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DISSERTATION ABSTRACT 

 

Maize (Zea mays L.) is the most important cereal crop in southern Africa. It is 

classified as a major staple food for human consumption. It is also used for animal 

feed in the livestock industry. Therefore, maize plays a crucial role in ensuring food 

security. However, production of maize is outstripped by consumption. Therefore, 

there is a yield gap that needs to be closed by increasing maize yields. Unfortunately, 

the adequate production of the crop is affected by lack of highly stable and highly 

productive hybrids. Hybrids that combine these two attributes are highly desired in the 

small scale sector where resources are usually limiting. Hybrids can be exploited to 

increase productivity of maize; however, a study of diversity between the parent lines 

is required because hybrid heterosis is obtained when the lines are divergent and 

complimentary. 

Therefore, the current study investigated genetic diversity and genetic gains that were 

realized by the breeding program at the UKZN. Thirty-one experimental hybrids from 

the program were tested alongside eleven commercial hybrids across 6 locations in 

South Africa. Hybrids 11C3201, 13C7082, 11C3417, 14XH149 and 14XH146 were 

among the best four hybrids across 6 locations. They combined high levels of stability 

and productivity, qualifying them as potential candidates for advancement. The study 

indicated that the program was successful at breeding new hybrids with the potential 

to compete with current commercial hybrids. 

With respect to diversity, 51 inbred lines were genotyped with 396 SNP markers at 

the LGC genomics, UK. Therefore, PIC, genetic diversity, availability, inbreeding 

coefficient, heterozygosity and genetic distance were determined. SNP markers 

indicated there was large diversity between the lines as reflected by two major 

clusters at the truncation level of 0.14 in the coefficient scale. Under the second major 

cluster, there were eight sub-clusters (sub-cluster B-J) identified which indicated wide 

range of the genetic diversity within inbred lines. Genetic distance between lines 

ranged from 0.05 to 0.35.  

This indicates the program was successful at generating new inbred lines that can be 

used to breed new hybrids. 
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CHAPTER ONE 

DISSERTATION INTRODUCTION 

 

1.1 Significance of maize in South Africa 

In South Africa, maize is recognized as a major staple food and significant source of 

carbohydrates, protein, iron, vitamin B, and minerals. Significantly, maize crop has a 

major economic value as livestock feed. Because of its ease of cultivation and 

nutritional qualities, it has became the largest locally-produced field crop (National 

Agriculture Marketing Council, 2009). Therefore, it ranks as one of the most crucial 

economic crops in relation to net production in metric tonnes value in South Africa 

(FAOSTAT, 2016). The exponentially growing South African population is 

increasingly depending on maize for food, feed and industrial usage. The demand for 

animal feed is expected to be 6.4 million tonnes by 2050 (Syngenta, 2013).  The 

significance of the maize industry is reflected by the international exports to countries 

like Japan, Mexico, Italy and Korea, as a significant earner of foreign currency for the 

South African economy. Therefore, any production constraint of maize implies a 

negative impact on the South African economy, health and political stability at large.  

1.2 Genetic Diversity 

“Genetic diversity is the sum of the genetic characteristics within any species or 

genus” (Rao and Hodgkin, 2002). Genetic diversity in maize plays a crucial role in 

maize breeding (William and Michael, 2002). Information regarding the genetic 

diversity of breeding lines and populations is crucial for hybrid development 

purposes (Makumbi et al., 2011). Additionally, enormous genetic diversity in maize 

presents a fundamental opportunity for germplasm enhancement (Prasanna, 2012), 

therefore impacts on the breeding strategy. As described by Frankham et al. (2002), 

genetic diversity is “the range of alleles and genotypes existing in a population, 

reflecting morphological, physiological and behavioral differences amongst 

individuals and populations”. The understanding of the amount, distribution and 

patterns of genetic variation within and among the various inbred lines provides a 

prediction guideline on the level of heterosis, variation and the degree of inheritance 

(Qi-Lun et al., 2008). However, to improve the genetic diversity in local germplasm, 
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knowledge of the extent of already existing genetic diversity in the germplasm is vital 

(Ahmad et al., 2011).  

1.3 Heterosis 

According to Birchler et al. (2010) heterosis as the phenomenon that progeny of a 

cross show superior performance to their parents. This phenomenon is also referred 

to as hybrid vigour (Baranwal et al., 2012). Current ideas suggest that the 

combination of the parent pairs has a major impact on the level of heterosis 

manifested by the hybrid for different traits and total performance of the hybrid 

(Chen, 2013). Therefore the level of differences between parents is important 

because heterosis is the result of high degree of heterozygosis in the genome. 

Heterosis has been extensively studied in maize, because of its large expression in 

grain yield and exploitation in hybrid breeding of maize (Reif et al., 2005). In maize, 

heterosis forms the principal basis for commercial hybrids (Garcia et al., 2008) 

worldwide, including South Africa. The use of heterosis has critically contributed to 

the commercial success of plant breeding in many species and leads to the 

prevalent use of hybrids in numerous crops and horticultural species.  

1.4 Genetic gains  

As described by Condón et al. (2009) genetic gains through plant breeding are a 

function of the genetic variation within the breeding population and the efficiency of 

selection imposed by the breeder. This is usually used to refer to the increase after 

one generation has passed. Genetic advance illustrates the amount of gain attained 

by character under a particular selection pressure (Bello et al., 2012). Future maize 

genetic gains are dependent on the employment of useful genetic diversity 

discovered in the public sector. For genetic gains to be significant and make impact, 

the inclusion of exceptional and useful genetic diversity to breeding programmes is 

required to actively improve germplasm and develop cultivars (Carena et al., 2009). 

Breeding programmes exploit variability of traits among genotypes. Therefore 

heritability of traits is crucial and indicates whether traits can be improved via 

selection strategy (Bello et al., 2012). While selection strategies may determine the 

rate of gain, it is the genetic variation within the breeding population and the number 

of recombinants generated that determine the potential gain that can be realized with 

optimal selection (Bernardo, 2002). 
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1.5. Heritability 

Heritability is a predictive tool used by plant breeders to determine the amount of 

progress or genetic gain that can be made through certain breeding strategies. 

Heritability assists in explaining the degree to which genes control the expression of 

a trait (Cassell, 2009). This is expressed as a percentage from 0 to 100%. It 

generates information regarding the extent to which selection would be effective in 

improving the population for the trait under study. Heritability influences the selection 

methods and decisions in prediction of gains and determination of relative 

importance of genetic effects   (Waqar-Ul-Haq et al., 2008). The higher the 

heritability, the higher is the opportunity of making successful selections of the trait of 

interest (Wiggins, 2012).  Highly heritable traits can easily be fixed with simple 

selection suggesting fast genetic progress (Bello et al., 2012; Langade et al., 2013).  

Problem statement  

Productivity of maize is very low which leads to food insecurity. In South Africa, 

maize production fails to meet the maize demand for human consumption. 

Therefore, breeders are faced with a challenge to address the maize yield gap 

through increasing maize yields. Hybrids can be exploited to increase productivity of 

maize. However, a study of diversity between the parent lines is required because 

hybrid heterosis is obtained when the lines are complimentary. The level of the 

genetic diversity between the advanced lines and the elite lines is not known which 

may compromise the breeding strategy. The breeding gains that have been realized 

by improving these lines over the past years have not been established. 

Research objectives 

The main objective of this study is to determine diversity and productivity among 

advanced and elite maize inbred lines with both tropical and temperate genetic 

background at UKZN. 

The following specific objectives were pursued: 

a) To determine the levels of genetic diversity in advanced inbred lines and elite 

maize lines from the programme at UKZN using SNP molecular markers. 

b) To determine the level of genetic gain realized in breeding maize hybrids for 

productivity using advanced and elite lines. 

c) To determine stability of experimental maize hybrids in South African 

production environments. 
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Research hypotheses 

The following hypotheses were tested: 

1. There is large genetic diversity among advanced and elite maize inbred lines 

in the UKZN breeding programmes. 

2. High genetic gains can be realized by crossing the advanced and elite inbred 

lines in the programme. 

3. Highly stable hybrids can be developed by crossing the advanced and elite 

inbred lines in the programme. 

Research questions 

a) Is there molecular diversity among the advanced inbred lines and elite maize 

lines in the breeding programme at UKZN? 

b) Is there genetic gain realized in breeding maize hybrids for productivity using 

advanced and elite lines? 

c) Is there high grain yield performance stability in the experimental maize 

hybrids in South African production environments? 

Dissertation structure 

 

 The dissertation is composed of five chapters: 

 

Chapter one: Introduction to dissertation 

 

 Presents the significance of maize globally, in Africa and in South Africa. 

 Presents a brief definition of heterosis and genetic gains.   

 

Chapter two: Literature review 

 

 Presents reviewed literature on topics relevant to the study. 

 

Chapter three: Genetic diversity analysis of the inbred lines  

 

 Presents information on molecular diversity and genetic distance among the 

maize inbred lines used in the current study. 
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Chapter four: Assessment of genetic gain and genotype x environment 

interaction in experimental maize hybrids 

 

 Presents information on the variability of yield performance in hybrids used in 

this study as influenced by the genotype and environment interaction (GXE).  

 

Chapter five: General overview of the study 

 

 Presents general discussion, conclusion and the way forward 

(Recommendation). 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the literature on topics relevant to this study. Initially, the 

significance of maize globally and in Africa, genotype and environment interaction 

and genetic gains in maize is discussed. Heritability, genotypic and phenotypic 

coefficient of variance, genetic diversity in maize, estimation of genetic diversity and 

molecular markers are discussed in relation to factors influencing maize yield, 

increasing productivity and genetic diversity to a large extent. Conclusions drawn 

from this review are provided at the end of the chapter. 

2.2 Global significance of maize 

Maize (Zea mays.L) is one of the oldest human-domesticated and widely cultivated 

grain crop throughout the world with its origins centred in central Mexico. Maize is 

one of the major cereal crops of the world. It is projected that by 2020 maize will 

outperform both wheat and rice to become the number one cereal in the world. 

Maize is highly adapted from sea level to the highlands (above 3000 m altitude) and 

across latitudes from temperate to equatorial regions (Dowswell et al., 1996).  

 

Five years statistics for global average maize production indicate that United States 

of America had the highest production of 323,742,070 tonnes of maize (FAOSTAT, 

2016) from 2010 to 2014. This was followed by China recording 201,991,080 tonnes 

for the same production period. South Africa had the least average maize production 

per ton over five years (Table 2.1).  

 

Table 2.1: Global average maize production across countries (FAOSTAT, 2016) 

Production Country Average Production ( Tonnes) 
Production 
Year 

South Africa 12494600 2010- 2014 

Mexico 21788752 2010- 2014 

Argentina 27076393 2010- 2014 

Brazil 68449640 2010- 2014 

United States of America 323742070 2010- 2014 

China 201991080 2010- 2014 
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Maize, wheat and rice are the major crops accounting for more than 75% of grain 

production and 30% of energy (Shiferaw et al., 2011). In addition it  is a major 

industrial crop worldwide  (Pingali, 2001). In 2004, global production was over 721 

million metric tons (mmt) exceeding both wheat (627 mmt) and rice (605 mmt) 

(Meridian institute, 2014). Consequently, the global trends suggest the demand for 

maize continues to upsurge.  

 

Projected use of maize by year 2020, indicate that animal feed will play a greater 

role in the demand of maize across most regions (Table 2.2), especially in East Asia 

where about 82% of maize demand will be for the animal feed sector. The scenario 

is however different for Africa south of the Sahara and South Asia. The total demand 

for Sub-Saharan Africa is projected to be 52 million metric tonnes of maize. This is 

because 76% of maize demand is for human consumption, while 10% is projected 

for animal feed. In South Asia, about 70% of the maize demand and use is for 

human consumption while only 13% accounts for animal feed (Table 2.2). 

 

Table 2.2: Maize projected demand and use in 2020 

Region Area¹ Demand² % Food % Feed 
% 
Other Net Trade³ 

 Global 158 852 15% 69% 16%   
 Industrial 50 344 5% 76% 19% -67% 
 Developing 108 508 22% 64% 14% -67% 
               
 East Asia 30 252 4% 82% 14% -43% 
 Latin America 32 118 25% 60% 15% +5% 
 Sub-Saharan 

Africa 26 52 
 
76% 

 
10% 

 
14% 

 
-6% 

 South East Asia 9 39 32% 58% 10% -8% 
  

WANA 
 

2 
 

28 
 

28% 
 

63% 
 

9% 
 

-14% 
 

 South Asia 9 19 70% 13% 17% -<1 
 Source: IFPRI, 2003. ¹Million of hactares;² Millions of metric tonnes (MT); ³Millions of 

MT,exports (+), imports (-) 
 
 
 

In South Africa, five year’s data indicated that 2011 was the least productive year 

with about 10.4 Million tonnes (Figure 1.1) of maize produces countrywide. 

However, from 2012 up to 2014, maize production trends indicated to be escalating 

to about 15 Million tonnes.  
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Figure 1.1: South African maize production (FAOSTAT, 2016) 
 

2.3 Significance of maize in Africa  

Among the twenty-two countries in the world where maize encompasses the majority 

of the diet, sixteen are in Africa (Meridian institute, 2014). In 2005, the leading maize 

producers were South Africa, Tanzania, Uganda, Zambia and Swaziland, whereas 

Zimbabwe, Angola, Ghana, Kenya and Mozambique had maize grain deficits which 

were filled by imports (Meridian Institute, 2014). Therefore these countries should 

boost grain production to achieve food security (Pingali, 2001). IFPRI (2003) 

reported that by 2020, the highest proportion (76%) of maize used for food will be in 

the countries of Sub Saharan Africa (Table 2.2). Because of increasing importance, 

maize has become a major staple food for over 300 million Africans (M’mboyi et al., 

2010) and cash crop for small scale farmers. Abuali et al. (2014) indicated that maize 

was perceived as less important as human staple food when compared to sorghum, 

wheat and millet in Sudan, However, Sudan has more than doubled her grain 

production area from 17000 to 37000 ha in 39 years between 1971 and 2010 ( 

Abuali et al., 2014).  

 

Maize is reported to be a cheap staple food compared to other small grain cereals 

such as rice and wheat. It accounts for most of the carbohydrates, protein and 

mineral requirements  (M’mboyi et al., 2010) especially in Africa, where it is the 

major crop. Therefore maize is identified as a strategic commodity for food security 
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in Africa (FARA, 2009). However, the yields of maize are extremely low by world 

standards with average estimation of 1.7 tons per hectare in 2006 compared to the 

global average of 5 tons per hectare (FARA, 2009). In Africa, virtually all plant parts 

of maize have economic value (M’mboyi et al., 2010). Maize grain, leaves, stalk, 

tassel and cob can all be used for production of food and non-food products. In 

developed African countries, maize is consumed as secondary products “in the form 

of meat, eggs and dairy product” (Du Plessis, 2003). Grain is used for livestock feed 

and production of industrial products for starch, oil and protein (M’mboyi et al., 2010). 

However, maize leaves, stalk and tassel are used as fodder or silage. In a processed 

form, maize is used as a source of fuel and is available as Ethanol (M’mboyi et al., 

2010).  Roots are burnt as fuel and used for mulching and manure.   

 

In South and East Africa, maize accounts for 30-50% of low income household 

expenditures (www.iita.org) accessed 13/09/2014. For this reason, continued 

research in increasing maize grain yields to ensure future food security is imperative. 

Plant breeders are therefore confronted by the urgency of breeding for hybrids with 

increased vigour to close the gap between the growing population, consumption and 

maize supply.  

2.4 Genotype and environment interaction (GEI) 

The genotype and environment interaction describes the different response of a 

genotype towards the environmental effects observed across multiple locations (da 

Silva et al., 2012). Genotypes that perform well in one environment may not do as 

well in another. Therefore, this suggests that the genotype and the environment 

effects are not independent of each other. The GEI proves to be an important 

consideration to plant breeders as it complicates the breeding and selection for 

quantitative traits,  including yield (Nzuve et al., 2013). This is because it results in 

change of rank of genotypes in different environments.  Assessment of plant 

performance across various locations reduces the chance of misleading selection 

results and recommendations (Mendes et al., 2012). According to Nzuve et al. 

(2013) the genotype and environment components contribute to noise, reducing 

heritability of traits and compromise breeding gains. In other words GEI 

compromises measurement of traits and reduce heritability (Grada and Ciulca, 

2013). GEI studies provides an opportunity to identify stable and adapted genotypes 

http://www.iita.org/
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in specific targeted areas, as well as testing potential candidates for promising hybrid 

combinations (Nzuve et al., 2013). 

Several methods for multi environment trials data have been established to identify 

and show patterns of GE interaction and have been reported by various authors. 

These methods include the additive main effects and multiplicative interaction model 

(AMMI), principal component analysis (PCA) and linear regression analysis, analysis 

of variance (ANOVA) and GGE biplot analysis ( Miranda et al., 2009; Akcura et al., 

2011; Mitrovic et al., 2012) . These statistical methods are briefly discussed. 

2.4.1 Additive Main effect and Multiplicative Interaction (AMMI) 

This analysis combines ANOVA and PCA where sources of genotype by 

environment interaction are partitioned by PCA. The interpretation of results obtained 

from AMMI analysis is performed with a biplot that relates genotypic means to the 

first or some of the principal interaction components (Grada et al., 2013). Therefore, 

AMMI analysis has a capability of analyzing complex data. It uses a principal 

component (auto-vector) to interpret genotype performance by incorporating the use 

of ANOVA and PCA. It also allows for the graphic display of phenotypic stability, 

genotypic behavior of the cultivars and environments which optimize performance 

(Miranda et al., 2009).  Akcura et al. (2011) described AMMI as “useful in 

summarizing and estimating patterns of response which exist in the original data”.  

Abay et al. (2009) reported that AMMI has made a significant contribution to analysis 

of multi-environment data, especially yield. 

According to Grada et al. (2013) the AMMI analysis is a crucial tool for multi-

environment data analysis. This includes improvements in estimating yield of 

genotypes from different environments. It is an important tool for more diagnosis and 

interpretation of GEI and shows important trends between genotypes and 

environments. 

Although the ANOVA method is used to identify the existence of GEI in multi – 

environmental experiments, it has limitations. According to Adu et al. (2013), the 

ANOVA has a limitation of “presumption of homogeneity of variance among 

environments required to determine genotype differences”. The ANOVA  does not 

allow exploring the response of the genotypes in the non- additive term (Adu et al., 
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2013). This limits its application in multi-environment data especially in tropical 

countries where the environment is variable. 

Sousa et al. (2015) employed AMMI analysis to evaluate grain yield stability and 

adaptability of 27 soybean lines across 5 locations over 2 seasons. The plotted 

graph revealed genotype 23 as the most yielding and stable as closest to the zero 

score, followed by other 6 genotypes. The analysis was successful in identifying 3 

most unstable genotypes that contributed more in the GEI. Two of the unstable 

genotypes generated higher yields compared to the stable genotype 23. It was 

concluded that in the study the highest yielding genotypes were the most unstable, 

therefore suggesting that if the environment was favorable, these genotypes 

behavior will be favorable. However, if the environment is unfavorable then the yield 

from these genotypes could be compromised. 

To determine stability, nature and magnitude of GEI effects on rice grain yield,   

Akter et al. (2014) cited using AMMI biplot analysis. The analysis was done using 12 

rice genotypes, planted across 5 environments. The genotypes showed inconsistent 

performance across environments. Genotype 3 had an overall highest yield based 

on the genotype averaged yield values over environments while genotype 12 had the 

lowest yield. Genotype 1, 2, 3 and 4 had high yield with high main effects, showing 

positive IPCA1 scores. Environment 1 and 5 had positive IPCA1 score near zero, 

hence small interaction effects. This suggests that all genotypes performed well in 

these two locations. The analysis identified genotype 5 having an IPCA1 score 

closer to zero, indicating stability and less influenced by the environment. Genotype 

10 had moderate stability across environments. 

In Brazil, Silveira et al. (2013) reported using AMMI analysis to evaluate the 

adaptability and phenotypic stability of 15 cloned sugarcane genotypes. The 

genotypes were tested in 9 environments. The analysis indicated that 3 genotypes 

had high stability as they were positioned closer to the biplot origin. There were 4 

additional genotypes including a check that exhibited high to intermediate stability. 

Furthermore, 4 genotypes were identified as unstable with specific adaptation. This 

was because they were very distant from the biplot origin, therefore contributing 

more to the GEI. Environment 8 was reported to be the largest contributor to the 

phenotypic stability of the genotypes. This was because in that environment there 

were differences found among genotypes when using individual ANOVA. The biplot 
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visually revealed positive association between genotypes and environments to 

create agronomic zones. Noticeably, 3 genotypes including a check were specifically 

adapted to environment 5.  Based on the genotypes with the highest raw means in 

each environment, the study revealed that six mega environments were formed. 

Although based on the predicted means, only three mega environments were 

formed. 

Currently, AMMI analysis is used across a wide range of crops to evaluate 

performance and interaction with the environment. This is because it is an important 

tool in breeding, which directs selection of most productive, adapted and stable 

hybrids or lines for specific locations and growing seasons. AMMI analysis’ strength 

lies in the simple graphical representation of genotypes and environments in a 

multivariate dispersion diagram (Yokomizo et al., 2013). 

2.4.2 GGE biplot analysis 

The biplot has increasingly become a popular data visualization tool among plant 

breeders for the purpose of cultivar evaluation and mega – environment analysis.  

The GGE biplot analysis considers genotype main effects (G) and genotype by 

environment (GE) interaction as two sources of variation of the site regression 

model.  “Sources of variation are found to be significant to genotype evaluation and 

must be factored concurrently for proper genotype and test environment evaluation” 

(Yan and Tinker, 2006) . It combines ANOVA and PCA by partitioning together of 

sums of squares of genotypes and sums of squares of GEI using PCA method 

(Mitrović et al., 2012). 

GGE biplot is created by plotting the first principal component scores (PC1) of the 

genotypes and environments against second principal component scores (PC2) 

obtained by decomposition of singular values of multi-location trials yield data 

(Mitrović et al., 2012; Yan et al., 2007). 

The GGE biplot technique is used for the presentation and estimation of genotypes 

in different environments. The analysis enables identification of genotypes with 

highest yields in different environments, preferred genotypes and target 

environments (Mitrović et al., 2012). Therefore, the GGE biplot determines the which 

-won- where pattern analysis and does genotype and test environment evaluation 

(Asfaw et al., 2009). 
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Kuchanur et al. (2015) successfully employed GGE biplot technique to test the 

efficacy of 6 testing environments and investigate stability performance of 27 single 

cross maize hybrids under stress and non-stress conditions. The analysis illustrated 

6 environments fell into four mega environments with different high yielding hybrids. 

Nine hybrids were identified as unstable in performance and highly interactive with 

environments. Six hybrids were reported as vertex hybrids since they were the most 

responsive and farthest from the biplot origin. 

In India, Rahnejat and Farshadfar (2015), reported on evaluating phenotypic stability 

in 15 Canola genotypes across 4 environments, using GGE biplot analysis. The 

analysis revealed that locations were clustered into two mega environments, with 

three locations belonging to one mega environment. It was found that two genotypes 

performed the poorest across all environments. In this study visualization of the 

“which-won-where pattern” of the multi environment trials data was achieved through 

the GGE biplot technique. 

In Iran, Mortazavian et al. (2014), reported using GGE biplot analysis to test yield 

performance on 20 barley genotypes across 14 different environments. Results 

illustrated that locations fell into three mega environments. The GGE biplot analysis 

was successful in showing relative adaptation of genotypes with the highest grain 

yield across testing locations.  

2.5 Genetic gains 

Genetic gain is the difference in the mean value of the selection criterion between 

the original generation and the next generation of the selected population when 

compared in the same environment (www.passel.unl.edu) accessed 24/04/2015. 

Accordingly, genetic gain refers to the improvement of traits’ genotypic value for the 

new population under one selection cycle at a given selection intensity. Genetic gain 

is calculated using a breeder’s equation or formula:  

SG = h2 x SD, whereby SG is a selection gain; h2 is the heritability of the trait; and 

SD is the selection differential which is the average of the selection criterion of the 

selected individuals minus the average of the selection criterion of the original 

population (Bhering et al., 2012). Selection criterion refers to the traits on which 

selection is based. Genetic gain results when there is a better gene combination that 

control traits of interest within the selected genotypes compared to the unselected 

genotypes (www.passel.unl.edu) accessed 24/04/2015.  

http://www.passel.unl.edu/
http://www.passel.unl.edu/
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Through genetic gain information, grain yield and other traits of high potential value 

can be identified. Additionally, genetic gain knowledge can influence alteration in 

breeding methodologies and strategy for further increased progress in future 

breeding efforts. Therefore, heritability and genetic advance of a trait reveals the 

extent to which a trait can be improved through selection (Sesay et al. 2016). 

However, genetic advance together with heritability estimates are more informative 

in the prediction of gain under selection compared to the use of heritability estimates 

alone (Anshuman et al., 2013). Therefore, genetic advance is a prediction tool of 

genetic gains in the next generation (Najeeb et al., 2009). Moreover, a character with 

high heritability does not necessarily have high genetic gains; however, to reach a 

more reliable conclusion, it is recommended that high heritability should be 

complemented by high genetic gains (Kumar et al., 2014). 

   

To determine the levels of genetic advance in maize, Anshuman et al. (2013), tested 

20 genotypes and observed 14 traits including grain yield per plant. Moderate values 

were recorded for grain yield genetic advance percentage (58.52 %) while high 

broad sense heritability values were observed at 99.8 %. This suggests that 

selection may lead to improvement of this trait.  

 Murtza et al. (2014) tested 14 maize genotypes to estimate heritability and genetic 

advance. He found high heritability estimates (93.08 %) coupled with high genetic 

advance. Therefore he concluded that for future yield enhancement, selection of 

genotypes may be based on traits like grain yield. 

 

However, Munawar et al. (2013) found that maize grain yield is influenced and 

directly linked to other traits such as cob position, number of rows per cob and 

number of grain per cob. Therefore, these associations suggest that to improve grain 

yield further, selection of linked traits would result in an effective breeding 

programme.  

 

Yusuf (2010) reported genetic advance of 95.1% in grain yield of single cross quality 

protein maize and a broader genetic base for grain yield was found in the hybrid 

population. Furthermore, grain yield was significantly and positively associated with 

thousand seed weight which recorded high genetic gain of 445.8%. It was concluded 
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that improvement of thousand seed weight will consequently lead to improvement of 

grain yield. Previously, Singhal et al. (2006) reported on maximum grain yield genetic 

advance of 15.69% coupled with 73.8% heritability in high quality protein maize.  

However, plant height, ear height and ear diameter were also directly associated 

with grain yield, therefore were crucial secondary traits for yield improvement 

(Singhal et al., 2006). 

 

Reddy et al. (2013) found that grain yield as a complex trait is also dependant on 

other several contributing characters known as yield components. Grain yield was 

observed to have high genetic advance of 5%. However, ear height (43.93%), plant 

height (29.63%), number of kernels per row (31.33%) and ear length (26.41%) also 

recorded high genetic advance values coupled with high heritability. These traits are 

under the influence of the additive gene action. High direct effects were observed for 

these traits through path coefficient analysis, which indicates strong association of 

these traits with grain yield. Therefore, direct selection of these traits will be effective 

to improve grain yield. 

Beyene et al. (2005) found maize yield to have low genetic advance estimate of 

13.5% from the selected top 5% of 180 accessions in the Ethiopian highlands. This 

was also coupled with lowest heritability estimate of 17.0%. Therefore they 

concluded that selection of the yield trait would be more difficult. However, the 

results indicated that selection of the number of kernels per row can improve the trait 

up to 37.8% as genetic advance. Therefore, number of kernels per row was 

suggested to be used as selection criteria in improving grain yield, adding credence 

to the philosophy that yield can be improved through indirect selection of secondary 

traits. 

Bekele and Rao (2014) reported high genetic advance values for plant height 

(14.957%), number of seed rows per cob (0.857%), 100 seed weight (15.026%), ear 

height (23.210%), grain yield per plot (36.199%) and protein percentage (15.015%). 

2.6 Heritability 

There are two types of heritability, broad and narrow sense heritability. Broad sense 

heritability (H2) is the proportion of phenotypic variation (σ2P) that is the result of the 

total genetic variation (σ2G) including both dominance and epitasis effects (H2 

=σ2G/σ2P). Narrow sense heritability (h2) is the proportion of phenotypic variance 
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(σ2P) that is the result of additive genetic variation, σ2A, (h2 = σ2A/σ2P) (Nyquist, 

1991). The heritability for any trait can be calculated. 

Certain misconceptions regarding heritability have been reported (Visscher et al., 

2008). Phenotypes are not passed to the next generation but their genes.  Each 

parent passes half of its information to the next generation. Numerous studies have 

been conducted to determine the heritability of traits in maize. 

Soleri and Smith (2002) rapidly estimated broad- sense heritability (H) of farmer-

managed (landraces) maize populations in Mexico through participatory plant 

breeding. This was relevant for the local low- resource farmers to generate initial 

heritability information specific to local genetic populations and their response to the 

local environments. These estimates were compared to the published estimates for 

similar traits and with estimates of narrow- sense heritability (h²) from experimental 

plots in the study. However, heritability estimates are particular to the genetic and 

environmental populations on which they are based (Falconer et al., 1996), but the 

average estimates for species and traits can be used by breeders as a common 

reference for initial evaluation. High mean H² estimates across populations and 

locations were recorded for ear height (0.74%), plant height (0.65%), stalk diameter 

(0.67%), ear leaf width and length (0.65%), ear length (0.63%), days to anthesis 

(0.65%) and 100 kernel weight (0.61%). 

Mahmood et al. (2004) conducted a study to determine heritability and genetic 

advance estimates in maize populations. The type of maize populations used in the 

study comprised of five maize hybrids and five open pollinated varieties. They 

reported high heritability (99%) for grain yield per plant and plant height. Heritability 

estimates for grain yield was considered on a single plant basis, while plant height 

was calculated on a plot basis. In addition, the number of days taken to silking and 

number of days taken to tasseling showed high estimates of 97% and 91% 

respectively. According to the study, the broad sense heritability and higher genetic 

advancement in grain yield per plant, plant height, days taken to silking and tasseling 

provided evidence that these traits were under the control of additive gene effects. In 

consideration of these traits, the conclusion was high heritability coupled with high 

genetic gains provides better chances for selecting plant material. 
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Shakoor et al. (2007) evaluated thirty maize double crosses with two checks to 

determine the broad sense heritability, genetic advance, correlations and path 

coefficient analysis of morpho-physiological traits. Traits such as grain yield per plant 

(78.10%), days to 50% silking (49%) and days to 50% tasseling (45.7%) were 

reported as highly heritable traits for grain yield improvement. Additionally, grain 

yield per plant and ear height was reported to have comparatively better genotypic 

variability, broad sense heritability and genetic advance which are good combination 

for effective selection of a trait. Ears per plant trait was found to have low broad 

sense heritability estimate of 29.4% and a genetic advance of 2% as mean 

percentage. 

In cowpea, Shimelis and Shiringani (2010) reported moderate to high broad sense 

heritability estimates for the days to flowering (50%), seed yield (55%), number of 

branches per plant (53%) and days to maturity (66%). However, low heritability 

estimates were found for pods per plant (23%) and 100- seed weight (11%). They 

found that low level of heritability of the two traits necessitate indirect selection via 

other agronomic traits.  

In pearl millet, Govindaraj et al. (2011) reported high heritability estimates for days to 

50% flowering, plant height, number of production tillers, days to maturity and grain 

yield per plant. 

Aminu and Izge (2012) investigated heritability and correlation estimates in maize 

under drought conditions. In the study, high broad-sense heritability estimates were 

reported for number of stands per plot (61.54 %), anthesis-silking interval (60.78 %), 

plant height (60.61%), weight of cobs (67.44 %) and grain yield (60.73 %). However, 

moderate broad sense heritability were also recorded for days to 50% tasseling 

(47.91 %), days to 50% silking (50.03 %), ear height (58.45 %) and dehusked cobs 

(55.06 %). Additionally, low heritability estimates were observed for the number of 

cobs per plant (37.21%), number of cobs per plot (34.62%) and 100 seed weight 

(31.99%). They concluded that heritability estimation is important in selecting 

suitable segregating generations for exhibiting the best expression of gene of 

different studied traits.  

Bello et al. (2012) evaluated maize populations to explain heritability and genetic 

advance for grain yield and its component characters. High broad sense heritability 
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estimates were recorded for seedling emergence (75.28%), days to 50% tasseling 

(77.54 %), days to 50% silking (84.32%), ASI (61.79%), plant height (98.64%), ear 

height (92.54%), number of grains per ear (96.45%), ear weight (89.54%) and grain 

yield (98.16%).However, days to 50% pollen shed had low broad sense heritability 

estimates of 8.54%. Traits which possess both high heritability estimates and genetic 

gains were suggestively controlled by preponderance of the additive gene action. 

However, traits with high heritability estimates and low genetic advance can be 

improved through hybridization and hybrid vigour as observed for seedling 

emergence, days to anthesis and silking. These traits were suggested to be under 

the influence of the non-additive genetic control. 

2.7 Genotypic and Phenotypic coefficient of variance 

Mahmood et al. (2004) reported that genetic variability was observed  in traits such 

as grain yield per plant (21.24%), kernels per row (14.68%) and 100-grain weight 

(12.71%). More consistency was observed for kernel rows per ear with a minimal 

level of genotypic coefficient of variance (5.48%).  High phenotypic variance was 

recorded for grain yield per plant (21.32%) followed by number of kernels per row 

(15.56%). However, remarkably the magnitude of the phenotypic variance coefficient 

was greater than those of genotypic variance coefficient suggesting that the 

environmental influence was large. The environmental influence was clearly 

indicated in the case of 100-grain weight, where the phenotypic coefficient was 

14.20% and the genotypic coefficient was 12.71%. Genetic advance values ranged 

between 43.80% for grain yield per plant to 1.33% for number of kernel row per ear.  

Govindaraj et al. (2011) reported phenotypic coefficient variation values which were 

slightly higher than the genotypic coefficient variation values in most measured 

characters which indicate least role of environmental influences for expression of the 

characters. 

Bello et al. (2012) observed a high proportion of phenotypic variance and phenotypic 

variance coefficient (PVC) over the genotypic variance and genotypic variance 

coefficient (GVC) across traits such as seedling emergence, days to 50% silking, 

days to 50% tasseling, number of grains per ear, plant height, ear height, ASI and 

plant height. Therefore, this indicates low environmental control in the expression of 

these traits. High genetic advance as percentage of the mean was reported for 
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number of grains (59.87), plant height (32.48), ear height (31.65), ear weight (28.37) 

and grain yield (26.54).  

Langade et al. (2013) evaluated maize inbred lines for the utility of quality and 

morphological traits as a selection criterion for yield improvement. For all characters 

studied, phenotypic coefficient of variation was slightly higher compared to genotypic 

coefficient of variation. This signifies that the environment played a crucial role in 

expression of these traits. High broad sense heritability estimates were recorded for 

days to tasseling (99.5%), days to silking (99.4%), protein content (84.7%), starch 

content (76.6%) and number of kernels per row (74.8%). They found that these 

characters were least influenced by the environment, however, selection may not be 

useful as broad sense heritability is based on total genetic variance which is 

inclusive of both fixable and non-fixable variances. They also found that number of 

kernel rows per ear and kernel weight had low heritability suggesting that 

improvement through selection will be difficult due to environmental masking effects 

on genotypic effects. They concluded that a high, direct and positive effect on grain 

yield was associated with days to tasseling, plant height, ear height, ear length, ear 

diameter, kernel weight, oil content, protein content and starch content, therefore 

suggesting the effectiveness of direct selection. However, negative and direct effects 

were shown by days to silking, number of kernels per row and sugar content, thus 

indirect selection effectiveness. 

However, Bekele and Rao (2014) reported that plant height (0.591%), ear height 

(0.395%), number of seed per row (0.427%), 100 seed weight (0.416%), protein 

content (0.961%) and grain yield per plot (0.558 %) had high heritability values. 

However, both genetic advance and high heritability were observed for plant height, 

grain yield per plot and protein percentage.  

Aminu et al. (2014) reported high heritability estimates for days to 50% silking 

(59.67%), days to 50% tasseling (56.61%), anthesis –silking interval (64.23%), plant 

height (67.26%), ear height (56.83%) and grain yield (55.57%). Moderate estimates 

of heritability were recorded for number of stands per plot (49.36%), number of cobs 

per plant (50.69 %), number of cobs per plot (45.54%) and 100 seed weight 

(45.89%). The cobs weight and dehusked cobs recorded 38.06% and 44.23% 

respectively which was below average heritability values of 52.82%. Additive genetic 
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variance was observed for many traits which emphasized the significance of 

selecting segregating material for best expression of genes of various characters. 

They concluded that the high to moderate heritability indicate a significant 

opportunity for the development of drought tolerant and high yielding varieties 

through selection of desirable plants. Careful selection of traits with below average 

heritability values can lead towards improvement of such traits.  

Heritability provides information on the degree to which the trait is controlled by 

inheritance (Rani and Sumalini, 2013); therefore determination of possible genetic 

advancement under selection (Govindaraj et al., 2011). However, low heritability 

estimates for various traits indicate that such traits are influenced by the environment 

to a greater magnitude (Ali et al., 2012). 

2.8 Genetic diversity in maize 

Genetic diversity studies in maize are well documented by various authors, therefore 

providing a rationale on the importance of such studies (Dao et al., 2014; Legesse et 

al., 2007; Cholastova at al., 2011). Dao et al. (2014) cited that genetic diversity in 

different populations provides and strengthens the adaptability to changing 

environments and market requirements. Essentially, in crop improvement, genetic 

diversity is crucial for: (i) analysis of genetic variability; (ii) identification of diverse 

parental combinations for exploitation of heterosis and to generate segregating 

progenies with high genetic variability for further selection; (iii) sustenance and 

expansion of the genetic base of the elite germplasm; and (iv) introgression of 

desired genes from diverse germplasm into the available genetic base. Additionally, 

Legesse et al. (2007) cited the importance of genetic diversity in the formation of 

heterotic groups for use as source materials in a breeding programme. Genetic 

progress in yield and other traits of economic importance in any breeding 

programme is highly dependant and influenced by the genetic variability within the 

breeding population (Cholastova et al., 2011). Therefore, selection of the improved 

breeding material depends on the level of available genetic variability (Cholastova et 

al., 2011).  

There are serious implications for compromising genetic diversity. For several 

decades, maize breeders have focused on short term breeding, resulting in a 

constricted genetic base for commercial maize hybrids (Darrah and Zuber, 1986). 

One of the major concerns arising with the massive use of uniform commercial 
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varieties in maize production is the loss of its genetic variability (Drinic et al., 2012). 

Currently in the world, the main maize hybrids cultivated involve a limited amount 

and range of key inbred lines (Le Clerc et al., 2005). Therefore, there is limited 

genetic diversity in current hybrids compared to the large genetic diversity in gene 

banks (Le Clerc et al., 2005). Evidently there is a gap between available genetic 

resources and the breeding programme activities. Drinic et al. (2012) outlined that 

searching for superior genotypes which possess high yielding ability, disease and 

pest resistance, stress tolerance and better nutritional quality is hard, competitive, 

long term and expensive. This is the reason why breeders focus on the adapted and 

improved materials while avoiding efficiently exploring the wild parents, landraces 

and exotic collections in the germplasm banks (Drinic et al., 2012). Vigouroux et al. 

(2005) cited domestication bottleneck and selective breeding through directional 

selection as some of the causes for wide loss of genetic diversity. This is because 

over time only a limited portion of the population contributed to each subsequent 

generation.   

Goodman (1999) cited that the narrow germplasm base is due to deriving newer 

lines and varieties from intercrosses of existing elite breeding material. Li et al. 

(2002) indicated 91.6% of hybrids parenthood in China consists of approximately 20 

elite inbred lines.  There has been a serious loss of diversity in the USA such that 

less than 10 hybrids form the basis of hybrid production in the country (Carvalho et 

al., 2004). Therefore, such a restrictive base indicates that maize may not contain all 

the desirable and favorable alleles for maintenance of selection progress (Qi-Lun et 

al., 2008). However, Duvick (1990) outlined there is no indication in maize that 

improvement rates have been negatively affected by the narrowing germplasm base. 

There is a concern that bottlenecks may restrict breeding flexibility and slow 

response to new opportunities, pests, pathogens, and agronomic practices in the 

future (Duvick, 1990). Ahmad et al. (2011) suggested the use of exogenous breeding 

material, such as landraces (Drinic et al., 2012)  and other materials from other 

geographies with specific genetic background to aid in broadening the existing 

genetic base. This is because landraces are a reserve of ancestral genes and have 

vast genetic variability as they were not subjected to selection over period of time. 

The landraces have characteristics such as high tolerance to biotic and abiotic 

stresses, herbicide tolerance, low anti-nutritional components content and large grain 

content of proteins, oil and starch (Drinic et al., 2012). 
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2.9 Estimation of genetic diversity 

Various methods have been used for the estimation and assessment of genetic 

diversity in maize. These include pedigree analysis, quantitative genetic analysis, 

heterosis in crosses, morphological, biochemical, physiological and cytological 

markers (Reid et al., 2011). Pedigree analysis is somehow more reliable for inbred 

heterotic grouping. However it cannot always be used  because there are many 

inbred lines that do not have clear or known pedigrees (Reid et al., 2011). 

Additionally, pedigree analysis has limitations in providing genetic distance 

information. The use of morphological traits as markers proved to be ineffective and 

unreliable because the markers are often influenced by the genotype x environment 

interaction (Cholastova et al., 2011). Although morphological data is still widely used 

in selection of genetically diverse parents, the morphological differences are 

determined by a small limited number of genes. This is not representative of the 

genetic diversity in the total genome (Hoxha et al., 2004). Although, cytological and 

biochemical markers are used to monitor genetic diversity, however, they are limited 

in number and therefore cannot be used to study the complete genome of  a specie 

(Cholastova et al, 2011).  

To overcome the limitations of the foregoing, DNA markers have been developed 

and widely used to accurately estimate the levels of genetic diversity and examining 

relationships between maize inbred genotypes. This is because the method is 

independent of the environment interaction and functional in detecting and 

elimination of duplicates that might occur during germplasm collection and exchange 

(Hoxha et al., 2004). Genetic diversity can be quantified using polymorphic 

information content (PIC), heterozygosity and availability. PIC values estimates the 

discriminatory power of a marker by taking into consideration the number of alleles at 

the locus as well as the relative frequencies of these alleles (Xu, 2010). 

Heterozygosity values specify the average proportion of individuals which are 

heterozygous for a given trait (Nei, 1973). Availability values determine the number 

of times the molecular marker worked. It is calculated as the number of samples 

genotyped for each marker (Nei, 1973). Limited genetic diversity has a negative 

impact on future maize breeding. Therefore for this study, it was practical to 

investigate genetic diversity using DNA molecular markers. These are summarized 

(Table 2.3 and 2.4).  
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Table 2.3: Comparison of different molecular markers 

Type 
of 
marker 

Advantages Disadvantages   Application in Diversity study 

AFLPs  High genomic abundance Very tricky due to changes in 
Kinship studies in Soya beans ( Nimnual et al.,     
2014) 

 

High polymorphism patterns with respect to materials used 
 

 

No need for sequence information 
Not reproducible, results in non- consistent 
map  

 

Can be employed across species Need to have very good primers 
 

 

Work with smaller RFLP fragments 

 
 

  Useful in preparing coting maps     

SNPs Can be automated High development costs 
Association Mapping  in Wheat ( Mengistu et al., 
2016) 

 

Very Robust Require sequence information  
 

  Suitable for high throughput Technically challenging   

SSRs High genomic abundance Need sequence information DNA Fingerprinting in Maize ( Sharma et al., 2014)  

 

Highly reproducible Cannot be used across species 
 

 

Has a good genome coverage Not well tested 
 

 

High polymorphism 

 
 

 

No radio active labeling 
  

 

Easy to automate 
  

  Multiple alleles     

RAPDs High genomic abundance No probe or primer information 
Assessment of genetic diversity in Maize ( Abuali et 
al., 2011 ) 

 

Has a good genome coverage Dominant markers 
 

 

No sequence information Not reproducible 
 

 

Ideal for automation Cannot be used across species 
 

 

Poor DNA acceptable ( Requires 
less DNA) 

Not well tested 
 

 

No radio active labeling 
  

  Relatively faster     

RFLPs High genomic abundance Need large amount of good quality DNA 
Association Mapping in Sugarcane ( Bilal et al., 
2015) 

 

Co- dominant markers Laborious (compared to RAPD) 
 

 

Highly reproducible Difficult to automate 
 

 

Can use filters many times Need radioactive labeling 
 

 

Good genome coverage  Cloning and characterization of probe are required 

 

Can be used across species 

 
 

 

No sequence information 

 
 

 

Can be used in plants reliably  (well-
tested) 

 
 

  Needed for map- based cloning      

Source: Adjusted after Kumar et al. (2009) 

 

 

 



27 

 

Table 2.4: Comparison of features for five commonly used markers in plants 

Features  RFLP
1
 RAPD

2
 AFLP

3
 SSR

4
 SNP

5
 

Genomic abundance High  Very high Very high Medium  High  

Genomic coverage Low copy coding region Whole genome Whole genome Whole genome Whole genome 

DNA required 50-10µg 1-100ng 1-100ng 50-120ng ≥50ng 

Type of polymorphism Singe base changes, indels Singe base changes, indels Singe base changes, indels Changes in length of repeats Single base changes, indels 

Level of polymorphism Medium  High  High  High  High  

Effective multiplex ratio Low  Medium  High  High  Medium to high  

Inheritance  Co-dominant  Dominant Dominant/co-dominant Co-dominant  Co-dominant 

Ease of use Labour intensive Easy Difficult initially Easy Easy 

Automation  Low  Medium  High  High  High  

Reproducibility (reliability) High  Low to medium High  High  High  

Types of probes/primers Low copy DNA or cDNA Usually 10bp random nucleotides Specific sequence Specific sequence Allele-specific PCR primers 

Radioactive detection Usually yes No  Usually yes  Usually no No  

Time demanding High  Low  Medium  Low  Low  

Development/start-up cost High  Low  Medium  High  High  

Property rights required No  Yes and licensed  Yes and licensed  Yes and some licensed Yes and some licensed 

Suitable utility in diversity, 
genetics and breeding 

Genetics  Diversity  Diversity and genetics All purposes All purposes  

Source: Adjusted after Xu (2010) 

                                                           
1
 Restricted Fragment Length Polymorphism are first generation molecular markers which detect polymorphisms due to changes in the nucleotide sequences in recognition sites of restriction enzymes or due to mutation of 

several nucleotides causing a shift in fragment size ( Lateef, 2015). 

2 Restricted Amplified Polymorphic DNA is a molecular marker that detects nucleotide sequence polymorphism in DNA using a single primer of arbitrary nucleotide sequence (Jonah et al., 2011). 

3 Amplified Fragment Length Polymorphisms are PCR based markers visualized by selective PCR amplification of DNA restriction fragments using directed primers from restriction of genomic DNA (Jonah et al., 2011). 

4 Simple Sequence Repeats (Microsatellites) are random tandem repeats of short nucleotide motifs of 2 to 6 base pairs. Polymorphisms are based on the variation in the number of repeats in various genotypes (Lateef, 

2015). 

5 SNP Is a single nucleotide base difference between two DNA sequences arising either due to substitution (point mutations) and deletions or (Insertions) of nucleotides ( Lateef, 2015). 
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2.10 Molecular Markers 

There are various types of molecular markers that have been developed since the emergence of 

RFLPs (Restricted Fragment Length Polymorphism) in the 1980s (Phillips and Vasil, 2001). 

However, the current generation of molecular markers is based on direct analysis of sequence 

variation in each assay compared to an indirect analysis using probes in RFLPs or primers in PCR 

(Polymerase chain reaction) based primers. The current available molecular markers are Simple 

Sequence Repeats (SSR), Restriction Fragment Length Polymorphism (RFLP), Amplified 

Fragment Length Polymorphism (AFLP), Random Amplified Polymorphic DNA (RAPD) and Single 

Nucleotide Polymorphism (SNP). Different markers have different properties which affects their 

application in genetic diversity (Rao and Hodgkin, 2002). Cholastova et al. (2011) used RAPD and 

SSR markers to discriminate the marker efficacy and determining genetic diversity in 30 maize 

hybrids. The study indicated that SSRs revealed high average PIC values (0.71) ranging from 0.47 

to 0.91 than RAPD (0.61) ranging from 0.44 to 0.82. High genetic similarity values were recorded 

for SSRs (26.3 to 88.5 %) compared to RAPDs (6.7 to 86.7%). This indicated that SSR markers 

were highly effective compared to RAPD markers. 

The inconsistency between the marker analysis made may be related to the amount of genome 

coverage ability of the particular marker system in species and its efficiency in sampling variation 

in any given population (Staub et al., 1997). Genetic diversity assessment methods differ in the 

way they resolve genetic differences, the type of data generated and taxonomic levels at which 

that can be most appropriately applied (Rao and Hodgkin, 2002).In this regard the SNPs have 

become the markers of choice ( see Tables 2.3 and 2.4). 

2.10.1 Single Nucleotide Polymorphisms (SNP) 

Single nucleotide polymorphisms (SNP) are single base changes in the genome sequence and are 

the abundant source of variation in plant and animal genomes (Lateef, 2015). SNP genotyping is 

broadly classified into two groups, the gel- based assays and the non-gel-based assays, the latter 

being mostly preferred to economize on time and money (Gupta et al., 2001). SNPs are the only 

new generation molecular markers for individual genotyping needed for molecular marker -

assisted selection (MAS) (Gupta et al., 2001). A large number of SNP markers are now available 

as developed from the DNA sequence of known genes (Dao et al., 2014). This consequently 

allows SNP markers to be the assay of choice for genetic diversity analysis and other variety of 

task related to crop improvement. Dao et al. (2014) reported on successfully using SNP sets in 

genetic characterization of tropical maize germplasm.  
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Noticeably, more genetic diversity studies and literature are currently based on SSR (Simple 

sequence repeats) compared to SNP markers. For germplasm characterization SSR markers are 

reported to provide much better information compared to SNP markers (Hamblin et al., 2007). 

However, direct sequence analysis is understood to be the most robust form of analyzing the 

genome variation (Xu and Crouch, 2008). In this regard, the SNP marker analysis possesses 

certain advantages compared to previous generation of markers. Various advantages have been 

cited by different authors (Table 2.3 and 2.4). Xu (2010) cited several advantages of SNP markers 

as: (i) high abundance and even distribution through the genome; (ii) provide high reproducible 

codominant information; and (iii) cost effective, high throughput genotyping system. Additionally, 

Syvänen, ( 2005)  reported the high probability of finding a marker within the gene of interest due 

to high density of SNPs across the genome. Furthermore, the SNP marker detection can be 

automated, therefore scaling up the analysis throughput to levels appropriate for applications in 

plant breeding programs (Syvänen, 2005; Xu and Crouch, 2008). This is because automation 

allows for the handling of large segregating populations (Gupta et al., 2001). 

2.10.2 Genetic distance 

Apart from genetic diversity, breeders would value genetic distance data. Molecular markers 

provide information on the genetic distance (GD) for prediction of genetic variability; identification 

of best parent combinations and to assign lines into heterotic groups (Melchinger et al., 1990). 

Therefore, GD plays a crucial role in maize breeding programmes as it assist in identifying 

divergent genotypes that exploit heterosis (Leal et al., 2010). Various genetic markers such as 

SSRs, SNPs , RFLP and AFLPs can estimate the genetic distance (Abakemal et al., 2014). 

Hamblin et al. (2007) compared SSR and SNP markers in elucidating the population structure and 

genetic relationships among genotypes. It was reported that SSRs performed better and provided 

more resolution in measuring the genetic distance.   

The major tool used for estimating the GD is the multivariate analysis. The GD analysis allows 

gathering many variables into one analysis (Bertan et al., 2007). Any genetic distance studies in 

plant species comprise of six steps: (i) selection of genotypes to be analyzed; (ii) data production 

and formatting; (iii) selection of the distance definition or measurement to be used for the 

estimates; (iv) Selection of the clustering or plotting procedure; (v) analysis of the degree of 

distortion caused by the clustering or plotting procedure; and (vi) Data interpretation (Cruz and 

Carneiro, 2003).  
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Various statistical methods are used to estimate genetic distance in maize breeding programmes 

depending on the data set. Methods commonly used are the Nei and Li coefficient, Simple 

matching coefficient, Modified Roger’s distance, Jaccards coefficient, Mahalanobis (D²) and 

Euclidean distance (Roy, 2000). Mahalanobis distance and Euclidean distance are the most 

utilized statistical procedures to estimate GD (Bertan et al., 2007). Mahalanobis distance has more 

advantage than the Euclidean distance as it factors in the environment effects and allows 

correlation between characters. However, its use is limited to data with more than one replication 

to estimate distance (Bertan et al., 2007).  

Genetic distance estimates between genotypes can be presented in various cluster or plotting 

methods. Plant breeders have adopted using the hierarchal methods whereby genotypes are 

grouped by a process that repeats itself at various levels, thus forming a dendogram without 

concern of the number of groups formed (Bertan et al., 2007). However, with the various clustering 

methodologies available, consideration of the most suitable method and the data set is vital. This 

is the case where Tocher’s clustering leads to the formation of one large cluster, whereas the 

UPGMA best discriminates the closer genotypes (Bertan et al., 2007).  The UPGMA cluster 

analysis method uses average distances between all genotype pairs for the formation of each 

group .In this study, the UPGMA method was used.  This is because of the ability of the cluster 

method to show genetic relationships among genotypes and cluster them according to genotypes 

similarity. Some genotypes in the study were bi-parental progenies and shared a parent which may 

result in close genetic relationship. Odong et al. (2011) cited advantages of using UPGMA 

hierarchal cluster analysis. It can be used in various types of applications and is easy to 

understand while it is also available in many statistical packages (Odong et al., 2011). 

2.11 Conclusion 

The literature review has shown challenges that a breeder should consider when aiming to breed 

new productive hybrids. These mainly include the impact of the environment on maize plants and 

level of genetic diversity in a breeding population. Literature review has shown that the success of 

the breeding programme is somewhat dependant on exploiting new sources for genetic variation 

such as landraces and exotic populations in gene banks. Due to scarcity of resources to breeders, 

more emphasis is placed on developing new products on an existing narrow genetic base, rather 

than a quest for new sources of genetic variation to expand the current genetic base. Previous 

studies have shown that high level of genetic diversity in a population provides and strengthens 

adaptability to the ever changing environment. Further, with genetic diversity, there is an 

advantage of diverse parental combinations and creating segregating progenies to exploit more 
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heterosis through selection. Breeding of new highly productive hybrids is therefore dependant on 

the better combination between the parental lines. Hence, determination and information on the 

level of genetic diversity in the breeding material can not be over emphasized. Numerous authors 

have shown the success in employing genetic markers across various crops. The use of genetic 

markers in identifying and quantifying levels of genetic diversity has been well recorded in previous 

studies.  

Previous studies have widely reported on obtaining increased levels of genetic gain in maize 

hybrid yields. One study reported a genetic gain in yield of 5%. Association of grain yield with other 

traits of interest has been well documented. This is because in improving grain yield, selection of 

other associated traits may be necessary. Studies have also shown the levels of heritability of 

grain yield in maize. A single study reported grain yield heritability of about 98% in maize crop. The 

following chapter discusses the level of genetic diversity found in maize lines developed in the 

UKZN breeding programme. It also outlines the implications of the research findings with regards 

to the future of hybrid production. 
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CHAPTER THREE 

Genetic diversity and genetic distances between UKZN advanced 

maize lines with founder parents and standard public lines based on 

SNP markers 

 

Abstract  

Genetic diversity is of crucial importance in exploitation of heterosis and has a direct impact on 

maize breeding strategies through resulting genetic gains thereof. Information on the genetic 

diversity existing between possible parental lines should be identified for the production of vigorous 

hybrids. Therefore this study reports genetic analysis of 51 inbred lines sub-grouped as elite , 

advanced  and recombinant inbred lines using 365 single nucleotide polymorphism (SNP) markers 

to (i) establish genetic characterization of 51 experimental inbred lines, (ii) Establish line 

divergence through quantifying genetic distances between the inbred lines, and (iii) Establish and 

partition genotypes  into clusters to different heterotic groups. The results revealed genetic 

diversity ranging from 0.00 to 0.50 with a mean of 0.24. The Polymorphism information content of 

the SNP markers ranged from 0.00 to 0.38 indicating the potential of markers to detect differences 

among genotypes. The highest genetic distance of 0.3526 was recorded between founder parent 

LN43 and elite line LN50 suggesting these lines are complementary to each other. The cluster 

analysis successfully discriminated genotypes into two major clusters. 
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Introduction 

Genetic diversity in maize breeding programmes is of crucial importance. One of the important 

roles it plays it partitioning of germplasm according to heterotic groups (Legesse et al., 2006) . In 

crop improvement, genetic diversity is of importance for identification of diverse parental 

combinations. Genetically divergent genotypes express high hybrid vigour, therefore exploitation of 

heterosis (Dao et al., 2014). 

 The single nucleotide polymorphism (SNP) markers are of high preference due to lower 

genotyping errors (Foster et al., 2010), high genomic abundance, even distribution in the genome, 

highly producible and throughput and highly cost effective (Xu et al., 2009). Dao et al. (2014) 

reported successful use of 1057 informative SNPs revealing genetic variation among 96 inbred 

lines from different sources (temperate, CIMMYT and IITA) and between the INERA germplasm 

set. Laserna et al. (2015) successfully determined genetic diversity among transgenic and non-

transgenic versions of a single cross hybrid using SNPs. It was reported 54% of genetic diversity 

was found within the hybrid version, however, 45.1% was reported for the genetic diversity among 

versions of the same hybrid. 

In the current study, SNP markers were used to genotype 51 maize inbred lines. The study aimed 

to determine the genetic diversity and variation among 51 maize inbred lines which can be used 

for hybrid makeup, in the breeding programme at the University of KwaZulu – Natal (UKZN). 

The objectives of this study are: 

1. To genetically characterize the maize inbred lines of interest and determine levels of genetic 

diversity. 

2. To determine the genetic distances between the maize inbred lines. 

3. To determine the clustering of the maize inbred lines into heterotic groups. 

 

3.1 Materials and methods 

3.1.1 Germplasm 

A total of 51 experimental maize inbred lines were genotyped in the study. The germplasm used in 

this study is divided into three groups. The first group comprise of 13 elite inbred lines namely; 

LN47, LN01, LN02, LN03, LN04, LN05, LN44, LN45, LN46, LN48, LN49, LN50, LN51. The second 

group consists 16 advanced inbred lines derived from 2 bi-parental populations with their 3 founder 
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parents: LN41, LN42 and LN43. The two populations share one parent (LN43) in common. The 

parents are in heterotic group A in the African tropical germplasm. Lines LN01, LN02, LN03, LN04, 

LN05, LN47, LN48, LN49, LN50 and LN51 are used as standard lines drawn from public 

programmes. LN01 is a tropical line while LN02 is South African adapted line. LN03 and LN49 are 

temperate checks, while LN05 is a CIMMYT tropical, mid – altitude line. Line LN47 is an African 

Iodant type. The third group comprise of 19 recombinant inbred lines LN19, LN21, LN22, LN23, 

LN24, LN25, LN26, LN27, LN28, LN29, LN30, LN31, LN32, LN33, LN34, LN36, LN37, LN38 and 

LN39. 

The advanced inbred lines were derived by pedigree selection and were selfed until the F8 

generation. The F1 population was derived from crosses between the 3 founder parents (LN43 X 

LN41) and (LN43 X LN42), therefore LN43 being a common parent of the two populations. 

Characteristics of the founder parent are: 

LN43:  This is a white grain, low land adapted and late flowering line. It has high ear 

prolificacy and possesses downy mildew resistance. However, it is susceptible to 

root lodging. 

LN41: This line is a white grain, mid altitude adapted and early flowering type. It also has 

Maize Streak Virus (MSV) resistance, good standing ability, but with low yield 

potential. 

LN42: It is a white grain line which is early maturing, maid altitude adapted, MSV resistance 

and has high yield potential and good general combining ability (GCA) for grain yield 

perfomance. However, it disadvantage is susceptibility to root lodging. 

The F1 was advanced to F2 population then selection started thereof. Selection criteria used was 

based on good standing ability, pollination ability and kernel texture (flints) Pedigree selection was 

done in summer at Ukulinga Research Station in Pietermaritzburg, South Africa, located 810 

metres above sea level (masl). In winter season, selection was done at Makhathini Research farm 

located 72 metres above sea level.  

3.1.2 Genotyping 

The SNP genotyping was done at the LGC Genomics platform in the United Kingdom. A total of 

396 SNP markers (Appendix 1) were used to genotype the 51 maize inbred lines using the internal 

protocols of the KASP system at the LGC Genomics, United Kingdom (www.lgcgroup.com) 

accessed 17/02/2015. 

http://www.lgcgroup.com/


45 

 

 3.1.3 Data analysis  

The 396 SNP markers are listed in Appendix 1. Genotypic data was analysed using Power marker 

software version 3.25. The following statistics were determined: polymorphic information content 

(PIC), gene diversity, availability, inbreeding coefficient (f), heterozygosity and genetic distance for 

each SNP marker.  Polymorphic information content values were calculated using the following 

formula (Xu, 2010): 

 

PIC = 1 − ∑ 𝑃𝑖𝑗
2

𝑛

𝑗=1

 

Where, Pij is the frequency of the jth allele for marker i and the summation extends over n alleles. 

 

PIC values provides an estimation of the discriminating power of a marker by taking into account 

not only the number of alleles at the locus but also the relative frequencies of these alleles. 

 

Allelic diversity was calculated using the following formula (Singh, 1983): 

𝐷𝑖𝑣 =  1 − ∑ 𝑃𝑢
~2

𝑘

𝑢=1

 

Where k = number of alleles, Pu
~2= frequency of the marker allele. 

 

Allelic diversity values give an estimate of heritable characteristics present in a population of the 

same species. Heterozygosity was calculated using the following formula (Nei, 1973): 

 

𝐻𝑜 = 1 − ∑(𝑓𝑖)2

𝑛

𝑖=1

 

Assuming that a marker has 1,2,…n alleles, the i allele occurs by frequency fi . 

Heterozygosity values indicate the average proportion of individuals that are heterozygous for a 

given trait.  

Genetic distance was calculated using the following formula (Nei, 1973): 

 

𝐺𝐷 = 1 − [2𝑁11/(2𝑁11 + 𝑁10 + 𝑁01)] 

Where, N11 = number of alleles in both genotypes i and j, N10 = number of alleles in genotype I and 

N01 = number of alleles in the genotype j.  
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Availability values determine the number of times the molecular marker worked. It is calculated as 

the number of observations/number of samples genotyped for each marker.  

Dendograms were generated using Power marker software (v3.25) and displayed in MEGA5.2.  

In-breeding coefficient (F) is the proportion of the homozygous genotypes for each marker. 

3.2 Results 

3.2.1 Marker characterization 

3.2.1.1 SNP markers 

The SNP markers were used to effectively genotype the inbred lines. 

Precisely 396 SNP sets identified 748 alleles among 51 maize inbred lines. The number of alleles 

scored ranged between one and two, with mean of 1.89 (Figure 3.1).  About 88% (352 out of 396) 

markers revealed 2 alleles. These markers include Fea2_1, Fea2_2, PHM12794_47, 

PHM4531_46, PZA00172_11 and PZA00334_2. Therefore, 12 % ( 44 out of 396) markers  

including PZA00444_5, PZA00489_1, PZA00565_3, PZA00587_6, PZA00600_11, PZA00793_2, 

PZA02949_26, PZA03012_10, PZA03366_2, PZA03384_1, PZA03411_3, PZA03431_1, 

PZA03668_4 and PZA03673_2 revealed 1 number of alleles respectively.  

 

Figure 3.1: Distribution of the 396 SNP markers for number of alleles  

 

The polymorphism information content (PIC) value of the SNPs ranged from 0.00 - 0.38 with a PIC 

mean of 0.19 (Figure 3.2). The PIC values indicate the potential information on the markers ability 

to detect differences among the lines.  Approximately 12% (44 out of 396) of markers 
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PZA00444_5, PZA00489_1, PZA00565_3, PZA00587_6, PZA00600_11, PZA00793_2, 

PZA02949_26, PZA03012_10, PZA03366_2, PZA03384_1, PZA03411_3, PZA03431_1, 

PZA03668_4 and PZA03673_2 obtained PIC score of 0.00. While markers PHM12794_47, 

PZA03533_1, PZA03732_3, PZA02496_1 and PZB00087_1 obtained the highest PIC of 0.38. 

Approximately 50% of markers used (199 out of 396) constituted PIC values equal to, or greater 

than, 0.20. The ten SNPs (Appendix 1) exhibiting the highest PIC (0.3749 – 0.3750) and their 

potential to detect differences between the inbred lines were; PZB01457_1, PZA00334_2, 

PZA00562_4, PZA03116_2, PZA03716_1, PZA02496_1, PHM12794_47, PZA03533_1, 

PZA03732_3 and PZB00087_1. The high PIC value revealed in this study might be a pertinent 

indication confirming the potential for these SNP markers to discriminate between inbred lines from 

diverse origins. This was shown by the fact that markers were able to separate closely related 

lines, therefore indicating their usefulness for diversity analysis in maize under the current study. 

These markers will be equally useful for determining genetic diversity of any maize population 

especially if coupled with higher allelic frequencies which is an indication of genetic diversity in a 

population. Therefore 35% of the markers used in the study had allele frequency ranging from 0.90 

to 0.99 %. 

 

Figure 3.2: Distribution of the 396 SNP markers for Polymorphic Information Content 

 

Genetic diversity ranged from 0.00 to 0.50 with a mean of 0.24 (Figure 3.3). Markers PZA00444_5, 
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PZA03673_2 indicated diversity values of 0.00, respectively. However, 6% (25 out of 396) of 

markers including PHM12794_47, PZA00334_2, PZA00562_4, PZA00603_1, PZA02722_1, 

PZA03116_2 and PZA03477_1 obtained the highest diversity of 0.40. Approximately 162 markers 

revealed genetic diversity equal to, or greater than 0.30. 

 

Figure 3.3: Distribution of the 396 SNP markers for genetic diversity 

 

Availability scores ranged from 0.90 to 1.00, with a mean of 0.98 (Figure 3.4). Therefore, 6 

markers PZA01607_1, PZA03692_1, PZA03758_1, PZB00153_3, PZB01115_1 and lac1_3 had a 

90% call rate. About 231 markers scored 100% call rate, including Fea2_1, Fea2_2, 

PHM12794_47, PHM4196_27, PHM4348_16 and PHM4531_46 respectively. 

 

Figure 3.4: Distribution of the 396 SNP markers for availability 
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Heterozygosity values ranged between 0.00 and 1.00, with a mean of 0.11(Figure 3.5). About 18% 

markers had scores of heterozygosity equals to 0.00 and these are PZA00172_11, PZA00444_5, 

PZA00462_2, PZA00489_1, PZA00565_3, PZA00578_2 and PZA00587_6, while 2% (9 out of 396 

markers) PZA03533_1, PZA03716_1, PZA03732_3, PZB01856_1, PZB01869_4, PZB02033_1, 

PZA02266_3, PZB00087_1 and PZB01446_1 had a range between 0.61 and 1.00 in 

heterozygosity.  

 

 

Figure 3.5: Distribution of the 396 SNP markers for heterozygosity 

 

Inbreeding co-efficient (f) ranged between 0.00 and 1.00, with a mean of 0.56 (Figure 3.6).  
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Figure 3.6: Distribution of the 396 SNP markers for inbreeding co-efficient 

3.2.2 Cluster analysis   

3.2.2.1 Cluster analysis of inbred lines based on SNP molecular markers 

The cluster analysis was performed using the UPGMA method. Only SNP markers with a call rate 

above 90% were used. The SNP markers were effective for dividing the 51 maize inbred lines into 

six different genetic clusters (Figure 3.7). The results of clustering revealed the 51 genotypes could 

be classified into two major groups (I and II) at the truncation level of 0.14 in the coefficient scale. 

Cluster 2 is larger than Cluster 1, which contains only one inbred line LN47. At 0.13 cut off point 

two groups are identified (A and B), in which Group B is further subdivided into two sub-clusters 

(B1 and B2). The B1 sub- cluster comprised of genotypes LN50, LN45, LN48, LN02, LN44, LN03, 

LN49, LN04 and LN46. Sub-cluster B2 comprised of LN21.  At 0.10 cut off point a sub-group 

comprising E and F were identified. Sub-group E was not subdivided therefore standing on its own; 

however, sub-group F was sub-divided into two sub- clusters (F1 and F2) at 0.07 cut off point. 

Additionally, F1 and F2 sub-cluster further sub-divided to more sub-groups (G, H, I and J). Inbred 

lines LN21, LN31, LN23 and LN29 were in the same group, under sub-group G, while LN28, LN38, 

LN37, LN25, LN30, LN39, LN22, LN27, LN32, LN24, LN26, LN33, LN34, LN19 and LN36 were 

clustered under sub-group H.  Sub-group I comprised of inbreds LN35, LN14, LN43, LN17, LN07, 

LN06, LN15, LN16 and LN40, while sub-group J clustered together inbred LN41, LN08, LN20, 

LN11, LN13, LN09, LN10, LN12 and LN16, respectively. Noticeably, Inbred LN47 is in Cluster 1 on 

its own which indicates that it may be used to make productive hybrids. Seemingly all these lines 

originate from a source material developed in the UKZN breeding programme (Table 3.4). 
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Figure 3.7: Dendogram of 51 maize experimental inbred lines based on 396 SNP molecular 

markers using UPGMA 
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Table 3.1: Diallel matrix of Elite inbred lines clustered under group A to D in the dendogram (Figure 3.7) 

  LN01 LN02 LN03 LN04 LN05 LN44 LN45 LN46 LN47 LN48 LN50 LN51 

LN01 0.0000            

LN02 0.2572 0.0000           

LN03 0.2504 0.2255 0.0000          

LN04 0.2727 0.2449 0.2007 0.0000         

LN05 0.3036 0.2723 0.2484 0.2555 0.0000        

LN44 0.2587 0.1609 0.2492 0.2397 0.2656 0.0000       

LN45 0.2616 0.2394 0.2486 0.2401 0.2558 0.2341 0.0000      

LN46 0.2046 0.1795 0.1603 0.1826 0.2210 0.1950 0.2152 0.0000     

LN47 0.2962 0.2729 0.2431 0.2741 0.2954 0.3006 0.2777 0.2112 0.0000    

LN48 0.2542 0.2577 0.2012 0.2490 0.2154 0.2380 0.2105 0.2044 0.2398 0.0000   

LN50 0.3019 0.2688 0.2709 0.2784 0.3153 0.2718 0.2121 0.2156 0.3008 0.2527 0.0000  

LN51 0.2678 0.2624 0.2313 0.2385 0.2436 0.2725 0.2775 0.2099 0.2769 0.2302 0.3105 0.0000 
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3.2.3 Genetic distance  

3.2.3.1 Genetic distance between elite inbred lines 

Genetic distances were revealed for 1275 inbred combinations in a diallel matrix. Some of the 

inbred combinations obtained are shown in Table 3.3, Table 3.4, Table 3.5 and Table 3.6. The 

total distances between all genotypes ranged from 0.0584 to 0.3526. The genetic distances  

partitioned in four ranges with 9% of the inbreds showing low genetic distances ranging from 0.05 

to 0.09, while 5% of the inbred lines had genetic distances ranging between 0.30 – 0.35 (Table 

3.2). Noticeably, 44% of the inbred lines had genetic distances in the range of 0.20 to 0.29 and 

another 41% had genetic distances ranging between 0.10 – 0.19 (Table 3.2).  

Diallel matrix of the elite inbred lines clustered under group A to D in the dendogram, revealed the 

highest genetic distance of 0.3153 between elite inbred lines LN05 and LN50 (Table 3.1). The 

lowest genetic distance found between elite inbred lines LN02 and LN44 was 0.1609 (Table 3.1).  

 

Table 3.2: Genetic distance frequency between inbred lines using 396 SNP markers. 

 GD Range No. of genotypes % 

      

0.05 - 0.09 115 9 

0.10 - 0.19 523 41 

0.20 - 0.29 569 44 

0.30 - 0.35 68 5 
 

Some of the lowest genetic distances were noticed between the advanced recombinant inbred 

lines (Table 3.3). Noticeably, LN07 and LN06 had a genetic distance of 0.0722 suggesting that 

these lines are not that different from each other (Table 3.3). A similar observation was found 

between LN09 and LN10 with a genetic distance of 0.0736 (Table 3.3). These line combinations 

will not be ideal for new hybrid make up purposes. 
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Table 3.3: Inbred lines with the lowest genetic distances  

Inbred lines GD 

LN07 X LN06 0.0722 

LN10 X LN09 0.0736 

LN34 X LN33 0.0802 

LN33 X LN32 0.0816 

LN35 X LN34 0.0821 

LN26 X LN25 0.0850 

LN13 X LN12 0.0938 

LN09 X LN08 0.0978 

LN27 X LN26 0.0985 

LN11 X LN10 0.1161 

LN08 X LN07 0.1220 

   

The highest genetic distances recorded noticeably included inbred lines LN47, LN49, LN50 and 

LN51 (Table 3.4), which by location originate from RSA, USA, RSA and ZIM respectively. 
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Table 3.4: Origin of maize inbred lines with the highest genetic distances  

    Origin             Origin 

Inbred lines GD P1 P2   Inbred lines GD P1 P2 

LN50 X LN20 0.3000 RSA UKZN 
 

LN50 X LN21 0.3102 RSA UKZN 

LN47 X LN44 0.3006 RSA UKZN 
 

LN49 X LN12 0.3104 USA UKZN 

LN50 X LN47 0.3008 RSA RSA 
 

LN49 X LN32 0.3104 USA UKZN 

LN49 X LN45 0.3009 USA UKZN 
 

LN51 X LN50 0.3105 ZIM RSA 

LN47 X LN35 0.3016 RSA UKZN 
 

LN29 X LN01 0.3107 UKZN ZIM 

LN50 X LN33 0.3016 RSA UKZN 
 

LN50 X LN11 0.3110 RSA UKZN 

LN50 X LN01 0.3019 RSA ZIM 
 

LN50 X LN19 0.3117 RSA UKZN 

LN50 X LN09 0.3019 RSA UKZN 
 

LN49 X LN25 0.3135 USA UKZN 

LN49 X LN34 0.3021 USA UKZN 
 

LN50 X LN07 0.3141 RSA UKZN 

LN47 X LN24 0.3024 RSA UKZN 
 

LN50 X LN12 0.3144 RSA UKZN 

LN47 X LN28 0.3024 RSA UKZN 
 

LN50 X LN05 0.3153 RSA CIMMYT 

LN50 X LN16 0.3024 RSA UKZN 
 

LN50 X LN24 0.3159 RSA UKZN 

LN43 X LN01 0.3026 UKZN ZIM 
 

LN50 X LN32 0.3162 RSA UKZN 

LN49 X LN26 0.3026 USA UKZN 
 

LN49 X LN31 0.3173 USA UKZN 

LN49 X LN02 0.3029 USA UKZN 
 

LN50 X LN10 0.3173 RSA UKZN 

LN05 X LN01 0.3036 CIMMYT ZIM 
 

LN31 X LN01 0.3175 UKZN ZIM 

LN47 X LN39 0.3041 RSA UKZN 
 

LN50 X LN15 0.3176 RSA UKZN 

LN50 X LN13 0.3041 RSA UKZN 
 

LN49 X LN05 0.3187 USA CIMMYT 

LN49 X LN37 0.3045 USA UKZN 
 

LN49 X LN28 0.3204 USA UKZN 

LN47 X LN29 0.3046 RSA UKZN 
 

LN50 X LN39 0.3219 RSA UKZN 

LN49 X LN35 0.3056 USA UKZN 
 

LN49 X LN23 0.3222 USA UKZN 

LN45 X LN43 0.3060 UKZN UKZN 
 

LN50 X LN29 0.3225 RSA UKZN 

LN47 X LN31 0.3064 RSA UKZN 
 

LN50 X LN34 0.3232 RSA UKZN 

LN47 X LN23 0.3065 RSA UKZN 
 

LN50 X LN37 0.3234 RSA UKZN 

LN49 X LN08 0.3066 USA UKZN 
 

LN49 X LN43 0.3246 USA UKZN 

LN50 X LN25 0.3066 RSA UKZN 
 

LN50 X LN23 0.3254 RSA UKZN 

LN47 X LN09 0.3070 RSA UKZN 
 

LN50 X LN49 0.3302 RSA USA 

LN49 X LN29 0.3072 USA UKZN 
 

LN47 X LN43 0.3399 RSA UKZN 

LN50 X LN26 0.3074 RSA UKZN 
 

LN50 X LN43 0.3526 RSA UKZN 

LN51 X LN49 0.3080 ZIM USA 
     LN50 X LN30 0.3082 RSA UKZN 
     LN47 X LN32 0.3085 RSA UKZN 
     LN50 X LN35 0.3085 RSA UKZN 
     LN50 X LN18 0.3090 RSA UKZN 
     LN50 X LN22 0.3090 RSA UKZN 
     LN50 X LN08 0.3094 RSA UKZN           
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Genetic distances found between founder parents of the recombinant lines and standard lines ranged 

between 0.1387 and 0.3526 (Table 3.5).  High genetic distances were found between LN43 and LN47 

(0.3399), LN49 and LN50 (0.3302) and LN43 and LN50 (0.3526). The higher genetic distance is ideal for 

the production of hybrids. This is because the higher the genetic distance between lines, the more divergent 

the genes are and the more there is a possibility for better gene combination. 

Diallel matrix between advanced recombinant inbred lines and two founder parents indicated that genetic 

distance between LN06 and LN15 was 0.0685 while genetic distance between LN16 and LN06 recorded 

0.0706 (Table 3.6).  The low genetic distances found between lines point toward genetic similarity between 

these lines. This directly influences combination of these lines for hybrid production purposes.  
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Table 3.5: Genetic distance between founder parents of the recombinant lines (UKZN) and standard lines from the public    programmes 

 

 

LN41 LN42 LN43 LN01 LN02 LN03 LN04 LN05 LN47 LN48 LN49 LN50 LN51 

LN 41 0.0000 

            LN42 0.2519 0.0000 

           LN43 0.2968 0.2699 0.0000 

          LN01 0.2570 0.2674 0.3026 0.0000 

         LN02 0.2627 0.2838 0.2880 0.2572 0.0000 

        LN03 0.2398 0.2521 0.2784 0.2504 0.2255 0.0000 

       LN04 0.2705 0.2991 0.2910 0.2727 0.2449 0.2007 0.0000 

      LN05 0.2552 0.2488 0.2444 0.3036 0.2723 0.2484 0.2555 0.0000 

     LN47 0.2624 0.2488 0.3399 0.2962 0.2729 0.2431 0.2741 0.2954 0.0000 

    LN48 0.2155 0.2111 0.2540 0.2542 0.2577 0.2012 0.2490 0.2154 0.2398 0.0000 

   LN49 0.2870 0.2900 0.3246 0.2822 0.3029 0.1387 0.2526 0.3187 0.2834 0.2677 0.0000 

  LN50 0.2827 0.2837 0.3526 0.3019 0.2688 0.2709 0.2784 0.3153 0.3008 0.2527 0.3302 0.0000 

 LN51 0.2507 0.2592 0.2798 0.2678 0.2624 0.2313 0.2385 0.2436 0.2769 0.2302 0.3080 0.3105 0.0000 

The founder parents of recombinant lines are underlined. The rest are standard lines. 
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Table 3.6: Diallel matrix of genetic distance between advanced recombinant inbred lines and two founder parents (underlined) clustered in group I and J 
in the dendogram 

  LN06 LN07 LN08 LN09 LN10 LN11 LN12 LN13 LN14 LN15 LN16 LN17 LN18 LN20 LN35 LN40 LN41 LN43 

LN06 0.0000 
                 LN07 0.0722 0.0000 

                LN08 0.1191 0.1220 0.0000 
               LN09 0.1054 0.1461 0.0978 0.0000 

              LN10 0.0685 0.1170 0.1300 0.0736 0.0000 
             LN11 0.1224 0.1040 0.1450 0.1425 0.1161 0.0000 

            LN12 0.1134 0.0978 0.1056 0.1201 0.0948 0.1196 0.0000 
           LN13 0.1116 0.0899 0.1073 0.1279 0.1014 0.0801 0.0938 0.0000 

          LN14 0.0737 0.1096 0.1353 0.1156 0.1064 0.0906 0.1309 0.1280 0.0000 
         LN15 0.0649 0.0713 0.1373 0.1527 0.1001 0.1396 0.1123 0.1223 0.1028 0.0000 

        LN16 0.0706 0.1196 0.1345 0.1366 0.1383 0.1339 0.1253 0.1510 0.0834 0.1262 0.0000 
       LN17 0.0723 0.0953 0.1497 0.1525 0.1309 0.0987 0.1399 0.1034 0.0929 0.0954 0.1112 0.0000 

      LN18 0.1118 0.1379 0.1420 0.1120 0.1247 0.1359 0.0881 0.1059 0.1008 0.1231 0.0966 0.1325 0.0000 
     LN20 0.1011 0.1120 0.0997 0.1058 0.1449 0.1235 0.1392 0.1118 0.0891 0.1518 0.1184 0.1102 0.1460 0.0000 

    LN35 0.1108 0.1636 0.2067 0.1790 0.1480 0.1272 0.1828 0.1787 0.1057 0.1392 0.1409 0.1255 0.1614 0.1925 0.0000 
   LN40 0.0911 0.1092 0.1120 0.1083 0.1043 0.0985 0.1047 0.1008 0.0905 0.1089 0.0924 0.0978 0.1021 0.1151 0.1429 0.0000 

  LN41 0.1651 0.1314 0.1036 0.1112 0.1478 0.1603 0.1104 0.0911 0.1825 0.1901 0.1696 0.1739 0.1352 0.1243 0.2644 0.1409 0.0000 
 LN43 0.0881 0.1286 0.1864 0.1797 0.1253 0.0966 0.1663 0.1702 0.0721 0.0991 0.1221 0.0928 0.1533 0.1493 0.0837 0.1080 0.2968 0.0000 
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3.3 Discussion  

3.3.1 Molecular characterization  

3.3.1.1 SNP markers 

In this study, Single nucleotide polymorphism (SNP) markers were used effectively to genotype 51 

experimental maize inbred lines. The highest PIC value reported in this study is 0.38. This is in line 

with Hao et al. (2011), who reported the PIC range between 0.01 to the highest PIC value of 0.38, 

using 1536 SNP markers on 95 maize inbred lines. Correspondingly, Yang et al. (2011) reported 

the PIC value range between 0.27 to the highest PIC value of 0.38 with an average PIC value of 

0.34 while using 884 SNP markers. The mean PIC in the present study (0.19) was in harmony with 

the PIC of 0.24 reported by Hao et al. (2011). Lu et al. (2009) reported a PIC mean of 0.25, using 

1034 SNP markers on 770 maize lines, which is again comparable with observations from the 

current study. According to Abakemal et al. (2014) “Polymorphic information content provides an 

estimate of how informative is a particular marker by taking into consideration both the number of 

alleles that are expressed, and the relative frequencies of those alleles. PIC values range from 0 

which is monomorphic to 1 which is highly discriminative, with many alleles in equal frequencies” 

(Smith et al., 1997). 

Genetic diversity ranged from 0.00 to 0.50, with a mean of 0.24, which is expected among the 

experimental inbred lines in the study, as they have similar gene frequency. Availability data 

ranged from 0.90 to 1.00, with a mean of 0.98, therefore indicating most markers were successful 

in genotyping the inbred lines. Heterozygosity ranged from 0.00 to 1.00 in the study. 

Heterozygosity values were low which is expected, as the inbred lines were advanced, ranging 

between F7 and F8 generations of self-pollination. The inbreeding coefficient ranged from 0.00 to 

1.00, with a mean of 0.56. This suggests that some of the experimental inbred lines with a value of 

1.00 were already fixed. However, inbreeding coefficient values of 0.00 indicate a non-inbred as a 

result of genetic contamination due to out-crossing in the nursery. 

3.3.2 Cluster analysis of inbred lines based on molecular markers 

The cluster analysis clearly discriminated the advanced recombinant lines derived from the two bi-

parental populations from the elite inbred lines. Group A to group D comprise of all elite lines. The 

founder parents are lines LN43 crossed to line LN41 and line LN43 crossed to line LN42, thus the 

common parent being line LN43. Group F is a composite of the bi-parental crosses which are two 

populations which share one parent in common. The advanced recombinant inbred lines were 

clustered under sub-group I and J (Figure 3.7). Under sub-group J, lines LN18, LN12, LN10, LN09, 
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LN13, LN11, LN20, and LN08 clustered together with LN41 as one of the founder parents. This 

suggests these inbred lines are more genetically similar to the line LN41 as one of the base 

parents. Similarly, sub-group I indicated lines LN40, LN16, LN15, LN06, LN07, LN17, LN14 and 

LN35 clustered with one of the bi-parents LN43.  Inbred lines under sub-group G (LN21, LN31, 

LN23 and LN29) and sub-group H (LN28, LN38, LN37, LN25, LN30, LN39, LN22, LN27, LN32, 

LN24, LN26, LN33, LN34, LN19 and LN36) are recombinants; therefore the lines did not cluster to 

any of the founder parents. These represent the new lines which may combine adaptation to the 

lowland tropics and MSV resistance. 

The elite lines LN47, LN01, LN50, LN05, LN42 and LN51 were standing on their own indicating 

that they are different from the advanced inbred lines which were developed from the UKZN. They 

would belong to different heterotic groups. The founder parent LN42 was standing on its own and 

did not cluster with any of its progenies because of selection for standing ability which was applied 

at F2 to F3 generation of the progenies. Additionally, some of its progenies were eliminated due to 

poor pollination ability and poor standability. However, most of the LN42 progenies were found in 

group H and I as recombinants. Elite lines LN02 and LN44, LN03 and LN49, LN04 and LN46 were 

clustered together respectively suggesting close similarity between these lines. This indicated that 

they may belong to the same heterotic group. 

The cluster analysis results proved reliable as the inbred lines were successfully discriminated into 

two heterotic groups. The advanced inbred lines are in group A in the African tropical germplasm 

while LN05 is in group B. Therefore, it might be possible to get highly productive hybrids when 

crossing LN05 to the advanced inbred lines because they are in different heterotic groups. 

The low genetic distance between LN18 and LN12 (0.0881), LN09 and LN10 (0.0736) and LN11 

and LN13 (0.0801) indicate some level of similarity between the lines.  This may suggest the lines 

share a similar genetic background from the parents and inherited most genes from the base 

parent shared.  

Inbred line LN47 is in Cluster 1 on its own which indicates that it may be used to make productive 

hybrids in combination with the rest of lines under study. This suggests LN47 is not closely related 

to any of these lines; therefore the phenomenon of heterosis can be exploited using this line. 

Similarly, this same trend was observed for LN01, LN05, LN42 and LN51 which originate from 

ZIM, CIMMYT, UKZN and ZIM respectively. Additionally, the cluster analysis indicated LN03 and 

LN49 which are of the American origin. However, it was observed that LN45 originating from 

UKZN was grouped with LN48 from Mozambique, while LN04 from UKZN was grouped with LN46 
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originating from RSA. This reflected the use of both Mozambique and RSA adapted germplasm in 

the breeding programme at UKZN. 

The results from this study revealed correlation between the genotype clustering based on the 

dendogram and genetic distance matrix. For example line LN09 and LN10 originating from UKZN 

are closely clustered together in a dendogram and they are closer to each other with a genetic 

distance of 0.0736.  

3.3.3 Genetic distance 

3.3.3.1 Genetic distance between founder parents and standard lines (Table 3.5) 

The SNP markers were used to approximate the genetic distance between the three founder 

parents and standard maize inbred lines. Genetic distance between parents LN41 and LN43 was 

0.2968, while parents LN42 and LN43 was 0.2699. Therefore, parents LN41 and LN43 have the 

highest genetic distance compared to other parents. Overall it is indicated that the three founder 

parents had different gene frequencies and were genetically distant from the standard lines from 

the public programmes. 

The genetic distance between the elite lines and founder parents varied. The lowest genetic 

distance of 0.138 was found between the line LN49 and LN03, thus indicating they are closely 

related to each other. Furthermore, this implies they will not be suitable for hybrid make-up as the 

cross will result in reduced heterosis. The elite lines LN49 and LN50 had a higher genetic distance 

of 0.3302 compared to other standard lines. However, the highest genetic distance was found 

between a founder parent LN43 and elite line LN50. This suggests that if these lines are 

complementary to each other and if they were crossed, highly productive hybrids could be 

obtained through hybrid vigour. 

3.3.3.2 Diallel of founder parents and advanced recombinant inbred lines (Table 3.6) 

The genetic distance between the advanced inbred lines derived from 2 bi-parental populations 

varied. However, the lowest genetic distance of 0.0649 was observed between LN06 and LN15. 

This indicates that these lines are genetically closely related and therefore will not be 

recommended for hybrid production. Additionally, LN06 was closely related to one of the founder 

parent LN41 with a genetic distance of 0.0881. Moreover, LN15 and founder parent LN43 obtained 

a low genetic distance of 0.0991, therefore indicating they have less genetic divergence between 

them.  High genetic distance was found between LN35 and LN20. Noticeably, the genetic distance 

between the founder parents LN41 and LN43 was 0.2968 which is the highest value. This 
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suggests parents are divergent and vigorous hybrids which could result from the cross can be 

expected. However, it was observed that parents LN41 and LN42 had higher genetic distance to 

lines LN34, LN32, LN25 and LN22 compared to parent LN43 indicating they are most suitable to 

be considered for a hybrid cross.  Most of the advanced inbred lines exhibited a genetic distance 

of ≥0.10 among them indicating that they exhibited similar gene frequencies. This is expected for 

some of the lines derived from a narrow based bi-parental population. 

3.3.3.3 Genetic distance between founder parents, advanced inbred lines and elite inbred 

lines 

Parent LN41 is white grain, resistant to maize streak virus and with a low yielding potential. Low 

genetic distance was observed between LN41 and lines LN07, LN08, LN09, LN12, LN13, LN18, 

LN20 and LN40. This indicates these lines are closely related to LN41. Furthermore, as the lines 

are genetically less dissimilar to founder parent LN41, this suggests that they can adapt in 

environments where LN41 is well adapted. Parent LN42 is resistant to maize streak virus but 

susceptible to root lodging. The genetic distance between LN42, elite lines and advanced inbred 

lines exhibited a high genetic distance between 0.20 to 0.30.  Parent LN43 is resistant to downy 

mildew and is prolific, but susceptible to root lodging. Lines with lower genetic distance between 

them and LN43 include LN06, LN07, LN11, LN14, LN15, LN16, LN17, LN19, LN22, LN23, LN24, 

LN25, LN26 and LN27. These lines are closely related to LN43 and their combinations will not be 

recommended for hybrid production. These lines also belong to the same genetic clusters (Figure 

3.7) with less potential to produce superior hybrids. The SNP markers were useful in determining 

the genetic distances to enable discrimination of closely related genotypes.  

3.4 Conclusion 

From the current study the following conclusions were drawn: 

The SNP markers were useful and were able to discriminate and determine the level of genetic 

similarity between founder parents. High diversity of 0.30 was found between the three founder 

parents using SNP markers. 

 Three hundred and ninety six SNP markers were successful in discriminating the 51 inbred lines 

according to genetic distances. Additionally, the genotypes were successfully assigned to various 

genetic clusters accordingly. 
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Genetic variation among elite inbred lines and advanced inbred lines was broad ranging from 0.1- 

0.3.Inferences about the heterotic groups of the germplasm lines developed at UKZN could be 

made, using this set of SNP markers. 
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CHAPTER FOUR 

GGE- Biplot Analysis and genetic gain of maize hybrids developed in 

the program at UKZN 

Abstract 

Grain yield is a quantitative trait in maize which is affected by genotype x environment (GXE) 

effects. This complicates selection of superior hybrids because different hybrids behave differently 

in various locations. The GXE interaction effects of experimental maize hybrids which were 

developed by the breeding programme at the University of KwaZulu-Natal (UKZN) has not been 

determined.  Therefore, fourty-two maize hybrids were evaluated, across six locations during the 

2013 seasons representative of the maize growing environments of South Africa. These trial 

entries were laid out in a randomized complete block design with two replications. The trials were 

conducted under dry land conditions. The additive main effects and multiplicative interaction 

(AMMI) analysis and GGE-biplot analyses were conducted to determine the effects of hybrid x 

environment interaction on grain yield.  There were highly significant differences among 

genotypes, environments and their interactions, accounting for 25%, 26% and 29% of the total 

variance, respectively.  The AMMI-2 model explained 68% of the GXE interaction. The GGE biplot 

revealed that hybrid 14XH082 was the most stable across South Africa. AMMI model revealed that 

hybrid 11C3201, 13C7082 and 10HDTX11 were the most stable when compared to commercial 

hybrids PAN6Q445B, PAN6611 and DKC80-40BRGEN. This represents significant progress in 

availability of stable and well adapted new hybrids for the South African market.  
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4.1 Introduction 

 

Hybrid performance in relation to traits such as yield is influenced by genotype, environment and 

genotype by environment interaction (Tiwari et al., 2014). Large amounts of yield variation are a 

result of change in environmental stresses such as climatic, soil conditions and disease 

prevalence ( Asfaw et al., 2009; Grada and Ciulca, 2013). For this reason, genotype by 

environment interaction has widely become a crucial factor for breeding programmes (Adu et al., 

2013). This is because large GXE interaction impairs accuracy of yield estimation due to varying 

response patterns among the hybrids across environments. The response of genotypes to the 

effect of GXE directly impacts on the ranking of hybrids (Mitrović et al., 2012). The choice of 

hybrids for any given environment is hindered by cross interactions (Mitrović et al., 2012). These 

cross interactions account for the different hybrid ranking from one environment to another, making 

it more challenging to draw reliable conclusions (Stojaković et al.,2012). This means one hybrid 

can be high yielding and rank high in one environment and low yielding and rank lower in another. 

Moreover, the breeding progress is affected as the GXE effect complicates the demonstration of 

superior genotypes across multiple locations (Rashidi et al., 2013). Selection of experimental 

hybrid genotypes is based on the assessment of their phenotypic value in a number of locations or 

environments (İlker et al., 2009). Additionally, it reduces the relationship between the phenotypic 

and genotypic values (Grada and Ciulca, 2013), thereby reducing progress from selection. 

Therefore, it has a direct impact on the adoption of the hybrid, its productivity and total production 

of the crop (Lule et al., 2014). 

Plant breeders are more interested in selecting hybrids which perform consistently superior across 

most testing environments therefore GXE effects are a crucial factor in hybrid development. 

According to Kandus et al. (2010), genotypes can be classified in two ways in accordance with 

their behavior, either as stable genotype or adapted to a particular environment. Hybrid 

adaptability refers to consistent high performance of the genotype across diverse sets of 

environments due to adjustment to its environment (Farshadfar et al., 2013). Genotype adaptability 

is evident where a genotype yields high in specific environmental conditions and produces poor 

yields in another set of environment (Kandus et al., 2010, Rashidi et al., 2013).  According to Lule 

et al. (2014), adaptability is the function of genotype, environment and genotype by environment 

interaction. Lule et al. (2014) cited that adaptability generally falls into two classes: (i) the ability to 

perform at an acceptable level in a range of environments, known as general adaptability, and (ii) 

the ability to perform well only in desirable environments known as specific adaptability. On the 
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other hand, static stability refers to genotype with a capacity to remain constant, both with high or 

low yield levels in various environments. However breeders desire to select hybrids with dynamic 

stability, that is the product which responds to improvements in resources or management of the 

crop in the farmers field. This is the type of stability which is desirable. 

Given the foregoing assessment of hybrid performance, adaptability and stability across varying 

environments and prior to commercial release is paramount in maize hybrid development. 

Assessment of hybrids across environments generates crucial and valuable information for 

identifying adaptation and stability of these hybrids (Crossa, 1990). Most importantly, the same 

information allows maize breeders to make specific selections of hybrids for particular locations 

and for seed companies to make appropriate recommendations to maize growers (İlker et al., 

2009). Tiwari et al. (2014) cited that the cause of yield stability is unclear. However, mechanisms 

that may confer stability of maize hybrids may include genetic heterogeneity, yield component 

compensation,  stress tolerance and capacity to rapidly recover from stress. According to Basford 

and Cooper (1998), GXE effects influences contribution of genes governing grain yield resulting in 

different performance of hybrids in  different environments. This makes it mandatory for maize 

breeders to conduct multi- environmental trials (MET) which present the largest cost in maize 

breeding research.  

There are various statistical tools and methods used to quantify and graphically represent various 

levels of GXE effects in maize hybrid development. However, no single statistical method can 

sufficiently describe maize hybrid performance across environments (Rashidi et al., 2013). These 

methods can be classified into two groups namely univariate and multivariate. The multivariate 

model includes Principal Component Analysis (PCA), cluster analysis and Additive Main Effects 

and Multiplicative Interaction Models (AMMI). According to Crossa et al. (1990), the purpose of 

multivariate methods is to eliminate “noise” found in the data set. This enables separation of 

systematic and non-systematic variation. Multivariate approaches facilitate summarization of the 

information and easily reveal data structure.  

Among them is the AMMI model which considers the effect of genotype and environment as the 

additive effects plus the genotype x environment interaction effects as the multiplicative 

component and submits it to principal component analysis.  The AMMI models are usually called 

AMMI-1, AMMI-2 to  AMMI- n, depending on the number of principal components used to study the 

interaction (Kandus et al., 2010).  
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The modified AMMI model is the GGE biplot analysis this combines the genotype effects (G) with 

genotype x environment (GE) multiplicative effect. These effects are submitted  to the principal 

component analysis (Adu et al., 2013). The graphical presentation produced by the GGE biplot is 

very appealing for plant breeding and has become a crucial tool in product evaluation and 

advancement. In the same GGE graph, it is possible to observe the following: (i) genotype (points) 

and environment (vectors); (ii) the exploration of patterns attributable to the effects of GXE 

interaction.  The specific interaction between the genotypes and the environments is clearly 

visualized through the distances from the origin of the graph. According to Yan and Tinker (2006),  

high performance of a genotype in an environment when compared to average is realized  if the 

angle between its vector and the environment vector is <90º, it is poorer than average if the angle 

is >90º, and it is near average if the angle is about 90º. 

As a result the GGE-biplot is now widely used by maize breeding programmes. There are more 

features encompassed in the GGE biplot analysis which attract plant breeders and scientist. For 

example, recently Badu-Apraku et al.(2012) and  previously Yan and Tinker (2006), cited the 

following functions as the most appealing: discrimination and ranking of hybrids, head-to-head 

analyses, differentiation and therefore selection of suitable environments for METs, and ultimately 

the capability of the tool to select winning hybrids in each environment : 

The objective of this study was to determine the GXE effects among experimental hybrids to see if 

progress has been made by the programme at the UKZN, by identifying and obtaining hybrids 

which are adapted to environments in South Africa.  The AMMI and GGE-biplot analysis tools were 

therefore applied. 

4.2 Materials and Methods 

4.2.1 Germplasm 

Fourty-two hybrids listed in Table 4.1(b), were evaluated in summer of 2013- 2014 season across 

six locations. Thirteen of the hybrids were commercial hybrids used as positive control (standard 

checks). The experimental single cross hybrids originated from the UKZN breeding programme. 

These were developed as crosses between tropical adapted lines with South African adapted 

lines.  

4.2.2 Experimental design, Locations and field management 

The experimental design was a 6x7 alpha lattice design with two replications across environments.  

The row length for each plot was 6.6 m.  The row width was 0.90 m for sites in the east and 1.5 m 
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for the western sites, which is consistent with the hybrid production culture in South Africa. The 

higher row width in the west is aimed to reduce competition and compensate for soil moisture due 

to drier climate conditions in the west.  Therefore, the western sites have low planting density of 28 

000 plants per hectare. However the eastern sites have high planting density of 44 000 plants per 

hectare (Table 4.1 (a)). The planting was done at one row plot for each hybrid with 22 plant 

stations per plot. 

Six locations listed in Table 4.1(a) were used as testing environments. The testing environments 

were based in three provinces which are KwaZulu–Natal (KZN), Mpumalanga and North West 

provinces which are among the maize production areas in the country. . The trial sites were 

prepared and planted according to each farmer’s practices. Fertilizer application and field 

management were done according to the requirements of each farmer. Pre-emergent and post 

emergent weeds were controlled using Basagran and roundup herbicide. Pesticides were used to 

control stalk borer.  
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Table 4.1 (a): Experimental locations (environments) used in the study  

Loc # Loc Name Latitude Longitude Province Density 
Long term 
Average annual rainfall (mm) 

E1 BETHAL 26.4579° S 29.4667° E Mpumalanga 44000 710 

E2 CAROLINA 26.0731° S 30.1070° E Mpumalanga 44000 614 

E3 CEDARA 29.5478º  S 30.2667º E KwaZulu-Natal 44000 900 

E4 POTCHEFSTROOM 26.7145° S 27.0970° E North West 28000 615 

E5 WINTERTON 28.8166° S 29.5296° E KwaZulu-Natal 44000 789 

E6 MOOI RIVER 29.2106° S 30.0030° E KwaZulu-Natal 44000 900 

 

Table 4.1(b): List of genotypes used in the study 

Hybrid 
code 

Genotype 
no. Developing sector Hybrid code 

Genotype 
no. Developing sector 

03C475 1 Experimental hybrid 11C1511 22 Experimental hybrid 

11C3417 2 Experimental hybrid 11C2242 23 Experimental hybrid 

11C3201 3 Experimental hybrid 11C1483 24 Experimental hybrid 

11C2974 4 Experimental hybrid 11C2243 25 Experimental hybrid 

02C3156 5 Experimental hybrid 1OHDTX11 26 Experimental hybrid 

11C6363 6 Experimental hybrid 14XH050 27 Experimental hybrid 

11C2557 7 Experimental hybrid 14XH146 28 Experimental hybrid 

13C7060 8 Experimental hybrid 14XH149 29 Experimental hybrid 

13C7065 9 Experimental hybrid 14XH082 30 Experimental hybrid 

13C7071 10 Experimental hybrid 14XH065 31 Experimental hybrid 

13C7082 11 Experimental hybrid PAN6Q445B 32 
Commercial Check 
hybrid 

13C7083 12 Experimental hybrid PAN6611 33 
Commercial Check 
hybrid 

13C7109 13 Experimental hybrid PAN6Q308B 34 
Commercial Check 
hybrid 

13C7110 14 Experimental hybrid DKC78-45BRGEN 35 
Commercial Check 
hybrid 

13C7119 15 Experimental hybrid DKC80-40BRGEN 36 
Commercial Check 
hybrid 

13C7122 16 Experimental hybrid PAN53 37 
Commercial Check 
hybrid 

11C1774 17 Experimental hybrid PAN67 38 
Commercial Check 
hybrid 

11C1579 18 Experimental hybrid SC633 39 
Commercial Check 
hybrid 

11C1566 19 Experimental hybrid SC506 40 
Commercial Check 
hybrid 

11C2245 20 Experimental hybrid SC301 41 
Commercial Check 
hybrid 

11C1350 21 Experimental hybrid SC403 42 
Commercial Check 
hybrid 
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4.2.2 Statistical analysis 

A combined analysis of variance (ANOVA) was done for the genotypes across locations using 

GENSTAT statistical software version 14.1 (GENSTAT, 2011). The analysis was based on the 

mean data obtained from each location. The GGE biplot analysis for genotypes against 

environments was conducted to ascertain performance of hybrids across various test 

environments. The biplot was conducted to explain the genotype x environment interaction, 

adaptation and which-won-where pattern of hybrids towards the environments. The AMMI-2 model 

was used to plot IPCA scores against the mean yield of genotypes.   

4.3 Results  

4.3.1 Genotype x environment interaction 

The genotypes and environments as main effects were highly significantly different from each 

other and their interactions were also highly significant (Table 4.2). The IPCA1 and IPCA2 were 

highly significant (p >0.01) and contributed 9.55% and 8.14% respectively to the total GXE 

interaction (Table 4.2). 

Table 4.2: AMMI-2 model ANOVA for grain yield in maize genotypes across environments 

   

Source df SS MS F F_prob 
Variance explained 
(%) 

Total 503 1852.2 3.68 * * 

 Treatments  251 1483.6 5.91 4.22 0.00000** 80.09 

  Genotypes 41 457.6 11.16 7.97 0.00000** 24.7 

  Environments 5 489.6 97.92 24.32 0.00000** 26.43 

  Block 6 24.2 4.03 2.88 0.00999* 1.3 
 Interactions 

(GXE) 205 536.4 2.62 1.87 0.00000** 28.96 

     IPCA 1 45 177 3.93 2.81 0.00000** 9.55 

     IPCA 2 43 150.8 3.51 2.51 0.00001** 8.14 

     Residuals 117 208.6 1.78 1.27 0.05944 11.26 

Error 246 344.4 1.4 * * 18.6 

* , ** Significant difference at 0.05 and 0.01 probability level, respectively. 

 

Environment means for Cedara were the lowest with a score of 6.404 (Table 4.3). Cedara is a low 

yielding site established in Natal midlands along the mist belt. Therefore it is a high disease 

pressure site with which no spraying was done for disease control. Winterton was the highest 

yielding site with means of 9.555 followed by Mooi River. Winterton site was under irrigation and 

spraying for disease control therefore contributing to resultant yield.  
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Potchefstroom and Mooi River locations had negative IPCA1 scores suggesting the magnitude of 

interaction with hybrids were more similar (Table 4.3).  

Table 4.3: Environment scores sorted by means 

Environment NE Em IPCAe[1] IPCAe[2] 

Cedara 3 6.404 0.24321 -0.25185 

Carolina 2 7.016 2.18493 0.61992 

Bethal 1 7.101 0.13815 0.18887 

Potchefstroom 4 7.523 -1.98831 1.58567 

Mooi River 6 7.632 -0.75531 -2.3733 

Winterton 5 9.555 0.17732 0.2307 

 

 IPCA scores for hybrids were determined (Table 4.4). A higher IPCA1 score suggests a high 

interaction of a hybrid with the environment of similar IPCA1 scores. Hybrids with similar IPCA1 

scores are specifically adapted to similar environments. Ideally, hybrids with IPCA scores closer to 

zero are more desirable as a measure of stability. High IPCA1 scores were found for the hybrids 

14XH065, 14XH146, PAN6Q445B, PAN67 and 11C2557 (Table 4.4). On the contrary hybrids 

11C2243, 14XH082, 11C2242, PAN6Q308B, SC403 and 13C7110 had IPCA1 scores closest to 

zero indicating these hybrids are more adapted and stable. 

AMMI results indicated genotype means as predicted yields ranged from 4.23 to 10.405 tonnes per 

hectare (Table 4.4). Among the top five hybrids with high predicted means, there are two 

experimental hybrids 11C3201 and 13C7082.  This means hybrid 11C3201 is the second best 

hybrid after PAN6Q445B, and it outperformed PAN611 and DKC80-40BRGEN commercial 

hybrids. Six experimental hybrids appear in the top ten and these were superior to commercial 

hybrids such as DKC78-45BRGEN, SC403, PAN53, PAN67, SC633, SC301 and PAN6Q308B 

which did not appear in the top ten performing hybrids. 
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Table 4.4: IPCA1 and IPCA2 scores for the 42 hybrids sorted by mean yield and evaluated at 6 
locations 

Genotype NG Gm IPCAg[1] IPCAg[2] Genotype NG Gm IPCAg[1] IPCAg[2] 

14XH065 27 4.23 -0.99567 -0.76164 11C1511 5 7.611 0.39628 -0.30395 

PAN6Q308B 37 5.65 -0.07497 0.82104 13C7060 17 7.614 -0.36516 -0.48574 

14XH050 26 6.07 -0.64029 -0.08905 03C475 2 7.618 0.72474 -0.42532 

SC301 39 6.345 0.62309 -0.42463 11C1483 4 7.646 0.44992 0.11368 

SC633 42 6.412 0.14996 -0.80558 11C2974 13 7.728 0.20476 0.00578 

13C7119 24 6.588 0.54541 0.03812 1OHDTX11 31 7.735 -0.60419 0.44806 

PAN67 36 6.938 0.66204 -0.06684 SC403 40 7.756 0.04827 -1.01821 

11C2242 9 6.962 -0.05197 -0.15389 13C7065 18 7.861 0.41202 0.50882 

11C1350 3 7.006 -0.24476 0.284 13C7122 25 7.897 -0.23757 -0.13444 

14XH146 29 7.019 -0.79676 -0.63822 DKC78-45BRGEN 32 7.929 0.33586 0.55029 

11C2557 12 7.192 0.70333 0.05444 13C7110 23 8.005 0.04228 -0.3313 

14XH149 30 7.363 -1.14265 -0.55208 SC506 41 8.091 -0.155 0.00091 

11C1579 7 7.404 0.10294 -0.22023 11C1774 8 8.105 0.11822 0.42012 

14XH082 28 7.419 0.01504 0.15171 11C2245 11 8.152 -0.54357 -0.08996 

11C1566 6 7.457 -0.45375 0.47135 11C3417 15 8.169 0.52327 0.20658 

11C2243 10 7.476 0.01325 -0.0794 02C3156 1 8.285 0.31846 0.23565 

13C7109 22 7.504 0.38626 -0.01024 13C7082 20 8.42 0.34709 0.00812 

13C7083 21 7.522 -0.10417 -0.15291 DKC80-40BRGEN 33 8.642 -0.4761 0.82784 

13C7071 19 7.53 0.57452 0.24448 PAN6611 35 8.815 0.17302 0.1538 

11C6363 16 7.56 0.2802 -0.59502 11C3201 14 8.907 -0.3436 0.77468 

PAN53 34 7.582 -0.16381 0.0254 PAN6Q445B 38 10.405 -0.75624 0.99379 

 

AMMI-2 model revealed four hybrid selections per environment based on mean yield (Table 4.5). Results 

revealed that hybrids 14XH149 and 14XH146 were specifically adapted to Mooi River location only. 

Experimental hybrids 11C3201 together with commercial hybrid PAN6Q445B and PAN6611 were selected 

as best hybrids across four locations namely Cedara, Winterton, Bethal and Potchefstroom. This suggests 

that hybrid 11C3201 has a high potential to compete with the commercial hybrids in terms of high stability 

and high productivity. 
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Table 4.5: AMMI-2 model’s best 4 hybrid selections for mean yield in relation to environments 
evaluated 

Environment Mean Score Hybrid 1 Hybrid 2 Hybrid 3 Hybrid 4 

Carolina 7.016 2.1849 11C3417 PAN6Q445B PAN6611 13C7082 

Cedara 6.404 0.2432 PAN6Q445B PAN6611 11C3201 13C7082 

Winterton 9.555 0.1773 PAN6Q445B 11C3201 PAN6611 DKC80-40BRGEN 

Bethal 7.101 0.1381 PAN6Q445B 11C3201 PAN6611 DKC80-40BRGEN 

Mooi River 7.632 -0.7553 SC403 14XH149 14XH146 13C7060 

Potchefstroom 7.523 -1.9883 PAN6Q445B DKC80-40BRGEN 11C3201 10HDTX11 

 

Results indicated that the lowest yielding environments were Cedara, Carolina and Bethal (Table 

4.6). Twenty best genotypes were also ranked in these three locations. In Bethal, the twenty best 

genotypes’ yield ranged from 8.599 to 7.230 t/ha, while in Cedara, best performing genotypes’ 

yield range was 8.518 to 6.455 t/ha 

Table 4.6: Low to moderate yielding environments based on mean yield with ranked 20 best 
genotypes 

Bethal                        Carolina                            Cedara   

Genotypes   YLD (t/ha) Genotypes   YLD (t/ha) Genotypes YLD (t/ha) 

DKC80-40BRGEN   8.599 PAN6611   9.182 PAN6Q445B   8.518 

PAN6Q445B   8.496 11C3417   9.137 02C3156   7.688 

PAN6611   8.233 13C7082   8.913 PAN53   7.676 

DKC78-45BRGEN   8.207 03C475   8.694 13C7071   7.671 

10HDTX11   7.874 02C3156   8.569 13C7082   7.466 

11C1483   7.781 11C3201   8.489 11C3201   7.349 

11C1511   7.766 PAN6Q445B   8.446 11C3417   7.158 

11C2974   7.703 11C2557   8.416 PAN67   7.040 

13C7110   7.694 SC506   8.158 SC506   7.002 

PAN53   7.558 DKC78-45BRGEN   8.116 DKC80-40BRGEN   6.971 

13C7060   7.457 11C1483   8.061 14XH149   6.944 

13C7122   7.455 13C7065   8.061 SC301   6.871 

11C1774   7.429 13C7071   7.908 11C1774   6.780 

11C2243   7.422 11C1774   7.860 11C6363   6.756 

13C7083   7.420 13C7109   7.518 11C1566   6.705 

11C3417   7.309 SC403   7.497 11C2974   6.619 

PAN67   7.308 11C1511   7.311 14XH082   6.520 

SC403   7.250 13C7110   7.213 13C7109   6.502 

14XH082   7.245 11C2243   7.125 13C7065   6.497 

13C7065   7.230 11C2245   7.123 11C2557   6.455 

  
    

Table 4.7 depicts twenty best hybrids in three high yielding environments namely Potchefstroom, Winterton 

and Mooi River. In Potchefstroom, the yield ranged from 7.534 to 11.723 t/ha with PAN6Q445B commercial 

hybrid identified as the highest yielding hybrid followed by 11C3201 and DKC80-40BRGEN. However, in 

Winterton and Mooi River, yield ranged from 9.64 to 11.46  t/ha and 7.666 to 8.840 t/ha respectively. In 

Winterton, the top three high yielding hybrids were PAN6Q445B, 11C1579 and 13C7065, while in Mooi 

River the three high yielding hybrids were SC403 followed by 11C2245 and 14XH149. 
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Table 4.7: High yielding environments based on mean yield with ranked 20 best genotypes 

Potchefstroom 
 

Winterton 
 

Mooi River 
 

      
Genotypes Yield (t/ha) Genotypes Yield (t/ha) Genotypes Yield (t/ha) 

PAN6Q445B   11.723 PAN6Q445B   11.46 SC403   8.840 

11C3201   10.223 11C1579   10.44 11C2245   8.324 

DKC80-40BRGEN   9.596 13C7065   10.42 14XH149   8.304 

11C2245   8.908 11C1566   10.26 14XH146   8.188 

1OHDTX11   8.898 11C2974   10.26 PAN6611   8.179 

SC506   8.761 11C2245   10.21 13C7060   8.120 

PAN6611   8.705 11C3201   10.19 SC506   8.112 

11C1566   8.638 13C7071   10.17 13C7110   8.086 

14XH149   8.406 DKC80-40BRGEN   10.16 PAN6Q445B   8.011 

11C1774   8.208 13C7122   10.11 03C475   8.007 

02C3156   8.091 11C1774   10.05 11C6363   7.988 

13C7082   8.050 11C6363   10.03 13C7082   7.981 

13C7122   7.847 13C7083   9.98 13C7122   7.963 

11C3417   7.840 13C7109   9.92 SC633   7.776 

DKC78-45BRGEN   7.819 13C7082   9.87 13C7083   7.756 

11C1350   7.775 13C7110   9.84 11C1511   7.755 

13C7065   7.609 13C7060   9.77 11C2243   7.751 

PAN53   7.568 DKC78-45BRGEN   9.71 11C3201   7.698 

14XH146   7.542 11C1511   9.68 11C2242   7.686 

14XH082   7.534 PAN6611   9.64 11C3417   7.666 

 

GGE biplot was employed to determine and visualize which hybrid won in which environment (Figure 4.1). 

Vertex hybrids were SC301 (hybrid 41), 03C475 (hybrid 1), 11C3417 (hybrid 2), PAN6Q445B (hybrid 32), 

14XH149 (hybrid 29), 14XH065 (hybrid 31). Hybrid 11C3417 (hybrid 2), PAN6Q445B (hybrid 32) were 

similarly nominated as best hybrids in the AMMI model of best hybrid selection in Carolina and 

Potchefstroom respectively (Table 4.5).  Hybrid 14XH149 (hybrid 29) was nominated as second hybrid in 

AMMI best four selections in Mooi river (Table 4.5). However, vertex hybrids SC301 (hybrid 41), 03C475 

(hybrid 1) and 14XH065 (hybrid 31) were not found in the AMMI model four hybrid selections across 

environments.  
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Figure 4.1: GGE biplot for grain yield indicating the which-won-where analysis of 

genotypes6 

                                                           
6
 Genotype hybrid names are listed in Table 4.1(b). 

II I 

III IV 
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4.4 Discussion 

4.4.1 Genotype and environment interaction  

Analysis of variance showed that grain yield was influenced by testing environments, genotypes 

and their interactions (Table 4.2) which was expected for grain yield data given that the test 

locations represented mega-environments in South Africa. Results indicated fourty-two genotypes 

tested in six locations and showed that 80.09% of the total sum of squares was attributable to 

treatments (GEI) effects, 26.43% to environment effect and 24.70% to genotypic effects (Table 

4.2), indicating the high precision of the experiment. In wheat, Verma et al. (2015) reported results 

on GEI effects accounting for 89.56% of the total sum of squares, 3.18 % for genotypes and 

68.81% for environments.  

 The first principal component analysis (IPCA1) of the AMMI analysis conducted accounted for 

9.55% of the total sum of squares, while the second IPCA2 accounted for 8.14% of the sum of 

squares and both were significant while the residual was not significant. Hence the AMMI-2 model 

was adopted for the data. The sum of squares for the genotype by environment interaction was 

higher than of environments and genotypes indicating that GXE was indeed very important. This 

suggests that there were substantial differences in environmental response towards genotypes. 

Means of sum of squares revealed genotypes behaved differently towards adaptation to various 

environments. When testing stability for grain yield in durum wheat, Mohammadi et al. (2015) 

found high GEI effects (11%) accounting for total sum of squares, which were greater than the 

genotype effects. They reported that the magnitude of the GEI sum of squares were two times 

larger than that for genotypes. They argued that in mega environmental trials there can be a 

mixture of crossover and non-crossover types of GEI which cause more dissimilarity in the genetic 

systems controlling physiological processes that confer yield stability in different environments. 

Therefore, genotypes may be selected for adaptation to specific environments. Additionally, there 

was high level of genetic diversity among genotypes as indicated by differences among the 

genotypic means, accounting for the variation in grain yield. There were highly significant 

differences as revealed by the ANOVA for genotypes as main effects, again signifying diversity 

within hybrids. Therefore, this provides an opportunity for selection of suitable hybrids for the 

different environments.  

 

About 57% of the hybrids IPCA1 scores indicated positive interaction effects (Table 4.3). Amongst 

many, these included SC633, SC301, 13C7119, PAN67, 11C1579, 14XH082, 11C2243, 11C6363, 

11C1774, 13C7110, SC403, 11C2974, 11C1483, 03C475 and 11C1511 indicating their alignment 
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towards locations with positive IPCAs. This is similar to the findings reported by Verma et al., 

(2015) concerning positive and negative IPCA scores for both genotypes and environments. They 

found that two of the environments had high positive IPCA scores. The environments displayed 

positive interaction with about 8 genotypes which had positive IPCA scores. The remainder of 43% 

hybrids including 11C2242, PAN53, SC506, DKC80-40BRGEN and 13C7083 had negative 

interaction effects, indicating that they were inclined towards locations with negative IPCAs. 

Therefore the study supports observation of specific adaptation of certain hybrids to particular 

environments which were represented by these locations. However, hybrid 14XH082, 11C2243, 

13C7083, PAN53, SC403, 13C7110 and SC506 had IPCA1 scores closer to zero, indicating that 

there were also hybrids that exhibited general adaptation to many locations. Therefore, this 

indicates small interaction effects meaning the hybrids are stable and well adapted as less 

influenced by the environments.  These results are similar to Ilker et al., (2009) report, who found a 

genotype with smaller absolute IPCA score closer to zero to be less responsive compared to other 

genotypes which were further from the plot of origin. The genotype was then considered as most 

stable. Similar findings in wheat were reported by Ali et al., (2015) 

The IPCA scores of a genotype in the AMMI analysis indicate the stability or adaptation over 

environments. The higher the IPCA score (either positive or negative), the more the genotype 

becomes specific adapted to certain environments with similar IPCAs. If a genotype or an 

environment has an IPCA score closer to zero, it has a small interaction effects and considered as 

stable. This means the genotype is stable or adapted across all the locations. When both a 

genotype and environment possess an equivalent sign on the PCA axis, their interaction effects is 

positive, however, if different, their interaction effects is negative ( Akter et al., 2014). Table 4.3 

and 4.4 presents the AMMI analysis data with the IPCA1 and IPCA2 scores for the genotypes and 

environments respectively. The positive main effects were recorded by the environments E2, E1, 

E4 and E5 with a mean of 7.016, 7.101, 7.523 and 9.555 respectively. However, environment E3 

and E6 had negative specific main effects with mean of 6.404 and 7.632 respectively. 

4.4.2 AMMI model best four hybrid selections 

Table 4.5 presents the results of the best four hybrids selected by the AMMI-2 model. These 

hybrids selections are based on mean yield and indicate the best adapted hybrids in relation to 

different environments. From the results, hybrid PAN6Q445B was the best and most adapted 

across five environments (E1, E2, E3, E4 and E5). The other hybrids that were adapted across 

other environments were PAN611 (E1, E2, E3 and E5), 11C3201 (E1, E3, E4 and E5) and 
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DKC80-40BRGEN (E1, E4 and E5). The highest environment mean of 9.555 was for environment 

E5 and the lowest mean of 6.404 was for E3. 

The AMMI model of the four best hybrid selection revealed that environment E5 was the highest 

yielding environment. However, environment E3 was the lowest yielding of all the environments.  

Hybrid PAN6Q445B had the highest yield in environment E5; however, the hybrid seems to be well 

adapted in high yielding environments.  Nonetheless, the same hybrid performed well above 

average in environment E3 which is the low yielding environment. Interestingly environment 6 top 

four selections were hybrid SC403, 14XH149, 14XH146 which were never selected in other 

environments, therefore revealing no definite pattern towards other environments. This is 

suggestive of specific adaptation of these hybrids only to environment E6.  

4.4.3 Winning genotypes and environments 

The biplot analysis was conducted using genotypic and environmental scores of the first two AMMI 

components explaining 68.62% of the GEI variation (Figure 4.1). Amongst various features of the 

GGE biplot, the greater one is its ability to display the which-won-where pattern of genotype by 

environment dataset (Ilker et al., 2009; Solonechnyi et al., 2015). The “which-won –where” graph is 

constructed by joining genotypes farthest from the line of origin, therefore forming a polygon 

(Verma et al., 2015). Perpendicular lines are drawn from the centre origin of the biplot to each side 

of the polygon, forming several sectors with one genotype at the vertex of the polygon (Yan and 

Tinker, 2006). The lines are known as equality lines (Rakshit et al., 2012). Genotypes found at the 

vertices of the polygon are either the best or poorer in one or more environments. The results 

indicated hybrid 03C475 (1), SC301 (41), 14XH065 (31), 14XH149 (29), PAN6Q445B (32) and 

11C3417 (2) were on the vertices of the biplot polygon. This suggests these genotypes were the 

furthest from the biplot origin line and could be either good or poorer performers in their respective 

environments. Therefore, hybrid 03C475 11C3417, 13C7071, 11C2557, 11C1483 in the second 

quadrant had good yields, however, less stable. Genotypes located near the plot origin were less 

responsive than the genotypes farther from the centre of the biplot. However, hybrid 14XH082 (30) 

was found on the line of origin which indicates stability across environments. Hybrid 11C3201 (3), 

02C3156 (5), 13C7082 (11), 13C7109 (13), 13C7122 (16), 11C1774 (17), 11C2245 (20), 11C1483 

(24), 10HDTX11 (26), DKC80-40BRGEN (36) were better adapted in environment E1, E2, E3, E5 

and E6. However, hybrid PAN6Q445B (32) was mostly and specifically adapted in environment 

E4, although still performed well in other environments. 

The equality lines effectively divided the biplot into seven sectors. All six environments in which the 

hybrids were tested are located in one large sector in the biplot. This indicates the environments 
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are partitioned in one mega-environment. Tonk et al., (2011) reported that seven locations in the 

study were divided into 2 sectors, forming two mega environments. The first mega environment 

consists of five environments while two environments form part of second mega environment.  

Most hybrids such as 13C7119 (15), 14XH050 (27), 14XH146 (28), 14XH149 (29), 14XH065 (31), 

PAN6Q308B (34) and SC633 (39) did not fall in any of the environment sectors, indicating that 

there was no environment in which they produced the highest grain yield. This is in line with the 

results reported by Munawar et al. (2013). Environment E4 and E2 was the best discriminating 

environments. Interestingly in environment E2, there was no genotype that was specifically 

adapted to the environment. 

4.5 Conclusion 

In this study, the following conclusions can be established: 

 There were highly significant differences for the genotype by environment interaction which 

suggests the importance of testing the genotypes in various environments. There is an 

opportunity for selection of the genotypes due to the high significant differences within 

genotypes indicating existence of genetic diversity. Therefore, genotypes and environments 

did influence the total grain yield output.  

 All the six environments were partitioned into one mega environment. However, the 

environments were divided into two sectors which are high and low yielding environments. 

This provides an opportunity for selection of hybrids in the two environments and will allow 

the breeders to make recommendations on the hybrid material and test locations. 

Environment 5 was the highest yielding environment with the highest mean yield. 

 The GGE biplot was effective in identifying the most responsive hybrids in each location.  It 

was also effective in discriminating hybrids that did not perform well in any of the locations. 

Hybrid PAN6Q445B was mostly responsive in environment E4. None of the locations fell in 

the sector with hybrids 14XH149, 14XH065, SC301 and 03C475, suggesting these hybrids 

were not performing best in any of the locations.  

 GGE biplot analysis was effective in revealing hybrids with the most adaptation across 

environments with regards to minor effects to total grain yield. Therefore the which- won-

where patterns were identified successfully. 

 AMMI analysis employment was successful in revealing experimental hybrids appearing 

among best 4 hybrid selections in each environment. In Carolina, experimental hybrids 
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11C3417 and 13C7082 were selected alongside PAN6Q445B and PAN6611 commercial 

hybrids. In Cedara, experimental hybrids 11C3201 and 13C7082 were selected alongside 

PAN6Q445B and PAN6611. Winterton and Bethal had 11C3201 as the only experimental 

hybrid selected alongside three commercial hybrids PAN6Q445B, PAN6611 and DKC80-

40BRGEN. Mooi River had three experimental hybrids 14XH149, 14XH146 and 13C7060 

alongside commercial hybrid SC403 as the best four hybrids selected. Potchefstroom had 

11C3201 and 10HDTX11 experimental hybrids with PAN6Q445B and DKC80-40BRGEN 

commercial hybrids as the best performing hybrids. 

 Experimental hybrid 11C3201 emerged four times as the best hybrid selection in four 

locations which were Cedara, Winterton, Bethal and Potchefstroom. This is suggestive of a 

high potential experimental hybrid with high stability and productivity. The results indicate 

the high potential of this hybrid to compete with commercial hybrids which are in the market 

therefore warrants the experimental hybrid as a candidate for advancement.  

Therefore the study was successful in determining the GXE effects among experimental hybrids to 

assess it progress has been realized by the programme at the UKZN in developing hybrids which 

are adapted to environments in South Africa.   
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CHAPTER FIVE 

General overview of the study 

 

This chapter outlines an overview of the completed study by giving a summary of the major 

objectives, major findings, drawing out implications of the study findings and recommendations for 

the future.  

The specific objectives of the study were: 

i) To investigate and establish the genetic diversity using SNP molecular markers in a set of 

51 maize inbred lines from the UKZN breeding programme. 

ii) To determine the level of genetic distances between the founder parents and their 

progenies (advanced inbred lines). 

iii) To determine the clustering of the inbred lines into heterotic groups.  

iv) To determine the genotype by environment interaction in white maize hybrids. 

v) To determine hybrid performance in terms of which hybrid performed better and stable in 

which environment. 

5.2 Summary of main findings 

The main findings are presented below: 

5.2.1 Genetic diversity 

 Three hundred and ninety six SNP markers were successful in discriminating the 51 inbred 

lines according to genetic distances and genetic clusters. Therefore, two clusters were 

observed (I and II) with ten sub-clusters (A - J). 

 The SNP markers indicated the founder parents are divergent, which explained the 

significant variation in their progenies.  

 The highest genetic distance of 0.3526 was recorded between founder parent LN43 and 

elite line LN50 indicating these lines complement each other and are  potentially important 

for making a hybrid cross. 
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 The genetic distance between founder parents and standard lines ranged from 0.1380 to 

0.3302. The variation in progeny lines was wide, thus suggesting that the inbred lines are 

different regardless of the similarities in gene frequency. 

 Inbred lines which were clustered on the same group could be assigned to one heterotic 

group and inbred lines on different clusters could be allocated to other different heterotic 

groups. 

5.2.2 Hybrid performance 

The study identified hybrids which can be advanced in the breeding programme: 

 The study revealed significant differences between hybrids and environments as main 

effects and their interaction. The IPCA1 and IPCA2 were found to be highly significant. 

 GGE biplot analysis was used successfully to discriminate performance of hybrids in 

various locations (which-won-where). 

 AMMI model selected four best hybrids per environment, however, hybrid PAN6Q445B 

performed better in five environments, suggesting high adaptability. 

 Hybrid 11C3417 and SC403 was the first selection in environment E2 and E6 respectively 

and out performed the check hybrid PAN6Q445B indicating a new useful product from the 

UKZN breeding programme. Hybrid 11C3201 emerged in four locations as part of the AMMI 

best four hybrid selections. 

 The significant level of GXE indicates the importance of testing of genotypes over multiple 

seasons and locations to identify superior and stable hybrids. 

5.2.3 Major outcomes from literature review 

The following conclusions could be deduced from the literature. 

 Maize is a major crop in South Africa and is staple food for millions of people in Africa. 

Because of increasing population, the demand for maize also increases with the 

environment becoming a great challenge in the production of the crop thereof. 

 Molecular markers can be used to estimate genetic diversity of a given breeding population. 

There are various factors to consider in choosing the type of genetic markers to employ. 

Molecular markers are compared to each other by outlining their parameters. 
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 Genetic diversity is an important criterion used to select parental combinations for future 

development of progenies with high genetic variability.  

 Genotype by environment interaction is an important consideration in crop breeding as it 

complicates selection of important traits like yield because of cross interactions among 

hybrid ranks across environments. Therefore testing hybrid performance across various 

testing locations reduces a chance of misleading selection results and recommendations. 

 Identification of stable and adapted genotypes to specific target areas is crucial in obtaining 

potential candidates to be used for hybrid combinations and production. 

 

5.3 Closing remarks: Breeding implications and future directions 

 The study revealed high genetic diversity among the progeny lines, suggesting there is a 

high potential for producing new and superior hybrids. 

 The identified heterotic groups in the diversity analysis indicate the opportunity of exploiting 

heterosis and developing high performing hybrids. 

 The study revealed new hybrids such as 11C3417; SC403 and 14XH149 which out 

performed the check hybrids in Carolina, and Mooi River respectively. This implies the 

breeding programme pipeline has hybrids to penetrate the local hybrid product market for 

the benefit of the farmer in the enviroments which are represented by these locations. 
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6. Appendices 

Appendix 1: Details of the 396 SNP markers used to genotype 51 inbred lines in this study. 

 

Marker Availability He PIC Gene Diversity 

Fea2_1 1.0000 0.1765 0.3492 0.4508 

Fea2_2 1.0000 0.0588 0.3419 0.4377 

PHM12794_47 1.0000 0.3333 0.3750 0.5000 

PHM4196_27 1.0000 0.1569 0.3524 0.4567 

PHM4348_16 1.0000 0.0588 0.1197 0.1278 

PHM4531_46 1.0000 0.0588 0.1197 0.1278 

PZA00005_8 1.0000 0.0980 0.1977 0.2224 

PZA00071_2 1.0000 0.1373 0.2572 0.3032 

PZA00136_2 1.0000 0.1373 0.3555 0.4623 

PZA00160_3 1.0000 0.1569 0.2484 0.2907 

PZA00172_11 1.0000 0.0000 0.0377 0.0384 

PZA00210_9 1.0000 0.0196 0.0192 0.0194 

PZA00270_1 1.0000 0.0588 0.2194 0.2509 

PZA00270_3 1.0000 0.0392 0.0725 0.0754 

PZA00297_7 1.0000 0.0392 0.1861 0.2076 

PZA00332_7 1.0000 0.0784 0.2656 0.3153 

PZA00334_2 1.0000 0.0784 0.3749 0.4998 

PZA00363_7 1.0000 0.0980 0.3016 0.3700 

PZA00403_5 1.0000 0.1961 0.3290 0.4152 

PZA00442_5 1.0000 0.1176 0.3524 0.4567 

PZA00444_5 1.0000 0.0000 0.0000 0.0000 

PZA00455_16 1.0000 0.0392 0.1612 0.1769 

PZA00460_8 1.0000 0.0784 0.2951 0.3599 

PZA00462_2 1.0000 0.0000 0.1612 0.1769 

PZA00466_2 1.0000 0.0196 0.0555 0.0571 

PZA00486_2 1.0000 0.4118 0.2735 0.3270 

PZA00489_1 1.0000 0.0000 0.0000 0.0000 

PZA00499_12 1.0000 0.1373 0.3715 0.4931 

PZA00527_10 1.0000 0.0392 0.2295 0.2645 

PZA00562_4 1.0000 0.2745 0.3749 0.4998 

PZA00565_3 1.0000 0.0000 0.0000 0.0000 

PZA00578_2 1.0000 0.0000 0.0377 0.0384 

PZA00582_4 1.0000 0.0196 0.0555 0.0571 

PZA00587_6 1.0000 0.0000 0.0000 0.0000 

PZA00600_11 1.0000 0.0000 0.0000 0.0000 

PZA00603_1 1.0000 0.2157 0.3735 0.4969 

PZA00606_10 1.0000 0.0000 0.0377 0.0384 

PZA00606_3 1.0000 0.2549 0.3608 0.4723 

PZA00721_4 1.0000 0.1765 0.3608 0.4723 

PZA00755_2 1.0000 0.1569 0.3290 0.4152 

PZA00770_1 1.0000 0.1569 0.3582 0.4675 
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Marker Availability He PIC Gene Diversity 

PZA00793_2 1.0000 0.0000 0.0000 0.0000 

PZA00878_2 1.0000 0.0588 0.1480 0.1609 

PZA00881_1 1.0000 0.0784 0.2811 0.3383 

PZA00902_1 1.0000 0.0392 0.0377 0.0384 

PZA00925_2 1.0000 0.1961 0.1612 0.1769 

PZA00944_2 1.0000 0.0000 0.0377 0.0384 

PZA00948_1 1.0000 0.1176 0.2951 0.3599 

PZA01038_1 1.0000 0.0588 0.1480 0.1609 

PZA01230_1 1.0000 0.0196 0.0192 0.0194 

PZA01292_1 1.0000 0.0588 0.1197 0.1278 

PZA01410_1 1.0000 0.0392 0.0377 0.0384 

PZA01557_1 1.0000 0.0196 0.0192 0.0194 

PZA01570_1 1.0000 0.0392 0.1612 0.1769 

PZA01588_1 1.0000 0.0784 0.2484 0.2907 

PZA01591_1 1.0000 0.1765 0.3608 0.4723 

PZA01597_1 1.0000 0.0392 0.0725 0.0754 

PZA01619_1 1.0000 0.2157 0.2883 0.3493 

PZA01715_2 1.0000 0.1176 0.3190 0.3983 

PZA01877_2 1.0000 0.0000 0.0725 0.0754 

PZA01964_29 1.0000 0.0392 0.0377 0.0384 

PZA02012_7 1.0000 0.0392 0.3631 0.4767 

PZA02029_21 1.0000 0.0196 0.1739 0.1924 

PZA02094_9 1.0000 0.1176 0.3582 0.4675 

PZA02113_1 1.0000 0.0784 0.2484 0.2907 

PZA02129_1 1.0000 0.2353 0.3631 0.4767 

PZA02148_1 1.0000 0.1569 0.3290 0.4152 

PZA02247_1 1.0000 0.1176 0.3457 0.4444 

PZA02264_5 1.0000 0.0784 0.2656 0.3153 

PZA02291_1 1.0000 0.1961 0.3702 0.4906 

PZA02396_14 1.0000 0.1569 0.3457 0.4444 

PZA02408_2 1.0000 0.0392 0.2088 0.2368 

PZA02426_1 1.0000 0.0000 0.0725 0.0754 

PZA02436_1 1.0000 0.2549 0.3336 0.4231 

PZA02509_14 1.0000 0.0784 0.1861 0.2076 

PZA02514_1 1.0000 0.0196 0.0192 0.0194 

PZA02549_3 1.0000 0.0392 0.0725 0.0754 

PZA02564_2 1.0000 0.0588 0.1480 0.1609 

PZA02585_2 1.0000 0.1176 0.3457 0.4444 

PZA02606_1 1.0000 0.0196 0.0889 0.0932 

PZA02683_1 1.0000 0.0392 0.1612 0.1769 

PZA02722_1 1.0000 0.1765 0.3735 0.4969 

PZA02817_15 1.0000 0.0392 0.2484 0.2907 

PZA02817_3 1.0000 0.0784 0.2295 0.2645 

PZA02949_26 1.0000 0.0000 0.0000 0.0000 
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Marker Availability He PIC Gene Diversity 

PZA02984_10 1.0000 0.0588 0.0555 0.0571 

PZA03012_10 1.0000 0.0000 0.0000 0.0000 

PZA03034_1 1.0000 0.1373 0.3688 0.4877 

PZA03116_2 1.0000 0.2745 0.3749 0.4998 

PZA03182_5 1.0000 0.0588 0.3336 0.4231 

PZA03191_2 1.0000 0.0784 0.0725 0.0754 

PZA03243_4 1.0000 0.1176 0.1046 0.1107 

PZA03244_4 1.0000 0.0196 0.0555 0.0571 

PZA03255_4 1.0000 0.0196 0.1197 0.1278 

PZA03289_4 1.0000 0.0000 0.0377 0.0384 

PZA03359_4 1.0000 0.0196 0.0192 0.0194 

PZA03366_2 1.0000 0.0000 0.0000 0.0000 

PZA03384_1 1.0000 0.0000 0.0000 0.0000 

PZA03385_1 1.0000 0.1569 0.3290 0.4152 

PZA03385_2 1.0000 0.3137 0.2295 0.2645 

PZA03388_1 1.0000 0.2157 0.3555 0.4623 

PZA03411_3 1.0000 0.0000 0.0000 0.0000 

PZA03431_1 1.0000 0.0000 0.0000 0.0000 

PZA03445_1 1.0000 0.1569 0.3379 0.4306 

PZA03452_6 1.0000 0.0392 0.1046 0.1107 

PZA03461_1 1.0000 0.0196 0.0555 0.0571 

PZA03470_1 1.0000 0.0196 0.0555 0.0571 

PZA03477_1 1.0000 0.2353 0.3741 0.4983 

PZA03478_1 1.0000 0.0392 0.1612 0.1769 

PZA03484_1 1.0000 0.0588 0.1480 0.1609 

PZA03490_1 1.0000 0.1765 0.2572 0.3032 

PZA03498_1 1.0000 0.0196 0.0555 0.0571 

PZA03504_1 1.0000 0.0588 0.1197 0.1278 

PZA03505_1 1.0000 0.1176 0.3524 0.4567 

PZA03520_3 1.0000 0.0196 0.0192 0.0194 

PZA03533_1 1.0000 1.0000 0.3750 0.5000 

PZA03568_1 1.0000 0.0196 0.0192 0.0194 

PZA03569_2 1.0000 0.0196 0.0192 0.0194 

PZA03573_1 1.0000 0.0588 0.0555 0.0571 

PZA03573_3 1.0000 0.2157 0.3608 0.4723 

PZA03587_1 1.0000 0.0196 0.0555 0.0571 

PZA03598_1 1.0000 0.1176 0.3290 0.4152 

PZA03629_1 1.0000 0.0588 0.0889 0.0932 

PZA03637_3 1.0000 0.0588 0.0889 0.0932 

PZA03638_1 1.0000 0.0588 0.0889 0.0932 

PZA03645_2 1.0000 0.0196 0.1197 0.1278 

PZA03668_4 1.0000 0.0000 0.0000 0.0000 

PZA03673_1 1.0000 0.0196 0.0192 0.0194 
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Marker Availability He PIC Gene Diversity 

PZA03673_2 1.0000 0.0000 0.0000 0.0000 

PZA03677_1 1.0000 0.0588 0.1739 0.1924 

PZA03686_1 1.0000 0.0000 0.1341 0.1446 

PZA03695_2 1.0000 0.0196 0.0192 0.0194 

PZA03696_2 1.0000 0.0000 0.0377 0.0384 

PZA03696_3 1.0000 0.0196 0.0192 0.0194 

PZA03700_3 1.0000 0.0000 0.0000 0.0000 

PZA03706_1 1.0000 0.0196 0.0555 0.0571 

PZA03714_1 1.0000 0.0392 0.0725 0.0754 

PZA03716_1 1.0000 0.9804 0.3749 0.4998 

PZA03719_1 1.0000 0.1373 0.3419 0.4377 

PZA03728_1 1.0000 0.0392 0.0377 0.0384 

PZA03731_2 1.0000 0.0000 0.0000 0.0000 

PZA03732_2 1.0000 0.0000 0.0000 0.0000 

PZA03732_3 1.0000 1.0000 0.3750 0.5000 

PZA03733_1 1.0000 0.0784 0.2295 0.2645 

PZA03735_1 1.0000 0.0980 0.2392 0.2778 

PZA03742_2 1.0000 0.2745 0.3582 0.4675 

PZA03747_1 1.0000 0.0784 0.2088 0.2368 

PZA03750_2 1.0000 0.0196 0.1480 0.1609 

PZA03760_3 1.0000 0.0392 0.0377 0.0384 

PZB00001_2 1.0000 0.1765 0.3419 0.4377 

PZB00054_3 1.0000 0.0000 0.0000 0.0000 

PZB00062_10 1.0000 0.0000 0.0000 0.0000 

PZB00062_9 1.0000 0.0392 0.0377 0.0384 

PZB00104_1 1.0000 0.0588 0.2572 0.3032 

PZB00114_1 1.0000 0.0588 0.2194 0.2509 

PZB00125_1 1.0000 0.0196 0.0192 0.0194 

PZB00165_6 1.0000 0.1373 0.2735 0.3270 

PZB00175_6 1.0000 0.0196 0.0555 0.0571 

PZB00207_3 1.0000 0.0000 0.0000 0.0000 

PZB00235_1 1.0000 0.2157 0.3608 0.4723 

PZB00425_1 1.0000 0.0196 0.0192 0.0194 

PZB00592_1 1.0000 0.1373 0.3555 0.4623 

PZB00607_2 1.0000 0.0000 0.0377 0.0384 

PZB00677_3 1.0000 0.0000 0.0377 0.0384 

PZB00677_4 1.0000 0.0196 0.0889 0.0932 

PZB00746_1 1.0000 0.0000 0.0000 0.0000 

PZB00772_4 1.0000 0.0196 0.0192 0.0194 

PZB00895_3 1.0000 0.1176 0.1046 0.1107 

PZB00963_2 1.0000 0.0588 0.0889 0.0932 

PZB00963_3 1.0000 0.0000 0.0000 0.0000 

PZB01021_5 1.0000 0.0196 0.0889 0.0932 

PZB01051_1 1.0000 0.0000 0.0377 0.0384 
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PZB01057_4 1.0000 0.0000 0.0000 0.0000 

PZB01086_2 1.0000 0.0000 0.0000 0.0000 

PZB01103_4 1.0000 0.0000 0.0000 0.0000 

PZB01107_8 1.0000 0.0196 0.0192 0.0194 

PZB01110_6 1.0000 0.0392 0.1861 0.2076 

PZB01111_3 1.0000 0.0392 0.0725 0.0754 

PZB01111_6 1.0000 0.3333 0.3715 0.4931 

PZB01112_1 1.0000 0.0196 0.1739 0.1924 

PZB01114_2 1.0000 0.0196 0.0889 0.0932 

PZB01186_1 1.0000 0.0784 0.1861 0.2076 

PZB01186_4 1.0000 0.0000 0.0000 0.0000 

PZB01261_2 1.0000 0.1765 0.2392 0.2778 

PZB01301_6 1.0000 0.1373 0.2392 0.2778 

PZB01370_1 1.0000 0.2157 0.3555 0.4623 

PZB01412_2 1.0000 0.0000 0.0377 0.0384 

PZB01460_2 1.0000 0.0000 0.0000 0.0000 

PZB01463_2 1.0000 0.0000 0.0000 0.0000 

PZB01463_7 1.0000 0.0196 0.0192 0.0194 

PZB01500_1 1.0000 0.0196 0.0192 0.0194 

PZB01617_2 1.0000 0.0000 0.1046 0.1107 

PZB01642_2 1.0000 0.0000 0.0000 0.0000 

PZB01683_2 1.0000 0.0000 0.0000 0.0000 

PZB01689_3 1.0000 0.1176 0.3524 0.4567 

PZB01730_3 1.0000 0.0392 0.0725 0.0754 

PZB01856_1 1.0000 0.9216 0.3735 0.4969 

PZB01869_4 1.0000 0.6078 0.3336 0.4231 

PZB01963_2 1.0000 0.0392 0.0377 0.0384 

PZB01963_4 1.0000 0.0000 0.0000 0.0000 

PZB01964_5 1.0000 0.0196 0.0889 0.0932 

PZB01977_11 1.0000 0.0392 0.3457 0.4444 

PZB01977_4 1.0000 0.1176 0.1341 0.1446 

PZB01977_9 1.0000 0.3137 0.2295 0.2645 

PZB02017_2 1.0000 0.1176 0.2484 0.2907 

PZB02020_2 1.0000 0.0000 0.0000 0.0000 

PZB02033_1 1.0000 0.6275 0.3379 0.4306 

PZB02033_2 1.0000 0.0196 0.0555 0.0571 

PZB02122_1 1.0000 0.2157 0.2194 0.2509 

PZB02179_1 1.0000 0.0392 0.2484 0.2907 

PZB02227_2 1.0000 0.0980 0.2572 0.3032 

PZB02448_1 1.0000 0.2353 0.3524 0.4567 

PZB02516_1 1.0000 0.1569 0.3671 0.4844 

PZB02534_3 1.0000 0.0392 0.1046 0.1107 

PZB02542_1 1.0000 0.0000 0.0000 0.0000 

PZB02542_3 1.0000 0.0000 0.0000 0.0000 
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PZB02544_1 1.0000 0.1176 0.1046 0.1107 

PZD00016_4 1.0000 0.0392 0.1046 0.1107 

PZD00022_6 1.0000 0.0784 0.3190 0.3983 

PZD00027_5 1.0000 0.0196 0.0192 0.0194 

PZD00043_2 1.0000 0.0000 0.0000 0.0000 

PZD00043_4 1.0000 0.0000 0.0000 0.0000 

PZD00056_1 1.0000 0.1176 0.2951 0.3599 

PZD00066_5 1.0000 0.0196 0.0192 0.0194 

PZD00072_2 1.0000 0.1961 0.3457 0.4444 

Ra1_1 1.0000 0.0196 0.0192 0.0194 

ba1_6 1.0000 0.0000 0.0000 0.0000 

fea2_3 1.0000 0.0196 0.0192 0.0194 

sh2_3 1.0000 0.0392 0.2484 0.2907 

zb27_1 1.0000 0.0392 0.0725 0.0754 

zb7_2 1.0000 0.0000 0.0377 0.0384 

PZA00031_5 0.9804 0.0600 0.0905 0.0950 

PZA00047_2 0.9804 0.2200 0.3626 0.4758 

PZA00210_8 0.9804 0.0200 0.0196 0.0198 

PZA00237_8 0.9804 0.1000 0.0905 0.0950 

PZA00297_4 0.9804 0.0200 0.0565 0.0582 

PZA00326_18 0.9804 0.1600 0.3481 0.4488 

PZA00498_5 0.9804 0.1800 0.3444 0.4422 

PZA00516_3 0.9804 0.0400 0.2327 0.2688 

PZA00523_2 0.9804 0.0200 0.0196 0.0198 

PZA00587_4 0.9804 0.1800 0.2225 0.2550 

PZA00616_13 0.9804 0.1400 0.3444 0.4422 

PZA00726_8 0.9804 0.0600 0.2768 0.3318 

PZA00740_1 0.9804 0.0000 0.0384 0.0392 

PZA01029_1 0.9804 0.1000 0.3165 0.3942 

PZA01216_1 0.9804 0.1200 0.2983 0.3648 

PZA01315_1 0.9804 0.0200 0.3444 0.4422 

PZA01652_1 0.9804 0.2400 0.3602 0.4712 

PZA01726_1 0.9804 0.0400 0.0384 0.0392 

PZA02011_1 0.9804 0.0400 0.2118 0.2408 

PZA02197_1 0.9804 0.0600 0.2604 0.3078 

PZA02203_1 0.9804 0.2200 0.3741 0.4982 

PZA02266_3 0.9804 0.7600 0.3602 0.4712 

PZA02296_1 0.9804 0.1200 0.3481 0.4488 

PZA02388_1 0.9804 0.1600 0.3219 0.4032 

PZA02423_1 0.9804 0.1800 0.3668 0.4838 

PZA02478_7 0.9804 0.3200 0.3648 0.4800 

PZA02496_1 0.9804 0.0800 0.3750 0.5000 

PZA02589_1 0.9804 0.2800 0.3685 0.4872 

PZA02616_1 0.9804 0.2400 0.3602 0.4712 
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PZA02746_2 0.9804 0.2600 0.3668 0.4838 

PZA02890_4 0.9804 0.0600 0.2006 0.2262 

PZA02981_2 0.9804 0.0600 0.3047 0.3750 

PZA03069_4 0.9804 0.1000 0.2424 0.2822 

PZA03120_1 0.9804 0.1400 0.1766 0.1958 

PZA03243_7 0.9804 0.0000 0.0000 0.0000 

PZA03329_1 0.9804 0.1400 0.2424 0.2822 

PZA03381_2 0.9804 0.0400 0.1638 0.1800 

PZA03388_2 0.9804 0.0000 0.0000 0.0000 

PZA03398_2 0.9804 0.1000 0.2006 0.2262 

PZA03442_1 0.9804 0.0800 0.1889 0.2112 

PZA03462_1 0.9804 0.2000 0.3746 0.4992 

PZA03474_1 0.9804 0.0200 0.1504 0.1638 

PZA03519_2 0.9804 0.0200 0.1504 0.1638 

PZA03528_1 0.9804 0.1600 0.3108 0.3848 

PZA03583_2 0.9804 0.0400 0.0384 0.0392 

PZA03607_1 0.9804 0.0800 0.2327 0.2688 

PZA03632_2 0.9804 0.0000 0.0384 0.0392 

PZA03650_1 0.9804 0.0400 0.2516 0.2952 

PZA03663_1 0.9804 0.3000 0.3725 0.4950 

PZA03668_1 0.9804 0.1200 0.2688 0.3200 

PZA03676_2 0.9804 0.0000 0.0000 0.0000 

PZA03714_3 0.9804 0.0600 0.1217 0.1302 

PZB00068_1 0.9804 0.2400 0.3685 0.4872 

PZB00087_1 0.9804 1.0000 0.3750 0.5000 

PZB00092_2 0.9804 0.4200 0.2768 0.3318 

PZB00686_2 0.9804 0.1400 0.3626 0.4758 

PZB00859_1 0.9804 0.1000 0.1766 0.1958 

PZB01186_3 0.9804 0.1400 0.3165 0.3942 

PZB01403_1 0.9804 0.1400 0.3444 0.4422 

PZB01403_3 0.9804 0.0400 0.0384 0.0392 

PZB01403_4 0.9804 0.0600 0.2424 0.2822 

PZB01647_1 0.9804 0.0600 0.1217 0.1302 

PZB01881_11 0.9804 0.0200 0.0565 0.0582 

PZB01919_1 0.9804 0.2200 0.3668 0.4838 

PZB01963_1 0.9804 0.0400 0.0739 0.0768 

PZB01963_3 0.9804 0.0400 0.0739 0.0768 

PZB02155_1 0.9804 0.1400 0.3515 0.4550 

PZB02480_1 0.9804 0.0800 0.3318 0.4200 

PZD00010_3 0.9804 0.0400 0.0384 0.0392 

PZD00067_2 0.9804 0.1800 0.3444 0.4422 

ae1_7 0.9804 0.1200 0.3714 0.4928 

csu1171_2 0.9804 0.3200 0.3746 0.4992 

d8_3 0.9804 0.2600 0.3741 0.4982 
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su1_9 0.9804 0.0000 0.0384 0.0392 

PZA00040_19 0.9608 0.1633 0.1387 0.1499 

PZA00130_9 0.9608 0.0408 0.3724 0.4948 

PZA00273_5 0.9608 0.0204 0.0921 0.0968 

PZA00310_5 0.9608 0.0000 0.1387 0.1499 

PZA00315_6 0.9608 0.0204 0.0200 0.0202 

PZA00963_3 0.9608 0.0408 0.3139 0.3898 

PZA01238_2 0.9608 0.0408 0.0752 0.0783 

PZA01301_1 0.9608 0.2449 0.3505 0.4531 

PZA01332_2 0.9608 0.1020 0.3299 0.4167 

PZA01427_1 0.9608 0.0816 0.3568 0.4648 

PZA01473_1 0.9608 0.0204 0.0200 0.0202 

PZA01677_1 0.9608 0.0204 0.0200 0.0202 

PZA01714_1 0.9608 0.1224 0.3505 0.4531 

PZA01883_2 0.9608 0.0408 0.1083 0.1150 

PZA02260_2 0.9608 0.0816 0.3346 0.4248 

PZA02385_6 0.9608 0.0408 0.1083 0.1150 

PZA02398_2 0.9608 0.2857 0.3724 0.4948 

PZA02450_1 0.9608 0.0204 0.1529 0.1668 

PZA02673_1 0.9608 0.0612 0.2456 0.2868 

PZA02824_3 0.9608 0.1837 0.3712 0.4925 

PZA02825_8 0.9608 0.2245 0.3390 0.4325 

PZA02916_5 0.9608 0.1224 0.3505 0.4531 

PZA02921_4 0.9608 0.1224 0.3249 0.4082 

PZA03012_12 0.9608 0.1429 0.3712 0.4925 

PZA03046_4 0.9608 0.2041 0.3749 0.4998 

PZA03243_3 0.9608 0.0000 0.0000 0.0000 

PZA03247_1 0.9608 0.0000 0.1665 0.1833 

PZA03367_1 0.9608 0.2449 0.3664 0.4831 

PZA03507_1 0.9608 0.2653 0.3682 0.4867 

PZA03527_1 0.9608 0.0816 0.3249 0.4082 

PZA03610_1 0.9608 0.0408 0.2149 0.2449 

PZA03624_2 0.9608 0.1224 0.3505 0.4531 

PZA03638_2 0.9608 0.1633 0.3346 0.4248 

PZA03651_1 0.9608 0.0000 0.1918 0.2149 

PZA03742_1 0.9608 0.2245 0.3538 0.4592 

PZA03745_1 0.9608 0.2041 0.3431 0.4398 

PZB00104_3 0.9608 0.1837 0.3733 0.4967 

PZB00123_1 0.9608 0.2245 0.3469 0.4467 

PZB00750_1 0.9608 0.2041 0.3724 0.4948 

PZB00865_2 0.9608 0.1224 0.3568 0.4648 

PZB01114_1 0.9608 0.0612 0.2257 0.2593 

PZB01457_1 0.9608 0.2041 0.3749 0.4998 

PZB01913_2 0.9608 0.1633 0.3698 0.4898 
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PZB01977_5 0.9608 0.0000 0.0000 0.0000 

PZB02017_3 0.9608 0.0816 0.2149 0.2449 

PZB02058_2 0.9608 0.2653 0.3746 0.4992 

PZB02059_1 0.9608 0.1020 0.3746 0.4992 

PZB02425_3 0.9608 0.0204 0.1239 0.1327 

d8_2 0.9608 0.1224 0.1083 0.1150 

PZA00305_2 0.9412 0.2500 0.3639 0.4783 

PZA00356_8 0.9412 0.0208 0.1261 0.1352 

PZA00447_6 0.9412 0.1875 0.3560 0.4633 

PZA01062_1 0.9412 0.1042 0.3226 0.4043 

PZA01289_1 0.9412 0.1458 0.3615 0.4737 

PZA01383_1 0.9412 0.0000 0.0767 0.0799 

PZA01447_1 0.9412 0.1875 0.3615 0.4737 

PZA01530_1 0.9412 0.0208 0.1823 0.2029 

PZA01672_1 0.9412 0.0000 0.0400 0.0408 

PZA02923_7 0.9412 0.0000 0.0400 0.0408 

PZA03300_2 0.9412 0.0417 0.0400 0.0408 

PZA03394_1 0.9412 0.0833 0.3639 0.4783 

PZA03440_4 0.9412 0.1042 0.2980 0.3644 

PZA03446_1 0.9412 0.2917 0.3528 0.4575 

PZA03451_5 0.9412 0.0000 0.2181 0.2491 

PZA03602_1 0.9412 0.0625 0.3661 0.4824 

PZA03603_1 0.9412 0.0833 0.3733 0.4965 

PZA03711_3 0.9412 0.2292 0.3661 0.4824 

PZA03723_1 0.9412 0.1042 0.3417 0.4373 

PZB00178_3 0.9412 0.0625 0.2289 0.2637 

PZB00607_1 0.9412 0.0417 0.0767 0.0799 

PZB01352_3 0.9412 0.2083 0.3733 0.4965 

PZB01446_1 0.9412 0.7917 0.3680 0.4861 

PZB01454_6 0.9412 0.1250 0.2392 0.2778 

PZB02002_1 0.9412 0.0000 0.0400 0.0408 

PZB02425_2 0.9412 0.1458 0.3615 0.4737 

PZB02544_2 0.9412 0.3333 0.2392 0.2778 

PHM2885_31 0.9216 0.0000 0.0408 0.0416 

PZA00425_11 0.9216 0.1915 0.3582 0.4674 

PZA00587_5 0.9216 0.0000 0.0000 0.0000 

PZA01688_3 0.9216 0.0213 0.0957 0.1007 

PZA02733_1 0.9216 0.1702 0.3657 0.4817 

PZA03244_3 0.9216 0.0000 0.0000 0.0000 

PZA03632_3 0.9216 0.1277 0.3551 0.4617 

PZA03648_2 0.9216 0.0851 0.3609 0.4726 

PZA03669_1 0.9216 0.0000 0.0408 0.0416 

PZA01607_1 0.9020 0.2391 0.3542 0.4601 

PZA03692_1 0.9020 0.0217 0.0611 0.0631 
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PZA03758_1 0.9020 0.1087 0.3542 0.4601 

PZB00153_3 0.9020 0.4783 0.3113 0.3856 

PZB01115_1 0.9020 0.0652 0.3720 0.4941 

lac1_3 0.9020 0.2391 0.3691 0.4884 

Mean 0.9842 0.1067 0.1940 0.2406 
He= heritability.  PIC = polymorphic information content 

 

 

 

 

 


