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ABSTRACT

Eskom is the major electricity supplier in South Africa and medium term forecasting within

the company is a critical activity to ensure_that enough electricity is generated to support the

country's growth, tha( the networks can supply the electricity and that the revenue derived

from electricity consumption is managed efficiently. This study investigates the mo.st _SYUaQ~

forecasting technique for predicting monthly electricity consumption,_Qne year ahead for four

major municipalities within Kwa-Zulu Natal.
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PREFACE

The experimental work described in this dissertation was carried out in the Department of

Statistics and Biometry, University of Natal, Pietermaritzburg, from January 1994 to March

1997 under the supervision of Professor Linda Haines.

These studies represent original work by the author and have not otherwise been submitted

in any form for any degree or diploma to any University. Where use has been made of the

work of others it is duly acknowledged in the text.
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1. GENERAL INTRODUCTION

The aim of this study is to find the most suitable forecasting technique for predicting monthly

electricity consumption, one year ahead for the major municipalities within Kwa-Zulu Natal..

The group of customers used in the present study tend to display fairty stable, repetitive

electricity consumption pattems which lend themselves to statistical modelling methods. The

higher electricity consumption during the winter months is caused by an increase in heating

and irrigation applications and the colder the area, the more exaggerated this increase. The

three forecasting methods which have been studied in depth in the present study are

exponential smoothing, ARIMA and state space modellin·g. The exponential smoothing

method is a simple, well established method, ARIMA modelling requires more skill to apply

than exponential smoothing and the application of Kalman filtering techniques to state space

models is straight forward, delivering pleasing results. Various options within each method

are explored and using the time series of monthly electricity consumption for major

municipalities, the results of these methods are analysed and compared.

Chapter 2 introduces the theory and modelling techniques for the exponential smoothing

method, ARIMA and state space models and briefly explores the relationships between these

three methods. Chapter 3 introduces the time series used in this study and then looks at the

application of the above mentioned methods to these series and compares their forecasting

accuracy. The conclusions drawn from the study are presented in Chapter 4.



2. THEORY

2.1 INTRODUCTION

This thesis is concerned with time series involving monthly data which exhibit a trend and

multiplicative seasonality, i.e. seasonality that is proportional to the level of the series. The

theory discussed in the present chapter is therefore related primarily to such series.

A complete time series is denoted by Y l' ... ,Yr' .... ,YT where T represents the length of the

series. The forecast of an observation Yt+k at k lags ahead of a time t, given the series

Y i' .... ,Y r ' is denoted by YHit ' and the one-step ahead forecast error at time t is

2.2 EXPONENTIAL SMOOTHING

2.2.1 INTRODUCTION

The exponential smoothing method involves the calculation of forecasts based on a weighted

average of past observations, with more weight being placed on the recent than on the early

observations in the series. The method was introduced by Brown and Holt in the 1950's in

the context of constant series and extended to time series with trend and seasonality by Holt

and Winters (see Chatfield, 1978; Gardner, 1985; Chatfield and Yar, 1988)

The method of exponential smoothing is well established and widely used (Granger and

Newbold, 1977; Chatfield, 1989; Janacek and Swift, 1993). Its main advantages are that it is

easy to implement, that the amount of data storage and computation required is minimal and

that no complicated procedures involving model identification are necessary. Its chief

disadvantage is its very simplicity in that there is no obvious model implied by the method

and thus that confidence limits to predictions and forecasts cannot be clearly formulated. Ad
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hoc procedures for finding such confidence limits have been reported by Chatfield and Yar

(1991), but are not well established.

2.2.2 SIMPLE EXPONENTIAL SMOOTHING

Consider a time series Y l' .... ,Yf that does not exhibit trend or seasonality. A sensible one-

step-ahead forecast at time t is then given by the weighted average

/\

Y tT1 !t = aYr+a(l- a)Yr_1+a(1- a)~ Y t - 2+. .... ··a(l- a)Jyr_f+. .....

/\

where a is termed the smoothing parameter and lies between 0 and 1, Le. 0 < a < 1.

The weights a(l- a)l . j =0, 1, 2, , are exponentially decreasing as j increases, hence

the term exponential smoothing, and sum to 1, Le.

a+a(l-a)+a(l-a)~ .. ... =Ia(l-a)f =1
f=<1

For values of a close to 1 most weight is placed on recent observations and for values of

a close to 0, more weight on past observations.

In practice, for a given value of a , the one-step-ahead forecast at time t is computed as

/\

where the initial value Y liD is unknown and is usually taken to be the first observation, Y I ' or

the average of the first. few observations. However, the value of a is generally unknown

and must therefore be estimated. A sensible, albeit ad hoc approach to its estimation is to

choose that value of a to minimise a suitable criterion involving the forecast error, such as

the mean sum of squared one-step-ahead errors, written

1 T

M.S.E.= '(Y,-Y 1)~
T -m+ I t ff-

3
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or the mean absolute percentage error, which does not penalise extreme values as severely

as the M.S.E., expressed as

1 ~ Yt-Y tIH
M.A.P.E. = L. Y

T -m+ 1 t=m t

(2.2)

Note that the first m-1 points are excluded from the calculation of these criteria in order to

reduce the effect of the initial value, Y1io '

2.2.3 HOLT-WINTERS METHOD

The Holt-Winters method of forecasting takes into account the level, trend and seasonality of

a time series and is a generalisation of simple exponential smoothing. There are two such

methods, one for additive seasonality and the other for multiplicative seasonality and only

the latter is considered here. The level, trend and seasonality of the smoothed series are

updated as new observations become available in a manner similar to that of simple

exponential smoothing. Specifically for a time t and monthly seasonality, the level is updated

according to the equation

the trend as

and the seasonal term as

where a ,r and 0 are smoothing parameters for updating the level, trend and seasonal

indices respectively, and are restricted to lie between 0 and 1. The closer a parameter is to 1,

the more weight that is given to recent data when updating the corresponding level, trend or

seasonal terms. These three updating equations are invoked successively to provide, at time

t, the one-step-ahead prediction
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and the k-steps-ahead prediction

As with simple exponential smoothing, appropriate initial values Lo,To and So are required

and there are a number of options available for calculating these (Chatfield. 1~88). For

example, data from the first year can be used to provide the estimates

12

IY,
Lu= '=~2 . Tu=O. and j=1 ,12, (2.3)

data for the first two years to provide the values

12

24

IY,
L=~

o 24 '

24 12

IY,112- IY/12
T = '=13 ,=1

o

s= 12(Yj +f j~12)
J 24

Iy,
,=1

j=1 ..... ,12 (2.4)

or all the data can be used to calculate the starting values,

T

IY,
L=~

o T'

T 12

( IY, - IY,)
T

o
= _,c::-"-.T-:;;:s~-I,--~'=:..:.l__

12(p - 1)
and

p-l

12IY12'-i
s= 1=0

J T

If,
'=1

j=1, .... ,12 (2.5)

where p is the number of years in the series. The latter approach is used by a number of

statistical packages including Statistica, but is clearly not suited to series in which the initial

trend is steeply upwards or downwards compared to the average trend for the complete

series. For large values of a , rand 8, or if a series is extremely long. the effect of the

starting parameters on the forecast is very small. If, on the other hand. the parameters are

small. the starting values will influence the forecast significantly:

The parameters a , rand 8 are also unknown and must be estimated. As for simple

exponential smoothing, an empirical approach to selecting parameters. based on minimising

the forecast error criteria M.S.E. or MAP.E. as given in expressions (2.1) and (2.2), is
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invoked. For seasonal data, a forecast is often required for the ensuing twelve months and

thus it would seem sensible to minimise the error of forecasting over that period (Chatfield

and Yar, 1988) using for example the mean sum of squared twelve-steps-ahead error defined

by

(
1 )( 1 ) T J~ 1\,

M.S.E. (12) = _ _ - II(Yhj-Yt+jit)-
T 12 m+l 12 t=mj=!

6
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2.3 ARIMA MODELS

2.3.1 INTRODUCTION

Autoregressive integrated moving averages (ARIMA) models were developed in 1970 by Box

and Jenkins as powerful and flexible tools for modelling time series. The methodology

underpinning these models is well established (see for example Vandaele, 1983;

Cryer, 1986), and is outlined briefly below.

2.3.2 MODEL OVERVIEW

Consider a time series Y r ' t =1, ... ,T, which is weakly stationary, Le. for which the mean and

variance are constant through time. Then an ARMA model comprising p autoregressive and

q moving average terms can be represented py

Yr=~lr-l+~2Yt-2+'. +~ pYr- p+Zr-(}jZ r-l-(}2Z r-2-' .-()qZ t-q'

where the series Z r ' t = 1, ... ,T, is a sequence of independent, identically distributed random

variables Le. white noise, and the terms ~i' i =1, ... ,p and ()i ' j =1, ... q are autoregressive

and moving average parameters respectively. The model can be expressed more succinctly

as ~(B)Yr= (}(B)Z r where B is the backward shift operator defined by BYr=Yr-1 and the

roots of the polynomials ~(B) and (}(B) are restricted to lie outside the unit circle in order

to ensure stationarity and invertibility respectively. Such a model is denoted ARMA (p,q).

A non-stationary time series exhibiting a trend can be transformed into a stationary series by

differencing, Le. by introducing W r=VdY t where V = 1- B, and the series W r can then

be modelled as an ARMA(p,q) model. Such a model is termed an autoregressive integrated

moving average model and is denoted ARIMA(p,d,q). If the variance of a time series is non­

stationary, then it is common to transform the series into a stationary one by taking

logarithms of the observations.
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ARIMA models can be extended quite naturally to incorporate seasonality. In particular, the

general multiplicative seasonal ARIMA model is given by

rP /B)<I> p{B 12 )W,=8/B)0 Q {B I2 )Z r'

where Wr= V'dV'~Yr' D represents the order of the seasonal difference operator and

V'12 =(1- B12). The terms <I> p(B 12) and 0 Q (B 12) are polynomials in the seasonal

lags of order P and 0 respectively and the roots of these polynomials are again restricted to

lie outside the unit circle in order to satisfy stationarity and invertibility requirements

respectively. Such a model is termed ARIMA(p,d,q)x(P,D,O) 12 .

In addition to the autoregressive and moving average parameters, ARIMA models can also

include a constant corresponding to the mean of the series when there are no autoregressive

parameters in the model and to the intercept otherwise. The constant can be included in the

ARIMA model by replacing W, with Wr-8 .

2.3.3 MODELLING

The Box-Jenkins methodology for ARIMA modelling of a time series consists of three stages,

1. Model identification.

2. Parameter estimation.

3. Diagnostic checking and model validation.

If the model is found to be unacceptable after checking the diagnostics, the procedure is

repeated from stage 1.

Identification

The model identification step relies on the autocorrelation and partial autocorrelation

functions. The autocorrelation Pk is the correlation between observations a given time k

apart and is defined by

8



for k =0, ± 1, ± 2, .

and a graph of the autocorrelations Pk against the lag k is termed the autocorrelation

function (ACF). In practice, the sample autocorrelation is calculated as

T-k

L (Y 1- Y)(Yl+k - Y)
t=1

'k= T

L(Yt-YY
1=]

for k =0, ± 1, ± 2, .

where T is the length of the series. For a white noise series the autocorrelations Pk are all

1
zero and in practice, for large T, , k is approximately normally distributed as N(O, T)' and an

approximate 95% confidence interval for an individual , k is thus given by

(-YJT 'YJT) . Alternatively, the approximation for the standard error of , k can be

~(T-k) .
further refined by to - -_. .WhiCh is the method used in this study. The partial

T T-2

autocorrelation is the correlation between Y 1 and Y t+k after the effect of the intervening

variables Y 1+1""Yl+k-1 has been removed and a graph of the partial autocorrelation against

the lag is known as the partial autocorrelation function (PACF). For a white noise series,

approximate 95% confidence intervals for the sample partial autocorrelations are given by

For a stationary series the ACF decays rapidly, but in contrast for a series exhibiting trend

and therefore requiring differencing, the ACF decays slowly with increasing lag. For a series

exhibiting a seasonal trend, and therefore requiring seasonal differencing, the

autocorrelations at lags which are multiples of the seasonal periodicity, decay slowly. It is

clearly possible to use these observations to difference a given series until the resultant

series is stationary. It should be noted, however, that not all series can be transformed to

stationarity using differencing and that this is a major shortcoming of the ARIMA models.
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The values of p, q, P and Q can be determined from the pattern of the ACF and PACF of the

differenced series. Characteristic features of an MA(q) model are an ACF that cuts off at lag

q, and a slowly decaying PACF. An AR(p) model has a slowly decaying ACF and a PACF

which cuts off after lag p. Seasonal models are more difficult to identify and examples of the

ACF and PACF for a range of such models are given in Box and Jenkins (1970, pp 329-333).

In particular, it should be emphasised that the sample ACF and PACF are frequently difficult

to interpret because they are only estimates of the population ACF and PACF.

Estimation

Once a suitable model has been identified, estimates of the parameters need to be obtained.

For this purpose, the assumption that the error terms, Z 1 ' t = 1, ... T, are independently and

normally distributed as N(O,a?) , is introduced and the parameters are estimated by

maximising the likelihood function or equivalently its logarithm

T T J If 1 J

--log2;rr--Ina: -- ,t...ZI- / a:.
2 2 - 2 1=1 -

It should be noted that this maximisation is not straight forward (see Box and Jenkins, 1970

pp 269-284). Another efficient option of deriving parameter estimates is to place the ARIMA

model in state space form and this will be discussed later. Other methods of obtaining

estimates of the parameters, which require less computation, include. minimising the

conditional or the unconditional least squares functions, but these are rarely used today

(Cryer, 1986).

Diagnostics

Various diagnostics are available for checking that the model provides a good fit to the data.

In particular, the residuals

should be random and a graph of the residuals against time will highlight any trends or

outliers which are not accounted for in the model. In addition, the ACF is a useful tool for
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examining residuals. In particular, if the residual series is white noise, 95% confidence

intervals for the individual sample autocorrelations r k are given by (-YJT 'YJT) .

However, it should be noted that when considering k autocorrelations for a white noise series,

the probability of concluding that at least one autocorrelation is significantly different from

zero at the 5% level, is 1-0.95 k . Thus a more satisfactory test for white noise is the

portmanteau test of Lung, Box and Pierce which tests the hypothesis that the first k

autocorrelations are zero using the test statistic

k

Q. = T(T+2)'Le; I(T-f)
1=1

For large T under the null hypothesis of white noise, the statistic Q. is approximately chi-

squared with k-p-q-P-Q degrees of freedom (Cryer, 1986).

Parameters of the model that are not significantly different from zero are identified using

tests based on the appropriate t-ratio. By successively excluding parameters for which the

absolute t ratio is smallest from the model, an appropriate model can be derived. It should be

noted however that a hierarchy is retained in that in an ARIMA(p,d,q) model all AR

parameters of order less than or equal to p and all MA parameters of order less than or equal

to q are necessarily present in the model.

Very often a number of models may be deemed appropriate and it then becomes necessary

to compare these models. Two criteria in particular ,have been developed for this purpose,

namely Akaike's Information Criterion (AIC) and Schwartz's Bayesian Criterion (SBC) These

criteria penalise the likelihood function by the number of parameters in the model, thus

favouring parsimonious models, and are defined as

AIC =-2 (log likelihood) + 2 (number of parameters)

SBC = -2 (log likelihood) + (number of parameters) x log (number of observations),

In both cases models which minimise these criteria are sought.
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One possible systematic approach to model selection is to fit an over parameterised model,

for example of the form ARIMA(2,d,2)x(2,D,2) 12' to the series and to drop parameter

estimates not significantly different from zero from the model. This process is repeated for all

possible models and the associated AIC and SBC statistics compared. In addition, the ACF

and PACF of the stationary series must be examined to ensure that the final model chosen is

appropriate.

2.3.4 FORECASTING

The forecast k steps ahead of time T for an ARMA(p, q) model is given, quite simply, by

1\ 1\ 1\ 1\

In practise the values of tP!, ...tP p and ()I,.l)q are unknown and thus estimates from the

modelling process are substituted into the above equation. For t less than T, Y
tiT

is

replaced with the actual value at time t and the terms 21'2 t-l"" are replaced with the

corresponding residuals Yt - Ytlt-k' Yt-]-Y t-lIt-k-I"" respectively. For t greater than T, 2 I

is taken to be zero since 2 I ' t = 1, ... ,T, is a white noise process.

Similar considerations apply for an ARIMA(p,d,q)x(P,D,Q) 12 process. For example, the

model ARIMA(1 ,1,1 )x(1 ,1,1) 12 written as

or equivalently as

can be expressed as

12



Then the forecast k steps ahead of time T is calculated using the equation

where, for t less than T, YtIT is replaced with the actual value at time t, the Z I'Z1-1"" are

replaced with the residuals YI-Y tIt - k , Y t-. j-Yt-\It-k-j, .. and for t greater thanT, ZI is

taken to be zero.

Prediction limits for the forecast YT+kIT are approximated by

where 1 - a is the required confidence level and Z a is the critical value
(1-"2)

(Vandaele, 1983).

2.3.5 INTERVENTION ANALYSIS

There are often factors which cause a sudden change in the structure of a time series and

intervention analysis allows these changes to be incorporated into a forecasting model.

There are various types of intervention that can occur in a time series, but only two are

considered in this study.

(i) A single event intervention at time t I is modelled by a pulse indicator as

t ~t I

t =t I

13



(ii) An intervention at time t J which results in a permanent change in the level of the time

series is modelled by a step indicator of the form

The intervention events frequently alter the ACF and PACF, making it difficult to identify the

underlying ARIMA model. Thus for a stationary, non-seasonal time series, the model

fjJ(B)Y t=B(B)Z t which can be expressed as Y I =:i~~ ZI' is initially identified using the

time series prior to the intervention. Thereafter the model Yt = }J 1+ :i~~Z I ,where A. is a

constant and the indicator I I represents the intervention event, is fitted to the complete

series (Deadman and Pyle, 1989).
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2.4 STATE SPACE MODELS

2.4.1 INTRODUCTION

State space models were originally introduced by Kalman in 1960, and used by control

engineers in aerospace related applications. They were adapted with great success in 1976

by Harrison and Stevens (1976) to model time series. An excellent introduction to the topic is

given by Janaceck and Swift (1993), while Harvey (1989) provides a more in-depth analysis.

Once a problem is formulated in state space form, the Kalman 'filter can be invoked to derive

optimal estimates of the current state of the system and to calculate forecasts. A further

refinement of this approach is the calculation of maximum likelihood estimates of the

unknown parameters either by direct maximisation or by using the EM algorithm. With a

minor adjustment, intervention events can be incorporated into the Kalman filtering process.

2.4.2 THE STATE SPACE FORM

The state space model is defined using two equations known as the observation and the state

equations. The observation equations relate the observed univariate time series Yt to an

unknown d-dimensional vector at' termed the state vector, as

t=1, ... ,T

where h t is a given d-dimensional vector and the error terms 5 t are independent and satisfy

5 t~ N (O,a "
2

) • The state equations in turn relate the unknown state vector a t to its

previous values according to

t=1, ... ,T

where <I> t is a d x d transition matrix and the d-dimensional error vectors, ''It' are

independent and satisfy ''It'':"' N(O, L). The two error terms 5 t and ''It are assumed to be

independent and in order to initiate the model, it is usual to take a 0- N (j.1,C 0) , for specific

values of j.1 and Co' In the present study, the terms h and <I> in the observation and stater t
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equations are assumed to be time invariant and are thus referred to as hand <1l

respectively.

2.4.3 THE KALMAN FILTER

Once a time series model has been· formulated in state space form,' the Kalman filter

provides a method for calculating the minimum mean square estimate of at, and hence an

estimate for Y t1t - 1 , where the parameters CY}, L, J1. and Co are taken as known. This can

be done either by filtering, where the parameters are estimated using only the observations

available up to the time point t, or by smoothing recursions using the complete set cif

observations in the estimation process.

Filtering

An outline of the derivation of the Kalman filter is presented here following Meinhold and

Singpurwalla (1983). Let

1\

atls = E(atIYp .....Y s )

/\

at = E(atIYp .....Y t)

/\ /\

Ct!H= E {(a ,-a/I'_I )(a,- a/it-! )TIY j , ......Y H }

/\ /\

Cr= E{(a/-a/ )(a,-a/ fIY p ... Y t }

and

The Kalman filter prediction equations prior to observing Y r ' are given by

/\
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Once the observation Yt becomes available the Kalman filter updating equations can be

applied. To derive these, the following well known result from multivariate statistics is used

(see Anderson, 1958, pp. 28-29).

Result: Let X I and X 2 have a bivariate normal distribution such that

(2.7.1)

(2.7.2)

(2.7.3)

Thus for
/. /\

et=Yt-Ytlt-l =Yt-h
T

<I>a t_1

1\

it follows that et la pY1, .. .Yt- I - N(hT(a r-<I>a r-I)' a;) ,

and hence from (2.7.1) and (2.7.3) that

It further follows from (2.7.1) and (2.7.2) that

atlet,Yj, ..Yt=atfYl,··Yt- N(;tlt-l+CtlH h ;tt ,Ct1t - 1

where It =a; +hTCtlt_lh is the error variance.

17
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Thus the Kalman filter method can be summarised as follows.

The prediction equations:

The updating equations:

The one step ahead error:

Kalman smoothing

f\ f\

aliI-I = <Pa I-J

CIH = <PC 1-1 <pT + L

f I =h
T
CIH h +a E

2

f\ f\ /\

a,=a'H+CtHh(f,-h
T
a'IH)lft

BOX 2.4.1 : Kalman filter equations

The Kalman smoothing or backward recursions extend the Kalman filtering procedure by

making use of all the data available at time T to estimate the state vector al. After the

forward recursions given in Box 2.4.1 are calculated, the backward recursion equations given

in Box 2.4.2 below are applied. (Shumway and Stoffer, 1982)

Starting with

1\ 1\

where C1.r-1IT = E[(a1- a 111-1 )(a 1-1- a l _JIt-2)T If1,·· .. f T]

calculate for t = T-1, ... 1,

i' 1\ (\ 1\

aliT = a,+C 1*(a 1+liT-<Pa t )

BOX 2.4.2 : Kalman backward recursions

The Kalman filtering and smoothing recursions clearly require starting estimates p and Co.

Janacek and Swift (1993) recommend taking p to be 0 and assume little is known about the
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initial variance by taking Co =A1I, for some large number M and the identity matrix J . The

model parameters hand <1> are assumed to be known and thus do not need to be estimated.

2.4.4 MAXIMUM LIKELIHOOD

In implementing the Kalman filter process, suitable values for the unknown parameters I

and CT; need to be set, but this is rather subjective. A more satisfactory approach is to

estimate the parameters by the method of maximum likelihood. There are two methods of

obtaining such estimates, the one involving direct maximisation of the likelihood and the

other the EM algorithm. The parameters f.J. and Co are usually fixed as discussed

previously, although it is possible to obtain a maximum likelihood estimate of f.J. by

incorporating f.J. into the likelihood function as an additional parameter and maximising the

likelihood directly.

Direct maximisation

The likelihood can be expressed as the product of the conditional probability density

functions of Y I given Y I' .. .Y I-I as

T

. L(CT;,IIY p Y2 , ...Y I-1) = Ilf(YrIYj,Y2' ....Yr-I)·
1=1

Thus,
T

In L(CT;, IIYpY2" ..YH ) = I Inf(Y t IY pY 2"" .Y I - I )

1=1

1\

and since Y I IY 1,· .... • .Yr_ l - N(Ylir-1,f t)

1 1 1 1\

Inf(YIIY1, ....Y )=--ln27l'--lnf--(Y-Y )2
t-l 2 2 r 2f 1 I tlH '

and
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1\

where the values of ! 1 and Y 111-] for t = 1, ... ,T are calculated using the Kalman filter. The

effect of the starting parameters Ji and Co can be reduced by ignoring the first few

iterations of the Kalman filter in the calculation of the log likelihood function. Thus the

function

where d is the number of initial iterations ignored, can be maximised with respect to CJ; and

the elements of L using a non-linear optimisation routine.

The covariance matrices, namely Cl' C111-] and the error variance ! I' often· converge

quickly to fixed, steady state values. In such cases, the speed of the Kalman filtering routine

can be improved by using the steady state values of these covariance matrices. The
\

efficiency of the routine, when maximising the likelihood function directly, can be improved

further by concentrating out a parameter. This only applies to structural models which are

introduced later in this chapter and the approach will be discussed there.

The EM algorithm

Shumway and Stoffer (1982) developed an alternative method of maximising the likelihood

function by invoking the EM algorithm. The algorithm applies forward and backward Kalman

filter recursions on the data successively until the change in the likelihood function is small.

EM is an acronym for Expectation-Maximisation and describes the procedure of first

calculating the expected values of a complete data likelihood function conditional on the

observed data and then maximising that function.

T

L(CJ;, LIY], ...YT) = [l!(Yllal)f(allat_l)!(aO)
t=]
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T T

= TI!(atlat-l)TI!(Ytlat)!(aO)'
t=l' t=1

where a o,a j' .. .a T are regarded as unobserved or missing values and Y l' .. .YTare

observed values. It follows from the observation equation that Y tla t- N (hTa t, cr~) and

are held constant. Thus the' probability distribution functions embedded in the likelihood

function can be written as follows:

and the log likelihood function, with constants omitted from the equation, is given by

The terms a o,a l' ' .a T are unobserved and thus taking expectations of the above

expression with respect to the a o,a I' .. .a T conditional on the values Y j' .. .YT and using the

results of Appendix A.1 , gives

" 1 I I 1 "h'E[lnLc(cr; , LIYj, ...YT)] = -"2 log Co - "2tr{C~l (COlT + (aolT - Ji)(aOIT- Ji) T}

TIT /\ /\ T T /' 1\ T
-2"lnILI- 2"tr{l:-I[~::CCtiT + aq atiT) -I (Ct,HT + atlT at-liT )<1>T]}

t=1 t=1

1 T 1\ 1\ T T 1\ 1\ T .

- 2" tr{l: -I [<1>I (Ct,HT +a tiT at_IiT)T + <1>I (C
t
- llT + a t-1IT at-lIT )<pT])

t=1 t=1
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The function E[lnL c (a;,LIYl""Y T )] is maximised by setting the derivatives with respect

to a; and L to zero, letting j.1 = ~0lT and solving for a; and L. The resultant estimates

are given below and more details are provided in Appendix A.2.

" T 1\ I\T T 1\ /"oT T 1\ .I\T
L = r l [L (Cw + a/IT aw ) - L(C/,HlT + a w a/-lIT )<1>T - <1>L (C/,/-lIT + a/IT aI-lIT )T

1=1 1=1 /=1

T f\ fl T

+ <1>I (CI_I,T+al-lIT a I-liT )<1>T]
1=1

T 1\

and a; = r 1I[(Y/-hTa/IT )2 + hTCwh] ,
1=1

Box 2.4.3 : Optimal estimates for L and a;

Note that Kalman smoothing results are used in the estimation of the above parameters and

that the standard error estimates for a; and L can be calculated using various methods

such as the Louis Method (Tanner, 1993). Overall therefore the EM algorithm can be

summarised in the following steps:

1. Adopt sensible initial values for a; and L.

2. Use the Kalman filter recursions given in Box 2.4.1, for t = 1, ... T, and then use the

backward recursions given in Box 2.4.2 for t =T, T-1, ... 1 to calculate the log likelihood

as

3. Calculate estimates for a; and L as in Box 2.4.3.

4, Repeat steps 2 and 3 until satisfactory convergence of the algorithm is attained.

BOX 2.4.4 : EM algorithm
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The main advantages of using the EM algorithm as opposed to an optimising routine are that

derivatives need not be calculated and the likelihood function is guaranteed to increase with

every iteration of the algorithm. However, the EM algorithm is notoriously slow to converge

(Shumway and Stoffer, 1982). One possible approach is to use the EM algorithm to estimate

starting values for the unknown parameters and then to refine these estimates using a

discrete optimisation routine.

2.4.5 FORECASTING

The one-step-ahead for~cast is calculated by direct substitution in the observation equation

as

/\ /\

YT+w=hTaT+J =hTepaT,

and by repeated substitution, the forecast k steps ahead of time T is given by

A /\

YT+kIT= h
T

epk aT'

Confidence limits for these forecasts are derived using the one-step-ahead prediction error

variance,

"
= h

T
Ct!C-lh + a; .since Cc is independent of hT(a c- ac1t-J)

and more generally

k

Var (f T+k IYp ....YT) = hT(epk CT(epk)T +L epk-il:(epk-i)T)h + a;.
i=]
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The 1OO( 1- a)% confidence limits for the forecast YT+kIT are thus approximated by

k

hT[<1>kCT(<1>k)T + L<1>k-i L(<1>k-i)T]h+lY;
i=l

where Z a is the critical value for the N(O,1) distribution.
(1-"2)

2.4.6 INTERVENTION ANALVSIS

The state space form can easily be adapted to model intervention events by including

appropriate indicator terms in the model. In particular, as for ARIMA models, a single event

intervention j at time t J for j = 1, ... ,J where J is the number of intervention events, is

modelled by a pulse indicator as

_{a for t # J
It,j-

1 for 1 =1 J

and an intervention at time t J which results in a permanent change in the level of the time

series is modelled by a step indicator of the form

1= {a for
t ,}

1 for

The observation equation is now written as

J

Y t= h
T
at+ct+L It,)A j

)=1

where A} is a constant associated with the indicator variable,

h

Letting a' =
(

and h' = fort =1, ... ,T,
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the observation equation becomes

and the state equation can be written as

(2.8)

(2.9)

where A = , I is the identny matrix and va{~J~ (~ ~J. The equations (2.8)

and (2.9) describe a state space model which can be fitted to the data as described in the

previous section using Kalman filtering and maximum likelihood estimates for the

parameters o-~ , Land /-/.

2.4.7 STRUCTURAL MODELS

Structural models constitute a specific class of state space models in which the observations

are modelled as the sum of separate components such as trend and seasonality. Some

examples of structural models relevant to the present study are given below.

Random walk plus noise

This model, also known as the steady state model, is one of the simplest state space models.

The observation equation is given by

where at follows a random walk and &t- N(O,o-;). Thus the state equation is given by

where 1J( ~ N(O, o-~). Note that in this case the terms h, <1> and L in the observation and

state equations are 1, 1 and o-~ respectively.
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Localliilear trend model

This model is described by the observation equation

together with the state equations

These equations can be expressed more succinctly in state space form as

a t= (J-lt) = (1 l)(J-lI_l) +(77t).
fJl 0 1 fJt-J ~t

Basic structural models

These models are examples of structural models which contain trend, seasonal and irregular

components and are thus appropriate for the monthly time series used in the present study.

The basic structural model (BSM) can be represented by the set of equations

s-J

rt= - L:r r-)+{jJ t

)=1

where J-lt is the local linear trend, fJt is the slope, rt is the seasonal component and the

terms· &t' 77t' ~ t and {jJ t are mutually uncorrelated, irregular components such that

~ t and~ {jJ tallow J-l t' fJ I and r t respectively to evolve over time. Note that for the
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s-I

seasonal components, E(Lr t-) =0, where s is the number of seasons. Thus a monthly
j=O

time series model can be expressed in state space form as follows:

fil

131

rl

rI-I

r 1-2

r 1-3

YI= (1 0 1 0 0 0 0 0 0 0 0 0 0) r t-4 +&1

r 1-5

r 1-6

r 1-7

r 1-8

r 1-9

r 1-10

fil 1 1 0 0 0 0 0 0 0 0 0 0 0 fil-I 7]1

131 0 1 0 0 0 0 0 0 0 0 0 0 0 13t-1 ~I

rt 0 0 -1 -1 -1 -1 -1 -'-1 -1 -1 -1 -1 -1 rI-I ill/

r I-J 0 0 1 0 0 0 0 0 0 0 0 0 0 r 1-2 0

r 1-2 0 0 0 1 0 0 0 0 0 0 0 0 0 r 1-3 0

r t-3 0 0 0 0 1 0 0 0 0 0 0 0 0 r 1-4 0

a= r 1-4 = 0 0 0 0 0 1 0 0 0 0 0 0 0 r 1-5 + 0I _

r /-5 0 0 0 0 0 0 1 0 0 0 0 0 0 r 1-6 0

r /-6 0 0 0 0 0 0 0 1 0 0 0 0 0 r t-7 0

r 1-7 0 0 0 0 0 0 0 0 1 0 0 0 0 r 1-8 0

r 1-8 0 0 0 0 0 0 0 0 0 1 0 0 0 r 1-9 0

r /-9 0 0 0 0 0 0 0 0 0 0 1 0 0 rHO 0

r 1-10 0 0 0 0 0 0 0 0 0 0 0 1 0 r HI 0

The seasonal component of the BSM can also be modelled using trigonometric terms in the

l.: I2J

model. The seasonal effect at time t is given by r1= I r jl where
j=1
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( 21f}

( J
I cos-

r~t ==1 s
r it I . 21f}\- sm---;-

2 '\

.sin -.!fL r J ( Js r it-l m it

21f} r ;t-I + m;t
COS---;-)

for j = 1, , lfJwhere r; is introduced as an artefact to generate rit and lfJ
s •

denotes defined as the integer part of "2 .The white noise disturbances m it and m it allow

the seasonality to evolve over time and are assumed to be uncorrelated and to follow a

s ,
normal distribution. If s is even, then the sine term with j = - is zero, and thus the number of

2

trigonometric parameters is s - 1.

Because the BSM with trigonometric terms for monthly data, Le. for s=12, is very

cumbersome to write out in full, the model for quarterly data represented in state space form

is given below. Thus

13t

Yt== (1 0 1 0 1) rlt +&t

1 1 0 0 0
f.Lr

0 1 0 0 0
f.L t- 1 17r

Pt cos(;) sin(;) 13t-1 t;t
0 0 0

and a== rlt == rlt-I + WItt
• -sin(;) co~;)

• •
rlt 0 0 0 rlt-l m lt

r Zt
0 0 0 0 -1

r Zt-I m zr

Concentrating out a parameter

The computation of the parameter estimates by maximising the likelihood directly can be

made more computationally efficient when applied to the structural model, and the BSM in

particular, by "concentrating" out a parameter, resulting in one less parameter being

estimated. This is done by selecting one of the noise variances as a scaling variance, for
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example take a E
2 = a'2

. The optimal estimate of a'2 is derived by differentiating the

likelihood function with respect to a '2 and setting the result equal to zero to give

SUbstituting this result back into the likelihood function results in

which is known as the concentrated likelihood function. This function is then maximised with

respect to the unknown parameters a '7 2 a, 2 and a ill 2 , using the Kalman filtering

equations as before, but scaling a '7
2

, a, 2, a ill 2, Ct , CtH and f t by a *2 and fixing

the scaling variance to 1 (Janaceck and Swift, 1993; Jones, 1993).
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2.5 RELATIONSHIPS BETWEEN METHODS

There are various cases in which exponential smoothing and ARIMA models and ARIMA and

state space models are found to be equivalent. Examples of such cases are discussed below.

2.5.1 EXPONENTIAL SMOOTHING AND ARIMA MODELS

The simple exponential smoothing method has the same updating equations and forecasting

functions as ARIMA(0,1, 1) models. Similarly exponential smoothing with a trend can be

shown to be equivalent to an ARIMA(0,2,2) model. Further'details of this are given in

Appendix A.3. For monthly seasonality, the ARIMA model equivalent to the additive Holt-

Winters exponential smoothing method is given by (1- B)(1- BI2)Yt=0IiB)Zt' where

°13 is a moving average parameter, but this is so complex that it would never be identified in

practice. Details on this relationship are proved in Box and Jenkins (1976). There is no

ARIMA model that is eqUivalent to the multiplicative Holt-Winters method. However it can be

shown that for certain cases, by imposing non-linear restrictions on the coefficients of the

ARIMA model, the same forecast functions but not the same updating equations as the Holt-

Winters method are obtained (Abraham and Ledolter, 1986).

2.5.2 ARIMA MODELS IN GENERAL STATE SPACE FORM

It can be shown that all ARMA models can be placed in the state space form and thus

maximum likelihood estimates of the parameters are easily· calculated. Letting

d =max(p, q+1), the model ARMA(p,q) can be expressed in state space as

Yt= (1 0 O)a t

rP I 1 0 0 0 1

rP 2 0 1 0 0 OJ

a= a H + °2 'lltt

rPd 0 0 0 0 °d-l
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where tP;= 0 for all i> p and 8 j= 0 for all j > q and {7](} is a scalar white noise sequence

which satisfies 7](= N (0, a 2) for t= 1, ... T (Abraham and Ledolter, 1986).

BSM and MA(q) models

The random walk plus noise model is equivalent to an ARIMA(O,1,1) model where the

moving average parameter 8 is constrained as - 1:::; 8 :::; 0 and the linear trend model is

equivalent to an ARIMA(O,2,2) model, with various restrictions placed on the moving average

parameters 81 and 82 (Abraham _and Ledolter, 1986; Janacek and Swift, 1993). From this

it can thus be deduced that the simple exponential smoothing method has the same updating

functions and forecasting equations as the structural random walk plus noise model and that

the exponential smoothing method with a trend is equivalent to the linear trend model.

Furthermore the BSM with dummy seasonal components is equivalent to the

ARIMA(O,1,1)x(O,1,1) 12 model when the seasonal moving average parameter is taken as

oJ= -1 and the noise variances a~ and at are exactly zero (Janacek and SWift, 1993).
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3.APPLlCATIONS

3.1. TIME SERIES

The time -series introduced in the present study involve the '!!onthly electricity consumption,

measured in Giga Watt hours (GWH), for selected municipalities in Kwa-Zulu Natal, between

the years 1980 and 1995. The complete data sets are given in Appendix S. To maintain

client confidentiality, the municipalities are not identified but are simply referred to as

Municipalities A, S, C and D. All individual series studied exhibited a trend and multiplicative

seasonality and specific features of the data are discussed below. It should be noted that the

last twelve months of each series was withheld from the modelling process, and used as a

test set for assessing the forecasting results.

3.1.1. MUNICIPALITY A

The monthly electricity consumption between 1980 and 1995 of Municipality A is exhibited as

a time series plot in Figure 3. 1. 1. Prior to January 1990, monthly readings were taken

manually on a working day close to the 24th day of the month. From January 1990 onwards,

the meter was read electronically at midnight on the last day of each month. The manual

meter reading method resulted in a variable number of hours of electricity consumption

recorded within each month. A trading day adjustment was considered, but, since the dates

and times at which the meters were read prior to 1990 were unknown, this was not

implemented. Thus the raw data was used in all subsequent analyses and cognisance was

taken of the fact that the nature of the series might have changed after the electronic

metering system was installed.
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Figure 3. 1. 1. : Time series of monthly electricity consumption for Municipality A

120

110

100

90

:r
3: 80
Cl

70

60

50

40
0 ;;; N (") ..,. l() '" .....
CD CD CD CD CD CD CD

-" -" -" -" -" -" -" -"
~ '" ~ '" '" '" '" '"..., ..., ..., ..., ..., ...,

3.1.2. MUNICIPALITY B
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The monthly electricity consumption of this municipality between January 1980 and

December 1995 is exhibited as a time series plot in Figure 3. 1. 2. It should be noted that an

electronic meter reading system was installed in January. 1990, and that no trading day

adjustments were introduced to accommodate the irregular number of days within the billing

months prior to this when analysing the data.
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Figure 3. 1. 2.: Time series of monthly electricity consumption for Municipality B
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3.1.3. MUNICIPALITY C

A time series plot of the monthly electricity consumption of Municipality C is shown in

Figure 3.1.3. The municipality imposed water restrictions on their customers between

January 1983 and March 1984 and again between August 1993 and January 199~ and in

addition there was a long billing month of 40 days in July 1991 when the meter reading

system changed from manual to electronic. These features are shown in Figure 3. 1. 3.

Furthermore, a large mine just outside the municipality closed down permanently in August

1993 and it was thought that its satellite industries within the municipality would consequently

consume less electricity.
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Figure 3. 1. 3. : Time series of monthly electricity consumption for Municipality C
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No trading day adjustments were invoked in subsequent analyses. The effect of the water

restrictions, the long billing month and the mine closure were investigated using intervention

techniques.
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3.1.4. MUNICIPALITY 0

A time series plot of the monthly electricity consumption of Municipality D is given in

Figure 3.1.4. A large factory has operated in the municipality since 1983 and at present

accounts for approximately half of the electricity consumed. A time series plot of the

electricity consumption for this factory is included in Figure 3.1.4 and the actual data is given

in Appendix B.

It is clear from Figure 3.1.4 that the electricity consumption of the factory is very erratic. In

particular the factory started production in July 1983, but only produced on demand. This

resulted in wild fluctuations in electricity consumption and as a consequence Eskom

intro~uced a tariff incentive scheme in March 1988 to encourage a more consistent

consumption pattern. The scheme was effective but in May 1990 the market for the factory's

products collapsed and it closed. The plant was sold, adapted to a different manufacturing

process and production from the new plant started in June 1992 and has been reasonably

stable since then. The monthly electricity consumption for the factory exhibits no trend or

seasonality.
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3.2. EXPONENTIAL SMOOTHING

All the time series studied here exhibit trend and multiplicative seasonality, and the Holt-

Winters method of smoothing is therefore appropriate. The results of applying this method for

Municipality A are presented in detail below and those for the other municipalities, which are

similar, are summarised thereafter.

The Holt-Winters procedure was implemented using the programming language Gauss in

order to introduce a flexibility into the analyses which is' not available in packages such as

Statistica, SAS and Forecast Pro.

3.2.1. MUNICIPALITY A

The time series of monthly electricity consumption for Municipality A between 1980 and 1994

was regarded as a complete series and the twelve observations for 1995 were used as a test

set for evaluating forecasts.

Three different sets of initial values for L0 ' T (J and Si j = 1,....12, based on the first years

data, the first two years data and all the data and calculated using equations (2.3), (2.4) and

(2.5) respectively, were used in the smoothing procedure. In each case estir;nates of the

smoothing parameters a ,r and 8 were obtained by minimising three different criteria.

These are the mean squared error criterion given in equation (2.1) and specified here by

1 T 1\

M.S.E. = T _ "'6 L(Y'-Y"'-l f '
-' ,=37

the mean absolute percentage error defined in equation (2.2) and given by'

and the mean squared error criterion for twelve months ahead specified in equation (2.6) and

calculated here as
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The adequacy of the various starting value options and estimation criteria was evaluated by

forecasting the observations of the test set, and using the criteria

and

to measure the accuracy of these forecasts.

The complete set of results are summarised in Table 3. 2. 1. It is interesting to observe that

in all cases the best forecasts, as gauged by the particular criterion minimised, were obtained

by using initial values based on all the data, but that this is not true when forecasts are

evaluated using the criteria M.S.E.(F) and MAP.E.(F) based on the test set. Comparisons

between the results for the different minimisation criteria can be made on the basis of

M.S.E.(F) and MAP.E.(F) and in particular it is clear that the results obtained by minimising

M.S.E. provide the best forecasts for the test set. Since both the M.S.E. and the MAP.E.

criteria measure the one-step-ahead forecast errors, minimising the M.S.E. is easier to

implement and the results are better than for minimising MAP.E., only the minimisation

criteria M.S.E. and M.S.E.(12) will be used in further comparisons.
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0.197 0.023 0.285 14.338 7.684

0.186 0.001 0.075 12.812 11.733

0.144 0.024 0.295 3.32% 7.958

0.126 0.035 0.245 3.37% 8.314

0.179 0.003 0.097 3.19% 10.959

0.045 0.091 0.245 17.373 11.304

0.121 0.026 0.261 17.243 8.220

0.126 ·0.000 0.080 15.350 11.283

Table 3. 2. 1. Summary of Results for Municipality A

MlfNiMI§§fP:
ig~!~!:ii

~~18~~~i!:!!:

13.836 7.567 1.94%

1.19%

2.69%

2.08%

2.15%

2.61%

2.70%

2.26%

2.29%

(*) Some problems in convergence, due to the nature of the function, were encountered.

Overall, the estimates of the smoothing parameters a , rand 6 varied slightly with choice

in initial values and in the criterion to be minimised. However, the seasonal parameter 6 is

much smaller when the initial values are calculated using all the data as opposed to the first

one or two years data. This low value is a result of initial seasonal estimates being good

approximations and, apart from the initial few years data, there being little change in the

seasonal pattern of the series. It is interesting to note that In all cases the estimate for r was

close to zero, suggesting that changes in the trend are very slow.

. In addition, for the case in which the criterion M.S.E. is minimised, with initial values

calculated from the first years data, a check on the nature of the optimum was made by

plotting M.S.E. against values of each pair of parameters, with the third parameter fixed at its

optimum. The plots for the data of Municipality A are shown in Figure 3. 1. 5 and clearly

indicate a single global minimum for the criterion.
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Figure 3. 1. 5. : Global minimum for M.S.E. criterion found by applying exponential
smoothing for Municipality A
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For given values of the smoothing parameters, the time series Y r can be decomposed into

the four component series of level, trend, seasonality and error, calculated as L r • Tt' S r

and er' for t = 1....T, respectively. The decomposition of the time series of monthly

electricity consumption for Municipality A is illustrated in Figure 3. 1. 6. for the optimal

parameter values a =0.195, r =0.021 and 8 =0.283 obtained by minimising the M.S.E.

criterion and using initial values based on the first years data. The residual series is shown in

Figure 3. 1. 7. The high residual value in January 1989 is due to an unusually long billing

month of 34 days and the low value associated with January 1990 coincides with the

installation of an electronic metering system which resulted in a short billing month.

Otherwise this error series appears to be random indicating that the Holt-Winters method has

captured the systematic variation of the original time series.

Figure 3. 1. 6. Municipality A : Decomposition of the time series
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Figure 3. 1. 7 Municipality A : Residual error for exponential smoothing
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In addition to analysing the full series, the sub-series between January 1990 and December

1994 was considered in isolation, in order to investigate whether or not the electronically

metered sub-series would result in better forecasts. However the sub-series was too short to

perform any meaningful analysis.

3.2.2. MUNICIPALITIES BAND C

The Holt-Winters exponential smoothing procedure was implemented for the time series of

monthly electricity consumption for Municipalities Band C in a manner similar to that of

Municipality A and the results are summarised in Tables 3. 2. 2. and 3. 2. 3. respectively.

Again a low parameter value 8 was derived when calculating the initial values using the

whole series, indicating a stable seasonal pattern.
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Table 3. 2. 2. : Summary of results for Municipality B

0.040

0.003

0.005

0.033

0.000

0.462

0.000

0.472

0.491

0.000

1.207

1.154

1.421

1.507

1.372

0.409

1.118

0.407

0.401

1.133

2.87%

4.43%

2.82%

2.44%

2.34%

Table 3. 2. 3. : Summary of results for Municipality C

0.055

0.044

0.013

0.034

0.001
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0.227

0.010

0.206

0.216

0.010

0.279

0.230

0.296

0.326

0.255

0.138

0.220

0.146

0.142

0.218

3.87%

4.85%

3.39%

2.48%

.2.53%



3.2.3. MUNICIPALITY D

As mentioned earlier, the large factory within the boundaries of Municipality D has a

dominating effect on the monthly electricity consumption in that municipality. As a

consequence, the full time series for Municipality D was split into two series, \electricity

consumption excluding the factory and the electricity consumption of the factory itself and

each series was analysed separately. The series which excludes the factory consumption

exhibits trend and seasonality, forecasts for it were obtained in the same way as those for

Municipalities A, Band C and the results are summarised in Table 3.2.4. The time series of

monthly electricity consumption for the factory exhibited no systematic trend or seasonality

and forecasts were therefore obtained by simple exponential smoothing. In addition, two time

series were analysed, the complete time seri.es as well as only the new factory's electricity

consumption from July 1992 to December 1994. The results are summarised in Table 3.2.5

and clearly using the complete time series results in more accurate forecasts. Note that as a

result of the large fluctuations in the time series prior to July 1992, the minimisation criterion

M.S.E. is much larger when using the complete time series as opposed to using the time

series only between July 1992 and December 1994.

Table 3. 2. 4 : Summary of results for Municipality D excluding the factory

0.203 0.542

0.023 0.000

0.009 0.492

0.115 0.524

1.00 0.306
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8.761
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11.033
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Table 3. 2. 5. : Summary of results for the factory

3.2.4.COMMENTS

6.139 17.990 11.86%

The optimal method of calculating the initial values is not clear, although using the first years

data appears to give good results generally and is therefore the preferred option. The

optimisation criterion MAP.E. was awkward to calculate and the results were poor compared

to the M.S.E. criterion. In addition, the optimisation criterion M.S.E. was simpler to calculate

than the criterion M.S.E.(12) and the results are better as measured by the forecasting

criteria M.S.E.(F) and MAP.E.(F). Thus the optimisation criterion M.S.E. is taken as the

most suitable option.
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3.4 ARIMA MODELS

ARIMA models were fitted to each of the time series in this study using the Box-Jenkins

approach and the resultant models were used to provide forecasts. The package SAS was

used for all the modelling processes.

3.4.1 MUNICIPALITY A

Plots of the ACF's for Yt ' the time series of monthly electricity consumption for Municipality

A, and the differenced time series VYt and VV 12Yt are given in Figure 3. 3. 1. It is clear

from these that first order and seasonal differencing are appropriate and thus that the model

will be of type ARIMA(p,1,q)x(P,1 ,0) 12' The initial model fitted after studying the pattem of

the ACF and the PACF of the differenced series VV 12Yt' given in Figures 3.. 3. 1 and 3. 3. 2

respectively, was an ARIMA(2,1,1)x(O,1,1) 12 model. However, the t ratios for testing whether

the parameters of this model are zero, given in Table 3. 3. 1 below, suggested that the

parameter estimate for~2 was unnecessary and thus that the model ARIMA(1,1,1)x(O,1,1)12

should be examined.

Table 3. 3. 1 Municipality A : Parameter estimates for the ARIMA (2,1,1 )x(O,1,1) 12

model

Parameter Estimate t ratio

0, 0.74794 8.41

e 0.78942 11.37I

~l -0.16049 -1.37

~" 0.05081 0.48

The associated results and diagnostics for the model ARIMA(1, 1,1)x(O,1,1) 12 are

summarised in Table 3. 3. 2. The t-ratios for the parameters are all greater than 1.96 and
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Figure 3. 3. 1 Municipality A: ACF's of Yt • VY t and VVl~Yt
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Figure 3. 3. 2 Municipality A : PACF of VV 12Y 1

Partial Autocorrelations for VV 12YI
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thus the parameters are significantly different from zero at the 5% level of significance. It

should be noted that a high correlation between the parameter estimates for 81 and tl>j is an

indication that the model could be over-parameterised, but the AIC statistic did not improve

by fitting models with fewer parameters. The ACF of the residuals given in Figure 3. 3. 3

together with the portmanteau test results suggest that the residuals are random and thus

that the model ARIMA(1, 1,1)x(O,1,1) 12 is acceptable. The model adopted can thus be

summarised as

W,= -0.21833W,_1+Z ,-0.69143Z ,_1-0.7869Z 1_12+0.54409Z,-13
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Table 3. 3. 2 Municipality A : Results for fitting an ARIMA (1,1,1 )x(O,1,1) 12 model

Parameter estimates using MLE : Parameter Estimate t ratio

81 0.69143 9.97

0 0.78690 11.37I

tPl -0.21833 -2.35

The Portmanteau test for white noise: Lags Chi~quare OF P-value

1-6 3.38 3 0.337

1-12 8.08 9 0.526

1-18 13.87 15 0.536

1-24 16.95 21 0.714

1-30 18.54 27 0.886

Correlations of the Estimates : Parameter 81 e tP I .I

8J 1.000 0.049 0.607

0 0.049 1.000 -0.068I

tP 1 0.607 -0.068 1.000

Model comparison statistics:

Test set forecasting results:

AIC =928.836

M.S.E. (F) =6.795

MAP.E.(F) = 1.96%
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Figure 3. 3. 3. Municipality A : Residual error resulting from fitting an

ARIMA(1,1,1)x(O,1,1) 12 model
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An alternative approach to identifying the most appropriate model to that described above is

to fit an over-parameterised model to the series and then to reduce it by successively

dropping parameters, until all the parameters are significantly different from zero. Because

the values of p,q, P and Q rarely exceed 2, the model ARIMA(2, 1,2)x(2,1,2) 12 was initially

fitted to the time series. Reducing the model until all the t-ratios in the model were significant

resulted in the model ARIMA(1,1,1)x(O,1,1)12 which is consistent with the model selected

above.

The test set of the final twelve months electricity consumption was forecast using the model

ARIMA(1,1, 1)x(O,1,1) 12 and the forecasting error was measured as before using

and M.A.P.E.(F)

51



where T=180, the length of the times series used in the modelling process. The results are

included in Table 3. 3. 2.

The sub-series of monthly electricity consumption of Municipality A, between January 1990

and December 1994, when the meters were read electronically, was considered separately

to ascertain whether or not this time series would result in more accurate forecasts. First

order and seasonal differencing were again appropriate and the ACF and PACF of the

resultant differenced series are presented in Figure 3. 3. 4 .

Figure 3. 3. 4 Municipality A: ACF and PACF of VV'11ft for the sub-series

corresponding to electronic metering
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Clearly, there are no significant autocorrelations or partial autocorrelations indicating that

either the differenced series is white noise or that the time series is too short to derive any

meaningful results. Overall it was therefore not deemed sensible to pursue modelling this

time series any further.

3.4.2 MUNICIPALITY B

The ACF's of Yr ' the time series for monthly electricity consumption of Municipality B, and

of the differenced series V I2Y r , and VV 12Yr given in Figure 3. 3. 5 clearly suggest a

model of the form ARIMA(p,0,q)x(P,1 ,0) 12. The PACF of the seasonally differenced series is

given in Figure 3. 3. 6. Various suitable models suggested by the ACF and PACF patterns

were investigated, but a model that satisfied all the diagnostic checks could not be found.

After considerable. investigation, the most suitable model was deemed to be

ARIMA(1,0,2)x(0,1,1)12. The ACF of the residual errors for this model given in Figure 3.3.7,

are acceptable but the results which are summarised in Table 3. 3. 3 clearly show that the

portmanteau test for white noise is not satisfactory. In addition, the high correlation between

the MA parameter estimates for ()1 and ()2 suggests that the model could well be over-

parameterised. The model ARIMA(0,0,O)x(0,1, 1) 12 was also fitted to the time series but the

ACF of the associated residuals given in Figure 3. 3. 8 was clearly unsatisfactory. Another

altemative model considered was ARIMA(2,0,1)x(0,1,1) 12 but a correlation of -0.891

between the parameter estimates for ifJl and ifJ2 was deemed to be unacceptably high.

Fitting an over-parameterised model and systematically eliminating the parameters

according to the t-ratios resulted in the model ARIMA(1 ,0,2)x(0,1,1) 12 which is consistent

with the model deduced from the patterns of the ACF and PACF. Thus the model

W/= 0.93347Wr_1+Z r-1.05609Z r_l+0.34432Z t-2-0.64602Z /_12+0.68226Z r_13-0.22243Z /_14+0.35555

where W/=V 12Y r , is taken to be the most appropriate model for the time series of monthly

electricity consumption for Municipality B.
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Figure 3. 3. 5 Municipality B : ACF's of ft' V12f t and VV1Zft
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Figure 3. 3. 6 Municipality B : PACF of V'J2Yt
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Figure 3. 3. 7 Municipality B : ACF of the residual errors when fitting an

ARIMA(1,O,2)x(O,1,1) 12 model.
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Figure 3. 3. 8 Municipality B : ACF of the residual errors when fitting an

ARIMA(O,O,O)x(O,1,1) 12 model
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Table 3. 3. 3 Municipality B : Results when fitting an ARIMA(1 ,O,2)x(O,1,1) 12 model

Parameter estimates using MLE : Parameter Estimate t ratio

t5 0.35555 2.88

81 1.05609 13.57

82 -0.34432 -4.54

e 0.64602 9.261

rfJI 0.93347 23.34

The Portmanteau test for white noise: Lags Chi Square OF P-value

1-6 4.86 2 0.088

1-12 17.32 8 0.027

1-18 25.99 14 0.026

1-24 32.64 20 0.037

1-30 39.11 26 0.048

Correlations of the Estimates :

Parameter t5 81 82 e rfJ 11

t5 1.000 -0.011 0.008 0.022 -0.026

81 -0.011 1.000 -0.633 -0.014 0.342

B, 0.008 -0.633 1.000 0.193 0.256

e 0.022 -0.014 0.193 1.000 0.2941

rfJl -0.026 0.342 0.256 0.294 1.000

Model comparison statistics:

Test Set Forecasting Results:

AIC =489.661

M.S.E.(F) = 0.432
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The sub-series of electricity consumption for Municipality B which was measured

electronically from Janual)' 1990 onwards was modelled to ascertain if a more satisfactol)'

model could be obtained. The ACF in Figure 3. 3. 9 indicates only seasonal differencing of

the series is required. After examining the ACF and PACF of the differenced

series, various models including ARIMA(O,O,1 )x(O,1,1) 12' ARIMA(1 ,O,O)x(O,1,1) 12 and

ARIMA(O,O,O)x(O,1,1)12 were fitted, arid the model ARIMA(1,O,1)x(O.1,1)12 was found to be

the most appropriate. The associated results for this model, which are given in Table 3. 3. 5,

are more acceptable than for those for the best model derived when modelling the complete

time series. This is probably as a result of the time series being more regular once the

meters were read electronically.

Th.e test set of observations was forecast using the ARIMA(1,O,2)x(O,1, 1) 12 model derived

for the whole time series and then using the ARIMA(1,O,1)x(0, 1,1) 12 model derived for the

shorter series and the results are compared in Table 3. 3. 4. It is interesting to note that

although the model derived using the complete time series was poor, it still produced slightly

better forecasting results than when using the model derived using the shorter time series of

electronically metered electricity consumption.

Table 3. 3. 4 Municipality 8 : Comparison of forecast results using the whole time

series verses the sub-series corresponding to electronic metering
. ,

DATA MODEL M.A.P.E.(F) M.S.E.(F)

1980->1994 ARIMA(1,O,2)x(O,1,1) 12 2.72% 0.432

1990->1994 ARIMA(1,O, 1)x(0,1,1) 12 3.01% 0.466
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Figure 3. 3. 9 Municipality B : The ACF and PACF for the sub-series corresponding to

electronic metering
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Table 3. 3. 5 Municipality 8: Results when fitting an ARIMA(1,O,1)x(O,1,1) 12 model to

sub-series corresponding to electronic metering

Parameter estimates using MLE : Parameter Estimate t ratio

(JI 0.79055 5.13

e 0.60940 2.731

tP! 0.95859 9.64

The Portmanteau test for white noise: Lags Chi Square

1-6 3.60

1-12 4.90

1-18 12.37

1-24 17.33

OF

3

9

15

21

P-value

0.309

0.843

0.651

0.691

Correlations of the Estimates: Parameter (JI e tPl!

(Jj 1.000 0.174 0.832

e 0.174 1.000 0.353I

tP 1 0.832 0.353 1.000

Model comparison statistics:

Test set forecasting results:

AIC =124.059

M.S.E.(F) = 0.466
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3.4.3 MUNICIPALITY C

A number of events such as water restrictions are thought to have had an impact on the time

series of monthly electricity consumption for Municipality C. To assess the improvement in

the forecast when including these events in the model, the time series was modelled

excluding and then including the intervention events and the results compared.

The ACF's of the time series Y I' and of the difference time series V12Y 1 and VV liY / '

which are given in Figure 3. 3. 10, indicate a model of the form ARIMA(p,0,q)x(P,1 ,0) 12 .

Identifying the characteristic patterns of the ACF and PACF, which are given in

Figure 3. 3. 11, is difficult as they have probably been distorted by intervention events. Thus

an over-parameterised model was fitted and parameters not significantly different from zero

were successively dropped from the model resulting in the model ARIMA(2,O,1)x(O,1,1) 12 .

Details of this models fit are given in Table 3. 3. 6 and the ACF of the residual error is shown

in Figure 3. 3. 13. In summary therefore the model represented by

W/= 0.50133W/_1+OJ0844WI _ 2+Z /-0.56911Z/-0.89129Z1_12-0.50724Z/_13+0.17095

where W1=V 12Y t ,was adopted.

Table 3. 3. 6 Municipality C: Results for the ARIMA(2,O,1 )x(O,1,1) 12 model

Parameter estimates using MLE : Parameter Estimate t ratio

0 0.17095 9.74

()1 0.56911 4.02

e 0.89129 9.481

t/>J 0.50133 3.51

t/>2 0.30844 3.94

Model comparison statistics: AIC = 246.095 sec = 261.715

Test set forecasting results: M.S.E.(F) = 0.165 MAP.E. = 3.79%
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Figure 3. 3. 10 Municipality C : ACF's of YI' V 12YI and VV I2YI

Autocorrelations for Y
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Figure 3. 3.11 Municipality C : PACF of V12 y/

Partial Autocorrelations
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The intervention events expected to have an impact on the electricity, consumption for

Municipality C are summarised in Table 3. 3. 7. The two periods of water restrictions were

modelled as separate interventions because the severity of the restrictions differed.

Table 3. 3. 7 Municipality C : Summary of intervention events

INTERVENTION SERIES PARAMETER DESCRIPTION

{' t = Jan'83- > Mar'84 Water restrictions between January 198

I -
1./- 0 all other months AI and March 1984.

r t = Jul'91 There was a _long billing month of 40 days i

I, =-,/ 0 all other months A2
July 1991 when the meter reading syster

. . -
changed from manual to electronic.

r t = Jan'80 - Jul'93 In August 1993 a large mine just outside th,

I -
3,1- 0 all other months A3

municipality's area of supply closed dow,

permanently. _

r t = AlIg'93 - Jan'94 Water restrictions between August 199:
I -

4,1- 0 all other months A4 and January 1994.
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A suitable ARIMA model was developed for the time series unaffected by any interventions,

Le. for the sub-series from April 1984 to June 1991. The model ARIMA(1 ,0,0)x(1,1,0) 12

as identified from the ACF and PACF given in Figure 3.3.12 and the model

ARIMA(1 ,0,0)x(2,1,0) 12 was identified by systematically reducing an over-parameterised

model. The results for fitting both models are summarised in Table 3. 3. 8 and clearly there is

very little difference, the former performing better according to the SBC statistic and the

latter model resulting in a smaller AIC statistic. The ARIMA(1 ,0,0)x(2,1,0) 12 model was taken

as the most suitable since the AIC statistic is more commonly used than the SBC statistic

Thus the model ARIMA(1 ,0,0)x(2,1,0) 12 was used in conjunction with the intervention events

specified earlier and the results are given in Figure 3. 3. 9. A disturbing feature is that the

parameter associated with the mine closure was estimated to be negative, but is expected to

be positive. Since this parameter is just significantly different from zero at the 5% level it was

therefore decided to remove it from the model. The final results are given in Table 3. 3. 9. A

noticeable problem with the residual errors is highlighted by the portmanteau statistic which

indicates that the residual errors are not white noise, and this is illustrated in a plot of the

ACF of the residual error given in Figure 3. 3. 14. As a point of interest the model

ARIMA(1 ,0,0)x(1,1,0) 12 including interventions also resulted in similar problems and since no

other suitable model could be fitted, the model ARIMA(1,O,0)x(2,1 ,0) 12 including

interventions was taken as the best fitting model.

This model can be represented by

Wt=Z t-0.12390WH-0.54892WH2-0.28705Wt_24-0.06801Wt_13-0.03556Wt_25+0.20702
- 0.40 1361 It+1.037351 ? t-0.436531 4 t

• -, >

64



Figure 3. 3.12 Municipality C : ACF of Yr and V 12Yr and PACF of V12Yr resulting

from the time series unaffected by intervention events.

Autocorrelations for Yr

La'] AutoCorr.
2 +.443
4 +.042
6 -.114
8 +.060

10 +.376
12 +.602
14 +. 27 ~I

16 +.012
18 -.189
20 -.040
22 +.278
24 +.433
26 +.128
28 -.112
~iO -.288
32 -.160
34 +.084
.i6 +.206

-1 -0.5 Cl 0.5 1

Autocorrelations for V12 Y,
LaC;:l AlltoCorr .

" ... . 183
-.:::16

,; -.019
8 +.122

10 -.~50

12 -.5:;:8
14 -.047
1f, .... 148
18 .... 049
2C .... 080
22 +.223
24 + .175
26 -.084
28 -.108
30 -.101
32 -.087
34 -.081
36 - .125

-1 -0.5 o 0.5

Partial Autocorrelations for

Lag PACorr.
2 -.222
4 -.097
6 .... 003
8 -.132

10 - .156
12 -.246
14 -.123
16 -.106
18 +.165
20 +.077
22 +.010
24 -.032
26 -.151
28 .... 061
30 -.020
32 -.040
34 +.030
36 -.091

-1 -0.5

65

-,,,,,,

~

o 0.5



Table 3. 3. 8 Municipality C : Comparison of Model Results fitted to the time series

unaffected by intervention events

ARIMA(1,O,O)x(1,1,O) 12 ARIMA(1,O,O)x(2,1,O) 12

Parameter Estimate t ratio Parameter Estimate t ratio

8 0.24502 9.52 8 0.24760 12.32

f/>I
-0.42400 -3.84

f/>I
-0.46106 -4.37

<PI -0.47064 -4.36 <PI -0.59602 -4.94

<P 2
-0.23774 -1.99

The Portmanteau test for white noise:
Lags Chi Square OF P-value Lags Chi Square OF P-value

1-6 4.56 4 0.335 1-6 5.76 3 0.124

1-12 16.08 10 0.097 1-12 14.94 9 0.093

1-18 20.68 16 0.191 1-18 18.00 15 0.263

1-24 31.94 22 0.078 1-24 23.81 21 0.303

Model comDarison statistics:
AIC sac AIC sac

96.7852 103.6974 95.52057 104.7905

Figure 3. 3. 13 Municipality c: Residual errors when fitting an ARIMA(2,O,1 )x(O,1,1) 12

model to the time series unaffected by intervention events
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Table 3. 3. 9 Municipality C : Parameter estimates when fitting an

ARIMA(1,O,O)x(2,1,O) 12 model including Interventions

Parameter Estimate t ratio Parameter Estimate t ratio

5 0.50436 3.52 AI -0.75120 -3.12

cP, -0.16103 -2.04 A2 1.17877 2.61

<1>1 -0.50672 -6.22 A3 -0.30749 -2.09

<1>2 -0.24856 -3.01 A4 -0.42672 -4.03

Table 3. 3. 10 Municipality C : Results when fitting an ARIMA(1,O,O)x(2,1,0) 12 model

including 'intervention events

Lags Chi Square OF P-value

1-6 25.65 3 0.000

1-12 34.46 9 0.000

1-18 35.98 15 0.002

1-24 38.92 21 0.010

1-30 41.88 27 0.034

Model comparison statistics: AIC = 272.992 SBC = 294.860

. Test set forecasting results: M.S.E.(F) = 0.065 M.A.P.E. =2.13%
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Figure 3. 3. 14 Municipality C : Residual errors resulting from fitting an

ARIMA(1,O,O)x(2,1,O) 12 model including Interventions
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The ARIMA(2.0, 1)x(O.1.1) 12 derived when ignoring intervention events and the model

ARIMA(1.0.0)x(2.1.0) 12 including intervention events were both evaluated by forecasting the

test set. The results of this are given in Table 3. 3. 11 and it can clearly be seen that the

incorporation of interventions improves the model.
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Table 3. 3. 11 Municipality C : Comparison of results

MODEL M.A.P.E.(F) M.S.E.(F)

(2,O,1)x(O,1,1) 12 3.79% 0.165

(1,O,O)x(2,1,O) 12 + interventions 2.13% 0.065

3.4.4 MUNICIPALITY D

One large factory has a dominating effect on the monthly electricity consumption for

Municipality D and thus two time series were modelled separately, one consisting of the

factory's electricity consumption and the other the electricity consumption of the municipality

excluding the factory. Only the portion of the time series for the factory from June 1992

onwards, when a new production process was introduced, was used in the modelling process.

This time series, which consists of only 31 data points, is fairly short. However it is

nonseasonal and the modelling results appear to be satisfactory.

Let X c represent the non-seasonal time series of monthly electricity consumption for the

factory. The ACF's of Xc and V'X c as well as the PACF of V'X c are shown in

Figure 3. 3. 15. Clearly first differencing is enough to ensure that the series is stationary and

the model will be of type ARIMA(p, 1, q). The most appropriate ARIMA model was identified

as the ARIMA(2,1 ,0) written as

Wc= -0.35718W,~j-0.43439Wc_2+Z,

where Wc=V'jY" and the results of the fitting process are summarised in Table 3. 3.12.
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Figure 3. 3. 15 Factory ACF's of XI and VXI and PACF of VXI
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Table 3. 3. 12 Factory: Results when fitting an ARMA(2,1 ,0) model

Parameter estimates using MLE : Parameter Estimate t ratio

f/J J
-0.35718 -2.14

f/J2 -0.43439 -2.60

Model comparison statistics : AIC =157.438 sec =160.240

Portmanteau test for white noise: Lags Chi Square OF P-value

1-6 5.14 4 0.248

1-12 7.48 10 0.680

1-18 19.65 16 0.237

1-24 20.84 22 0.530

A model was also developed for the time series Y1 ' the monthly electricity consumption for

the Municipality 0 excluding the factory. The ACF's of Y1 ' Vl2Y1 and VVl2Y1 ,given in

Figure 3. 3. 16, indicate that the model is seasonal and of the form ARIMA(p,O,q)x(P,1 ,Q) 12 .

In fact the pattern of the ACF and the PACF of the differenced series given in

Figures 3. 3. 16 and 3. 3. 17 respectively, suggest that an appropriate model is

ARIMA(2,O,1)x(1,1,1)12' The results associated with fitting this model appear in

Table 3. 3. 14 and the fitted model can be written as

W1=O.70904WI_I+O.29095WI_2+O.42901WI_12-0.32448WI_J3-0.12482WH4

+Z 1-O.75634Z I_J-O.99338ZI_J2+0.75133Z1-13

where W1=V12Y 1 •

The test set for ·the time series of monthly electricity consumption for the factory and

Municipality 0 excluding the factory were forecast using the two models chosen and the

results are given in Table 3. 3. 13.
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Table 3. 3. 13 Factory and Municipality D excluding Factory: Forecasting errors

DATA M.A.P.E.(F) M.S.E.(F)

FACTORY: (2,1,0) 12.25% 17.60

MUNICIPALITY : (2,O,1)x(1,1,1)1" 8.58%" 5.20

Note that a plant fault at the factory in November 1995 caused a drop in consumption which

the forecast could not have predicted. As a consequence the forecasting errors are large.
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Figure 3. 3.16 Municipality D : ACF's of ft' V\1f t and VV\2ft
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Figure 3. 3. 17 Municipality 0: PACF of Vl:l t
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Table 3. 3. 14 Municipality 0 excluding the factory: Results when fitting an
ARIMA(2,O,1)x(1,1,1) 12 model
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3.4 STATE SPACE MODELS

Two basic structural models were fitted to each of the time series in this study, one with

dummy seasonal components and the other with trigonometric seasonal components. For

each model various approaches were taken to find optimal estimates of the state vector a I '

t = 1, ... ,T. The simplest of these was to assume starting values of Jl = 0 and

Cn = 100 0001, where I is the identity matrix, to fix the parameters as a; = 5,

a 2 = a? = a 2 = 0.1 and to apply the Kalman filtering equations to find a minimum mean
I} ~ W

square estimate of a I' The results of this method are denoted by KF (I) in the ensuing

tables. In a second approach, the starting values of Jl =0 and Co =100 000 I were held

fixed and maximum likelihood estimates of the parameters a;, a~, a: and a';; were

derived using the Kalman filter. Two different techniques for obtaining these estimates, the

one involving direct maximisation, and the other the EM algorithm were used and the results

of these methods are denoted by KF (2) and EM respectively in the later tables. A further

enhancement was the inclusion of a maximum likelihood estimate of a 0 and the results for

this are denoted by KF (3) .

The procedures described above were implemented using programs written in the GAUSS

language. The GAUSS function OPTMUM was invoked in the direct maximisation

calculations. This routine uses a convergence criterion based on the change of gradients,

whereas convergence within the EM algorithm was assumed when changes in the likelihood

function with each iteration were less than 0.0001. The first iteration of the Kalman Filter was

ignored in all calculations of the likelihood function .

.The fitted models were used to forecast the observations of the test set and the results were

compared using the criteria
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and MAP.E.(F) as defined previously.

3.4.1 MUNICIPALITY A

Basic structural models with dummy and also with trigonometric seasonal components were

fitted to the time series of monthly electricity consumption for Municipality A and the results,

including estimates of the unknown parameters, are summarised in Table 3. 4. 1.

Table 3. 4. 1 Municipality A : Results for BSMs fitted to the complete time series

" " A A M.S.E.(F) M.A.P.E.(F)
-!nLCOIY" ...YT) 0 , 2 ? a2a" a'l a~£ (l)

BSM with dummy seasonalitv :
KF(l) 573.902 5.000 0.100 0.100 0.100 6.614 1.92%

KF(2) 546.693 a; ,'12 8.778 0.460 0.000 0.251 6.520 1.90%
I

KF(3) 546.693 a; ,'12 I J1 8.778 0.460 0.000 0.251 6.520 1.90%

EM 546.793 a; ,'12 8.767 0.466 0.000 0.251 6.514 1.90%

BSM with trigonometric seasonalitv :
KF(I) 581.760 5.000 0.100 0.100 0.100 11.376 2.54%

KF(2) 556.085 a; ,'12 8.729 0.413 0.000 0.008 6.723 1.81%

KF(3) 556.085 a;, '12, J1 8.729 0.413 0.000 0.008 6.723 1.81%

EM 556.612 a; ,'12 8.360 0.427 0.000 0.013 6.849 1.84%

The likelihood function converged more quickly when maximising directly as opposed to

using the EM algorithm and in general provided smaller values of the likelihood function

indicating that better estimates of the unknown parameters were derived. The value of J1

had very little effect on the Kalman filtering results unless it was taken to be extremely large,

thus KF (2) and KF (3) give identical results throughout this study.
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Comparing the results of the BSM with dummy and trigonometric seasonal components,

where the parameters were derived using the method of direct maximisation, the former

model was found to be a better fit according to the criteria M.S.E.(F) whereas the latter

model performed better when using the criteria M.A.P.E.(F). Obviously this indicates that

there is not much difference between the models, and either would be acceptable. For the

purposes of this study, the former model which is simpler was adopted. From the final

estimate of the state vector derived using this model, the linear trend is given by

JlT= 103.888, the slope is f3 T= 0.284 and the seasonal components are given by

Jan Feb Mar Apr May Jun Jul Aug Sep Qct Nov Dec

-11.095 -0.011 3.858 0.258 7.041 8.391 6.509 1.314 -5.815 1.211 -7.310 -4.351

J]

where the seasonal component for December is calculated using r12= - L rT_ j . The large
j=1

negative seasonal component in January reflects the annual closure during the festive

season of many factories within the municipal boundaries. These results are similar to those

of the Holt-Winters method where the level and trend components were found to be LT =

102.305 and TT = 0.270 respectively. It is interesting to note that even though the

parameters derived from the EM algorithm resulted in a larger likelihood function than when

using parameters derived using direct maximisation, it was purely by chance that the BSM

with dummy seasonal components with these parameters resulted in the smallest criterion

value M.S.E.(F).

The time series Y t can be decomposed into the four component series of level, trend,

seasonality and error for t = 1, ... ,r. The decomposition for the BSM with dummy seasonal

components and parameter estimates a; = 8.778, a~ = 0.460, a: = 0 and a; = 0.251

is illustrated in Figure 3. 4. 1 and the residual series is shown in Figure 3. 4. 2. The high

residual value in January 1989 is, as mentioned previously, due to an unusually long billing

month of 34 days and the low value associated with January 1990 coincides with the

installation of an electronic metering system which resulted in a short billing month.

Otherwise the residuals appear to be random indicating that the BSM has captured the

systematic variation of the original time series.
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The sub-series of monthly electricity consumption of Municipality A between January 1990

and December 1994, when the meters were read electronically, was again modelled

separately to investigate whether or not this would improve the forecasting results. The

results given in Table 3. 4. 2 as compared with those of Table 3. 4. 1 indicate that overall

better forecasts were derived using the whole time series. However, it is interesting to

observe that the estimated variances for the shorter series are generally smaller than those

obtained for the full series, indicating that regular metering periods have a stabilising effect

on the time series.

Table 3. 4. 2 Municipality A : Results for BSMs fitted to the electronically metered

time series

" A A A M.S.E.(F) M.A.P.E.(F)
-!nLC8IYl""Y r) 8 ~ 2 2 cy 2er CY7] cy,E DJ

BSM with dummy seasonality :

KF(l) 203.971 5.000 0.100 0.100 0.100 9~555 2.01%

KF(2) 198.242 cy~ ,L 4.347 0.000 0.001 0.000 6.745 1.84%

KF(3) 198.242 cy;,L ,Il 4.347 0.000 0.001 0.000 6.745 1.84%

EM 198.296 CY; ,L 4.288 0.012 0.001 0.022 6.736 1.85%

BSM with trigonometric seasonality :
I

KF(I) 220.708 5.000 0.100 0.100 0.100 11.387 2.56% I

KF(2) 207.135 CY: ,L 2.590 0.000 0.000 0.029 11.085 2.59%

KF(3) 207.135 cy;, L, JL 2.590 0.000 0.000 0.029 11.085 2.59%

EM 212.763 CY: ,L 0.062 0.011 0.000 0.194 19.697 3.34%
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3.4.2 MUNICIPALITY B

The results of modelling the time series of monthly electricity consumption for Municipality B

are summarised in Table 3. 4. 3. In contrast to the results for Municipality A, the BSM with

trigonometric seasonality provided better forecasts than the BSM with dummy seasonal

components, as measured by the criteria of M.S.E.(F) and M.A.P.E.(F).

Table 3. 4. 3 Municipality B : Results for BSM fitted to the complete time series

" A A A M.S.E.(F) M.A.P.E.(F)
-In L(OIl' I' ...l' T) 0 ., 2 a 2 .,

a- al] a-
£ , (lJ

BSM with dummy seasonality :

KF (I) 450.666 5.000 0.100 0.100 0.100 2.077 6.58%

KF(2) 331.605 a; ,'L 0.544 0.028 0.000 0.072 0.405 2.78%

KF(3) 331.605 a;,'L,j.1 0.544 0.028 0.000 0.072 0.405 2.78%

EM 331.898 . 2 'L 0.548 0.025 0.000 0.071 0.408 2.79%a£ '

BSM with trigonometric seasonality :

KF(I) 519.653 5.000 0.100 0.100 0.100 0.491 2.96%

KF(2) 343.81 a;,'L 0.614 0.026 0.000 0.001 0.385 2.70%

KF(3) 343.81 a;, 'L, j.1 0.614 0.026 0.000 0.001 0.385 2.70%

EM 344.697 a;,'L 0.628 0.014 0.000 0.001 0.393 2.72%

Again the sub-series of electricity consumption for Municipality B, when the meters were read

electronically, was modelled separately to ascertain whether or not this would result in better

forecasts. It is clear from Table 3. 4. 4 that better forecasts were not obtained. It is again

interesting to observe that all the estimated variances decreased for this more regUlar time

series.
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Table 3. 4. 4 Municipality B : Results for BSMs fitted to the electronically metered time

series

A .' ,.
" M.S.E.(F) M.A.P.E.(F)

-lnLCBIY!, ...YT) () " 2 0 0

U; U1] U~
U-

'"

BSM with dummy seasonality :

KF(I) 189.258 5.000 0.100 0.100 0.100 0.505 2.61%

KF(2) 142.316 U~ ,L 0.324 0.000 0.000 0.036 0.444 2.82%

KF(3) 142.316 U~,L,f.J 0.324 0.000 0.000 0.036 0.444 2.82%

EM 142.396 2 L 0.301 0.006 0.000 0.042 0.411 2.76%
UC '

BSM with trigonometric seasonality :

KF(I) 213.080 5.000 0.100 0.100 0.100 0.490 2.96%

KF(2) 151.673 u~ ,L 0.343 0.000 0.000 0.001 0.471 2.93%
.

KF(3) 151.673 U~,L,f.J 0.343 0.000 0.000 0.001 0.471 2.93%

EM 151.969 u~ ,L 0.288 0.006 0.000 0.002 0.448 2.88%

3.4.3 MUNICIPALITY C

The time series of monthly electricity consumption for Municipality C was clearly affected by

a number of intervention events as described earlier. To monitor the improvements gained

by including these intervention events into t!le modelling process, the time series was firstly

modelled using the BSM with dummy seasonal components and excluding intervention

events and the results are summarised in Table 3. 4. 5. Thereafter, the time series was

modelled incorporating the intervention events of water restriction periods between January

1983 and March 1984 and again between August 1993 and January 1994, the permanent

closure of a mine on the outskirts of the municipality's supply area, and a period of 40 days

between meter readings in July 1991. These interventions and the associated parameters are

summarised in Table 3. 4. 6.
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Table 3. 4. 5 Municipality C : Results for BSMs

" " A A M.S.E.(F) M.A.P.E.(F)
-lnL(BIY1,···Y r) B (52

, ,
(52

E (5; (5; (j)

BSM with dummy seasonality :

KF(l) 442.108 5.000 0.100 0.100 0,100 0.533 7.78%

KF(2) 210.948 a-; ,I, 0.181 0.004 0.000 0.002 0.161 3.82%

KF (3) 210.948 a-; ,I, ,J.1 0.181 0.004 0.000 0.002 0.161 3.82%

EM 210.978 a-; ,I, 0.180 0.005 0.000 0.002 0.162 3.86%

Table 3. 4. 6 Municipality C : Summary of intervention events

INTERVENTION SERIES PARAMETER DESCRIPTION

r t = Jan'83- > Mar'84 Water restrictions between January 1983
I -

1,1- 0 all other months A] and March 1984.

r t = Jul'91 There was a long billing month of 40 days in

I, =
-,1 0 all other months }"2 July 1991 when the meter reading system

changed from manual to electronic.

r t = Jan'80 - Jul'93 In August 1993 a large mine just outside the'
I -

3,(- 0
all other months ,,13 municipality's area of supply closed down

permanently.

r t = Aug'93 - Jan'94 Water restrictions between August 1993
I -

4,1- 0 all other months ,,14 and January 1994.
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Estimates of the intervention parameters, together with the t-ratios for testing whether or not

the corresponding true parameters are equal to zero, are given in Table 3.4.7.

Table 3. 4. 7 Municipality C : Estimates of the intervention parameters

PARAMETER VALUE T-RATIO

Al -0.364 -2.401

A2
2.850 6.943

A3
-0.280 -1.262

A4
-0.426 -2.044 .

Clearly A3' the intervention parameter associated with the mine closure, is again negative

and has a non-significant t-ratio suggesting that this parameter can be dropped from the

model. The results excluding this intervention are given in Table 3. 4. 8. Overall, it is clear

that the BSM with dummy seasonal components and including the intervention events is the

best model and that satisfactory estimates of the variance parameters are derived. using

direct maximisation. From the final state vector, the trend is given by J..LT =7.807, the slope

is f3 T = 0.014 and the seasonal components are given by

Jan Feb Mar Apr May Jun Jul Aug Sep Qcl Nov Dec

-0.517 -0.175 0.079 0.082 0.927 1.038 0.976 -0.033 -0.581 -0.507 -0.753 -0.536

The last three values in the state vector a T pertain to the intervention events and indicate

that the two water restriction periods had the effect of reducing electricity consumption by

0.356 and 0.359 GWh respectively and that the longer billing period in July 1992 increased

the consumption by 2.939 GWh. A comparison of plots of the residual errors for the BSM

excluding and including intervention events is given in Figure 3. 4. 3 and illustrates the

improvement derived from including these interventions in the model.
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Table 3. 4. 8 Municipality C : Results for BSMs including intervention events

-In r({I11" 1'.r 1) 0 , , , 0 AI A2 A4
M.S.E.(F) M.A.P.E.(F)

a" a,; a~ a;;,E ,
(t-ratio) (t-ratio) (t-ratio)

BSM with dummy seasonalitv :
KF(2) 205.917 a/~ ,L 0.125 0.003 0.000 0.004 -0.356 2.939 -0.359 0.147 4.23%

(-2.445) (7.424) (-1.934)

KF (.1) 205.917 a},L,J-L 0.125 0.003 0.000 0.004 -0.356 2.939 -0.359 0.147 4.23%

(-2.445) (7.424) (-1.934)

EM 213.655 a~,L 0.213 0.001 0.000 0.001 -0.358 2.903 -0.364 0.180 4.42%

(-2.193) (5.919) (-1.653)

BSM with triQonometric seasonalitv :
KF(2) 213.668 a 2 L 0.150 0.002 0.000 0.000 -0.364 2.850 -0.333 0.176 4.32%

/: '

(-2.402) (6.934) (-1.706)

KF(J) 213.668 a},L'J-L 0.150 0.002 0.000 0.000 -0.364 2.850 -0.333 0.176 4.32%

(-2.402) (6.934) (-1.706)

EM 226.163 a 2 L. 0.214 0.001 0.000 0.000 -0.326 2.916 -0.396 0.155 4.08%
E '

(-1.747) (5.790) (-1.738)



Figure 3. 4. 3 Municipality C : Residual errors for the BSM with dummy seasonality
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3.4.4 MUNICIPALITY 0

Two separate time series involving the monthly electricity consumption of Municipality D, one

consisting of the monthly electricity consumption of the municipality excluding that of the

large factory within the municipality's area of supply and the other, the monthly electricity

consumption for the factory, were considered. Basic structural models with dummy and also

with trigonometric seasonal components were fitted to the former time series. Only the

portion of time series of the factory's monthly electricity consumption from June 1992

onwards was used for modelling purposes, as discussed previously in Section 3. 3. 4 and,

since this series displays no seasonality, the local linear trend model of Section 2. 4. 2 was

invoked. The results are summarised in Tables 3. 4. 9 and 3. 4. 10. It should be noted that in

November 1995, equipment failure at the factory caused an unexpected decrease in

electricity consumption, resulting in a large forecasting error for that month and hence for the

test set. It is thus only by coincidence that the Kalman filtering with fixed parameter values,

KF(I), produces the best test set forecast according to the criteria M.S.E.(F), since the test

set for the factory's monthly electricity consumption does not represent the usual electricity

consumption pattern.

86



Table 3. 4. 9 Municipality 0 excluding factory: Results for the BSM

,.. .. " M.S.E.(F) M.A.P.E.(F)
- In L(BIY I' ...r r) 8 , , , ,

(r (J~ (J- (J-
& , OJ

BSM with dummy seasonalitv :
KF(I) 457.236 5.000 0.100 0,100 0.100 10.574 12.43%

KF(2) 371.412 (J; ,r. 0.881 0.000 0.000 0.136 5.933 9.24%

KF(3) 371.412 (J;,r.,jL 0.881 0.000 0.000 0.136 5.933 9.24%

EM 371.451 u~ ~L 0.860 0.011 0.000 0.139 5.408 8.69%

BSM with triaonometric seasonalitv :
KF(l) 521.940 5.000 0.100 0.100 0.100 8.059 10.92%

KF(2) 379.196 (J; ,r. 0.831 0.000 0.000 0.004 6.153 9.50%

KF(3) 379.196 (J; ,r. ,jL 0.831 0.000 0.000 0.004 6.153 9.50%

EM 379.321 (J; ,r. 0.843 0.00 0.000 0.004 5.885 9.21%

Table 3.4.10 Factory: Results for the local linear trend model

" ., A M.S.E.(F) M.A.P.E.(F)
-lnL(8Ir p ".r r) 8 , , ,(J- (J- (J~

& TJ ,

KF(J) 85.277 5.000 0.100 0.100 18.883 13.11%

KF(2) 82.927 (J; ,r. 7.670 0.071 0.000 27.168 14.68%

KF(3) 82.927 (J; ,r. ,jL 7.670 0.071 0.000 27.168 14.68%

EM 82.969 (J; ,r. 7.620 0.094 0.000 25.336 14.13%
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3.4.5 SUMMARY

The BSM with dummy seasonal components resulted in better forecasts as measured by the

criterion M.S.E.(F), than the BSM with trigonometric seasonal components, for every time

series modelled except for the complete time series of monthly electricity consumption for

Municipality B. This was also true for the criterion M.A.P.E.(F) except for the case when

modelling the complete time series of monthly electricity consumption for Municipality A. The

results were better for the BSM with trigonometric seasonal components according to the

criterion M.A.P.E.(F), but not for the criterion M.S.E.(F), which indicates that one model is not

necessarily outright better than the other.

The method of direct maximisation converged notably faster than the EM algorithm and

resulted is a smaller likelihood function within a reasonable period. It was frequently the case

that, even though the parameters derived using the EM algorithm resulted in a larger

likelihood function than when using those derived using the method of direct maxi.misation,

the forecasting results according to the criteria M.S.E.(F) were better. This is presumably a

result of chance where the test set deviated from the usual electricity consumption pattem.

Overall the preferred approach to obtaining maximum likelihood estimates of the parameters

would seem to be that involving direct maximisation of the likelihood function.

It is interesting to note that unless J..l was selected to be extremely large, its effect on the

model was minimal. A further point of interest is that the variance a:' always tends to be
>

close to zero indicating a small change in the level of the series over time.
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3.5 COMPARISON OF RESULTS

The forecasting results for each of the best fitting exponential smoothing, ARIMA and state

space models discussed in this study, as indicated by the criterion of minimum M.S.E.(F), are

summarised in Table 3. 5. 1.

Table 3. 5. 1 : Summary of forecasting results for each method

METHOD Time series M.S.E.(F) MAP.E.(F)

Exponential Smoothing Municipality A 7.567 1.94%

ARIMA Municipality A 6.795 1.96%

State Space Model Municipality A 6.520 1.90%

Exponential Smoothing Municipality B 0.429 2.88%

ARIMA Municipality B 0.432 2.72%

State Space Model Municipality B 0.385 2.70%

Exponential Smoothing Municipality C 0.138 3.87%

ARIMA Municipality C 0.065 2.13%

State Space Model Municipality C 0.147 4.23%

Exponential Smoothing Municipality D 5.427 7.85%

(Excluding factory)

ARIMA Municipality D 5.200 8.58%

(Excluding factory)

State Space Model Municipality D 5.933 9.24%

(Excluding factory)

Exponential Smoothing Factory 17.048 11.33%

ARIMA Factory - 19.780 12.37%

State Space Model Factory 27.168 14.68%
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State space models resulted in the best forecasts for both of the time series of monthly

electricity consumption for Municipality A and B. However, the best results for the time series

of the monthly electricity consumption for Municipality C, which was affected by the

intervention events, were derived using ARIMA models which incorporate intervention

events. Surprisingly the state space model including intervention events did not perform well,

and in fact the results were better for the exponential smoothing method which did not

include these intervention events. This is probably because the intervention events were

sufficiently early in the series to have a minimal affect on the exponential smoothing

parameters. The ARIMA model produced the best forecast for the time series of the monthly

electricity consumption for Municipality D, excluding the factory's electricity consumption.

The results for the non-seasonal time series of the monthly electricity consumption for the

factory are distorted by the decrease in electricity consumption in November 1995 caused by

equipment failing at the factory. Thus the test set does not reflect the usual electricity

consumption pattem and it is surmised that, purely by chance, the exponential smoothing

method resulted in the smallest criterion M.S.E.(F).

For all three methods the forecasting results using the complete time series of monthly

electricity consumption were better than those obtained when using the shorter series of

electronically metered electricity consumption. The inclusion of the intervention events when

modelling the time series of the monthly electricity sales to Municipality C improved the

results of both the ARIMA and state space models. It is interesting to note however that it

was not necessary to include the intervention relating to the mine closure in either model.
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4. CONCLUSION

The aim of this thesis was to identify and study appropriate methods of forecasting by month,

one year ahead, the electricity consumption for selected municipalities in Kwa-Zulu Natal. In

general the time series of monthly electricity consumption for these municipalities displayed

a trend and, except for the time series of monthly electricity consumption of the factory within

Municipality D's area of supply, seasonality. The eXr:>0nential smoothing ~~!~~~~d ARIMA

and state sp'~ce JIl..9J!~Jling_V{~~_ i~fl!!f~~d_as appropriate approaches for forecasting and--- ". ' ..~ -~ - .._..... ',. -.-..:._.., ..'- _. .~._..
were compared and contrasted,

In summary, the exggne.ntiaLsIRo().thing method is simple, robust and easy to implement. It---,_ - -. _.-...... - _~._._--'--"----- -- -_.,~--~ -_..- ._---
can be fUlly automated and requires limited calculations and dat"! ~torage space. The ARIMA- . . . --.- .. ~

methodology requires the time series to be stationary, and if it is not, the trend and
.. .------

seasonality to be removed by differencing which is not always acceptable. Furthermore the
~-

model idellti.fi.cation....stage is often difficult, and can be subjective and time consuming and if

the model is incorrectly identifie~ the re~ulting forecasts can be very unsatisfactory. State

space models on the other hand incorporate the trend and seasonality, and as with

exponential smoothing, the time series can be expressed in terms of the trend, level,

seasonal and error components. An added advantage of state space modelling over

exponential smoothing is that it is a formal modelling technique. Once a model is expressed

in state space form, Kalman filtering is easily applied with pleasing results. Unfortunately

state space models and Kalman filtering are not included in the majority of forecasting

packages. For example SAS invokes state space models to determine the maximum

likelihood estimates for ARIMA models but does not include basic structural models.

For cases in which a time series is affected by intervention events and these are not included

. in the modelling process, the forecasting results are often unsatisfactory. This is particularly

true if the event occurs towards the latter part of the time series, ARIMA and state space

models allow the incorporation of intervention events and this can greatly enhance the

forecasting results and decrease the residual errors.
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Further areas of interest are the application of the above methods to the time series of

monthly electricity consumption for other groups of Eskom customers whose electricity

consumption patterns differ from those of the municipal customers, such as the various

railway lines, coal mines and industries within Kwa-Zulu Natal. There are also other

forecasting methods and techniques available which need to be investigated, one of these

being neural networks which is reported to give good results for less regular time series.
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APPENDIX A

A.1 : Conditional expectations of terms in the log likelihood function for

a state space model

fI

(i) Since E(aolY],·· .. f T) =aOlT and Var(aolfj, f T) =COlT'

= E{tr[~-](ao-,u)(ao-,uf]}

= tr[~-jE{(a o- ,u)(ao-,uf}]

/\ fI

= tr[~-I {(aOIT- ,u)(aOlT-,uf + COlT}]

(ii)

fI fI

a t-et>a tJfI,···fT- N(anT - et> a ,-IIT, CtiT - Cl,I_IITet>T - et>Ct~t-IIT + et>Ct_lITet>T) .

1 T fI fiT T fI 'flT
= -2tr{~-t~:CCtiT + atITatJT) - L(Ct,t-IIT + atJT at-lIT )et>T

f=I 1=1

T 1\ 1\ T T 1\ /\ T

- et>L (Cl,HlT + aw a '_lIT)T + et>L (Cl-liT + a I-liT a I-liT )<1>T]}
1=1 1=1

fI

(iii) Since a flf], f T- N(atiT, CtIT ), it follows that

"
(Y,_h Ta'IT)2 +hlCIITh

=

(Shumway and Staffer, 1982).
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A.2 Maximum likelihood estimates of

model

in a state space

The expectationE[lnL(o-;,LIYj, .. .YT )] is maximised by setting the derivatives with

respect to 0-; and L -1 equal to zero and solving for 0-; and L -1 (Shumway and Stoffer,

1982). In particular let

T 1\ I\T T i\ "T
A = L(CtjT + at;T a tiT ) - L(Cr.r-liT + atlT at-liT )<I>T

1~1 I~j

T 1\ !IT T "I\T
- <1>I (CI,I-1IT + a liT a I-1fT) T + <1>I (CHIT + a HT a HT )<I>T

t~ ~1

Then consider the terms in E[ln L(0-; ,LIY l' .. .YT )] involving L,written as

. T 1
f(L) = --logILI- -tr[L -I A]

2 2

From the results of Mardia, Kent and Bibby (1979; appendix A 9.3 and A 9.4), and defining

diag(A) as the matrix containing only the diagonal elements of A along its own diagonal, it

follows that

:¥(L) T O(L -I) 1
-'-;/- = det(L-1)-[2(L-1r l

- diag(L)]-. [(2A) - diag(A)]
~ 2 ~ 2

1
and this derivative equals zero when L = TA.

T 1\

Similarly, let B = L[(YI-hT a l iT)2 + hTCtiTh].
1~1

Then the term involving 0-; is given by

Thus
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A.3 : The exponential smoothing method and ARIMA models

Forecasting approach: Simple exponential smoothing and ARIMA(O,1,1) models

The one-step-ahead forecasts derived for a time series using the simple exponential

smoothing method are the same as those obtained when using an ARIMA(O,1,1) model. In

particular, the one-step-ahead forecast when using simple exponential smoothing is given by

(A. 1)

and the one-step-ahead forecast when applying the model ARIMA(O,1,1) to a time series is

given by

However

and thus

(A.2)

On setting 1- e= a, it is clear that equations (A. 1) and (A.2) are equivalent.

Similarly, Holt Winter's two parameter smoothing method, which incorporates trend and level

components but no seasonal component, is equivalent to an ARIMA(O,2,2) process.

Firstly consider the double exponential smoothing method defined by
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= rLt-y(Lt-j+Tt-1) +TH

= y(aYt+(1- a)Ytlt-l) - y Yr!t-l +Tt_1

= ya(Yt-Ytlt-1 ) +Tt-]

Then the one-step-ahead forecast is given by

= aYt+(1- a)Ytit-1+ya(Yt-Yt!H) +Ytlt-l-LH

= (a + ay)Yt+(2 - a - aY)YtlH -aYt_1+(a -1)Yt-Ilt-2 (A.3)

The forecast Y t+1it
using an ARIMA(O,2,2) model is calculated as

Yt+1!t= E(Yt+jIY"Yt-l'·····Yj)

= E(2Yt-YH+Zt+j-8jZt-82Zt_1IYt,Yt_j····Yj)

= 2Yt-Yt_I-8jZt-82Zt-l

and, since

= (2 -8JYt-(1 +82)Yt-I+8J Y t1t-1+82 Yt-Jit-2

It is clear that by writing

8 2=a-l and 8 j=2-a-ya,

equations (A.3) and (AA) are equivalent.
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where 8= I-a

Conditional least squares: Simple exponential smoothing and ARIMA(O, 1,1) models

If the parameters of the ARIMA model are derived using conditional least squares, the

forecast estimates derived from simple exponential smoothing and ARIMA(O,1,1) models are

the same. This is readily demonstrated as follows.

Assume that the ARIMA(O,1,1) model given by Yr=Yr-1+Zr-BZr-l has the realisation,

Yr=Yr-l+Zt-&zr-l and that z)= E(z1) == O. Then clearly the residuals are given by

Z"=Y2-YI

z 3=Y 3- Y 2+8(y 2 - Y 1)

=Y3+Y2(8-1) - l"&1

=y3-ay2+(a -1)YI

and generally,

zr=Yr-ayr_I-a(1- a)YH-.· .. -'I- ay-2 Yl'

The conditional least squares estimates of the unknown parameters are then derived by

minimising L z; with respect to a.

Similarly, using the exponential smoothing approach, and assuming y 2p =Y 1 ' the forecasts

are derived by

Y3i2=ayZ+(1-a)Y211 =ay2+(1-a)Y1

Y 413 =ay3+(1- a)Y31" =ay3+(1- a)ay2+(1- a)2Y1

and the residuals are calculated as

e2=Y2-Y211 =Y2-Yl

and generally as
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~t=Yt-Yt;H =Yt-ay/-l-a(1- a)Yt-2-···-(1- ar-2
YI·

. Since the residuals Let
2 are minimised using the smoothing approach, it is clear that the

estimates from ARIMA(O,1,1) and simple exponential smoothing are equivalent.
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APPENDIX B : Time Series

-
MUNICIPALITY A

ELECTRICITY CONSUMPTION IN GWH

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Jan 48.345 50.100 51010 55.705 57.615 66830 62510 70815 73435 98210 90.458 84.269 87.780 87.971 93.344 97~997

Feb 50.140 51.175 53365 54.565 59705 63.660 65.645 _ 69.575 76410 80.950 80.821 84400 ·89.856 88.642 88.412 96.605
.

Mar 48610 54.560 57420 61.045 61455 68.625 76115 75.225 84.390 86.946 91.225 92.566 96.306 99.993 99.236 107.990
--

Apr 48.790 51.610 65.095 56.495 65.755 65.965 69.760 71.685 78.450 85.378 83467 89.927 90.190 92.593 89.785 100.143

M,ay 54.760 5'8.910 52089 58.180 69.695 70.240 76.655 77.305 77010 90303 94.383 97.002 94.615 99.972 103826 111.047

Jun . 56.115 64.770 69.065 60.475 68415 76.610 73.685 83.135 89.300 95.749 98.048 101.611 102.055 108.492 109.161 115.323

Jul 62630 67.870 71.524 61.545 81.565 77.165 81720 87.275 94.690 98.037 99.730 101.925 104387 107.444 113.125 115.034

Aug 58830 61.065 66660 66.660 71.845 68.550 79.175 90.535 90.535 94.726 101.243 99.500 101.871 106.492 113.152 107.693

Sep 56.810 61700 63.925 57.260 73.010 74.090 75.070 82.770 83.740 88.978 93.736 93.196 96.824 100.511 103.334 105.099

Oct 60.735 55.320 62210 62.335 72.210 71.920 75.850 84.535 90490 91.919 96.392 98.250 98.744 103933 108.644 110.6072

Nav 50925 61.510 61.655 61.265 66.660 66.655 77.180 78.500 85.945 91.209 91.957 92.668 95.827 100.552 103.475 108.5253

Dec 49540 54.060 54.005 54.030 57.975 66.910 67.705 73.020 76.310 69.060 76.949 81.159 86.284 89.459 91.716 94.26811

TOTAL 646.230 692.650 728.023 709.560 805.905 837.220 881.070 944.375 1000.705 1071465 1098409 1116.473 1144.740 1186.054 1217.210 1270.332
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MUNICIPALITY B
ELECTRICITY CONSUMPTION IN GWH

1980 1981 . 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Jan 8.971 11.064 11.071 10.805 12.067 13.023 12.043 12.888 12.638 14.108 17.942 16.851 16.630 16.661 17.073 17.660

Feb 14.431 13.685 15.228 14.899 15.115 15.975 15.920 16.645 17.260 23.407 18.446 16.760 18.138 17.540 17.813 18.756

Mar 13.966 15.130 16.764 16.757 17.383 17.688 17.290 . 19.088 19.818 18.815 20.015 18.013 19.883 19.130 20.060 20.737

Apr 13.207 13.123 15.101 14.690 15.758 16.390 16.345 16.185 17.660 19.736 17.929 18.200 17.746 17.160 18.525 18.614

May 14.962 16.169 16.692 16.126 17.820 17.698 17.960 18.385 20.553 20.620 19.854 19.409 19.473 19.840 20.140 21.334

Jun 15.247 17.239 17.258 16.865 19.283 19.465 18.438 19.533 19.100 22.246 21.778 20.392 20.951 22.080 22.193 22.090

Jul 17.453 16.555 18.977 18.199 20.753 20.068 20.870 20.063 22.450 22.815 18.760 21.277 21.235 21.506 22.774 21.881

Aug 16.186 17.196 18.650 18.110 18.910 19.408 19.983 22.750 21.063 21.693 21.690 20.600 20.038 20.993 21.791 21.038

Sep 15.233 17.402 16.375 16.805 17.535 16.860 18.670 18.333 20.038 20.081 19.020 19.279 18.695 19.727 19.904 19.326

Dct 14.897 16.726 16.390 16.363 17.508 18.135 18.040 19.990 19.480 20.613 19.565 20.010 18.665 19.295 20.124 19.909

Nov 14.724 15.468 17.294 16.939 17.138 17.238 18.278 19.898 20.010 20.112 18.852 18.319 18.608 20.055 19.966 21.284

Dec 13.778 16.034 13.462 15.108 14.575 15.748 16.215 16.295 17.375 14.653 13.939 14.154 15.612 15.301 15.507 16.705

Total 173.054 185.791 193.262 191.666 203.842 207.693 210.050 220.050 227.443 238.900 227.788 223.264 225.674 229.289 235.870 239.333
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MUNICIPALITY C
ELECTRICITY CONSUMPTION IN GWH

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Jan 4.717 5.178 4.853 4.805 4.938 5.237 5.280 5.664 5.832 6096 6.144 6.744 6.723 6.688 6.990 6.990

Feb 4.733 4.690 5.458 5.686 5.625 5.717 5.280 5.616 5.832 6.600 6.816 6.770 6.529 6.330 6605 6.733

Mar 4.448 5.012 5.126 5.054 4.818 4.802 5.400 5.808 5.712 5.952 6.264 6.240 7.089 7.000 7.332 7.668

Apr 4589 4.707 6.049 6.000 5.618 5.414 5.664 6.024 6.720 6.672 6.528 6.888 6.757 6.670 6.938 7.419

May 4.984 5.514 5.749 4.950 . 5.490 6082 6.384 6.288 5.904 6.720 7.140 7.440 7.375 7.250 8004 8.720

Jun 6.432 6.284 6.910 6.430 6.748 6.761 7.032 6.336 8.136 8.352 7.752 8.496 8.248 8.146 9.264 9.360

Jul 5839 6.582 7.454 6.350 7.286 7.481 7.154 8.304 7.920 7.944 8.280 11.284 8.399 7.884 9.335 9.190

Aug 6.490 6051 6.484 5.715 6.288 6.283 6.790 7.848 7.272 8.352 8.136 8.120 8.437 7.710 8.999 8.549

Sep 5.582 6.800 6.650 5.958 6.816 5.870 6.288 5.808 7.656 7.008 8.184 7.225 7.533 6.937 7.668 7704

act 5.380 5.302 5.642 4.961 5.885 6.274 6.384 8.064 6.360 7.008 6.840 7.280 7.364 7.198 7.892 7.749

Nov 5.736 5.294 5.803 5.543 5.366 5.640 6.552 6.360 7.080 7.104 7.536 6.948 7.046 7.029 7.356 7.599

Dec 4.686 5.870 5.966 4.626 5.527 5.472 5.376 6.192 6.024 6.696 6.816 6.677 6.828 6.995 7.056 7.205

TOTAL 63.614 67.283 72.145 66.079 70.406 71.033 73.584 78.312 80.448 84504 86.436 90.113 88.327 85.838 93.438 94.885
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MUNICIPALITY 0
TOTAL ELECTRICITY CONSUMPTION IN GWH

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989· 1990 1991 1992 1993 1994 1995

Jan 10.130 12.520 13.220 12.820 21.205 45.945 55.985 18.089 19.207 52.861 54.914 20.180 20.400 39.655 41.039 50.660

Feb 13;290 15.325 16.950 16.515 37.260 42.925 20.450 21.987 27.708 62:161 51.053 20.400 20.598 43.130 44.659 50.784

Mar 12.890 14.420 15.545 15.555 39.765 43.595 25.515 46.672 55.494 59.993 59.592 22:724 21.642 42.730 52.585 53.436

Apr 13.840 18.680 17.955 16.005 39.590 36.890 27.841 30.392 51.979 59.401 47.940 22.491 28.291 45.650 49.977 52.757

May 15.845 16.580 19.305 18.760 30.065 21.440 49.395 52.053 60.148 54.744 29.870 24.612 38.880 43.180 53.206 56.249

Jun 17.870 21.050 20.610 21.920 20.735 29.035 54.540 58.758 56.907 63.996 25.820 26.416 47.105 49.792 53.427 56.627

Jul 18.685 20.315 21.965 26.025 35.450 51.395 33.685 28.522 67.503 68.418 25.690 25.501 47.906 49.666 58.590 58.177

Aug 18.090 21.320 20.615 29.315 49.725 58.425 35.555 . 31.514 60.979 63.336 24.260 22.22,0 43.603 50.533 54.392 55.216

Sep 16.895 21.445 19.605 38.890 39.125 55.500 30.765 52.051 59.838 46.129 ' 23.144 21.528 45.449 48.619 50.389 51.857

Oct 14.835 17.985 18.435 19.320 48.585 60.075 57.500 58.917 47.449 63.076 23.273 22.660 47.378 50.385 52.122 53.068

Nav 16.485 16.730 19.285 17.320 50.615 54.205 54.895 55.174 54.252 23.554 22.466 21.392 43.626 50.. 115 50.594 38.212

Dec 15.345 15.660 . 16.465 17.065 25.670 46.955 26.233 51.462 63.721 50.567 18.646 18.859 31.992 48.284 50.218 50.249

TOTAL 184.200 212.030 219.955 249.510 437.790 546.385 472.358 505.589 625.182 668.235 406.668 268.983 436.868 561.741 611.199 627.292
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MUNICIPALITY 0
ELECTRICITY CONSUMPTION IN GWH FOR THE FACTORY

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Jan 7.451 31.723 41.530 3.400 3.611 36.799 35.824 2.495 3.000 22.850 23.360 29.669

Feb 20.100 25.442 2.806 4.181 9.941 43.758 33.517 2.504 3.000 26.532 26.680 27.521

Mar 22.167 24.975 6.384 27.031 34.367 45.432 41.411 3.165 3.000 23.941 30.584 27.597

Apr 22.070 18.612 9.184 11.357 34.974 39.714 28.033 2.785 10.000 26.628 32.753 33.126

May 11.585 3.100 31.125 33.852 39.252 34.515 9.400 3.037 15.000 23.411 29.605 28.334

Jun 0.000 8.054 33.435 37.530 35.733 42.619 3.104 4.015 24.040 25.568 27.839 29.398

Jul 3.000 13.325 29.720 12.460 4.197 43.132 47.344 3.000 2.914 25.276 27.815 32.507 32.378

Aug 8.233 28.038 36.436 13.263 9.966 39.789 41.294 3.000 1.433 21.752 26.244 29.054 31.761

Sep 18.700 19.186 35.687 11.078 31.277 39.464 28.572 3.000 2.128 ·26.657 29.420 27.920 28.941

Oct 0.000 28.341 39.369 36.333 38.498 27.769 41.401 3.000 2.648 28.033 29.390 29.856 32.600

Nav 0.000 31.508 34.204 34.000 34.871 34.933 4.371 3.000 3.000 25.016 29.120 28.624 16.816

Dec 0.000 8.210 29.297 8.378 33.892 46.244 36.625 3.000 3.000 15.099 29.280 28.080 27.660

TOTAL 211.980 316.619 239.974 270.049 389.206 442.442 169.288 33.122 199.873 320.199 346.862 345.802
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MUNICIPALITY D
ELECTRICITY CONSUMPTION IN GWH EX-ClUDING THE FACTORY

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Jan 10.130 12.520 13.220 12.820 13.754 14.222 14.455 14.689 15.597 16.063 19.090 17.685 17.400 16.805 17.679 20.991

Feb 13.290 15.325 16.950 16.515 17.160 17.483 17.644 17.805 17.767 18.403 17.537 17.897 17.598 16.598 17.979 23.263

Mar 12.890 14.420 15.545 15.555 17.598 18.620 19.130 19.641 21.128 14.561 18.181 19.559 18.642 18.789 22.001 25.839

Apr 13.840 18.680 17.955 16.005 17.520 18.278 18.657 19.036 17.005 19.687 19.907 19.706 18.291 19.022 17.224 19.631

May 15.845 . 16.580 19.305 18.760 18.480 18.340 18.270 18.201 20.896 20.229 20.470 21.575 23.880 19.769 23.601 27.915

Jun 17.870 21.050 20.610 21.920 20.735 20.982 21.105 21.228 . 21.174 21.378 22.716 22.401 23.065 24.224 25.588 27.229

Jul 18.685 20.315 21.965 23.025 22.125 21.675 21.225 24.325 24.372 21.074 22.690 22.588 22.630 21.851 26.083 25.799
0

Aug 18.090 21.320 20.615 21.082 21.687 21.989 22.292 21.549 21.19Q 22.042 21.260 20.787 21.851 24.289 . 25.338 23.4S'S

Sep 16.895 21.445 19.605 20.190 19.939 19.813 19.687 20.775 20.374 17.557 20.144 H~.400 18.792 19.199 22.469 22.917

Oct 14.835 17.985 18.435 19.320 20.244 20.706 21.167 20.419 19.680 21.676 20.273 20.012 19.345 20.995 22.266 20.468

Nov 16.485 16.730 19.285 17.320 19.108 20.001 20.895 20.304 19.320 19.183 19.466 18.392 18.610 20.995 21.970 21.396

Dec 15.345 15.660 16.465 17.065 17.460 17.658 17.855 17.570 17.476 13.942 15.646 15.859 16.893 19.004 22.138 22.587

TOTAL 184.200 212.030 219.955 219.577 225.810 229.766 232.384 235.539 235.976 225.794 237.380 235.861 236.995 241.542 264.337 281.490
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