, and Y, after the effect of the intervening

variables Y Y

t+12 0 t+k-1

has been removed and a graph of the partial autocorrelation against
the lag is known as the partial autocorrelation function (PACF). For a white noise series,

approximate 95% confidence intervals for the sample partial autocorrelations are given by
) y j
Y Yir)

For a stationary series the ACF decays rapidly, but in contrast for a series exhibiting trend
and therefore requiring differencing, the ACF decays slowly with increasing lag. For a series
exhibiting a seasonal trend, and therefore requiring seasonal differencing, the
autocorrelations at lags which are multiples of the seasonal periodicity, decay slowly. It is
clearly possible to use these observations to difference a given series until the resultant
series is stationary. It should be noted, however, that not all series can be transformed to

stationarity using differencing and that this is a major shortcoming of the ARIMA models.



The values of p, q, P and Q can be determined from the pattern of the ACF and PACF of the
differenced series. Characteristic features of an MA(q) model are an ACF that cuts off at lag
q, and a slowly decaying PACF. An AR(p) model has a slowly decaying ACF and a PACF
which cuts off after lag p. Seasonal models are more difficult to identify and examples of the
ACF and PACF for a range of such models are given in Box and Jenkins (1970, pp 329-333).
In particular, it should be emphasised that the sample ACF and PACF are frequently difficult

to interpret because they are only estimates of the population ACF and PACF.

Estimation

Once a suitable model has been identified, estimates of the parameters need to be obtained.

For this purpose, the assumption that the error terms, Z,, t = 1,...T, are independently-and

normally distributed as N(O,a_f), is introduced and the parameters are estimated by

maximising the likelihood function or equivalently its logarithm
T T , I& .,
_EIOgZH_EmG: —-2—22, /o,
it should be noted that this maximisation is not straight forward (see Box anci Jénkins, 1970
pp 269-284). Another efficient option of deriving parameter estimates is to place the ARIMA
model in state space form and this will be discussed later. Other methods of obtaining
estimates of the parameters, which require less computation, include minimising the
conditional or the unconditional least squares functions, but these are rarely used today

(Cryer, 1986).

Diagnostics
Various diagnostics are available for checking that the model provides a good fit to the data.

In particular, the residuals

e=Y -Y t=1, .. T

ne=1
should be random and a graph of the residuals against time will highlight any trends or

outliers which are not accounted for in the model. In addition, the ACF is a useful tool for

10



examining residuals. In particular, if the residual series is white noise, 95% confidence

intervals for the individual sample autocorrelations r, are given by (— %/7, %j

However, it should be noted that when considering k autocorrelations for a white noise series,

the probability of concluding that at least one autocorrelation is significantly different from
zero at the 5% level, is 1-0.95* . Thus a more satisfactory test for white noise is the
portmanteau test of Lung, Box and Pierce which tests the hypothesis that the first k
autocorrelations are zero using the test statistic

0 = T(T+2)ie,2 /(T ~1)

t=1
For large T under the null hypothesis of white noise, the statistic Q' is approximately chi-

squared with k-p-g-P-Q degrees of freedom (Cryer, 1986).

Parameters of the model that are not significantly different from zero are identified using
tests based on the appropriate t-ratio. By successively excluding parameters for which the
absolute t ratio is smallest from the model, an appropriate model can be derived. It should be
noted however that a hierarchy is retained in that in an ARIMA(p.d,q) model all AR
parameters of order less than or equal to p and all MA parameters of order less than or equal

to g are necessarily present in the model.

Very often a number of models may be deemed appropriate and it then becomes necessary
to compare these models. Two criteria in particular have been developed for.this purpose,
namely Akaike’s Information Criterion (AIC) and Schwartz’s Bayesian Criterion (SBC) These
criteria penalise the likelihood function by the number of parameters in the model, thus
favouring parsimonious models, and are defined as

AIC = -2 (log likelihood) + 2 (numbe_r of parameters)

SBC = -2 (log likelihood) + (number of parameters) x log (number of observations).

In both cases models which minimise these criteria are sought.

11



One possible systematic approach to model selection is to fit an over parameterised model,
for example of the form ARIMA(2,d,.2)x(2,D,2),,, to the series and to drop parameter

estimates not significantly different from zero from the model. This process is repeated for all
possible models and the associated AIC and SBC statistics compared. In addition, the ACF
and PACF of the stationary series must be examined to ensure that the final mode! chosen is

appropriate.

2.3.4 FORECASTING -

The forecast k steps ahead of time T for an ARMA(p, q) model is given, quite simply, by

A N N N

YT+k|T :¢1Y7+k-ur +¢2 YT+k—2|T+ ---------- +¢PYT+k—p!T +ZT+k_912T+k—1—622T+k—2_'"_9 ZT+k—q'

q

In practise the values of ¢,,..¢, and 6,,.6, are unknown and thus estimates from the

n

modeliing process are substituted into the above equation. For t less than T, ¥, is

replaced with the actual value at time t and the terms Z,,Z, ,,... are replaced with the

n

corresponding residuals ¥ ~Y, ., ¥, =Y _, , . . respectively. Fort greater than T, Z,

is taken to be zero since Z,,t=1,....T, is a white noise process.

Similar considerations apply for an ARIMA(p,d,q)x(P,D,Q),, process. For example, the
model ARIMA(1,1,1)x(1,1,1) ,, written as
W,=¢]W,_1+(D1W,_12+Z,—0121_1—®1Zr_12—¢](blWI_]3+491@]Z,_13

or equivalently as

[(Y:'_YH) _(YI—IZ—Y!-B)] :¢1[(Y1—1—Y1—2) - (Yr—n‘Yr-M)]+CD1[(Y1—12—Y:—13) —(Y,_24—Y,_25)]

+Zt_9121—1—®lzl—12_¢]q)1[(Y1—13_Y1—14)_(Yt—ZS_YI—ZG)] +91®1Zx-13

can be expressed as

12



Y,= (1 +¢1)Yr~1_¢1Yr—2+(1 +®1)(Y1—12—Yr—13) _¢1d)1(Yr—13_Yt—l4_Yt—25+Yr-26)
_¢1(Y1—13_Y1—14) —q)l(Yt—24—Yr-25) +Zt_0121—1_®121—12+61®IZt—13'

Then the forecast k steps ahead of time T is calculated using the equation

”~ ~ fa)

YT+k|T= (1 +¢1)YT-1+k|T —¢1YT—2+I(|T +(1+CDI)(YT—12+I(|T —YT—13+k|T)

~

_¢ICDI(YT—13+k|T —YT—14+k|T —YT-25+k|T +YT—26+k|T) _¢1(YT-13+k;T -y T—14+k|T)

n

D, (Y1 spurr =Y roasor) 2 rak=OZ 10— 0,21 15, +0,0, 21 15,

7

where, for t less than T, Y, is replaced with the actual value at time t, the Z,,Z,_,,... are

a

replaced with the residuals ¥ ~Y, ,, ¥, =Y, ,+_,,... and for t greater thanT, Z, is

taken to be zero.

A

Prediction limits for the forecast Y., . are approximated by

”

) . iz(l_g)./Var(eﬂk )
2

where 1 - « is the required confidence level and z is the critical value

a

(1-;)

(Vandaele, 1983).

2.3.5 INTERVENTION ANALYSIS

There are often factors which cause a sudden change in the structure of a time series and

intervention analysis allows these changes to be incorporated into a forecasting model.

There are various types of intervention that can occur in a time series, but only two are

considered in this study.

() A single event intervention at time 7, is modelled by a pulse indicator as

/= 0 for 1%t

t

1 for 1=t,

13



(i) An intervention at time #, which results in a permanent change in the level of the time

series is modelied by a step indicator of the form

/- 0 for t<tI.

1

1 for 121,

The intervention events frequently alter the ACF and PACF, making it difficult to identify the

underlying ARIMA model. Thus for a stationary, non-seasonal time series, the model

6(B
¢(B)Y ,= 6(B)Z, which can be expressed as ¥ = %Z“ is initially identified using the

' 6(B
time series prior to the intervention. Thereafter the model Y= AI,+—QZ where A is a

¢(B) "
constant and the indicator / ., represents the intervention event, is fitted to the complete

series (Deadman and Pyle, 1989).

14



2.4 STATE SPACE MODELS

241 INTRODUCTION

State space models were originally introduced by Kalman in 1960, and used by control
engineers in aerospace related applications. They were adapted with great success in 1976
by Harrison and Stevens (1976) to model time series. An excellent introduction to the topic is

given by Janaceck and Swiﬁ (1993), while Harvey (1989) provides a more in-depth analysis.

Once a problem is formulated in state space form, the Kalman filter can be invoked to derive
optimal estimates of the current state of the system and to calculate forecasts. A further
refinement of this approach is the calculation of maximum likelihood estimates of the
unknown parameters either by direct maximisation or by using the EM algorithm. With a

minor adjustment, intervention events can be incorporated into the Kalman filtering process.

24,2 THE STATE SPACE FORM

The state space model is defined using two equations known as the observation and the state

equations.’ The observation equations relate the observed univariate time series !, to an
unknown d-dimensional vector &, termed the state vector, as

Y=ha+e, t=1,..T
where £, is a given d-dimensional vector and the error terms ¢, are independent and satisfy

£~ N(0,0.:"). The state equations in turn relate the unknown state vector @, to its
previous values according to

a=0 a, +17, t=1,..T
where @ is a d x d transition matrix and the d-dimensional error vectors, 7,, are
independent and satisfy 7,~ N(0,2). The two error terms ¢, and 7, are assumed to be

independent and in order to initiate the model, it is usual to take a,~ N(1,C,), for specific

values of 2 and C,. In the present study, the terms 4, and @, in the observation and state

15



equations are assumed to be time invariant and are thus referred to as h and ®

respectively.

2.4.3 THE KALMAN FILTER

Once a time series model has been. formulated in state space form, the Kalman filter
provides a method for calculating the minimum mean square estimate of «,, and hence an
estimate for ¥',,_,, where the parameters aj, Z, p and C are taken as known . This can

be done either by filtering, where the parameters are estimated using only the observations
available up to the time point t, or by smoothing recursions using the complete set of

observations in the estimation process.

Filtering
An outline of the derivation of the Kalman filter is presented here following Meinhold and

Singpurwalla (1983). Let

ay =E@[t,...Y,)

Vo= EQ IV, Y,

ne-17-"
Copo= E{la~apNa~au) Y, ... Y, .}
C=E{(a~aNa-a) Y, .Y

and e =Y -Y

t t t-1-

The Kalman filter prediction equations prior to observing Y, , are given by

N

E(a Y, Y, )= Ay = Oa,

16



and Var(a,lV,,.. ¥, )=C, ,=®C, & +%.

Once the observation Y, becomes available the Kalman filter updating equations can be

applied. To derive these, the following well known result from multivariate statistics is used

(see Anderson, 1958, pp. 28-29).

Result:Let X and X, have a bivariate normal distribution such that

X! M, Z” le
{ijN[LQHEN S, | 2.7.1)

Then X | X =x,~ N(u+Z, 20 (x,— )2, -Z,2.%,,) (@72
and XX =x,~ N(u+Z, Zl_ll(xl—lul)’EZZ—EZI21_11212) (2.7.3)
Thus for e,=Y Y, :Y,—}_ITQZ)&,_1

=h'a+e~h"®a,

it follows that e, |a,.Y,,..Y _~ N(h' (a,~Pa, ), 0)

and hence from (2.7.1) and (2.7.3) that

N C . | h
{aljlpjl, ...... *‘Yl—l~ N al[/-] tjr-1 Cl.t—l
€, 0

5 T 2 T
h Cl}:—l O—c +h C[ll—lh
It further foliows from (2.7.1) and (2.7.2) that
Y _ | N ~ e, erl—lhhTCrfr—l
at|e1 2 1>"Y1_allYla"Yl~ N(atp—l +(" m~1h_7ct|r—] - )
g I

where f, =0 +h"C,,_ h isthe error variance.

17



Thus the Kalman filter method can be su_mmarised as follows.

N Al

The prediction equations : a,.,=da,,
Cu=®C,_ &7 +%

The updating equations : f.=hC, h+o/

CI :Cm—l _Ctlr—lhhTCm—l/f '

a=a,., +Cru—1h(Y:-hT Qo ) f,

The one step ahead error : e=Y-ha,.,

BOX 2.4.1 : Kalman filter equations

Kalman smoothing

The Kalman smoothing or backward recursions extend the Kalman filtering procedure by

making use of all the data available at time T to estimate the state vector «,. After the

forward recursions given in Box 2.4.1 are calculated, the backward recursion equations given

in Box 2.4.2 below are applied. (Shumway and Stoffer, 1982)

78
/.

Starting with ~ Cr,_, = (I = Cpp Yo ,

N N
where Cr,r—liT = E[(ar_allf—l )(ax-l—a'—”"Z)Tp/l? """ YT]

:Cl C*T -1 +Cr* (CH—IJ!T - d)Cl )C‘T

-1

with C,'=C,®"C;}

t+lir

calculate fort=T-1,...1,

o~ ”~ A AN
*
Gur = a,+C, (ar+1|T_ (Dar)

Cur :C1+C1*(C1+1|T -C

Tt

)G

BOX 2.4.2 : Kalman backward recursions

The Kalman filtering and smoothing recursions clearly require starting estimates u and CO.

Janacek and Swift (1993) recommend taking # to be 0 and assume little is known about the
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initial variance by taking C,=MI, for some large number A and the identity matrix / . The

model parameters #and ® are assumed to be known and thus do not need to be estimated.

2.4.4 MAXIMUM LIKELIHOOD

In implementing the Kaiman filter process, suitable values for the unknown pafameters z
and 0'5 need to be set, but this is rather subjective. A more satisfactory approach is to

estimate the parameters by the method of maximum likelihood. There are two methods of
obtaining such estimates, the one involving direct maximisation of the likelihood and the

other the EM algorithm. The parameters u and C0 are usually fixed as discussed
previously, although it is possible to obtain a maximum likelihood estimate of u by
incorporating 4 into the likelihood function as an additional parameter and maximising the

likelihood directly.

Direct maximisation
The likelihood can be expressed as the product of the conditional probability density

functionsof Y, givenY, .Y,  as

T
Ll BN, Y ) =TT, ).
t=1 -

7
Thus, InL(cZ,2Y .Y, ¥, )= Inf(Y,I,.Y,. .Y )
=1

and since Y,[Y,,..... . Y, ~ N()A’”,_l,f,)

1 1 ! ;
nf(F oY) = =202z = —inf =¥ =7, ,)?,

2f,

, T l « 1 &
and  InL(cl, 2. Y, )= —Eln27[——2-21nf, —EZ(Y,-Y,,,_I)Z /1.
t=1 t=]
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' N
where the values of f,and ¥, , fort=1, ..T are calculated using the Kalman filter. The

effect of the starting parameters 4 and ’CO can be reduced by ignoring the first few

iterations of the Kalman filter in the calculation of the log likelihood function. Thus the

function

InL(c2, 3, Y, )=-— L nar-L Zlnf, Z(Y Y,|,,) /f,

1 d+1 t d+)
where d is the number of initial iterations ignored, can be maximised with respectto ¢ and

the elements of X using a non-linear optimisation routine.

The covariance matrices, namely C,, qu-l and the error variance f,, often converge

quickly to fixed, steady state values. In such cases, the speed of the Kalman filtering routine
can be improved by using the steady state values of these covariance\ matrices. The
efficiency of the routine, when maximising the likelihood function directly, can be improved
further by concentrating out a parameter. This only applies to structural models which are

introduced later in this chapter and the approach will be discussed there.

The EM algorithm

Shumway and Stoffer (1982) 'developed an alternative method of maximising the likelihood
function by invoking the EM algorithm. The algorithm applies forward and béckward Kalman
filter recursions on the data successively until the change in the likelihood function is small.
EM is an acronym for Expectation-Maximisation and describes the procedure of first
calculating the expected values of a complete data likelihood function conditional on the

observed data and then maximising that function.

The complete likelihood function of ,a|,..c;, Y,,..Y, is given by

Lo 2 Y =1 ) (@ e, )f (@)
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[T/ (@l D1/ ja)f (@),

where «a,,a,,..c., are regarded as unobserved or missing values and Y,,...Y, are
observed values. It follows from the observation equation that ¥ |a ~ N(h'a,0c’) and

from the state equation that &, |, ,~ N(Pca,_,Z), and a,~ N(u,C,) where u and C,

are held constant. Thus the probability distribution functions embedded in the likelihood

function can be written as follows :

1
flap= expl- (a1 Co” (ao=p)]

en’lc,|”

flafa, )= expl-(a-a, ) I (@, Da, )]
SRR

f¥ o) = ———expl-—= (7, H )],
O¢

(27[0' 52 )2

and the log likelihood function, with constants omitted from the equation, is given by

1 1
InL (c2,Z)V,,..Y,)= —Eln‘Co‘ —E(ao—y)fco" (@, 1)

T 1<
- 511’1|E‘ - EZ (a[—cba[_])T z—l (a/“(bar—l)
=1

T 1

T
~—lno. - Y -h"a ).
2 no 20_52 ;( ! ar)

The terms «,a,, .a, are unobserved and thus taking expectations of the above

expression with respect to the @ ,«,,...a, conditional on the vaiues ¥',,...Y , and using the

results of Appendix A1, gives
) 1 1 n ~
EllnLc (00,2, ¥ )] = = loglCo| = —1r{Ci (Cyp + (@ar = p)@ar = 1)}

T 1 _ U n AT T 7 AT

_Elnm' '—-2—”{2 I[Z (CziT T dur a“T) "‘Z(Cu-ur + ar—l\T)(DT]}
1=1 t=1

1 O T noooaT ; T B W T .

A [D2(Copoip +aur @) + DY (Cyr + @iy @i )T )
t=]

t=1
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T ) 1 < Y
-—Elnag“— 20,2 ;[(Y,—hr Qur) +hTC1|Th]'

The fﬁnction EllnL.(c},ZY,,..Y ;)] is maximised by setting the derivatives with respect

to ai and T to zero, letting u = dou‘ and solving for oﬁ and I . The resultant estimates

are given below and more details are provided in Appendix A.2.

n T A S T T . N A T T T N Ia) T T
r=7" [Z (C”T + O Aur) —Z(C,,,_”T +ar &) — (DZ (C,v,_“T +Qur Qi)
t=1 =1

t=1

T . " T
+ (DZ (Co prar iy )]

=1

B T n
and o] =T Y [(¥Y,~h" ay)’ +h"C,h].

=1

Box 2.4.3 : Optimal estimates for © and o

Note that Kalman smoothing results are used in the estimation of the above parameters and
that the standard error estimates for oi and ¥ can be calculated using various methods

such as the Louis Method (Tanner, 1993). Overall therefore the EM algorithm can be

summarised in the following steps:

1. Adopt sensible initial values for o> and T .

2. Use the Kalman filter recursions given in Box 2.4.1, fort = 1, ...T, and then use the
‘backward recursions given in Box 2.4.2 fort= T, T-1, ...1 to calculate the log likelihood

as

T-d 1< 1 < )
5 ln27[—5Zlnfr—_Z(Yr_Ym-])z/f{'

t=d+] 2 t=d+1

InL(c}, 2, Y,)=~

3. Calculate estimates for o> and I as in Box 2.4.3.

4. Repeat steps 2 and 3 until satisfactory convergence of the algorithm is attained.

BOX 2.4.4 : EM algorithm
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The main advantages of using the EM algorithm as opposed to an optimising routine are that
derivatives need not be calcu_lated and the likelihood function is guaranteed to increase with
every iteration of the algorithm. However, the EM algorithm is notoriously slow to converge |
(Shumway and Stoffer, 1982). One possible approach is to use the EM algorithm to estimate
starting values for the unknown parameters and then to refine these estimates using a

discrete optimisation routine.

2.4.5 FORECASTING

The one-step-ahead forecast is calculated by direct substitution in the observation equation

as

' ) T
Yiap=h ar, =h ®a;,

and by repeated substitution, the forecast k steps ahead of time T is given by

n

A
Tk
YT+k;T“h O a;.

Confidence limits for these forecasts are derived using the one-step-ahead prediction error

variance,

= E[(h (a-ay,,)+€)’]

=h"C,,_h+0] since ¢, is independent of A" (a,~,,_,) .

=W (®C, D" +)h+0

and more generally
i=]
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The 100(1 — « )% confidence limits for the forecast ¥ r+xy @re thus approximated by

[

-3

2

i=1

A k . v
Yotz \/hf[cbch(@k)’+Z<I>""2<<D“>’]h+of

where z _ is the critical value for the N(0,1) distribution.
a-3)

2.4.6 INTERVENTION ANALYSIS

The state space form can easily be adapted to model intervention events by including
appropriate indicator terms in the model. In particular, as for ARIMA models, a single event
intervention j at time 7, for j = 1,...,J where J is the number of intervention events, is

modelled by a pulse indicator as

0 for 1=,

t,j

1 for t=t,
and an intervention at time #, which results in a permanent change in the level of the time

‘series is modelled by a step indicator of the form

;- 0 for 1<t

L)

1 for 12t

The observation equation is now written as

J
1.7
Y=ha+e+) 1,4,

J=1

where /lj is a constant associated with the indicator variable.

Q, h
j~] ]1,1

Letting @’ = . |and b’ =| fort=1,...T,
;“_/ ]I,J
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the observation equation becomes
Y=h"a +e, (2.8)

and the state equation can be written as

AL A

2']

. 2 0
where A = , Lis the identity matrix and var(%’} =[ 0} . The equations (2.8)

0
)'J
and (2.9) describe a state space model which can be fitted to the data as described in the

previous section using Kalman fitering and maximum likelihood estimates for the

parameters 6> , £ and 4 .

2.4.7 STRUCTURAL MODELS

Structural models constitute a specific class of state space models in which the observations
are modelled as the sum of separate components such as trend and seasonality. Some

examples of structural models relevant to the present study are given below.

Random walk plus noise

This model, also known as the steady state model, is one of the simplest state space models.

The observation equation is given by

Y =a+e,

where «, folloWs arandom walk and &,~ N (0, af) . Thus the state equation is given by
az=a, +n,

where 77,~ N(O,cr,f). Note that in this case the terms 4, @ and ¥ in the observation and

state equations are 1, 1 and 05 respectively,
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Local linear trend model

This model is described by the observation equation
Y =u,+e,
together with the state equations
M=t B 1,
ﬂ1:ﬂ1—1+g1
where 3, rep.resents the slope at time t, &,~ N(0,62), 7,~ N(0,07) and ¢,~ N(0,02).

These equations can be expressed more succinctly in state space form as

Y = 0)(; j ‘e,
()0 G2
l /81 0 1 /81—1 gl

Basic structural models
These models are examples of structural models which contain trend, seasonal and irregular
components and are thus appropriate for the monthly time series used in the present study.

The basic structural model (BSM) can be represented by the set of equations

Y =u+y +e,
1u1:/u1—1+ﬂ1—]+771
ﬂ1=ﬁ1—1+g1
s-1
Y& _Z}/r-ﬂ_wr
Jj=1
where 4, is the local linear trend, f3, is the slope, y, is the seasonal component and the
terms "¢,, n,, ¢, and @, are mutually uncorrelated, irregular components such that
e~ N(0,06%), n,~ N(0,0}) . ¢~ N(0,02) and w,~ N(0,02). The random terms 7,

¢, and w, allow u,, B, and y, respectively to evolve over time. Note that for the
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s-1

seasonal components, E(Zy ,_).) = 0, where s is the number of seasons. Thus a monthly

j=0

time series model can be expressed in state space form as follows

t

H,
B
Vi
=
Vi
Vis
a{:_ YViea | =
Vs
Y6
Vi-r
Vi-s
Y i-o
Y10

o
o

oo oo —~ o oo oo b oo

O O O © O O O © O O O O =
O O O O O O O O O O O = =
O O O O O O O O o ~—

O O O O O O O O = O
OOOOOOO.HOO

S O O O O O = O O O
OOOOO'—‘OOOO.

O O O =~ O O O O o o

o O - O O O O o o O

Y=1 01 0 000 0O0O0O0 0 0

[
—
|
_
L o o

O = O O O O O O O o

H,

B.

I

Vi
Vi
Vi3
},1—4
Yi-s
V-6
V-1
Vs
Vi
Y 1-10

|
—_

— O O O O O O O O O

+&

|
i

O O O O O O O O o O

Hi

B
Vi
V-2
Vi
V-4

Vs

Vs
Yir
Yis
Vio
Y 10

Vi-n

w3

o 0o o0 o o0 o o o o &

The seasonal component of the BSM can also be modelied using trigonometric terms in the

|

model. The seasonal effect at time tis given by y = Z}/ﬂ where
7=l

(SRS

i
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( 5277 sinzm\
CosS—— - -
(}/ ﬂ] B } S S }/ j’_l}*‘[a)ﬂ}
Y | 2 23 N ) \@
\-Sll’l—' COS—')
A

s . S
forj =1, , LEJ where y , is introduced as an artefact to generate y , and [EJ

) *
denotes defined as the integer part of 5 The white noise disturbances @ , and @, allow
the seasonality to evolve over time and are assumed to be uncorreiated and to follow a

- N » . » S . N
normal distribution. If s is even, then the sine term with j = 5 is zero, and thus the number of
trigonometric parametersis s - 1.

Because the BSM with trigonometric terms for monthly data, i.e. for s=12, is very

cumbersome to write out in full, the model for quarterly data represented in state space form

is given below. Thus

H,
B,
Y=(01 01 0 1)y,|+e
et
}/21
1 0 0

; “llo1 o 0o 0 ; SRR
! 0 0 cos(zj sin[z) 0 - o
and a=\7,|= 2 2 Vi | +| Oy
Y 0 0 —sin(zj COS(ZEJ 0 71*:—1 w;
}/7, 2 2 72 1 o
2 0 0 0 0o -7 u

Concentrating out a parameter

The computation of the parameter estimates by maximising the likelihood directly can be
made more computationally efficient when applied to the structural model, and the BSM in
particular, by “concen{rating“ out a parameter, resulting in one less parameter being

estimated. This is done by selecting one of the noise variances as a scaling variance, for
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example take 6. =0 . The optimal estimate of o is derived by differentiating the

likelihood function with respectto ¢ " and setting the result equal to zero to give

| o
'2:___ 13/ .
ot =gg 2l

Substituting this result back into the likelihood function results in

2
Ino -,

R 1 & T-d
InLo(07, 5, ¥;) =5 Dlnf, -

r1=d+] 2
which is known as the concentrated likelihood function. This function is then maximised with

respect to the unknown parameters ¢ ,’, o, and o,’ . using the Kalman filtering

equations as before, but scaling o,”, o.’, 6,°, C,, C,,, and f, by o~ and fixing

>

the scaling variance to 1 (Janaceck and Swift, 1993; Jones, 1993).
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2.5 RELATIONSHIPS BETWEEN METHODS

There are various cases in which exponential smoothing and ARIMA models and ARIMA and

state space models are found to be equivalent. Examples of such cases are discussed below.

2.5.1 EXPONENTIAL SMOOTHING AND ARIMA MODELS

The simple exponential smoothing method has the same updating equations and forecasting
functions as ARIMA(0,1,1) models. Similarly exponential smoothing with a trend can be
shown to be equivalent to an ARIMA(0,2,2) model. Further details of this are given in

Appendix A.3. For monthly seasonality, the ARIMA model equivalent to the additive Holt-
Winters exponential smoothing method is given by (1- B)(1- B'*)Y ,=6,,(B)Z,, where
6|, is a moving average parameter, but this is so complex that it would never be identified in

practice. Details on this relationship are proved in Box and Jenkins (1976). There is no
ARIMA model that is equivalent to the muitiplicative Holt-Winters method. However it can be
shown that for certain cases, by imposing non-linear restrictions on the coefficients of the
ARIMA model, the same forecast functions but not the same updating equations as the Holt-

Winters method are obtained (Abraham and Ledolter, 1986).

2.5.2 ARIMA MODELS IN GENERAL STATE SPACE FORM

It can be shown that all ARMA models can be placed in the state space form and thus
‘maximum likelihood estimates of the parameters are easily calculated. Letting

d = max(p, q+1), the model ARMA(p,q) can be expressed in state space as

Y=(00 ... O)a,
¢, 1 0 ]
¢, 0 0 0,
a= |t % |n,
g, 000 0 6,
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where ¢ = 0 for all i > p and 9}.: 0 forallj>qand{n,}is a scalar white noise sequence

which satisfies 7,= N(0,07) fort=1,...T (Abraham and Ledolter, 1986).

BSM and MA(q) models

The random walk plus noise model is equivalent to an ARIMA(0,1,1) model where the
moving average parameter @ is constrained as —1< 8 <0 and the linear trend mode! is
equivalent to an ARIMA(D,2,2) model, with various restrictions placed on the moving average
parameters 8, and 6, (Abraham »and Ledolter, 1986; Janacek and Swift, 1993). From this
it can thus be deduced that the simple exponential smoothing method has the same updating
functions and forecasting equations as the structural random walk plus noise model and that
the exponential smoothing method with a trend is equiyalent to the linear trend model.

Furthermore the BSM with dummy seasonal components is equivalent to the

ARIMA(0,1,1)x(0,1,1) ,, model when the seasonal moving average parameter is taken as

@1: —1 and the noise variances O'Z, and 0'; are exactly zero (Janacek and Swift, 1993).
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3.APPLICATIONS

3.1. TIME SERIES

The time ‘series introduced in the present study involve the monthly electricity consumption,
measured in Giga Watt hours (GWH), for selected municipalities in Kwa-_Zulu Natal, between
the years 1980 and 1995. The complete data sets are given in Appendix B. To maintain
client confidentiality, the municipalities are not identified but are simply referred to as
Municipalities A, B, C and D. All individual series studied exhibited a trend and multiplicative
seasonality and specific features of the data are discussed below. It should be noted that the
last twelve months of each series was withheld from the modelling process, and used as a

test set for assessing the forecasting results.

3.1.1. MUNICIPALITY A

The monthly electricity consumption between 1980 and 1995 of Municipality A is exhibited as
a time series plot in Figure 3. 1. 1. Prior to January 1990, monthly readings were taken
manually on a working day close to the 24th day of the month. From January 1990 onwards,
the meter was read electronically at midnight on the last day of each month. The manual
meter reading method resulted in a variable number of hours of electricity consumption
recorded within each month. A trading day adjustment was considered, but, since the dates
and times at which the meters were read prior to 1990 were unknown, this was not
implemented. Thus the raw data was used in all subsequent analyses and cognisance was
taken 6f the fact that the nature of the series might have changed after the electronic

metering system was installed.
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Figure 3. 1. 1. : Time series of monthly electricity consumption for Municipality A
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3.1.2. MUNICIPALITY B

The monthly electricity consumption of this municipality between January 1980 and

December 1995 is exhibited as a time series plot in Figure 3. 1. 2. It should be noted that an
electronic meter reading system was installed in January 1990, and that no trading day

adjustments were introduced to accommodate the irreguiar number of days within the billing

months prior to this when analysing the data.
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Figure 3. 1. 2.: Time series of monthly electricity consumption for Municipality B
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3.1.3. MUNICIPALITY C

A time series plot of the monthly electricity consumption of Munfcipality C is shown in
Figure 3.1.3. The municipality imposed water restrictions on their customers between
January 1983 and March 1984 and again between August 1993 and January 1994 and in
addition there was a long billing month of 40 days in July 1991 when the meter reading
system changed from manual to electronic. These features are shown in Figure 3. 1. 3.
Furthermore, a large mine just outside the municipality.closed down permanently in August

1993 and it was thought that its satellite industries within the municipality would consequently

consume less electricity.
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Figure 3. 1. 3. : Time series of monthly electricity consumption for Municipality C
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No trading day adjustments were invoked in subsequent analyses. The effect of the water

restrictions, the long billing month and the mine closure were investigated using intervention
techniques.
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3.1.4. MUNICIPALITY D

A time series plot of the monthly electricity consumption of Municipality D is given in
Figure 3.1.4. A large factory has operated in the municipality since 1883 and at present
accounts for approximately half of the electricity conSumed. A time series plot of the
electricity consumption for this factory is included in Figure 3.1.4 an& the actual data is given

in Appendix B.

it is clear from Figure 3.1.4 that the electricity consumption of the factory is very erratic. In
particular the factory started production in July 1983, but only produced on demand. This
resuited in wild fluctuations in electricity consumption and as a consequence Eskom
introduced a tariff incentive scheme in March 1988 to encourage a more consistent
consumption pattern. The scheme was effective but in May 1990 the market for the factory’s
products collapsed and it closed. The plant was sold, adapted to a different manufacturing
process and production from the new plant started in June 1992 and has been reasonably

stable since then. The monthly electricity consumption for the factory exhibits no trend or

seasonality.
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3.2. EXPONENTIAL SMOOTHING

All the time series studied here exhibit trend and multiplicative seasonality, and the Holt-
Winters method of smoothing is therefore appropriate. The results of applying this method for
Municipality A are presented in detail below and those for the other municipalities, which are

similar, are summarised thereafter.

The Holt-Winters procedure was implemented using the programming language Gauss in
order to introduce a flexibility into the analyses which is not available in packages such as

Statistica, SAS and Forecast Pro.

3.2.1. MUNICIPALITY A

The time series of monthly electricity consumption for Municipality A between 1980 and 1994
was regarded as a complete series and the twelve observations for 1995 were used as a test

set for evaluating forecasts.

Three different sets of initial values for L, T, and SJ. j=1,...12, based on the first years

data, the first two years data and all the data and calculated using equations (2.3), (2.4) and
(2.5) respectively, were used in the smoothing procedure. In each case estimates of the
smoothing parameters @ , ¥ and & ~ were obtained by minimising three different criteria.
These are the mean squared error criterion given in equation (2.1) and specified here by

| ~o
MSE. = —— Y-Y )
T—36 ,:237( 14 Ivl—l) '

the mean absolute percentage error defined in equation (2.2) and given by-

—Ym-l
Y, }

Y

t

MAPE. =
(T_ 36) r§7

and the mean squared error criterion for twelve months ahead specified in equation (2.6) and

calculated here as

] / ] ] T 12 A .
M.S.E.(12)-(T_3élﬁ 220 Y )

1=37 =1
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The adequacy of the various starting value options and estimation criteria was evaluated by
forecasting the observations of the test set, and using the criteria

T-12 A

1 2
M.S.E.(F) = (Ej DY)

t=T+1

T-12 YI—Y”T
and MAP.E.(F) = (1—2—];—)/—

t

to measure the accuracy of these forecasts.

The complete set of results are summarised in Table 3. 2. 1. It is interesting to observe that
in all cases the best forecasts, as gauged by the particular criterion minimised, were obtained
by using initial values based on all the data, but that this is not true when forecasts are
evaluated using the criteria M.S.E.(F) and M.A.P.E.(F) based on the test set. Comparisons
between the results for the different minimisation criteria can be made on the basis of
M.S.E.(F) and M.A.P.E.(F) and in particular it is clear that the results obtained by minimising
M.S.E. provide the best forecasts for the test set. Since both the M.S.E. and the M.A.P.E.
criteria measure the one-step-ahead forecast errors, minimising the M.S.E. is easier to
implement and the results are better than for minimising -M.A.P.E., only the minimisation

criteria M.S.E. and M.S.E.(12) will be used in further comparisons.
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Table 3. 2. 1. Summary of Results for Municipality A

0.129 | 0.026 | 0.261 17.243 8.220 2.26%

0.126 | 0.000 | 0.080 156.350 11.283 2.29%

(*) Some problems in convergence, due to the nature of the function, were encountered.

Overall, the estimates of the smoothing parameters «, ¥ and § varied slightly with choice
in initial values and in the criterion to be minimised. However, the seasonal parameter 5 is
much smaller when the initial values are calculated using all the data as opposed to the first
one or two years data. This low value is a result of initial seasonal estimates being good
approximations and, apart from the initial few years data, there being little change in the

seasonal pattern of the series. It is interesting to note that in all cases the estimate for ¥ was

close to zero, suggesting that changes in the trend are very slow.

" In addition, for the case in which the criterion M.S.E. is minimised, with initial values
calculated from the first years data, a check on the nature of the optimum was made by
plotting M.S.E. against values of each pair of parameters, with the third parameter fixed at its
optimum. The plots for the data of Municipality A are shown in Figure 3. 1. 5 and clearly

indicate a single global minimum for the criterion.
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Figure 3. 1. §. : Global minimum for M.S.E. criterion found by applying exponential
' smoothing for Municipality A
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For given values of the smoothing parameters, the time series Y, can be decomposed into

S

r ! t

the four component series of level, trend, seasonality and error, calculated as L, T
and e,, for t = 1,..T, respectively. The decomposition of the time series of monthly

electricity consumption for Municipality A is illustrated in Figure 3. 1. 8. for the optimal
parameter values ¢ = 0.195, ¥ =0.021 and § = 0.283 obtained by minimising the M.S.E.
criterion and using initial values based on the first years data. The residual series is shown in
Figure 3. 1. 7. The high residual value in January 1989 is due to an unusually long billing
month of 34 days and the low value associated with January 1990 coincides with the
installation of an electronic metering system which resulted in a short billing month.
Otherwise this error series appears to be random indicating that the Holt-Winters method has

captured the systematic variation of the original time series.

Figure 3. 1. 6. Municipality A : Decomposition of the time series
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Figure 3. 1. 7 Municipality A : Residual error for exponential smoothing
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In addition to analysing the full series, the sub-series between January 1990 and December
1994 was considered in isolation, in order to investigate whether or not the electronically

metered sub-series would result in better forecasts. However the sub-series was too short to

perform any meaningful analysis.

3.2.2. MUNICIPALITIES BAND C

The Holt-Winters exponential smoothing procedure was implemented for the time series of
monthly electricity consumption for Municipalities B and C in a manner similar to that of

Municipality A and the results are summarised in Tables 3. 2. 2. and 3. 2. 3. respectively.

Again a low parameter value ¢ was derived when calculating the initial values using the

whole series, indicating a stable seasonal pattern.
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Table 3. 2. 2. : Summary of results for Municipality B

[ EsTimaTES

0.003 | 0.444 1.165 0.429 2.88%

0.040 | 0.462 1.207 0.409 2.87%

0.003 | 0.000 1.154 1.118 4.43%

0.005 | 0472 | 1.421 0.407 2.82%

 MSE@2) [2yeas  ]0.188 |0.033 | 0.491 1.507 0.401 2.44%

A“data 0.219 [ 0.000 | 0.000 1372 | 1133 2.34%

Table 3. 2. 3. : Summary of results for Municipality C

'ERROR | START-UP |

MSE.

fAlidaa ~ [045 |0044 | 0010 0.230 0.220 4.85%

-t

1year 4 0.095 0.013 | 0.206 0.2986 0.146 3.39%

MSE(12) [2years | 0176 | 0034 | 0.216 0.326 0142 | 2.48%

-} Ali-data ]0.144 0.001 | 0.010 0.255 0.218 - 2.53%
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3.2.3. MUNICIPALITY D

As mentioned earlier, the large factory within the boundaries of Municipality D has a
dominating effect on the monthly electricity consumption in that municipality. As a
consecjuence, the full time series for Municipality D was split into two series, electricity
consumption excluding the factory and the electricity consumption of the factory itself and
each series was analysed separately. The series which exciudes the factory consumption
exhibits trend and seasonality, forecasts for it were obtained in the same way as those for
Municipalities A, B and C and the results are summarised in Table 3.2.4. The time series of
monthly electricity consumption for the factory exhibited no systematic trend or seasonality
and forecasts were therefore obtained by simple exponential smoothing. [n addition, two timé
series were analysed, the complete time series as well as only the new factory’s electricity
consuﬁ\ption from July 1992 to December 1994. The results are summarised in Table 3.2.5
and clearly using the complete time series'results in more accurate forecasts. Note that as a
result of the large fluctuations in the time series prior to July 1992, the minimisation criterion
M.S.E. is much larger when using the complete time series as opposed to using the time

series only between July 1992 and December 1994.

Table 3. 2. 4 : Summary of results for Municipality D excluding the factory

0,084 ] 0.008 | 0.529 7775 5.427 7.85%
0076 |0.203 | 0.542 1778 7.816 10.85%
0.120 | 0.023 | 0.000 1.822 8.761 11.22%
0.040 | 0.009 | 0.492 1.774 6.752 8.84%
Jo077 0115 | 0524 1.905 6.126 11.31%
0.007 |1.00 |0.306 1.748 11033 | 11.43%
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Table 3. 2. 5. : Summary of results for the factory

108.878 17.048

11.33%

6.139 17.990

11.86%

3.2.4.COMMENTS

The optimal method of calculating the initial values is not clear, although using the first years

data appears to give good results generally and is therefore the preferred option. The

optimisation criterion M.A P.E. was awkward to calculate and the results were poor compared

to the M.S.E. criterion. In addition, the optimisation criterion M.S_E. was simpler to calculate

than the criterion M.S.E.(12) and the results are better as measured by the forecasting

criteria M.S.E.(F) and M.A.P.E.(F). Thus the optimisation criterion M.S.E. is taken as the

most suitable option.
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3.4 ARIMA MODELS

ARIMA models were fitted to each of the time series in this study using the Box-Jenkins
approach and the resultant models were used to provide forecasts. The package SAS was

used for all the modelling processes.

3.4.1 MUNICIPALITY A

Piots of the ACF’s for Y, , the time series of monthly electricity consumption for Municipality
A, and the differenced time series VY, and VV .Y are given in Figure 3. 3. 1. It is clear
from these that first order and seasonal differencing are apprdpn‘ate and thus that the model
will be of type ARIMA(p,1,q)x(P,1,Q) ,, . The initial model fitted after studying the pattern of
the ACF and the PACF of the differenced series VV .Y, given in Figures 3. 3. 1 and 3. 3. 2
respectively, was an ARIMA(2,1,1)x(0,1,1) ,, model. However, the t ratios for testing whether
the parameters of this modeIAare zero, given in Table 3. 3. 1 beiow, suggested that the
parameter estimate for¢3 was unnecessary and thus that the model ARIMA(1 ,1,1)x(0,1,1) },

should be examined.

Table 3. 3. 1 Municipality A : Parameter estimates for the ARIMA (2,1,1)x(0,1,1) ,,
model

Parameter Estimate t ratio

6, 074794  8.41
c} 078942  11.37
¢, -0.16049  -1.37
¢, 0.05081  0.48

The associated results and diagnostics for the model ARIMA(1,1,1)x(O,1,1)I, are

summarised in Table 3. 3. 2. The t-ratios for the parameters are all greater than 1.96 and
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Figure 3. 3. 1 Municipality A: ACF'sof ¥, VY, and VV .Y,
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Figure 3. 3. 2 Municipality A : PACF of VV .7,

Partial Autocorrelations for  VV .Y
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thus the parameters are significantly different from zero at the 5% level of signiﬁcancé. It
should be noted that a high correlation between the parameter estimates for 6, and @, is an
indication that the mode!l could be over-parameterised, but the AIC statistic did not improve
by fitting models with fewer parameters. The ACF of the residuals given in Figure 3. 3. 3
together with the portmanteau test results suggest that the residuals are random and thus
that the model ARIMA(1,1,1)x(0,1,1),, is acceptable. The model adopted can thus be

summarised as

W= -021833W, ,+Z,~069143Z, ~07869Z, ,+054409Z,

14

where W =V V.Y, .
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Table 3. 3. 2 Municipality A : Results for fitting an ARIMA (1,1,1)x(0,1,1) , model

Parameter estimates using MLE : Parameter Estimate

t ratio
6, 0.69143 9.97
0, 0.78690 11.37
9, -0.21833 -2.35
The Portmanteau test for white noise : Lags Chi Square DF P-value
1-6 3.38 3 0.337
1-12 8.08 9 0526
1-18 13.87 15 0.536
1-24 16.95 21 0.714
1-30 18.54 27 0.886
Correlations of the Estimates :  Parameter 0, 0, ¢,
0, 1.000 0.049 0.607
Q, 0.049 1.000 -0.068
9, 0.607 -0.068 1.000
Model comparison statistics : AlIC =928.836 SBC =938.190
Test set forecasting results : M.S.E. (F) =6.795

M.A.P.E.(F) = 1.96%
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Figure 3. 3. 3. Municipality A : Residual error resuilting from fitting an

ARIMA(1,1,1)x(0,1,1),, model
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An alternative approach to identifying the most appropriate model to that described above is
to fit an over-parameterised model to the series and then to reduce it by successively
dropping parameters, until ail the parameters are significantly different from zero. Because
the values of p,q, P and Q rarely exceed 2, the model ARIMA(2,1,2)x(2,1,2) ,, was initially
fitted to the time series. Reducing the mode! until all the t-ratios in the model were significant
resulted in the model ARIMA(1,1,1)x(0,1,1),, which is consistent with the model selected

above.

The test set of the final twelve months electricity consumption was forecast using the model
ARIMA(1,1,1)x(0,1,1) ,, and the forecasting error was measured as before using

1) 12 R 2
'MS.E.(F) = (Ej D (Y-Y,.)

1=T+1

. [ 1 } T-12 YI_Y[:T
and MAPE.(F) = | — _
® =27

t
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where T=180, the length of the times series used in the modelling process. The results are

included in Table 3. 3. 2.

The sub-series of monthly electricity consumption of Municipality A, between January 1990
and December 1994, when the meters were read electronically, was considered separately
to ascertain whether or not this time series would result in more accurate forecasts. First
order and seasonal differencing were again appropriate and the ACF and PACF of the

resultant differenced series are presented in Figure 3. 3. 4 .

Figure 3. 3. 4 Municipality A : ACF and PACF of VV .Y, for the sub-series

corresponding to electronic metering
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Clearly, there are no significant autocorrelations or partial autocorrelations indicating that
either the differenced series is white noise or that the time series is too short to derive any
meaningful results. Overall it was therefore not deemed sensible to pursue modelling this

time series any further.

3.4.2 MUNICIPALITY B

The ACF’s of Y, the time series for monthly electricity consumption of Municipality B, and
of the differenced series V,Y,, and VV,Y given in Figure 3. 3. 5 clearly suggest a

model of the form ARIMA(p,0,q)x(P,1,Q) ,, . The PACF of the seasonally differenced series is

given in Figure 3. 3. 6. Various suitable models suggested by the ACF and PACF patterns
were investigated, but a model that satisfied all the diagnostic checks could not be found.

After considerable investigation, the' most suitable model was deemed to be
ARIMA(1,0,2)x(0,1,1) ,, . The ACF of the residual errors for this model given in Figure 3. 3. 7,

are acceptable but the results which are summarised in Table 3. 3. 3 clearly show that the

portmanteau test for white noise is not satisfactory. in addition, the high correlation between
the MA parameter estimates for 6, and 6, suggests that the model could well be over-
parameterised. The model ARIMA(0,0,0)x(0,1,1),, was also fitted to the time series but the
ACF of the associated residuals given in Figure 3. 3. 8 was clearly unsatisfactory. Another

alternative model considered was ARIMA(2,0,1)x(0,1,1),, but a correlation of -0.891

between the parameter estimates for ¢, and ¢, was deemed to be unacceptably high.
Fitting an over-parameterised model and systematically eliminating the parameters
according to the t-ratios resulted in the model ARIMA(1,0,2)x(0,1,1),, which is consistent

with the model deduced from the patterns of the ACF and PACF. Thus the model

W = 0933470 _+Z ,~105609Z, +034432Z, ,~0.64602Z _,+068226Z, 0222437, ,+035555

where W =V .Y, is taken to be the most appropriate model for the time series of monthly

electricity consumption for Municipality B.
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Figure 3. 3. 5 Municipality B: ACF'sof Y, V.Y, and VV Y,
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Figure 3. 3. 6 Municipality B : PACF of V,Y
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Figure 3. 3. 7 Municipality B : ACF of the residual errors when fitting an

ARIMA(1,0,2)x(0,1,1) ,, model.
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Figure 3. 3. 8 Municipality B : ACF of the residual errors when fitting an
ARIMA(0,0,0)x(0,1,1) ,, model
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Table 3. 3. 3 Municipality B : Results when fitting an ARIMA(1,0,2)x(0,1,1),, model

Parameter estimates using MLE : Parameter  Estimate t ratio
o 0.35555 2.88
6, 1.05609 13.57
8, -0.34432 -4.54
0, 0.64602 9.26
¢, 0.93347 23.34
The Portmanteau test for white noise : Lags Chi Square DF P-value
1-6 4.86 2 0.088
1-12 17.32 8 0.027
1-18 2599 14 0.026
1-24 3264 20 0.037
1-30 3911 26 0.048
Correlations of the Estimates :
Parameter § 6, 6, 0, 3
) 1.000 -0.011 0.008 0.022 -0.026
0, -0.011 1.000 -0.633 -0.014 0.342
492 0.008 -0.633 1.000 0.193 0.256
©, 0022 -0.014 0.193 1000 0.294
¢, -0.026 0.342 0.256 0.294 1.000
Model comparison statistics : AIC = 489.661 SBC = 505.281
Test Set Forecasting Results : M.S.E.(F) = 0.432 M.AP.E.(F)=272%
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The sub-series of electricity consumption for Municipality B which was measured
electronically from January 1990 onwards was modelled to ascertain if a more satisfactory
mode! could be obtained. The ACF in Figure 3. 3. 9 indicates only seasonal differencing of

the series is required. After examining the‘ ACF and PACF of the differenced
‘ series, various models including ARIMA(0,0,1)x(0,1,1),,, ARIMA(1,0,0)x(0,1,1),, and
ARIMA(0,0,0)x(0,1,1),, were fitted, and the model AR|MA(1,0,1)X(0,1,1)12 was found to be
the most appropriate. The associated results for this model, which are given in Table 3. 3. 5,
are more acceptable than for those for the best model derived when modelling the complete

time series. This is probably as a result of the time series being more regular once the

meters were read electronically.

The test set of observations was forecast using the ARIMA(1,0,2)x(0,1,1) ,, model derived

for the whole time series and then using the ARIMA(1,0,1)x(0,1,1),, mode! derived for the
shorter series and the results are compared in Table 3. 3. 4. It is interesting to note that
althbugh the model derived using the complete time series was poor, it still produced slightly
better forecasting results than when using the model derived using the shorter time series of

electronically metered electricity consumption.

Table 3. 3. 4 Municipality B : Comparison of forecast results using the whole time

series verses the sub-series corresponding to electronic metering

DATA MODEL M.APE.(F) | M.S.E.(F)
1980->1994 ARIMA(1,0,2)x(0,1,1) , 2.72% 0.432
1990->1994 ARIMA(1,0,1)x(0,1,1) ,, 3.01% 0.466
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Figure 3. 3. 9 Municipality B : The ACF and PACF for the sub-series corresponding to

electronic metering
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Table 3. 3. 5 Municipality B : Results when fitting an ARIMA(1,0,1)x(0,1,1),, model to

sub-series corresponding to electronic metering

Parameter estimates using MLE : Parameter Estimate t ratio
2 0.79055 5.13
0, 0.60940 2.73
9, 0.95859 9.64
The Portmanteau test for white noise : Lags Chi Square DF P-value
1-6 3.60 3 0.309
1-12 4.90 9 0.843
1-18 12.37 15 0.651
1-24 17.33 21 0.691
Correlations of the Estimates :  Parameter 0, 0, é,
0, 1.000 0.174 0.832
0, 0.174 1.000 0.353
o, 0.832 0.353 1.000
Model comparison statistics : AIC = 124.059 SBC = 129.672
Test set forecasting results : M.S.E.(F) = 0.466 MAP.E.(F)=3.01%
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3.4.3 MUNICIPALITY C

A number of events such as water restrictions are thought to have had an impact on the time
series of monthly electricity consumption for Municipality C. To assess the improvement in
the forecast when including these events in the model, the time series was modelled

excluding and then including the intervention events and the results compared.

The ACF's of the time series ¥, and of the difference time series V¥, and VV .Y ,
which are given in Figure 3. 3. 10, indicate a model of the form ARIMA(p,0,q)x(P,1,Q),, .

Identifying the characteristic patterns of the ACF and PACF, which are given in
Figure 3. 3. 11, is difficult as they have probably been distorted by intervention events. Thus
an over-parameterised model was fitted and parameters not signific,antly different from zero
were successively dropped from the model resulting in the model ARIMA(2,0,1)x(0,1,1) ,, .
Details of this models fit are given in Table 3. 3. 6 and the ACF of the residual error is shown
in F}gure 3.3.13.1In summary therefore the model represented by

W= 050133W,,+030844W, ,+Z ~056911Z ~089129Z,_,,-0.50724Z,_.+017095

where W =V .Y, , was adopted.

Table 3. 3. 6 Municipality C : Results for the ARIMA(2,0,1)x(0,1,1),, model

Parameter estimates using MLE : Parameter Estimaie t ratio

o 0.17095 9.74

6, 0.56911 4.02

@1 0.89129 9.48

¢, 0.50133 3.51

. 0.30844 3.94
Model comparison statistics : AIC = 246.095 SBC = 261.715
Test set forecasting results:  M.S.E.(F) = 0.165 M.AP.E. =3.79%
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Figure 3. 3. 10 Municipality C: ACF’'sof Y, V.Y and VV 7,
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Figure 3. 3. 11 Municipality C : PACF of V.Y,

Partial Autocorrelations
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The intervention events expected to have an impact on the electricity consumption for

Municipality C are summarised in Table 3. 3. 7. The two periods of water restrictions were

modelled as separate interventions because the severity of the restrictions differed.

Table 3. 3. 7 Municipality C : Summary of intervention events

INTERVENTION SERIES PARAMETER DESCRIPTION
1 { = Jan'83— > Mar'84 Water restrictions between January 198
he= {O all other months A and March 1984.
1 { = Jul'9l There was a jong billing month of 40 days i
I.= {O all other months A, July 1991 when the meter reading syster
changed from manual to electronic.
1 1 = Jan'80 — Jul'93 In August 1993 a large mine just outside th
lh= {O all other months A, municipality’s area of supply closed dow
permanently.
1 1= Aug'93 - Jan'94 Water restrictions between August 1989
Lo {0 all other months A, and January 1994,

63



A suitable ARIMA model was developed for the time series unaffected by any interventions,
i.e. for the sub-series from April 1984 to June 1991. The model ARIMA(1,0,0)x(1,1,0) ,
as identified from the ACF and PACF given in Figure 3.3.12 and the model
ARIMA(1,0,0x(2,1,0),, was identified by systematically reducing an over-parameterised
model. The results for fitting both models are summarised in Table 3. 3. 8 and clearly there is
very little difference, the former performing better according to the SBC statistic and the
latter model resulting in a smaller AIC statistic. The ARIMA(1,0,0)x(2,1,0),, model was taken
as the most suitable since the AIC statistic is more commonly used than the SBC statistic
Thus the model ARIMA(1,0,0)x(2,1,0),, was used in conjunction with the intervention events
specified earlier and the results are given in Figure 3. 3. 9. A disturbing feature is that the
parameter associated with the mine closure was estimated to be negative, but is expected to
be positive. Since this parameter is just significantly different from zero at the 5% level it was
therefore decided to remove it from the model. The final resuits are given in Table 3. 3. 9. A
noticeable probiem with the residual errors is highlighted by the portmanteau statistic which
indicates that the residual errors are not white noise, and this is illustrated in a plot of the

ACF of the residual error given in Figure 3. 3. 14. As a point of interest the model

ARIMA(1,0,0)x(1,1,0) ,, including interventions also resulted in similar problems and since no

other suitable model could be fitted, the model ARIMA(1,0,0)x(2,1,0),, including

interventions was taken as the best fitting model.

This model can be represented by

W =2 ,-012390W, ,—054892W, ,,~028705W _,,~0.06801W _, .—0.03556W,_,.+0.20702
0401361, +1037351,,~0436531

where W =V .Y .
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Figure 3. 3. 12 Municipality C : ACF of ¥, and V,Y and PACF of VY, resulting

from the time series unaffected by intervention events.
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Table 3. 3. 8 Municipality C : Comparison of Model Resuits fitted to the time series

unaffected by intervention events

ARIMA(1,0,0)x(1,1,0) |, ARIMA(1,0,0)x(2,1,0) ,,

Parameter Estimate t ratio Parameter Estimate t ratio
S 0.24502 9.52 ) 0.24760 12.32
é, -0.42400 -3.84 é, -0.46106 -4.37

o, -0.47064 -4.36 d, -0.59602 -4.94

® - -0.23774 -1.99

The Portmanteau test for white noise :

Lags ChiSquare DF P-value Lags ChiSquare DF P-value
1-6 4.56 4 0.335 1-6 5.76 3 0.124
112 16.08 10 0.097 1-12 14.94 9 0.093
1-18 20.68 16 0.191 1-18 18.00 15 0.263
1-24  31.94 22 0.078 1-24  23.81 21 0.303
Model comparison statistics :

AlC SBC AlC SBC

96.7852 103.6974 95.52057 104.7905

Figure 3. 3. 13 Municipality C : Residual errors when fitting an ARIMA(2,0,1)x(0,1,1) ,,
model to the time series unaffected by intervention events
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Table 3. 3. 9 Municipality C : Parameter estimates when fitting an

ARIMA(1,0,0)x(2,1,0),, model including Interventions

Parameter Estimate t ratio Parameter Estimate t ratio
o 0.50436 3.52 /1, -0.75120 -3.12
3 -0.16103  -2.04 A, 1.17877 2.61
D, -0.50672 -6.22 A, -0.30749 -2.09 |
d, -0.24856  -3.01 A, -0.42672 -4.03

Table 3. 3. 10 Municipality C : Results when fitting an ARIMA(1,0,0)x(2,1,0) ,, mode!

including intervention events

Parameter estimates using MLE :

Parameter Estimate t ratio Parameter Estimate t ratio
1) 0.20702 8.54 l] -0.40136 -2.19
¢, -012390  -158 A, 103735 233
D, -0.54892 -6.87 A, -0.43653 -4.09
@, -0.28705 -3.57

Portmanteau test for white noise :

Lags Chi Square DF P-value
1-6 2565 3 0.000
1-12 34.46 9 0.000
1-18 35.98 15 0.002
1-24 38.92 . 21 0.010
1-30 41.88 27 0.034
Model comparison statistics : AlC =272992 SBC = 294.860
" Test set forecasting results : M.S.E.(F) = 0.065 - MAPE. =213%

67



Figure 3. 3. 14 Municipality C : Residual errors resuiting from fitting an

ARIMA(1,0,0)x(2,1,0),, model including Interventions
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The ARIMA(2,0,1)x(0,1,1),, derived when ignoring intervention events and the model
ARIMA(1,0,0)x(2,1,0) ,, including intervention events were both evaluated by forecasting the

test set. The results of this are given in Table 3. 3. 11 and it can clearly be seen that the

incorporation of interventions improves the model.
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Table 3. 3. 11 Municipality C : Comparison of results

MODEL M.A.P.E.(F) M.S.E.(F)
(2,0,1)x(0,1,1) , 3.79% 0.165
(1,0,0)x(2,1,0),, + interventions 213% 0.065

3.4.4 MUNICIPALITY D

Oner large factory has a dominating effect on the monthly electricity cons{:mption for
Municipality D and thus two time series were modelled separately, one consisting of the
factory’s electricity consumption and the other the electricity consumption of the municipality
excluding the factory. Only the portion of the time series for the factory from June 1992
onwards, when a new production process was introduced, was used in the modelling process.
This time series, which consists of only 31 data points, is fairly shart. However it is

nonseasonal and the modelling results appear to be satisfactory.

Let X, represent the non-seasonal time series of monthly electricity consumption for the

factory. The ACF's of X, and VX, as well as the PACF of VX, are shown in

Figure 3. 3. 15. Clearly first differencing is enough to ensure that the series is stationary and
the mode! will be of type ARIMA(p, 1, Q). The most appropriate ARIMA model was identified

as the ARIMA(2,1,0) written as

¢ —

W= -035718W, ~043439W, ,+Z,

where W =V Y | and the results of the fitting process are summarised in Tabie 3. 3. 12.
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Figure 3. 3. 15 Factory : ACF’'s of X, and VX, and PACF of VX,
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Table 3. 3. 12 Factory : Results when fitting an ARMA(2,1,0) model -

Parameter estimates using MLE : Parameter Estimate t ratio
¢, -0.35718 -2.14
¢, -0.43439 -2.60
Model comparison statistics : AlC  =157.438 SBC =160.240
Portmanteau test for white noise 3 Lags Chi Square DF P-value
1-6 514 4 0.248
1-12 7.48 10 0.680
1-18 19.65 16 0.237
1-24 20.84 22 0.530

A model was also developed for the time series 1,, the monthly electricity consumption for
the Municipality D excluding the factory. The ACF'sof ¥, , V.Y, and VV Y, , given in

Figure 3. 3. 16, indicate that the model is seasonal and of the form ARIMA(p,0,)x(P,1,Q),, .

In fact the pattern of the ACF and the PACF of the differenced series given in
Figures 3.3.16 and 3. 3. 17 respectively, suggest that an appropriate model is
ARIMA(2,0,1)X(1,1,1)12. The results associated with fitting this model appear in
Table 3. 3. 14 and the fitted model can be written as

W ,= 070904, +029095W , ,+0.42901W_ ,~032448W . —012482W _,

-13

+Z,-075634Z,_,~099338Z, ,+0.75133Z,_,,

~12

where W =V .Y .

The test set for the time series of monthly electricity consumption for the factory and
Municipality D excluding the factory were forecast using the two models chosen and the

results are given in Table 3. 3. 13.
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Table 3. 3. 13 Factory and Municipality D excluding Factory : Forecasting errors

DATA M.A.P.E.(F) M.S.E.(F)
FACTORY : (2,1,0) 12.25% 17.60
MUNICIPALITY : (2,0,1)x(1,1,1) , 8.58% 5.20

Note that a plant fault at the factory in November 1995 caused a drop in consumption which

the forecast could not have predicted. As a consequence the forecasiing errors are large.
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Figure 3. 3. 16 Municipality D : ACF'sof Y,

Y
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Figure 3. 3. 17 Municipality D : PACF of V.Y,
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Table 3. 3. 14 Municipality D excluding the factory : Results when fitting an
ARIMA(2,0,1)x(1,1,1),, model

Parameter Estimates using MLE : Parameter Estimate t ratio
6, 0.75634 1261
G)1 0.99338 53.28
9, 0.70904 8.59
é, 0.29095 3.53
D, 0.42901. 5.40
Portmanteau test for white noise : Lags Chi Square DF  P-value
1-6 0.53 1 0.465
1-12 544 - 7 0.607
1-18 13.07 13 0.443
1-24 16.34 19 0.635
1-30 18.31 25 0.829
Model comparison statistics : AlIC = 578.016 SBC =593.635
Test set forecasting results : M.S.E.(F) =5.20 M.AP.E.(F) = 8.58%

74



3.4 STATE SPACE MODELS

Two basic structural models were fitted to each of the time series in this study, one with

dummy seasonal components and the other with trigonometric seasonal components. For
each model various approaches were taken to find optimal estimates of the state vector &,

t= 1,....,T. The simplest of these was to assume starting values of 4 = 0 and

i
|

=1000001, where I is the identity matrix, to fix the paraméters as 0'52 = 5,

[

c,=0;= aj = 0.1 and to apply the Kalman filtering equations to find a minimum mean

Na

square estimate of a,. The results of this method are denoted by KF® in the ensuing

tables. In a second approach, the starting values of ¢ =0 and C, =100 0001 were held

fixed and maximum likelihood estimates of the parameters o, o,, o’ and o, were
derived using the Kalman filter. Two different techniques for obtaining these estimates, the

one involving direct maximisation, and the other the EM algorithm were used and the results

of these methods are denoted by KF* and EM respectively in the later tables. A further

A

enhancement was the inclusion of a maximum likelihood estimate of a, and the results for

this are denoted by KF .

The procedures described above were implemented using programs written in the GAUSS
language. The GAUSS function OPTMUM was invoked in the direct maximisation.
calculations. This routine uses a convergence criterion based on the change of gradients,
where_as convergence within the EM algorithm was assumed when changes in the likelihood
function with each iteration were less than 0.0001. The first iteration of the Kalman Filter was

ignored in all calculations of the likelihood function.

“The fitted models were used to forecast the observations of the test set and the results were

compared using the criteria

-

1 T-12
M.S.E.(F) = (I—J 2 -Y.)

“ =T~
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and

" 3.44

Basic structural models with dummy and also with trigonometric seasonal components were
fitted to the time series of monthly electricity consumption for Municipality A and the resuits,

including estimates of the unknown parameters, are summarised in Table 3. 4. 1.

M.A.P.E.(F)

MUNICIPALITY A

F+l12

n

Y/_Yur

(B

Y

i

as defined previously.

Table 3. 4. 1 Municipality A : Results for BSMs fitted to the complete time series

" " . " M.S.E.(F) | M.A.P.E.{F)
~InL@)Y,,. .Y 0 2 2 2 2
@r,,..Yr) o] o, o; o}

BSM with dummy seasonality :
KF ™ 573.902 5.000 | 0.100 | 0.100 | 0.100 6.614 1.92%
KF® 546.693 ) 8.778 | 0.460 | 0.000 | 0.251 | 6.520 1.90%
KF® 546.693 03,2, u 8.778 | 0.460 | 0.000 | 0.251 6.520 1.90%
EM 546.793 ol 3 8.767 | 0.466 | 0.000 | 0.251 6.514 1.90%
BSM with trigonometric seasonality : :
KE® 581.760 5.000 | 0.100 | 0.100 | 0.100 11.376 2.54%
KE @ 556.085 ol Y 8.729 | 0.413 | 0.000 | 0.008 6.723 1.81%
KE® 556.085 o3, u 8.729 | 0.413 | 0.000 | 0.008 | 6.723 1.81%
EM 556.612 c2.% 8.360 | 0.427 0.000 | 0.013 6.849 1.84%

The likelihood function converged more quickly when maximising directly as opposed to
using the EM algorithm and in general provided smaller values of the likelihood function

indicating that better estimat‘es of the unknown parameters were derived. The value of M

had very little effect on the Kalman filtering results unless it was taken to be extremely large,

thus KF ¥ and KF ¥ give identical results throughout this study.
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Comparing the results of the BSM with dummy and trigonometric seasonal components,
where the parameters were derived using the method of direct maximisation, the former
model was found to be a better fit according to the criteria M.S.E.(F) whereas the latter
model performed better when using the criteria M.A.P.E.(F). Obviously this indicates that
there is not much difference between the models, and either would be acceptable. For the
purposes of this study, the former model which is simpler was adopted. From the final

estimate of the state vector derived using this model, the linear trend is given by

4,=103888, the slope is .= 0.284 and the seasonal components are given by

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-11.095 | -0.011 | 3.858 | 0.258 7.041 8.391 6.509 1.314 | 5815 | 1.211 | -7.310 -4.351

11

where the seasonal component for December is calculated using ¥~ “277—1 . The large
J=1

negative seasonal component in January reflects the annual closure during the festive

season of many factories within the municipal boundaries. These results are similar to those

of the Holt-Winters method where the level and trend components were found to be L, =

102.305 and 7', = 0.270 respectively. It is interesting to nofe that even though the

parameters derived from the EM algorithm resulted in a larger likelihood function than when
using parameters derived using direct maximisation, it was purely by chance that the BSM
with dummy seasonal components with these parameters resulted in the smallest criterion

value M.S.E.(F).

The time series ¥, can be decomposed into the four component series of level, trend,

seasonality and error fort = 1,....T. The decomposition for the BSM with dummy seasonal

~ n IS

components and parameter estimates o = 8.778, O'; = 0.460, aj =0and o, =0.251

is illustrated in Figure 3. 4. 1 and the residual series is shown in Figure 3. 4. 2. The high
residual value in January 1989 is, as mentioned previously, due to an unusually long billing
month of 34 days and the low value associated with January 1990 coincides with the
installation of an electronic metering system which resulted in a short billing month.
Otherwise the residuals appear to be random indicating that the BSM has captured the

systematic variation of the original time series.
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The sub-series of monthly electricity consumption of Municipality A between January 1990
and December 1994, when the meters were read electronically, was again modelled
separately to investigate whether or not this would improve the forecasting results. The
results given in Table 3. 4. 2 as compared with those of Table 3. 4. 1 indicate that overall
better forecasts were derived using the whole time series. However, it is interesting to
observe that the estimated variances for the shorter series are generally smaller than those
obfained for the full series, indicating that regular metering periods have a stabilising effect

on the time series.

Table 3. 4. 2 Municipélity A : Resuits for BSMs fitted to the electronically metered

time series
L@, ) p 67 0; 6; oAj, M.S.E.(F) | M.A.P.E.(F)

BSM \'Nith dummy seasonality :

KE® 203.971 5.000 | 0.100 | 0.100 | 0.100 9.555 2.01%
KF® 198.242 c ; ) 4.347 | 0.000 6.001 0.000 6.745 1.84%
KE 198.242 0.52,2 U 4.347 0.000 | 0.001 | 0.000 6.745 1.84%
EM 198.296 2,3 4288 | 0.012 | 0.001 | 0.022 6.736 1.85%
BSM with trigonometric seasonality :

KF 220.708 5.000 | 0.100 | 0.100 | 0.100 | 11.387 2.56%
KF® 207.135 ' 0-52 5 2.590 0.000 0.000 | 0.029 11.085 2.59%
KF(3)A 207.135 0.52’2 U 2.590 0.000 0.000 | 0.029 11.085 2.59%
EM 212,763 > 0.062 | 0.011 | 0.000 | 0.194 | 19.697 3.34%
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3.4.2 MUNICIPALITY B

The results of modelling the time series of monthly electricity consumption for Municipality B

are summarised in Table 3. 4. 3. In contrast to the results for Municipality A, the BSM with

trigonometric seasonality provided better forecasts than the BSM with dummy seasonal

components, as measured by the criteria of M.S.E.(F) and M.A.P.E.(F).

Table 3. 4. 3 Municipality B : Results for BSM fitted to the complete time series

. g " " M.S.E.(F) | M.ALP.E.(F

I L(OF,,..¥ ) 6 ol | oF | o | o F) ")
BSM with dummy seasonality :
KE® 450.666 5.000 | 0.100 | 0.100 | 0.100 2.077 6.58%
KE® 331.605 623 0.544 | 0.028 | 0.000 | 0.072 0.405 2.78%
KE® 331.605 o},%,u 0.544 | 0.028 | 0.000 | 0.072 0.405 2.78%
EM 331.898 ol s 0.548 | 0.025 | 0.000 | 0.071 0.408 2.79%
BSM with trigonometric seasonality 3
Kg 519.653 5.000 | 0.100 | 0.100 | 0.100 0.49i 2.96%
KE® 343.81 o2,z 0.614 | 0.026 | 0.000 | 0.001 0.385 2.70%
KE 343.81 2.2, u 0.614 | 0.026 | 0.000 | 0.001 0.385 2.70%
EM 344.697 ol 5 0.628 | 0.014 | 0.000 | 0.001 0.393 2.72%

Again the sub-series of electricity consumption for Municipality B, when the meters were read

electronically, was modelled separately to ascertain whether or not this would result in better

forecasts. It is clear from Table 3. 4. 4 that better forecasts were not obtained. It is again

interesting to observe that all the estimated variances decreased for this more regular time

series.
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Table 3. 4. 4 Municipality B : Results for BSMs fitted to the electronically metered time

series
2 - 2 M.S.E.(F) | M.A.P.E.(F)
~InL(@W,,..Y 1) 4 o. | oy | o | o,

BSM with dummy seasonality :

KF“)V 189.258 5.000 | 0.100 | 0.100 | 0.100 0.505 2.61%
KE® 142.316 o ¥ 0.324 | 0.000 | 0.000 | 0.036 0.444 2.82%
KE® 142.316 052 i 0.324 | 0.000 | 0.000 | 0.036 0.444 2.82%
EM 142.396 o’ T 0.301 | 0.006 | 0.000 0.042 0.411 2.76%
BSM with trigonometric seasonality :

KE® 213.080 5.000 | 0.100 | 0.100 | 0.100 0.490 2.96%
KE® 151.673 o2 5 | 0.343 [ 0.000 | 0.000 | 0.001 | 0.471 2.93%
KE® 151.673 0.53 T.u 0.343 | 0.000 | 0.000 | 0.001 0.471 2.93%
EM 151.969 oy 0.288 | 0.006 | 0.000 | 0.002 0.448 2.88%

3.4.3 MUNICIPALITY C

The time series of monthly electricity consumption for Municipality C was clearly affected by

a number of intervention events as described earlier. To monitor the improvements gained

by including these intervention events into the modelling process, the time series was firstly

modelled using the BSM with dummy seasonal components and excluding intervention

events and the results are summarised in Table 3. 4. 5. Thereafter, the time series was

modelled incorporating the intervention events of water restriction periods between January

1983 and March 1984 and again between August 1993 and January 1994, the permanent

closure of a mine on the outskirts of the municipality’'s supply area, and a period of 40 days

between meter readings in July 1991. These interventions and the associated parameters are

summarised in Table 3. 4. 6.
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Table 3. 4. 5 Municipality C : Results for BSMs

“In LY, Y,) P Ug 5 a; O'f, M.S.E.(F) | M.A.P.E.(F)
BSM with dummy seasonality :
KF ™ 442.108 5.000 | 0.100 | 0.100 | 0.100 0.533 7.78%
KE® 210.948 052 D> 0.181 | 0.004 | 0.000 | 0.002 0.161 3.82%
KE® 210.948 . 05272 U 0.181 | 0.004 { 0.000 | 0.002 0.161 3.82%
EM 210.978 052,2 0.180 | 0.005 | 0.000 | 0.002 0.162 3.86%

Table 3. 4. 6 Municipality C : Summary of intervention events

INTERVENTION SERIES PARAMETER DESCRIPTION
(1 t = Jan'83— > Mar's4 Water restrictions between January 1983
hh {O all other months A, and March 1984,
1 t = Jul'91l There was a long billing month of 40 days in
I {O all other months 2, July 1991 when the meter reading system
changed from manual to electronic.
1 {1 = Jan'gd_ Jul'o3 In August 1993 a large mine just outside the-
I, = {O all other .months Ay municipality’s area of supply closed down
permanently.
1 ! = Aug'93 — Jan'94 Water restrictions between August 1993
li= {O all other months A and January 1994,
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Estimates of the intervention parameters, together with the t-ratios for testing whether or not

the corresponding true parameters are equal to zero, are given in Table 3.4.7.

Table 3. 4. 7 Municipality C : Estimates of the intervention parameters

PARAMETER | VALUE T-RATIO
7, -0.364 -2.401
A, 2.850 6.943
7, -0.280 -1.262
7, -0.426 -2.044"

Clearly A,, the intervention parameter associated with the mine closure, is again negative

and has a non-significant t-ratio suggesting that this parameter can be dropped from the
model. The results excluding this intervention are given in Table 3. 4. 8. Overall, it is clear
that the BSM with dummy seasonal components and including the intervention events is the

best model and that satisfactory estimates of the variance parameters are derived using

direct maximisation. From the final state vector, the trend is given by u, = 7.807, the slope

is ,BT = 0.014 and the seasonal components are given by

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-0.517 -0.175 | 0079 | 0.082 | 0.927 1.038 | 0976 | -0.033 -0.581 | -0.507 | -0.753 -0.536

The last three values in the state vector «, pertain to the intervention events and indicate

that the two water restriction periods had the effect of reducing electricity consumption by
0.356 and 0.359 GWh respectively and that the longer billing period in July 1992 increased
the consumption by 2.939 GWh. A comparison of plots of the residual errors for the BSM
excluding and includjng intervention events is given in Figure 3. 4. 3 and illustrates the

improvement derived from including these interventions in the model.
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Table 3. 4. 8 Municipality C : Results for BSMs including intervention events

L@, 1) 0 o 03 aj o2 A, A, A, M.S.E.(F) | M.A.P.E.(F)

(t-ratio) | (t-ratio) | (t-ratio)

BSM with dumrﬁy seasonality :

KE® | 205.917 0;,): 0.125 | 0.003 | 0.000 | 0.004 | -0.356 | 2.939 -0.359 0.147 4.23%
(-2.445) | (7.424) | (-1.934)

KE™® | 205.917 052,2”“ 0.125 | 0.003 | 0.000 | 0.004 | -0.356 | 2.939 -0.359 0.147 4.23%
(-2.445) | (7.424) | (-1.934)

| EM 213.655 ) 0.213 | 0.001 | 0.000 | 0.001 | -0.358 | 2.903 -0.364 0.180 4.42%
(-2.193)' (5.919) | (-1.653) |

BSM with trigonometric seasonality :

KE® | 213.668 of,Z 0.150 | 0.002 | 0.000 | 0.000 | -0.364 | 2.850 -0.333 0.176 4.32%
(-2.402) | (6.934) | (-1.7086)

KF | 213.668 052,2”” 0.150 | 0.002 | 0.000 | 0.000 | -0.364 | 2.850 -0.333 0.176 4.32%
(-2.402) | (6.934) | (-1.706)

EM 226.163 0;,2 0.214 | 0.001 | 0.000 | 0.000 | -0.326 | 2.916 -0.396 0.155 4.08%
(-1.747) | (5.790) | (-1.738)




Figure 3. 4. 3 Municipality C : Residual errors for the BSM with dummy seasonality
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3.4.4 MUNICIPALITYD

Two separate time series involving thé monthly electricity consumption of Municipality D, one
consisting of the monthly electricity consumption of the municipality excluding that of the
large factory within the municipality’s area of supply and the other, the monthly electricity
consumption for the factory, were considered. Basic structural models with dummy and also
with trigonometric seasonal components were fitted to the former time series. Only the
portion of time series of the factory’s monthly electricity consumption from June 1992
onwards was used for modelling purposes, as discussed previously in Section 3. 3. 4 and,
since this series displays no seasonality, the local linear trend model of Section 2. 4. 2 was
invoked. The results are summarised in Tables 3. 4. 8 and 3. 4. 10. It should be noted that in
November 1995, equipment failure at the factory caused an unexpected decrease in
electricity consumption, resulting in a large forecasting error for that month and hence for the

test set. It is thus only by coincidence that the Kalman fiitering with fixed parameter values,

KF ", produces the best test set forecast according to the criteria M.S.E.(F), since the test
set for the factory's monthly electricity consumption does not represent the usual electricity

consumption pattern.
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~ Table 3. 4. 9 Municipality D excluding factory : Results for the BSM

~In LA, "X ;) 0 0' 0! ag ow WSEE) | MARELR)
BSM with dummy seasonality :
KE D 457.236 5.000 | 0.100 | 0.100 | 0.100 10.574 12.43%
KE 371.412 o}z 0.881 | 0.000 | 0.000 | 0.136 5.933 9.24%
KE® 371.412 o2, u 0.881 | 0.000 | 0.000 | 0.136 5.933 9.24%
EM 371.451 o> .3 0.860 | 0.011 | 0.000 | 0.139 5.408 8.69%
BSM with trigonometric seasonality :
KE 521.940 5.000 | 0.100 | 0.100 | 0.100 8.059 10.92%
KE 379.196 o’ X 0.831 | 0.000 | 0.000 | 0.004 6.153 9.50%
KE 379.196 oL, u 0.831 | 0.000 | 0.000 0.064 6.153 9.50%
EM 379.321 O'j T 0.843 | 0.00 | 0.000 | 0.004 5.885 9.21%

Table 3. 4. 10 Factory : Results for the local linear trend model

S L@, T, 0 05 U,, 0> M.S.E.(F) | M.A.P.E.(F)
KE® 85.277 5.000 | 0.100 | 0.100 18.883 13.11%
KE® 82.927 o>.% 7.670 | 0.071 | 0.000 27.168 - 14.68%
KE 82.927 o2, u 7.670 | 0.071 | 0.000 27.168 14.68%
EM 82.969 o,z 7.620 | 0.094 | 0.000 25.336 14.13%
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3.4.5 SUMMARY

The BSM with dummy seasonal components resuited in better forecasts as measured by the
criterion M.S.E.(F), than the BSM with trigonometric seasonal components, for every time
series modelled except for the complete time series of monthly electricity consumption for
Municipality B. This was also true for the criterion M.A.P.E.(F) except for the case when
modeiling the complete time series of monthly electricity consumption for Municipality A. The
results were better for the BSM with trigonometric seasonal components according to the
criterion M.A.P.E.(F), but not for the criterion M.S.E.(F), which indicates that one model is nqt

necessarily outright better than the other.

The method of direct maximisatioﬁ converged notably faster than the EM algorithm and
resulted is a smaller likelihood function within a reasonabie period. It was frequently the case
that, even though the parameters derived using the EM algorithm resulted in a larger
likelihood function tﬁan when using those derived using the method of direct maximisétion,
the forecasting results according to the criteria M.S.E.(F) were better. This is presumably a
result of chance where the test set deviated from the usual electricity consumption pattern.
Overall the preferred approach to obtaining maxifnum likelihood estimates‘ of the parameters

would seem to be that involving direct maximisation of the likelihood function.

It is interesting to note that unless 1 was selected to be extremely large, its effect on the

mode! was minimal. A further point of interest is that the variance aj always tends to be

close to zero indicating a small change in the level of the series over time.
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3.5 COMPARISON OF RESULTS

The forecasting results for each of the best fitting exponential srhoothing, ARIMA and state
space models discussed in this study, as indicated by the criterion of minimum M.S.E.(F), are

summarised in Table 3. 5. 1.

Table 3. 5. 1 : Summary of forecasting results for each method

METHOD Time series M.SE.(F) | MAPE.(F)
Exponential Smoothing Municipality A 7.567 1.94%
ARIMA Municipality A 6.795 1.96%
State Space Model Municipality A 6.520 1.90%
Exponential Smoothing Municipality B‘ 0.429 2.88%
ARIMA Municipality B 0.432 2.72%
State Space Mode! Municipality B 0.385 2.70%
Exponential Smoothing Municipality C 0.138 3.87%
ARIMA . Municipality C 0.065 2.13%
State Space Model Municipality C 0.147 4.23%
Exponential Smoothing Municipality D 5.427 7.85%
(Excluding factory)
ARIMA Municipality D 5.200 8.58%
{Excluding factory)
State Space Model Municipality D\ 5.933 9.24%
(Excluding factory)
Exponential Smoothing Factory 17.048 11.33%
ARIMA Factory - 19.780 12.37%
State Space Model Factory 27.168 14.68%
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State space models resulted in the best forecasts for both of the time series of monthly
electricity consumption for Municipality A and B. However, the best results for the time series
of the monthly electricity consumption for Municipality C, which was affected by the
intervention events, were derived using ARIMA models which incorporate intervention
events. Surprisingly the state space model including intervention events did not perform well,
and in fact the results were better for the exponential smoothing method which did not
include these intervention events. This is probably because the intervention events were
sufficiently early in the series to have a minimal affect on the exponential smoothing
parameters. The ARIMA mode! produced the best forecast for the time series of the monthly
electricity consumption for Municipality D, excluding the factory's electricity consumption.
The results for the non-seasonal time sgries of the monthly electricity consumption for the
factory are distorted by the decrease in electricity consumption in November 1995 caused by
equipment failing ét the factory. Thus the test set does not reflect the usual electricity
consumption pattern and it is surmised that, purely by chance, the exponential smoothing

method resulted in the smallest criterion M.S.E.(F).

For all three methods the forecasting results using the complete time series of monthly
electricity consumption were better than those obtained when using the shorter seriés of
electronically metered electricity cbnsumption. The inclusion of the intervention events when
modelling the time series of the monthly electricity sales to Municipality C improved the
results of both the ARIMA and state space models. It is interesting tlo note however that it

was not necessary to include the intervention relating to the mine closure in either model.
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4. CONCLUSION

The aim of this thesis was to identify and study appropriate methods of forecasting by month,
one year ahead, the electricity consumption for selected municipalities in Kwa-Zulu Natal. In
general the time series of monthly electricity consumption for these municipalities displayed
a trend and, except for the time series of monthly electricity consumption of the factory within
Municipality D's area of supply, seasonality. The exponential smoothing method and ARIMA
and state space modelling were identified as appropriate approaches for forecasting and

were compared and contrasted.

In summary, the exponential. smoothing method is simple, robust and easy to implement. it
can be fully automated and requires limited calculations and data storage space. The ARIMA

methodology requires the time series to be stationary, and if it is not, the trend and

seasonality to be removed by differencing which is not always acceptable. Furthermore ﬂ]e

mgcjel_i_d_en,tiﬂcétlon_&t_a_ggis often difﬁcult,pgﬂm:a\nbg_sgbjgptive @9 tirpe consuming and if
thg m_qdel is incorrectly i_de‘ntiffifedl the resulting forecasts can be very uﬂsﬁtg,[adow. State
space models on the other hand incorporate the trend and seasonality, and as with
exponential smoothing, the time series can bg expressed in terms of the trend, level,
seasonal and error components. An added advantage of state space modelling over
expornential smoothing is that it is a formal modelling technique. Once a model is expressed
in state space form, Kalman filtering is easily applied with pleasing results. Unfortunately
state space models and Kalman filtering are not included in the mz;jority of forecasting
packages. For example SAS invokes state space models to determine the maximum

likelihood estimates for ARIMA models but does not include basic structural modeis.

For cases in which a time series is affected by intervention events and these are not included

_in the modelling process, the forecasting results are often unsatisfactory. This is particularly

true if the event occurs towards the latter part of the time series. ARIMA and state space
models allow the incorporation of intervention events and this can greatly enhance the

forecasting results and decrease the residual errors.
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Further areas of interest are the application of the above methods to the time series of
monthly electricity consumption for other groups of Eskom customers whose electricity
consumption patterns differ from those of the municipal customers, such as the various
railway lines, coal mines and industries within Kwa-Zulu Natal. There are also other
forecasting methods and techniques available which need to be investigated, one of these

being neural networks which is reported to give good results for less regular time series.
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APPENDIX A
A.1 : Conditional expectations of terms in the log likelihood function for

a state space model
() since E(a,l¥,, .¥,)=aor and Var(a,¥,, ... ¥;)=Cyp,

E{(@ew) S (@l ... Y}
= E{zr[(ao_/u)lz-] (ao_/u)]}
= E{r[Z 7 (ay-p)a )" 1}

= ZE{(a,—p)a,—u)"}]

= tr[z_1 {((;O]T_ ,U)(gzon" ﬂ)T + Co;r}]

" CI!T Ct,t—)IT
(i)  Since ( “ j(YI, .......... Y,~N {Aa” J{ . .
s C Cz—l]T

Qr-yr t,1-T

al_(bar—lu/l"“YT; N(afiT_ (Da’—liTaCI;T - Ct,r—lITq)T - q)CtTI—llT + (DCr-HTCDT) :

Thus E{(al—cbar—l)Tz_l(al_cbar—l)}

T A /\T

1 ~ 7 A onT
- _5”{2 1[2 (Cop +aur aur) _Z(Cu—w + e 0 )
h t=1

=1

T

N IaY T T IAY A} T
al T
- (DZ (C o t @ @) + (DZ (Cooip + Qrr @ YO 1}

1= =]

(i)  Sincea,V,..Y;~ N(aw,C,), it follows that

.......

(Y,—hTa,)2 ¥ vy = (Yz_hraqr)z -+-h'C,!Th
652 1, ....... T - 02

£

E]

(Shumway and Stoffer, 1982).
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A.2 : Maximum likelihood estimates of o] and 7 in a state space

model

The expectation E[ln L(c},ZY,,..Y;)] is maximised by setting the derivatives with

respect to o and £ equal to zero and solving for o> and ™' (Shumway and Stoffer,

1982). In particular let

T n AT T A AT
A= (Cpr+arram) =2 (C, oy + Qur aiar)®T

=1 1=1

T N N T T N n T
~®Y (C, oy + Qur i) + DY (Cryp + Qraay Aoy YO
=1

1=1

Then consider the terms in E[ln L(c,ZJY,,..Y )] involving T written as
- T 1
f(Z)= ~Elog|2| —EIT[Z'IA]

= glog‘Z"l‘—%tr[Z‘lA].

From the resuits of Mardia, Kent and Bibby (1979; appendix A 9.3 and A 9.4), and defining

diag(A) as the matrix containing only the diagonal elements of A along its own diagonal, it

follows that

IO o T oo AED)L
> = det(X )2[2(2 )" —diag(X)] = 2[(2A) diag(A)]

|
and this derivative equals zero when % = ? A.

T N
Similarly, let B =Y [(¥,~h" au) +h"C,h].

=1

Then the term involving & is given by

2 T . B
£ )= “"1 . = =
Slo:) 3 no o
O-l:z T B ",) 1
Thus @(é’(aez ) =- 20,2 + 2(652): equals zero when o = ?B.
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A.3 : The exponential smoothing method and ARIMA models

Forecasting approach : Simple exponential smoothing and ARIMA(0,1,1) models
The one-step-ahead forecasts derived for a time series using the simple exponential
smoothing method are the same as those obtained when using an ARIMA(0,1,1) model. In

particular, the one-step-ahead forecast when using simple exponential smoothing is given by

"

Y=ol H1-a)Y, | (A1)

and thé one-step-ahead forecast when applying the model ARIMA(0,1,1) to a time series is

given by
Vo= EX Y 1)
= E(Y(+Z{+1_HZIlY17Y1—1""Yl)
=Y ~62Z, .
However Y,_Y,h_]:Y{_1+Zt—021—1_Y!—)+HZI—l:ZI
and thus Y,+1|,=Yr—0(Y1_Y1}z—l)
=(1-6)Y,-6Y,, (A-2)

On settingl -0 =, itis cléar that equations (A.1) and (A.2) are equivalent.

Similarly, Holt Winter's two parameter smoothing method, which incorporates trend and level
components but no seasonal component, is equivalent to an ARIMA(0,2,2) process.

Firstly consider the double exponential smoothing method defined by

L,Z aY,+(1 - a)(L1—1+Tt—l)

=af +(1-a)Y

tie-1

and T=y(L~L_)+(1-T,_
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= 7L1_7(Lz_—1+Tr—1) +Tr—1

= }/(aY1+(1 - a)Ylll—l)— rY +Tl—]

tlr-1

=yral =Y, )+T.,

tle-1

Then the one-step-ahead forecast is given by

Y . =L+T,

l+l|l

= (ZY,+(1 - a)Y +}/CZ(Y,—Y,1,_1)+T,_X

tlr-1

=al +(1- a)Y”,_]+ya(Y,—Y,!,_])+Y,|,_1"L,_1

= af +(1- )V, +ra(Y -, )+Y,  ~(@¥ +(1-a)Y, )

=(a+ay)l +Q2-a-ay)Y,  —af, +Ha-1)Y

et r1lr—2 (A.3)
The forecast }m.“ using an ARIMA(0,2,2) model is calculated as
Voy= BV Y s 1)
=EQY-Y, +Z2,.-6Z-6,Z_[Y )Y,  ..Y)
=2Y-Y, -6,Z-60,Z,
and, $ince
Y,—)A’m_I =2Y, Y ,+Z-6,2, -6,Z,_-2Y, -Y, .-6,Z,,-60,Z, ,1=Z, (A4)

~

it follows that ¥, = 2Y,~¥ _,~6,[Y,~¥, | 1-6,¥, -V

e = —1jr-2 ]

= (2-0)Y ~(146,)Y, +6,Y,,_ +6,¥

t-ljr-2 -

it is clear that by writing

f=a-1ad 6=2-a-ya,

equations (A.3) and (A.4) are. equivalent.
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Conditional least squares : Simple exponential smoothing and ARIMA(0,1,1) models
If the parameters of the ARIMA model are derived using conditional least squares, the
forecast estimates derived from simple exponential smoothing and ARIMA(0,1,1) models are

the same. This is readily demonstrated as follows.

Assume tJhat the ARIMA(0,1,1) model given by Y =Y _+Z —6Z, , has the realisation,
y,=y, ,+z,—bz, , andthat z,= E(z,) = 0. Then clearly the residuals are given by
2,5y,
2,2y~ Y, 700y, -y))
=y;+y,(6-D) -6,
=y,~ay,Ha~-1)y, where =1-a

and generally,

The conditional least squares estimates of the unknown parameters are then derived by
minimising Zz,z with respectto « .
Similarly, using the exponential smoothing approach, and assuming Y=Y the forecasts

are derived by
Y=y, Hl-a)y,, =ay,+(1-a)y,

y4|3 = ay3+(1 - a)y3|3 = ay3+(1 - a)a})3+(1 - a)zyl
and the residuals are calculated as

€r=Vy Vo =Y2—V,

~

€;=y;—Y;p=Y;—,—(1-a)y,,

and generally as
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=Y, Vua :yl—ayl—l—a(l - a)}’x—:_---—(l - a)l—zyl :
- Since the residuals Zef are minimised using the smoothing approach, it is clear that the

estimates from ARIMA(0,1 ,1) and simple exponential smoothing are equivalent.

&
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APPENDIX B : Time Series

TOTAL

MUNICIPALITY A

ELECTRICITY CONSUMPTION IN GWH
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
Jan 48.345| 50.100( 51.010( 55.705| 57.615| 66.830] 62.510| 70.815 73.435| 98210 90.458| 84269 B87.780| 87.971 93.344| 97.997
Feb 50.140 5?.175 53.365| 54.565| 59.705| 63.660| 65.645(. 69.575 76.410| 80.950( 80.821 84.400( B9.856| 88642 88412 96605
Mar 48.610| 54560 57.420( 61.045| 61.455| 68625 76.115| 75.225 84.390| 86.946] 91.225 092566 06306/ 99.993] 99.236 107.990
Apr 48.790 5I1.610 65.095| 56.495| 65.755| 65965 69.760| 71.685 78.450| 85.378| 83.467| 89927 90.190 92.593| 89.785| 100.143
May 54.760| 58.910| 52.089| 58.180| 69.695( 70.240| 76.655| 77.305 77.010 90.303| 94.383] 097.002( 94.615| 99.972| 103.826| 111.047
Jun . 56.115| 64.770| 69.065| 60.475| 68.415| 76.610| 73.685| 83.135 89.300[ 95.749| 98.048( 101.611| 102.055| 108.492( 109.161| 115.323
Jul 62.630| 67.870| 71.524| 61545 81.565| 77.165| 81.720| 87.275 94.690 98.037 99.730( 101.925| 104.387| 107.444| 113.125| 115.034
Aug 58.830/ 61.065 66.660| 66.660| 71.845| 68.550| 79.175| 90.535 90.535 94.726| 101.243| 99500/ 101.871| 106.492| 113.162| 107.693
Sep 56.810| 61.700( 63.925| 57.260| 73.010| 74.090| 75.070| 82.770 83.740( 88.978/ 93.736| 93.196| 096.824| 100.511| 103.334| 105.099
Oct 60.735| 55.320| 62.210| 62.335| 72.210| 71.920| 75.850| 84.535 90.490( 91.919| 096.392| 98250 98.744| 103.933| 108.644(110.6072
Nov '50.925 61.5610( 61.655| 61.265| 66.660| 66.655| 77.180| 78.500 85945 91.209| 091.957| 092668 95827| 100.552| 103.475(108.5253
Dec 49.540 54.060| 54.005| 54.030| 57.975| 66.910| 67.705| 73.020 76.310| 69.060| 76.949| 81.159| 86.284| 89.459| 91.716(94.26811
646.230( 692.650| 728.023| 709.560| 805.905| 837.220| 881.070| 944.375| 1000.705| 1071.465| 1098.409| 1116.473| 1144.740| 1186.054| 1217.210| 1270.332
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ELECTRICITY CONSUMPTION IN GWH

MUNICIPALITY B

1980 1981 - 1982 1983 1984 1985 1986 1987 1988 1989 1990, 1991 1992 1993 1994 1995
Jan 8.971| 11.064] 11.071| 10.805| 12.067( 13.023| 12.043| 12.888| 12.638| 14.108| 17.942| 16.851| 16.630| 16.661| 17.073| 17.660
Feb 14431 13.685| 15.228| 14.899| 15.115| 15975 15.920] 16.645 17.260| 23.407| 18.446| 16.760| 18.138| 17.540| 17.813| 18.756
Mar 13.966| 15.130| 16.764| 16.757| 17.383| 17.688| 17.290| 19.088| 19.818| 18.815 20.015 18.013| 19.883| 19.130( 20.060| 20.737
Apr 13.207| 13.123| 15.101| 14.690| 15.758| 16.390| 16.345| 16.185| 17.660( 19.736| 17.929| 18.200| 17.746| 17.160| 18.525 18.614
May 14.962( 16.169| 16.692| 16.126| 17.820( 17.698| 17.960| 18.385 20.553| 20.620| 19.854| 19.409| 19.473| 19.840| 20.140 21.334
Jun 15247 17.239| 17.258| 16.865| 19.283| 19.465| 18.438| 19.533 19.100| 22.246| 21.778( 20.392| 20.951| 22.080| 22.193| 22.090
Jul 17.453| 16.555| 18.977| 18.199| 20.753| 20.068| 20.870| 20.063| 22.450( 22.815| 18.760| 21.277| 21.235| 21.506| 22.774| 21.881
Aug 16.186| 17.196| 18.650 18.110| 18.910| 19.408| 19.983| 22.750| 21.063| 21.693| 21.690( 20.600| 20.038| 20.993| 21.791| 21.038
Sep 15.233; 17.402| 16.375 16.805 17.535 16.860| 18.670| 18.333| 20.038| 20.081| 19.020| 19.279| 18.695| 19.727| 19.904| 19.326
Oct 14.897) 16.726| 16.390| 16.363( 17.508| 18.135| 18.040| 19.990| 19.480, 20.613| 19.565| 20.010| 18.665| 19.295 20.124| 19.909
Nov 14.724| 15468 17.294| 16.939| 17.138] 17.238] 18.278| 19.898| 20.010( 20.112] 18.852| 18.319| 18.608| 20.055| 19.966| 21.284
Dec 13.778| 16.034| 13.462| 15.108| 14.575| 15.748| 16.215| 16.295| 17.375 14.653| 13.939| 14.154| 15.612| 15.301| 15.507| 16.705
Total | 173.054| 185.791| 193.262| 191.666| 203.842| 207.693| 210.050| 220.050( 227.443| 238.900( 227.788| 223.264| 225.674| 229.289| 235.870|239.333
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MUNICIPALITY C
ELECTRICITY CONSUMPTION IN GWH

1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 1992 | 1993 | 1994 1995
Jan 4717 5.178| 4.853| 4.805| 4.938| 5.237| 5.280[ 5.664| 5832 6.096| 6.144] 6.744| 6.723| 6.688) 6.990 6.990
Feb 4.733] 4.690| 5458 5686 5625 5717| 5280 5616| 5.832| 6600 6.816| 6.770| 6.529| 6.330| 6.605 6.733
Mar 4.448] 5012 5126| 5054| 4.818| 4.802| 5400/ 5.808 5.712| 5952| 6.264] 6.240| 7.089 7.000| 7.332 7.668
Apr 4589 4.707| 6.049| 6.000] 5.618( 5414 5664 6.024| 6.720| 6.672| 6.528| 6.888| 6.757| 6.670| 6.938 7.419
May 4.984| 5514| 5749| 4.950| 5490 6.082| 6384 6288 5904/ 6.720| 7.140 7.440 7.375| 7.250( 8.004 8.720
Jun 6.432| 6.284] 6.910| 6.430| 6.748| 6.761| 7.032| 6.336| 8.136| 8.352| 7.752| 8.496| 8.248| B8.146] 9.264 9.360
Jul 5839 6582 7.454| 6.350| 7.286| 7.481| 7.154| 8.304| 7.920| 7.944| 8.280( 11.284| 8.399| 7.884| 9.335 9.190
Aug 6.490| 6.051| 6.484| 5715 6.288 6.283| 6.790| 7.848| 7.272| 8352 8.136 8.120| 8437 7.710[ 8.999 8.549
Sep 5.582| 6.800| 6.650| 5.958| 6.816| 5870 6.288| 5808 7.656| 7.008| 8.184| 7.225| 7.533| 6.937| 7.668 7.704
Oct 5.380[ 5302 5642 4.961 5885 6.274| 6.384| 8.064| 6.360| 7.008 ‘ 6.840| 7.280| 7.364| 7.198| 7.892 7.749
Nov 5.736| 5294/ 5803 5543] 5366 5640 6.552| 6.360| 7.080 7.104 7.536| 6.948( 7.046| 7.029| 7.356 7.599
Dec 4.686| 5870 5966/ 4.626| 5527 5472 5376 6.192| 6.024| 6696 6.816| 6.677| 6.828) 6.995| 7.056 7.205
TOTAL | 63614 67.283( 72.145| 66.079| 70.406{ 71.033| 73.584| 78.312| 80.448| 84.504| 86.436| 90.113| 88.327| 85.838| 93.438| 94.885
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MUNICIPALITY D
TOTAL ELECTRICITY CONSUMPTION IN GWH

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990| 1991 1992 1993 1994 1995
Jan 10.130 12.520 13220] 12.820] 21.205| 45.945] 55985 - 18.089| 19.207| 52.861| 54.914| 20.180| 20.400| 39.655| 41.039/ 50.660
Feb 13.290] 15.325| 16.950| 16.515| 37.260| 42.925| 20.450| 21.987| 27.708| 62.161| 51.053| 20.400| 20.598| 43.130| 44659 50.784
Mar 12.890 14.420| 15.545 15555 39.765 43.595| 25.515] 46.672| 55.494| 59.993| 59.592| 22.724| 21.642| 42.730| 52.585| 53.436
Apr 13.840| 18.680[ 17.955| 16.005| 39.590| 36.890 27.841| 30.392| 51.979| 59.401| 47.940| 22.491| 28.291| 45.650( 49.977| 52.757
May 15.845| 16.580| 19.305| 18.760| 30.065[ 21.440| 49.395 52.053| 60.148| 54744 29.870( 24.612| 38.880| 43.180| 53.206| 56.249
Jun 17.870| 21.050| 20.610| 21.920| 20.735| 29.035| 54.540| 58.758| 56.907| 63.996| 25.820| 26.416| 47.105| 49.792| 53.427| 56.627
Jul 18.685| 20.315| 21.965 26.025| 35.450| 51.395 33.685| 28.522| 67.503| 68.418| 25.690| 25.501| 47.906| 49.666| 58.590 58.177
Aug 18.090| 21.320| 20.615| 29.315] 49.725| 58.425| 35.555| 31.514| 60.979| 63.336| 24.260| 22.220( 43.603| 50.533| 54.392| 55.216
Sep 16.895! 21.445| 19.605| 38.890| 39.125| 55.500| 30.765| 52.051| 59.838| 46.129| - 23.144| 21.528| 45449| 48.619| 50.389| 51.857
Oct 14.835/ 17.985| 18.435] 19.320| 48.585 60.075| 57.500| 58.917| 47.449| 63.076| 23.273| 22.660| 47.378| 50.385 52.122| 53.068
Nov 16.485 16.730[ 19.285| 17.320| 50.615] 54.205| 54.895| 55.174| 54.252| 23.554| 22.466| 21.392| 43.626| 50.115 50.594| 38.212
Dec 15.345/ 15.660) - 16.465 17.065 25.670| 46.955| 26.233| 51.462| 63.721| 50.567| 18.646 18.859| 31.992| 48.284| 50.218| 50.249
TOTAL| 184.200f 212.030; 219.955| 249.510| 437.790| 546.385| 472.358| 505.589( 625.182| 668.235| 406.668| 268.983| 436.868| 561.741| 611.199| 627.292




€0l

MUNICIPALITY D

ELECTRICITY CONSUMPTION IN GWH FOR THE FACTORY

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
Jan 7.451| 31.723 41.530 3.400 3.611| 36.799 35.824 2.495 3.000| 22.850 23.360| 29.669
Feb 20.100| 25.442 2.806 4.181 9.941| 43.758 33.517 2.504 3.000| 26.532 26.680| 27.521
Mar 22.167| 24.975 6.384| 27.031 34.367| 45.432 41.411 3.165 3.000| 23.841 30.584| 27.597
Apr 22.070| 18612 9.184| 11.357 34.974| 39.714 28.033 2.785 10.000| 26.628 32.753| 33.126
May 11.585 3.100 31.125| 33.852 39.252| 34.515 9.400 3.037 15.000, 23.411 29.605 28.334
Jun 0.000| 8.054 33.435| 37.530 35.733| 42619 3.104 4.015 24.040| 25.568 27.839] 29.398
Jul 3.000 13.325| 29.720 12.460 4.197 43.132| 47.344 3.000 2.914 25.276| 27.815 32.507) 32.378
Aug 8.233 28.038| 36.436 13.263 9.966 39.789| 41.294 3.000 1.433 21.752| 26.244 29.054| 31.761
Sep 18.700 19.186, 35.687 11.078| 31.277 39.464| 28.572 3.000 2,128 -26.657 29.420 27.920| 28.941
Oct 0.000 28.341| 39.369 36.333| 38.498 27.769] 41.401 3.000 2.648 28.033| 29.390 29.856| 32.600
Nov 0.000 31.508| 34.204 34.000| 34.871 34.633 4.371 3.000 3.000 25.016| 29.120 28.624| 16.816
Dec 0.000 8.210| 29.297 8.378| 33.892 46.244| 36.625 3.000 3.000 15.099| 29.280 28.080| 27.660
TOTAL 211.980| 316.619] 239.974| 270.049| 389.206| 442.442| 169.288| 33.122| 199.873| 320.199| 346.862| 345.802
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MUNICIPALITY D :
ELECTRICITY CONSUMPTION IN GWH EXCLUDING THE FACTORY

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
Jan 10.130| 12.520 13.220] 12.820( 13.754| 14.222| 14.455 14.689| 15.597| 16.063| 19.090| 17.685 17.400| 16.805 17.679| 20.991
Feb 13.290| 15.325 16.950| 16.515 17.160| 17.483| 17.644| 17.805] 17.767| 18.403[ 17.537| 17.897| 17.598| 16.598| 17.979| 23.263
Mar 12.890| 14.420| 15.545| 15555 17.598| 18.620| 19.130| 19.641| 21.128| 14.561| 18.181| 19.559| 18.642 18.789| 22.001| 25.839
Apr 13.840{ 18.680| 17.955| 16.005| 17.520| 18.278| 18.657| 19.036| 17.005| 19.687| 19.907| 19.706| 18.291| 19.022| 17.224| 19.631
May 15.845{. 16.580, 19.305| 18.760| 18.480 18.340 18.270| 18.201| 20.896| 20.229| 20.470| 21.575| 23.880| 19.769| 23.601| 27.915
Jun 17.870| 21.050) 20.610| 21.920| 20.735 20.982| 21.105| 21.228| 21.174| 21.378| 22.716| 22.401| 23.065 24.224| 25.588 27.229
Jul 18.685 .20'31 5| 21.965 23.025 22125 21.675| 21.225| 24.325| 24.372| 21.074| 22.690| 22.588| 22.630( 21.851| 26.083 25.793
Aug 18.090 21.320] 20.615] 21.082] 21.687| 21.989| 22.292| 21.549] 21.190| 22.042| 21.260| 20.787| 21.851] 24.289| 25.338] 23.455
Sep 16.895| 21.445| 19.605| 20.190| 19.939| 19.813| 19.687| 20.775| 20.374| 17.557| 20.144| 19.400| 18.792| 19.199| 22.469| 22.917
Oct 14.835( 17.985| 18.435| 19.320[ 20.244] 20.706| 21.167| 20.419 19.680| 21.676| 20.273| 20.012| 19.345| 20.995 22.266| 20.468
Nov 16.485 16.730| 19.285| 17.320[ 19.108 20.001| 20.895| 20.304| 19.320| 19.183| 19.466| 18.392| 18.610| 20.995 21.970| 21.396
Dec 15.345| 15.660| 16.465| 17.065 17.460( 17.658| 17.855] 17.570| 17.476| 13.942| 15.646| 15.859| 16.893| 19.004| 22.138| 22.587
TOTAL| 184.200| 212.030| 219.955( 219.577| 225.810| 229.766| 232.384| 235.539( 235.976( 225.794| 237.380| 235.861| 236.995| 241.542| 264.337| 281.490
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