AN INTELLIGENT MULTI-TERMINAL INTERFACE

'Roger Charles Samuel Peplow

Submitted in partial fullfillment of the reQuirements for the degree of Master of
Science in Engineering in the Department of Electronic Engineering at the

University of Natal, Durban.

Durban November 1987

Preface

The work described in this thesis was carried out in the Department of
Electronic Engineering, University of Natal, Durban, from June 1978 to

January 1979, under the supervision of Professor H.L. Nattrass.

This material represents the author’s original work except where specific
acknowledgement is made, and has not been submitted in part, or in whole, to

any other University for degree purposes.

il

Acknowledgements

My thanks go to my supervisor Professor Lee Nattrass, not only for his
guidance during the course of the project, but also for allowing me the time to
do the work when the departmental lecturing load has been so high. I also
thank him for his patience while waiting for me to complete the thesis which

has been awaiting final proof reading for far too long.

Thanks also go to my colleagues Dave Levy and Nils Otte who suffered my
ministrations to their computer systems while I was debugging the RMUX
interface software. Thanks also for their show of faith in using so many of the

final units.

Special thanks must also go to my wife Eleanor for her encouragement,
criticism and support and also for her great assistance in the typing of the
document.

I would also like to thank Philip Facoline for producing many of the final
drawings on his CAD system, Sheila Wright for doing much of the typing, and
Tandy Wright for getting much of the final document through the printer.

The document was printed on the KIDRON type setting system in the
Department of Electronic Engineering after originally being captured on the
HP1000 for the TYPEC text and document processor. The drawings were
produced on both a GERBER IDS80 system and a CEADS CAD system and.
were all plotted on an HP7586 plotter. |

il

Abstract

The document describes the development of a micro-processor based terminal
multiplexer to connect four terminals to a standard Hewlett Packard series
1000 mini-computer. The project was required to fulfill the dual roll of both
increasing the number of terminals that the HP1000 could support and of
reducing the peripheral load on the host CPU.

The final product occupied a standard 200mm square HP size interface card and
used an 8085 micro-processor and several 8085 family peripheral chips to

provide four full duplex serial channels and a high speed data link with the
host.

A multi-tasking executive was written to control the multiplexer software
which was finally implemented as 15 independent tasks occupying 8 kilo-bytes
of eprom. The software was written to perform all terminal interaction and

editing in order to reduce the host CPU involvement to a single interrupt per

record.

The resultant interface proved capable of handling an aggregate throughput in
excess of 4000 characters per second which was sufficient to cope with all four
terminals running at 9600 bits per second, even when all four were transferring
in burst mode. The interface also proved to be between five and eighteen times
less demanding on the host than the two standard Hewlett Packard interfaces
then available. When compared to the low cost HP12531 interface, the

multiplexer increased the 9600b/s terminal handling capability of the host
from 3 terminals to 52.

CHAPTER

Contents

1. Introduction

11
1.2

Introduction |
A Brief look at Peripheral Control

2. An I/O Expander for Terminal Interfaces

21
2.2
2.3
24
2.5
2.6

Introduction

The HP I/O System

The HP12531 Teletype Interface
The Expander Mainframe

The Terminal Interface
Conclusion

3. An Intelligent Drum Printer Controller

31
3.2
3.3

3.4

3.5
3.6

Introduction

Printing on a Drum Printer
The Controller Hardware

The Timing Logic Card

The Processor Module

The Printer Controller Software
The Data Producer

The Data Consumer

Interrupt Tasks

The Message Transfer Protocol
Conclusion

4, The RMUX Terminal Multiplexer— Design Aims

41
4.2
43
4.4
4.5

4.6
4.7

Introduction

A survey of Standard Interface Features
Objectives for an Ideal Interface

The Host—Slave Interface Philosophy
The Slave Micro-processor Requirements
Peripheral Choices

Memory Choice

Memory Address Allocation

Final Hardware Design

Read and Write Signal Decoding

iv

12
12
13
14
14
15
16
16
16
17
18
18

20
20
20
22
24
27
27
27
28
28
29

The Multi-plexer Interface Operating Software

5.1
5.2
5.3
5.4
5.5

5.6
5.7
58

5.9
510
511

512
5.13
5.14

5.15

Introduction

The A8085 Cross Assembler

The Requirements of a Multi-Tasking Executive
Semaphores for Task Control

The MTX Multi Tasking Executive Kernal
The Task Control Block

The Exchange

The Use of Exchanges

Event Calls

Resource Calls

Memory Management Facilities

Task Control Facilities

MTX—A Summary

Interrupt Handling

Coding the System

Time List Handling

Application Task Structure

Host Interaction Tasks

TO__HOST

FROM__HOST

STC__INT

Port Handler Tasks — An Overall View
TX__TASK, the Port Transmit Handler
RX__TASK, the Port Receive Handler
Receive Interrupt Handler

BREAK_ TASK, the Unsolicited Interrupt Handler

The Host Software Driver Routine — DVXO05

6.1
6.2
6.3
6.4
6.5

Introduction to DVX05

The normal Interrupt Response Procedure
Operating System feature changes — The Philosophy
Mapping System changes — $DVMS5

The layout of the Main Driver — DVX05
The Initiation Section

Configuration of I/O Instructions

Cold Start Initialization

Power Fail Handling

Minimizing Map Changes

Request Processing

The Completion Section

Timeout Processing

33
33
33
35
36
37
37
38
39
39
39
40
42
42
42
43
43
44
45
45
46
49
50
52
54
55
57

59
59
60
61
63
65
66
67
67
67
67
68
69
69

Normal Interrupt Processing
6.6 Timing considerations
Cold Start Delay
Driver Exit Delay
CLC to driver-output delay
7. Performance Measurements and Results
71 Introduction
72 Interface Timing Measurements

73 Host Throughput Measurements

8. Conclusion

APPENDICES

Appendix A. A terminai I/O Extender for the HP1000

Appendix B. Honeywell Line Printer Controller — Hardware Description
Appendix C. Honeywell Line Printer Controller — Software Description
Appendix D. Honeywell Line Printer Controller — Host Software
Appendix E. RMUX Hardware Description

Appendix F. MTX Software Description and User Manual

Appendix G. RMUX System Software

Appendix H. The RTE IVB Input/Output System

Appendix I. The host driver to control the RMUX Interface
Appendix J. The 8085 Assembler-A8085

Appendix K. The RMUX Users Manual

vi

71
71
71
72
72
74
74
74
76

80

82

82

105

108

126

143

162

168

183

196

vii

FIGURES

21 Standard HP I/O interface control logic 6
2.2 Master control card schematic 9
41 Host—Slave Interaction Policy 25
4.2 The Ideal Slave System Interface 26
4.3 Recommended 8085—8237 Connection Scheme 30
44 74LS257 Quad Multiplexer construction 31
45 Read and Write Signal Routing 31
5.1 TO__HOST Task Layout 46
5.2 FROM__HOST Task Layout 47
5.3 STC__INT—The Interrupt Handler 49
54 Partial Listing of &RXDRV 51
5.5 An Overview of TX__TASK, the Output Handler 53
5.6 Long Mode Block Transfer Sequence 56
61 The Driver Mapping Table (DMT) format. 63
6.2 Mapping System Changes for Read Requests 64
6.3 The Initiation section of DVX05 66
6.4 The Completion section of DVX05 70
Al Timing of flag, Control and Interupt Logic 82
A2 Standard HP I/O Interface Logic 83
A3 Priority and Interrupt Logic in the I/O 84
A4 Master Control Board Logic 86
A4 Terminal Interface Logic 88
A.6 Terminal Interface board Layout 91
Bl Timing Diagram for the Timing Generator 93
B.2 Timing Generator Module Schematic 94
B.3 Printer Controller Module Schematic 97
OA | Printer control programme. Module Layout 99
C2 Print Request Record Format 102
D1 The Hexadecimal to ASCII coding scheme 106
El RMUX Hardware Block Diagram 109
E2 RMUX Address Map 113
E3 Backplane Data Input Timing 116
E4 RMUX Multiplexer Schematic 123
E.5 Component Side Track Layout 124
E.6 Solder Side Track Layout 125
F1 Exchange Format 127
F2 Format of an Exchange Table Entry 129
F3 Task Control Block Format(TCB) 130
F4 Message Queue Header Table 131

F5 Memory Buffer Format 132

E6
Gl
G.2
G.3
G4
G.5
G.6
G.7
G.S8
G.9
H1
I1
1.2
L3
14
L5
L6
L7
L8
1.9
K1
K.2
K3
K4
K.5
K.6
K.7

Sample Master Control File

RMUX Multiplexer Message Flow Diagram
Flow Chart for "STC INT Interrupt Routine
Flow Chart for the "FROM HOST Routine
Flow Chart for the "TO HOST Routine
Flow Chart for Terminal Task TX TASK
Flow Chart for TX CONT Interrupt Handler
Message Buffer Format

Receive Interupt Handler Flow Chart

Flow Chart for BREAK Task and Interupt
Equipment Table Entry Format
Read/Write request message format
Control request message format

Message packet input flow

Message packet output flow

EQT entry usage by DVX05

Status bits in EQT5

Driver return error codes (B5-3 of EQT5)
Read/Write Conword bit definition

Control request conword bit definition
Control 30B call configuration parameter
XON/XOFF style handshake protocol

HP style handshake protocol

QUME style handshake protocol

Special character processing for normal
Control calls for the RMUX interface

Read and write calls for the RMUX interface

viil

142
144
146
148
149
151
152
153
156
158
163
170
171
177
178
179
179
180
180
180
198
199
199
200
210
202
202

TABLES

71

72

Al
A2
B1
Cl1
El
E.2
E3
E.4
Gl
G.2
G.3
G4
K1
K.2

Interface Timing Results

Host Efficiency with different Interfaces

48 pin Terminal Connector Assignments

116 pin Interface backplane signals

Printer Signal Definitions

Print Record Control Characters

Serial Port Address and Pin Assignments

48 pin Peripheral Connector Assignments

86 way Backplane Connector Assignments
Parts list for RMUX Multiplexer

Conword Option bits for Read and Write Calls
Control Request Options

Configure Request Format (control 30B call)
Special Character Processing for Read Request
Signal pinouts on terminal interface

DTE connections according to RS232C

ix

75
78
89
90
98
101
115
120
121
122
159
160
160
161
204
206

ACK
ADSTB
AEN
ASCII
ASMI
AUTOR
BACI

BS

CCZ

CHS

CIC

CLC

CLF
CMOS
CNTL
CNTRL
CNWRD
CONWORD
CONWRD
CR

CRS
CTCBAD
CTCBID
CTS
DCPC
DEL
DMA
DMAC

DRQ
DSR
DTE

DTR
EIA

ENF
ENQ

EPROM

EQT
ESC
ETX

Glossary

ASCII character for acknowledge. Value 05H. (CNTRL F).

Address strobe. A signal strobe generated by the INTEL 8237 DMA controller.
Address enable. A signal strobe generated by the INTEL 8085 microprocessor.
American Standard Code for Information Interchange.

The original 8085 cross assembler that ran on the HP1000 computer.

The power fail — auto re-start programme used by RTE-IVB.

Buffered Asynchronous Communications Interface for HP1000 series mini-
computers.

ASCII character for back space. Value 08H. (CNTRL H).

Character Count Zero. A logic signal used in the Honeywell line printer controller.
Character Strobe. A logic signal used in the Honeywell line printer controller. «
Central Interrupt Control. The interrupt control programme used by RTE-IVB.
Clear Control. A logic signal and an assembler instruction used in the HP1000.
Clear Flag. A logic signal and an assembler instruction used in the HP1000.
Complementary Metal Oxide Semi-conductor.

Abbreviation for control. Applied to the control key of an ASCII keyboard

see CNTL.

Abbreviation for the Control Word in an EXEC call as used in RTE-IVB.

see CNWRD. (alternate abbreviation)

see CNWRD. (alternate abbreviation)

ASCII character for Carriage Return. Value ODH. (CNTL M)

Controlled Reset. A logic signal used in the HP1000 I/O device interfaces.

Current Task Control Block Address. A variable used in the MTX executive.
Current Tack Control Block Identifier. A variable used in the MTX executive.
Clear To Send. A logic signal defined for the RS-232-C serial interface.

Dual Channel Port Controller. The DMA logic card in the HP1000,

The ASCII character for Delete. Value 7FH.

Direct Memory Access.

Direct Memory Access Controller. The mnemonic used by INTEL for their 8237
controller 1C.

DMA Request. A logic signal.

Data Set Ready. A logic signal defined for the RS-232—C serial interface.

Data Terminal Equipment. An RS-232-C term used to refer to the terminal devices
in a terminal to modem link.

Data Terminal Ready. A logic signal defined for the RS-232~C serial interface.
Electronic Industries Association.

Enable Flag. A logic timing signal (T2) used in the HP1000 I/O system.

The ASCII character for Enquire. Value 05H. (CNTL E)

End Of Block. A logic signal generated by the DMAC.

The ASCII character for End Of Tape. Value 04H. (CNTL D).

Electrically Programmable Read Only Memory. A term applied to a popular class
of memory IC’s.

Equipment Table. ‘A major table in the RTE-IVB system.

The ASCII character for Escape. Value 1BH. (CNTL |).

The ASCII character for End Of Text. Value 03H. (CNTL C).

EXCHG
EXEC
FF
FIFO
FLBF
FLG
FMGR

GLITCHES

GND
HASHING

HBEN
HED
HOLDA
HOLDR
HP
IAK
IDS80

IEN
IFNZ
IFX
1FZ
INTA
INTR
10G
101
100
IOR
Iow
IRQ
JMP
JSB
KBAUD

KBIT
KBYTE
KHZ
LBEN
LDA

LF
LIA
LSB
LSI

xi

Exchange. A major data structure in the MTX executive.

The subroutine call used to access all RTE-IVB system features.

The ASCII character for Form Feed. Value 0CH. (CNTL L).

First In ~ First Out memory system.

Flag Buffer Flip Flop. A logic flip fiop on the HP1000 interface subsystem.

Flag Flip Flop. A logic flip flop on the HP1000 Interface subsystem.

File Manager. The name given to the RTE-IVB command line interpreter and file
management subsystem.

A slang term commonly used to refer to brief unwanted voltage spikes on logic
signals.

A term applied to the logic signal ground or zero volts.

A technique for storing symbols in a table by computing the storage location from
the symbol itself.

High Byte Enable. A logic signal used on the RMUX.

The 8085 cross assembler directive code to specify a heading,.

Hold Acknowledge. A logic signal used by the 8085 processor.

Hold Request. A logic signal used by the 8085 processor.

A registered abbreviation for Hewlett Packard.

Interrupt Acknowledge. A logic signal used in the HP1000 I/O system.

The model name for the main CAD system produced by GERBER SYSTEMS
TECHNOLOGY prior to 1984.

Interrupt Enable. A logic signal used in the HP1000 I/O system.

If Not Zero. An assembler directive used in the A8085 cross assembler.

If "X". An assembler directive used in the HP1000 RTE-IVB assembler.

If Zero. An assembler directive used in the A8085 cross assembler.

Interrupt Acknowledge. A logic signal used by the 8085 processor.

Interrupt Request. A logic signal used by the 8085 processor.

1/0 group. A logic signal used in the HP1000 I/O system.

1/0 Input. A logic signal used in the HP1000 I/O system.

1/0 Output. A logic signal used in the HP1000 I/O system.

I/O Read. A logic signal generated by the 8085 processor.

I/O Write. A logic signal generated by the 8085 processor.

Interrupt Request. A logic signal used in the HP1000 I/O system.

Jump. An assembler instruction for the 8085.

Jump Subroutine. An assembler instruction for the 8085.

Abbreviation for Kilo-Baud, the signal frequency of a data line. Commonly used
(incorrectly) in place of bits per second.

Kilo-bit. 1024 bits of data.

Kilo-byte, 1024 bytes (8 bits) of data.

Kilo-hertz. 1000 Hertz or cycles per second. A unit of frequency.

Low Byte Enable. A logic signal used in the RMUX.

An assembler mnemonic for load accumulator used in both 8085 and HP1000
assemblers,

The ASCII character for Line Feed. Value 0AH. (CNTL J)

Load into A. An assembler instruction for the HP1000,

An abbreviation for the Least significant bit/byte.

Large Scale Integration.

LU

LXI

MEMR
MEMW
MERG
MHF
MHZ
MIA
MPU
MSB
MSI
MSS
MTX
MVI
NAMR
NAND
NS
NSEC
NSEG
NYBBLES
OE
OOF
OPCODE
ORG
OTA
PAA
PAC
PCB
PES
PIC
PLP

POPIO
PPLS

PRH
PRL
PRMPT
PSW

PVH

PVL
RAM

xii

Logical Unit. A number used in the RTE-IVB system to describe any addressable
device.

An assembler instruction for the 8085 processor to load a double register with a
constant.

Memory Read. A logic signal used by the 8237 DMA controller.

Memory Write. A logic signal used by the 8237 DMA controller.

An assembler directive defined for the A8085 cross assembler to merge files.

Manual Head of Form. A logic signal used by the Honeywell line printer.
Mega-Hertz. 1 000 000 hertz or cycles per second. A unit of frequency.

Merge into A. An assembler instruction for the HP1000.

Micro-processor Unit.

An abbreviation for the Most significant bit/byte.

Medium Scale Integration.

Manual single space. A logic signal used in the Honeywell line printer.

The name given to the small multi-tasking executive written for the RMUX,

Move Immediate. An assembler instruction for the 8085.

The term used to fully describe a file in RTE-IVB which includes several sub-fields.
Negative AND. A standard boolean logic gate.

Nano-seconds. A unit of time.

see NS.

New segment. An assembler directive defined for the A8085 assembler.

A term used to describe 4 bits of data.

Output Enable. A logic signal used by many logic devices.

Out Of Forms. A logic signal used in the Honeywell line printer.

A term used for the operation code in any assembler instruction.

Origin. An assembler directive used to set the value of the programme counter.
Output A. An assembler instruction used in the HP1000.

Print Address Advance. A logic signal used in the Honeywell line printer.

Print and Compare. A logic signal used in the Honeywell line printer.

Printed Circuit Board.

Printer Emergency Stop. A logic signal used in the Honeywell line printer.
Programmable Interrupt Controller. The Intel 8259 IC.

Paper Line Pulse. A logic signal used in the Honeywell line printer to signal the
movement of the paper.

Power On Preset for I/O. A logic signal used in the HP1000 I/O section.

Printed circuit Pattern Laydut System. A Sperry Univac programme for the layout
of pebs.

Priority High. A daisy chained logic signal used in the HP1000 I/O section.
Priority Low. see PRH.

The unsolicited input handler in the RTE-IVB system.

Programme status word. The flags and accumulator can be combined on the 8085
into a single 16 bit register for stack pushes and pops.

Paper Velocity High. A logic signal used in the Honeywell line printer to drive the
paper feed moter at high speed.

Paper Velocity Low. (see PVH).

Random Access Memory. A term usually applied to read and write memory.

RESNET

RET
RMX
ROM
RSEG

RTE

RTIOC

RTS

RXD

RXRDY

SBD

SC
SCL

SCM

SEL

SFC
SFS
SHLD
SID
SKF
SKP
SPC
SRQ
SSI
STA
STC
STF
SVPC

SYN

TCP
TLOG

TTL

xiii

Resistor Network. A network of thick film resistors which are usually very closely
matched thermally.

Return. An assembler instruction to return from a subroutine call.

The name of the Intel multi-tasking executive for use on 8085 processors.

Read Only Memory.

Replace Segment. A special assembler directive defined in the A8085 cross assembler.
(see also NSEG).

Real Time Executive. The name of the Hewlett Packard real time operating system
for HP1000 series computers.

Real Time I/O Controller. The name of the RTE processor used to handle all I/O
requests in RTE.

Request To Send. A logic signal defined in the RS-232-C standard for serial
communication. ‘

Receive Data. A negative true logic signal defined in the RS-232-C standard for
serial communication.

Receiver Ready. A logic signal generated by the Intel 8251 serial communication
chips. .

Sentinal Bit Detect. A logic signal used in the Honeywell line printer controller to
indicate the end of a print buffer.

Select Code. A term applied to the I/O address in the HP1000 system.

Select Code Low. A logic signal used in the HP1000 to select devices that match the
low digit of the octal I/O address.

Select Code Most. A logic signal used in the HP0100 to select devices that match the
high digit of the octal I/O address.

Select. A logic signal generated in the RMUX when both the SCL and SCM
addresses match the interface address.

Skip if Flag Clear. A logic signal and assembler instruction of the HP1000.

Skip if Flag Set. (opposite effect to SFC).

Store HL direct. An assembled instruction for the 8085.

Serial In Data. The single bit input of the 8085 processor.

Skip on Flag. A logic signal used in the HP1000 I/O system.

Skip. An assembler directive to skip a page on the list device.

Space. An assembler directive to skip lines on the list device.

Service Request. A logic signal used in the HP1000 I/O system.

Small Scale Integration.

Store Accumulator. An assembler instruction for both the 8085 and the HP1000.

Set Control. A logic signal and an assembler instruction in the HP1000.

Set Flag. A logic signal and an assembler instruction in th HP1000.

Save Programme Counter. An assembler directive defined in the A8085 assembler
for segment manipulation.

The ASCII character for Sync. Value 16H. (CNTL V).

Task Control Block. A 72 byte data structure used in the MTX executive.

True Compare. A logic signal used in the Honeywell line printer. '

Transmission Log. A count of the characters sent. Used in the RTE-IVB 1/0
system.

Transistor transistor logic.

TTY
TXD
UART
UNL
USA
USART
WR
WVA
XOFF

XON

Xiv

Teletype. An abbreviation for a simple terminal as typified by the products of the
Teletype Corporation of America.

Transmit Data. A negative true logic signal defined in the RS-232-C standard for
serial communication.

Universal Asynchronous Receiver Transmitter.

Unlist. An assembler directive used to control the listing,.

User save. An assembler instruction used in the HP1000 to save the user mapping
registers,

Universal Asynchronous/Synchronous Receiver Transmitter. -

Write. A logic signalused in the RMUX.

The location prefix used in the Honeywell line printer to specify the printer logic
frame.

Transmit off. The ASCII DC3 signal (CNTL S) is usually used for this in band flow
control method. '

Transmit on. The ASCII DC1 signal (CNTL Q) is usually used for this in band flow
control method. (see XOFF).

Chapter 1

1.1 Introduction

Three separate developments all aimed at improving or extending _the
Input/Output facilities offered on the Hewlett Packard HP1000 series
minicomputers are described.

The first project, to extend the number of terminal ports, was developed using
discrete logic for all functions. It consisted of a specialized backplane extender to
hold up to sixteen interface cards. These interfaces were designed to emulate
exactly the standard HP12531 teletype card, but made use of modern MSI and LSI
devices to reduce component count and centralize control.

The second project, used as a test bed project for incorporating a microprocessor
peripheral controller into a larger system, was the development of a controller for a
300 line per minute line printer. This project illustrated the potential of the
microprocessor, as the resulting controller handled nearly every aspect of the
printer control, allowing much of the original discrete logic in the printer itself to
be removed.

The third and major project was to produce an intelligent, single board terminal
multiplexer to connect to four independent asynchronous terminals. A
microprocessor and several sophisticated microprocessor peripheral controller chips
were used in the design, resulting in a terminal interface that was not only four
times as dense as the standard teletype interface but also some thirty times more

frugal in its demands on the host machine’s time, and offered a far wider range of
features.

Chapters five and six describe the software developed for this multiplexer, which
consisted of an Intel 8085 cross assembler to run on the HP1000 computer, a
semaphore driven multitasking operating system for the 8085, the fifteen
communication tasks used to control all the interface functions, and finally, the
special two part driver needed to enable the Hewlett Packard RTE-4B operating
system to accept four fully independent terminal ports on one interface card.

The report finally describes some of the tests that were carried out on the interface
performance. The results obtained show that this interface offers a significant
reduction in host machine overhead, even when compared to Hewlett Packard's
more sophisticated and expensive interfaces.

As with most development projects, hindsight can produce many new ideas and
better ways of implementing something and this project was no exception. Thus,
the concluding chapter describes some of the possible options that could be
incorporated in the interface, as well as some improvements that could be made in
the initial design, now that more sophisticated devices are available.

The first model of this interface has been installed for some five years, and at time
of writing, there were more than twenty production versions in operation,
indicating that the philosophy of an intelligent multi-terminal interface has
produced an effective product.

The remainder of this chapter gives a brief outline of the history of computers
with specific reference to the use of intelligent controllers to reduce CPU overhead
in peripheral transactions. It is on the basis of this history that this particular
project evolved.

1.2 A Brief look at Peripheral Control in Computers

Computers are generally accepted as belonging to one of three categories, namely,
mainframe, mini—, and micro-computers. This classification is based roughly on
the size of the machine, but is rather vague with many areas of overlap.

Mainframes evolved from the original computers and still tend to occupy several
large cabinets of electronics, consume large amounts of power, and require special
computer rooms with carefully controlled environments. Their operating systems
are usually suited to batch mode processing where the CPU can be kept busy, while
their I/O system is suited to moving large quantities of data rapidly between a
very small range of peripherals such as discs, magnetic tapes, and line printers.

As computerised control of machinery became a 'reality, the high cost of
mainframe computers when coupled with their high speed and their limited
variety of I/O systems made them unsuitable for most control applications. As a
result, the minicomputer was born, initially to act as a slave I/O controller for a
mainframe, and ultimately as a computer in its own right.

These minicomputers were characterised by small size (typically only one small
cabinet), low cost and very versatile I/O systems. They were designed to run real
time control programmes using their versatile interrupt systems to capture data
which was then passed onto the host mainframe for processing.

In time, these real time programmes developed into real time operating systems,
and the minicomputer developed its own market for computing, complementing
rather than competing with the mainframe market.

While minicomputers grew from dedicated controllers into fully fledged computer
systems, following the same growth path that mainframes had taken, the
integrated circuit revolution gave birth to the microprocessor, a small, limited
function computer on a single chip of silicon. Initially developed without a goal, the
microprocessor was soon recognised to be an ideal substitute for a minicomputer in
many small control applications.

The situation had now evolved where mainframes were too large for control
supervision activities, being more suited to running accounts, orders and all other
administrative functions of an organization, while the minicomputer had grown
sufficiently to be able to control large sections of a plant. The microprocessor then
became the ideal candidate for small control problems, and in this field the
microprocessor has flourished.

It is interesting to note that while mainframe manufacturers were quick to
incorporate minicomputers into their mainframes as dedicated I/O controllers, the
minicomputer manufacturers, traditionally loathe to accept any ideas from their
big brothers, were slow to incorporate microprocessors into their machines. In fact
the microprocessor manufacturers themselves were far quicker to apply the
multiprocessing concept and have produced some very sophisticated peripheral
controller chips each incorporating its own microprocessor. The availability of
these easy to use, sophisticated support chips has made the microprocessor into an
extremely powerful device; now, a scant ten years after its invention, the
microprocessor is being used in every form of computing imaginable. It is no longer
merely looked upon as a useful I/O controller.

While it was stated that minicomputer manufacturers themselves were slow to
adopt the microprocessor as a peripheral controller, many independent
manufacturers of minicomputer peripheral controllers have incorporated

microprocessors into their products, often with dramatic improvements in cost,
speed, size, and ease of use.

The development of the four-terminal intelligent multiplexer was undertaken in
order to produce a product which was not available from Hewlett Packard and
which would offer improved features due to its programmability.

Chapter 2

An I/0O Expander for Terminal Interfaces
2.1 Introduction

The Hewlett Packard HP1000 series minicomputer used by the Department of
Electronic Engineering of the University of Natal (Durban), has a maximum I/O
addressing capability of 56 device interfaces, of which only 14 may be installed in
the computer cabinet itself—any further interfaces requiring an extender cabinet.
With the advent of the multi-user operating systems of RTE-3 and RTE—-4B, the
need for terminals quickly exhausted the available slots in the mainframe. The
solutions were either to buy an extender and the required terminal interfaces from
Hewlett Packard, or to design a suitable extender and build it. To save funds, and
also to provide a medium for an in depth study of the HP1000 I/O system, the
latter approach was adopted and a 16 card terminal extender system was
developed.

The interface cards were designed to emulate the standard HP12531 teletype
interface from both the computer’s and the terminal’s point of view. Although
this saved writing driver software, the resultant card which used an LSI UART
(Large Scale Integration Universal Asynchronous Receiver/Transmitter) required
that several UART features had to be ignored or even overridden to produce the
desired compatibility. In retrospect, this was not the wisest solution to the I/O
extension as the extender became obsolete after only four years due partly to its
poor performance forced by the emulation.

The remainder of this chapter describes briefly the development of this extender

with the principal emphasis on those aspects which influenced the final
multiplexer project.

2.2 The HP I/O System

This section describes only those aspects of the HP I/O system that are pertinent
to the peripheral controller itself: in this case the serial I/O device. For a more

detailed description of the I/O system, see Appendices A and H and the HP
reference manuallll

Any HP1000 series interface can be divided into two major sections: the section
which contains the specific I/O controller, and the section needed to implement the
CPU’s interrupt and priority structure which is distributed over all interface cards.
This latter section (shown in Fig.2.1) uses some 30 logic gates and typically requires
8 or 9 SSI TTL packages to implement. From this interrupt logic block, an STC
strobe, an output strobe (IOO) and an input strobe (IOI) emanate, while a single
interrupt input (STF) exists. These are the only signals available for controlling the
peripheral section which also has access to a 16 bit bi-directional data bus. The
function of the STC strobe is to enable the CPU to command the peripheral section
to perform some action without requiring any data transfer.

The limitation of only having one interrupt per device, and no extra signal bits for
interrupt source identification, results in the I/O system limiting all I/O to half
duplex communication, irrespective of the peripheral section requirements.

PRH

> PR
SIR (T5) >
TEN

ENF_(T2) -
POP10
STF (T13) D § > :D— ¥ — 1R0;
- 1/
FLBF] FLG IRG
CLF (T4) FF FF || FF
D [FLG
= —)
- SKE.
e >
SSEC FLﬁ
STC ——]D CNTL
eNTU L(— AK
cLe —]D—\— i 1
CRS —__D——
I0T __ll:\J SRO>
1SCM
LSCL] SEL
Toc 1 >‘J
DEVICE ouT IN
/LFU‘G(STF’ USTC [RESET STROBE WSTROBE

Figure 2.1 Standard HP I/O interface control logic

2.3 The HP12531 Teletype Interface

This interface, driven by the driver DVROO, was, at the time of the extender
development, the most common serial interface for HP1000 series minicomputers,
hence the decision to design the new terminal extender to be compatible. The

most important features of this interface which influenced the design are covered
briefly below, but for full details see the HP12531 interface specification.?l

The serial I/O side of the HP12531 is implemented using a single 11-bit shift
register for both input and output, which enforces the half duplex nature of the
interface and requires some means of programming the direction of transfer. This
is done by using an IN/OUT flip flop programmed from the upper (otherwise
unused) bits of the data word. Thus, to program the interface, a data word is
output with bit 15 set to act as a program enable bit. To stop the lower 8 bits of this
word being transmitted however, the logic was designed so that the output
instruction merely latches the data into the output shift register and an STC
instruction is required to initiate the actual transmission.

In order to be able to detect any input characters arriving during output, the input
to the shift register is left connected to the data line and the shift register contents
are examined after each character transmission. Should any input character have
arrived during this time, then the shift register would not contain all ones, as it
would have had it just clocked in an idle line. Although this feature does not enable
the input character to be determined, it is used by DVRO0O to determine when 2
user wishes to interrupt an output stream, an otherwise difficult problem in a half
duplex system such as this.

Another problem which can arise from such a simple system with no data buffering
" is that of an overrun error which occurs when a new character arrives at the serial
input of the interface before the CPU has read the previous character. This
situation is dealt with in the HP12531 plus DVROO setup by gating the input to the
shift register once a character has arrived, and leaving it closed until the character
has been read. This stops any further input from corrupting the character already
in the shift register. In order to detect the arrival of another character, a flip flop is
set whenever the input line changes to a zero (e.g. as for a start bit) and the state of
the flip flop is read back as bit 15 of the returned data, thus acting as an overrun
indicator. Since there is no buffering on this card, the CPU only has one half of a

stop bit time in which to respond before the next character may start, a limitation
which causes frequent overrun errors.

Other features of the card were:

On card crystal controlled baud rate clock.

Vo)
™
| —

RS232 and 20mA current loop inputs and outputs.

G
S’

Capability to turn on either printer or punch on a teletype.

o
—rt

. Ability to run from an external clock of 8 times the data rate.
No facilities for MODEM control.

—~ o~~~
o A

2.4 The Expander Mainframe
In developing the 16 slot terminal expander, it was decided to:

(a) Make as much use of MSI and LSI as possible.

(b) Centralize as many functions as possible rather than replicating them on
each card.
(c) Customize the extender mainframe specifically for terminal interfaces.

(d) Make the unit daisy chainable so several extenders could be added if
required.

The extender was designed to connect to the computer via the HP Multiplexer I/O
~ Accessory kitl3, which brings out all the backplane signals, buffered, onto a 100
way edge connector. A 50 pair cable connected this card to the extender, on which
was mounted another ‘I’—connected 100-way edge connector for the daisy
chaining of extenders. The signals were also connected to the extender control
card, which buffered all the signals onto the extender backplane (see Appendix A).

In an effort to reduce component count on the interface cards themselves, the
interrupt request logic and priority encoding logic was moved to a master control
card as shown in Fig.2.2. This achieved a saving of 2 to 3 chips on each interface
card at the cost of about 5 extra chips on the master control card. More significant
was the time saving that was achieved in the priority logic by using a priority
encoder rather than a discrete gate on each interface. This reduced priority
settling time from 16 gate delays to 3 gate delays. To save having individual baud
rate generators on each interface card, a central baud rate generator was included
on the master control card, common baud rate clocks being produced and wired
down the backplane. Finally address selector links were added to the master card
so that it could be set to answer to any block of sixteen consecutive addresses.

INTR>

P - PRH
PR IN
16 BIT | _ g
PRIORITY - HD——IAL>
ENCGDER > 1A2
; ‘Ecn D PRON : '
CNTLn IA3
i . 4 IA4
ADDR D— >
SEL-
s o [Fs O
ABCD PRL
>
; IRQ FF
L _/
<

N
16 LINE
MUX
FLAG BUFFER n IROn EN
-
NN

ENF

[E\ SIR
ABC

> TEN

RQ
EN—(—G‘I— IAK

16 LINE
S1AKn < [AKn 5 DE- MUX

INTERFACE LOGIC

MAINFRAME CENTRAL LOGIC

Figure 2.2 Master control card schematic.

The extender frame itself consisted of a standard 4 unit high RETMA rackmount
cabinet with the power supply in the front section and the interface cards plugging
into the rear section from the top. This concept of using top insert cards was only
adopted to cope with the large connector hoods used on standard HP12531
interfaces, an otherwise poor idea owing the problem of plugging cards in when the
unit is installed in a full rack. Either the unit needed to be slide mounted and have
plenty of cable slack to allow the unit to slide out, or there had to be plenty of
room above the extender, so wasting rack space.

10

2.5 The Terminal Interface

The interface card itself was built using a 40 pin LSI UART (Universal
Asynchronous Receiver Transmitter) as the main functional unit. This UART
performs every peripheral function required of 2 non modem compatible RS232
serial interface, and had the interface not been designed to emulate an HP1253],
this UART alone would probably have been all that was necessary.

To allow for the output command to latch the data and an STC instruction to
initiate transmission, an extra 8 bit latch had to be included between the data bus
and the UART, while to supply an “all ones” return character whenever there was
no valid character to read, required the addition of an extra eight bit tri-state
buffer. This buffer was only enabled for the duration of the first read command
subsequent to each received character. Thus, should the host execute a read
command with no data available, the floating tri-state data bus would return the
“all ones” result required by DVROO. k

Due to the fact that the UART has completely separate transmit and receive
sections, both double buffered, the overrun error problem which was so obvious
with the HP12531 was much less so with the UART since the CPU has an entire
character time to respond to an interrupt and read the character before the next
input character can interfere. However to maintain exact compatibility with the
HP12531, a BUSY IN flip flop was added to the interface and connected to return
bit 15. This flip flop, as in the HP12531, gets cleared whenever a character is
correctly received and set again whenever the input data line drops to a zero, thus
allowing DVROO to determine whether a character was arriving during a read of
the previous character. Since the UART could be programmed for parity, stop bits
and data word length (all features unavailable on the HP12531) switches were
added to the interface to allow these options to be selected. This, while not
compatible, did not interfere with DVROO operation and could still be set to be
compatible should the need arise.

The baud rate selection was implemented using a 12-way set of DIP rocker
switches, allowing selection of any one of the 10 preset baud rate clocks from the
backplane, or an 8 times or 16 times external clock. Since the UART requires a 16
times clock, and the HP12531 an 8 times clock, a frequency doubler had to be
included on the interface. Fortunately, the UART was found to be almost totally
insensitive to the mark-space ratio of the clock, allowing a simple exclusive-nor,
edge sensitive pulse generator to be used for the doubling. Another non
compatible feature which could be added since it did not affect DVROO operation

11

was to return the three UART error signals, Framing Error, Overrun Error and
Parity Error in bits 14-12. This was included to allow for possible use by some
future driver, should one ever be written.

2.6 Conclusion

This project succeeded in its aims in that it supplied fourteen extra terminal
interfaces which were used for four years, at about eight percent of the cost of a
comparable system from Hewlett Packard, as well as providing an incentive for a
thorough investigation into the HP1000’s I/O system. Perhaps more than
anything else, the half duplex nature of this entire system was highlighted by
installing a full duplex device and then having to add extra logic to degrade the
functions of this cheap and effective LSI UART in order to achieve compatibility.

In packaging the extender, several small but nevertheless important lessons were
learnt:

a) Using a manually taped PCB master resulted in excessive tolerance on
edge connector fingers such that the circuit boards could be inserted so as
to cause shorts or missed connections.

b) The backplane connectors were of the “cut to length” variety in which the
end stops are inserted after cutting. These connectors exhibit excessive
tolerance such that when the cabinet was twisted in any way, the
resultant movement of the cards invariably resulted in connector
shorting.

c) Using a layout which required a top insertion board was not a good idea at
all, and so boards should be made for front or rear insertion.

d) No edge connectors were gold plated and when the power was switched off
each night, the thermal cycling and its attendant expansion and
contraction cycles caused connectors to “shuffle’ giving many bad
connection problems. The solution was to gold plate the connector fingers
and to leave the power applied continuously.

This expander did produce a useful addition to the computer’s complement of
terminals, and remained in service for some four years until it was made obsolete
by the four terminal multiplexer described later on in this report.

12

Chapter 3

An Intelligent Controller for a Drum Printer
3.1 Introduction

The investigation into DVROO and its HP12531 teletype interface, plus an isolated
effort at working on the Centronics line printer driver (DVR12), illustrated clearly
how intimately involved the CPU had to become with each of the peripherals it
used. It was certainly a long way from the ideal situation where the host should
expect the peripheral to manage all the peripheral dependent features. Now while
this attitude was understandable in the past due to the expense and difficulty in
producing “ideal” peripheral controllers, the arrival of the cheap and powerful
microprocessor should enable “ideal” peripheral controllers to be built cheaply.

To test this view and gain some experience before attempting the final project of
an intelligent four terminal multiplexer, the author designed a controller for a 300
line per minute Honeywell drum printer which had been donated, controller-less,
to the Department of Electronic Engineering. This printer contained a rack of
some 30 circuit boards, each 100mm square; it should also have had a controller of
unknown size and, after all this, the Honeywell host CPU was still required to
output the entire line of characters to be printed sixty three times, once for each
character row on the print drum. This task, which meant that the CPU had to
output a character every 6 microseconds, must have kept the original CPU fully

occupied for the entire 200 milliseconds taken to print a line, an obvious waste of
CPU time.

The final design used an 8085 microprocessor situated in the printer and
communicating with the host (HP CPU) over a serial line using a very simple
message protocol which was chosen to be almost completely device independent.
Thus, the custom driver written for the HP was short, simple and contained no
code specifically related to handling a line printer.

Since the printer controller was basically designed as a test bed for ideas to be
incorporated into the final multiplexer project, and since both the printer and the
printer controller were relatively complex, this Chapter covers these factors very
superficially and concentrates mainly on the software layout, the use of a DMA

controller and the message protocol. Appendices B, C and D cover the hardware,
software and driver in more detail.

13

3.2 Printing on a Drum Printer

The Honeywell 112 printer is a drum printer capable of printing 300 lines per
minute. To accomplish this, the printer contains a character drum rotating at 300
rpm directly in front of the paper. The drum has 63 rows of raised characters, each
row containing 132 identical characters, one in each column position. Behind the
paper, a row of 132 solenoid driven hammers is situated, while an inked ribbon
passes between the paper and the print drum. To print a line of text, as each
different row of characters comes up in front of the print hammers, the hammers
are fired only in those column positions where the particular character is desired.
Thus, the logic has to scan the line of text to be printed each time a new character
line appears under the hammers, and decide which hammers are to be fired. Since
a new line of characters appears every 3,2 ms and a print line may contain 132
characters, each character comparison would have to be performed in 24
microseconds. In practice, this time is reduced to 6-9 microseconds since much of
the 3,2 ms interval must be devoted to the actual printing process of setting up
and firing the hammers. Thus, any controller would have to execute the following
sequence for every line of text to be printed:

(a) Fetch the text line to be printed and store it in the scan buffer.

(b) Await a strobe which indicates that a new line of characters is about to
come up under the hammer.

(c) Determine which character it is that is about to come under the
hammer and be printed.

(d) Scan the scan buffer, checking for the print character and where found,
shift a ‘1’ into a 132 bit print buffer, while for every false comparison
shift a ‘0’ into the print buffer.

(e) Once the scan buffer has been completely scanned, pad the print buffer
with ‘0’s until all 132 positions are full.

() Send a strobe to initiate the hammer firing process.

() Check if all the characters in the scan buffer have been printed — if so,

go to (a) for the next line after moving the paper, if not, return to (b)
for the next print character.

This cycle occurs every 3,2 ms.

14

The controller would also have to look after all the paper feed control and page
formatting. To do this, it was required to become part of the servo loop and"
control the paper feed motor speed depending upon how many lines of paper were
to be skipped. This fortunately was a simple problem as the paper feed motor only
possessed two speeds.

3.3 The Controller Hardware

It was obviously impossible for a microprocessor to perform the print line
scanning under software, so it was decided to incorporate a hardware comparator
driven by data from a DMA controller and timing signals from a small timing
logic circuit. This left the microprocessor software to handle all the data input,
data sorting, printing setup and paper formatting.

The Timing Logic Card

The timing and comparison logic was included on a separate card from the
processor module, with signals arranged so that a simple test module could be used
to test the printer in place of the microprocessor module. The logic and timing
diagram of this card are shown in Appendix B (Figures Bl and B2).

The timing logic starts a sequence by first synchronising the character strobe
(CHS) from the print drum with its own nine microsecond clock and then issuing
the first DMA request (DRQ). This would cause the DMA controller to output the
first character of the scan buffer which is then passed through two mapping
eproms (described below) and two comparators. On the next clock pulse, the result
of this comparison (TCP) is clocked into the print shift register (in the existing
printer logic) by the printer address advance signal (PAA) while the next DMA
request is issued. This sequence continues for the entire line until the shift register
“sentinel” bit stops the process. On the next character strobe (CHS), the DMA

controller resets to the start of the scan buffer and repeats the sequence from the
start of the line again.

The dual comparators with mapping eproms were included to allow over-printing
of characters since the print drum was missing several special characters which
had to be made up (e.g. A “$” was made up from an “S” and an “I”). Thus when the
DMA logic outputs a “$” code, the mapping eproms change it to an “S” and an “I”
to feed the two comparators.

15

The Processor Module

Apart from the microprocessor itself and a DMA controller, the following major
chips were included:

(a) A serial interface UART to control communications with the host.

(b) One kilobyte of RAM to contain a circular data buffer.

(c) Four kilobytes of EPROM to contain the operating code.

(d) A combination I/O - ram chip which supplied a counter for counting

the characters as they are printed, a 5 bit output port, a 7 bit input port
and 256 bytes of RAM used to store all operating variables.

(e) A six bit output port to hold the character output by the DMA
controller.
(f) A baud rate generator and RS232 data buffers for the serial

communications line.

Although the code occupied less than 2K of eprom, a 4Kbyte 2732 chip was chosen
since it was easy to programme and allowed room for possible expansion while the
difference in cost between the 2Kbyte and 4Kbyte chips was about R2.00.

The RAM although only 1K in length was given a 4K address space so that it
could be treated as a circular buffer by the DMA controller. Thus when the DMA
controller addressed past the end of the first 1K, the beginning of the RAM would
respond again, giving the so-called circular effect.

The counter was used to count all the TCP (true compare) pulses, and when all
printable characters in the line had been printed, the counter output was used to
inform the processor. This was required since the printing process was under
control of the DMA controller and could not otherwise be monitored by the CPU.

The I/O lines of the I/O port chip were used to monitor the front panel control
signals and to drive various control signals within the printer such as the paper
feed motor amplifier.

The entire processor circuitry (see Fig.B3) including the serial I/O connector was
incorporated onto a single 100 mm square wire wrap board which was plugged into
the main card frame.

16

3.4 The Printer Controller Software

The software written to control the line printer was initially conceived as two
separate processes, the data producer being the receive input handler, and the data
consumer being the actual printer handler with the only junction between them
being the 1K circular data buffer and a few flags. To co-ordinate these two
essentially independent tasks, the producer was run continuously in a background
mode, while the consumer was run every 3,2 ms in a time base interrupt driven
mode.

The Data Producer
The main receive data handler (RECEVE) was split into two parts:

(a) The normal input processor was to accept print requests from the host via
the serial line, store them in a circular buffer, and stop the flow of data from
the host should the buffer ever become too full to handle another complete
print request. Transmission would then be held in suspension until such time
as only two print requests remained in the circular buffer. This approach was
designed to keep the line busy in large blocks and hence reduce programme
swapping in the host. The only other function of RECEVE was to convert
incoming text data from the ASCII code used by the host to the Honeywell
code used by the printer, and to count the number of printable characters in
each request record. This printable character count was used as explained in
Section 3.3 to determine the end of the printing process.

(b) A terminal debug monitor (GETCM) which could be run in place of
RECEVE allowing the contents of memory to be examined and/or altered.
A single bit switch, attached to one of the input port lines was used at power
up time to direct the processor to GETCM instead of the normal processor -
RECEVE. By using GETCM, it was possible to place data requests into
memory, alter pointers and counters and then monitor the printing process
as these requests were processed. This was used during the development
phase to aid in debugging the code, and was subsequently used whenever
some hardware failure occurred in the printer logic.

The Data Consumer (RSTS6.5)

This routine, driven from the 3,2 ms character strobe interrupt constituted the

most significant process in the controller as it had to supervise and co-ordinate the
entire printing process.

17

Upon entry, each 3,2ms, it was required to first determine what state (or phase) the
printer was in which was done by means of several flags (see Appendix C). If in
the print phase, the character counter was checked to see whether the phase was
complete, while if paper feeding was in process, then the remaining line count was
examined to determine the motor speed required or to delay the necessary settling
time after the motor had been stopped. If neither printing nor paper feed was in
operation, then the input buffer would be examined for any new requests. All new
requests were parsed to determine the desired action and then either the printing
or the paper feeding process initiated.

The printer control process was used for several other minor tasks, some of the
more interesting being:

(a) To allow for the analogue paper feed servo loop to settle, the routine
was entered 3 times after the paper feed motor had been stopped
before starting any printing. This allowed a 10ms stabilising time.

(b) Front panel controls were monitored so that should the printer be
placed “OFF LINE” then the remaining front panel controls of “LINE
FEED”, “FORM FEED” and “SINGLE ORDER BUTTON” were
enabled.

(c) The page position was monitored to maintain the perforation
skipover function (if enabled) and to stop multiple form feeds from
wasting paper.

Interrupt Tasks

Two other interrupt driven tasks were included in the system, one driven by the
paper feed motor position indicator to count lines as the paper moved and the
other to fetch the input characters from the host.

Since the host could transmit at up to 19200 bits per second, characters could
arrive every 500 microseconds but with the consumer process being interrupt
driven, and able to run for longer than 500 microseconds, the background task
(RECEVE) was incapable of polling the UART and reading all characters. Thus
the UART was made to generate an interrupt with each input character and the
interrupt handler then stored these characters into a sixteen character FIFO
which was emptied by RECEVE. This character buffering effectively overcame
the timing problem resulting from having one major task interrupt scheduled
and the other running continuously.

18

3.5 The Message Transfer Protocol

Each request from the host was sent with a fixed format starting with an ASCII
ENQ character to synchronise the message reception. Following the ENQ the
host then sent the data field length, coded into two ASCII characters, in order
that the printer controller could check available space left in the data buffer.
Should insufficient space exist for the entire print request, the DTR line of the
serial interface would be set false. This condition was to stop the host from
sending any further data until such time as space became available whereupon
the DTR line was set true again.

The next datum sent was a single control character derived directly from the
host equipment table entry (EQT) (see Appendix H), and used to indicate the
request type. Following this was the print data (if any) terminated by a Return
(CR).

3.6 Conclusion

The completion of this project produced several valuable lessons to be applied to
any future project, these being related to the message format, the usage of DMA
in micro-processors and the software system structure. ‘

The data message format chosen had the advantage of being an almost direct
transfer from original request format of length, type and data, through the host
EQT and driver, down the serial data line and into the circular buffer. Thus, the
only time that any action was taken on the data content was at the printing
stage in the controller itself. This made the driver and the message format
essentially peripheral independent which was felt to be an important aspect in
reducing host CPU load in peripheral handling.

The DMA controller as used in this project demonstrated the simplicity of
adding a complex function such as DMA to a microprocessor system, and also
showed how, with the addition of little extra logic, a DMA controller could make

feasible a project which would be completely impossible to implement in software
alone.

The major lesson in this project related to the difficulty of coping with
independent concurrent tasks without an operating system to control them.
Since only two tasks were.involved in this project, and one of them (the Data -
Consumer) was very time dependent, the solution opted for was adequate to

19

afford each task a sufficient share of the resources. The only problem resulting
from this approach was that of character input which was easily solved with the
FIFO buffer. However, the number of flags used to coordinate these two activities
was quite large for such a simple interaction and left a very vivid picture of how
complex it could become were more tasks to be included in the structure.

20

Chapter 4

The RMUX Terminal Multiplexer—Design aims
4.1 Introduction

This Chapter sets out the design aims and objectives of the RMUX intelligent four
terminal multiplexer, starting with a brief look at the features offered by standard
interfaces existing at that time. Following this, the overall schematic of an “ideal”
multiplexer is presented, containing all the features felt to be both desirable and
possible. Due primarily to space limitations, not all these features could be
included in a practical design, so the final design concept is then presented with
reasons for all the features removed or reduced.

The conclusion of this chapter then attempts to explain how these required
features influenced the hardware design and forced the selection of certain
components. The final hardware design is presented in detail in Appendix E.

4.2 A Survey of Standard Interface Features

At the time of starting the design of the RMUX interface, Hewlett Packard
produced two standard serial asynchronous terminal interfaces, the HP12531
teletype interface described in Chapter 2 and Appendix A, and the HP12966
Buffered Asynchronous Communications Interface (BACI).

The HP12531 offered the following features:

(a) Both RS232 and 20mA current loop signal levels.

(b) Only 8 bit data words without any parity option.

(c) Five link selectable baud rates plus an external 8 times clock.
(d) Half duplex transmission only.

(e) Every character caused a host CPU interrupt.

() Driven by DVR0OO which occupied only 700 words of memory.

() The driver overhead processing time for a single character interrupt of
350 microseconds resulted in a maximum character rate for DVROO of
2880 characters per second for a fully extended host CPU.

21

The HP12966 BACI was a more modern interface which in an effort to reduce CPU
loading contained a 128 character FIFO and a 128 character content addressable
RAM for special character recognition. This interface in conjunction with its
driver (DVRO5) offered the following features:

(a) RS232 signal levels only.

(b) Modem control signals compatible with the Bell 103 standard.

(c) Programmable number of stop bits, parity and data character length.
(

(d) Wire jumper or programme selection of one of 14 baud rates or a 16 times
external clock.

(e) Half duplex transmission only.

(f) Could be set to interrupt on every character, or when the FIFO becomes
half full (64 characters), or upon the recognition of one of the
programmable special characters.

(g) The interface driver DVRO5 occupied 1500 words of memory.

(k) The average driver processing time for long records resulted in a
maximum character rate of about 10 000 characters per second before the
host became saturated.

Of the two interfaces, the DVR05/HP12966 set offered far more features and
reduced CPU loading by almost four times compared to the DVR00/HP12531 pair.
The FIFO buffering on the HP12966 resulted in lines shorter than 64 characters
long needing only one interrupt per line of text, rather than one per character,
hence offering a considerable potential increase in speed. Unfortunately, much of
this potential was lost due to the complexity of the processing needed to service
this extremely complex discrete logic card.

In order for DVRO5 to be able to programme the HP12966 as well as pass it data,
while only baving a single 16 bit I/O data path, the top four bits of any word sent
to the card are used to specify the data function. This feature adds to the CPU
overhead and also requires that the CPU unpack all characters prior to output.
Similarly, for input from the HP12966, the upper byte of the returned word
contains status information which has to be checked, while the lower byte contains
the data character which requires packing into the user buffer. This extra
processing required for each character eliminated much of the advantage gained by
reducing interrupts to one per block.

22

DVRO5 uses handshake sequences with the terminal for both input and output in
order to determine the state of readiness of the terminal. On output, which is
typically the major traffic direction in terminal 1/0, the handshake consists of an
enquiry character (ENQ) sent every 33 characters to which the terminal must
reply with an acknowledge (ACK) when it has space to accept the data. On input,
DVROS first issues a trigger character (DC1) before setting the interface card into a
read mode. This is done so as to inform the terminal that it may send data. Both
these handshake sequences add several extra interrupts to each record, further
increasing the average CPU time per character.

The terminals that DVRO05 was designed to drive can be quite complex units with
separately addressable keyboards, alphanumeric screen, graphics screen overlay,
printer, plotter and cassette tape drives. Furthermore, data from the terminal can
be transferred character by character, record at a time in block mode, or a full
screen at a time in page block mode. All these options and variations make
DVRO5 an exceptionally long and complex driver by HP standards, there being
virtually no other driver in the system of this length.

4.3 Objectives for an “Ideal” Interface

From observing the way that users tend to interact with terminals, and from
noting the types of terminal in common use in many installations, several
observations could be made:

(a) A very high proportion of terminal usage time is spent reading or editing
alphanumeric text

(b) Text editing benefits from frequent re-displays of the text around the
most recently edited data resulting in frequent page outputs and hence,
very high output data rates compared to input data rates. This input to
output ratio for editing typically lies between 1:100 and 1:1000.

(c) Since full feature terminals are expensive and their extra features appear
to seldom be used in most installations (e.g. printers and cassette tapes),
the majority of terminals used are straightforward text editing terminals.

(d) During large streams of output it is often necessary for the user to
interrupt the output, gain the system’s attention and perhaps take some
corrective action to stop the output. This should be done by pressing a
single “BREAK?” key of some form. Due to its half duplex nature, the
HP12966 seldom notices a “BREAK” key-in and the resultant panic key
bashing of a frustrated user is damaging to both user and terminal.

23

These factors, when taken in conjunction with the features described in Section 4.2,
plus a strong desire to produce an efficient interface with straightforward host
interaction resulted in the following design objectives:

(a) All requests from the host should use a common format when being
forwarded to the interface.

(b) All requests should be passed to or from the interface in single burst mode
block transfers.

(c) Transfers in either direction should be 16 bits wide and capable of running
very fast. Ideally, the full DMA burst mode rate of 1 million 16 bit words
per second should be possible.

(d) The interface should perform all request parsing and command
interpretation, leaving the host driver merely to act as a medium for
passing the requests back and forth.

(e) All requests whether read, write, control or status should originate from
the host and be acknowledged when the interface has completed
processing them.

(f) All handshake sequences should be handled by the interface quite
independently from the host.

(g) The interface need only handle text editing type terminals using either
character or line mode transfers and need not attempt a full emulation of
all DVRO5 functions.

(h) It should handle four terminals, all running at at least 9600 bits per second
without any degradation in performance compared with running a single

terminal.

(i) User “break” interrupts should supply immediate response and should not
be missed at all.

§)) All standard line edit functions such as backspace and delete should be
handled by the interface.

These objectives split naturally into two groups, those that would determine how
the software handled messages, and those that would determine the hardware;
while the hardware layout itself split naturally into three areas:

(a) The standard HP flag, control and interrupt logic.
(b) The microprocessor and its peripherals.

(c) The interface between the HP host and the microprocessor.

24

Of these three hardware design areas, the first two were relatively trivial and pre-
determined, but the design of the interface between host and slave offered an
interesting challenge.

4.4 The Host-Slave Interface Philosophy

The desire to have the interface pack and unpack the 16 bit data from the host
meant that the upper byte of each word could not be used for control or status
information and since no other signals exist in the HP I/O structure, control and
status information would have to be packaged serially with the data. This meant
that messages would have to have some means of synchronisation built into them.
Furthermore, since up to four independent requests could be active at any time, it
~ was essential to ensure that each request would be transferred as a discrete block
with its synchronisation and identification fields, to eliminate any possible mix up
of requests that could occur should request transfers be interrupted in the middle
and interleaved.

In order to reduce host driver processing time to 2 minimum, it was necessary that
the slave always be ready to accept requests from the host at any speed that the
host requires. Further, when the slave has a return request available for the host,
it should make this available for the host to fetch at any speed, before informing
the host.

To satisfy these desires, the slave had to include a Direct Memory Access (DMA)
channel capable of accepting 16 bit data from the host at any time and unpacking
it into slave memory at speeds of up to 2 M bytes per second. Thus the DMA
controller should at all times be primed to accept data into a free request buffer
and only when a request has been fully transferred, both header and data, should
the slave be interrupted by the host. The slave response time to remove the full
buffer and re-prime the DMA controller with a new empty buffer should be less
than the minimum time that the host can take to initiate sending a new request.
To cope with the return data path, a second DMA channel capable of 2 M bytes

per second transfers and packing 16 bit data words, should be primed with the
return buffer before interrupting the host.

Figure 4.1 illustrates these two independent data transfer processes in pseudo code
form.

25

Procedure FROM_HOST;
Begin
Fetch free_buffer (Buffer_address); :
Prime_dma_controller (Buffer_address,Buffer_Length);

DO Forever
01d_buff_address := Buffer_address;
Fetch free_buffer (Buffer_address);
Wait for_interrupt (From_Host_interrupt);
Prime_dma_controller (Buffer_address,Buffer_Length);
Post buffer (01d_buffer_address);

END

END;

Procedure TO_HOST;
Begin
DO Forever
Fetch _return_buffer (Buffer_address);
Prime dma_controller (Buffer_address,Buffer_Length);
Send_Interrupt (To_Host_interrupt);
Wait_for_interrupt (From_Host_interrupt);
Return _free_buffer (Buffer_address);
END
END;

Figure 4.1 Host—Slave Interaction Policy

A survey of available 8 bit microprocessors with compatible two channel DMA
controllers showed the Intel 8085 to offer the most satisfactory and compact
solution. Furthermore, the fastest version (a 5 MHz 8085A-2) when used with an
8237-2 four channel DMA controller afforded a burst DM A data rate of 2,5 M bytes
per second with a long block average of about 2,4 M bytes per second, a significant
achievement for a microprocessor. This combination would allow the host to output
data under its DMA system at full rate of 1 M words per second. However, a direct
connection of the two DMA channels (host to slave) would not result in the desired
rate, as the two different speeds would cause both machines to interleave DMA and
normal CPU cycles. The resultant DMA latency on each word would considerably
slow this data rate down. To overcome this problem, some form of intermediate
buffering would be necessary, an IC FIFO being the ideal answer. Since single chip 4
bit wide FIFO’s were available, the addition of 4 extra chips would have allowed the
desired data rates to be achieved under both input and output conditions.

26

Figure 4.2 shows the block schematic of the slave system which would have coped
with the desired host-slave interface.

[Y

[

BIT
FIFO

SLAVE DATA BUS

MULTIPLEX
CONTROLLER

DARQ

DACK

HOLOD

BIT
FIFO

DMA
CONTROLLER

HLDA

8085
MPU

SLAVE DATA BUS

4
BIT
FIFO

—

[l
output BUS | 510 10
BITS 8-15 :
—{cn.x 0E
B
outeut Bus| | 81T 14
BITS 0-7 :
ek O
100
FLAB
8
INPUT BUS el
BITS 8-15
-—
—doe
8
T
INPUT BUS e
BITS 0-7
-—
—oe <
101
E&AG

MULTIPLEX
CONTROLLER

Figure 4.2 The “Ideal” Slave System Interface

One important limitation which became obvious at this preliminary stage was that
the FLAG line to the host was to act as a transfer handshake line for both input
and output, as well as an interrupt line to signify the readiness of a return request
buffer. This restricted input, output and interrupt operations to be mutually
exclusive even though from the microprocessor side they were all quite independent.

27

This, however, became a software sequencing problem and did not affect the
hardware design.

4.5 The Slave Microprocessor Requirements

Designing a microprocessor system is principally a matter of deciding what facilities
are tequired from the system, finding suitable IC’s to implement them and then
connecting all these blocks together according to manufacturers instructions.

Peripheral Choices

In choosing peripheral devices, there had to be four USART’s to supply the four
serial ports, a DMA controller, an eight channel interrupt controller for handling
port interrupts and five programmable clock generators to supply the four baud
rate clocks and a system time base interrupt. There also had to be two other
interrupts into the MPU, one from the system time base generator, and one from
the host CPU. These, however, were available on the 8085 MPU itself and thus did
not require any extra components.

The serial port and DMA requirements could only be satisfied by using four 8251A
USART’s and an 8237 DMAC, but there were two choices for the clock generators.
The best choice was a single 40 pin AM9513, five channel counter-timer, but a
manufacturing hitch delayed production of this device for over a year, so the second
choice of two 24 pin 8253, three channel counter-timers was used. Since this device
only contains 14 bit counters, two channels in cascade were necessary to provide
sufficient division to reduce the 1,5 MHz input clock to the 100 Hz clock used as a
time base generator for the operating system.

Memory Choice

In choosing memory, it was decided that 8K bytes of programme memory would be
adequate so two 2732 EPROMS were included, while for RAM, 4K bytes was about
all that could be fitted on the card, and it was felt adequate to cope with four ports.
In choosing the RAM, 4K by 1 chips were chosen over the cheaper more popular 1K
by 4 chips as the latter devices caused the data bus capacitive loading limits to be
exceeded. Since the difference in cost was about R8.00 total, and a data bus buffer
was saved, the tradeoff was felt worth it.

28

Memory Address Allocation

With eight peripheral devices and three memory blocks, the easiest form of address
decoding was used, which was to give every device its own 4K block of memory.
This left five unassigned blocks for any possible last minute extras or future
expansion and resulted in very simple decoding logic.

4.8 Final Hardware design

While all the preceding design choices represented a wish list, some features had to
be reduced or eliminated for several reasons.

The principal problem that resulted from trying to layout a printed circuit board to
standard HP interface card dimensions was that of space shortage. It seemed
impossible to use a two layer PCB to contain all the flag and interrupt logic, the
interface logic and the full microprocessor system, so some reductions had to be
made.

The one area where some choice did exist was that of the interface logic where the
hardware multiplexing and demultiplexing used several devices and was not
essential. Thus the demultiplexing of 8 bit data back onto the 16 bit CPU bus was
removed saving approximately 2,5 chips. The output direction multiplexing was
left, as with the predominance of output, it was likely to improve the average CPU
performance, whereas input from terminals is so rare, averaging 20 or 30 characters
per minute, that the extra overhead of doing software packing was anticipated to
be insignificant.

The HP1000 series machine only has two DMA channels which may be dynamically
reconfigured to handle any interface. Typically, the disk uses one of these
continuously and the magnetic tape drives use the other. Some consideration and
checking showed the average terminal I/O request to be some 50 bytes long and the
word transfer rate under programme control to be 7 microseconds per word. This
results in an average record transfer time of 175 microseconds under programme
control compared to a possible 25 microseconds under DMA control. The saving of
150 microseconds per record would have to be offset against the time taken for the
CPU to free a DMA channel and allocate it to the multiplexer driver; the resultant
saving being negligible. Thus, it was considered unnecessary to run the interface

under DMA in the host, and so the FIFO’s could be removed, saving a further five
devices.

29

The removal of the FIFO’s and the input demultiplexing circuitry saved enough
space to allow the remainder of the logic to fit onto a double-sided, through-plated
PCB. To save some space from power traces, two layer, perpendicular power buses
were used between rows of chips, and the high capacitance and low inductance of
these power buses allowed a considerable reduction in the number of discrete
capacitors required to maintain a smooth supply system.

The final layout was performed by a non-graphic auto-routing package called PPLS
[4] which was run on the main campus Univac 1100/10 computer. The total run time
for this job was in excess of 2 CPU hours and about ten iterations were required
before the final circuit of only five unconnected traces was achieved. These traces
were quite easily added manually by moving some existing traces slightly.

4.7 Read and Write Signal Decoding

One of the minor design problems involved the incompatibility between the read
and write signals of the 8237 DMA controller and those of the 8085 MPU. The 8237
uses 4 strobe signals (MEMR, MEMW, IOR, IOW) to indicate read or write from or
to I/O or memory, whereas the 8085 uses only three signals (10/M, RD, WR) to do
the same job. Since both devices must drive these read/write control lines, one set
had to be converted to the other. The easiest way of doing this was to use a quad
two input tri-state multiplexer, as recommended by Intell, to convert the 8085
signals to the four line 8237 requirements. Figure 4.3 shows the connection for this
conversion.

During testing of the interface, an intermittent problem existed which caused the
DMA controller to revert to the power-up initialise state every so often. This
problem caused endless hours of heartache until the fault disappeared when a logic
analyser probe was left attached to the IOW line. Close investigation showed that a
20nsec glitch was generated on this line by the multiplexer whenever the IO/IT/I line
changed from low to high. An examination of the multiplexer construction (Figure
4.4) showed that this was due to the propagation delay of the second gate in the
select (S) line which could result in both AND gates of each multiplexer having a
low input with the resultant low going output glitch.

30

r__2

ALE

8085

-4

HOLD
HLDA

CLK touT)
RESET IN
RESET OUT

'™
[ADDRESS
, BUS
A
—00
1t erp DOy 3 “ .
Ds2 e
w2 e b l
21 wo - ,
_E__ Dl —DI, b5
1
‘ T [
! DaTABUS
O¢
Voo
e
| 3 o4 | mowm
AR BT WEWR
o g dia OR convRoL
g § e L
~ 10w
. i fow
", 0,
g o aeov
[
SEL (8 || 15 " .
53 READY
? o, 22—
1 b
1 |
0, a
AESET 82575
E —— 19
_:Q MEMA DROy = DRQ,
1qmn BAcK, b BACK,
4o wEww DRO, ;: DRQO,
—Z"C iow DACK, P Dack,
DRO; : DRQ,
10 HRO DAaCK, b DAEX,
16
L HLDA DRQ, DROy
BALR; p— BRTR,
36
2 1 ek T T
B_| reser manx -5 MaRK
AEN ADSTB
] [
Ve
1wl ul n

os2 CLR sTB

rt

Figure 4.3. Recommended 8085—8237 Connection Scheme (Intel)

31

oo by 1o e g iy 1

oo o © @ [0 0 @ [0
v)L 1y
1 |

Veg =Pin 16
GND =Pin 8
O = Pin Numbers

® 0 @ ®

z, 2z, z, 29

Figuré 4.4, 7415257 Quad Multiplexer Construction (Meterols)

Although the 8237 DMA. controller should not legitimately respond to a 20 ns
glitch on its IOW line, it appeared that this glitch could provoke some internal
chaos resulting in a complete reset of the chip. No simple solution using discrete
devices could be thought of to eliminate this glitch, and there was insufficient board
space to use a more complex solution. Thus it was decided to remove the
multiplexer completely and couple the MEMR and MEMW lines to the IOR and
IOW lines for all devices except the DM A controller in which the MEMx lines were
disconnected. (See Fig.4.5 for the final connection scheme). This meant that all
devices would respond to both memory and I/O addresses, but due to the chip

select decoding chosen previously, this caused no overlap or problems.

10/M MEMA
NC TO DMA
= _— Catenes
8085 WR Tow 8237 MEMW LA
o— q o——
MPU DMAC
7D 1oA |
- —
OF 108
ToW
L ¥ -PERIPHERAL
ROM RAM DEVICES

Figure 4.5 Read and Write Signal Routing

32

The DMA controller, when in slave mode could be addressed as either memory or
- 1/0, but when in master mode, its I/O control lines were connected to the memory
lines so that the DMA controller was effectively a memory mapped device. This is a
perfectly legitimate way of connecting a DMA controller, the only change being
that read and write transfers become reversed when programming the controller.

Thus the fix to this problem eventually resulted in a saving of one chip and the
reversal of two commands in the software. Whether all DMA controllers would
respond the same way to this glitch is unknown, but two devices were tried, both
with the same results. The problem may not always occur when using the
multiplexer for a decoder because the addition of a 12 pf probe was sufficient to
damp the glitch and stop the reset. This indicated that with a different layout, the
glitch may be rendered harmaless.

- Appendix E gives a full schematic drawing of the interface as generated on a Gerber
IDS 80 Computer Aided Design system as well as a full description of the circuit
operation.

33

Chapter 5

The Multiplexer Interface Operating Software
5.1 Introduction

Before starting on the design of the software for the multiplexer, the language to
use had to be chosen. At that time, the only language for an 8085 for which a
compiler was available in the Department of Electronic Engineerin.g was a Cross-
assembler running on the HP1000 system. This meant that either assembly
language be used, or a high level language compiler be obtained or written. No
FORTRAN or PASCAL (the two preferred high level languages) cross-compilers
could be found, so it was decided to write the code in a relaxed specification
PASCAL (for structuring purposes) and then manually compile this into assembly
language.

Before the software generation procedure had gone very far, it became evident that
the available cross-assembler (ASMI) was frustratingly slow and also lacked some
features which would be very useful. A new cross-assembler was written (see
Appendix J for a user manual and full description) and several useful and unusual
features were included which eased the software generation task considerably.

Since a logical well structured approach to code generation is fostered by the use of
an operating system which can co-ordinate multiple, independant tasks and allow
tasks to co-operate in the use of shared resources, it was decided to use a general
purpose multi-tasking operating system for the kernel of the code. The Intel RMX
80 system was considered for this function, but was rejected for being too expensive
to obtain and for using too much memory. Thus a small multi-tasking system
(MTX) was written. It included a scheduler, a memory buffer manager and a
resource management system. The final operating code was then designed as fifteen

separate tasks, interaction between tasks being confined to standard operating
system calls.

5.2 The A8085 Cross Assembler

The cross assembler was written in ALGOL because PASCAL, (the preferred choice)
was very poorly implemented on the HP1000 at that time, being very slow in
compiling and using a tremendous amount of memory. The main aim of increasing
the speed of assembly was achieved by hashing both symbol and instruction tables,
using an intermediate scratch file between passes one and two to eliminate line
parsing in pass two, and paying careful attention to speed in those areas used

frequently. These factors resulted in a basic assembler capable of assembling over
3500 lines per minute.

34

After the basic assembler was written and running, several other features were
devised and included:

(2) A pseudo code to allow files to be merged during assembly.

(b) A memory segmentation scheme to allow code to be allocated to any user
defined segment.

(c) Resettable variables using the ‘SET’ instruction .

(d) Ten character symbol names.

(e) Variables allowed to be either local to a particular file or global to the entire
run.

(f) Comprehensive conditional assembly commands.

These features added significantly to the versatility of the assembler, but did slow it
down to about 2000 lines a minute, the main culprit being the long symbol names.

The memory segmentation scheme was incorporated to cater for the need to
separate programme code and variable data into ROM and RAM respectively. This
feature — unnecessary for programmes loaded directly into RAM — becomes a
necessity in stand alone microprocessor systems. The alternative was for no
segmentation to exist and to specify all RAM based variables together before
assigning any code to ROM. In a 4000 line assembly, this approach separates the
data from its programme, making modular coding techniques impractical and
- reducing programme legibility.

To segment memory, the segments aré first defined and given names using the
NSEG (new segment) assembler directive:

EG ROM: NSEG 1000H
RAM: NSEG 4000H

A segment is enabled by the RSEG (Replace Segment) directive which saves the
next available address of the current segment, and re-instates the requested
segment:

EG . RSEG ROM
code goes into Rom
RSEG RAM

data goes into Ram

The multiple source file capability was included to allow separate logical blocks of
code to reside in separate files, allowing for easier editing and bandling while also
providing a logical structure. Making all symbols (or labels) local to the file unless
specifically declared as global (prefix of °) significantly eased the generation of

35

meaningful labels, (since the same label could be used in several files) and made
programmes easier to follow as the scope of all labels is immediately obvious. These
features plus all the others mentioned previously are described fully in Appendix J.

5.3 The Requirements of a Multi-tasking Executive

The function of a multi-tasking executive is to allow many independant tasks to
utilize a single processor without affecting one another or altering one anothers
data. The executive is essentially a suite of programmes supplying facilities to the
user tasks in such a manner that each user task believes it has the full processor to
itself. To create the situation where a task’s run time can be controlled, the
executive has to have some means of determining the natural delay points that
occur in most tasks (particularly real time ones), and use these delay times to give
other tasks a share of the processor.

Since the most common delay in any task is when the task is waiting for some
peripheral device to respond, it follows that one useful function for a multi-tasking
executive to supply would be some means of synchronising tasks to peripheral
hardware devices.

In a system of tasks where each task accesses only its own I/O devices and where
there is no inter-relationship between any tasks, an adequate executive would only
need to have some means of stopping and starting the tasks and of controlling the
peripheral I/O wait times. However, this situation would be very rare indeed, the
reality being that tasks will be inter-related, will be likely to share peripherals and
memory and often alter one anothers data. In this situation, the executive needs to
supply additional facilities to allow user tasks to co-operate, share resources without
conflict or corruption, and signal one another for synchronisation.

To supply the facilities required above, a fairly simple system need only consist of
the following subsystems:

(a) A scheduler and dispatcher to initiate suspended programmes that are
ready to run.

(b) A resource manager to handle resource lock requests and to suspend

requests for resources already locked (a resource here may be data, a
peripheral or memory).

(c) An inter-task communication manager to pass signals and messages

between tasks, suspending tasks that await a signal until the signal has
been issued.

In operation, any user task wishing to access a peripheral or any other resource
must first call the resource manager. Should the resource not be free, the resource
manager will suspend the task and pass control to the scheduler to determine

36

whether any other tasks are ready to run. The choice of the task to run next will
then be made and the task will then be passed to the dispatcher to initiate
execution. Similarly, any task wishing to synchronise itself with some event (such
as the completion of some peripheral action) will call the communication manager
to wait for a signal from the peripheral interrupt handler. The task will then be
suspended until such time as the signal is sent, and the scheduler releases the task
again. In this fashion, tasks can be controlled, allowing several independant tasks to
share the same processor without each task ever realizing that it is being suspended,
or that it is sharing the processor.

‘5.4 Semaphores for Task Control

The semaphore, as originally proposed by Dijkstra I8l and discussed extensively by
Brinch Hansen [7) in his almost classical primer on operating systems, is an ideal
mechanism for coordinating concurrent tasks and in some form or other has
become the basis or core of most real time operating systems.

The general valued semaphore is defined as a non-negative valued integer S which is
operated on by two primitive operations P(S) and V(S) both of which must be
indivisible. The operations are defined by:

V(S) increment the value of S.
P(S) for S=0 suspend the calling task until S>0
for $>0 decrement the value of S

A more common implementation is the binary valued semapbore in which S is
constrained to only take on the values zero and one. Then V{(S) will set S to a one,
and P(S) sets S to a zero if it is non zero, otherwise the calling task is suspended.

To use semaphores for task control, two forms of the semaphore can be defined:
(a) The resource semaphore

(b) The signal semaphore

The resource semaphore is used for resource management by associating a
particular semaphore S with each shared resource in the system. Then any task
wishing to use a resource must first of all execute a P(S) operation on the associated
resource. If all tasks wishing to use the resource always execute a P-operation
before using the resource and then execute a V-operation when finished only one
task at a time will ever be able to access the resource.

The signal semaphore requires the normal semaphore action to be reversed, so
that a task wishing to wait for some signal must execute a P(S) operation on the
semaphore associated with the signal but since the task must be suspended, the

37

semaphore must start life in the zero state. This will cause the required suspension
until some other task executes a V('S) operation on the semaphore thus releasing the
waiting task. Thus, the semaphore can be used for both resource control and event
signaling, the only difference being that resource semaphores initialise in the free
state while signal semaphores initialise in the busy state.

5.5 The “MTX” Multi Tasking Executive Kernal

While the semaphore provides the means to control concurrent tasks, some further
data constructs are necessary to allow task definition and to maintain the task
suspend lists.

The MTX system was designed around two basic structures:
(2) The Task Control Block (TCB) for task definition.
(b) The Ezchange to enable suspended task’s TCB’s to be maintained.

The Task Control Block

The function of a task control block is to define the status of a task, maintaining all
static task descriptors as well as all temporary and dynamic data that is valid when
the task is suspended. The static information is usually the task identification and
initial start up address, while dynamic data that must be saved during suspension
consists of CPU register contents and the programme stack with all the subroutine
return addresses etc.

In MTX, the TCB was chosen to be 72 bytes long, 14 bytes for predefined data and
the 58 bytes for a stack. The 14 byte header of the TCB contains:

(a) A two byte pointer for linking TCB’s into lists.

(b) Two bytes to hold the value of the stack pointer during suspension.

(c) A status byte.

(d) A TCB (or task) identity number.

(e) A 2 byte pointer for linking TCB’s into the time list. This feature allows

suspension while waiting for some resource to be time limited.

() The timeout clock itself. A sixteen bit integer count of the 10ms timebase
intervals left to run before the timeout expires. When a TCB is linked into-

the time list, this value is decremented every 10ms by the timeout
processor.

(g) Four spare bytes for possible future expansion.

The TCB was not made to hold the task start address as this value was placed in a
separate ROM based jump table to ease the task startup process.

38

Before choosing the stack size at 58 bytes, all the code was written and the stack
usage of each subroutine determined. The largest amount of stack used by any task
was less than 32 bytes, so 32 bytes were allowed for normal usage, while the
remaining 26 bytes were allowed for interrupt usage. In the worst possible case,
interrupts can be nested three levels deep and since each interrupt handler must
save all the registers it wishes to use, interrupt stack usage was high. It is in
situations such as these that the single stack machine becomes a nuisance, as here
every TCB has to have 26 bytes of stack space available just to allow for the
interrupts when that tasks’ stack is in use. A machine with separate user and
system stacks for use by interrupt procedures, would have made coding easier and
saved nearly 400 bytes of RAM.

The Exchange

The exchange entry is the core of the MTX data structure and consists of an eight
byte entry for each semaphore in the system. Since any task executing a semaphore
lock request is liable to be suspended until the semaphore becomes free, the system
requires some means of linking the waiting tasks to the semaphore itself. Thus the
exchange contains not only the semaphore itself, but also a linked list header for
linking waiting TCB’s (via the TCB link field) to the semaphore.

In MTX, all linked list headers have the same format:
(a) A two byte head link pointer.

(b) A two byte task link pointer.

(c) A one byte list length indicator.

The semaphore itself was implemented as a single byte binary state semaphore with
zero being defined as free and non zero as busy. By defining busy as non zero rather
than one, the ID number of a locking task could be used to fill the semaphore and
lock it, while at the same time, providing a means for identifying the task currently
locking the semaphore. This was necessary for the situation where a task is aborted
while it owns some resources, as the system abort processor can then scan all

exchanges to find any owned by the aborted task and free them for subsequent
users.

Since an exchange entry could be used as either a resource or as a signal event type
semaphore, an indicator byte was included in the exchange to mark it’s type, a zero
value indicating a resource and non zero indicating an event. At startup, event
semaphores must assume a locked state, as described earlier, and so the indicator is
initially copied into the semaphore to lock events and free resources, thus
eliminating any special processing for the two different exchange types.

39

The Use of the Exchanges

At system startup, task zero is executed removing control of the processor from the
operating system. In order for the operating system to regain control, the task must
suspend itself against an exchange by awaiting an event (or signal). Thus the
startup task should initialize itself, perform some startup processing and then
execute a WAIT FOR EVENT call on some exchange. The system will then link the
TCB onto the specified exchange and then run the next task.

In this manner, all tasks will eventually become suspended waiting for events or
resources, and so the operating system remains in control. The scheduler will then
check each exchange in turn to see if any free exchange has a task waiting against
it. Should such an exchange with a zero semaphore and a non zero list length exist,
the TCB at the head of the list is unlinked, the semaphore is set to the task ID
number and the task given control.

To simplify the use of exchanges, several user callable routines were written, a brief
description being given below. Detailed calling sequences are given in appendix F.

Event Calls

WTEVNT (Exchange_#) Wait for a signal or event

STEVNT (Exchange_#) Set an event or send a signal

CLEVNT (Exchange_#) Initialise an event exchange to ensure that it is in

the locked state as it should be after startup.

TWTEVN (Exchange_#,delay) Wait for an event only as long as the time delay

specifies. If a timeout occurs then return with
error flag.

Resource Calls

GTRESC (Exchange_#) Get or lock a resource exchange,

TGTRSC (Exchange_#,delay) Attempt to lock a resource but limit the
suspension time to the value specified.

RLRESC (Exchange_#) Release a locked resource exchange.

The RLRESC call was implemented in such a manner that only the task that locked
a resource could release it again. This prevents other tasks from accidentally
unlocking a resource that they do not own which could result in two tasks both
using a resource that both thought they had locked exclusively. This feature could

not be applied to event exchanges as the normal case is for different tasks to lock
and free the exchanges.

40

The timed exchange requests allow calling tasks to specify a maximum time that
they are prepared to wait at the exchange, the time being the number of 10ms
timebase ‘ticks’ to use. Should the task be released from the exchange before the
timeout has expired, the return timeout flag will be cleared. However should the
exchange still be locked when the timeout expires, the task will be re-scheduled as
normal, but with the return timeout ﬂag set to inform the calling task that the
exchange access was not successful.

To allow tasks to use the timeout feature for fixed time delays and for time
sequencing, a dormant exchange was included which is always busy and never ever
made free. Thus any task wishing to suspend itself for a fixed time merely need
execute a TWTEVN call on this exchange to ensure that the full timeout will occur.
All dormant tasks in the system are also queued against this exchange.

Another special exchange was incorporated to hold tasks ‘ready to run’ after a
timeout or a re-schedule call. This active exchange is maintained in the free state by
the schedular itself with the task at the head of the list being the next task to
execute. Whenever any task pending against some exchange times out, its TCB is
unlinked from whatever exchange it was on and relinked onto this active exchange.
Similarly any dormant task being re-scheduled will be unlinked from the dormant
exchange and relinked to the active exchange.

5.6 Memory Management Facilities

The basic function of any memory management system should be to supply user
tasks with a set of calls allowing them to dynamically request or return blocks of
memory. The memory manager should supply these demands from a pool of spare
memory and since, on average, all tasks will not use their maximum requirements
simultaneously, several tasks may end up sharing the same memory. In comparison
with permanently allocating each task all the memory it may require, a memory
management scheme can reduce memory requirements considerably.

A memory management system may be implemented to supply either fixed size
blocks of memory, or to supply the exact amount specified in the user call.

The fized block length scheme has the disadvantage that the block size must be as
large as the largest possible request, resulting in memory wastage when only small
amounts of memory are needed. This management philosophy, is however very
simple to implement since memory can be pre-divided into the requisite blocks
which then merely need be maintained in a linked list.

The variable length memory management scheme has the advantage that memory
utilisation is more efficient, but it requires considerably more sophisticated
management techniques. Several different strategies exist for allocating blocks of

41

memory, but irrespective of the system used, the pool of memory becomes
fragmented into many small and random sized blocks, increasing the search time
for suitable sized blocks. To compensate for this, the memory return system
normally implements some form of compaction to try and coalesce adjacent empty
blocks together. While the processing overhead of this scheme dictated against its
inclusion, the deciding factor was that the task fetching data from the host would
be unable to determine the required block size until the complete block had been
transferred. Since the DMA controller must always be capable of accepting
maximum length records, the fixed block maximum length scheme for memory
management was necessary and hence was adopted.

After allocation of all system data structures and variable storage, the remaining
memory was divided into nine blocks of 272 bytes. The first five bytes of each block
were used to bold two linkage pointers and a memory block status byte, with the
remaining 267 bytes being left for the application task to define. One of the links
was used to link the blocks onto the task message queues (described next), while the
other was used to permanently link all the blocks together. This chain is used by
the abort processor to find memory allocated to an aborted task in order that it may
be returned to the pool queue. To assist in establishing ownership of a block, the
status byte is set to the queue number for a block in a queue, or the task ID number
for a block owned by a task. The top bit of the status word is used to differentiate
between the two conditions.

In the multiplexer system, the memory blocks are only used to contain request
messages which are passed from host to destination task and subsequently back to
the host again for acknowledgement. Each task was thus allocated an input queue
on which all messages for the task could be placed.

The calls supplied for moving buffers (blocks of memory) around are:

PUTBUF (Queue_#,buffer) Places the given buffer onto the specified
message queue

GETBUF (Queue_#,buffer) Fetches a buffer from a queue, and suspends the
caller if no buffer is available.

TRYBUF (Queue_#,buffer,error) This is a no suspend version of GETBUF which
will return immediately with an error if no
buffers are available.

Since a caller to GETBUF must be suspended if the queue is empty, each of the
message queues has a resource exchange associated with it. The GETBUF, PUTBUF

and TRYBUF routines take care of the resource lock calls so that this does not
involve the user.

42

5.7 Task Control Facilities

In order to allow tasks to schedule one another and also to terminate other tasks,
three calls were provided:

STACTV (TCB_#,Time_delay) Sets a dormant task active if Time Delay is zero
or places the TCB into the time list if Time
Delay is non-zero.

[The time delay option allows tasks to time schedule other
tasks to run at some later time. The delay can be a
maximem of 854 seconds using a 18 bit word with ten
millisecond resolution. |

STDORM (TCB_#) Sets the given task dormant by placing it into
the dormant queue. All memory and exchanges
owned by the task are cleared.

-

STOP Places calling task into dormant qﬁeue.

The abort processor (STDORM) attempts to clean up the system when a task is
aborted by releasing all resource exchanges owned by the aborted task, and
returning all it’s memory buffers to the pool queue. However, since the MTX
executive was not written to supply any standard I/O handlers, it cannot clean up
I/O and interrupts left by the aborted task. To get around this, each and every task
- must contain a user written abort subroutine which will properly close down all
interrupt and I/O activity should the task be aborted. The abort processor
(STDORM) will then call this subroutine when the task is aborted.

Jump Table

Instead of a task’s start address being stored in its TCB, a jump table was set up
with six bytes being allocated for each task; the first three contain a jump to the
task start, while the second three contain a jump to the abort subroutine. This table
being ROM based is set up by the assembler at compile time. The reason for this
approach was the simple code needed to use the jump table approach compared to

that which would have been required should the start address have been stored in
the TCB itself.

58 MTX — A Summary
Interrupt Handling

Since this operating system was designed expressly for the RMUX multiplexer in
which the anticipated tasks were all essentially only I/O handlers, it was not
necessary to add much in the way of centralized I/O handling facilities to the

43

system. Each task could handle its own I/O with less overhead than if the system
were to supply the I/O handlers. The only function supplied by the system is a pair
of interrupt handling routines which use an interrupt vector table to determine the
interrupt handler location. The first routine intercepts all interrupts, saves the
registers, determines the handler address and branches to the handler. When the
handler has completed, a simple RETURN instruction will ‘return control to the
second routine which restores the registers and returns to the interrupted task. This
philosophy eliminates duplication of the register save and restore code and eases the
return from interrupt procedure without imposing any overhead on the I/O process.

Coding the System

Once all data structures had been decided on, the routines were coded into PASCAL,
a regimen that tends to force well structured code. Originally the idea was to
actually compile and run the PASCAL code on the HP1000 first in order to do some
high level debugging before moving to the assembly code. PASCAL performs a very
rigorous data type checking and some quite legitimate operations in assembly code
required far more complex data structures in PASCAL than were warranted. An
example of this was in the linked list handling procedures. Both memory buffers
and TCB’s are linked onto various lists, and both have the same link format.
However, from PASCALs point of view, they are two different record types and so
cannot be treated by the same link procedures without special case handling. Since
the major benefit of using PASCAL was to provide the correct structuring and not
for high level debugging, the code was left in a relaxed specification pseudo-pascal
and then manually compiled into 8085 code.

This exercise in coding definitely proved effective, as the code was all written,
compiled and tested in a week, the debugging phase taking only one afternoon.

The system code including the pseudo-pascal code, which was left in as comments,
took 1170 lines of code and occupied just over 1K bytes of ROM. A more complete
description of this system code can be found in Appendix F, while for full details,

the source code printouts (available from the Department of Electronic Engineering
of the University of Natal) can be used.

5.9 Time List Handling

The time base interrupt interval was chosen as 10ms using the TRAP non maskable
interrupt input of the 8085. TRAP was chosen because it could be connected
directly to the output of a 100Hz timer/counter without any intervening logic

necessary to clear the interrupt source. This is due to the TRAP input only
responding to a rising edge signal.

44

However, since TRAP is the highest priority interrupt in the system, and cannot be
disabled it was essential to make it’s handler as short as possible. The time list
feature is really rather unimportant in this system and any missed time base ticks
would have very little effect on the system, whereas missing an input character due
to an overrun error would be far more serious. When one considers that all four
ports could be receiving in block mode at 9600 baud, resulting in there only being
250 microseconds available to process each interrupt, the time required to chase a
time list and count down all time base clocks cannot be afforded.

Thus, instead of making the timebase interrupt handler process the time list, it
merely sets an event to signal a task to run. This task (TOUT) uses one of the last
exchanges in the exchange list and so has a very low priority; the schedular will
always release this task last. The time list chasing and decrementing of all the time
base clocks are all performed by TOUT, which since it is a background task cannot
interfere with the interrupt processes. Should the system become very busy such
that TOUT is never scheduled during a 10ms time base interval, then the interrupt
handler will merely set the signal event again which will result in a missed interval,
an insignificant occurrence in this system.

A debug feature was added in which TOUT sequentially reads through the entire
RAM at the rate of 4 bytes per 10ms. This causes the entire RAM to be read every
10 seconds, enabling a logic analyser to see what RAM contains. This was especially
useful during early task debugging as the contents of tables, schedule lists and
memory buffers could be examined. Since this debug read used only 0,34 percent of
the available CPU time, it was left in the final version of the code, so that memory
can be examined at any time.

5.10 Application Task Structure

The MTX system was expressly designed to control I/O intensive tasks that would
supervise their own I/O. To fit into the system, all tasks were required to have the

same structure resulting in every task consisting of three essential blocks of code: a
main task, an interrupt handler and a termination routine.

The main task is the central co-ordinating body of code which performs all the
interaction with the system. In every case, it’s function is to fetch messages (blank
or meaningful) from some queue, process the header to determine the requisite
action, initiate the I/O transaction and, then wait against an event exchange for a
signal from the interrupt handler. Once released from the exchange, the results of
the interrupt transaction are processed, the message is placed on some output queue
and the main task then loops back to fetch another input message. The main task’s

duty is therefore overall coordination of its I/O, message header processing and
system interaction.

45

The interrupt handler is always entered due to an interrupt from the peripheral
device it controls, the first interrupt of any message usually being initiated by the
main task’s action. The interrupt handler should then perform any processing that
the data may require and start the next peripheral transaction. It should be a
completely self-contained block of code and may not interact with the system at all
except at the end of a complete transaction, when it may set the signal event to
release the main task for final processing.

The termination routine is a small subroutine that the system abort processor will
run whenever the main task is aborted. It’s task is to clean up for the main task.
Although the system will recover any memory owned by the task, and will release
all resources, it cannot control I/O, so the termination routines principal job is to
close down any associated peripherals correctly and disable their interrupts. In
many cases the termination routine will be a null routine comnsisting only of a
return.

5.11 Host Interaction Tasks

Host interaction is controlled by two independent application tasks, FROM_HOST
to receive requests from the host and dispatch them to the various port handlers,
and TO_HOST to fetch messages from the port handlers and pass them back to the
bost. Each task has its own DMA channel for data transfer, but they both have to
share a single interrupt line to the host (FLG), and a single interrupt signal (STC)
from the host. Thus they share a common interrupt handler which has to determine
the cause of an interrupt before it can signal the correct task.

O _HOST

The TO_HOST task was an exceptionally simple task to produce, as it had only to
fetch a message from its input queue, prime the DMA controller to send the message
to the host, interrupt the host to inform it of the return message’s presence, and
then wait against an event until the interrupt handler signals that the host has

accepted the message. It then loops to fetch another message as is illustrated in the
overview given in figure 5.1.

Using the FLG signal to interrupt the host required a little care, since this same
signal is used by both DMA channels to pace input and output. Thus, as explained
in Chapter 4, the TO_HOST task was constrained from sending interrupts whenever
the host is busy performing data transfer, the CNTL flip flop being cleared during
this process. TO_HOST was written to always first check the CNTL flip flop state
(connected to the RST5.5 input) and then only interrupt the host if the flip flop is
clear. Should TO_HOST not be able to interrupt, it suspends itself for 20ms to allow
the host to finish the data transfer and set the CNTL flip flop again. TO_HOST

then loops and tries again to set the interrupt, this loop repeating indefinitely until
the CNTL flip flop is found clear.

46

PROCEDURE To Host
BEGIN
DO forever BEGIN
GetBuffer (ToHostQueue, BufAddress);
SetDmaChannel (BufAddress);
DO BEGIN
WHILE CntlFF = Clear DO Wait-20ms;
SetFlagInterruptToHost;
WaitEvent (ToHostSync#, OneSecond, Error);
END UNTIL Error # Timeout; '
PutBuffer (BufAddress, PoolQueue);
END;
END.

Figure 5.1 The TO HOST Task layout.

The average data transfer process takes about 300-400 microseconds with at most
one transfer every 10ms. resulting in very little chance of TO_HOST having to loop
more than once while waiting for a free period during which the host is not
transferring data.

Once the FLG interrupt has been set, TO_HOST waits up to one second for the host
to acknowledge the interrupt and read the message from the DMA controller. This
is plenty of time for the host to respond, the maximum host response time being in
the region of 50 to 80 ms even during periods of high I/O activity. There is,
however, a small chance that the interrupt to the host could have been sent during
the one very brief period upon entry to the host driver when it ignores interrupts,
but has not had time to clear the CNTL flip flop. In this case, the interrupt will get
lost, an inevitable problem when using the FLG flip flop for so many functions.
Hence if after one second, TO_HOST has not been acknowledged, it will time out,
discover that the interrupt has been lost and try again.

Once the host has eventually accepted the message and signalled this by sending an
interrupt to the STC interrupt handler, TO_HOST will deposit the now empty

message buffer onto the memory pool queue and loop to fetch another message
from its input queue.

FROM HOST

This task, whose flow is outlined in figure 5.2, is far more complex than TO_HOST
as it must ensure that there is always an empty buffer for the input DMA controller
to use whenever the host starts sending. Furthermore, once it has a message, it
must determine the message destination which can be any one of eight different
queues for the read and write requests on the four ports.

47

Once a complete message has been sent by the host and an interrupt issued, the
message must be removed from the DMA controller and a fresh empty buffer put in
its place. All this must occur before the host has time to start outputting another
message and since this interval may be as little as 200-300 microseconds, when
many requests are queued in the host, there is insufficient time for FROM_HOST to
be re-scheduled and perform the buffer replacement. The buffer replacement was
therefore left to the interrupt handler which can perform the replacement within 80
microseconds of the interrupt. However, since the interrupt handler may not
interact with the system it cannot request a fresh buffer from the pool. Hence, to
ensure that there is always a spare buffer available for the interrupt handler to use,
FROM_HOST always tries to keep four spare buffers in reserve.

PROCEDURE From Host
BEGIN
InitializeDma;
StartUpAllTasks;
FOR I:= 1 TO 5 DO MarkPot (I "Busy");
GetBuffer (PoolQueue, Bquddress)
FillPot (1, BufAddress);
SetDmaChannel (BufAddress);
DO forever BEGIN
FOR Pot := CurrentPot TO CurrentPot+4 DO BEGIN
IF Pot”Status Full THEN SendOff (Pot);
IF Pot”"Status Empty THEN TryFillPot (Pot);
END;
WaitEvent (FromHostSync#);
END;
END.

Figure 5.2 The FROM HOST Task layout.

FROM_HOST manages this using a circular list of five flagged POTS which each
hold a buffer address and may be flagged BUSY, FULL, EMPTY or FREE
depending upon the state of the buffer pointed to by the pot. A BUSY pot contains
a buffer currently set up in the DMA controller, a FREE pot contains an empty or
available buffer, a FULL pot contains a buffer awaiting dispatch to a port task, and
an EMPTY pot contains nothing, waiting to be filled. On start up, all pots are
labelled EMPTY before the normal run loop is entered. This main run loop checks
each pot for FULL or EMPTY status, full pots being sent off to the message dzspatch
routine, while EMPTY pots are given to a routine which tries to fill them. This
TRY_FILL routine uses the non-suspending form of buffer access (TRYBUF)
(Section 5.6) so that the task will not suspend should the buffer pool be empty.
When this does happen, although the pot will remain empty, this will have little
effect on the operation as there will always be some FREE pots in the list. This can
be determined since due to the host limitation of only one request pending per port,

48

there can at most be only four valid request buffers in the system. Allowing one
more at most for 2 system break request, (defined later), there must still be four
buffers left in the pots to receive abort requests which are the only requests that
may override an already pending request. Since at most there can only be four
abort requests forthcoming, the nine buffers in the system will always be able to
accommodate all possible host output.

FROM_HOST checks for FULL pots and dispatches these, thus creating EMPTY
pots which are then filled when possible to create FREE pots. The FREE to BUSY
to FULL cycle is not performed by FROM_HOST, but is left to the interrupt handler
(STC_INT) described later.

The message dispatcher which sends full buffers off to their respective port handlers,
has first to determine which port the message is for. This is done by using the lower
two bits of the EQT entry in the host (see Chapter 6 and Appendix H) to index into
a port look up table which contains the port address associated with each EQT entry.
The lower two bits of the EQT entry address are sufficient for EQT identification
since as EQT entries are 15 words long, and the four EQT entries for each interface
are required to be adjacent in the EQT table, the lower 2 bits of each entry address
will be unique within an interface.

The port address table is set up by the initial port configuration call (CN,30B call) (see
Appendix K) which specifies the port number in the lower two bits of the
configuration word. FROM_HOST intercepts these configuration requests, and
should the port look up table entry for that EQT entry not be set up, the lower two
bits of the configuration word are stored in the port look up table entry with a flag bit
to indicate that the table entry has been initialised. The configuration call is then
passed on to the port handlers for normal configuration processing.

One other host request that is processed by the message dispaicher routine is the
abort call (CN,lu,0) (Appendix K) which must cause any pending requests on the
relevant port to be aborted. Since this call cannot be processed by the port handler
itself, FROM_HOST simply issues three STDORM calls to abort the three port
handling tasks associated with the port and then reschedules them again. This
method very simply removes the request and re-initialises all the port tasks. The
abort request message is then returned to the host, where it acts as an
acknowledgement for the original aborted request.

Two types of errors are detected in this section, one when the double SYN
synchronization pair of characters cannot be found, and the other when a non-
configuration request arrives for an unconfigured port. In the former case, the
message cannot be acknowledged or returned since all addressing has been lost, so
the buffer is merely returned to the pool queue which leaves the calling user
suspended indefinitely, or until the EQT entry times out should a timeout have been
set. In the latter case, requests for an unconfigured port are returned directly to the

49

host with a zero transmission log which is equivalent to an empty record.
STC INT

STC_INT, the common interrupt handler for both FROM_HOST and TO_HOST is
activated by an STC instruction from the host, causing an interrupt on the RST 7.5
interrupt of the 8085. This interrupt is only sent by the host when it has completed
a data transfer in one direction or the other, so STC_INT has to determine which
direction the transfer occurred in so as to invoke the correct task to process the
request. The two DMA channel count registers are examined to see which channel
count has decreased by at least 12 bytes, this being the length of a message header.
This allows the channel upon which a transfer has occurred to be determined.

For return requests to the host, the DMA count register is reset to a correct buffer
length so that it will not cause an incorrect decision on the next interrupt, the DMA
channel is disabled, and TO_HOST is signalled to complete processing.

Requests from the host require somewhat more processing, since the pot associated
with the recently filled buffer must be marked FULL, and the buffer from the next
free pot must be loaded into the DMA controller ready for the next request from
the host. Once this is done, the DM A count will of course have been reset during the
reload and so will not cause errors on subsequent interrupts. Thus all that is left is
to signal FROM_HOST to process the request and re-load any empty pots.

PROCEDURE STC INT
BEGIN

SaveRegisters;

IF ToHostDmsCount <= Bufflen - 12 THEN BEGIN
ToHostDmaCount := Bufflen;
DisableToHostDma;

SetEvent (ToHostSync#) END

ELSEIF FromHostDmaCount <= Bufflen - 12 THEN BEGIN

MarkPot (CurrentPot, "Full");
CurrentPot := NextPot;
SetDmaChannel (CurrentPot);
MarkPot (CurrentPot, "Busy");
SetEvent (FromHostSync#);

END;

RestoreRegisters

END.

Figure 5.3 STC INT — The Host Interrupt Handler.

This interrupt handler was required to be very fast and finally occupied just over
100 bytes with a maximum processing time of about 80 microseconds. Figure 5.3
illustrates the overall approach of STC_INT the host interrupt handler.

50

5.12 Port Handler Tasks — An Overall View

The host processor has three types of request that it can send to the interface,
namely read, write and control calls, while the interface can be in three distinct.
active states, viz.

(a) Outputting data due to a write request
(b) Inputing data due to a read request
(c) Inputing data with no read request pending.

The initial problem was how to break up the port handler into separate tasks to
cope with these three request types and three active states, the final choice being:

(a) TX_TASK to handle write and control requests
(b) RX_TASK to handle read requests
() BREAK to handle unsolicited input for system ‘break’ requests

Each of these tasks was written as a conventional three module task as described in
Section 5.10, but due to the need for each task to access both the transmitter and
the receiver of a port, the interrupt handlers are slightly interrelated. While this
was inevitable, careful structﬁring of the interrupt handlers has reduced this
relationship to a fairly simple clear cut one.

The four ports required four sets of similar tasks, the only differences being the port
addresses and the data associated with each port. This was necessary because the
8085 instruction set does not allow for register indirect addressing of I/O devices.
Since ample ROM had been included, and processing time was considered
important, it was decided that no parts of any handler would be made common to
all port handlers and that no special code would be included to save memory at the
expense of speed. The resultant code for each port used just over 1K byte of ROM
and for simplicity of tracing, each port was given 500 Hex bytes (1280) to ensure
that all port handlers started on even boundaries and that a listing of one port’s
software was usable for all ports during debugging. The effort in maintaining four
sets of port handlers with identical code except for RAM and port addresses, was
eased by the multifile, local label and resettable variable features of the assembler
(see Appendix K). This allowed two files to be kept, one (& RXDRV) a driver control
file to set up port dependent variables and then merge in the other, (8 RXTX1) the

port handling software, once for each port. A copy of &ZRXDRV appears as Fig.5.4
to illustrate the approach used.

51

_________ &RXDRV.

The port driver load file

4 copies of the port control drivers.

?
; this file holds the setup values needed to make
?

*PORT#:
~PORT DATA:
~COUNTER:

“COUNT_MODE:
“C_ MODE_WRD:

“TX_BUF —Q#:
“RX_BUF_Q#:

“PORT RESRC:

"FLAG_1#:
“FLAG_2#:

“RX_ INT_VEC:
TX INT_ “VEC:

TX “MASK:

*PORT#:
~PORT DATA:
~COUNTER:

“COUNT_MODE:
“C MODE _WRD:

“TX_BUF_Q#:
“RX_BUF_Q#:

“PORT_ RESRC:

“FLAG_14#:
“FLAG_24#:

“RX_INT_VEC:
“TX_INT_VEC:

TX MASK

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

!
~PORT1DATA
~COUNTER_1
“CNTR1_MODE
~C1_MODEWRD
“MEM_Q#_TX1
“MEM_Q#_RX1
~PORT1RESC
~TX1_EVENT
~PORT1_BRK#
~RX1VEC
~TX1VEC
10H

MERG &RXTX1

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

2
“PORT2DATA
~COUNTER_2
“CNTR2_MODE
~C2_MODEWRD
“MEM_Q#_TX2
“MEM_Q#_RX2
~PORT2RESC
~TX2_EVENT
~PORT2_BRK#
“RX2VEC
~TX2VEC
20H

MERG &RXTX1

; Define the port handler #

; Set the Data register address
; and the Baud Rate generator
; Global BRG counter setup

; This channel BRG setup

; Buffer Queue numbers

?

: Resource # to lock port in/out

; Both TX & RX use same sync event
; Port 1break task sync exchange #

; Interrupt vector address’s

.

! This bit on 8259 stops tx intr

; Finally merge in the driver

WO WM WE Ve WO WE WO WE WS Mo Ve we we

< similar code is used for the remaining two ports>

Figure 5.4 Partial Listing of £ZRXDRV.

One feature of the Hewlett Packard terminal interaction policy is that any input
from the terminal that occurs when there is no input request pending implies that
the user is requesting a System Request. In order to cater for this, the driver
software in the host must schedule the programme PRMPT whenever it detects a

System Request.

To catch these unsolicited inputs, the input interrupt is directed to the break task
interrupt handler BREAK _CNTL whenever no input request is active. This handler
plus it’s associated main task (BREAK) will create the schedule request.

52

Control requests from the host very seldom require any peripheral interaction, the
only one on this interface that does being the space line request. Since this is
basically an output request, and since all requests from the host are mutually
exclusive, it was logical to treat control requests in common with write requests
rather than generating a separate task for control requests.

The remainder of this chapter describes the three tasks required for a single port,
mainly covering the design philosophy and principal problems of each task. All the
code paths and options are not covered here since most of these are tedious sets of
special character checks with very little processing of any interest. Appendix G
covers these tasks in greater detail, while for full detail, refer to the code itself which
is extensively commented!8l.

5.13 TX TASK, the Port Transmit Handler

TX_TASK is set up as the father of all port tasks, so once scheduled, it schedules
the other two port tasks before entering its normal execution loop in which it
remains indefinitely. Refer to Figure 5.5 for an outline of this task.

The task spends most of its life at the start of the main execution loop waiting for
a message buffer to arrive on it’s input queue. When a buffer arrives, and the
memory manager releases the task from suspension, TX_TASK checks if the
message is a control or a data buffer. If a data buffer, the port resource is locked and
the handshake flag, as set by the last configuration call, is examined to determine
handshake type. The Qume or HP style handshakes require that an ETX or ENQ
character respectively be sent to determine terminal readiness, this character being
sent directly by the main task. No data may be sent until the terminal responds
with an ACK, so TX_TASK sets the receive interrupt vector to point to a small
interrupt handler TX_ACK and waits for an event signal from this handler. When
the ACK arrives, TX_ACK resets the interrupt vector to BREAK_CNTL (the
‘break’ processor) and signals TX_TASK to continue.

To perform the actual output, the transmit interrupt vector is set to the output
interrupt handler (TX_CONT) and the transmitter interrupt enabled. TX_TASK
then has only to wait for a signal from the interrupt handler notifying that all the
output has been completed. It then updates the header status byte (see Appendix

K) and posts the completed empty message buffer to the host as an
acknowledgement.

53

PROCEDURE TX_TASK
BEGIN
Schedule (RxTask);
Schedule (Break);
DO Forever BEGIN
GetBuffer (TxQueue, BufAddress);
IF Buffer”RequestType(BufAddress)=Write THEN BEGIN
GetResource (Port);
MarkPortStatus (Active);
UnPackHeader (Buf'Address);
DO BEGIN
IF HandShake = EngAck THEN BEGIN
SendEng (Port);
WaitEvent (PortEvent, FourMinutes, Error);
END;
EnableTxInterrupt (Port);
WaitEvent (PortEvent);
UNTIL Buffer”DatalLeft (BufAddress) = 0;
PackCommonIntoHeader (BufAddress);
MarkPortStatus (Inactive) -END
ELSEIF Buffer”~RequestType(BufAddress)=Control THEN
SetControlVariables;
END
END;

b
INTERRUPT PROCEDURE TX_CONT;
BEGIN
IF PortStatus = Active THEN BEGIN
IF Buffer”Dataleft (BufAddress) = O THEN BEGIN
IF Buffer”Mode (BufAddress) # Honest THEN
Send (Cr + Lf);
SetEvent (PortEvent);
DisableTxInterrupt (Port) END
ELSE
Send (NextChar);
IF Buffer"Dataleft (BufAddress) mod 80 = 0 OR
Buffer”Dataleft (BufAddress) = 0 THEN BEGIN
SetEvent (PortEvent);
DisableTxInterrupt (Port)
END
END

END

Figure 5.5 An Overview of TX TASK, The Output Handler.

One slight deviation from this simple process occurs during an HP style handshake
transfer which requires a new ENQ/ACK handshake sequence every 80 characters,
This is simply implemented by having the interrupt handler perform a normal end
of line return every 80 characters during an output record (which may be 256
characters long). TX_TASK always checks the remaining character count

54

(maintained in the message header) and until this count reaches zero, TX_TASK
will loop and perform another ENQ/ACK handshake sequence, returning control to
the interrupt handler once again after the handshake has been completed.

Control request processing consists of examining the control request type and
transferring control to one of six routines. There are only six requests that are
processed, as the abort request (CN,LU,0) is handled by FROM_HOST and the
buffer flush request is only ever used by the host driver and is not transferred to the
interface at all. With the exception of the space line request (CN,Iu,ilB), all control
requests simply set some variables in the data common attached to the port and
then return the buffer to the host as an acknowledgement.

There are two versions of the space line control call, a positive line space count of
+n meaning that n lines must be spaced, while any negative line space count implies
a form feed. The former case is treated by changing the control call to a write call,
| setting the data count to the number of lines needed to space and, then filling the
"data buffer with the requisite number of LF (line feed) characters. Control is then
returned to the normal transmit processor for it to treat it as a normal line of
output. Similarly, in the form feed case, a single form feed character (FF) is placed
into the data buffer and the data count set to 1.

The transmit termination subroutine TX KILL is one of the few cases where a
termination routine requires some code, in this case the transmitter interrupts are

disabled and the transmitter active flag is cleared to indicate that all activity should
be dead.

5.14 RX TASK, the Port Receive Handler

As with the transmitter, RX_TASK has to first get a message buffer from its input
queue, a point at which it remains suspended for much of it’s time. Once a buffer
has arrived, the header is examined and the control bits checked for ECHO,
HONESTY and BINARY modes, the ECHO flag in common being set accordingly.
The other flag in common of significance is the BLOCK_MODE flag which is set to
indicate that a program enabled block read is in progress, indicated by bits 5 and 6
of the control word both being set. In this case, a block read must be triggered with

a DC1 character, no echo will be given, irrespective of the echo flag, and the input
will be terminated with a CR,LF pair.

The handshake mode is then examined, and if HP style, then a DC1 input trigger

~character is sent (see Appendix K). Finally, the receive interrupt vector is set to
point to the receive interrupt handler, (RCV_CONT) before RX_TASK suspends
itself against an exchange to await the signal from RCV_CONT at the end of the
input record. The wait for event call used is a timed call, with the time delay value
being set to that issued in the last set time delay configuration call. -

55

Once a complete record has been input, the termination being dependent upon
mode, (see interrupt handler description), the main task resets the receive interrupt
pointer back to the BREAK_CNTL interrupt handler, updates the status byte in
the message header and common, returns the message to the host and then loops to
fetch the next request.

The port resource is locked by RX_TASK prior to any I/O being performed on the
port, and released after the last transaction is complete. This resource is used to
ensure mutual exclusion of the two port handlers RX_TASK and TX_TASK, a
feature not normally required in an Hewlett Packard RTE4B environment as the
operating system ensures this exclusion by only allowing one request on a port at a
time. However, should two EQT entries be configured to use the same port via the
configure {cn, LU, 30Db) call, then the resource locking will eliminate any interaction
between possible overlapping requests. This same feature is also of value on another
version of this interface, where it is used with a different host system which allows
both read and write requests to be present simultaneously.

RECEIVE INTERRUPT Handler

The receive interrupt handler RCV_CONT has the basic function of responding to
an input interrupt, fetching the input character, checking it for special character
processing and, then placing the character into the message buffer. The major part
of this essentially very simple process is the special character processing, a full list
of the processing that occurs being found in Appendix G.4. However, a few of the

more interesting special characters and the different modes of operation are
described below.

The BINARY bit when set specifies that no special character checking should occur,
all characters should be added to the buffer, and the read should only be terminated
once the requested number of characters have been input. Finally, should an odd

‘number of bytes have been requested, then a zero padding byte must be appended
to the buffer.

In contrast to this, ASCII mode (non-binary) requires that several characters
assume special significance and need special processing. Also records will only be
terminated upon receipt of a carriage return (CR) and will be padded with an ASCII
‘SPACE’ character. However, in the ASCII mode, an HONESTY bit can be set which
then avoids all special character checking. These two bits, HONESTY and BINARY,
are set in the calling EXEC control word (CONWORD) (see Appendix K).

Of the special characters that are processed, DC2, CAN, BS, DEL and CR are the only
ones that deserve special mention here.

56

CAN, entered using a CNTL X key is used as a means of attracting PRMPT, the
system break mode processor’s attention at the end of an input line. Whenever
RCV_CONT detects a CAN character, it passes control to BREAK_CNTL the
break task interrupt handler. This feature, which is not a standard HP feature, is a
very useful feature for getting PRMPT’s attention when some errant program
insists on accepting all input from a terminal and will not go away. PRMPT can
now be scheduled and the errant program can then be terminated easily.

DC2in HP style handshakes is specified as the response to a DC1 trigger indicating
2 LONG MODE BLOCK transfer 9. This DC2 will be followed by a CR return
character which must then be responded to with a second DCI trigger. Figure 5.6
illustrates this handshake sequence which should only occur if the DC2 character is
the first character in a record.

TERMINAL RMUX MULTIPLEXER

Indicate a long mode DC1 Send Normal HP Handshake

Block Transfer trigger character

Pending DC2,CR(LF) Wait for CR & ignore it
Turn off echo
Indicate readiness for

DC1 Block mode with a second

trigger '

Send data terminated

with a return DATA + CR(LF)

Figure 5.6 Long Mode Block Transfer Sequence.

The return after the DC2 is troublesome, since it normally indicates a record end,
hence a flag (BLOCK_FLAG) is set in common whenever the first character is a
DC2. Then when a return (CR) is detected, BLOCK_FLAG is checked and if set, it is
cleared and the DC1 trigger is sent. There is otherwise no difference in processing
except that echo is turned off for block mode reads.

BS and DEL are used to edit a record before it is terminated. BS removes the last
character from the buffer, unless the buffer is empty, in which case the backspace
responds as for the delete. The response to a DEL depends upon the type of
handshake set. For HP style handshake (ENQ/ACK and DC1 triggers), an HP
terminal is assumed and a terminal specific clear line command is issued, the
complete output sequence being CR to return to start of line, ESC K to clear the
current line and finally a backslash (\) to act as a delete indicator and replacement
for the prompt that usually exists at the start of most input lines. For non HP
handshake mode, no terminal specific characteristics can be assumed, so the string
\,CR,LF) is issued which places the cursor below the deleted line and again starts
the line with the backslash prompt replacement.

57

To simplify the process of sending special character strings, a small subroutine
(OUT_CHNG) was written which when called, outputs the character in the A
register, pops the return address off the stack and stores this address into the
transmit interrupt vector. This causes the next interrupt to pass control to the
statement following the call. The concept of moving the interrupt vector
continuously led to very readable and simple code and eliminated the need to
maintain any state flags.

Upon receipt of a return (CR) the BLOCK_FLAG is checked first and if set, then the
DC1 sent, otherwise a return and line feed are sent if the echo flag is set, or if the
transfer was a block mode transfer. The special check for block transfers is due to
the fact that block transfers must not echo but do require the CR, LF termination.

Echoing of characters on this interface is a software performed function the
received character being transmitted after reception, whereas the standard HP
interface cards include extra logic on the card to route the incoming signal out to
the transmit data line. This method uses extra logic and causes any receive errors
to pass unnoticed.

However, the echoed character is coincident with the received one whereas in the
RMUX interface, there is a single character time shift between received and echoed
characters. The receive interrupt handler does not use transmitter interrupts to
signal echo completion, nor does it check for this, as transmit and receive baud rates
are always the same meaning that the transmitter can always transmit a character
in the time taken for the receiver to receive one.

5.15 BREAK TASK, the Unsolicited Interrupt Handler.

BREAK_TASK waits for a signal from it’s interrupt handler, and when it gets one,
a buffer is fetched from the pool, the header is filled with the correct EQT address
(stored in data common), a zero conword to indicate a ‘break’ request, and the
terminal status with the break bit set. The buffer is then dispatched to the host
before looping to await the next signal.

BREAK_CNTL the break mode interrupt handler is entered whenever any
unexpected input arrives, and its first function is to clear the interrupt (by reading
the USART) and check the character. All characters are ignored except ‘SPACE’ and
‘CAN’ (CNTL X) which are the only two recognised break characters. If one of
these characters is recognised then the terminal ‘break enabled’ status is checked.
This status is set by the terminal enable calls (CN,lu,20B and CN,lu,21B) (see
Appendix K), and if disabled, stops all system break requests. Should the break
status be enabled, however, BREAK_CNTL checks to see if either the transmitter
or the receiver have a valid buffer as indicated by the port resource being locked. If
a valid buffer exists, then BREAK_CNTL merely sets the ‘break’ bit in the header

58

status word of this buffer, and terminates, otherwise it signals the main programme
BREAK_TASK for it to compile 2 blank message and send it to the host.

59

Chapter 6

The Host Software Driver Routine - DVX05
6.1 Introduction to DVXO05

Every individual type of interface connected to an HP 1000 computer running the
Hewlett Packard RTE operating system requires a special module of operating
system code called a driver. This module remains completely invisible to the
normal user of the system, but must translate all user requests from the standard
format defined for I/O requests within HP’s RTE operating system, into the
commands necessary to drive the actual peripheral. Drivers in RTE have fairly
rigidly defined rules as to how they interact with the rest of the operating system,
and how they must be written.

The standard operating system uses an equipment table to define all the
peripheral devices in the system, with one entry (known as an EQT entry) for each
interface card in the system. This one to one mapping between peripherals (the
hardware) and the EQT entries (the software pseudo peripherals) results in only
one user being able to use an EQT entry and, hence a peripheral at one instant.
This of course is a requirement when an interface card controls a single peripheral
as it eliminates the possibility of two users corrupting one another’s I/O.

However, with four peripherals on a single card, the RMUX multiplexer required
that the operating system be altered to accommodate multiple EQT entries being
assoéia.ted with a single interface. Since the actual operating system itself could
not be altered, the driver DVX05 was written to assume some of the system
functions for itself in order to map in the correct user to answer each interrupt.
This required a small routine to be placed outside the usual driver area in a
position where it would never be mapped out, Table Area 1 being chosen for this.

This chapter describes the major features of DVX05 and the mapping routine
$DVM5, with particular emphasis on their interaction with RTE. Appendix I gives
further details on the more minor internal features and of the driver interaction
with the card; appendix H gives a description of RTE'’s I/O system and all its I/O

tables and appendix K describes the I/O calls and functions applicable to the
interface. ' '

60

6.2 The Normal Interrupt Response Procedure

Under the RTE system, any interrupt causes the system map to be enabled and
the trap cell instruction to be executed. For normal interrupts, this instruction is a
jump to the system routine CIC, the Central Interrupt Controller. CIC saves the
machine state, determines the source of the interrupt, and uses this information to
address an entry in the Interrupt Table which specifies how to handle the interrupt.
The usual Interrupt Table entry contains a pointer to an EQT entry which in turn
contains the address of the interrupt handler. CIC then saves this EQT address
information into a special area in the machine base page reserved for the current
EQT entry address, and then via the Driver Mapping Table(indexed by EQT
number) determines the correct driver map to load and enable.

Several possible situations exist, as the data for the request may be in the system
map as in the case of buffered requests, it may be in the special user map reserved
for memory resident programmes, or it may be in the user map of a disk resident
programme. The two word driver mapping table entry specifies the case in
question, and for disc resident programmes, the address of the user programme’s
base page. From this information, CIC reloads the user mapping registers to point
to the correct user and the correct driver before finally passing control to the
driver.

The driver is then totally unaware of which map it is in, as it merely thinks it is in
a simple 32K machine with the data, driver and peripherals all available within its
address space. Upon completion, the driver returns to CIC in the system map via

a link in Table Area 1, the only area included in both the system and all the user
maps.

When a user programme calls the system to perform some I/O, the system places
the ID address of the calling programme into word one of the EQT of the desired
peripheral, which locks the EQT to the caller for the duration of the request and
stops other users from using the same peripheral.

The peripheral EQT lock implies that every peripheral that may be accessed
without excluding some other one, must have its own EQT entry, an easily
supplied feature within the RTE system structure. However, as each peripheral
slot in the machine has only one interrupt table entry which can only contain one
EQT entry address, it is impossible to have four independent, simultaneously
usable peripherals with four EQT entries, all attached to a single slot in the 1/0
backplane, and still remain within the standard operating system. What was
required therefore was the ability to define four EQT entries for a single card slot
and then have some means of altering the interrupt table entry to point to the
correct EQT entry whenever the interface causes an interrupt. The requirement,

61

that this be accomplished without any alterations to standard system code was
obvious, as the driver DVX05 had to survive upgrades of the operating system
without having some user patch to add into each upgrade.

6.3 Operating System Feature Changes — The Philosophy.

In order to identify the EQT that each return message was destined for, the EQT
address was included in the message header as the first two bytes after the
synchronising characters. This enables DVX05 to determine the correct
destination EQT for each interrupt, but however such information arrives too late
for CIC to use, as once CIC has passed control to the driver, all EQT and user
mapping has been completed.

With the EQT address determined, it is a simple. matter for DVX05 to alter all the
EQT addresses in the base page and access the correct EQT since all EQT’s are
stored in Table Area 1 and hence are accessible from all maps. CIC does not
maintain any record of which EQT has been stored in base page, other than the
addresses in base page themselves, so by changing these addresses from within the
driver, DVX05 effectively fools CIC into thinking that it loaded the correct EQT
into the base page. CIC uses these addresses after a completion return from the
driver in order to work out which user programme to release from I/O suspension
and reschedule.

For write requests and control requests, the return messages contain no return
data to go into a calling programme buffer, the only return information being
stored in the EQT. There is therefore no need to map in the correct user for these
requests. The system always restores the user map to it’s status prior to the
interrupt and takes no notice of changes it made prior to entering the driver so it
does not matter that on entry to the driver the EQT in base page and the user
map correspond, while on exit from the driver, they do not. Thus, once the correct
EQT has been loaded into the base page address area, write and control requests

can be processed quite normally, without any concern over which map is enabled,
or whether the correct user map is installed.

Read requests however contain data in addition to the message header
information, and this data has to be transferred to the caller’s data buffer in the
calling routine. For system requests and buffered read requests, both of which emanate
from the system map, the driver needs to access data buffers in System Available
Memory (SAM) which means that the system map must be mapped into the
driver mapping space. For unbuffered user map read requests, only the correct user
map must be loaded into the mapping registers. Since a user programme may only |

62

have one I/O request active at a time, having the correct user map enabled
guarantees that the corresponding driver partition will be mapped in as well. This
situation does not however exist in the case of the system map as many different
I/O requests may be concurrently active from the system map.

RTE provides a standard routine ($XDMP) [19) which system map resident drivers
can call to have a new user loaded into the user map. This routine requires the
calling driver to save the contents of the 32 word mapping registers first and then
call $XDMP, passing it the ID address of the programme that must be mapped in.
This call is expected to be used by drivers placed in the System Driver Area (SDA),
a special driver area included in the system map 1] which must do all its own
mapping. Placing drivers into the SDA has the disadvantage that it uses up system
address space, since all SDA drivers are stored consecutively and not overlaid as
are normal drivers. For this reason it was decided that the multiplexer driver
should not be forced into the SDA but should appear as a normal driver. This
meant however that there would be times when the driver would need to change
the user map from the one in which it had been invoked, to the correct one for the

return message while having no copy of the driver present in the system map from
which to call $XDMP.

This led to the requirement for a stable base from which $XDMP could be called.
This area had to always be available from the system map, and preferably also be
accessible to all user maps although this latter requirement could have been
eliminated by performing cross map data transfers from the system map. Table
Area 1 in RTE is a two page (2K words) region that fits these requirements
perfecf‘.ly since it is included in all maps of the system. However, Table Area1is a
small area which contains all the system tables and should not be extended
beyond 2 pages if it is not seriously to reduce the available programme space.
Hence it was necessary to ensure that only the minimum amount of code would be
included in Table Area 1 to perform the necessary map changing.

Since it is only for read requests that this special mapping code need be accessed,
the code could be reduced to a simple and straightforward procedure. Its first act
upon being called is to determine if the required data space is in the system map
or the user map. If in the system map, the transfer can proceed immediately
followed by a normal return to the standard driver in its initial map. If the data is
in the user map, then the user map registers must be saved, and $XDMP called to
load in the correct programme whose ID address is obtained from the EQT. The
user map must then be re-activated before the actual data transfer can occur.
After this the system map must be re-enabled and the original user map restored
before returning to the driver in this original user map.

63

These requirements were incorporated into the main driver routine DVX05 and its
associated Table Area 1 mapping routine $DVMS.

6.4 Mapping System changes - $DVM5

This section describes the actual implementation, in $DVM5 and DVX05, of the
mapping alteration code.

151413 121140 9 B 7 6 5§ 4 3 2 1 0

— 1 sSD (RESERVED) M
SsD (RESERVED) M
WORD 1
OF DMT 3 SD {RESERVED) M
ENTRY A
FOR
EQT o
ENTRY:
[J
— N SD (RESERVED)
— 1 |MA| (RESERVED)
WORD 2 2 MR {RESERVED)
OF DMT
ENTRY _| 4
FOR °
EQT
ENTRY: °
— N MR (RESERVED) P
WHERE:

SD = 0 IMPLIES DRIVER RESIDES IN A DRIVER PARTITION, AND
M = STARTING PAGE NUMBER OF PARTITION IN BITS 0-9

sD = 1 IMPLIES DRIVER RESIDES IN SYSTEM DRIVER AREA, AND
M = 0 IMPLIES DRIVER NOT DOING ITS OWN MAPPING
M = 1 IMPLIES DRIVER DDING ITS OWN MAPPING

MR = 1§ IMPLIES THAT THE I/0 REQUEST BUFFER IS LOCATED IN
A MEMORY RESIDENT PROGRAM.
{P VALUE NOT SIGNIFICANT - RESERVED FOR FUTURE USE)

MR = 0 IMPLIES THAT THE I/0 REQUEST BUFFER IS NOT LOCATED
IN A MEMORY RESIDENT PROGRAM. BUFFER LOCATION IS
INDICATED BY THE VALUE OF P, AS FOLLOWS:
P=0 IMPLIES BUFFER IS IN THE SYSTEM AREA
P NOT ZERO IMPLIES BUFFER IS LOCATED IN A DISC
RESIDENT PROGRAM. P IS THE PHYSICAL
PAGE NUMBER OF THE PROGRAM'S BASE PA

N = NUMBER OF EGT ENTRIES IN SYSTEM

Figure 6.1. The Driver Mapping Table (DMT) format.

64

!

Get EGT number
N = [(EQT4 - EQT} /15

;

SYSTEM JUMP TO $XDMT
to get address of DMT entry
second word = WRAD2

E=1 E=20
no in System yes
\\map already /
Gett n::appingd sysltlem Transfer data

status and ca - £l
$OVMS directly

SDVME

L4 g

Save mapping status
configure I/0 instruction

- Q yes

Save User Map USA
Load new user $XDMP Transfer data

TRANSFER DATA
System Map Jump SJP

4

Restore User Map
Usa

DVX05 Jump and Restore
status

1
L}
)
L
1
1
)
]
L]
1
)
1
1
1]
L]
t
[}
[}
L]
L]
)
1
[]
L]
L}
L)
H
User Map Jump UJP H
]
1
L]
1
)
1
]
1
)
1]
[]
1]
1]
]
]
|
)
EH
L]
1
L
L
L]
]
]

Figure 6.2 Mapping System Changes For READ Requests.

The first item needed after the correct EQT addresses have been loaded into the
base page is the EQT entry number, which is found by subtracting the start
address of the EQT table (found in variable EQT1 in base page common) from the
current EQT address and dividing by 15, the length of an EQT entry. This number

65

is needed to index into the driver mapping table (DMT) to find the user map status
of the user currently locking the EQT. The address of this mapping table is held in
an external system variable $DVMP which is only accessible from the system map.
Thus, as a part of $DVM5, a small routine ($XDMT) was written to swap maps and
determine the address of the driver mapping table entry. Since the DMT table
itself is located in Table Area 1 it can be accessed from within the normal driver
DVX05. The second word of the DMT entry (the DMT format is shown in Figure
6.1) is tested for zero to determine if the system map must be enabled. In this case,
the current map status is tested to see if the system map is already enabled. If not,
then a map change is required, as is also the case should the DMT entry be non

zero. The mapping system status is then saved, and the system map is enabled in
a jump to $DVMS5.

At this stage, $DVM5 saves the mapping system status, configures it's I/O
instructions to the correct I/O slot and forks to use the system map or to reload
the user map. To reload the user map, the current user map is saved using the
single ‘USA’ instruction, the ID address is obtained from the EQT entry and
$XDMP is called to perform the actual reload. The user map is then enabled and
the data is read, byte by byte from the interface into the user buffer. Finally, the
system map is re-enabled and a ‘jump and restore status’ instruction performed to
return to DVX05. This process is illustrated in the flow chart in Figure 6.2, the
emphasis on this mapping section being necessary due to its non standard nature.

6.5 The Layout Of The Main Driver — DVX05

The driver, as with all HP drivers, consists of two major modules: the initiation
section to pass user requests to the interface, and the completion section (interrupt
handler) to receive the returned user requests. The driver was coded to use
subroutines in an effort to keep the code modular and easy to follow. The
comparatively simple process of sending messages to the interface and receiving

the replies was complicated by the following auxilliary functions which the driver
had to perform to suit the RTE system.

* _ Accept a buffer flush request causing all buffered requests to be ignored until

the buffer queue has been emptied.

* Process invalid or illegal interrupts.

* Process power fail requests and re-configure the interface.

* Process time-out commands from the system and issue abort requests to the
interface.

E

Manage the special situation when a terminal is the system console.

The Initiation Section:

'Figure 6.3 shows a block layout of the initiation section of DVX05.

66

Clear control flip-flop
Configure I/0 instructions
SET10

EQT 1 \\
ie.has interface even
been ini

3=20

0

41

tialized

| INITIALIZE ALL EQT'S]

#0

no /EQT 5 bi
ie., power fail ?

t 158 = 1\yes

Set this EQGT
address into the
interrupt table

CONTROL \Ye&S

EQT 12 = 0 no
does configure EXIT
word exist
| yes

Prepare a CN, 30B
configure command

REQUEST /

no

Set up Read/Write
request buffer

Set parameters
into EQT according
to control request

control
buffer

Set up
request

Send buffer
to interface

Return to
system CIC

Figure 6.3 The Initiaton Section Of DVXO5.

67

Configuration of I/O Instructions.

The configuration of I/O instructions is a standard requirement for all RTE
drivers since only one copy of each driver is used to drive all interfaces of the
same type. Thus the driver must rebuild all its I/O instructions by including the
correct interface slot address into them. The first I/O instruction executed clears
the control flip flop, and the remaining configuration process then supplies the
necessary twelve microsecond delay for the interface to notice the clear control
flip flop (Section 5.11).

Cold Start Initialization.

On the initial entry after system start up, all four EQT’s for the same I/O slot are
initialized to hold the ID address of the programme PRMPT and the address of
the interrupt table entry for the slot. All four EQT’s are initialized at once, DVX05
finding them by searching all EQT’s for those with the same slot number (held in
word 4) and same initiation section address (held in word 2). PRMPT’s ID address
(or -1 if not defined) is stored in EQT word 13 and acts as an indicator to show that
the initialization has been performed.

Power Fail Handling.

When the power fails in an HP1000 system, a battery backup maintains the
memory contents, but all peripheral power disappears. Thus on power up, the
operating system resumes from where it left off, while the interface starts up from
scratch and needs to be fully configured.

To accommodate this, the power fail recovery system re-issues all outstanding I/O
requests setting bit 15 in each EQT word 5 to indicate that the power failed. Since
the main memory contents were not lost during the power outage, the EQT will
still be valid. Now whenever a configuration call is made, the control section of
DVX05 was made to store a copy of the configuration request parameter into EQT
word 12. Thus when the system issues the power fail request, the driver changes
the request into a configuration call using the configuration parameter previously
saved in EQT word 12 and sends this to the interface, thus re-establishing the
configuration that existed prior to the power failure. If EQT word 12 is found to be
zero, then the power fail call is ignored, as will be all subsequent calls until a valid
configuration request is issued.

Minimizing Map Changes.

Whenever an interrupt from an interface occurs, the driver is entered with one of
the four EQT’s that belong to the interface, but as described previously, this EQT
may not be the correct one resulting in the re-mapping process described in Section
6.4. In an attempt to reduce the number of times that the entry EQT is wrong, the

68

initiator always places the EQT address of the current request into the interrupt
table, with the result that every interrupt will enter with the EQT address of the
channel that last received an initiation request. When all four channels are busy,
this feature has little effect, and the number of erroneous EQT entries made is
likely to be the same as if a single EQT was always used. However, as less channels
are used, the chance of the entry EQT being correct increases, with the result that
the mapping activity is reduced. When traffic patterns are examined, this feature
can be seen to be quite effective as most terminal transactions occur in bursts,
with relatively long idle periods between these bursts while the user reads the
screen, decides what to do, etc.

Request Processing.

The user request is examined with read and write requests being treated together,
while control requests are processed separately. For read and write requests, the
EQT parameters are merely packed into the header (see Appendix 1.4) and the
complete message of header plus data is output to the interface, one word at a
time. Control requests however are checked first with those requests that affect the
EQT status being processed before being dispatched to the interface.

The interface offers programmable handshake features as described in Chapter 4
and can therefore appear to emulate either an HP12966 interface with DVRO5 or
an HP12531 interface with DVROO depending upon the handshake programmed.
The last two digits (in octal) of the driver name are stored in the EQT 5 [(see also
Appendix H) as the driver type code and many programmes check this type code
to determine the type of terminal they are dealing with. Thus, whenever a
configuration call is made on any EQT, the handshake bits are checked, and if an
HP style handshake is selected, then the driver type code is set to ‘05, otherwise it
is set to ‘00’

When outputting the message header to the interface, the FLG flip-flop is used in
conventional HP manner to pace the data exchange process and act as the
handshake line. For each word of the header sent, this flag is checked and if it has
not set within 20us of the output instruction, then an error condition is assumed,
as the interface should always be able to respond within this time. The error is
treated by setting an error code of 3 into the EQT word 5 status field, and taking
the device not ready exit back to the system. The system then marks the EQT as
not ready (or down) and reports the condition to the system console. Should the
header of the message be accepted correctly by the interface, any remaining data
is sent without FLG checking as the input DMA channel on the interface has been
proved to be working and the data transfer can then proceed as fast as the code
will allow at one word every seven microseconds.

69

The Completion Section.

Figure 6.4 shows the block layout of the completion section of DVX05, the entry
point name being CX05. After the normal configuration of I/O instructions which
has to be repeated every time the driver is entered, the timeout entry bit is tested,
this being the only condition other than an interrupt (although it is due to an
interrupt from the time base) which can invoke the completion section.

Timeout Processing.

A timeout means that the interface request should be terminated, and so an abort
message (CN,lu,00) is sent to the interface just as any normal control request.
However, should the interface have timed out due to an interface fault rather than
a slow terminal user response, then the system must be informed, and so to check
for a fault, a short timeout of 1,2 seconds is set into the timeout clock (EQT word
15) and bit 6 is set in the EQT status field to indicate that the interface is already
processing a timeout request. The abort request should always be completed in
much less than 1,2 seconds and hence , if no acknowledge is forthcoming in this
time, then the interface must be faulty. Thus, for every timeout entry, the second
timeout bit (bit 6 in EQTS) is checked and if set, an interface fault is reported by
taking a timeout exit to the system. This will cause the device to be marked down
and a console report to be generated. If, however, the abort request is processed
correctly, then the original aborted request will be completed with a zero
transmission log and the second timeout bit will be cleared.

70

Clear Control
Configure I/0
instructions

3
TIMEOUT \

Get EQT address from
interface and map
in correct EQT into
pause page

Fetch
from in

header
terface

comman

Return
=0 7

\ENTRY ? /

Set first
timeout bit
Set CN, 00
abort request
D—
Schedule
PRMPT

Was request

a control or
write request

ap in cor
Read

Restore maps

rect user

data
CONTINUATION
EXIT

SECOND
TIMEOUT ?

Set device
down

\

COMPLETION
EXIT

Figure 6.4 The Cqmpletion Section Of DVXOs5.

71

Normal Interrupt Processing.

If the entry was due to a normal interrupt then the first action is to read the EQT
address from the interface and load the correct EQT into base page. This done, the
remainder of the header is read from the interface and unpacked into the EQT.
The returned CONWORD 113] is then checked to determine subsequent action. For
write and control requests (CONWORD = 2 or 3) no further action is needed, so a
completion return to the system is taken.

In the case of PRMPT schedule requests, (CONWORD = 0), the program PRMPT
is scheduled by a call to the external system routine $LIST [and a continuation
return taken.

For read request returns, the correct user memory must be mapped in before the
data can be read as was explained in detail in Section 6.4. After the map has been
changed, the data is read from the interface a byte at a time, and then finally the
original map is restored and the completion exit is taken to return to the system.

As with the output process, the FLG flip flop is monitored during the header input
process, and any delay in excess of 20 us is treated as a fault and reported
accordingly by taking the error exit and setting an error code of 3 into the status
word. Other errors are checked for, these being:— (see Appendix 1.7)

* Error 2 when the user map specified cannot be mapped in.

* Error 4 when the returned EQT from the interface is not a correct EQT for
the slot.

%

Error 5 when the synchronization characters cannot be found within the first
5 characters from the card.

Each of these errors will cause the interface to be marked down and an I/O NOT
READY message to be displayed on the system console.

6.6 Timing Considerations

There were several points at which timing had to be carefully checked, as the
shortage of handshake and interrupt lines in the HP1000 meant that not all
transactions could be properly paced.

Cold Start Delay.

During the boot up procedure the system performs a general preset instruction
(CLC 0} which resets the interface completely, forcing it through a power-up re-
start procedure. This procedure, which involves the checking of all RAM, the

72

setting up of all tables and the scheduling of all 15 tasks on the interface, takes
approxiamately 20 ms . During this time, RTE will be busy going through its
initialization phase, which may, depending upon the user defined start up
procedure, attempt to access the interface, with the result that the interface input
task may not be ready, causing an error 3. This problem is more pronounced after
a power failure recovery as the interface requests will be re-established very
quickly after the power restoration, the process not being user definable. To
overcome this possible problem, a comparatively long delay of 120 ms was added
into the configuration control call handler, since this is always the first call that
occurs after a power fail or during the boot up procedure. This delay does not
cause a problem in normal use since this call is seldom used.

Driver Exit Delay.

During the output process, the desired operation after outputting the last
character to the interface is to issue a (STC,C) set control and clear flag

“instruction and exit the driver. However, the delay between the last output
instruction and the clear flag command would be less than the six microseconds
worst case response time of the DMA input channel on the interface, with the
result that the set flag action of the DMA input channel could occur after the clear
flag action of the STC,C instruction. Since no valid instructions were needed which
could be included between the last output (OTA) and the STC, a dummy pair of
rotate instructions were included to add the 6us delay.

After the final STC,C instruction at the end of an output sequence, it can take up
to 80us for the interface micro-processor to respond to it’s interrupt and replace
the memory buffer in the DMA controller. During this interval then, the host
must not attempt to output 2 new record to the interface, otherwise an error 3
would result and the interface would be marked not ready. Checking the time
taken between entry into the initiation section and the start of any output to the
card, shows a delay of greater than 104us which ensures that the interface will

always be able to replace the DMA buffer without the need for any host padding
delays before output can begin.

CLC to Driver-Output Delay.

The last delay that had to be ensured was the delay between issuing the clear
control CLC instruction upon entry to the driver and the beginning of any output.
This delay, as described in section 5.11, is necessary to stop any interference
between host data output and interrupt signals from the interface. Placing the
CLC instruction at the start of the I/O configuration routine, which is much longer

than the required twelve microseconds, was all that was necessary to ensure this
delay.

73

With the exception of the 6 us delay at the end of each output, no regular delays
were needed in the code, resulting in good speed efficiency from the driver. The
long delay in the configuration section of the driver is so seldom used that its effect
upon system throughput is insignificant.

74

Chapter 7

Performance Measurements and Results
7.1 Introduction

The multiplexer was designed with two aims in mind:

* To increase the number of terminals that could be connected into the

computer main frame.
* To reduce the loading on the host during I/O.

The connectivity aim was achieved resulting in a four times increase in the
number of terminals that could be plugged into the available slots in the machine
mainframe. All that was required to further prove this objective was to check that
the multiplexer could handle all four ports at.once, a factor which was easily
verified.

In order to justify that host loading was reduced, some measurements had to be
made to compare the performance of the RMUX multiplexer with that of the two
standard HP interface cards which it was designed to emulate. This chapter
describes two sets of measurements made to evaluate the multiplexer
performance:

* Microprocessor timing measurements made using a logic analyser.

* Host CPU programme measurements.

The results of these measurements show that the interface is capable of
supporting a total character throughput of 6000-7000 characters per second, uses
20% of the host’s time compared to the HP12966 and only 5.2% compared to the
character orientated HP12531. '

7.2 Interface Timing Measurements

The principal instrument used for debugging software and hardware was the
Tektronix 7D02 logic analyser with an 8085 personality module. This instrument
plugs into the microprocessor socket in place of the 8085, and allows one to
monitor all bus and signal line activity. The instrument contains an extremely
powerful and sophisticated triggering facility, can store and display data which
matches quite complex qualifying conditions and can perform timing
measurements between any two trigger conditions.

75

The timers (there are two available in the analyser) can be set to measure time or
events, and in time mode can be stopped, started and reset at will. They thus
presented an excellent tool for making measurements of interface performance.

Although the 8085 microprocessor instruction times are known, and therefore
subroutine execution times should be calculable by counting machine cycles, this
cannot be done in this case due to there being three possible levels of nested
interrupts and a DMA channel all interfering with normal execution. While it is
still feasible to calculate worst case times for these effects, the level of uncertainty
makes actual timing measurements mandatory.

Times that were checked were:

* Time to process a single normal interrupt on input and output.

* Time from arrival of a request at the interface until ready for the first
character.

*

Time to dispose of a completed message.
Time to process the time list.
* Time to replace the DMA input buffer.

The results of these measurements are shown in Figure 7.1, the maximum or worst
case times occuring during periods of peak activity with all four channels running
at 9600 baud.

Measurement Best | Worst
Time| Time
interrupt handler time for a single input character. 235 | 265
Interrupt handler time for a single output character. » 145 | 175
Message initialisation time for a read request. 193 | 228
Message initialisation time for a write request. 180 | 180
Message disposal time from last char to host interrupt 337 | -
Time to process the time list. (max 4 entries) 251 | 490
DMA Input buffer replacement time. 136 | 176
Timer interrupt routine. 30 30

* all times in micro-seconds.

Table 7.1. Interface Timing Results.

76

From the message initialization, character handling and message disposal times,
the following conclusions can be made:

* The message handling overhead in total amounts to about 530us giving a
capability of 1800 null messages per second on both input and output
requests.

The character handling times indicate that the interface could handle a total
burst rate of 4250 characters per second on input and 6900 characters per
second on output.

Assuming message lengths of 10, 50 and 250 characters, the processing time
per output message amounts to 2300us, 9300us and 44300us respectively,
giving average effective character rates of 4300, 5400 and 5650 characters per
second.

The time-list processing time which occurs every 10 ms indicates that the
time list processor occupies less than 5,2% of the system time.

The DMA buffer replacement time was measured from the time that the
host issued its STC interrupt command until the DMA controller was finally
reloaded and re-enabled with a new empty buffer. The worst case measured
time of 176us ties in well with the calculated worst case figure of 167us.

These figures indicated that the interface performance would be more than
adequate to support four terminals running at 9600 baud although not enough to

run all at 19,2Kbaud should all attempt to transfer at maximum speed
simultaneously.

7.3 Host Throughput Measurements

To measure the effect on host performance, some means of exercising the
terminals was required while the CPU utilization could be monitored. The
terminal exercise routine would have to sustain high data rates for long periods of
time to allow easy measurement, and since this is difficult to achieve in input
mode, all terminal activity was measured in output mode only.

Terminal testing was done by a programme PRINz of which multiple copies were
made, one for each terminal being used in the test (e.g. PRIN1, PRIN2, etc.).
PRINz was written to output 160 records of 252 characters each to it’s terminal
and time the total transaction to find the average character rate. This transfer
takes in the region of 45 seconds when using 9600 baud communications, a long
enough time to average out any timing irregularities.

77

In order to measure CPU activity, a simple programme was written (LOADT)
which merely performed a simple CPU intensive calculation several thousand
times. LOADT was also made to time itself and upon termination, print out the
total time taken. The number of times the programme looped was adjusted to
ensure that LOADT would complete in less than half the time taken for PRINz, the
final programme taking 17,70 seconds to complete on an otherwise inactive
machine. Using this as a base figure, any reduction in available CPU time would
display itself as a lengthening of the time taken for LOADT to complete, allowing
the percentage time available to LOADT to be calculated. '

To test a combination of terminals, each terminal was allocated its own copy of
PRINz with PRIN1 having a priority of 61, PRIN2 a priority of 62, etc. This
staggering of priorities was done to check whether the priority was affecting the
programmes; if the priority was to affect a programme’s performance, then
PRIN1 should show a higher throughput than PRIN2 etc. for identical terminals
and interfaces. In practice, the data rate of-four programmes driving four
HP2621A terminals proved to be repeatable to 1 character per second, and quite
insensitive to programme priority. Furthermore, the priority' made no difference
whether the four terminals were all on a single multiplexer, or whether they were
on two multiplexers, each feeding two terminals.

The desired copies of PRINz were then all scheduled simultaneously with one copy
of LOADT, and at the end all the times and data rates recorded. Figure 7.2 shows
the values recorded for various combinations of terminals and interfaces. Two
derived results from these figures are also included, these being the percentage
CPU utilization for a standard character rate of 1000 characters per second, and
the percentage efficiency of data transfer when running at 9600 baud; a nominal
data rate of 960 characters per second.

The figures for character transfer rate show that the RMUX interface is
significantly better than standard interfaces. In the non-handshake mode, when
compared to DVR0O, the RMUX manages 99 percent of the nominal data rate
compared to 73 percent for the HP12531 with DVRO0O0. This is due to the RMUX
using a double buffered USART which ensures that each character starts directly
after the previous character’s stop bit; whereas the HP12531 causes an interrupt
after each character which DVROO has to process. In fact, the character transfer
rate of 701 characters per second implies an average character time of 1,43 ms
which, with a nominal character time of 1,04 ms, implies that the average
interrupt overhead in DVROO is in the region of 380 microseconds; quite a tribute
to the rather weak I/O system of the HP machines.

78

No of Terminal Interface Driver LOADT Char % Char. % CPU % CPU
Terms Type Type Type Time Rate Effic'y - Time /1000¢ps
Note(1) Note(2) Note(3) Note(4) Note(5)

1 HP2621 HP12531 DVROO 23,57 701 73,0 249 35,5

2 HP2621 HP12531 DVROO 34,27 700 73,0 484 345

1 HP2621 HP12966 DVRO5 19.17 819" 7.7 94

2 HP2621 HP12966 DVR05 20,85 819* 15,1 92

1 HP2621 RMUX DVX05 18,03 950 98,9 184 193

2 HP2621 RMUX DVX05 18,37 945 98,4 3,63 192

3 HP2621 RMUX DVX05 18,71 932 971 539 1,91

4 HP2621 RMUX DVX05 19,04 917 955 7,00 191

4 HP2621 RMUX DVX05 860"

8 HP2621 RMUX DVX05 20,54 917 95,5 13,83 189

0 LOADT Measurement only 17,70

* Indicates ENQ/ACK HP style Handshake enabled.

NOTES: -
1 LOADT runs for 17,70 seconds on an otherwise empty machine. All data transfers were long enough to
complete after LOADT had completed.
The transfer rate relates to output only transactions without any handshake enabled.
3 An indication of transfer efficiency for a nominal rate of 960 characters per second.
Calculated from : [(CHAR RATE) * 100]/960
4 The percentage utilisation for 'n’ ports running at the given data rate.
Calculated from : 100°[(LOADT TIME) - 17,70]/[LOADT TIME].
5 CPU utilisation normalised to a base of 1000 characters per second for easy comparison.
Calculated from : [(PERCENT CPU TIME)™1000}/[(NO OF TERMS)"(DATA RATE)].

N

Table 7.2. Host Efficiency Figures for Different Interfaces.

When comparing the character transfer rates with ENQ/ACK handshake enabled,
the RMUX interface performs marginally better than the standard HP12966, the
ratio being 860 characters per second to 820. Since the HP12966 also employs a
double buffered UART, the character transfer rate should be the same for both
interfaces, so the difference derives from the increased interrupt handling time of
DVRO05 which will service 10 interrupts from the interface during a 252 character
record compared to the one interrupt from the RMUX.

The character transfer rates are, however, of small significance compared to the
load placed on the CPU by the different interfaces. To make the comparison fair,
the CPU usage figures were all normalised to indicate the load that the CPU would
suffer if each terminal were to receive output at a rate of 1000 characters per
second. In this comparison, the differences are dramatic, with the RMUX being
some eighteen times more frugal of host usage than the simple HP12531/DVR00
combination. Even when compared- to the more sophisticated buffered
HP12966/DVRO5 combination, the ratio is five to one, the RMUX using less than
2 percent of the CPU’s time for 1000 characters per second. This is where the fast

79

®

and simple transfer procedure of the host—RMUX interface comes into its own,
because as the actual character rates show, the hardware limitations are very
similar.

One of the test runs was performed with four HP12531 interfaces driven by
DVROO all transmitting data at 9600 bits/sec. When this was run, the actual data
rates varied from 580 characters/second to 650 characters/second, and LOADT
never even started execution until the first terminal transfer had completed.
Thus, four DVROO terminals could completely clog the entire HP1000 CPU leaving
it incapable of doing anything else.

Perhaps in summary, the relative performance improvement that was achieved by
the RMUX can best be highlighted by considering the case of the 24 terminal
HP1000 RTE system that was in use in the Department of Electronic Engineering
at the time of writing. Had these terminals been connected to the host using
standard HP12531 terminal interfaces all running at 9600 bits/sec., then if all
terminals were in operation only 16% of the time, the host CPU would be totally
occupied with terminal I/O.

Using the RMUX interfaces, however, the 24 terminals doing I/O 16 % of the time,
would use only 8% of the CPU’s capability, leaving it relatively free to do its main
job of processing.

Chapter 8

Conclusion

This thesis has covered the design and implementation of three separate projects,
all aimed at improving the Input/Output capabilities of an HP1000 series
minicomputer. Two of the projects, although independent and complete in
themselves, each contributed toward the final objective of expanding the number
of terminals that could be connected to the HP 1000 while at the same time
reducing the CPU loading on the HP 1000 host.

The initial project of producing a dumb terminal expander system using modern
LSI and MSI logic was successful in increasing the number of terminal ports of the
host while reducing circuit complexity from the standard HP terminal interface.
However, since the expander was designed to emulate the standard product
exactly, there was no reduction in CPU loading. i

This highlighted the necessity of adding peripheral intelligence to the terminal
expander system, a concept long used in the mainframe computer industry. This
would then off-load much of the tedious I/O work from the host CPU. The second
project acted as a test bed for some concepts on adding peripheral intelligence,
while creating a useful line printer controller at the same time. This small project
nevertheless highlighted certain weak design philosophies and gave valuable
experience in the design of microprocessor slave controllers.

The third and major project was the design of a single printed circuit board
comprising an intelligent microprocessor controlled four terminal multiplexer.
This unit constructed to professional standards, has fulfilled all the expectations
held for an intelligent interface. It has proved itself able to significantly reduce the
CPU loading during input/output transactions while also increasing the number of
terminals that can be physically accommodated in the host machine frame.

A further benefit from the users point of view has been the increase in terminal
options and facilities made possible by the software controlled approach of a
microprocessor driven interface. Features such as on line configuration of all
communication parameters and message protocol have considerably enhanced the
ease of use of the system and aided cabling standardisation. Software
configuration has completely removed the need for the special cables, special
switch settings and multiple jumpers so often used to change features on dumb
discrete wired logic controlled interfaces.

The incorporation of a microprocessor eased both the design and implementation
(debug) phases of this project; the design simplification being due to the very
simple and systematic way in which standard members of a microprocessor family

80

connect together, while the debugging reduction was due to the short lead times
taken to change software compared to making alterations to complex hardwired
logic. The hardware design was produced and committed directly to a through
plated, double-sided, printed circuit board without any breadboarding or testing or
any sort. The layout, routed on an auto-routing design package, used over 30
metres of track and contained 1900 holes, yet was debugged totally in five days,
requiring only nine patch wires (mainly routing mistakes) and one chip removal
due to a ‘glitch’ sensitivity in the DMA controller.

This of course was not the end of debugging since the software development and
testing was by far the largest effort. However, by adopting a systematic approach
to software layout, and by using a multitasking operating system for overall
control, the code was produced as many relatively independent modules, all about
one page long. This modularity eased debugging dramatically, as well as reducing
the number of errors generated since large rambling blocks of code are far more
error prone than multiple short blocks with well defined functions.

As with most designs, a retrospective look at the design will produce new and
simpler ways to implement things. When the design was completed, the density
increase that occurs continuously in integrated circuits, had altered to such an
extent that it would have been possible to produce an 8 channel multiplexer,
controlled by a 16-bit microprocessor, with four times as much memory and
implement it in the same physical space. The extra memory and ports would have
been most useful with the 16-bit processor being needed to maintain performance.
These changes were due solely to improvements in technology rather than
alterations in philosophy.

One philosophy change that would however have improved matters involved the
message passing format.

The message format was designed to pass all the useful variables in the EQT to
the interface in as compact a form as possible, which required the host to unpack
the EQT and repack it into the message header for output and vice versa for input.
A more simple approach would have been for the host to merely post the entire
EQT entry to the interface with the interface micro-processor doing all further

processing. This would have made the host driver simpler, shorter and more
universal.

In summary this four channel multiplexer has achieved all the aims originally

envisaged, and with some eight years of use from over thirty boards, has proved
itself to be a valuable addition to the HP 1000 system.

81

82

Appendix A

A Terminal I/O Extender for the HP1000
A.1 Introduction

This appendix describes the first approach taken to try and increase the terminal
handling capacity of the HP1000 minicomputer without incurring the expense of
buying a standard Hewlett Packard I/O extender and several standard HP terminal
interface cards. The approach taken was to design a custom I/O extender and
terminal interface to be totally compatible with the standard Hewlett. Packard
buffered teletype interface [15. Where possible, modern MSI and LSI circuits were
used to implement the design, subject to the constraint of maintaining
compatibility with the standard interface and its driver software (DVRO00) [16]

The first section of this Appendix describes the standard HP I/O backplane signals,
their use and their timing relationships. It also illustrates the standard logic used
by HP to implement this timing. The next two sections cover the design of the
extender mainframe and the terminal interface card.

A.2 HP I/O Backplane Signals. Normal Implementation.

The HP1000 series machine contains a single 16 bit bi-directional I/O bus and a
multitude of timing and control signals to perform the input and output and to
synchronise interrupts and interrupt priority. Most I/O control circuitry is
distributed on the interface cards themselves. Figure A.2 shows the logic found on
every HP1000 interface card, and figure A.l1 shows the timing relationships. [17.18]

CLOCK |T2|T3|T4ITS|T6|T2|T3|T4|TS|T6|T2|T3|T4|T5|T6|T2|T3|T4|TS|

DEV FLG [T777777 AN NN VAV

FLBF.FF [T 711/ \

FLG.FF / \
eNTLFF

PRL \

IRQ [

100 I A U
101 I A U

IAK / \

Figure A.1 Timing of Flag, Control and Interrupt Logic.

83

PRH > | PRL>
PR
JelR (15)
IEN >
S1E)
JENE (12) : >
R.

ZPOP1O | — 1R,
SSTF (13) - IRG

‘ FLB F;'g FF
CLF (T4} FE
N

N4

ONTL
CNTL 14K

FF

!

- SRC,,

— —— >‘|f [|

s = | FLG ii___%}_}} SKF,
N e —

SEC > —
g — /"

— -

—

—_/

| GCM
[0)

ouT IN
APLAGISTR STC peseT STRGBE V/STROBE

Figure A.2 Standard HP I/O Interface Logic.

The control and interrupt logic shown in figure A.2 revolves around two basic
blocks, the CNTL flip flop and the FLG flip flop both of which may be set or cleared
under programme control. When the CNTL flip flop is enabled the interface may
interrupt the CPU provided several other conditions (described below) are met.
Since this flip flop is usually left set, its set command line (STC) doubles as a ‘ready’
signal to the peripheral to strobe data in and out. '

When a peripheral device wishes to interrupt the host it issues a ‘device flag’ signal
which sets the flag buffer flip flop (FLBF). This signal is synchronized with timing
signal T2 (see figure A.1) and used to set the FLG flip flop. Provided CNTL is set,
and the interrupt system is enabled (IEN true),the priority chain will be disrupted
and PRL will go false, disabling all lower priority devices. At time T5 (see figure A.1)
the SIR (Service Interrupt Request) signal occurs which causes the IRQ flip flop to
set providing PRH (priority in) is high and FLBF is still set. Since all FLG flip flops
are set each T2 time and the IRQ flip flops at TS5, the periods T2, T3 and T4 are
allowed for the priority chain to settle. Should the CPU acknowledge the interrupt
it issues the IAK signal during T6 which clears the FLBF flip flop, hence disabling
further interrupts. It does not, however, clear FLG and so does not release the
priority chain. This is only done under programme control via the CLF instruction.
Should the host not acknowledge the IRQ signal during the first T6 interval, the
IRQ flip flop will be cleared at the next T2 (when FLG gets set) so that any new flags

may alter the priority chain. This ensures that only one interface ever has its IRQ
request set at any one time.

84

The 100 and IOI signals are gated with the SEL (slot select) signal, (as are all the
other commands) to produce the output and input data strobes respectively. The
only other signal of use to the peripheral section on the remainder of the interface
is the CRS (reset) signal which issues a reset pulse both when the front panel preset
is pressed and when the CLC 0 instruction is used.

A.3 Terminal I/O Extender Mainframe.

In order to add an I/O extender to the host machine, the HP ‘Multiplexed
Input/Output Accessory Kit’ 9 was used to buffer all the backplane signals and
bring them out on a 50 pair cable. These signals then had to be buffered (or
received) again on arrival at the extender to minimize signal transmission errors.
Thus the extender mainframe consisted of a 16 slot cabinet, a power supply and a
cable (or master) interface circuit board. In order to reduce the FLG and CNTL
logic on individual interfaces, it was decided to try and centralise as much of it as
possible. However the only part that could be centralised while still maintaining all
standard signal timing was the interrupt and priority request logic plus the
encoding of the interrupting device’s address required for the multiplexed I/O kit.
Figure A.3 shows a simplified diagram of this interrupt and priority logic.

, - PRH
PR _IN
> 1A0,
16 BIT -
PRIOGRITY [~ > 1AL,
ENCCDER S _D— 1A2
FLGn PRO
CNTLA > . > > _D_ 1A3
— PR Our -
A —> 1A4
ADDR > - >
. SEL-
rl -~ EcT — ———1A§>
ABCD -
f — [PRL.
IRQ FF
0 INTR

N

SIR

IEN

=
16 LINE
HUX
FLAC BUFFER n IRGn EN T"Q—
ENF

Q
o< (2 1k

16 LINE

SIAKn < RLLG) = DE- MUX
INTERFACE LOGIC —l

MAINFRAME CENTRAL LOGIC

Figure A.3 Priority and Interrupt Logic in the I/O Extender.

85

In this system each interface card generates the signals PRQn (=FLGn . CNTLn)
and IRQn (=PRQn . FLBFn) which are sent to the master control card. The PRQn
logic produces a 4 bit address corresponding to the highest priority device
requesting service and breaks the priority chain. The address is used to select the
IRQn output of the requesting channel, which is then used to set a single central
IRQ flip flop. The signals required in order for the interrupt request flip flop (IRQ) to
be set, namely PRH . PRL .SIR.IEN, are all gated together to enable the IRQ
multiplexer. This single IRQ flip flop will be set every T5 and cleared every T2 until
the CPU issues an IAK (interrupt acknowledge) signal.

The IAK is gated with IRQ and routed to the correct interface card via the 16 line
IAK demultiplexer which is also addressed by the priority encoder output. This
system saves about 3 integrated circuit packages per interface card and also speeds
up the priority determination logic. Figure A.4 shows the full logic diagram of the
mainframe master control card which apart from the centralized priority control
logic contains receivers and buffers for all thesignals from the multiplexer I/O
accessory Kkit.

Since the extender was designed specifically for serial terminal I/O, a master baud
rate generator was included on the master card to generate ten of the most
common baud rate clocks used for serial I/O. These clocks were derived by suitable
division of a 10,7 MHz oscillator and supplied at 16 times the nominal baud rate to
the extender backplane. The clocks were supplied at 16 times the baud rate since
this convention is becoming a ‘de-facto’ standard for most integrated UARTS
(universal asynchronous receiver-transmitters), one of which 2% was used on each
serial interface card.

The extender mainframe was wired so that all signals from the HP CPU cable
passed through it and could be accessed on a rear mounted circuit board edge
connector wired to be identical to the normal HP ‘Multiplexed I/O accessory kit’
connector. This allowed for multiple extenders to be daisy chained together, each
one offering sixteen terminal slots assignable to any block of sixteen adjacent
channel select codes. The only signal that was not wired straight through was the
PRH/PRL signal pair, which passed through the priority logic before being passed
on to the output connector.

The mainframe was constructed using a 7 inch high rack mount case with an 8 amp
5 volt power supply mounted in the front section. The interface cards were plugged
into 116 way connectors in the rear section, with the terminal cables being led from
the top of the cards and out of the rear of the cabinet. The 50 pair multiplexed I/O
cable was brought into the rear panel via two 50 way D-type connectors, and fed out

again on the rear panel via the 100 way printed circuit edge connector mentioned
above.

NOTE: 2
FROM ¥8TE'1 FROM T0 FROM DATA BUS BUFFERING TO
COMPUTER PRIORITY FRom >
& INTERUPT LOGIC. BACKPLANE COMPUTER AND SELECTION BACKPLANE COMPUTER nﬁbsﬂngﬁgigﬂgimﬁ ;gcxpx_nns

COMPUTER BACKPLANE
5TE-SIR. PRH. PAL, IEN 9 e B ==
- . E gy [7_IRO 1 3T —— \Tz\ Ti5 SCLO 18
o6 ez 4o 27APRIL —|>0— —r §g$ 41A s v SCLO | .,c
15 -
10 g P o *himr o5 1 SCL 1 :
INTX | OC es P 8 - - IRQ 109 A 4 1RG4 _ISC peR |T0B 1 —I}cf g4 |S5C 40A 16 15 SCL1 |or
478 s|8® IRGS IoT is Ri4 ISST
: «~ g|2 IRAE |gC — 5 713 sCLe2 14 19
78 CRS © : 7 CRS 18, W ;[1Re7 g7 25p (108 1 ——@O T ars 54C 39R @C SCL2 28C
>C ac . > e —1 gleatRes |7¢ 2 ﬁ’)@ 54T . .
. .) 1 9l221888 (77 p4p(T0B 1 12 |cge asal SCt3 12 1 SCL 3 | g1
o8 STF ‘{>CS ' STF_ |a7¢ IrQ 3¢ 1081 IRG 10 IgC : 4 | R12 —_ > ’
- 11/20 IRQ 11 |gT 66 14 ‘ 15 T11 531 SCL 4 SCL 4
gn |POPIO* [5 POPIO 1318 IR0 13 _IgT L 11 ¢ ==
20 36T 105 Ll 1417 IRQ 14 |10C 22@ [T0B 1 —DC 5 T10 |51Cc 36R SCL & 6 {>c 5 SCL S soT
fF 8 . 48R nputs 158 IRA 1S 110T - ﬁ'><‘r R10 51T
CLF Le= TOB 9 SCL 6 :
38 ie>o ‘_ a7t S oo 7LD Jiec 21 _r—|>0 - s 3sA T3>0t SCL6 | 50c
SFC @ 14ee 8 g Fﬁiﬂ 187 — 2 ﬁo@;x 8 SCL7 .
9 - -
=8 @c SFC__|ssc 1Ins Ls 7 Ef A f‘ T ggg 20A M‘—% — 48C 34R 2 LrES 3 SCL7 | 501
8 17 | - L= 2 =s ?o g ” : ig PRG 5 21c = B} 14 $ o 1°'7|EL
118 [SFS {><% SFS - A\ E— RO 2 ¢ 21T 19A (X087 —>G 48C -
18 : 38T 0 1 ;cl) PRGE_ |pacC : 4)@ 2 87 |4g7 =i
’ PRG 7 — 11
< 1 IA3 oc 1 12 £ ° eeT 18AQ [10B 6 16 16 47C
10R [STC 13 STC * |3gc 49R 22 |18 3 re
18 S TS lasc p 47@ 477
_ . . ¥ s EEEsest 17A [T08 S —-12—48C
o |CLC ! 15 cLc 8 28— s G100 la4C 16 RS 46T
18 T az | 0C s ‘0 2[5 7 |as (_f_l) s |} PREIT (247 6 2 T4 |asc r(_;lc_)gCK
. s | e T e el
3p [10I >09 10T) A0 2 19 |57 . 16 457 RATES
19 40C {28 1 1 L1 PROTS Jogc 35A |108 31 —I}G“ 8_J4aC OFs
o . 197 o L0 PRE IS |2gT 17 R3_ 44T 300
11a 100 4 s 100 IA1 D Tom 1 T2
19 40T Sop ee s 11 TRT |11 14n (108 2 —|>cﬁ s The 43C 600
ENF 36C <, 2 TR |yg7 - 17 437 1200
sa |ENF a@cs | s 1 edy LN o3 TKE J1ac y3p [T00 1 {170 T lspc 2400
18 edlp ~! g4 IKS 7 | Rl 1427
oc e 21 U) 5 12T > 17
— IR0 ez 1 c Y742 K2 s 08 o ‘@f_ 0 _ls1c
18 [SIR [9¢8IRs 08 2d, — g|6 TARBE |37 18R r ; i1
(153 PRH4 . STC 6 ; IRE |14c 4){} RO_Ja1T @ |g
IEN T 9)— 7 147 ;'K ~ Qc ——
4g IEN 12 wr 8 |9 B |y5¢c ENRBLE mJ *Im w[g R L 8600
= IEN g [10 T lj57 ALWAYS—— 18181 3 3 15| ppp
o1l TR0 |1gc 41B SCH 0 — 2 N 2 oy B2 b7ed 440
SR 1Ak 8 'ao\ 7 ’ nf12 K11 g7 408 V MEINEIDME
2> T _19er 13:13 TKE |70 OB - 1
'ﬁ_h‘ 1 -1 1 14 m_!ﬁi{ﬁ 177 g?g g;gl—- 106 804 el
13 16 15 14 |;
108 18 19 ' ! 18C 368 o «n|o| 0] 23] Y (Hoa| B0k 440
1518 TAKT5 |yg7 14 1o, [9e
. 358 ﬂLst:ll.élc: - IR 3 oLk — 62 _1 880
PRL 9 10 348
1A @] 18~ 1 470 QHMS ' ggrcm. 106 t : i = ai pelze 1o 4760
(WIRE OR “D: e t
E 31

Figure A.4 Master Control Board Logic.

87

A.4 The Terminal Interface Card

The terminal interface card (Figure A.5) was designed to appear exactly the same
as a standard HP buffered teletype interface card to the HP driver DVROO.
However a standard LSI UART was used instead of the 10 bit shift register of the
standard interface, to create a double buffered full duplex interface as compared to
the singly buffered half duplex interface of the standard system. To maintain
compatibility however, the interface was only used in half duplex mode, the
direction of signal transfer being determined by the state of the IN flip flop in the
control register. The control register is a three bit register, loaded by any output
instruction which has data bit 15 set. The three bits (bits 14, 13 and 12) are the IN,
PRINT and PUNCH bits used to set up the interface direction and enable the
printer or punch on an HP modified model ASR33 teletype [?l. The discrete
components used to implement the PRINT and PUNCH COMMAND signals are
used to route the 20mA output signal through either or both of the PRINT or
PUNCH solenoids in the TTY. Reference [21] describes these signals and their
function within the teletype in greater detail.

‘'The READ COMMAND, a ground true signal to enable the teletype keyboard, is
only activated when the READ flip flop is set. This flip flop is set by a ‘set control’
(STC) instruction being issued when the interface is in input mode and is cleared
whenever a data character is received on either the current loop or the RS232

inputs. Input characters may be echoed back to the terminal when in input mode
if either PRINT or PUNCH is set.

Some extra logic which was required to ensure compatibility with the standard
interface, degraded the interface’s capability and would not have been necessary
on a newly specified design. The first such area was to only allow the host to read
an input data character once. The act of reading a character had to clear the
interface so that a subsequent read would input ‘all ones’. Since it was not practical
to clear the UART used, a BUSY IN flip flop and some gating was used to ensure
that the backplane drivers could only be enabled (by IOI) when either BUSY IN
was set, or when the UART Data Ready (DR) signal was true. Since IOI clears the
DR signal (via Data Ready Reset (DRR)), DR had to be delayed by about 1
microsecond to allow IOI to complete its input. The BUSY IN flip flop is set by the
incoming character start bit, and is cleared by the Data Ready Delayed (DRD)
signal. A more sensible design using the UART would merely have been to include
the DR bit in the return to the driver for it to examine rather than have it check

for an all I's word for duplicate reads. This would however have required driver
changes and lost the compatibility goal.

CONTROL FLIP FLOP] PR@CN)

57R
1K
IRALN) _ 5ep
_ . KEn) oo
gen &€ i 10 o 1 Lk . — ==
sop ENF(2) I Flor e — STOP BIT ONE
B; ? sr}:‘r it
POPIO A A —3 DATA
54A o 2 . NHIBIT | —_PARITY ENRBLE
oon e 9500 = 25 R 153,86 MHs
. 200 | E4 R 33,4 KWz
; ; 1200 > ° 23 B 19,2 KMz
600 — 28 R 9500 Hs
CLF SELECT BAUD RATE
458 i s0p CLOSE ONE ONLY 2
—% 1 R 4800 Hs
- 1760 80 B 28160 Ha
o 880 |- 29 0 14080 Hs
- 240 — 28 R _ 7040 Hs
w 220 ° 1‘ 27 A 3500 Wz
. 1 :;° — 26 A 1760 Mg
8 o EXT
44n SFC —v LK IN
s et ‘ 148 75"
! Men TBUS
- Hr>o Bl = g SR 128 7pus 4
:< “h 33 1 ~N (2 128 71 pus 3
TRE OR 4 |19
| DEV. FLG t ————o<TT, L BUBY 00T |
S0 SCLCND 2 14 BUSY TN T = ? 188 ygys 3
° 3 2 g <+ e 13A ¢
sep 10G.SCMCN) 3 FLIP FLOP = N BuUs 2
. 5 | 82 1 < 3 11 B TBUS €
!I 4 = 1] 11 i B ! ™~ 2 118 TBUS 7
1 4 IQ 19
14 BUSY IN
CRS 18
854 D #BR8 |5 ur—l— 13 15 8 f BUS 7
[RBR7 |8 i O | B
1| 8 3 3 Y = R BUS 6
1 ‘ {w RoR8|7 d e A R BUS S
101 ﬁr\J/ o RERS |8 8 o [2 B g BUS 4
: 2 RERs 4 5 8 R BUS 3
agn JOI 1| 18 o2 RoR3 |10 £ 3 17 B R BUS 2
:ﬁx
.Ill
Y 1 18 18 A Rpys 1
rony 12 18 8 11 18 B Rpus o
pe (18 19 = e AR BUS 14
. 14 Fe |14 ry it ; : R BUS 12
s [~ sTC 18 R BUS 13
azn 5T —T@ > ? » R BUS 1S
s12v
e 14 _— 2
2 8K
41R T BUS 5 s ot {> o Bscxw 16T 8
36A T BUS 14 s At
~N a2
[L IN 914
38A T BUS 13 Y s . .
978 o s d1o 1) s = EIA OUT
T BUS 12 :% il 1~ V,19 ®
1
+12V 208 IN
+12v jev T 40 =
© 205mR a7 6800H 1000eF
£5A) 5 10k oy r—_._
[6A) = EIA IN
T(g X20 m
1000F
{9R) 0, tUF (70ff) -E—__l__
£10A) - 5K RERD COMMAND ;2 p o
. +iav 12N »
1av
-12v 14R B
£3n3 6 40 =R s PUNCH COMMAMD ¢ ¢ o
KE PRINT COMMAND o ;
£1Al 0 <40 mA
ta2n) -12 IN 914 = 24, BBa
-1av =

Figure A.5 Terminal Interface Logic.

89

The second set of undesirable logic was to make the card accept an external data
clock running at only eight times the data rate. This was required since several of
the older HP terminals supply such a clock which is used to enable the terminal to
control the interface data rate. The newer terminals all supply the 16 times clock
but at the time of design, several of the older devices were in use. Since the UART
required a 16 times clock, a frequency doubler was added. This consisted of an edge
catching monostable made up from two exclusive or gates and a delay circuit set to
about two microseconds. This time was chosen to achieve a roughly even duty
cycle at the maximum expected clock rate of 307,2 KHz corresponding to a 16
times 19,2K baud clock. Measurements showed that the UART could accept clock
pulses as narrow as 500 ns, and that the duty cycle had no effect on the UART
operation, hence this simple frequency doubler proved adequate.

Switches on the card allowed any of the 10 internal baud rates to be selected, or
the 8 or 16 times external clock. A further four switches allowed for the setting of
one or two stop bits, seven or eight data bits and odd, even or no parity. While
these features were not available on the standard interface, they did not affect the
compatibility of this interface, but merely enhanced its ease of use. Similarly, the
parity, framing and overrun error indicators available from the UART were fed to
the host backplane as bits 14, 13 and 12 of the returned data. This was done so that
should a different driver routine ever be written the information would be
available, while DVROO ignores these bits and so was not affected.

Figure A.6 shows the terminal interface component layout and tables A.1 and A.2
give connector assignments for the interface card, the 48 pin connector using
exactly the same pins as the standard HP interface it emulated. The wiring from
the computer to the extender was wired in accordance with the directions in the
HP ‘Multiplexed I/O accessory kit’ manual !9 with the same pin numbers being
used on the master control card when the signals entered the extender.

Table A.1 48 pin Terminal connector assignments

PIN NO. SIGNAL DESCRIPTION "~ SIGNAL LEVEL
48&D Current loop input 20mA
6&F Punch command 20mA
8 &J Print command 20mA
V&L External 8/16X clock input TTL
12&N + 12 volt supply output

B&P Read command 20mA
4 &R - 12 volt supply output

B&T Current loop output 20mA
PV&W RS232 output RS232
20& X RS232 input RS232
24 & BB GROUND

Table A.2 116 pin Interface backplane signals

TRACK SIDE CONNECTIONS

COMPONENT SIDE CONNECTIONS

Pin # Signal Pin # Signal
1&2 -12v 1& 2

3&4 + 12v 3&4

5&6 + 5v 5&6

9&10 GND 9&10

" TBUS 7 | TBUS 6
12 TBUS 5 12 TBUS 4
13 TBUS 3 12 TBUS 2
14 TBUS 1 14 TBUS 0
15 RBUS 7 15 RBUS 6
16 RBUS 5 16 RBUS 4
17 RBUS 3 17 RBUS 2
18 RBUS 1 18 RBUS 0
19 RBUS 14 19 RBUS12
20 RBUS 13 20 RBUS15
21 CLK. 300 Baud 21

22 CLK. 600 Baud 22

23 CLK 1200 Baud 23

24 CLK 2400 Baud 24

25 CLK 9600 Baud 25

26 CLK. 100 Baud 26

27 CLK. 220 Baud 27

28 CLK. 440 Baud 28

29 CLK. 880 Baud 29

30 " CLK 1760 Baud 30

31 100 31

32 STC 32

33 101 33

34 CLC 34

35 CRS 35

36 TBUS 14 36

37 TBUS 12 37 RBUS 8
38 TBUS 13 38 RBUS 9
39 39 RBUS 10
40 40 RBUS 11
3| TBUS 15 41 TBUS 8
42 42 RBUS 9
43 STF 43 RBUS 10
44 SFC 44 RBUS 1
45 CLF 45

46 SFS 46

47 50 SCLn
48 52 I0G.SCMn
49 53 ENF (T2)
54 POPIO 54

55 1AKn 55

56 56 IRQ n

§7 PRQn 57

90

‘Ci
jc2
'c3
C4
Cc5
C6

1000pF
100pF
0. O4uF
0, 1uF
3900pF
150pF

C7-C310 0.4uF

€11

Ci2-

R1
R2
R3
R4
RS
R6
R7
R
R9
R10
R11
R12
R13
A4
R15
R16
R17
R18
R19
R20
R21
R22
R23

ALL

0, 27nF
Ci3 0, 1uF

680 ohms SW
10K ohms .
470 ohms S5SW
t80 ohms
100 ohms
33 ohms
B8K2 ohms

1K ohms

1K ohms
47K ohms
10K ohms
2K7 ohms
10K ohms
22 ohms
2K2 ohms
2K2 onms
10K ohms
56K ohms
10K ohms
2K2 ohms
5K6 ohms
2K7 ohms
2K7 ohms

RESISTORS 1/4W

UNLESS OTHERWISE
STATED

D1

27 ZENER

D2-D5 IN4148B

TRi-
TR3-

TR2 BC167
TR4 BC258

B

CHe]
74LS86
741500
e
74LS33

[(HR

i
s

74LS04

91510
7420
9LS10

741500
74LS00

74LS00

74LS00

74LS04

74LS00
74L5175

48 WAY 0, 156" PITCH

i
H
i

i
o | B L g H E%
= SS EEDE g%égﬁﬁﬁz

omn
A
N B
ln

TR4

TR3

116 WAY 0, 1" PITCH

LAYOUT TOP VIEW

91

Figure A.6 Terminal Interface Board Layout.

92

Appendix B

The Honeywell Line Printer Controller. — Hardware Description
B.1 Introduction

This chapter describes the two hardware modules which were designed to control
the operation of the Honeywell Model 112 line printer. The line printer logic itself
was only slightly altered and these alterations are also described. Further detail of
the printer operation and interface specifications can be found in the modified
‘Printer Operation and Maintenance Manual’, 22l which fully describes the printer
operating functions as well as all the modifications made to incorporate the printer
controller.

Both the modules described in this appendix were contained on single circuit
boards compatible with other Honeywell cards, the timing generator module-being
solder wired while the processor module was wire wrapped. Both modules were
installed in the printer card frame, the timing card in an unused slot (WVA1H) and
the processor module in place of one of the line driver modules (WVA3C). Three
modules of line drivers were removed (WVA3A to WVA3C) since the printer was
no longer remote from its controller, and some of the wire wrap connections on the
printer cardframe backplane were altered to accommodate the new controller. The
references WVAxx refer to card locations in the Honeywell card frame [22. Power
and most of the signals required for the cards were obtained from the 36 pin
connectors which connect to the backplane. The timing and processor cards were
connected together by a 14 way connector and cable and the processor card
contained a standard RS232 type D25 connector to bring in the serial data line.

B.2 The Timing Generator Module.

As each row of characters on the print drum is about to come under the print
hammers, a magnetic pickup causes a character strobe signal (CHS) to occur, its
occurrence rate being approximately every 3,2ms. On receipt of the CHS strobe, the
printer controller must cycle through the print buffer, producing a clock pulse
(PAA) for each character position and a True Compare Pulse (TCP) for every
character to be printed (See figure B.1 and [23]). The printer signals a line end by 2
pulse on the Sentinel Bit Detect (SBD) line one clock pulse from the end. The
timing generator module controls the generation and timing of the clock signals
and also performs the comparison between each print buffer character and the
current print drum character. The timing logic is controlled by a sequential circuit
driven by an oscillator with a period of nine micro-seconds.

93

*2us CLEAR

AT CLEAR
SETS SETS -— & PAS PRD

PRD
ek L%
SETS
m a?PRT and DAN I

CHS T %
Z.

i
SBD

)]

PAA Y B Y w red
LOW ONLY IF

PAC WW-HIGH fr

DRC PRS.CLK.PAC

I
ORQ DATA VALID D'E;SAHS »
77
DRK 2 3
EOB)
TCP j Peniy [" | {f

Figure B.1 Timing Diagram for the Timing Generator Module.

The negative edge of the CHS strobe is used to set the flip flops PRT and DRN.
PRT is a holding flip flop to allow PRS to synchronize the print cycle with the clock,
while DRN is the DM A request enable flip flop. The same edge of CHS is also used
to set the Print And Compare (PAC) flip flop which signals the printer that a print
cycle is about to start. This can only be set if CCZ is false, i.e., the character count
is not zero and there are still characters to print for as soon as CCZ is true and
there are no further characters to print, CHS will clear the PAC flip flop and stop
further printing. The first clock after CHS will cause PRS (the printer sync.) to set
as well as DRQ, which issues a DMA request. The processor will issue the data on
the DIN lines and send a DM A Acknowledge (DRK) signal. The character is passed
through two converter eproms, which enable overprinting to occur, is then

compared to the current drum character held by the PP latch, and the result is
then fed out on the (A=B) line.

On the next clock cycle, PRD (Printer Sync Delayed) sets, which providing PAC is
true causes a PAA clock signal to be issued. If A=B was true, a TCP (True
Compare) pulse would also be issued. At the same time, the next DRQ pulse is
issued to fetch the next character from the controller print buffer. This sequence
with DRQ one cycle ahead of PA A continues until the print line scan is complete at
which time the DMA controller (DMAC) in the processor issues an end of block
(EOB) signal. This resets the DMA enable signal (DRN), which on the next clock

SIRUI_dYDG S[NPOJA Jojelauar) Surwi], g'g 2anSL]

1KS

B3

PAT_SYNC
J 8lu S 2 I
12] PRAT | 9 PRS L3 PRD
o B1l |[a]B1 B2
13 10 1

HOLI3INNOTD 3NVIdNIVE

HOLJI3INNOD 3NVIIdNIYE

L4,
PAA
28
e)oﬁ——@o‘—-

iﬁ PAC 11
| 1131 82 R ig A3 B8 c2 13 TCP 45
13 112!
DRO
3]
/ DRN A4
A4 el
21 1 L2
— TCN
pr v .
1513 1s[13]12[10 15 10| o pem C1
3 Be [B-2 B7 BS B4 ¢ 7432 5
|4 11 ¢ 14 14 ¢ T
1lsaJ 11 o] 1fa[11] 8 —
PLP 28
=

%7 cs[s 4 3 2 1p0
! EPROM 1
A§———m—mm e AD

3

CONNON 14 PIN PLUG

234567

DIN 0-S

9 733

6 So3
% Sug

[3.]
LN
o
o
<
w
NN
B
Qo
SR
Q#
43—

AT
2t &9
1314 a4

¥6

95

pulse will clear the TCN (True Compare Enable) and DRQ signals, hence ceasing all
further DMA requests and disabling the comparators on the (A=B) line. At the
end of the line of print (120 or 132 characters), the sentinel bit (SBD) pulse causes
PRT and PRS to reset, which then resets the PRD signal after the one cycle delay.
This stops the cycle until the next CHS causes it to repeat provided there are still
characters to print (CCZ not true). Each line cycle takes 1,2ms, leaving 1,9ms for
the printer to transfer the bits just created out of the buffer register and into the
print register for printing. The printer manual [#2l describes all the timing details of
the standard printer in greater detail.

Overprinting was implemented using two eprom lookup tables. For normal single
print characters one eprom feeds through directly while the second eprom puts out
a code which does not exist on the print drum. For overprint characters, the two
eproms store the two overprint character codes causing both characters to print in
the same position; e.g. the ¥ was made up from an apostrophe and a full stop.
Overprint.characters were assigned to the codes for unused drum characters such
as the symbols for quarter etc., for which no ASCII codes exist.

B.3 The Printer Controller Processor Module

The processor module shown in figure B.3 was based on a 4MHz Intel 8085
processor with ram, rom, serial and parallel I/O and a direct memory access
controller (DMAC). The DMAC and processor were wired according to standard
procedure, with octal latches B2 and Bl being used to de-multiplex the top and
bottom halves of the address bus from the data bus. B2 was used for DMAC de-
multiplexing when AEN (DMAC address enable) is high, and B1 for processor de-
multiplexing when AEN is low. Rom consisted of a single 2732 4Kbyte eprom at
address 0000H-OFFFH while ram was split into two: 1K bytes at address
8000H-83FFH (folded 4 times to address 8FFFH), and 256 bytes from
2000H-20FFH. The chip select decoder used A15, A13 and A12 as address inputs,
so selecting the first four and third four of the 16 possible 4K blocks. As the
decoder did not incorporate read or write strobes, the ram select signal was further
gated to include the RD+WR timing strobe. All other devices fed from this
decoder incorporated the strobes so needed no further logic.

The 8085 and the DMAC produce different sets of read/write timing strobes so the
quad 2 input multiplexer was used to convert the three 8085 signals (RD,WR and
10/M) to those used by the DMAC and everything else (i.e. MEMR, MEMW, IOR
& IOW). Only one DMAC channel (#2) was used, with latch G3 to latch the output

data. The latch clocks on a negative pulse from C2-3 which ‘ands’ together IOW
and DMA acknowledge.

96

The Intel 8155 combination ram, I/O and timer chip at F1/2 has two of its I/O
ports, its ram and its counter/timer in use. The counter/timer was used as a down
counter to count the true compare (TCP) pulses from the timing generator, port A
to input 6 bits of status information from the printer, three of which were latched,
and port C to produce 5 bits of output. Two lines (PVL and PVH) were used to
switch the paper feed motor to low and high velocity modes while the remaining
three were used to reset the input latches, reset the CHS signal latch and supply the
CCZ signal to stop printing. The 256 bytes of ram were used for operating system
variables and stack, while the 1K ram at 8000H was used exclusively as a 1K
circular data buffer. In order to enable the DMAC to cope with a data record in this
buffer overlapping the ram boundary, the ram was made to repeat at addresses
8400H, 8800H and 8COOH thus, for single records, enabling the DMAC to treat ram
as a linear list rather than a circular one.

The three RST interrupts on the processor were all used: RST7.5 being fed by PLP,
the paper line pulse which indicates when the paper has moved one line; RST6.5 by
a latched version of CHS to act as a 3ms time base interrupt; and RST5.5 by the
RXRDY signal from the serial port indicating when a new character has arrived.

The Intel 8251 serial port used RS232 drivers and receivers to interface the most
common RS232 modem signals. A CMOS baud rate generator (MC14536) was used
to generate different data clocks up to 19200 b/s. This clock, which runs at 16 times
the data rate, was divided by two prior to being fed out to the RS232 port, since
the interface used in the host HP computer required an 8 times clock. The clock
used a simple RC time constant circuit to produce the reference frequency of 614,4
kHz, due partly to the difficulty in obtaining a suitable crystal, and partly since
asynchronous I/O can withstand =1 percent error in the clocks without data error.

Table B.1 lists most of the signal mnemonics used in the schematic (figure B.3)
along with a brief description of their meaning. Many of the signals originate
from the printer itself and use the standard Honeywell names and definitions. For

further detail on the signals and the printer operating procedures refer to the
manual of reference [22]

2JBWAYDG 2[NPOJN J9[[0Ijuo)) I3jull] €'¢ InS1

4

oo0OIDID0H 2| EIZ W |J|Q|T 0T —~jo[210 Q0|92
== ElE R En | T m clc
2121212(2|2|R(%83]| BT B 5|55 | B|3|a|x =|a|3| 8
vi|a (W= |O - o H -
o Bl3 |5 SREE
UNT] .
e — Land
w20 8iSm =)
moo—|0Hm
10D I . = =
520 W g =0 T e S0 = INEIRA
7} 9 ~“jojolo|~in]~ alol |
] YL - : NI 21 , T v
S &) | ™ " |lagzs
%0 Sl ® d 68Y 1O
L0 LIf D 2 : Y
8t 8t stpe Oy [9] a =
om_ sTiooa wut |V 9 8 s v afu[«]3[a]3[= ,j..._... o|ofm
v s
A N =
ot}
URJ |_ s Hl
T N
uoo_.IOHm —
mﬁo%:. gle] 2nl3d 292822
20 g eI ua |» o grajuo>Aa
3] : oz _m ¥ XXQIE[XxXxXxacg
€0 W €I ,_. cdulolelno|nlo|n|o|a ° >0 i Q -oulle oo @ N
& 8 ol 0] o 22222_222333125______2— X X x &
A0 Ml AREILLIE F¥2:22535080000F0002 oY
mdmo SIfy a mPP.P R o ol 1528
mﬂwo wwh 1S] 3 25 m. we £ SS18sl NOUNnTOoUu—~O |O S_mm w
-t
5% 4T zo8as A f3pinesdbolnrusanzs 8838888 BBBog &
[+7-] 1!“6439 —_ —|_ s_3esm“47wlll|.ﬁ“ll oInjoO|N| V| ~ rl__ ﬁW“MW ﬂ
- I
133 11 , v
TBY * :
3 20y sng a.ran SNg| uiyg kng H160
miﬁ w
=N .
w ' oa SNS TI0HLINOJ SNg T04YLINOD SN8 T1041NOCJ
9 D 1
S 1
sng 'sS34Yaay SNg $S34HA0Y | . SNg -SS34aay
Reiii==; : =
afs [wlof- [@ ¥ * s [s|= |sjsfsisfsjsfrir wjsjzinjujnjus glejglele [gslagimie(p|8f® |siE(s|slalslals : : =
=23 stfi 0dg T 2 0N UUUDODUUOC DDDDDDDD ZHDSR DDDDDDRE BZ23E8833 -
e ! 18 O ® ¢ oFfrRAINON ORRDBIRNDN Doolslf mEFot-cwd DooDO0O0Oo
€ 8e157 LTS L = m = : o <3, m nawReoOo Nons@wn—~0O
SER2 8RS8 sipd 9 L |
e [Ne[s[=[r[c][=[n sifd =S LECS -1l G <ln -
vif0 & ID D : mmom I] <[olo|n|2[?a] &
a <y = C_ T oo ©UoUOo J— =
o w|p|w|o| (=B [~ €1 € H mMODEFIT DDDD JIIDD @< 323 »
ololalal |e b ay oo o-4mMmpI oonh PR Za- 24 ITT HHTIDTD A o 2X
|7l8l8] (8F 25 T 2 AS- I DWZDD O~-~Nw OFLBWL SO s M o v oo & BER333 =5 9eStv 1IW
22 212191 PR a Ji. o ~ - ™ I O Y T - - HO =& o S5 99
|_._an_08 .._..U Ouwngmﬁ t—l.c... 8 |o|e|w|5 9_0_0 s_ HEIR1K] uli— - x oo oD Dlodwnuvnun™® 0 o ‘
i a3 AR E 8l O subs = fe[& [& Ials [eTe [8]8 [F[s[e]e[v[= [2ls PR EEERE
wfm [mm o2fd 5 2 =
_ -
T2l T (I £ .
= 7] -)
¢ 19 + *
—.\II %01 mﬁoovﬂnﬁ_w ‘H
b oo g
81|, 8
Nﬁ.ﬁc .—GN ¥t
,wun Ndw =
50 ey
St s 1 . o1
804 §3 s : . LI MEIE!
. £180d 53 el Y ¥0S¢ iy =A
T 140d S (13 4% M3 I_I
2 Wby S92 to T 2 2 1
T WY S2 pa = o mma M
1 N a -—
o o =
(L & 0 2 g el e 2
— /\>mﬁ+ [o+] e o =< [

98

Table B.1 Printer Signal Definitions

PVL
PVH
PES
OOF
RNS
SOB
MHF
MSS
PAA
TCP
cCcz
DINO-5
PLP
DRQ
DRK
EOB
DLY
CHS
PPO-5
SBD
PAC
AEN
ALE
ADSTB
RST
CLK
oW
IOR
MEMW
MEMR
I0/M
WR

RD
HOLDR
HOLDA

Paper velocity low
Paper velocity high

Printer emergency stop

Out of forms

Run state

Single order button
Manual head of form
Manual single space

Print address advance

True compare pulse
Character count zero
Datain

Paper line pulse
DMA request

DMA acknowledge
Endofblock
Delay

Character strobe
Printer pattern
Sentinel bit detect
Print and compare
Address enable
Address latch enable
Address strobe
Reset

Clock

/O write

I/Oread

Memory write
Memory read

/O or memory

Write

Read

Hold request

Hold acknowledge

engage paper feed motor at low speed
engage paper feed motor at high speed

any error condition sets this bit

special case error bit

printer to controller to indicate ON/OFF state
performs 1print cycle in offline mode

from front panel button

clock to shift data to printer buffer

set with PAA for each printable character
signal from uP when print cycle complete

6 bit data from uP to printer under DMA

pulse from printer to P on each line move
from printer logic to P for 1DMA cycle

P to printer to acknowledge DMA cycle

signal from uP DMA at end of record

printer to uP Signal after 10 sec. warm up delay
printer pulse on each drum character move

6 bit code for character next under the hammers
bit from printer 1PAA pulse before end

to printer to indicate print cycle active

DMAC to pP toindicate DMAC has bus
latches uP address AO-7 from data bus
latches DMAC address A8-15 from data bus
from uP after DLY

2MHz from uP

negative true timing strobe

8085 generated signal
8085 generated signal
8085 generated signal
DMAC wants bus from uP
uP grants bus to DMAC

99

Appendix C

Line Printer Controller Software - HEZLP
C.1 Software Overview

This appendix describes the software system used to control the Honeywell 112 line
printer and connect it via a serial line to an HP1000 series minicomputer. The
hardware is described in the preceding appendix, and the driver software for the
host machine in appendix D. The system code (called HEZLP) was written in 8085
assembly code and was assembled using the A8085 assembler described in
appendix I. The system consisted of two alternate main background routines and
three interrupt driven control routines as shown in figure C.1.

RECEIVE RSTS5@5
Main P data control Serial I/P data handler | __ . RXRDY
*Converts data from I/P | *¥Entered from RASTS.5 intr (RSTS5.5)
FIFO to circular buffer. ®Stores 1/P data into the + RETURN
*¥Controls intfc DTR line. 16 byte FIFO.
NO RSTERS
Main print processor CHS
START #Driven every 3ms by CHS. (RST6.5)
WP — —» DEBUS «——— IxProcesses I/P requests
RESET SWITCH ON from circular buffer. |—+ RETURN
%¥Controls t function
YES
GETCM RST785
Terminal debug monitor Paper feed controller | PLP
¥Examine/change memory |] Counts line feed pulses. (RST7.5)
and user registers. Controls feed motor speed
%Execute print commands. Stops feed when done. RETURN

Figure C.1 Printer control programme. Module layout.

The actual background routine executed depends on the state of a switch mounted
on the processor card. In normal operation, routine RECEIVE is used exclusively,
but for testing, the GETCM terminal debug monitor was used to set up print
records and test and alter memory. The major operating sections are RECEIVE
which fetches data into the 1K circular buffer, and RST6@5 which executes the
command records stored in the circular buffer. These two processes are described
separately below as they are completely independent apart from the data buffer.
The other background routine GETCM will be described briefly with RECEIVE,
while the other interrupt routines will be described with RST6@5 since they are
highly dependent upon RST6@5, and are also very small and straightforward.

100

C.2 Background Data Input Processor (RECEIVE)

After reset, a small section of code (RSTO) runs to initialize ram and the serial and
parallel ports and to set the default data values needed for the printing process. It
then sets up a dummy null record in the data buffer, enables interrupts and checks
bit 4 of input port A. This bit determines whether the RECEIVE routine or
GETCM should be executed.

The GETCM monitor uses a subset of the commands available on most 8085 SDK
demonstration kits namely:

the X’ command for examine and change registers
the %’ command for examine and change memory

the ‘G’ command for GO to user programme with registers as set by the X’
command.

An extra command, (R’) was included to cause a direct jump to the RECEIVE
routine. GETCM comprised routines XCMD, SCMD and GCMD to execute the
three normal command options and several data formatting utilities to input and
output hex characters.

The S command is used by entering ‘S’ after the monitor prompt (a period) and
following this by an address in hexadecimal. A ‘space’ will then cause the contents
of the address to be printed, whereupon it may be altered. Another space will

access the next location, and a ‘return’ will revert control to the command input
phase.

An X followed by the name of a register (e.g. XA) will print the contents of the
user register and allow it to be changed. A space will sequence to the next register.

The ‘G’ is followed by an address and then a ‘return’ to cause control to pass to the
given address.

An R’ will pass control directly to the routine RECEIVE.

The RECEIVE routine has the task of synchronizing itself with the incoming data,
breaking this into discrete requests, converting these to a form suitable for use by
RST6@5, and storing them in the circular buffer. It also has the task of stopping

the incoming data stream when the buffer becomes full, and starting it again when
space becomes available.

RECEIVE gets input data from a 16 character first in—first out buffer (FIFO)
which is filled by the interrupt driver routine RST5@5 as the data arrives from the
host. This FIFO allows the printer to use line data rates up to 19200 bits/sec which
would otherwise be impossible if RECEIVE were to accept the data directly owing

101

to the comparatively long periods during which RST6@5 takes control of the
processor from RECEIVE.

Once RECEIVE detects an ENQ character (the start of record signal) it fetches the
next two characters, combining the lower 4 bits of each to form an 8 bit record
length value. It then checks that the printer is on line, that no faults exist, and
that there is space in the circular buffer for the record. Should any of these
conditions be false it sets the DTR line false to stop the host from sending any
further data. RECEIVE then loops continually until all these conditions are met
before setting the DTR line true again. To make the wait times as long and
infrequent as possible, RECEIVE fills the data buffer and then holds off
transmission until only two records remain to be printed.

Once all conditions are met, RECEIVE sets the DTR line true, fetches the next
character, which is a buffer control character as outlined in table C.1, sets up a
request record in the data buffer in the format shown in figure C.2 and links it into
the linked list of data records. RECEIVE then fetches characters from the input
FIFO, converts them from ASCII code to Honeywell code 124 and stores them in the
data request record. This phase is terminated either by an ASCII ‘return’ (CR)
arriving or by the full number of characters as specified in the record length.

Table C.1 Print Record Control Characters

ASCII HEX EXEC CONTROL FUNCTION SPECIFIED
CHAR EQUIV_| CNWRD

30H 000B+u | Printline follows. Column 11to be printed.
3H 200B+lu | Print line follows. Column 1forms control.
49H CNJu,9 Control function to skip lines or a page.
4AH CNJu10 | Enable auto skip of page perforations.
4BH CNLUM | Disable auto skip mode.

4CH CNJu12 | Set physical page lengthin lines.(Dflt=68)
4DH CNJu13 | Control request to force a page skip.

4EH CNJui4 | Set printable lines/page for auto skip.(62)

ZZTrXe—=0

102

WORD CONTENTS
" 01 Two byte linkage pointer to next print record.
2 Contro! character. (See table C.1)
3 Printable character count of current record.
4 Record length. (N bytes.)
5 ———notused ——
6+ N data bytes sent in ASCII but stored in Honeywell code.

** Not sent from host.

Figure C.2 Print Request Record Format

As each character is converted, it is checked against one of four conditions, these
being:

* ASCII control characters which are replaced by a small square symbol

* Printable characters cause the printable character counter to be incremented
by one

* Overprint printable characters cause the printable character counter to be
incremented by two

*

An ASCII carriage return causes the record fill phase to be terminated.

The characters are converted from 7 bit ASCII to the equivalent 6 bit Honeywell
codes via an ASCII character indexed look-up table which holds the Honeywell code
in the lower 6 bits. Bit 7 is used to indicate the printable characters, and bit 6 to
indicate the overprint characters.

Once all input data has arrived, been converted and stored, the printable character
count and record length fields in the record header are set and the record counter is
incremented. Finally, the RECEIVE/GETCM switch is checked to see whether to
return to the start of RECEIVE, or to pass control to the GETCM monitor.

C.3 The Interrupt Driven Print Processor (RST6 5)

This print processing routine, entered every 3 ms in response to an interrupt from
CHS (the character strobe), is used to initiate whatever is necessary for the next
print action. Since some print cycle actions can take a comparatively long time to
initiate, the interrupt system is left enabled while RST6@5 executes, with a single
‘in process’ flag being used to stop any subsequent CHS interrupts from attempting
re-entrant processing of the same action.

103

A typical print cycle starts with a print cycle to print the line of text, followed by
a line feed cycle to move the paper the required amount.

To print a line, RST6@5 sets the DMA controller (DMAC) to output the print record
data repeatedly by setting the DMAC into auto-initialize mode 125l The 8155
counter is then loaded with the printable character count, and the CCZ signal
(character count zero) is set high (false) to start the print process. The timing
generator module (see appendix B) then repeatedly causes the print record to be
scanned, once for each row of characters on the drum, until the counter counts
down to zero. While in the printing phase, a print flag (PRFLAG) is set to cause
RST6@5 to check the counter each interrupt. Once the counter reaches zero,
RST6@5 stops the print cycle by setting CCZ low and clears PRFLAG. It then waits
for a two character delay (6ms) to allow actual printing to complete since the
processor runs ahead of the mechanical printing process.

The paper feed process

The next check is to see whether the paper is to be moved, and if so, by how many
lines. For single line moves, the paper feed signal PVL is set causing a low velocity
move, while for more than one line, the PVH signal is set for a high velocity move.
RST6@5 thus determines the number of lines to move, (taking page boundaries
into account), starts the feed motor at the relevant speed and sets a feed flag
(FDFLAG) to indicate that the paper moving process is in operation.

For each line moved, a pickup on the paper feed motor causes a pulse on the RST7.5
interrupt line (PLP pulse). The interrupt activates the interrupt handler RST7@5
which decrements the remaining line count, changes PVH to PVL when only one

line is left and removes both PVH and PVL and resets FDFLAG when zero lines are
left.

RST6@5 checks FDFLAG on each CHS interrupt and if it is set no further action is
taken and no other flags are checked. Once FDFLAG has been cleared, RST6@5
waits three CHS interrupts (=10ms) to allow the paper feed servo system to settle.
and stop all paper motion. The print record just processed is then unlinked from
the list, discarded and processing of the next record can begin.

Prior to processing each print record, RST6@5 checks that the printer is on line,
and if not it checks the two manual paper feed controls, LINE FEED and FORM
FEED. If either is pressed, the requisite action is taken in the same manner as for
programme controlled feeds. Since records are not processed when off line, the
‘Single Order Button’ (SOB) is used in the off line mode to enable a single print
record to be processed for each press of the button. The three manual buttons
(SOB, MHF and MSS) each set a latch when pressed and cannot set the latch again

104

until completely released. RST6@5 resets these latches when it detects a button
pressed by pulsing bit zero of port C. '

RST6@5 also proceséxes control requests most of which merely result in one of the
default variables being changed. A subsection of RST6@5 called DOCNTL is used
to process these control records. There are several other subroutines to RST6@5,
each one being called to perform some major function such as start paper feeds
(STRTFD) and start printing (STRTPR). Very little of the code is executed with
the interrupt system off, but where it was necessary to ensure no interrupts could
occur, the interrupt system was disabled for as short a period as possible.

The total code space required by the system was just over 2Kbytes which fitted
easily into the 4K EPROM used while ram usage amounted to about 80 bytes,
excluding the 1K data buffer. A copy of the source code is available from the

Digital Processes Laboratory of the University of Natal should further detail be
required. -

105
Appendix D

The Host Software for the Honeywell Printer — (DVP12)
D.1 General Driver Layout

This appendix describes a driver routine written to run on the Hewlett Packard
HP1000 series minicomputer under control of the RTE I'VB operating system. The
driver accepts standard commands from the host operating system and reformats
them to suit the Honeywell line printer controller described in appendices B and C.
The driver also controls the sending of the message to the printer, but does not
maintain any record of the printer status.

In keeping with standard practice for RTE IV drivers, DVP12 (12 being the RTE
code for printer drivers) comprises two major sections, the initiator which accepts
requests from RTE and initiates the transaction by outputting the first character
of the request, and the continuator which is entered in response to an interrupt to
process the remainder of the transaction. DVP12 is a very small and simple driver
by RTE standards since the printer controller is intelligent enough to perform
most of the request processing itself.

The following sections describe the initiator and continuator sections separately
with only brief mention of the standard RTE I/O system. For further detail on
the requirements for RTE drivers and on the HP I/O system itself see appendix H
and the relevant HP Reference Manuals [26],[27].

D.2 The DVP12 Initiator Section

The initiator routine is entered at entry point IP12 directly from the RTE IVB
executive, with the A register containing the slot number of the interface to be
operated upon. Since the same driver may handle several interfaces, it must
configure all it’s I/O instructions to the relevant slot number before it can start
processing the I/O request. RTE passes all the details of a request to the driver by
means of a 15 word data block called an EQT entry and before entering the driver,
the RTE executive places the addresses of these words into 15 reserved base page
locations thus allowing the driver to access any EQT entry via indirect addressing
through fixed locations. DVP12 thus fetches the request CONWORD (28] from EQT
word 6 and from the lower two bits determines whether the request was a write or
a control request.

For a write request the routine PRINT is called which setsup the character address
and negative character count into the EQT entry words ¢ and 10. It then converts
the character count into two length digits, each of which holds 4 bits of the record
length (see figure D.1) according to a simple hexadecimal coding scheme, and stores

106

these digits into EQT word 12. Finally the control character (see table C.l in
appendix C) is determined and stored in EQT 13.

HexDigt (0 |1[|2[|3|4|5|6 7|8 |9 |10|1 |12 13|14 |15

asciicharl 0 |1 1213 alsle|7l8]|ol: |: |<l=]> |2

Figure D.1 The Hexadecimal to ASCII coding scheme.

For control requests the routine CNTRL is called which first checks that the request
is a valid one, and if so, whether it uses an optional parameter in EQT word 7. For
those that do use the parameter, it is broken into 4 four bit nybbles, each being
represented by an ASCII character (see figure D.1) stored in EQT words 7 and 8.
Then as for the PRINT routine, EQT 9 is set up to the character address of EQT 7
since this now contains the transmit data, EQT 10 is set to the negative transmit
data length, (either 0 or —4), EQT 12 is set to ASCII ‘00’ and EQT 13 is set to the
control request character according to table C.1.

At this point, both print and control requests now appear identical and so all
further processing is independent of request type. Thus the initiator sets the
interface to output mode and sends the ENQ character to signify the start of a
record. The initiator then returns control to RTE IV to await the completion
interrupt.

The continuator is entered after each interrupt from the interface which indicates
that the last character transmission is complete. After performing the standard
I/O instruction re-configuration, the continuator fetches a mode pointer from the
three least significant bits of EQT 5 (set to zero by the initiator) and uses this
pointer to index into an address table. This table contains the addresses of six code

sections that deal with the six phases involved in transmitting a record to the
_ printer. '

107

These are:

send most significant length character

send least significant length character

send the control character

send the data characters

send the completion carriage return

clear the interface and take the completion exit back to RTE I'V.

* ¥ ¥ K ¥ *

As each phase is completed the mode pointer is incremented to cause the next
phase routine to execute on the next interrupt. This method of having separate
routines for each phase resulted in an extremely fast and compact interrupt
continuator, helped also by the fact that no significant processing was required as
most processing is done by the printer controller. The longest path through the
continuator used 31 instructions while the shortest used only 18, which with
average instruction time of 1,2us resulted in an extremely rapid interrupt response.

108

Appendix E

RMUX Hardware Description
E.1 Introduction

This appendix serves to detail the hardware design of the RMUX four channel
terminal multiplexer for HP 1000 series computers. The multiplexer consists of
a single printed circuit board which occupies one standard I/O slot in a Hewlett
Packard computer. The board contains an 8085 microprocessor plus associated
peripheral devices which enables it to interface four asynchronous serial
terminals to the host computer using standard RS232-C signals. The
microprocessor enables the multiplexer to take care of all the terminal protocol
and terminal editing capabilities so relieving the host of much of its I/O
interrupt load.

Data transfer between the multiplexer and the host is performed on a ‘message
at a time’ basis using direct memory access (DMA) into the multiplexer
memory. This enables the host to exchange messages with the multiplexer as

fast as it can, and reduces each message to one burst transfer and a single host
interrupt.

Apart from logic required to interface the microprocessor to the host machine
(the HP 1000), the multiplexer board contains 4 kilobytes of RAM, 8 kilobytes
of EPROM, 4 full duplex serial I/O channels, each with its own programmable

baud rate generator, 10 interrupt sources, a 10ms time base generator, and a 4
channel DMA controller.

The host interface logic is the most complex and so has been divided into two
sections for explanation purposes: viz., the FLAG and CONTROL logic, and the
Data Path logic. The remaining logic on the multiplexer consists of the
processor, the memory and the peripheral interface. These 5 sections, shown in
block diagram form in figure E.1 are all described separately in the following
sections which all refer to the main circuit diagram in figure E.4.

109

CHANNEL.O

o
CONNECTOR T ¢

48 WAY

CHANNEL 1
‘-

L

CHANNEL 2
‘s

L

CHANNEL3

(" RS 232
T ¢ INTERFACES

PERIPHERAL DEVICE SECTION

4 FULL DUPLEX SERIAL 1/0 CHANNELS
4 RS232C 8 LINE INTERFACES
4 PROGRAMMABLE BAUD RATE GENERATORS

~.
PERIPHERAL CONTROL
PROCESSOR SECTION
RAM EPROM | M 2] 6. 144 MHz 8085 CPU
“ KBYTES |18 K BYTES | | "2 ""'| 4 CHAN. DMA CONTR.
4000H- 4FFFH | |0000H- 1FFFH 4 CHAN. INTER. CONTR.
10mS TIME BASE GEN.
PRIPHERAL
DATA MEMORY CONTROL FLAG
ACCESS DATA CONTROL
DATA

/

HOST PROCESSOR INTERFACE FLAG, CONTROL.,
16 BIT INPUT DATA
INTERRUPT AND
LATCHES PLUS BYTE 8 BIT OUTPUT
MULTIZ?%;&? INTO | | pATA LATCHES PRIORITY LOGIC
MEM FOR HOST
86 WAY
CONNECTOR T l l T
16 BIT DATA PATH 8 BIT DATA PATH HOST CONTROL
FROM HOST TO HOST SIGNALS

Figure E.1 RMUX Hardware Block Diagram

110

E.2 The Processor Section

The processor section consists of an Intel 8085 micro-processor, an Intel 8237
DMA controller, two 74LS373 octal address latches, a 74LS155 and a 74LS138
address decoder and an Intel 8259 eight channel programmable interrupt
controller. Channels 0 and 1 of one Intel 8253 three channel programmable
timer are cascaded to provide the 10ms time base generator.

Address De-multiplexing

The 8085 processor is run off a 6,144 Mhz crystal which was chosen to enable all
common communication baud rates to be simply derived. The host signal CRS
which occurs for both a host preset and a host CLC 0 instruction was used to
reset the 8085 and hence initialise the software. Since the 8085 multiplexes the
lower half of the address bus onto the data bus, an octal latch was used to de-
multiplex the address when the signal ALFE is high. The 8237 DMA controller
(DMAC) also uses a multiplexed address and data bus but multiplexes the upper
half of the address bus onto the data bus. Hence it cannot use the same de-
multiplexing latch as the processor which necessitated the use of a second octal
latch. The correct latch is enabled in response to the DMA controller signal
AEN which the DMAC asserts high when it has control of the bus.

Read and Write Generation

The connection of the read and write (RD and WR) lines requires some
explanation as it deviates from the standard system recommended by the
supplier. The circuitry adopted was chosen to overcome some problems which
were experienced when using the standard approach. The initial problem arose
due to the 8085 CPU and the 8237 DMAC using different methods for generating
these read and write signals. The DMAC uses a 4 line system, providing
separate lines for I/O read, I/O write, memory read, and memory write (ﬁ,
E)V_V, MEMR, and MEMW), whereas the CPU uses a 3 line system of Read,
Write and I/O or memory (RD,WR, and IO/M). Although Intel recommends a
single chip solution to convert the 3 line approach to the 4 line standard, [29] the
solution generates very narrow (20-30ms) glitches on the output lines when
changing from I/O to MEM. These glitches do affect some of the peripherals
and in particular they caused the DMAC to reset itself occasionally. To produce
a glitch free 3 line to 4 line tri-state decoder would have required at least two
chips, so an alternate scheme was used which effectively overlapped the
memory and I/O address spaces.

The RD and WR signals from the CPU were used directly as the system RD
and WR signals and the IO/M line was unused. This meant that the I/O and
memory address spaces overlapped, but this was accommodated by placing all
I/O devices above I/O address 80H (memory address 8000H) and all memory

111

addresses below 8000H (I/O address 80H). This way all the I/O peripherals
could be addressed as éither I/O devices or memory devices. The only problem
was then the DMAC which uses all 4 lines. Since it uses the IOR and IOW lines
as inputs when being addressed as a peripheral, these had to be connected to the
system RD and WR lines. This then meant that the DMAC’s I/O control lines
were connected to the system’s memory control lines, so that when the DMAC is to
act as a bus master, it has to perform an I/O read in order to read memory.
This problem was simply solved by reversing the definition of the DMAC read
and write cycles in exactly the manner suggested by the Intel manual when
memory mapping the DMAC 8%, The MEMR and MEMW signals from the
DMAC which are only ever used as outputs when the DMAC is in master mode,
are then simply gated with the DMA acknowledge signals to act as strobes for
the peripheral I/O channels from and to the host respectively.

Interrupts

The system needed 10 interrupts, 4 for the 4 transmitters, 4 for the receivers,
one for the time base and one for the host. Although two would have been
better for host interaction, this proved impossible as the HP 1000 computer has
only a single interrupt input per slot; and a single control bit per slot, hence
limiting interaction to one interrupt on the 8085 CPU.

The 8 terminal related interrupts were handled by a single 8259 programmable
interrupt controller (PIC) which connects to the 8085 via the INTR and INTA
lines. This device accepts the highest priority input and issues an interrupt to
the 8085. Upon receipt of an acknowledge (INTA) from the CPU, the PIC
releases a 3 byte call instruction, hence producing the effect of a vectored
interrupt. The inputs to the PIC are positive true and must remain set until
acknowledged which was ideal for direct connection to the TXRDY and RXRDY
interrupt outputs from the 8251 serial interface chips.

The time base interrupt was derived from the output of two cascaded channels
of the 8253 programmable timer which was programmed to produce a square
wave with a2 10ms period. By feeding this square wave directly into the non
maskable TRAP input of the 8085, the need for any interrupt latches and
acknowledge circuitry was eliminated. This resulted from the fact that TRAP is

only activated by a rising edge signal, and so only ever gets accepted once per
cycle of the square wave.

The interrupt from the host occurs when the host programme executes an STC
(set control) instruction. This signal is processed by the flag and control logic
section to produce a positive true 500ns pulse (STCG) which is fed directly into
the RST7.5 input of the 8085, which being a positive edge triggered and latched
input eliminates the need for any further interrupt holding latch.

112

Single Bit I/O

The 8085 needed to be able to examine the state of the FLAG and CNTL flip
flops of the host interface, and also needed to be able to set the FLAG flip flop.
The Serial Out Data (SOD) line of the 8085 supplies the single bit output while
the Serial In Data (SID) line supplies a single bit of input. Rather than add an
extra input port solely for the CNTL flip flop, the RST5.5 line was used as a
simple input port since the RIM instruction supplies the state of this line even
- when the RST5.5 interrupt is disabled.

Address Decoding

The 74LS138 octal decoder supplied the chip selects for the 8 peripheral chips
with each device being allocated 4Kbytes of memory address space above
address 8000H (see figure E.2). Since this corresponded to the overlapping I1/O
address space where each device was given 16 I/O addresses above 1/O address
80H, either I/O or memory instructions could be used to access the peripherals.

Since each of the peripheral devices was connected to the RD and WR timing
strobes, the only signals necessary for the production of the I/O strobes were
A15 to cover the address’s from 8000H to FFFFH and AEN from the DMAC to

ensure that no peripherals would respond when the DM AC was in control of the
bus.

The 74LS155 dual two bit to 4 line decoder was used to provide the chip selects
for the RAM and EPROM. To generate the RAM chip select at address
4XXXH, address A14 was ‘and’ed with the composite signal (RD and WR) and
used to enable decoder 1. This inclusion of RD and WR was necessary since the
2141 RAM chips used could only be selected once their addresses were stable,
hence the inclusion of the read-write timing strobe. The EPROM however has
an output enable (O_E), which was connected to the RD line, and required the
full address set up time for the chip select as well as the address lines. Thus the

chip select decoder for the two EPROMS at 0XXXH and 1XXXH did not include
any RD or WR signals.

113

FF FFFF
8251 SERIAL CHANNEL 3

Fo L 1C12 FOH-F1H £000
B251 SERIAL CHANNEL 2

£o LICM! EOH-E1H £000
8251 SERIAL CHANNEL 1

po | IC10 DOH-DiH 5000
8251 SERIAL CHANNEL 0

co | 169 COH-C1H £000
8237 DMAC

8o | 1617 BOH-B fH 8000
8259 INTR CONTROLLER

a0 L 1C15 AOH-A1H QOO
B253 #2 TIMER

g0 | 1668 90H-93H 9000
8253 #1 TIMER

go | 1C69 80H- B3H 8000
UNUSED RAM

70 7000
UNUSED RAM

60 6000
UNUSED RAM

50 5000
RAM 0 BX2141-5

40 | 1C19-1626 4000
UNUSED EPROM

30 3000
UNUSED EPROM

20 2000
EPROM 1 2732

jo L IC14 1000
EPROM 0 2732

oo L1613 0000

1/0 ADDRESSES MEMORY ADDRESSES

1/0 ADDRESSES

MEMORY ADDRESSES

Time Base Generator

Figure E.2 RMUX Address Map

Two three-channel timers were included on the card giving six 14 bit timers. Four
of these channels were used to supply the four baud rate clocks, and the remaining
two were cascaded to produce a 10ms period wave which was fed into the 8085
TRAP interrupt. Since the timers have a maximum input frequency of 2MHz, the
3,072MHz processor clock was halved using a divide by two toggle before being fed

into the timers.

114

E.3 The Memory Section.

The memory consisted of two socketed 4Kbyte EPROMs (Intel compatible 2732’s)
and eight 4Kbit RAMs (2141 type).

rom’s

The 2732 EPROM was chosen as the sole EPROM device as it was the cheapest
device available at the time the design was started, as well as being the largest
readily available device. The address to data access time of these devices of 450 ns
was more than adequate for the 570 ns requirement of the processor and since no
buffers were used on either address or data buses, timing was extremely
straightforward and easy to achieve.

The 2141 4K by 1 bit RAM was chosen as it only represented a single chip load on
the data bus and required a single 4K block select signal whereas the cheaper and
more popular 2114 type device with its’ 1K by 4 ¢onfiguration would have required
further address decoding to produce the four 1K blocks and would also have
presented 4 loads to the data bus. This level of data bus loading would have
exceeded the 150pF drive capability that most of the devices exhibit and hence
altered timing margins. Although in most cases the extra time lag could have
been met, some of the chips gave no specifications for time delay versus bus
loading, leading to some uncertainty in system timing.

E.4 The Peripheral Interface System

This section consists of the four Intel 8251 Universal Synchronous/Asynchronous
Receiver/Transmitters (USART’s) each of which has four RS232 level line drivers
and four RS232 level line receivers associated with it.

Interface Signals

For each channel, the Transmit Data (TXD), the Data Terminal Ready (DTR), the
Request To Send (RTS) and the clock out (CLKO) signals were all buffered by the
MC1488 type RS232 line drivers and fed onto the 48 pin connector. The four
inputs, Clear To Send (CTS), Data Set Ready (DSR), Receive Data (RXD) and clock
in (CLKI) were received by MC1489 line receivers and fed into the requisite 8251
USART’s. For normal modem-less or direct connect operation, the RTS, DTR, and
CLKO lines arelooped back respectively to the CTS, DSR, and CLKI lines and only
the TXD and RXD lines are used. However the modem control lines are honoured
and may be used.

115

Interrupt Signals

The TXRDY and RXRDY interrupt outputs from each USART were connected to
the 8 inputs of the Intel 8259 PIC to provide each function with a separate
interrupt path to the 8085. The RXRDY lines were connected as the highest
priority since data reception is more time critical than transmission.

Address Assignments

Table E1 gives the address assignments for the data register and the
control—status register for each of the 8251 USART’s, the corresponding baud
rate generator’s address and also the edge connector pin numbers for the eight
interface signals.

Table E.1 Serial Port Address and Pin Assignments

PORT 0| PORT 1| PORT 2| PORT 3
Data register address COH DOH EOoH FoH
Control status address ClH D1H E1H FiH
Baud rate counter address 90H 91H 92H 82H
Baud rate contro)] address 93H 93H 93H 83H
TXD Y w 10 J
RXD Edge connector X 16 F 3
DTR pin numbers 22 17 H 4
DSR on the AA 14 E B
RTS 48 pin edge 21 U 8 6
CTS connector 23 P D 2
CLKO Z 19 K 5
CLKI 20 T 7 C

E.5 Host Processor Data Path Logic

Data transfers both to and from the host processor (the HP 1000 series
minicomputer) are performed by DMA transfers out of and into the multiplexer
RAMs. Since in typical terminal transactions, the majority of data is transferred
from the host to the terminal, this data path was made 16 bits wide with hardware
unpacking of bytes to save host processor time. Board space limitations excluded
this option in the reverse direction so only an 8 bit data path to the host was
implemented with byte to word packing being done in the host By software.

116

Host to multiplexer data path

The 16 1/O data lines from the host backplane were terminated by 2K2 pull down
resistors to —2 volts in order to maintain compatibility with the CTL logic levels
used on HP 1000 backplanes. The data was then latched into two octal latches by
the host output strobe signal IOOG which simultaneously presets two J-K flip flops.
The first flip flop supplies a DMA request to the DMAC which will then
acknowledge, when ready with a write strobe (WSTBI) as discussed in section E.2.
This write strobe is gated with the output of the second flip flop to produce the
high byte enable signal HBEN which enables the most significant 8 bits of input
data from the octal latch onto the data bus, allowing the DMAC to store the first
byte into memory. The trailing edge of the write strobe (WSTBI) clocks the HBEN
flip flop so causing it to change state. Since the DM A request flip flop is still set the
next write strobe (WSTBI) to arrive will be routed by the HBEN flip flop to produce
the signal LBEN which enables the low byte from its’ latch onto the data bus.
LBEN is also used to clear the DMA request and issue a ‘set flag’ signal (STF2) to
the host to indicate that the complete 16 bit word has been stored. The timing
diagram in figure E.3 indicates this sequence and also gives time limits for the 6
MHz processor.

= 4.2u8 MAX -

IoBO-1I0B15S L]

TI00G LI

DRG?Z] l—

STB1 ———3.2u8 MAX et {uS—=l_J

HBEN LT

[BEN 1

STF2 LD

DATA BUS 1 {1
B15-8 B7-0

Figure E.3 Backplane Data Input Timing

Since the two bytes are input via the DMAC in burst mode, the two cycles will
always be consecutive, taking a maximum of 3 clock cycles each. This time added
to the maximum DMA latency of an 8085 running at 6,144 Mhz indicates that the
maximum delay from the IOOG signal to the return STF2 signal will always be

less than 4,2 ps. This indicates that the maximum sustainable input data rate is
475 Kbytes per second.

117

Multiplexer to host data path

The DRQSZ flip flop starts off clear after the initial reset, which places a DMA
request signal on the DRQ$ line. Once the DMAC is enabled, it will acknowledge
the request by placing the data on the data bus and issuing the acknowledge strobe
STF1. This latches the data into the 74LS374 latch, sets the DRQ$ flip flop to
remove the DMA request and sets the FLG flip flop to inform the host. The host
performs a read via the IOIG signal which enables the 8T13 backplane drivers,
placing the 8 bits of data from the latch onto the host I/O backplane. The trailing
edge of IOIG clocks the DRQS$ flip flop, clearing it and causing it to issue another
DMA request. The maximum delay from IOIG to the STFI strobe is that of a
single DMA cycle — ie 3,2 us giving a maximum output rate of 300 Kbytes per
second.

E.6 Flag and Control Logic -

The flag and control logic section consists of four R-S flip flops and associated logic
gates which were all required to implement the standard HP backplane control
protocol. The logic takes 18 signals from the backplane, comprising 9 instruction
related signals, 3 device select signals, 2 timing signals, 3 interrupt control signals,
and one power-on preset signal. These signals are combined to produce control
signals for the rest of the multiplexer logic and to synchronise the multiplexer
interrupt to match the host processor’s interrupt timing sequence. The following
description will cover the signal implementation on the multiplexer only; for any

further detail on the HP 1000 signal relationships, consult the HP 1000 Interface
Manual. {31

Backplane signal selection

The three logic signals SCL, SCH and IOG (subchannel low and high and I/O group)
are ‘anded’ together to produce the signal SEL which will only be true when an I/O
instruction for the correct subchannel is executed. This signal is used to gate in all
the other I/O signals, these being:

CRS Controlled Reset activated by a power-on preset, the front panel preset
button and the instruction CLC O

100 These are respectively the backplane data output and input strobes which
101 occur for the OTA, LIA and MIA instructions.

STC These signals set and clear the control flip flop and are activated by the
CLC STC and CLC instructions.

118

STF These signals set and clear the flag and flag buffer flip flops. STF is
CLF activated by the STF instruction only while CLF occurs for the CLF
instruction as well as all I/O instructions which accept the (,C) option.

SES These are the flag test instructions skip if flag set and skip if flag clear.
SFC

The IOO and IOI signals become IOOG and IOIG after gating with SEL and these
are used to strobe the backplane data into and out of the multiplexer as described
in section E.5. The CRSG signal is used to reset the 8085 microprocessor and also
clears the control flip flop (CNTL). The remaining signals operate on the control
and flag flip flops and will be described separately in the following sections.

Control flip ﬂQD logic

The control flip flop (CNTL) of any HP 1000 interface is the major activating
switch for the interface interrupt system. When set it enables the card to
interrupt and break the priority chain whenever the flag buffer becomes set.
When CNTL is clear all interrupt activity from the interface to the host becomes
disabled and the host priority chain cannot be disturbed. The STC (set control)
instruction is used to set the flip flop, but also performs the secondary function of
acting as a single bit I/O strobe signal. Hence this signal is routed to the 8085’s
RST 7.5 interrupt input so that the host can inform the 8085 when it has
completed a transaction. The state of the CNTL flip flop is also routed to the 8085’s
RST 5.5 input which is treated as a single bit input so that the state of the CNTL
flip flop can be determined.

Flag flip flop logic

The flag buffer flip flop (FBFF) is set by the multiplexer whenever it wants to
interrupt the host. Since this may occur after output or input, or simply when the
8085 requires attention there are three STFn signals coming from the rest of the
multiplexer (see section E.2 and E.5). These are combined with the host generated
power-on preset signal (POPIO) and the standard set flag signal STFG to set the
flag buffer flip flop. Since this flip flop can be set at any time, a second flip flop,
(FLG), is set by the combination of FBFF and timing signal T2 which ensures FLG
is always synchronised with T2.

The signal FLG is gated with backplane signals Interrupt Enable (IEN) and CNTL
to create the signal JENA which breaks the host interrupt priority chain PRH to
PRL. Tt is further gated with FBFF, the host timing signal T5 and incoming
priority signal PRH to set the interrupt request flip flop JRQF. This flip flop drives
two backplane lines via the open emitter 8T13 drivers (IRQB and FLGX) which are
used to interrupt the host and supply the interrupt source address.

119

The IRQF flip flop is cleared at the following T2 and set again at T5 time provided
the interrupt has not been acknowledged or lost priority. This removal of IRQF
each T2 to T5 time allows time for the priority chain to alter and settle, since the
priority chain can only ever change state after a FLG gets set which is at T2 time.
When the host acknowledges the interrupt, it issues an interrupt acknowledge
signal JAK which clears only FBFF and not FLG. This stops further interrupts, but
does not release the priority chain. To release this, a clear flag (CLF) instruction
must be issued.

The state of the flag flip flop can be tested by the host by using the SFC and SFS
(skip if flag clear/set) instructions. These cause the signals SFC'and SFS which are
gated with FLG and FLG respectively and then or’ed to produce the backplane
signal ‘skip on flag’ (SKF) which will cause a host programme instruction skip if
the flag was as required by the instruction.

The major communication between the host processor and the 8085 is via the
CNTL and FLG flip flops as the 8085 can examine both flip flops, can set the FLG to
interrupt the host and is itself interrupted by a host STC instruction.

E.7 Conclusion

This appendix has described the logic of the multiplexer interface by breaking it
up into five major sections. The descriptions have concentrated most on those
areas where the design has not followed standard laid down design rules, and has
not attempted to cover those areas where little choice exists in the standard inter-
connection of components. For example, there is little point in detailing how to
connect an 8085 CPU to the 8237 DMAGC, since there is only one fixed way which is
clearly spelt out in the specification sheet for the 8237 32, Timing diagrams have
not been included except where necessary as most timing in the multiplexer is
generated by software.

Tables E.2 and E.3 supply full details on the two edge connector pin-outs, while
figure E.4 gives the full schematic diagram and Table E.4 a full parts list.

The schematic is all on one sheet as it was drawn on a CAD system which required
full interconnections to be shown before it could do net list checking and automatic
printed circuit board generation. The printed circuit board layout shown in figures
E.5 and E.6 was produced by an auto-routing package, contains 31 metres of track,
1963 holes and took 45 minutes of CPU time to create with only 5 unconnected

tracks out of 786. These 5 had to be manually routed which proved relatively
straightforward.

Table E.2 48 pin Periphefa.l Connector Assignments

Signal (Track) Pin no Signal (Comp)
COMMON A 1 COMMON
DSR 3 B 2 CTS3
CLKI 3 C 3 /RXD 3
CTS 2 D 4 DTR 3
DSR 2 . E 5 CLKO 3
/RXD 2 F 6 RTS 3
DTR 2 H 7 CLKI?2
/TXD 3 J 8 RTS2
CLKO 2 K 9

L 10 /TXD 2

M 1

N 12
CTS1 P 13

R 14 DSR1

S 15
CLKI1 T 16 /RXD1
RTS1 U 17 DTR1

Vv 18
/TXD1 w 19 CLKO1
/RXD o0 X 20 CLKIO
/TXDo Y 21 RTSO
CLKO 0 Z 22 DTRO
DSRO AA 23 CTSo0
COMMON BB 24 COMMON

120

Table E.3 86 way Backplane Connector Assignments

Signal (Comp) Pin no Signal (Track)
COMMON 1 2 COMMON
PRL 3 4 FLG
SFC b 8 IRQ
CLF 7 8 IEN
STF 9 10 IAK

1 12 SKF
CRS 13 14 SCM
I0G 15 16 SCL
POPIO 17 18
SRQ 19 20 100
CLC 21 22 STC
PRH 23 24 101
SFS 25 26 IOB0
27 28
IOB1 29 30 10B2
31 32 T5
33 34
35 36
37 38
+5V 39 40 +5V
41 42 I10B4
+12V 43 44 +12V
10B3 45 46 ENF
-2V 47 48 -2V
49 50
10B5 51 52 10B7
10B6 53 54 10B8
10B11 55 56 1I0B9
IOB12 57 58 10B10
59 60
10B13 61 62
63 64
10B14 65 66
87 68
-12V 89 70 -12V
71 72
73 74 _IOB15
75 76
77 78
79 80
81 82
83 84
COMMON 85 86 COMMON

121

Table E.4 Parts List for RMUX Multiplexer

QTY

COMPONENT

DO O o 0 WD R O e D) O e G ND 00 N R R

MC1488
MC1489
P8251A
P8253
P2141-5
7418373
74LS374
P8259A
P8085A
P8237
7415138
74LS155
8T13
7415122
74LS04
7418279
741832
7408
74LS00
74LS10
74LS11
1000pf
0.1uF
4.7uF
10KQ
15002
18002
2K2n

24pin

Quad EIA RS232 line driver
Quad EIA RS232 line receiver
Intel USART serial interface
Intel programmable 3 channel timer
4Kx1 Static rams. (250ns)
Octal latch

Octal flip flop

Programmable interrupt controller
Intel Micro-processor

Intel DMA controller

3 to 8 line decoder

Dual 2 to 4 line decoder

Dual CTL line drivers

Dual J-K flip flop

Hex inverter

Quad R-S flip flop

Quad OR gate

Quad TTL AND gate

Quad NAND gate

Triple NAND gate

Triple AND gate

Capacitors

Resistors 0.25W, 10%

8 pin SIP RESNET
6,144Mhz Crystal
Low profile sockets

122

oR03 458
thaz
. 32 T
B = T ™~ Mo vee —
: ['W\M C a9 o0 [—
. 23 &3 . PROM
CERe B = j = S 1 Ve]
: 3 T ’](oo XM yee I ver art oo oI
LoPRL o e res vas ag) 10 % bout 07
: - LWJ 02 A
i. 3 TRAP A3 g M A8 TE/vee .: cw
! o 32 H 2 oROZ o) 7 a2 3
) FLG B Ro. : A' DROT [— AR gy O ——A) e TS e
RS, a0 bwoo [~ 3 ——%0
ADY 07 D7 1
INTA) ::cc: S =) A3 5 0
8 — caso A 2 4
nx b= At 2
o g J oacd [o ; ' e ™ ob— o vee
1RQ a1 . 0 o W TR { °—°"'j G a1
Wwoan S E ‘ g .0 IR pg INT maon 2 S
LEN a1y o LR ol - ..I DA L ™ 57 M g o
—ata L d e = R4 e Aly o o 1.
ais 8 ApsTR w O s A0
F st 1= e pz WD o .4
EN :
ALE ax ax wi N g U 22
1AK T M -, a ax— i m @ o2) 7
: €9 3) - RSET TO¥ | — 1 vee bt o gy O 2
€8 ok RSET 1 f fotecl — o o0 45
POPI0 3 wn ROV R3ET l—mv L1 "
a3
® r = 2 2 ¢ TY i
o] [a] - 1 M Ay 0z i
- 4 1 —1 N L) :Ilo " op—y E ‘,'“ g ']
SYF vee oo = /[;—f_l)] o W
12 1t bs G0 N a1 _ ot ATy
KF ne Y] at AEN 02 nba A6 DINI—
* B.,_WWJ - 02 02 a2 P o, 2 s bour —‘——--“
D 3
CLF [3r5s T {Fs o o Mmoo W s 5 05 @ HE—a.
Fawa] AW :‘ s o5 ——o6 @ b6 @ H—az = =
1 ce £58 :an b6 O a8 o7 ~ o7 o H—iar ~ 5}—Li
i s 07 Jar [& gy L B—
| SFC Gy €10 &8 ® o <
{ x W E) AEN l I’
Lsrs & T AE x@— e 7 = n
o P - s
kol Q2 CNTL Al ¥CC p—e
s 5 _@D, P 5] » oob—H
"‘VW"] yg E8 I ! A8
A Lazm e B - ; : : . 8
2 ; oNTL PP : ——— ——— = e OIN |
3TC (5 P l——@ : i : T — S Dour T‘_
19 FLE - SAO 6 o t I bt o4
SRQ (3o ; : ¥ a
7 P : - ADDRESS BUS i)2 2 =
100 G4 ™ arc | aen _ | H—a) ~ f—t
B F6 13 AEN 1 L—{a0 1
el = . £ : A : .
s = T
2
lol L] @_ B :< t" :| vee
. qvee B 0 1
. pec 7] o nL :: qw_—-
13 —_— RESEY X0 m
CRS [3 o [5X) g J_L :_ - b o Uom
68 W} @ b
. Ded 1 pouy L LU
seL (&l e & HeENs = e . i
@ €10 H
B —Hr- 3 6 a3 Bia 3 =
scM g = = = 323 = —a & oi—1
= { — <
15 W = 5 I a0
106 3+ T00¢ w.oncz | = -@:
es N _1l_ -
c) o | e a0 vec|—
! 1018 £ o oo l—
| A m
{ 080 7 C — axz | o o
DATA BUS b7 2 :: D;’,’;:__ |
2 : BESEY = " as b2
log1 2 : DATA BUS o7 - : 2 T \
= — : + ? &) s T W—
Z T L 2| u Al o~ TIR—L4
» o) o0 < —re ¢ i
1082 & F 2 & = = = - il &
— < - ASET L] RO -
= ax T
< RESET o :
1083 (2 e 3 X3 — = "o voc|—t
1 WR.DACH oK [L3 9 oo
2 [gt ta : |
1084 E. A6 DINPS I
|: A5 DOUT i
T ae f j | |
5 101B| ' - |
1085 5 (] — : E: .]
I csc r I H A & TS—H .
. - i NN ! | w1l ! |
g ' E3AEEE TrG88 S°RCengs i !
o6 2 : — | l ToCEE TUSTTRET E ooosa S°REYRSY TX2%3 StSSEvey & pessIss i |
PCaA S°8SP58 Y 7 25988 =& Eiahe azs) 88 g0 sop sep ce Ay ,
. = = s 8251 g g2r $82 982 o« 287 285 287 o4 A a0 veer—lf| 1
1087 (3 & g 8251 87 8251 ez z3) 553 =3z 533 88 208 o2 So% 38 o ool
| [62, o 3 |52z33357 3223 83 [L1 2o |
= 2 3 3223 ER T 3223333 S w s .
= 4 8333 83 85558 L TT T [I I | end | ae oLl |
o ot | ’ l ' _! T | :: sout 02
L] t— " o J |
o o - 2 :w
o = i e |
N a
S4 04 F 0s a0 ;
1088 & 0s o5 i
56 0 06 i
1) & ax 2 Q - i
10810 1 N e (2 i
e T ((l1E ann _ o |
, 1081 {5 —1 1 2 1Te3 ;
i - vEC oD A !
I I0B12 00 oo . —_— Ty
‘ :_l’ ot ay
1 - 92 az - !N
! 05!3E - M¢>s w3 r02, 2. 10)=107|, ®, 109 5 -s.nsm. ta ':1
: " E e o7 0n 3 a0 m a
[i0BIe 2 05 m 05 ATS _ RXD _ DSR
f il @ oo RO ORI Ko DKL CTS
| OB,S,..[o; “: DTR CKO CK1) BMUX FOUR CHANNEL
‘ v B e =i PORT 3 PORT 1 TERMINAL MULTIPLEXER
Vo
! == e 7
! w0 ® [MDICATES FINS ON 8 21N COMECTOR ibater 4.5p.83 | Scaie:
! PINS + TD 2¢ On COMPONENY SIDE I Y .
| SINs 101 TO 128 TRACK $1GL I Drawn byt peoiow iSSue:
i
i

Figure E.4 RMUX Multiplexer thematig

124

P el Sr——ee.
00T I00E00 0900000800000 Huu,oﬂﬂ,,ﬂoulo sepe

r. -
.—J_—w ‘ T
W S T ican e s ==

AP 2201 "

Figure E.5 Component Side Track Layout

126
Appendix F

MTX Software Description and User Manual
F.1 Introduction

MTX is a small multi-tasking executive written for an 8085 microprocessor with
the specific objective of simplifying the task of developing software for the RMUX
interface for HP 1000 series computers.

Although written for a custom application, MTX is general in nature and hence
could be used for many different applications on many different sets of hardware.

The system is quite simple and offers only a very rudimentary I/O control system.
However it does have a scheduler and dispatcher which allow multiple tasks to run
concurrently. Facilities are supplied for time scheduling, resource locking, event
synchronisation, and message handling, all of which are implemented as simple
executive calls.

This appendix describes only the MTX executive itself and does not attempt to
cover any application tasks at all. The description will first cover the operation of
the system, detail the application of all the data structures and tables, and then
cover the usage of the system in the form of a user manual. This user manual
section will detail how to set up the system for any application and how to use all
the executive calls.

F.2 System Layout — an Overview

The major objective of the system is to allow multiple independent tasks to run
concurrently. To implement this, each task, which is defined here as one logically
independent module of code, has it’s own Task Control Block (TCB) to define it.
The TCB is used to store all static and dynamic information pertaining to a task,
and it is the TCB which is maintained by the system to allow the concurrency.

A task will execute continuously until it suspends itself waiting for an event, a
resource or a message. All these three options of suspension are implemented using
a data structure termed an Exchange. Each resource, event or message queue in

the system uses its own exchange, and it is at these exchanges that MTX queue’s
waiting tasks.

The dispatcher scans all the exchanges searching for any exchange that contains a
task that is ready to run. When one is found, the task is released and run until it
again suspends itself against some exchange whereupon control returns to the
dispatcher. Interrupts may interrupt any task, but no task may be suspended due

127

to an interrupt. This means that each task may only suspend itself on an exchange
 and can never be suspended by any other source. While this is a simplification of
normal executive techniques, it does simplify both MTX and the application tasks.
In the application system for which MTX was specifically written, all tasks are of
equal importance, thus obviating the need for one task to usurp another. Figure F.1
illustrates how tasks are queued against the different forms of exchanges.

TCB head TCB header) End
Dispatcher CB header - of
scan Exchange 0 Task awaits Tesk awaits List
path CPU event cPU CPU
Exchange 41 1
Message Queue
Exchange 2 Took :::fteirng
Message Gueue message.
CB header
Exchange 3 TCB header T ::::)
Sync. event Task awaiting Awaiting same
event event

B

TCB header ~_)

Attempts to
lock resource

Exchange n-i
Resource

Exchange n "=:::)

sync. event

Figure F.1 Exchange Format

Messages in MTX consist of fixed length buffers which are initially held in a pool
queue of empty buffers. Using standard MTX calls, tasks can fetch messages from
designated message queues and can place messages onto any queue. There is no

limit to the number of message buffers or message queues in the system other than
the amount of RAM available.

All interrupts that arrive via the programmable interrupt controller (PIC) pass
through a small Central Interrupt Control module (CIC) which saves all the registers
and disables the PIC from giving any further interrupts. Control is then
transferred via an interrupt vector to the correct handler for each vector. At
completion the interrupt handler executes a RET (return) instruction, whereupon
the Central Interrupt Control routine restores all the registers, enables the PIC and
resumes processing. Note that CIC does not allow for a change in task as the result

128

of an interrupt.

A 10mS non-maskable interrupt on the TRAP input provides a time base which
MTX uses to provide time limited waits and time delay schedule calls to other
tasks. A time of day clock is not kept so all time calls may only specify a delay in
10mS steps. Any task pending against an exchange has the option of placing a
time limit on it’s wait and can then be notified upon return of the success or failure
of its request.

F.3 MTX Data Structures and Table Formats

Interrupt Vector Table

A small table consisting of 8 two byte vectors is kept in RAM for use by the
Central Interrupt Control (CIC). These vectors contain the addresses of the 8
interrupt handlers that correspond to the 8 interrupts from the PIC. These vectors
can be modified by application tasks and by interrupt handlers to direct interrupt
jumps anywhere. A RET (return) instruction will always restore control to CIC
which will resume normal task processing from where it was interrupted. The
dynamic re-allocation of interrupts is extremely useful where, for example, the
significance of an interrupt relies upon the history of previous interrupts.

Exchange Table

The exchange table is the major data structure in MTX and consists of several 8
byte entries allocated contiguously in RAM. There is a maximum of 64 exchange
entries allowed as there is only a six bit field allocated to take the exchange number
in the TCB status field (see TCB format below). The exchange layout (see figure F.2)
starts with a standard 5 byte list header which consists of a 2 byte list head
pointer, a 2 byte list tail pointer to simplify list additions, plus a single byte list
length counter. All lists and queues in MTX use the same format to simplify the
queue handling routines. The last link pointer in a list is indicated by a zero

pointer, and an empty list is indicated by a zero head pointer as well as a zero list
length.

Byte 5 of an exchange entry is the exchange flag byte which when zero indicates
that the exchange is free. When the exchange is busy, this byte is set to the TCB
number of the task that currently owns the exchange. In the case of a resource
type of exchange, only the task that locked the exchange can free it again, so the

flag byte is checked on Release——Resource calls to ensure that the current task is in
fact the exchange owner.

129

Byte 6 of the exchange entry is an indicator byte to indicate whether the exchange
is a resource type or an event type of exchange. The two major differences are that
a resource type can only be released by the calling task that locked it, and it
initially starts with its flag in the free or zero state. An event type of exchange
can be set or cleared by any task, since it is used mainly for inter-task
synchronisation, and it must initialise to the busy state so that the first call to
‘Wait for the event’ will suspend the caller until the first ‘set event’ call occurs. The
indicator byte is non-zero for events and zero for resources which simplifies
initialisation since the indicator is merely copied into the flag byte.

Byte 7 holds the exchange number which is used in the status field of the TCB
whenever a TCB is queued against the exchange (see TCB exchange format below).
Although this number could be calculated dynamically instead of being stored,
this method is slightly faster and an 8 byte exchange entry is easier and quicker to
derive from its entry number than a 7 byte entry would be.

Flag byte (O=free)
Indicator (O=resource)
Exchange Number (from 0)

0 2 byte Head link
1 pointer
2 2 byte Taillink
3 pointer
4 Queue Length
5

6

7

Figure F.2 Format of an Exchange Table Entry

Task control blocks

The task control block or TCB is a 72 byte data structure used to store all static
and dynamic information about a task. Each task has its own TCB and all TCB'’s
are placed contiguously in RAM at the time of assembly, hence TCBs cannot be
dynamically created or removed. The TCB consists of a 14 byte information
header (see figure F.3) and a 58 byte stack area for the task to use while executing.

The first two bytes (0 and 1) comprise the link address field, which stores the link
pointer when a TCB is queued against an exchange. This pointer is set to zero when

the TCB is the last item on any queue, otherwise it points to the next TCB on the
queue. - -

130

Bytes 2 and 3 hold the stack pointer that was current when the task suspended
itself. At initialisation it is set to the top of stack in the TCB — ie., the end of the
TCB. By giving each task it’s own stack in it’s TCB and saving the stack pointer
when the task suspends, a task may suspend with any data it likes on the stack, or
from any level of subroutine nesting.

Byte 4 is the Task Status Byte which has bit 7 set when the task is executing. If the
task is not the currently executing task, then it must be suspended on some
exchange, and so bits 5 through 0 of the task status byte are used to store the
exchange number. Since the TCB could also be suspended in the time list, bit 6 of
the status field is set when the TCB is in the time list.

Byte 5 contains the Task Identity number with each TCB being numbered
sequentially from one. This value is static and may not be altered.

Bytes 6 to 9 are currently unused.

Bytes 10 and 11 store the Time Lsst Link Pointer which links together all the TCB’s in
the time list. Note that the TCB’s are all linked on bytes 10 and 11 in the time list
queue and that this link pointer does not point to the top of the TCB.

Bytes 12 and 13 store the 16 bit Time Delay value which is the number of 10ms
intervals to go before the task times out and is re-scheduled. This value stored

least significant byte first is decremented every 10ms by the time base processing
task.

0-1 | 2byte exchange list linkage pointer
2-3 | 2byte stack pointer save area
4 TCB B7=executing,

Status B6=time list,
B5-0=exchange number

5 TCB Identity number

6-9 Not used

10-11 | Time list linkage pointer
12-13| Time list delay value (10ms)

14-71| 58 byte stack area
32 bytes for user task
26 bytes for Interrupts

Figure F.3 Task Control Block Format (TCB)

131

The remaining 58 bytes (bytes 14 to 71) are used as stack area for the task.
However since a separate stack for interrupts does not exist, each user stack must
leave 26 bytes for the interrupt routines, which leaves 32 bytes of stack for the user
task itself. The 26 bytes of interrupt space are allocated as 4 bytes to the non-
maskable time base interrupt, 8 bytes for the RST 7.5 interrupt from the host CPU
(in the case of the RMUX application), and 14 bytes allowed for a single level of
user interrupt.

As a TCB is a fairly long entry, its size could be altered for a specific application
should it consume too much RAM, providing the stack area is not required to be so
large. However the library routine “GTCBAD (see next section) which gets the
address of a TCB given its number, relies on all TCB’s being contiguous and 72
bytes long. So if the TCB length is altered then the routine “GTCBAD should be
altered accordingly.

Message Queue Header Table -

This table consists of 6 word queue header entries with the queue zero header being

reserved for the pool queue which is where all blank memory buffers are initially
stored.

Bytes 0 through 4 form the standard list header format (see figure F.4) with a 2
byte head pointer, a 2 byte tail pointer and a single byte length counter.

Byte 5 holds the number of an exchange which is associated with the message
queue header. Thus if a Task requests a message from a queue and there is no
message available, the task will be suspended against the corresponding event

exchange. When a message is added to the queue, the event will be set, hence
releasing the caller.

2 byte list head
pointer
2 byte list tail
pointer
list length counter
queue exchange number

AhOON—LO

Figure F.4 Message Queue Header Table

132

Memory Buffer format

Membry buffers in the current RMUX version of MTX are 272 bytes long, but this
length is variable depending on application. The buffers require 2 5 byte header
used by MTX, and then the remaining space can be application determined.
Memory buffers are defined as starting at byte 3 which leaves the normal list
linkage pointer at address zero.

Bytes -3 and —2 comprise the list linkage pointer which ties all the memory buffers
together in a permanent list. This list is used by MTX to recover buffers from killed
tasks and generally to keep track of all the buffers. This system also enables
buffers to be allocated in a non-contiguous manner providing they are all linked
together at startup.

Byte -1 holds the buffer status which reflects buffer ownership. If bit 7 is a 1, then
bits 5—0 hold the message queue number while if bit 7 is a 0 then bits 5—0 hold
the TCB number of the task that last requested the buffer.

Bytes 0 and 1 hold the normal queue linkage for linking messages onto the various
message queues as defined above.

The remaining bytes in this buffer are user defined as MTX does not alter them at
all. Furthermore, buffers may be of different lengths, for apart from the startup
routine, MTX does not maintain any information about buffer lengths.

-3 2 byte linkage holding all buffers

-2 together in a list

-1 Buffer owner status (B7+Q# or B7+Task#)

0 2 byte linkage to hold buffers on

1 individual message queues

2 User available data space unaffected by the
system. May be any length but is not dyna-
mically aiterable.

Figure F.5 Memory Buffer Format

F.4 MTX User Callable Functions

The principle function of MTX is to supply facilities for the handling of resources,
events, messages and tasks, and hence all the user callable functions apply to these
four facilities. This section will first of all eover how each of these facilities is used
and then will cover the user calls. '

133

Resource numbers

A resource number is merely an exchange number which two or more co-operating
tasks can use to protect some shared facility, be it data or a peripheral. Any task
wishing to access a shared facility should execute a GET RESOURCE call on the
resource number associated with that facility. MTX will allow the task to continue
if the resource number is free, and will lock the number to the calling task. Should
the resource already be locked then the calling task will be suspended until the
resource becomes free. Once a task has completed operating on the shared facility,
it should execute a RELEASE RESOURCE call on the same resource number which
will free the resource number and allow any other task awaiting the resource
number to continue. Thus a resource number is used to ensure mutual exclusion of
co-operating tasks when dealing with a shared facility.

A resource number is initially unlocked at power-up time, and can only be released
by the task that locked it. Should an invalid release call be made, no action is taken
and the resource stays locked.

Events

An event is a means by which co-operating tasks can pass signals to one another to
synchronise their activities. A call to WAIT EVENT by a task will cause the task
to be suspended against that event until some other task performs a call to SET
EVENT on the same event number. This would then release the waiting task and
clear the event in readiness for the next set of calls. Should the SET EVENT call
be executed before the WAIT EVENT call then the WAIT EVENT caller would
not be suspended. Events are all initialised to the clear state, but a CLEAR
EVENT call may be used to ensure a clear event if it’s history can be ignored.

Several WAIT EVENT calls may be performed by different tasks which will cause
all the tasks to be queued against the event. When a SET EVENT occurs, only the

first task in the queue will be released; all the others remaining queued for
subsequent SET EVENT calls.

Messages

Messages in MTX are all stored in memory buffers which are of fixed length,
determined at the time the system is assembled. A task wishing a message will
execute a call to GET BUFFER, giving a message queue number. Should a message
be available on that queue, it’s address will be returned immediately, otherwise the
task will be suspended until a message becomes available. The first two bytes of

the message buffer are reserved for the list linkage, but the remaining space can be
used as the task sees fit.

134

To pass a message, a task will execute a call to PUT BUFFER and supply the
buffer address and a queue number. This will place the message buffer on the
message queue specified, ready for some other task to fetch. Since MTX does not
keep track of message buffer lengths, the user task must know the length and not
exceed it otherwise it could write over other buffers.

Tasks

A task is essentially a self contained block of code which performs some discrete
function, independently of other tasks. Where two or more tasks share some
function or resource, they should use resource number or event calls to secure the
resource and synchronise themselves. Thus a task should be able to run completely
independently of any other task, and where this cannot occur, system calls should
be used to ensure safe and error free co-operation. Tasks may be scheduled, time
scheduled, aborted or halted via various system calls described below. Since MTX
does not rigidly supervise the I/O system, each task must contain a KILL section
of code which MTX will execute whenever it aborts or halts a task. This code
should tidy up after a task, particularly in the area of I/O and interrupts. MTX
will release resources locked by the aborted task and return any memory buffers
that it owns to the pool.

Function calls

"GTRESC: This call gets or locks a resource number to the caller, or if the resource number is
locked to another task then the calling task is suspended until the resource
number becomes available. ‘

INPUT DATA: A register holds resource number

OUTPUT DATA: Nil

REGISTERS USED: All

STACK USED: 6 bytes

“TGTRSC: Timed get resource call which, should the resource not be available, will only
suspend the caller for a specified time for the resource.
INPUT DATA: A register holds resource number. BC = 16 bit time delay in 10mS increments

OUTPUT DATA: Z bit set for a timeout return. Z bit clear for resources locked
REGISTERS USED: All
STACK USED: 16 bytes

“RLRESC: Release a resource number. The resource number must belong to the calling task
or else no action results.
INPUT DATA: A register contains resource number

OUTPUT DATA: Nil

REGISTERS USED: HL, DE and PSW (BC preserved)
STACK USED: 4 bytes

“WTEVNT:

INPUT DATA:
OUTPUT DATA:
REGISTERS USED:
STACK USED:

“TWTEVN:

INPUT DATA:
OUTPUT DATA:
REGISTERS USED:
STACK USED:

“STEVNT:
INPUT DATA:
OUTPUT DATA:
REGISTERS USED:
STACK USED:

*"CLEVNT:
USAGE:

“"GETBUF:

INPUT DATA:
OUTPUT DATA:
REGISTERS USED:
STACK USED:

“TRYBUF:

INPUT DATA:
OUTPUT DATA:
REGISTERS USED:
STACK USED:

“PUTBUF;
INPUT DATA:
buffer

OUTPUT DATA:
REGISTERS USED:
STACK USED:

135

Causes the calling task to suspend against an event until the event gets set by
another task, unless the event is already set in which case, no suspension occurs.
The event is cleared once the task is released.

A register contains event number

Nil

HL, DE, and PSW (BC preserved)

8 bytes

Timed wait for event call which will only allow the task to be suspended for at
most the specified time while waiting for an event.

A register contains event number. BC = 16 bit time delay in 10mS increments

Z bit set for timeout return. Z bit clear if event occurred OK

All

16 bytes

Set an event. May be executed by any task.
A register contains event number

Z bit set indicates invalid event number
All

4 bytes

Clear an event. Normally only used to ensure an initial startup condition.
(Identical to "STEVNT above)

Gets a message buffer from a specified message queue. If no buffer is available,
then the calling task is suspended until one does become available on the queue,
A register contains message queue number

DE == the start address of the buffer

All

12 bytes

Gets a message buffer from a specified message queue. If no buffer is available
then an immediate return is made to the caller with the Z-bit set, else a buffer

address is returned with the Z-bit clear. This call does not suspend the caller at
all.

A register holds the message queue number.

DE holds address of buffer start else Z bit set indicates no buffer available
Al
12 bytes

Puts a message buffer onto a specified message queue.
A holds destination message queue number. DE holds address of the start of the

Nil
All
10 bytes

136

“STACTYV: Sets a specified task active, LE. schedules a task to run, optionally after a given
time delay. The task must be dormant and not in the time list, otherwise the
STACTV call has no effect.

INPUT DATA: A register contains task TCB #. DE holds time delay before task will start. -

OUTPUT DATA: Nil :

REGISTERS USED: All

STACK USED: 10 bytes

“STDORM: Sets a specified task dormant immediately. This is an Abort request which kills
a given task and releases all its system resources.

INPUT DATA: A register contains the task TCB number.

OUTPUT DATA: Nil

REGISTERS USED: All

STACK USED: 20 bytes

“STOP: System call to allow a task to terminate itself. This call does not release any
system resources owned by the task, or perform any clear up,hence all cleaning
up must be done by the task prior to the stop call.

REGISTER AND STACK USAGE: Immaterial

F.5 System Library functions not directly user callable

MTX was written on a modular basis and hence contains several library routines
which may be of use to some user routines. Although these functions are not
system calls, they may be used as general subroutines for user programs on a
library basis. All are re-usable so may be called by any task at any time.

“SETIMT: Links the current task into the timelist and sets its time delay value to that contained in
the DE register. Uses all registers and 10 bytes of stack.

“CLTIMT: Removes the current task from the timelist. Saves BC register only and uses 8 bytes of
stack.

“KLTIMT: Removes the TCB whose address is specified in the HL register pair from the timelist.
Saves BC register only and uses 8 bytes of stack.

"RLMEMR: Releases all message buffers owned by the task whose TCB number is specified in the A
register, and places them back on the pool quene. Uses all registers and 16 bytes of stack.

“LINKIN: Links the object whose address is in DE onto the end of a list whose header address is in HL.

The list header must be in the standard 5 byte form specified in section F.3. Alters only the PSW
register and uses 8 bytes of stack.

137

“UNLINK: Unlinks the object specified by the address in DE from the list whose address is in HL. The
list header must be in the standard 5 byte form specified in section F.3. The Z bit is returned set if the
object is not found in the list. Alters only the PSW register and uses 6 bytes of stack.

~GETOFQ: Unlinks the first object from the top of the list whose header address is in HL and returns
the object address in DE. If an empty list is encountered then DE is returned with zero in it. Alters only
the PSW and uses 6 bytes of stack.

“GTMQAD: Returns in HL the message queue header address that corresponds to the quene number in
the A register. Alters HL and PSW and uses 2 bytes of stack.

~NXTLNK: Loads HL with the contents of the address pointed to by HL. Alters HL and PSW and
uses 2 bytes of stack.

~GTCBAD: Returns in HL the TCB address corresponding to the task number in the A register. Alters
all registers except BC and uses 2 bytes of stack.

“BYPASS: List removal routine that stores the contents of the address pointed to by DE into the
address pointed to by HL, ie. (HL) := (DE). Alters A register, increments HL by one and uses 2 bytes of
stack.

~“CHCKHD: Checks if DE equals the memory pair pointed to by HL and sets the Z bit if they are equal,
ie. checks if DE = (HL). Alters A register and uses 2 bytes of stack.

F.6 Dispatcher and Scheduler

All calls to MTX that result in a task being suspended will call one of the routines
"QUEME or “TQUEME to perform the actual suspension and link the task
against the specified exchange. "TQUEME is a subsidiary routine that adds the
caller into the time list before calling "QUEME, and removes it from the time list
once the task has been released again.

"QUEME is the major suspending task which saves the user stack pointer into the
task’s TCB, updates the task’s TCB status byte and links the TCB onto the correct
exchange. The return address of the routine that called "QUEME will be the last
value on the stack, so that it is a simple matter to return to the correct point at a
later stage. "QUEME then changes the stack to the dispatcher stack and passes
control to the dispatcher ("DSPTCH).

“DSPTCH starts at the top of the exchange table and examines each entry in turn,
searching for an exchange which has a task queued against it (head link non-zero)
and which has a zero flag byte. Should no ready exchange be found, "DSPTCH
starts again at the top of the table and tries again, looping continuously until some
exchange becomes ready. When an exchange becomes ready, the TCB on the top of
the exchange queue is released, the exchange is marked as being busy to that task,
the task stack is re-instated and then control is passed to the task. This will cause
the task to continue executing directly after the point at which it called "QUEME.

138

*QUEME and "DSPTCH maintain two variables in RAM called "CTCBAD and
~CTCBID which contain the address and ID number of the TCB of the currently
executing task. These variables are set to zero and -1 respectively, when no task is
executing and "DSPTCH is looping.

Calling specifications are:

“QUEME:
INPUT DATA: DE points to the exchange to be queued on.
OUTPUT DATA: see "DSPTCH which is the output section
REGISTERS USED: All
STACK USED: 4 bytes
“DSPTCH:
INPUT DATA: Nil, as this route is not directly callable
OUTPUT DATA: HL points to the released exchange flag byte
REGISTERS USED: All
STACK USED: 4 bytes of USER stack (see “QUEME)
“TQUEME:
INPUT DATA: DE points to the exchange to be queued on.
BC holds 16bit time delay in 10mS steps
OUTPUT DATA: Z bit set if timeout exit occurred
REGISTERS USED: All
STACK USED: 14 bytes

F.7 System Start-up Routine

An initialisation routine "STRTUP is the first code to execute after a reset occurs,

and it is responsible for setting up all the tables in RAM and generally performing
all the required initialisation functions listed below.

* Clear entire 4K RAM to zero .

* Create the message queue header table and initialise each entry to reflect its
corresponding exchange number. These exchange numbers are obtained from the ROM
table "MEXTBL which consists of one single byte exchange number for each message queue
header. The variables "MEM_Q_0 and "MAX_MEMQ# are used to hold the start address of
the table and the last entry number respectively.

%

Create the exchange table using starting address "EXCHG_O and last entry
number "MAX_EXCHG#. Each entry is initialised with its exchange number, and has its
flag and indicator bytes set to indicate whether it is an event or resource type entry. This

information is recovered from the ROM table "RSCTBL which holds the indicator byte for each
exchange.

139

Initialize all message buffers by linking them onto the master list (header:
*MEMLST) via their master linkage (bytes -3 and 2) and also onto the pool

queue via their normal linkage. The variables "MEM_BUF_0, "MEM_BUFLEN, and
“MAX_MBUF# are used to define the start address of the message buffers, their length, and the
number of the last buffer respectively.

Create the TCB’s and initialise them by setting their status to the number of

the DORMANT exchange to indicate their dormant status. The variables
~TCB_01, “TCB_LEN, and "MAX_TCB# are used to define the start address, length and
number of TCB’s respectively. The dormant exchange is merely the last exchange which since it
is never checked by the dispatcher is used to hold all inactive TCB's.

Schedule task 1, the timeout processor, and task 2, the first user application
task, both with zero delay.

Initialize the time base generator to run at 100Hz.

Set up the programmable Interrupt controller to reflect the correct interrupt
vector address and mode of operation.

* Exit to the dispatcher.

This start-up routine could be added to to cause it to perform other start-up tasks,
but all user initialisation should be done in the first user task (task 2) which should
also be the one to start up any other tasks required for any application.

F.8 Time Base Generator and Time List Handling

A small non-maskable interrupt driven routine ("CLOCK) is included with the
system which executes every 10mS in response to the 10mS time base generator.
This routine uses 4 bytes of user stack, and merely sets an event to release the
timeout processor TOUT (always TASK 1). The event is “"TIMER and can be
placed anywhere in the exchange table depending upon the priority it requires. The

priority is due to the exchange table being scanned from the top, giving low
numbered entries a higher priority.

TOUT is an application task which is used to process the time list. It suspends
itself against the event “TIMER, and each time the event gets set (by "CLOCK),
TOUT runs down the time list decrementing each TCB’s time delay value. When a
time delay that decrements to zero is found, the TCB is unlinked from the time list,
and from its exchange, and is queued against the CPU exchange ("CPU_EXCHGI)
which is always the first exchange and is never locked. This will cause the timed
out task to execute when the dispatcher next runs. When all the TCB’s in the time
list have been checked, TOUT re-suspends itself against the “"TIMER event.

140

F.9 Adding a Task to the System

To add a new task into the system, several tables may need alteration to reflect the
requirements of the new task depending on what facilities the task requires. The

following section describes all the changes on a step by step basis.

*

Write the task itself using calls to any of the system routines described in
section F.4. Add a KILL subroutine which will clean up any resources that
would be left open by the main task if it were to be aborted at any point.
Once these are written the source code file can be included in the assembly by
use of the assembler MERG instruction (see appendix I).

Allocate 2 TCB for the task, giving the task a TCB number. If this requires
an extra TCB then indicate this by altering the variable "MAX_TCB# to

reflect the highest TCB number in the system. This is all that is necessary to
add a TCB.

Inform the system of the task’s start address and kill routine address by
adding the following code to the start of the task.

ORG TASKNO-1* 6+ JUMP_TABLE
JMP <«task start address>

JMP <task kill routine>

RSEG "ROM1

This fills the task start address jump table which is used by the "STACTV
routine to start up a task. TASKNO should contain the actual number of the

task being added and is normally assigned by using the assembler SET
instruction.

If any new ezchanges are required, add them to the exchange list and update
the variable "MAX_EXCHG# to reflect the highest exchange number in the
system. The table "RSCTBL in the same file must also be updated to indicate
whether the exchange is an event or a resource. Should more than 32
exchanges be used then "RSCTBL should be moved from address 4 to

elsewhere in ROM by replacing the ORG 4H statement by an RSEG "ROM]1
statement.

If any new message queue headers are required then add them into the
memory queue table and update the variable "MAX_MEMQ# to match the
number of the last message queue header. An extra exchange will also have
to be added for this queue and so proceed as given above. Finally update the
message queue exchange table "MEXTBL by adding the new queues exchange
number into the table.

141

* If any more message buffers are required, or if the buffer length is to change,

merely alter the variables "MAX_MBUF+# or "MEM_BUFLEN respectively.

Assemble the master file ZMASTR (see figure F.6) which should merge in all the
system files and routines, and then check the variables "ROMIND and "RAMIND
which will give the usage of ROM and RAM, these being the next available

addresses in each segment respectively. Ensure that these figures do not overflow
the ROM or RAM available.

Figure F.6 gives a sample control file &MASTR which was used in the RMUX

interface to install the system and four copies of the port driver module which
contains three separate tasks.

8085 ,LE
“"RAM1:

“ROM1:

“PORT#:
“PORT_DATA:
“COUNTER:
“COUNT_MODE:
"C_MODE_WRD:
“TX_BUF_Q#:
“RX_BUF_Q#:
“PORT_RESRC:
“"FLAG_1#:
“FLAG_2#:
“"RX_INT_VEC:
“TX_INT_VEC:
"TX_MASK:

"Multitasking monlitor
NSEG 4000
"RAM_BEG: EQU
“RAM_END: EQU
NSEG 0040H

Now to load

R.Peplow <8b50104.1531>"

.+40956

;Load system 1nto first rom
;directly after interrupt vectors
;First the table definition module
;Then all the system routines

;The time list handler task

;The host interaction tasks

MERG &RXTBL
MERG ZRXSYS
MERG ERXTINM
MERG &RXHST

the 4 port driver tasks setting port parameters for each

SET 1

SET "“PORTiDATA

SET ~“COUNTER_1

SET "CNTR1i_MODE
SET ~“Ci1_MODEVWRD
SET "MEM_Q#_TX1
SET ~“MEM_Q#_RX1
SET “PORT1RESC

SET "TX1_EVENT

SET “PORT1_BRK#
SET “RX1VEC

SET "“TX1VEC

SET 10H

both TX & RX use same sync event
port 1 break task sync exchange #

this blt on the 8259 stops tx intr

MERG ERX801

“PORT#:
“PORT_DATA:
“COUNTER:
“COUNT_MODE:
“C_MODE_WRD:
“TX_BUF_Q#:
"RX_BUF_Q#:
“PORT_RESRC:
“FLAG_1#:
“FLAG_2%:
“RX_INT_VEC:
“TX_INT_VEC:
“TX_MASK:

SET 2

SET “PORT2DATA

SET "“COUNTER_2

SET "CNTR2_MODE
SET “C2_MODEWRD
SET "MEM_Q#_TX2

SET "PORT2RESC
SET "TX2_EVENT
SET "PORT2_BRK#
SET "“RX2VEC
SET "TX2VEC

both TX & RX use same sync event
port 2 break task sync exchange #

SET

MERG &RX801

H
H
H
H
H
H
SET "“MEM_Q#_RX2 H
H
H
H
H
;

20H

this bit on the 8259 stops tx intr

......... repeat the same procedure for ports 3 and 4

SCRTCH: NSEG OFFFFH ;ithis will close all segments
ROMIND: EQU “ROM1 ;now report all the end address’'s
RAMAND: EQU “RAM1

END

Figure F.6 Sample Master Control File

142

143
Appendix G

RMUX System Software
G.1 Introduction

This appendix describes the application software written for the RMUX
multiplexer. The initial section covers the system in very general terms, shows
how messages move around, and how all the tasks interact.

The next section describes how the host interacts with the multiplexer and details
how the two host interaction tasks in the multiplexer operate. There is very little
description of the HP RTE IV software since this is described in appendix H.

The last section describes how the multiplexer interacts with the terminal and goes
into some detail as to how the terminal handling tasks function.

G.2 Overall System Operation

The function of the multiplexer is to take messages from the HP1000 host,
distribute them to the relevant message handlers to operate on and return
completed messages to the host. Messages in this context may be transmit
requests, where a line of text is to be output from the host to some terminal;
receive requests, where a line of input from a terminal is to be placed in the
message and returned to the host; or they may be control requests informing the
multiplexer to perform some function on a terminal. (E.G. space lines). The
common factor in all is that the message when completed is returned to the host in
acknowledgement.

The task block diagram in figure G.1 shows the various modules that handle these
messages and how the messages move throughout the system. The full

complement of tasks is only shown for one port, as the other three ports have
identical layouts.

All messages originate in the host as some request, and are passed to the
multiplexer via a multiplexer DMA channel, 16 bits at a time. When a complete
message has been placed in the multiplexer memory the host informs the
"FROM_HOST task (figure G.1) in the multiplexer by issuing an STC instruction.
"FROM_HOST checks the message and determines its destination to be one of eight
message queues depending upon which port the message was for and whether it
was a receive request or not. The message then passes via these queues to one of
the eight port handling tasks for processing.

144

SERTAL
170
LINES

7O\

EXECUTIVE TouT
TASK 1
Qs
TX-TASK |2 |
CHARS P
PORT 0 ouT TASK 4 ~—__:
USART OUTPUTS FROM HOST
cHaRS MESSAGE \ Y] TASK 2 HP
T0 4 INCOMING
IN
LOCKED : TERMINAL| N 7 ,/3’ MESSAGE 1000
N\~ 1] HANDLER | 16 m17
10 RESOURCE |16 N));-v AND DATA
2N /’ DISTRIB. HOS™
RX OR TX CHARS RX- TASK ,‘V AN ,/'y
ouT AN
TASK S
VIA Neo BACKPLANE
INPUTS | \
CHARS MESSAGE I~ ~——_lag TO HOST
RESOURCE ™ | @9
16 FROM wEssace paThsl 03y TASK 3
TERMINAL ///’ RETURN bt
/// / MESSAGE | g g1
- | HANDLER | DATA
UNEXPECTED BREAK L]
INPUT TASK 6 // N oe\n\\i
COPES WITH / //
BREAK MODE| | 8, / // | AR
INTERRUPTS // /' I \ \\\\
\
// Pl \ O\
/ J WA
@ /,/ o3p7 4 D oa\\\
PORT 1 PORT 2 PORT 3
TASK 7.8.9 TASK 10. 11 TASK 13, 14
12 15
RESOURCE 17 RESOURCE 15 RE SOURCE20

i1

170

1

170

I

170

Figure G.1 RMUX Multiplexer Message Flow Diagram

When a port task has a message it locks the resource number associated with it’s
port in order to eliminate any possibility of simultaneous transmission and
reception on one terminal. Once locked, it outputs (or inputs) data as specified by
the request until the request is complete. The task then releases the port resource
and passes the message to the "TO_HOST task via queue 9. “"TO_HOST sets up the
DMA channel to the host to output the message and interrupts the host which then
reads the message from the multiplexer. When complete the host interrupts the
multiplexer to inform it that the message has been accepted. The host can then
determine the destination for the message and release the originating program. -

145

Should a character be received from a terminal when no receive request is pending
it will be ignored unless it is a ‘space or a ‘CTRL X". These two characters are used
to attract the host’s attention which is done by ‘BREAK’, the task to which all
unexpected input characters are diverted. To attract the host’s attention BREAK
fetches a blank buffer from the pool queue, sets up the header to indicate which
port requires attention and sends it to the host.

One requirement of modular programming is that each module should be
independent and self-contained with all interaction outside the module being
confined to a well defined set of calls. The structure shown in figure G.1 attempts to
ensure this by confining all task interaction to message transfers or resource calls.

G.3 Host-Multiplexer Interaction

All messages from the host to the multiplexer are handled by the task
“FROM_HOST and those from the multiplexer to the host by task “TO_HOST.
Transfers in both directions are performed under DMA in the multiplexer which
enables rapid transfers to occur without requiring the multiplexer software to
synchronise with the host software. However this results in the data transfer being
invisible to the micro-processor and so the host sends an interrupt (RST7.5) to the
multiplexer micro-processor whenever it completes a transaction, either input or
output. This single interrupt for two different transactions was forced by the lack
of suitable signals from the host. The interrupt routine in the multiplexer is
"STC_INT, and it determines which transaction the host is signalling completion of
by examining the two DMA channel word count registers. The channel that has
reduced by at least one message header (12 bytes) is the channel that the host last
used and hence “STC_INT can inform either "FROM_HOST or "TO_HOST by
either setting the event "FROM_SYNC# or the event "TO_SYNC# respectively.

“FROM HOST

Since this task must always be ready to receive a request from the host,
"FROM_HOST attempts to always maintain a reserve of 5 empty buffers. To speed
up the use of these buffers, they are not kept in a queue or linked list but are stored
in 5 individual data structures termed POTS. A pot is a 3 byte record which holds
a single status byte and a two byte buffer address. The pot status may be FREE’ if
it has an blank buffer in it, FULL if it has a full buffer in it, EMPTY’ if it contains
no buffer and BUSY if it contains a buffer which is currently being filled.
"FROM_HOST initially tries to create 5 free pots setting the buffer from the first
free pot to be filled by the DMA controller and marking the pot busy. This done it
waits against the event "FROM_SYNC# for the buffer to be filled via DMA.

146

When the host has filled the buffer it interrupts the multiplexer using an STC
instruction. This causes the 8085 control to transfer to the interrupt routine
"STC_INT (figure G.2) which checks the state of the two DMAC word count
registers. Should it find the "FROM_HOST channel altered (DMAC channel 2) it
will check that the current pot is busy and if so set it to full. It then checks each pot
in turn until it finds a free one, assigns it to the dma controller to be filled, marks
the pot busy and finally sets the event "FROM_SYNC# to release FROM_HOST.

yes

<:RST 7.5 INTEHHUPT:)

disable DMAC
channel # 3

set event
“TO_SYNC#

set flag
“T0 HOST_DONE

/" TO_HOST
message gone?
\.dma ch # 3 -

no

FROM_HOST
message in?
dma ch # 2

no

current
pot ‘'busy'?

yes

mark current
pot 'full’

disable
DMAC

any €s
"free’ pots?

set buffer to DMAC
and mark pot busy

set event "FROM_SYNC#

(_ BETURN)

Figure G.2 Flow Chart for "STC_INT Interrupt Routine

147

When released from the event wait, "FROM_HOST searches for full pots,
dispatching their buffers to the relevant port handlers. Providing the port has
been configured (see below) "FROM_HOST routes the four port read requests to
message queues 1 to 4, and the write requests to message queues 5 to 8. Control
requests other than type zero and type twenty four (RTE:CN,LU,0 and
:CN,LU,30B,xx requests) are treated as write requests and sent to the respective
TX_TASK’s via queues 5 to 8.

Port task abort

The control request type zero (:CN,LU,0) when sent to a port requires that the
current operation should be aborted immediately. This abort request is processed
by “FROM_HOST simply by aborting all three tasks associated with the port,
(using calls to "STDORM) and then re-schéduling them all using a call to set the
TX_TASK active as TX_TASK re-schedules the other two tasks. The type zero
control request message is then returned to the host (via queue 9) as confirmation.

Port-configuration

The RMUX software uses the least two significant bits of the equipment table
entry address in the host (see appendix H for further detail) as an index to the
port number. Since equipment table entries (EQT’s) are 15 words long, all
combinations of the least two bits are obtained if the 4 EQT’s are contiguous in the
host, a requirement for the multiplexer. However channel zero need not have its
EQT index as zero, so the first call to each multiplexer channel after power-up
must be a configuration call (RTE:CN,LU,30B,nnnnnnB) where the least two
significant bits of the configure call specify which port should be associated with
the EQT address in the message header.

"FROM_HOST detects configuration calls to unconfigured ports and sets up a four
byte cross reference table ("PORT_ADDRS) using the EQT address least two bits
as an index. Bit zero of the "PORT_ADDRS table entry is set if the port has been
configured, and bits 2-1 hold the port number to be used for the given EQT
address. Once the "PORT_ADDRS table has been set up, the conﬁgﬁration request
is passed on to the relevant TX_TASK since it contains interface set up data.

Once "FROM_HOST has dispatched all full pots, marking them empty as it does, it
then attempts to fill all empty pots from the pool queue. When all pots are full (or
no buffers remain) it scans all pots to ensure there is a busy pot. If not then a free
pot is changed to busy and the DMAC set up to fill the buffer held in the pot. This
covers the situation where "STC_INT could not find a ‘free’ pot to set ‘busy’.

Finally "FROM_HOST once again suspends itself against the event
"FROM_SYNC#.

148

(START)

INITIALIZE: Set up DMAC, start all tasks
£111 all pots and set first pot to DMAC

[f111 "empty’ pots and mark as 'free’ |

ny bus no ny free\ yes |mark the pot ‘busy’
pots? pots? & set into the DMAC

J

Wait for event "FROM_SYNCH#

no ny full\ ves is port .no is this a no
pots? configured? CN, 308 call?

yes yes
configure the
port table
t is this 3 yes 'abort port handlers
N, 0 call? and reschedule.

no

rsend buffer to handler‘J Feturn buffer to hosﬂ

Figure G.3 Flow Chart for the "FROM_HOST Routine

“TO HOST

Initially, “TO_HOST suspends itself against message queue 9 waiting for a message
to arrive. When one does it sets up channel 3 of the DMAC to output the buffer and
checks to see if the host’s CNTL flip flop is set or not. Should it be clear, it implies
that the host is busy outputting data to the interface and so should not be
interrupted. This is a problem with only having a half duplex backplane in the
host. If the CNTL flip flop was set then the host could be interrupted and so
“TO_HOST sets the host FLG flip flop by pulsing the SOD line (appendix E). In
either case, "TO_HOST then suspends itself for 20mS against the event
"TO_SYNC+#. When released from this event, either by a timeout or by "STC_INT
setting the event (as described previously), TO_HOST checks to see if the DMAC

149

has sent the message. If not, then it loops back and again checks the host’s CNTL
flip flop. before setting the host’s flag. Thus, should the host be busy with the
interface, or if it ignores the flag interrupt, “"TO_HOST will re-try every 20mS until
the host eventually responds.

Once the host has accepted the message, "TO_HOST returns the used message
buffer to the pool queue and loops back to the beginning to fetch another message.

The flow chart in figure G.4 gives a brief picture of the sequence which “TO_HOST
executes.

((START)

get message from gueue
and set into the DMAC

host CNTL es | set FLG to interrupt
ff set? host and enable DMAC

no

suspend against “TO_SYNC#
for maximum of 20ms

‘—D'DGessage gone?—>y-e-s—'|return buffer to pool Gﬂ}——'

Figure G.4 Flow Chart for the “TO HOST Routine

150

G.4 Terminal Handlers

Each port has three separate tasks to control the terminal, TX_TASK to handle
transmit (output) and control requests, RX_TASK to handle receive (input)
requests and BREAK to handle unsolicited interrupts and attract a host prompt if
necessary. The transmit and receive tasks each have their own input message
queue and send the completed requests to queue 9 for return to the host. BREAK
fetches blank messages from the pool queue and sends the completed message to
the host via queue 9.

Each task consists of two distinct and relatively independent sections; the main
task body which runs under control of the MTX dispatcher and an interrupt
handler which runs under control of the interrupt system independently of the
state of it’s main task body. The standard manner in which the tasks are written
is that the main task gets a request, sets up variables to direct the operation,
enables the interrupt handler and the device interrupts and then waits against an
event for the transaction to complete. The interrupt handler is entered for each
character interrupt, processes the interrupt, and initiates the next character
transaction. When the entire transaction is complete, the interrupt handler
typically disables further interrupts and sets the event to awaken the main task.
This then tidies up, completes the request, and returns the entire message to the
host as an acknowledgement before fetching a new request.

The following sections describe each of the handlers in turn, but for full details of
all the handler options and functions the listings should be referred to as the
handlers carry a very wide range of options to cope with specific terminals

operating in various modes. Where relevant, these options will be mentioned but
not covered in detail.

TX TASK

Flow charts of the operation of the transmit control task (TX_TASK) and the
transmit interrupt handler routine (TX_CONT) are covered in figures G.5 and G.6
respectively. TX_TASK is responsible for the message request management while
TX_CONT is responsible for the control of the serial port and the maintenance of
the data output process. TX_TASK first schedules the other two port tasks
RX_TASK and BREAK, and then waits for a message from its input queue. Once
it has one it examines the CONWORD (see figure G.7) which specifies the type of

request that the message contains. The full format of ‘the 267 byte message buffer
is described in figure G.7.

151

[set RX_TASK and BREAK active.

Iwait for a message on I/P queue]

- no / control '\ yes

\request?
lock port create message yes space
resource of linefeeds lines?
‘ ~
andshake\\ yes no
required?/
no
send ENQ@ & await ACK on no valid cntrl
“TX_SYNC# {max. 4 mins) request?
yes
enable transmitter interrupts and alter flags or
await completion on “TX_SYNC# configuration

1 as specified
by the request

set port status and transmission
log into reguest message header

l return message to host on queue 8 |

Figure G.5 Flow Chart for Terminal Task TX-TASK

162

no

ransmitter
\. active ?

yes

last char. \ no
sent yet? /

yes

[send CR, LF pair| send next character and
' update transmission log

clear 'ACTIVE' flag
set event " TX_SYNC#

disable further
transmit interrupts

((RETURN)

Figure G.6 Flow Chart for TX_CONT Interrupt Handler

For control requests (CONWORD = 3) the task branches to the section CONTRL
which determines the type of control request. Most such requests merely involve
changing flags or variables in the port’s common data area. Typical examples are
to set the timeout value or enable or disable the terminal from attracting host
attention through unsolicited interrupts. The configuration control request causes
CONTRL to re-programme the baud rate counter and the USART in order to allow
on-line alteration of the baud rate, number of stop bits, number of data bits, and
parity. The only control request which actually causes terminal I/O is the space
line request which either performs a form feed or a specified number of line feeds
on the terminal. CONTRL decodes this request and fills the message buffer with
the form feed character or the specified number of line feed characters. It then
passes the buffer back to the normal transmit section of TX_TASK for output as a
normal message.

153

0-1 Buffer linkage address in RMUX) (LSB-MSB)
but to or from host = SYN-SYN for message synchronisation.
2-3 EQT entry address for this port. (MSB-LSB)
4* EXEC call CNWRD. Host bits 11-6 shifted to bits 7-2 here.
5 Input buffer length (max 255 bytes)
8 On input:— holds a subchannel number
on return:~ holds the transmission log in bytes
TH* Interface status byte echoed in EQT 5 status byte in host.
8 Optional EXEC call parameter # 1 (MSB-LSB)
9 Optional EXEC call parameter # 2 (MSB-LSB)
12-267 max 255 bytes of data + 1 spare byte
*CNWRD B1-BO: call type. 01=READ, 10=WRITE, 11==Control
bits B2: ASCII/Binary bit. (0/1)
B4: Echo bit. (1 = echo input data)

B6-B5: 11 = Program block read. IE. echo CR & LF only.
10 = Honest mode. All I/P accepted and no CR,LF sent

« Status BO: Set on return to invoke ‘break’ mode response.
byte B1: Set when terminal enabled for ‘break’ mode.
bits B3: Set when a parity error was detected in last message.
B4: Indicates status of interface DSR line at message end.
BS: EOT bit set to indicate an EOT (CNTL D) was input.

Figure G.7 Message Buffer Format

For transmit requests TX_TASK first locks a resource number which both
TX_TASK and RX_TASK associate with the serial port itself. This ensures
mutual exclusion between transmit and receive message requests. Once the port is
locked the message header is unpacked and stored into port common. Specifically,
the buffer address, conword, and subchannel are all saved so that TX_CONT (the
interrupt handler) can access them. The transmit active flag (TX_ACTIV) is set to
indicate to TX_CONT that a request is being processed and then the handshake
flag is checked. This flag is set up by the configuration call, and determines which
type of handshake is to be used with the terminal.

The three handshake types currently implemented are

* no handshake,
* an enquiry using the ENG)’ character every 80 characters
*

an enquiry using the ETX’ character before each line of output.

Both the last two types will hold transmission of the message until the terminal
sends an ACK’ acknowledge in response to the enquiry. Handshake 2 corresponds

to that used by HP terminals while Handshake 3 is used by the QUME daisy wheel
printer and several other printers.

Where a handshake sequence is required, TX_TASK sends the requisite enquiry
character, sets up the Receive interrupt vector to TX_CONT and then waits
against the event "TX_SYNC# for the acknowledge to arrive. When the
acknowledge character (ACK’) arrives, TX_CONT receives it and sets the event to
release the main task which then moves the receive interrupt vector back to the

154

BREAK task interrupt handler (BREAK_CNTL) which processes unsolicited
input. TX_TASK then moves the transmit interrupt vector to point to the
transmit interrupt handler TX_CONT, enables the transmitter interrupt and
waits for transmit completion against event “TX_SYNC#.

When TX_CONT has completed the transmission (described separately below) it
sets the event "TX_SYNC# which releases TX_TASK. TX_TASK then clears the
transmit active flag, stores terminal status into the message status word (see figure
G.7), releases the port resource and returns the message buffer to the host by
sending it to queue 9, "TO_HOST’s input queue. TX_TASK then loops back to the
beginning to fetch another message buffer.

TX CONT

TX_CONT is entered initially due to an interrupt since the transmit section of the
USART will interrupt whenever it is ready to send a new character and thus will
interrupt as soon as the transmitter interrupt is enabled. TX_CONT first checks
that the transmit active flag (TX_ACTIV) is set, and if not, assumes an invalid
interrupt, taking the spurious interrupt exit disabling the transmitter interrupt as
it exits. If the active flag is set, then the remaining character count is checked to
see if the last character has been sent and if not then the next character is output,
the transmission log is incremented and the buffer length counter is decremented.
The routine then returns from the interrupt via the MTX operating system to the
programme that was interrupted.

If the last character had been sent then a carriage return is sent, and the interrupt
pointer moved to cause the next entry to be at a different point. On the next
interrupt entry a line feed is sent and again the pointer is moved. The next
interrupt indicates that the line feed has been transmitted and that the record is
complete so the active flag (TX_ACTIV) is cleared and the event “TX_SYNC# is

set. Finally the transmitter interrupts are turned off and a return from interrupt
executed. '

TX_CONT has two extra features not shown in the flow chart; The first of these
supports the HP convention that the terminating carriage return and line feed will
be omitted if the last character in a line is the underscore ‘__’ character. The

second is the so-called ‘HONEST’ mode which is invoked by setting bit 6 in the
input conword and also causes the carriage return and line feed to be suppressed.

RX TASK

This task, which is the main body for handling receive requests (those requests
requiring input from the terminal to the host) is very similar to TX_TASK with
the exception that it does not have any processing of control messages to do, and
that the terminal handshake is somewhat simpler.

155

RX_TASK starts by waiting for a message from its input queue, and when it gets
“one it locks the port resource and unpacks all the relevant header variables into
port common. It next determines whether a handshake is required and if so sends
out a DCI character. This is the HP type of input handshake where a2 DC1 (11H)
character must be sent to the terminal to trigger input. The next step is to set the
receive interrupt vector to point to the receive interrupt handler RX_CONT and
then set a timed wait on event "RX_SYNC#. The time limit is alterable by the set
timeout control request and is re-instated each time a character arrives at the
interrupt handler RX_CONT. The reason that the timeout value is reset each
character is so that the request will only time out after a period of inactivity
rather than when a user is in the middle of typing a long and complex line of text.

Once the RX_TASK is released, either as the result of an event being set by
RX_CONT, or as the result of a timeout, it resets the receive interrupt vector back
to the BREAK interrupt handler (BREAK_CNTL), sets the status byte in the
message header, returns the message to the host via queue 9 and then loops to the
start to fetch a new message.

X CONT

The receive interrupt handler is in essence a very straightforward handler
complicated by the large variety of input options it is required to cope with. The
flow chart in figure G.8 shows only the standard terminal options, having left out
the options of binary mode, honest mode, block mode, and all the various
handshakes for the sake of clarity. For further detail on the handshake protocols

see appendix K and for greater implementation detail consult the source code
listings. '

‘RX_CONT fetches the input character immediately after the interrupt to reduce
the possibility of overrun and checks to see if it is a CNTL X (CAN) which is used
as a break mode character. If it is a CNTL X then the break bit is set in the header
status byte. If not then the timeout is restored to its full value and the character

checked against the special control characters such as delete, backspace, (CNTL Z2),
and (CNTL D).

CNTL Z allows the echo mode to be toggled within a line of input, while CNTL D
deletes the line returning a zero length line to the host. Delete has two results,
depending upon the terminal type. For HP terminals (determined by the
bhandshake type), the delete causes the string ‘CR,ESC)K,\’ to be output which
clears the current line and prints the back slash character ¢\’ as a prompt. On non-
HP terminals the output string for delete is \,CR,LF,\’ which issues a backslash,
moves to a new line and gives a backslash prompt.

156

INTERRUPT

< CNTL-X ? yes set break bit (BO) in status

no

reset timeout

<ii delete ? €S .| send cr, esc, K, / and set TLOG = zero
no
€S set EOT bit. set TLOG = zero.
CNTL-D ? turn off interrupts. set "“RX_SYNC#
no
yes decrement TLOG and if it becomes
<:BACKSPACE ? zero then treat as DELETE.
no
<i CNTL-Z ? :>—1§§-* toggle the ECHO flag
no
YES send CR, LF. turn off interrupts
return ? set event to ~RX_SYNC#
no
<i ECHO ON ? //,yes output the character

no

\ yes increment the TLOG , store character
<TLOG<BUFLEN | in the buffer and append a 'space’

no

(i RETURN i:} ;

Figure G.8 Receive Interrupt Handler Flow Chart

If the input character is not an option character, then the next check is to see
whether an echo is required and if so the input character is transmitted back to the
terminal via the transmit port of the USART. The final check is to see whether the
transmission log, which is a count of the number of characters input so far is still
less than the requested buffer length. If so, then the character is stored in the
buffer, the transmission log is updated and a padding ‘space’ is stored in the next

1567

byte of the buffer. This is needed since the host only inputs complete words, and
requires the last word to be padded with an ASCII ‘space character if an odd
number of characters is input. RX_CONT then returns from the interrupt.

The special options not shown in the flow chart are:

i) Honest mode

In honest mode all input characters are stored in the buffer with no special
character checking being performed.

ii) Binary mode

In this mode no special character checks are made, all characters are stored in
the input buffer irrespective of what they are until the buffer length equals
the transmission log. There is no early termination character in binary
mode. Finally in this mode the last character in the buffer is followed by a
null rather then an ascii space.

iii) Block mode

Here no normal characters are echoed, but the final carriage return line feed
is still sent to the terminal.

iv) Handshake mode

Although not strictly 2 mode, with handshake on if the first character from
the terminal is a DC2 (12H) then the following carriage return and line feed is
ignored, and a DC1 (11H) trigger character is sent to the terminal to initiate a
block mode transfer. This rather odd handshake is termed ‘Long Handshake
Trigger Mode’ by HP.

BREAK

During the times when no input has been requested by the host, and when
TX_TASK is not waiting for an ‘ACK’ handshake acknowledge, the receive
interrupt vector is left pointing at the break task’s interrupt handler
BREAK_CNTL. Thus all unsolicited input is processed by BREAK_CNTL which
ignores all characters except ‘space€ and ‘CNTL X’ (20H & 18H), these two
characters being used to attract the attention of RTE IVB. In order to do this, bit
zero of the returned status word is set which causes the host driver routine DVX05
(see appendix H) to attract RTE IVB by scheduling a program called PRMPT.

On receipt of one of the ‘break’ characters, BREAK_CNTL examines the port
resource flag to determine if the port is locked to either RX_TASK or TX TASK.
If the resource is locked then the port common area in RAM will contain pointers
to the current message buffer and so BREAK_CNTL merely needs to access the
message status byte and set the least significant bit. This will then attract the host

158

as soon as that message buffer gets returned to the host. If however the resource is
not locked, then no current buffer is available to have it’s break bit set.
BREAK_CNTL thus sets the event "BREAK# which releases the main task
BREAK. BREAK f{fetches a buffer from the pool queue, fills the header with the
correct equipment table entry address, sets the conword, buffer length, and
transmission log to zero, sets bit zero (the ‘break’ bit) in the status byte and sends
this buffer to the host. BREAK then loops back to the beginning and suspends

itself on the event "BREAK#. Figure G.9 shows both these routines in flow chart
form.

(_ BREAK START) (BREAK_CNTL INTR)
S8 space?
no
. no
wait event CCNTL X ? >
on "BREAK#
yes
get empty no
pool buffer { port locked? >—— 3
yes
set up header set break bit set event
add break bit in current “BREAK#
message header
send to host
via queue 9
(RETURN from INTR)

Figure G.9 Flow Chart for BREAK Task and Interrupt Handler

159

G.5 Summary of Terminal Characteristics and Options

The RMUX terminal system handles three types of requests from the host: read,
write, and control, identified by the CON'WORD which consists of Bits 11-6 and 1-0
of the standard HP EXEC call CONWORD (see figure G.7). Bits 1-0 determine the
request type while bits 7-2 (HP bits 11-6) enable various options. Table G.1
describes the function of these bits for read and write calls. For control calls, these
six bits have no meaning as the fifth byte in the header contains the control code.
This code allows several different functions to be specified, as described in table G.2.

Table G.3 expands on the specific options available through the configure terminal
(30B) call.

Normal read and write requests may contain some special characters which affect
the operation of the multiplexer. These are described in table G.4 for read requests
and table G.5 for write requests.

Table G.1 Conword option bits for Read and Write calls

RMUX CONWORD 7 6 5 4 3 2 1 o
corresponds to : : : : : : : :
HP CONWORD 11 10 9 8 7 6 5 4 3 2 1 0
Bit Function

0-1{ 00-invalid, 01 - READ, 10 - WRITE, 11 - CONTRO

2 BINARY BIT. '

On READ’s this bit stops special character processing and causes request termination to
occur on buffer full. Odd byte count causes a NULL byte pad character.

On WRITE’s it has no effect.

4 ECHO BIT.

On READ’s this causes all input to be echoed back to the terminal except for some special
characters. ECHO can be toggled during input with CNTL Z.

On WRITE’s, ECHO has no effect.

6 HONEST MODE BIT.

On READ’s this stops special character processing. CR still terminates input however.
On WRITE it stops the CR,LF pair from being sent at the record end.

Table G.2 Control Request Options

Request Function Parameter
code
1B Space lines request. ‘N’=-+ve no of lines
‘N’= -1 for new page
20B Enable terminal break mode nil
21B Disable terminal break mode nil
22B Set read request timeout delay ‘N’=+ve no of 10ms
30B Configure terminal options ‘N’ (see Table G.3)

Table G.3 Configure Request Format (Control 30B call)

160

Parameterword C C X T S S P P H B B B B H N N
bit definitions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Bit field Function
15-14 (CC) Set USART character length (00 = 5 bits) (01 = 6 bits)
(data field only) (10 = 7 bits) (11 = 8 bits)
11-10 (SS) Set number of transmitted stop bits
(01 = 1 bit) (10 = 1,5 bits) (11 = 2 bits)
9-8 (PP) Set parity for transmission and checking
(00 & 10 = no parity) (01 = odd) (11 = even)
7-2 (HH) Set terminal handshake mode
{00 = no handshake)
(01 = HP style handshake, ENQ/ACK on transmit and
DC1 to trigger receive)
(10 = QUME style handshake, ETX/ACK before each
transmitted line)
1-0 (NN) Set port number to be used (only valid on first call)
6-3 (BBBB) Set terminal baud rate:
50 75 . 110 135 150 300
1 2 3 4 5 6
1200 1800 2400 4800 9600 19200
7 8 9 10 11 12
12 (T) Set to enable terminal to use break mode interrupt
13 Not used

161

Table G.4 Special Character Processing for Read Requests

Character Normal Mode effect Binary mode effect Honest mode effect

EOT ("D) Immediate return with ~ Add to the input buffer Add to the input buffer
gero record length

BS Echo and reduce Add to the input buffer Add to the input buffer
transmission log by 1.

If TLOG = 0 then

issue delete sequence.

LF Echoed but ignored Add to the input buffer Echoed but ignored

CR or RS Terminate input phase Add to the input buffer Terminate input request
Send CR LF sequence.
Return message to Host

DC2 (°R) If it is the first character then send a DCI back to the terminal and ignore the first]
(CR, LF), else add to buffer as normal.
CAN ("X) | Set break mode attention bit (B0) in status byte.

SUB ("Z) Toggle echo flag Add to the input buffer Add to the input buffer
on/off

Us Echoed but ignored Add to the input buffer Add to the input buffer

DEL Send CR,ESC,K,\ or Add to the input buffer Add to the input buffer
\,\CR,LE) to terminal
and set TLOG to zero

Table G.5 Special Character Processing for Write Requests

Character Normal Mode effect Honest mode effect

Underscore | If last character in buffer then Output as normal
‘¢ terminate output and complete
without sending CR, LF. If not

last then output as normal.

162
Appendix H

The RTE IVB Input/Output System
H.1 General Overview

The RTE IVB real time executive system provides central control of all
input/output operations through the system module RTIOC. The system can
interface to a maximum of 56 I/O devices, each consisting of a single printed
circuit board controller driven or controlled by a software module termed a system
driver. RTE allows several drivers, one for each different type of I/O controller
connected to the machine.

RTIOC uses three tables to define the system I/O structure, these being:

* The equipment table

* The interrupt table
* The Device reference table. (DRT)

These tables are defined during the system generation phase and only the device
reference table may be modified on line.

The equipment table contains of a 15 word entry (EQT) for each I/O device
connected to the system. The entry is used to specify the driver address, the device
type, status, and all temporary information needed to process a request.

The interrupt table consists of a single word entry for each I/O controller (each
occupied slot), to specify how an interrupt from the device is to be handled. The
handler may be either a system driver, or a user supplied programme.

The Device reference table contains 2 two word entry for every logically distinct

device in the system, and is used to link each ‘logical unit’ to a particular
subchannel of a piece of equipment.

All user I/O i'equests to a logical unit are routed via the device reference table to an
EQT, from which the driver address can be found. The driver initiator section
would start the request and then suspend the calling programme pending a
completion interrupt. Each interrupt causes RTIOC to determine the correct
interrupt handler from the Interrupt table and pass control to that handler.
Normally this handler will be a system driver whose continuator address is also
stored in the EQT. After the final interrupt the continuator returns control to
RTIOC to release the calling programme to the schedule state.

163

H.2 The Equipment Table Entry (EQT)

Each physical 1/O controller plugged into the computer must have an EQT to be
recognised by RTE. These entries, each 15 words long, are established when the
system is generated and are not alterable on line. The EQT (figure H.1) is used to
hold status information such as the two driver entry point addresses, the channel
or slot number, and the equipment type, as well as dynamic information and
temporary data.

word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 R 1/0 request list pointer.
2 R Driver initiation section entry point address
3 R Driver continuation/completion section address
4 D B P § T last subchannel # 1/0 select code
5 avail equipment type code . driver set equipment status
6 EXEC REQUEST Request function/control word
7 CALL Request data buffer address
8 PARAMETERS Request data buffer length
9 Temporary storage or Optional request parameter # 1
10 Temporary storage or Optional request parameter # 2
11 Temporary storage for driver use only
12 Temporary storage or BEQT extension size (if any)
13 Temporary storage or EQT extension address (if any)
14 Device timeout reset value. (negative 10ms intervals)
15 Device timeout running clock

R - Reserved bit for system use only
D - Set if driver requires a DCPC (DMA) channel.
B - Set if automatic output buffering is used.
P - Set if driver is to process power failure recovery.
8 — Set if driver is to process a device timeout.
T - Set on driver entry if the device has just timed out.
avail = I1/0 availability indicator.
00 - available for use
01 ~ device disabled (down)
10 — device busy (currently in use
11 - driver is waiting for a DCPC channel.

Figure H.1 Equipment Table Entry format.

Word 1 of the EQT is the link word used to link together the ID
segments of all programmes wishing to use the EQT. The first one in
the chain is the ID segment of the programme currently busy with

the EQT, while all the rest wait in the queue for the current request to
complete.

Words 2 and 3 hold the entry point addresses of the initiator and
continuator sections of the driver. The initiator is called from RTIOC

to start the request while the continuator is entered to process an
interrupt.

Word 4 holds driver status information, bits of which may be altered
by RTIOC, while word 5 holds the static device type field plus the
dynamic device status which may be altered by the driver.

Words 6 to 10 are set prior to entry into the initiator section to hold
the current request information. Thereafter all words from EQT 6 to
EQT 13 may be used to store temporary data as they are not altered
by the system until the next initiation request.

Words 14 and 15 are used for timeout processing, word 15 being the
actual timer incremented from a negative value every 10mS while
word 14 is the reset value to be stored in word 15 at the start of each
timeout period.

H.3 The Interrupt Table

The interrupt table consists of a one word entry for each I/O slot in
the machine. The table is established at generation time, each entry
being one of three different types:

* A gero entry is used for those I/O channels where no I/O
controller exists and hence no interrupt is expected.

* A positive interrupt table entry is used to hold the address of
the equipment table entry that will be used to process the
interrupt.

%*

A negative value indicates that a user supplied programme will
handle the interrupt, the complement of the entry being the ID
segment address of the programme that should be scheduled.

H.4 The Device Reference Table

The RTE IV system provides for a maximum of 255 logical units
and only 63 EQT’s, the device reference table (DRT) being the cross
map table to link logical units to the physical devices (EQT’s). Each
DRT entry consists of two words:

*

number and a lock flag.

The second word is a link pointer to link pending requests to a
logical unit.

The first word contains the six bit EQT number, the subchannel

164

The concept of a subchannel is used to allow a single physical device
to contain several logical devices. A typical example of this is the
Hewlett Packard 2648 graphics terminal which can contain two
cassette tape drives, a graphics memory, and an external printer in
addition to the normal alpha screen and keyboard. This terminal
uses five subchannels and hence five logical units, all associated with
a single item of equipment and a single EQT. With the subchannel
system, only one subchannel of any EQT may be busy at a time as
an EQT is only capable of handling one transaction at a time.

H.5 The Standard RTE System Driver Layout

Under the RTE system, all I/O transfers to and from a peripheral
device are performed under the control of a two part module called a
‘driver’, the two parts being termed the ‘initiator’ and the
‘continuator’.

The ‘initiator’ is called by RTE which passes the user’s call
parameters via the EQT. Since the driver may handle several EQT’s,
the initiator must configure all I/O instructions to reflect the correct
slot address. It should then initialise all software flags and variables,
check the request for validity, prepare the request for further
processing, initiate the first I/O transaction of the call and then
return to the operating system leaving the caller suspended.

The ‘continuator’ is called by RTIOC whenever an interrupt arrives
from the associated I/O controller. The continuator should first check
the link word in EQT 1 to check that the EQT is in fact busy. Should
this be blank, then no request is outstanding and the interrupt
should be ignored unless special processing is to be performed for
unsolicited interrupts. Otherwise the continuator should then
configure all I/O instructions again since some other EQT could have
used the driver in the interim period. The next I/O transaction is
then started and a return made to RTIOC. Should no further I/O
exist, a special return is made to RTIOC to indicate request
completion at which the caller will be re-scheduled.

H.6 Mapping system usage

When a user programme calls a driver to perform an I/O request,
RTIOC must first include the specified driver in the user’'s memory
map so that the driver may access the data contained within the
user’s programme. To enable this, all drivers are relocated into two

165

page overlays, any one of which may be incorporated into the two
pages (pages 2 & 3) set aside in the user map specifically for drivers.
(A page in the HP 1000 amounts to 1K of 16 bit words). Thus when
the request is first processed, the requisite driver overlay is mapped
into the user’s driver partition, and the normal initiation process
taken.

When an interrupt occurs, the user programme in the current user
map is unlikely to be the programme awaiting the interrupt since
that programme is suspended. Hence before RTIOC can pass control
to the driver’s continuator section, it must install the correct user
into the user map and save the state of the interrupted user’s map.
Once this is done, RTIOC passes control to the driver which remains
mapped into the user’s driver pages. When the driver continuator
returns to RTIOC, RTIOC removes the interrupting user from the
user map and re-instates the user that was executing prior to the
interrupt. RTIOC is a system routine in the system map which is
always the map enabled to process an interrupt.

H.7 Summary of the I/O process in RTE

* The user makes a call to RTE EXEC specifying the I/O
transaction type, data buffer length and address, and device
logical unit.

* EXEC. passes the request to RTIOC which uses the Device
Reference Table to determine EQT number and subchannel.

* From the EQT, RTIOC determines the driver to be used and via

a driver mapping table ($XDMT) [33], maps the correct driver
into the driver partition.

The call parameters are transferred to the EQT.

* The driver initiator is called which configures I/O instructions,
sets up variables and initiates the transaction, returning to
RTIOC.

E 3

RTIOC suspends the user awaiting I/O completion and
transfers control to the scheduler which maps in 2 new user and
transfers control to it.

On interrupt, the hardware enables the system map and
executes the trap cell instruction which normally contains a
JSB to RTIOC. RTIOC then uses the interrupt table entry to

166

determine the correct EQT address.

From the EQT word 1, the address of the calling programme’s
ID segment is obtained, and after saving the current contents
of the user map, RTIOC calls 2 system routine $XDMP passing
it the ID segment address.

$XDMP determines the correct map contents to enable the
required programme and loads the user map with these values.
This installs the interrupting programme and it’s driver.

RTIOC gets the continuator address from the EQT and
transfers to it.

The continuator processes the interrupt, accessing data from
the user programme as necessary. That done, it returns to

RTIOC.

RTIOC reinstates the interrupted user map and returns to
normal processing via the scheduler. If the continuator had
indicated completion of the transaction, the calling programme
would be moved into the schedule queue to compete with other
programmes for processor time.

167

168
Appendix I

The Host Driver to Control the RMUX Interface
I.1 Introduction

This appendix describes the driver programme used by the RTE IVB operating
system to control the RMUX interface. The programme consists of two distinct
modules: DVX05, the major driver routine which resides in 2 normal RTE IVB
driver segment (see appendix H) and a special purpose mapping routine $DVMS5
which resides in Table Area 1.

The protocol involved in passing messages to and from the interface is described, as
is the message format itself, and the usage that the driver makes of all the system
tables.

1.2 Incorporating Multiple Interrupt Sources per Slot

As discussed in appendix H, the HP RTE IVB system only caters for one interrupt
source per interface slot due to the one to one correspondence between EQT entries
and interface slots. However the RMUX interface with four independent channels
requires four EQT entries so that four independent programmes may
simultaneously use the channels. This required a section of code to extend the
operating system function and perform user programme mapping. This code had
to be available from all possible maps, both user and system, so that it could
change user maps or access the system map. A small module ($DVMS5) was
therefore written to be included in Table Area 1 (TA1), the only area accessible to
all maps. $DVM¥’s function when called from the main driver DVXO05 is to save
the contents of the current user map, enable the system map and then call an RTE
IVB module ($XDMP) to switch in the correct user map for which the data is
destined. $§DVMS then transfers a block of data (one record) between the interface

and the user programme before finally restoring the original user map and
returning to the main driver DVX05.

The main driver module (DVXO05) determines the mapping system status before
jumping to $DVM5 with the system map enabled. The current user map can then
be saved before $XDMP is called to install the correct map for the interrupt. Since
this may be either a user or the system, $DVMS5 checks to see whether to move
back to the user map (the new user) or to stay in the system map for the data
transfer. If it needs the system map then data transfer can commence
immediately and a direct return to the caller can be made, restoring the original
mapping system status at the same time. If, however, the data is for a new user
map, this user map must be enabled before data transfer. After this $DVM5

returns to the system map, restores the original user and returns to the caller.
This process occupies only 88 words of Table Area 1 which has little impact on the
normal operating system memory requirements.

The inclusion of $DVMS5 allowed a single driver, while servicing a single interface
card to map in any user and transfer data. However the driver had to have some
means of determining the correct map corresponding to an interrupt. This was
implemented by passing the calling EQT entry address to the interface at the
initiation of each request and then retrieving this address from the interface
following each interrupt, thus enabling the driver to identify the correct EQT to
handle each interrupt. From the EQT entry address, the operating system (via
$XDMP) can determine the correct user map, while all information pertinent to
the entire transaction is available to the driver from the EQT entry.

RTE IVB always places the addresses of all the elements of the current EQT entry
into a fixed location in base page immediately prior to entering the driver as
discussed in appendix H and in reference 34, Thus once DVX05 has determined
the correct EQT entry it places the list of element addresses into the base page
where they are then treated normally. Upon completion of the driver, no attempt
is made to restore the addresses found upon entry since the operating system
makes no use of these addresses after completion of a driver call other than to
determine which user to release from suspension.

1.3 Driver Structure

In keeping with accepted driver writing practice for HP computers 135 the driver
DVXO05 is written in two major parts, an initiation section with entry point IX05
and a completion section with entry point CXO05.

I.4 The Initiation Section

The initiation section is called from the RTIOC section of RTE IVB at the start of
each request, and it’s function is to perform all the tasks necessary to start the
request. Upon entry for the first time after a re-boot of the system, all EQT
entries associated with a particular slot must be initialised. This involves getting
the ID segment address of the programme PRMPT (the LOGON and Break mode
terminal supervisor) from the interrupt table and placing it EQT 13. Then the
power-fail and time-out flags must be set in each EQT to inform the system that
time-out and power-fail recovery are both to be handled by DVX05 itself.

169

170

Normal requests are then analysed to decide whether they are read, write or
control requests and are processed accordingly. For read and write requests a
common header is constructed (see figure 1.1) and sent to the interface one word at
a time followed, for write requests only, by the output data. For control requests, no
data is sent but the header sent has a different format to that of the read and write
requests (see figure 1.2).

Byte # Function
0 First synchronization character. ASCII “SYN” (Hex 16)
1 Second synchronization character
2 Most significant byte of EQT entry address
3 L.S. Byte of EQT entry address

=N

* | Conword from EXEC call (see below)
EQT 6 bits 11-6 & 1-0 packed into bits 7-0
Host request buffer length (max 255 bytes)
Subchannel # sent.TLOG returned.
Interface status byte (lower 8 bits of EQT 5)
MSB of optional parameter #1 (from EXEC call)
LSB of optional parameter #1
10 | MSB of optional parameter #2 (from EXEC call)
1 LSB of optional parameter #2
12 Data bytes from request buffer.
- Sent only for write requests one word at a time

© 00 ~31 > U;

2711 Fetched only for read requests one byte at a time.
(max 255 bytes plus blank pad)
** Conword B1-0 define request type Ol=read, 10==write

B2 indicates binary mode — read and write

B4 indicates read with echo — read only

B6-5 = 11 for block mode trigger — read only

B6-5 = 10 honest mode. All special characters are
ignored — read and write

Figure 1.1 Read/Write request message format

Output to the interface is performed one word at a time since word to byte
unpacking is done by hardware on the interface. The header is sent by subroutine
SENDT in DVXO05 which constructs each word in turn and then passes the word to
subroutine OUT for actual output. OUT sends the word to the interface waiting for
a maximum of about 204S for the interface to flag its acceptance of the data. The
only time that this delay could expire on a functioning interface card would be if
there were no blank buffers available for the data to be stored into (see appendix G)
but with the card programmed as at present, this should never occur. Thus if there
is no acceptance flag within the delay time, the card is assumed faulty, is set down
(unavailable) and an error message is sent to the system console.

171

Byte # Function

First synchronization character (ASCII “SYN”)
Second synchronization character

M.S. Byte of EQT entry address

L.S. Byte of EQT entry address

Conword from exec call B1-0 =11 only
Control request function from B11-6 of EQT 6
Subchannel number of requesting port
Interface status byte — (lower 8 bits of EQT 5)
M.S.B. of control request parameter #1

L.S.B. of control request parameter #1

M.S.B. of control request parameter #2
L.S.B. of control request parameter #2

:swwqam»ww'—‘o

Figure 1.2 Control Request Message Format

Once the header has been sent using subroutine OUT, the data (write requests only)
is sent without checking for acceptance flags at all. The reason for this is that it
saves some time, allowing a data transfer rate of 140 Kilo-words per second. It is
unnecessary to check for flags since, as the header has just gone, the interface must
be working, it must have an available storage buffer, and once a buffer is set up, the
DMA. controller on the interface is guaranteed to accept data at any rate up to 237
Kilo-words per second.

After the last word has been sent,a set control, clear flag instruction (STC s¢,C) is
sent to the interface to inform it that the DMA input buffer has been filled and is
ready for processing. The initiation section is then complete and so DVXO05 returns
to the operating system to await an interrupt.

Power fail processing.

Power fail processing is performed by the initiator whenever B15 of EQT 5 is set
upon entry. This indicates to the driver that it is to try and recover from the power
failure and re-initialise the interface. The last configuration word (see appendix
G.4) sent to the card is retrieved from EQT 12, where a copy is always stored, and
sent to the interface as a normal configuration control request. This is the only
power fail processing required as the system will always try to repeat all I/O

requests that were pending prior to the power fail, and it always sets bit 15 of EQT
5 to signify power fail recovery processing.

1.5 Completion Interrupt Processing

Upon completion of any I/O request, the interface sets a flag to interrupt the host
which then transfers control to the completion section of DVX05. There are
several cases that may cause the completion section to be entered and so the
following conditions must be checked for:

* Completion of 2 normal request
* Arrival of an unsolicited request
T %k

Time out due to no response

Completion of a normal request

The first response to a non time-out entry is to read the header of the return
message from the interface and from this determine the EQT entry that
corresponds to the message. This entry is then moved into the base page area and
word 1is checked. A non zero value indicates that a request is pending on this port
and so the interrupt must be an acknowledgement. Thus the transmission log,
status, and optional return parameters are transferred from the header to the

EQT.

Next, status bit zero, (see figure 1.6) is checked to see if the ‘break’ mode processor
PRMPT is to be scheduled. (This bit would have been set if either the space bar was struck during
output, or a CNTL X was entered at any time. Should either of these conditions have occured, the interface
would have tried to find a message that belonged to the port; if found, it would have set the ‘break’ bit,
otherwise it would have assigned a new buffer, filled it with the current status and EQT entry address and sent
this to the host) When the ‘break’ mode bit is found set in a normal return request,
the subroutine SCHED is called to schedule the programme PRMPT whose ID
segment address is stored in EQT 13. SCHED calls the system routine $LIST [3¢] to
perform the actual scheduling.

Finally the CONWORD from EQT 6 is checked to see if the returned message was
as a result of a read request, for if so then the returned data must be read from the
interface and stored into the user buffer in the user’s address space. If this is the

case, then the correct user map must be fetched (as described in section I1.2) before
any data transfer can occur. -

Handling of unsolicited requests

When a message header has been read in and the correct EQT entry has been
moved into the base page, if the EQT word 1 is found to be zero then the message
occurred as the result of an unsolicited interrupt which occurred while there were
no requests pending for the port. The response to this condition is to use the
subroutine SCHED to schedule the programme PRMPT and then take an exit
route to RTE informing the system that the interrupt was a spurious one.

172

173

Time-out Processing

If a time-out has been set on the EQT entry associated with any port, then the
operating system will reset the time-out clock immediately prior to entering either
the initiation or completion section of DVX05. The time-out clock is stored in EQT
15 and contains the number of ten milli-second time base ‘ticks’ required to fill the
time-out interval. This clock is incremented by the operating system every ten
milli-seconds providing it is non zero and should it reach zero, then the operating
system will pass control to the completion section of DVX05 with the time-out bit
set (EQT 4 bit 11), to inform the driver that the interface has not responded within
the required time and that corrective action should be taken.

The action DVX05 takes in response to a time-out is to try and force a recovery of
the interface by sending an abort request (CN,lu,0), setting a short 1,2 second time-
out. Status word bit 6 is also set to indicate that an abort recovery is in process.
This abort request should cause the RMUX operating system to restart all the
processes (TX-TASK, RX-TASK and BREAK - see appendix G.4) associated with
the relevant port and hence recover. The response to the abort request should
come through in far less than 1,2 seconds, in which case the status word bit 6 will
be cleared and a normal completion request taken with a zero length transmission
log. This action looks to the calling programme as though the request had
terminated correctly but that no data had been transferred.

Should the interface not respond within the 1,2 second time-out interval, then it
implies that the entire interface or its operating system is at fault. Thus if DVX05
detects a time-out entry and discovers status word bit 6 already set, indicating an
abort request already in process, it takes a time-out exit to the system which
causes RTE IVB to mark the device as down and unavailable and prints a message
to this effect on the system console. In this situation there is no corrective action
that can be taken programmatically, hence the message is all that can be done,
leaving the corrective action up to the system administrator.

174

1.6 Message Passing Protocol

The Hewlett Packard HP 1000 range of computers impose a rather rigid and
limited set of restrictions on I/O transactions in that the entire I/O process is
fundamentally half duplex. This is due to there being only one signal for
indicating data ready (the CNTL strobe) and one signal for interrupt and data
acceptance (the FLAG signal). Thus in trying to implement four channels of full
duplex communications between host and interface, great care had to be taken
over timing problems. A very rigid discipline had to be exercised over the
information flow and to achieve this the following limitations were applied:

a All messages between the host and the interface consist of complete records,
each with its own header; no partial record transfers can occur.

b Each request for the interface will be passed to the interface as a discrete
package which when fully processed will be returned as confirmation.

c All message packages, irrespective of content have a common format
consisting of a 12 byte header (Fig. I.1) and a maximum of 255 bytes of data.

d The host will clear the control flip-flop (CLC instruction) at least 20 S before
starting any output to the interface.

e The interface may not set the flag flip-flop, to inform the host of the presence
of a return message, if the control flip-flop is clear.

f Should the host not respond to a ‘set flag’ interrupt from the interface within
1 second then the interface will repeat the interrupt.

g The host waits at least six microseconds after the last word of output data
before executing a set control, clear flag instruction (STC sc,C).

h Message headers start with the double ASCII ‘SYN’ characters to enable
message synchronization.

i The host always transfers at least a full 12 byte header to or from the
interface for each transaction.

The first restriction ensures that an interrupt to either the host or the interface
processor indicates the completion of a full message only, with all data transfer
performed on a non interrupt basis. (DMA on the interface and a tight programme
loop in the host). This also allows the host to use DMA to output a message to the
interface, although this would not save any host time due to the limitation of only
having two DMA channels in an HP 1000.

175

The requirement that all requests from the host be returned creates a simple and
standard acknowledgement procedure for all types of requests.” Acknowledging all
requests after processing is complete ensures that the interface will only ever
contain one message for each port, and so memory overflow cannot occur. If write
requests were acknowledged immediately after transfer, but before transmission
from the interface, then extra signals would be required to limit the number of
messages that could be queued for each port without causing memory overflow. All
this special processing for different request types and the extra signals would
achieve very little improvement in throughput, especially in a multi-user system
where one user’s I/O can usually be overlapped with another user’s processing, so
keeping the host CPU fully occupied.

The requirements limiting message size and specifying standard headers allow for
simple memory handling on the interface, since a pool of fixed length buffers can
be maintained rather than having a more complicated dynamic memory
management system required for variable length buffers. A further advantage of
fixed length buffers is that they can be pre-assigned to the DMA channel] in
anticipation of input, ensuring that as soon as the host has data ready, it can send
it without having to wait for the interface to find and assign memory.

Due to the shortage of suitable control signals in the HP 1000 I/O system, the flag
flip-flop has to be used by the host to synchronise the transfer of each item of data,
as well as being the only means for the interface to interrupt the host. Thus if the
interface were to set the flag FF indicating the presence of a return message, while
the host were using the same flag FF to transfer data to the interface, the resulting
conflict could result in the loss of a data word. In order to eliminate this potential
problem, the interface is not allowed to interrupt the host whenever the control
flip-flop (CNTL) is clear, and the host is constrained to always clear the control FF
while performing output to the interface.

A problem could still occur should the interface sample the CNTL FF immediately
prior to it being cleared, decide an interrupt was allowed and hence set the flag FF
just as the host started using the flag FF for output. To overcome this, the host
may not perform any output for at least 20uS after clearing the CNTL FF thus
giving the interface adequate time to set the flag while it is not being used and
hence not causing any damage. Should this condition arise, the interrupt intended
by setting the flag would not occur and would be lost since the interrupts are
disabled while the driver is in control. To cover this possibility, the interface places
a one second time-out on any returned message and should the message not be
accepted by the host within this time then another interrupt would be sent to the
host. Thus restrictions (d) through (g) effectively overcome all the problems
encountered in using the single flag FF for two functions.

176

The restriction of waiting a minimum of 6us after the last output before executing
the set control/clear flag is to allow sufficient time for the interface DMA controller
to accept the last data word and set the flag. If the set control/clear flag preceded
the DMA controller acknowledge which sets the flag flip-flop then an invalid or
gpurious interrupt would be generated since the flag would now be interpreted as an
interrupt.

During input from the interface the host will read only the desired number of bytes
' in the message, whereas the DMA controller on the interface will be set to output
the full message of 12 header bytes plus 256 data bytes. Thus when the host takes
its last data byte and stops input, the interface DMA controller will always fetch
the next byte and deposit it in the interface output latch. The next time the host
reads from the interface, before it géts the new message as expected, it will first get
this left over byte from the previous message. Thus the host must read data from
the interface and discard it until such time as it reads two successive ‘SYN’
characters and achieves synchronism.

The final problem to be overcome in the communication between the two
processors was due to there only being one signal line by which the host could
interrupt the interface processor, this being the STC strobe line activated by a set
control (STC) instruction. The host has to interrupt the interface when it has
accepted a message, and when it has sent out a new message. The interface
processor thus examines the DMA count registers to determine whether the host
has just completed an output or an input. Whichever count register has reduced by
at least the header length is then taken as indicating the completed transfer that
the host wishes to signify. This is the reason why condition (i)was imposed.
Figures 1.3 and 1.4 show these sequences in flow chart form.

In summary, the problems created by having too few signal lines to maintain a
proper full duplex communication between the host and the interface were
overcome by placing both data and timing restrictions on the message transfer

process. These restrictions do not however severely impair the operation of the
interface as is shown in the main body of this report.

177

DVX05

Execute CLC, sc.C

instruction

Configur

Delay 20us

e Driver

Read header using.

flag pacing

Set up co

rrect EQT]

was
READ r

yes

(INTR)%
it a no
equest

Map in th
user and
from intf

e correct
xfer data

¢ to user

TO-HOST

Complete message to
be sent to the host

Load message into DMA

controller

Delay
20ms

no /cntl ff
’ set?

Delay 7us

Execute

STC, s¢c, C
to inform intfc

(EXIT)

no

yes

Set host FLAG FF
and
await host interrupt

READ
buffer gone ?

Set timeout to 1 sec

{TIMeEoUT? L2

Return completed
buffer to memory pool

Await next message to
be sent to the host

RETURN

yes | Release
TO-HOST

WRITE yes | Release
uffer gone ? FROM-HOST

no

(sEurious)

RETURN FROM
INTR

Figure 1.3 Message packet input flow.

178

DVX05 | FROM-HOST
i]
Request arrives | _Load empty buf fer
from user program While control (CNTL) is into DMA controller

clear intfc may not
attempt to set the FLAG
Execute CLC,sc,C to interrupt the host | [Await INTR from host |
Interrupt innhibit |

During this 20 us -
interval any attempted On release dispatch

Delai 20us set FLAG interrupts message to target
will get lost

Output header and
wait max. 20us for
FLAG each time

was this a no
RITE request

yes

Send data to intfc

1 word per 7us domreaea < INTR)
READ yes Release
uffer gone ? T0-HOST

f Delay for 7us

Y

no
Execute STC,sc,C | WRITE es Release
to inform intfc uffer gone ? FROM-HOST
no
(EXIT) (séurious) RETURN FROM

INTR

Figure 1.4 Message packet output flow.

1.7 System Table Usage
Equipment table

The driver uses only the equipment table entry (see figures I.5 to 1.9) for temporary
storage and since most data is stored on the interface itself, no EQT extension was
required. EQT words 1 to 4 are system defined and are not altered by the driver,
EQT 5 is used to hold interface status information while EQT 6-10 hold all the call
information sent by the system. EQT 11-13 are used exclusively by the driver for
variable storage and EQT 14-15 are used for the time-out clock.

179

Word # Function

1 System link word. Hold caller’s ID address
2 Address of initiator entry point (IX05)

3 Address of continuator entry point (CX05)
4** | D, PST. Subchannel. Slot number

5 Driver type & Status

6 Exec request conword (figures 1.8 and 1.9)

7 Exec request buffer address

8 Exec request buffer length

9 Exec request optional parameter #1

10 Exec request optional parameter #2

1 Interrupt table entry address.

12 Copy of last configure word sent

13 | ID segment address of programme PRMPT {or -1)
14 Time out clock reset value

15 Time out clock

hi D — Driver requires 2 DMA channel

P - Driver is to process power fail ™
S — Driver is to process time out
T - Interface has just timed out

Figure 1.5 EQT entry usage by DVX05

Bit # Function
0 Break bit - set on return if a ‘break’ occurred
1 Terminal enabled
2** | Driver error encountered

Parity error in last request

Shows status of modem DSR line

EOT flag — set if CNTL D entered

Used by driver to show time-out abort in process
Used by driver to show buffer flush in process

-3 I B A

for driver errors Bits 5-3 hold error code (see figure 1.7)

Figure 1.6 Status Bits in EQT 5

180

Error occurred in trying to set up user map

No flag from interface in time — no response
Invalid return EQT address — message corrupted
No ‘SYN-SYN’ found from card in 11 characters
This port or subchannel not yet initialised

R B U

Figure 1.7 Driver Return Error Codes (B5-3 of EQT 5)

Read request bit These bits are

Write request bit mutually exclusive
Ascii/Binary request (0/1)

Not used

Echo bit for echo of input

When set with bit 10 implies programme block read
10 Honesty bit or see bit 9

© 00 N, - O

Figure 1.8 Read/Write Conword Bit Definition

Function Code

00B | Interface clear (abort request)

11B | Space number of lines given by EQT 7

20B | Terminal enable

21B | Terminal disable

22B | Set time-out value

23B | Enable flush of all Queued I/O

30B | Configure terminal (configure word in EQT 7)

Figure 1.9 Control Request Conword Bit Definition

Interrupt table

The first time the driver is entered after boot up, it has to initialise the equipment
table and the interface. The one address that is necessary if the port is to handle
an interactive terminal is the address of the break mode processor — PRMPT. If
the system has been generated to make this port an interactive terminal the
Interrupt table entry corresponding to the select code that the card is plugged into
will contain the negated address of the ID segment for PRMPT. The negation is
done to differentiate an ID segment address from an EQT entry address.

181

DVXO05 calculates the address of the Interrupt table entry corresponding to the
interface it is about to initialise, fetches the contents, and if negative then this
address is reset positive and saved in EQT 13 as the address of the ID segment of
PRMPT. The interrupt table entry is then altered to make it hold the address of
the EQT entry. This is necessary to enable the driver to process interrupts. If
however the interrupt table entry were positive on initialisation then the port
could not be an interactive terminal and so EQT 13 is set negative to indicate this.
EQT 13 is also used as the means by which the driver can determine whether to
initialise the interface or not, for once initialised EQT 13 will never again be zero as
it was upon first entry.

DVXO05 alters no other system tables but does use two system routines and
accesses the driver mapping table.

$LIST

The system routine $LIST, which has an indirect linkage through table area 1 (TA1),
is used to schedule the programme PRMPT whenever a break mode request arrives
from the interface. The address of EQT 4 is sent to $LIST as well as the ID address
of PRMPT. PRMPT uses the address of EQT 4 to determine which equipment
table entry, and hence LU, requested the break mode processing. For further detail
on $LIST see the HP Driver writing Manual [36]

XDMP.

The system routine $XDMP is used to map in a new user map. This routine is
called from the special TAl driver module $DVMS5 (see 1.2), and the only data
required by $XDMP is the address of the first word of the EQT entry, which is
passed in the A register. Before $XDMP is called to change the user map, $DVM5
saves the original user map contents so as to be able to restore the original map
once the data transfer has been completed.

Driver Mapping table.

Whenever a read request completes, DVX05 must determine where the request
came from so that the return data may be copied into the caller’s request buffer. If
the caller were from the system map, user mapping would be unnecessary, but
should the caller be in a user map then the correct user map must be mapped in as
discussed previously. To determine which map to use, word 2 of the driver mapping
table entry for the EQT in use has to be examined. Should this word be zero then
the system map is required otherwise the user map must be changed.

To access the driver mapping table, which is in table area 1 and easily accessible, is
however a little awkward, as the address of the table is stored in a system variable
named $DVMP. Since $DVMP is stored in table area 2 (TA2), which is inaccessible

182

from most user maps, an indirect link to $DVMP was incorporated into $DVMS5 at
entry point $XDMT. DVXO05 executes an enable system map and jumps to
$XDMT which accesses $DVMP and returns the mapping table address to DVXO05.

183
Appendix J

The 8085 Assembler — A8085
J.1 The Assembler Description

A8085 is an absolute addressing only, two pass assembler for the 8085
microprocessor. It accepts it’s input in standard mnemonic form as defined by
INTEL corporation 37l and assembles the code into a non INTEL format binary
file and listing. The source code is extensively checked for errors in both pass one
and pass two of the assembler, with all error messages being descriptive rather
than cryptic, and appearing immediately after the erroneous code line in the
listing. All standard INTEL defined pseudo codes (or assembler directives) are
recognised by the assembler, as well as several new extended directives designed to
make the process of absolute code generation more effective.

This appendix serves as a user manual describing all the assembler directives and
those assembler features not covered in the standard assembler reference manual.
It does not cover the assembler language itself as this is adequately covered in the
reference manual. However a summary of all assembler mnemonics is given for
completeness.

The assembler was written in HP ALGOL to run on the Hewlett Packard 1000
series computers under RTE IVB. It consists of approximately 1400 lines of code
and can assemble source files at the rate of about 2000 lines of code per minute on
an otherwise unused HP 1000 machine. The assembler accepts source from either
files or logical units and directs its binary output to either a file or a logical device
such as a punch. Listings can only be directed to logical devices such as a printer or
a terminal. The assembler is invoked in the same manner as all HP assemblers and
compilers, and offers nearly all the same optional features.

J.2 Conventions

The following symbols and conventions are those used throughout this manual.
LA G Anything enclosed in angled brackets is optional.

*¥ Namr: The HP convention for a disc file name including optional security code, and
cartridge reference separated by colons.

EG. &FILEt:sc:er

184

J.3 Running the 8085 Assembler

In order to use the assembler a source file must be prepared using standard INTEL
mnemonic operation codes and instructions. Labels (or symbols) may contain any
number of characters, but only the first 10 characters are used by the assembler,
hence all labels must be unique in the first ten characters.

The first line of the source file must contain a control statement holding the
options and an optional heading.

Control Statement format — line 1startingin column 1
8085,<opts> “optional header (max. 20 characters)”

where OPTS can be any set of the following characters in any order

B = Brief listing with all page formatting & comments removed

L = Listing required on list device

S = Sorted symbol table at end of pass 2

C = List clock cycles of eachinstruction

T = Print sequential symbol table at end of pass 1

E = Print an error summary of last 100 errors at end of assembly
(Options may be separated by commas or merely packed together. A space terminates the option list)

EG. 8085LESC “TEXT a text processor”

The optional 20 character header may be enclosed in either single or double quotes
(’ or ”) and is printed on the top of each page of the listing.

The last line of the source file should contain an “END” instruction in the op-code
field, where the op-code may start anywhere other than column 1.

To invoke the assembler the following run string is used:

A8085, src file namr,<list device lu>,<object file>,<lines>,<OPTS>

All fields in the line are optional except for the source file name. If this is not given,

the assembler will output a message on the terminal as to how the assembler may
be invoked.

Source file This field must be given, and can contain either a disc file namr or a device logical
namr: unit. If the input logical unit is LU1 (the terminal) then the assembler will prompt each

line with an “/”. In this case input terminates with an “END” opcode, a “/E” or a zero
length line.

List device Must be a logical device and not a disc file. If not given,the list device defaults to the
LU: user terminal.

185

Object files This may be either a disc file name, a logical device LU or a minus sign “-" If a “-” is
given and the source file name begins with an ampersand “&” then a default binary file
name will be used, having the same name as the source file only with the “&” replaced
by an exclamation mark “”. If the binary file cannot be found, it will be created as a
type 8085 file on the same cartridge as the source file and with the same security code. If
no object file name is given, no binary will be produced.

Lines: Allows the user to set the number of lines per page on the list device. The default is 56
lines.

Options: Any of the 8 options “BLTECS™ described previously in any order. The options must not
be separated by commas and the first space or comma terminates the list. If any options
are given here, then all options in the control statement are reset and overridden.

J.4 Source Code Format

A standard instruction line has the following format:

<Label> OPCODE <operand1>,<operand2> <;comment>

Label if given, must start in column one and should end with a colon. It can be any

length but only the first ten characters are used.

Operands if required, may be expressions or symbols, and where multiple operands are
required they must be separated by commas. A space terminates the list.

Comment This field is optional but should begin with a semi-colon and must be separated
from the last operand by at least one space.

If no label exists, the op code may not start in column one.
Variants on this standard format are;

LABEL:

A line may consist of a label only, in which case the label will take on the value of
the programme counter at that point. This allows for multiple labels of the same
value and can aid in programme legibility.

.
’

This is a comment only line if the %" begins in column one.

J.5 Operand Format
An operand may consist of a constant, a symbol or an expression.

A constant is a fixed value given in one of the following formats.

* An ASCII constant consisting of a single ASCII character enclosed in either
single quotes or double quotes (’ or ”).

* A decimal constant consisting only of the digits 0 through 9.

* An octal constant consisting only of the digits 0 through 7 and either
beginning with an “@” or ending with an “O” or a “Q”.

* A hexadecimal constant consisting only of the digits 0-9 and A-F and either
beginning with a “§” or ending with an “H".

*

A binary constant consisting only of the digits O or 1 and either beginning
with a “%” or ending with a “B”.

A symbol is any character string starting with an alphabetic letter (A-Z) or the
special character “” (see section J6 iv). Any symbol used must be defined
somewhere in the programme as a label of some instruction.

Either of the special symbols “” or “*” may be used in place of a normal symbol
to denote the current value of the programme counter.

An expression is a string of symbols and/or constants separated by one of the
following operators:

addition

subtraction

multiplication

division

Boolean OR function [always performed on 16 bit data)
Boolean AND function

Tt~ +

Expressions are evaluated on a strictly left to right basis with a space, comma or
semi-colon terminating the expression. They are calculated as single precision
reals and converted to a 16 bit 2’s complement integer at the end of evaluation.

Where an operand is to be used as a 16 bit value it may be in the range ~32768 to
+32767 and where it is required as an 8 bit value it may only be between —128 and
+255. If these limits are not met then an error is reported.

186

J.6 Assembler Directives or Pseudo-Ops

Assembler directives are instructions to the assembler rather than for the
destination machine, and are used to ease the programming task and improve
programme legibility. They can be divided into several groups as given below.

Constant definition:

LABEL:
LABEL:
<LABEL>
<L ABEL:>

<L ABEL>

EQU operand
SET operand
DS operand

;Symbol definition

;Allow muitiple symbol redefinition
\Define storage space by increasing
;the PC by the value of the operand.

DW operand<,operand> ;Define 16 bit word value constants

;stored L.S. byte first

DB operand<,operand> ;Defines 8 bit constants one byte

;per operand. This also has the
;special case operand of an ASCII
;string of any length enclosed in
;either single or double quotes.
;The characters are stored in ASCII
;one per byte.

Programme counter definition:

LABEL:

ORG operand
NSEG operand

;Define programme counter (PC)
:Save current PC in previous segment
variable (if defined) and set PC and
;the new segment variable (LABEL) to
;the value of operand.

RSEG segment variable ;Save current PC in previous segment

;variable (if defined) and restore PC
;to value of new segment variable.

SVPC segment variable ;Save current PC in segment variable.

Optional code inclusion:

IFZ operand

IFNZ operand

ELSE

ENDF

f operand evaluates to zero then include
;the code between this statement and the
mnext ELSE or ENDF statement.

}f operand evaluates to non zero then
include all code between this statement
;and the next ELSE or ENDF statement.
;Reverse sense of last conditional assembly
;statement.IE If previous code was excluded
;then include following code until ENDF and
;vice versa.

s Terminates an IFZ, IFNZ, or IF(Z/NZ)—ELSE
;construct.

187

Source file handling:

MERG file ;Opens the given file and includes it in the
;assembly. If file begins with an assembler
:control statement, the control statement is
ignored.

SCAN file :Opens the given file and includes it in
;pass one only. No listing or object code is
;generated but symbols defined in this file
:are included in the symbol table.

Listing control:

SUP ;Suppress listing of second and all subsequent
:operands in each DB and DW statement.

HED <string> :Start a new page on the list device and add
;the string to the header line.

SKP :Skip to a new page and print heading

PAGE ;Skips same as SKP

SPCn :Causes n lines to be spaced on the list device

UNL ;Terminates listing on the list device

LIST :Resumes listing only if the control statement

:option specified a listing.

Several of the directives given above are non-standard and require further
explanation.

SET. This command allows a symbol to be redefined during the flow of the
assembly. It is the only statement which allows a single label to be used more than
once and is useful for changing some constant in a piece of code which gets used
more than once (see also the file merge section for this).

Code segmentation. The ‘NSEG’ and ‘RSEG’ directives allow the source code to
be segmented into several segments of memory, such as ROM, RAM, I/O etec.
Segments are defined using the ‘NSEG’ statement which sets the ‘TLABEL as a
segment name to the value of the operand. The programme counter is also set to
the same value after it’s previous value has been saved in the previous segment
variable (if one was defined). To restore code generation to a previously defined
segment requires the use of the ‘RSEG’ directive giving the segment name. The
current PC is saved in the current segment variable and then the new segment
variable value is loaded into the PC. This allows code generation to continue
directly from where it last left off in the new segment.

For example:

Assume a ROM starts at address 0000H, a RAM starts at 2000H, and the

programmer wishes all fixed code to go into ROM while all variable data is to be
defined into RAM.

189

Typical code may appear as:-

RAM: NSEG 2000H Define segments
ROM: NSEG 0000H :
BEGIN: MVI A,3FH .Code goes into ROM which was last
segment
LXIHL,1757 :defined. Now to use a RAM variable which
STA TEMP1 shas not yet been defined!
SHLD VARIABLE ;
' RSEG RAM Define the ram based variable here so that
TEMP1: DS 1 it will be kept local to the module that
VARIABLE: DS 2 uses it.
’ RSEG ROM “That done, resume code into ROM
LLDA VARIABLE :
etc

This saves the programmer from having to keep track of addresses, and allows
RAM storage to be defined with the code that uses it.

Optional code inclusion. The IF-ELSE-ENDF construct allows a source file to
contain code which may be included depending upon some option or other.

As an example assume that two slight variations of some programme are required,
one used in Machine A and the other in Machine B. The sections of code unique to
each machine could then be coded into the same file as shown below, which saves
the problem of maintaining near duplicate files and keeping both updated.

For example:

MACHINE: SET A i(set machine being used)

{ common code for all options)

IFZ MACHINE=A -test for machine A

- (code for machine A)

ELSE
IFZ MACHINE-B’ ;test for machine B

. (code for machine B)

ELSE

. (this code if neither A or B)

ENDF - send of inner IF-ELSE

ENDF :end of outer IF-ELSE
Notes:

a) IFx-ELSE-ENDF constructs can be nested to a maximum depth of 10 levels.
b) The ELSE clause is optional. An IFx-ENDF construct is valid.

190

Multiple File handling. Since the assembler is an absolute assembler and does
not produce relocatable output code, all the source code associated with any
programme must be assembled at once to maintain correct symbol linkage. On
large programmes this creates large source files which are unwieldy and also makes:
it difficult to maintain unique meaningful labels. The MERG function provides a
simple solution to these problems by allowing source code to be spread across
multiple source files which can then all be included in the assembly at assembly
time only.

A useful feature of the MERG command when used in conjunction with the SET
command is that it allows the same file to be used several times with different
variables if several slightly different copies of a certain file are needed. An example
of this is where the same I/O port handler is needed for each of several identical
ports.

For Example: o
"PORT: SET ODOH Set address for port 1

MERG &PHNDL :
"PORT: - SETOD2H ;Then set for port 2
MERG &PHNDL
etc

where &PHNDL may look like:

BEGIN: MVI A, DATA
OUT "PORT ;Output data to port defined
RET ;by previous SET directive.
DATA: DB OAH
END

An added feature of the MERG option is that all symbols defined within the scope of a
file are accessible only to instructions within that file unless specifically defined as
being global to all files. To assign a label as a global symbol, the label name must be

preceded by a carat symbol . This then allows code in any file to reference the
“symbol.

For Example:

191

Assume a programme consists of several subroutines each stored in separate files.
The files may then look like this:

File 1

&MAIN:SC:CR

8085,LE "SAMPLE PROGRAM®

“RAM:
“BUFF:

"ROM:
BEGIN:

File2
"SUBt:

TEMP:

File 3
“SUB2:

TEMP:

NSEG 2000H

DS 32

SPC 2

NSEG 0000H

LXI SP"RAM+256

CALL “SUBT

CALL "SuB2

JMP BEGIN

MERG &SUBR1SC:CR
MERG &SUBR2:SC:CR
END

&SUBR1:SC:CR

LDA "BUFF
STA TEMP
RET

RSEG "RAM
DS1

RSEG "ROM
END

&SUBR2:SC:CR

LDA TEMP
STA “BUFF
RET

RSEG "RAM
DS1

RSEG "ROM
END

:Start RAM segment — make it global
:define a global data buffer

:Start ROM segment — also global
define a stack — local label BEGIN

:call subroutine from other files

;merge in the subroutine files

;Start of subroutine — global label
;saves into local variable

Now define the local variable in RAM
:segment and restore ROM segment

;Start of SUB2 — label must be global

Define local variable in RAM segment
;and restore ROM segment. NOTE that
;this is a different TEMP to thatin
;SUB1since it's local to its own file

192

J.7 Summary of Assembler Instructions

ARITHMETIC AND LOGICAL GROUP DATA TRANSFER GROUP
r 1T L
. .. . Move
Add increment Logical Move Move (cont) Immediate
(A 87 CA 3C (A A7 [AA 7F [EA sF A.byte 3E
B 80 B 04 B A0 AB 78 EB 58 B,byte 08
c 8 Cc oC C Al AC 79 EC 59 C. byte 0OE
ADD~< D 82 INR4 D 14 ANA4 D A2 MOV AD 7A MOV- ED 5A MvI D, byte 16
E 83 E 1C £ A3 AE 78 EE 5B E.byte 1E
H B4 H 24 H A4 AH TC EH 5C H, byte 26
L 85 L 2C L AS AL 7D EL 5D L byte 2g
LM 86 M 34 LM A6 | AM TE LEM SE M, byte 36
A oF (8 03 A AF [B.A 47 [HA 67
B 88 INX< D 13 8 A8 BB 40 HB 60 Losd
c 8 H 2 C A9 BC 4 HC & tmmediate
ADC- D BA LSP 33 XRAd D AA MOvV-l BD 42 MOV~ HD 62
E 8B E AB BE 43 HE 63 B.dble 01
H 8C Decrement:* H AC BH 44 HH 64 LXt- D,dble 11
L 8D L AD BL 45 HL 65 H, dble 21
M BE . M AE LBM 46 | HM 66 SP, dbie 31
s 4 & (C,A oF (LA 6F
Subtract® B BO cB 48 LB 68 Load/Slore
) ocad S %8 J c B cc 49 LC OAXS oA
A 97 orad o B2 MOV CD 4A MOV LD 6A
E 1D LDAXD 1A
B 9 E B3 CE 4B LE 6B
H 25 LHLD adr 2A
cC o L 2D H B4 CH 4C LH 6C LDA adr 3A
SuB-< D 92 M35 L BS CL 4D LL 6D
E 93 M B6 LCm. 4E LM 6E STAXB 02
H 94 8 0B = [B STAXD 12
MA
L85 pcx4 b 18 A B Pyl e o SHLD acr 22
LM 96 o C B9 Joc & MOV MC 71 STAadr 32
A 9F cmMPd D BA MOV- DD 52 MD 72
B 98 E BB DE %53 ME 73
c 9 Specials H BC DH 54 MH 74
SBE-{ D %A L BD oL 55 (ML 75
E] DAA* 27 M BE LDM 56
W ec oMA oF L XCHG 8B
L 9D T
W eE . gM%'T :Z Arith & Logical byte = con or logical/arithmetic expression that evaluates (o an
L . Immediate 8-bit data quanjity. (Second byte of 2-byte instructions).
ADi byte C6 dble = cona a.tor' gical/ari ic expression that evaluates to a
a tity. i
Double Add 1 Rotate 1 AClbyte CE e mwm).““‘" y. {Second and Third bytes of 3-byte
- SUl byte D6 adr = 16-bit address (Second and Third bytes of 3-byte instructions).
DAD 8 08 RLC 07 iz’[gY‘e EGE * = alifiags (C,Z. S, P, AC) affected.
AD4 D 19 RRC OF yie ¢s = all fiags except CARRY atected; ion:
H 20 RAL 17 XRi byte EE aftect g’o“m)' . {exception: INX and DCX
| SP 39 RAR F OR! byte F6 t = only CARRY attected.
CPibyte FE
All mnemonics copyright €imet Corporation 1976.
BRANCH CONTROL 170 AND
’ GROuUP MACHINE CONTROL
Return . Jump ! ! Control Stack Ops L
RET c9
RNZ co JMP adr C3 DI F3 B cs
RZ cs JNZ adr C2 £l FB PUSHH D 05
RNC Do JZ adr CA NOP 00 H - €5
RC D8 JNC adr D2 HLT 76 : PSW F5
RPO £0 JC adr DA B 1
RPE EB JPO adr E2 pOP D b1
AP FO JPE adr EA New Instructions " €1
AM F8 JP adr F2 {8085 Only) . .
JMadr FA - PSW* F1
PCHL E9 AamM 20 XTHL E3
Restar Sim 30 SPHL Fg
Call
0 c7
1 CF CALL adr CD
2 D7 CN2 adr C4 Input/Output
RSTH 3 OF CZ adr cc
4 B CNCadr D4 OUT byte D3
5 EF CC adr DC IN byte DB
6 F7 CPO adr E4
7 FF CPEadr EC
CP adr F4
CM adr FC

Courtesy of INTEL Corporation 8085 Reference Manual

J.8 Assembler Structure

This section covers the actual structure of the assembler programme and describes
how it was implemented. The source code was written in HP ALGOL, a sub-set of
ALGOL 68, and contains comments to cover the data structures used. However
since ALGOL is an excellent language from a self documenting point of view, there
were few comments needed to describe programme flow.

Opcode Lookup Table

One of the original reasons for writing this assembler was to achieve faster
assembly times compared to a slow, somewhat limited, assembler available
previously. Thus the opcode lookup table was implemented using a simple hashing
algorithm. Since an opcode table is a fixed table, a small programme was written
to vary the size of the lookup table and the hashing function until an optimal
table was achieved. The final table resulted in 96 out of the 103 instructions
achieving a ‘hit’ on the first hash, and the remaining 7 instructions (all
infrequently used pseudo-ops) only suffering a single clash.

The hashing function consists of two divisions and one addition to determine the
index key for a 367 element sparse lookup table which provides the index of the
opcode in the opcode table. When a clash occurs, the preceding value in the index
table is taken instead of performing a re-hash. The resultant sparse index lookup
table approach required a table with 264 zero entries, but the waste of 264 words of
memory was considered a small price to pay for the gain in speed.

Symbol table hashing

The symbols (or labels) are hashed into a symbol table which was made as large as
possible with the proviso that its length is always a prime number. This proviso
ensures that during re-hashing on clashes, no step value could ever cause cycling
by being a factor of the table length. The actual hashing function involved
reducing each word (character pair) of the label modulo the table length and then
adding this to the next word before performing the next modulo operation. Each
label name comprises 6 words, 5 to hold the 10 character name itself and one to
hold a file pointer for the local/global feature. Thus hashing involves 6 divisions
and 6 additions to produce the hash key into the symbol table.

To accommodate clashes which are bound to occur, a hash step is calculated in a
similar fashion to the hash key only using a different value for the modulo
operation. This ensures that different labels which produce the same hash key are
unlikely to produce the same hash step value and so should not clash on a re-try.

193

194

Re-trys are implemented by successively adding the hash step value to the hash
key modulo the table length until such time as the symbol is found, or a clash
depth of twenty tries has been achieved. This limit to the clash depth results in a
lower utilization of the symbol table (about 85% maximum) but does limit the
speed degradation that will occur as the table becomes full.

Intermediate data storage

During pass one, source lines are read in from the source file, and unpacked in R1
format into a 1024 word buffer. The line is then fully parsed and the pointers to all
the fields are also stored in the same buffer. Finally the opcode is decoded from the
lookup table and its type, length, execution time and value are stored in the buffer.
All lines are stored sequentially into this buffer until it is filled when it is then
written to a scratch file on disc. This is read back in pass two making pass two
execution much faster than would have been the case if intermediate storage had
not been used and all the line decoding had had to be performed again in pass two.

The unpacking of characters from A2 to R1 format was performed only once
rather than doing character fetches from an A2 array every time a character is
checked. This process speeds up execution but doubles the amount of temporary
disc storage used. This could have been overcome by repacking the 1K buffer prior
to storage, but this was felt an unnecessary waste of time.

Multiple file handling

Two major tables were used to cope with the multiple file facility. An array
FNAMES was used to hold the names of all the files used in the assembly, with
each new file being added to the end of the list. This list limits the maximum
number of files to 63, and the entry number of the file in this list is used as the 6th

word of a label when storing the label into the symbol table, so giving the
local/global feature.

To hold the status of open files a large packing buffer (FILES) was used to hold four
file data control blocks (DCBs), allowing a maximum nesting depth of only four
files. For each file that is open, the packing buffer also holds the current line
number, a pointer to the file name in the FNAMES list and a type indicator to
indicate whether the file is a disc file or not, and whether it is open for scanning or
must be merged completely into the assembly (see section J.6).

Conditional assemblvy options

To cope with the TF-ELSE-ENDF’ conditional assembly feature, a- 10 word stack
was used allowing up to 10 levels of nesting. For every new level of ‘IF’ nesting
encountered a new element of +1 for a false IF’ condition or -1 for a true IF’

195

condition is pushéd onto the stack, and a flag (SKIPFLAG) is set accordingly
causing all subsequent code after a false ‘IF’ to be ignored. When SKIPFLAG is
true, each opcode is checked to see if it is an IF’, an ‘ELSE’ or an ‘ENDF’ statement
and if none of these, then the line is excluded from further assembly by not adding
it to the intermediate packing buffer.

When an ‘ELSE’ is encountered, the top stack element is changed from -1 to +2 or
+1 to -2, thus indicating an ‘ELSE’ condition and changing the state of the
SKIPFLAG. The value change from 1 to 2 allows checking for the illegal condition
of two ‘ELSE’ clauses in succession with no intervening ‘ENDF".

Finally an ‘ENDF’ statement is used to pop the top element off the stack
irrespective of whether it has an absolute value of 2 from following an ‘ELSE’
statement, or an absolute value of 1 from an ‘IF’ statement. The assembler checks
for excess ‘ENDF’ statements, unclosed constructs and incorrectly nested
statements, printing appropriate error messages in each case.

General

The assembler was written in a very modular form with all specific processor
references being confined to as few procedures as possible. This enabled the bulk of
the code to be usable in constructing cross assemblers for other micro-processors,
and it has already been used as the core of a Z80 cross assemb]er.

196
Appendix K

The RMUX Users Manual
K.1 Introduction
This appendix contains summarised information for two distinct types of users.

For the System Manager, the process of connecting the interface to terminals and
of generating the software into the system is described, followed by the required
boot up configuration procedures.

For the terminal user, those features which affect keyboard operation are described,
particularly those which differ from the standard driver DVRO5 features. The
ways in which the terminal can be re-configured may be of value to the more
advanced terminal user.

K.2 Generation of RMUX into RTE 4B

To include an RMUX interface into RTE 4B, two software modules must be
generated into the system, while the third module may be generated in or loaded
on line. These are included in the generator answer file at the relocate phase as:-

REL, %DV X05:CR , Main RMUX driver
REL, %$DVM5:CR ," RMUX mapping handler
REL, %4AUTX:CR . Power fail - auto restart for RMUX

* %4AUTR must be removed from the relocate phase to enable %4AUTX to load.
* %4AUTX can be ioaded on line if desired.

At the parameter input phase, force $DVMS5 into TA1 with:—
$DVMS5,15 . Force map handler into TA1

At the EQT definition phase, assign 4 contiguous equipment table entries, all
pointing to the RMUX card select code as follows:—

E.G.. Assigning EQT 12-15 to RMUX interface in slot 17B

17,DVX05,B JEQT 12 RMUX Port 0
17,DVX05,B ,"EQT 13 RMUX Port 1
17,DVX05,B " EQT 14 RMUX Port 2

17,DVX05,B . EQT 15 RMUX Port 3

197

Then in the device reference table definition phase allocate the four ports unit
numbers:-

E.G. Assigning Lu's 20-23 to these Eqt’s

12,0, *LU 20 RMUX Port O
13,0, *LU 21RMUX Port 1

14,0, ' *LU 22 RMUX Port 2
15,0, * LU 23 RMUX Port 3

Lastly in the interrupt table definition assign the select code of the interface to
programme PRMPT:-

17, PRG, PRMPT *RMUX quad terminalinterface

The reason for a new auto-restart programme is that after a power failure the
interface will have lost it’s configuration setting which must be re-established with
a CN,lu,30B,nnnn (configure word) call. The modified version of AUTOR performs
a CN,lu,30B,0 call on each terminal before sending the usual power fail message.
This causes DVXO05 to use the configure value last sent to the interface, (stored in
EQT 12), and hence re-configure the interface correctly. Until -this is done, the
interface will ignore all requests and will not process them.

K.3 Configuration Options for RMUX ports

After a boot-up or a power failure the interface must be initialised by using the

configure call (control 30B). Until a port has been initialised, all requests to the
port will be ignored.

The configure control call (CN,lu,30B) uses a single 16 bit variable to define all the
terminal operating characteristics (see figure K.1) as well as defining the
relationship between port number and equipment table entry.

Once the first configure call has been executed, subsequent calls allow all terminal
characteristics to be altered, except the EQT-port relationship. A control 30B call
with a zero parameter will cause DVX05 to use the same configuration parameter

that was sent previously. This is normally used after a power failure by the auto-
restart programme AUTOR.

198

The baud rate generation feature allows each port to run at its own software
controlled baud rate. However this requires the interface connector to be wired to
have the CLKOUT signal strapped back to the CLKIN signal. If an external clock
is used (Eg. from a modem) then it must be at 16 times the required baud rate and
be wired to the CLKIN signal (see table K.1). If this connection is used then the
software controlled baud rate is irrelevant.

BIT NUMBER
5 4 13 12 1 10 9 8 7 6 5§ 4 3 2 1 O
C ¢C T TS S P P HUBUB B B H NN
Where:-

CC number of data bits. (00=5, 01=6, 10=7, 11=8)

TT mustbe Ol (terminal enable bit)

SS number of stop bits. (00=invalid, 01=1,10=1,5, 11=2)

PP parity. (00=none, 01=0dd, 10=none, T1=even)

HH handshake. (00=none, 01=HP style, 10=Qume, 11=Xon/Xoff)

NN Port number to be allocated to this LL-EQT (0-3)
BBBB Baud rate of internal baud rate generator

0 - no change 1 - 50 baud 2 - 75 baud

3 - 110 baud 4 - 135 baud 5 — 150 baud

6 — 300 baud 7 - 1200 baud 8 - 1800 baud
9 — 2400 baud 10 - 4800 baud 11 - 9800 baud

12 - 19200 baud

Figure K.1 Control 30B call configuration parameter

The handshake bits (BIT 7 and BIT 2) allow for four different types of handshake
protocol. Those implemented are no handshake, HP handshake, QUME bandshake
and XON/XOFF. The HP handshake is that used by all Hewlett Packard 26xx type
terminals and is illustrated in figure K.3, while the QUME type handshake is a
variation of this which allows a QUME SPRINT 55 printer to be connected to the
interface at baud rates of up to 1200 (see figure K.4). A third protocol implemented
on the standard interface is the so called XON/XOFF protocol implemented on
many manufacturers terminal devices. Only the transmitter accepts this protocol
and uses only the ASCII characters DC1/DC3 for the XON/XOFF responses. This
protocol is illustrated in figure K.2.

199

INTERFACE RESPONSE SIGNIFICANCE TERMINAL RESPONSE
ON QUTPUT REQUESTS
1) It last char rcvd *Terminal not ready

vas DC3 then walt. for data”

"AWAIT A DC1*

2) When ready send
«+————— *"Ready for data® =—— a DC1 (XON)

3) Send data Recelve data.
—b 1f busy send
(.check for DC3 rcvd) am XOFF. (DC3)

NOTE: Protocol Is not record senslitive
but operates on 2 character by character basis.

ON INPUT REQUESTS
1) Complete reverse of the above

-

Figure K.2 XON/XOFF style handshake protocol

INTERFACE RESPONSE SIGNIFICANCE TERMINAL RESPONSE
ON OUTPUT REQUESTS
1) Send ENQ ——p "Have you space for ___ . Possible walt
the next 80 chars?® for free space.
2 -<—— "YES. There Is now Send ACK
space for 80 chars®
3) Serid up to 80
chars [oJf data. —& & B
4)1f more than 80 chars to send
then loop to 1) for next 80. —& & —>
5)At end send "marks end of record®
CR and LF. - o B
ON INPUT REQUESTS
1) Send DC1 —b ®"Ready for data® —_—
2y <s——*"DC2 for ready to send® <«—— Send data or DC2
echo data —p
3)If DC2 send DCI —b *DC1 trigger® —
-s—— Send data
4) <—— "slgnify end of data® <=—— Send CR at end
echo CR — —
'5)8end LF —_— —

Figure K.3 HP style handshake protocol

200

INTERFACE RESPONSE SIGNIFICANCE TERMINAL RESPONSE
ON OUTPUT REQUESTS
1)Send ETX —— °®Have you space for | llne ?"—— Posslible valt
for free space.
2) -—— "Yes space free® —«——Send ACK
3) Send data —b —b —b

4)Send CR + LF —t "Signlfy end of data” —b

ON INPUT REQUESTS

*No handshake”

Figure K.4 QUME style handshake protocol

Since each port must be initialised after boot up, the configuration calls should be
placed into the WELCOM file 138] so that the terminals will always be configured
correctly after boot up. An example of typical entries for a WELCOM file is shown
below:

:CT,20,30B,112534B

:CT,21,30B,112535B

:CT,22,30B,112536B

:CT,23,30B,112537B

:CT,20,20B, Terminal 20 enabled (9600 baud, odd parity, 7Data, 1sb)
:CT,21,20B, Terminal 21 enabled (9600 baud, odd parity, 7Data, 1sb)
:CT,22,20B, Terminal 22 enabled (9600 baud, odd parity, 7Data, 1sb)
:CT,23,20B, Terminal 23 enabled (9600 baud, odd parity, 7Data, 1sb)

The configuration parameter 112534B sets up LU20 to correspond to port zero with

terminal parameters set to odd parity, 9600 baud, 1 stop bit and 7 data bits using
an HP style handshake.

The :CT,lu,30B calls are configuration calls to set up the interface cards operating
conditions while the :CT,lu,20B calls enable the terminals to operate in interactive

terminal mode with break mode access, this being a standard RTE IVB control
call.

201

K.4 RMUX features available from the Keyboard

Record length. The RMUX interface will accept data from the keyboard in either
character or block mode, providing each record does not exceed 255 characters.

Break mode access. To gain the attention of the break mode processor PRMPT,
strike the ’space’ bar at any time except when the interface is performing input.
Alternatively enter the cancel character (ASCII ‘CAN’ or CNTL X) at any time,
even during input to gain PRMPT’s attention. This is very useful for eliminating
programmes that dominate terminal input and cannot be terminated from within

the programme. Note that when not in snput mode the interface will ignore all characters
except SPACE’ and ‘CAN.

Changing the ECHO. The special character ‘SUB’ (CNTL Z) can be used during
normal input to toggle the echo flag. This character is not passed through to the
input buffer, but if echo was enabled on a terminal prior to a CNTL Z being
entered, it will be disabled after the CNTL Z and vice versa. This feature has its
value for entering secret information such as passwords which should not be
displayed on the terminal screen.

EOT status. The special character ‘EOT” (CNTL D) when entered during the
normal input process, will cause DVXO05 to execute an immediate return to the
caller with a zero transmission log and the EOT bit (BIT 5) of the status word set.
The interface will not send a return or a line feed (CR or LF) and any input
characters entered into the source record prior to the CNTL D will be lost.
Entering a return (CR) as the first character in any record will also execute an
immediate return with a zero transmission log except that in this case the EOT bit
will not be set. There are several other special characters which are processed in a
special fashion and figure K.5 summarises these and their effect.

Character| Keyin Effect

CR Return Terminates aninput record. CR, LF echoed.
LF Line feed Echoed. excluded from request buffer.
us CNTL _ Echoed. excluded from request buffer.
RS CNTL" —asforCR -
EOT CNTLD Immediate return, EOT bit set, zero trans. log.
DEL Delete Send CREscK)\. Clears line and leaves prompt
BS Backspace | Back up character pointer. If first character

in the line then transmit the delete sequence.
SuB CNTL Z Toggle ECHO state on/off
CAN | CNTLX Set break bit in status to schedule PRMPT.

Figure K.5 Special character processing for normal keyboard input

202

K.5 RMUX Programmable Features

Each port of the RMUX interface responds to three types of EXEC calls viz read,
write, and control.

Control calls. There are several control calls which are used to alter the interface
operating conditions. These control functions may be executed from a programme
using the EXEC call (figure K.6) or as commands through the FMGR using the CN
or CT commands (figure K.6).

Read and Write calls. Read requests and write requests have the same format
(figure K.7) and use almost identical options. The optional modes in which the
interface can perform a read (or write) are determined by setting certain bits in the
2nd parameter of the request (the so called CONWRD). There are two major bits
which have a significant effect on the execution of any request, these being the
ASCII/Binary bit and the Honesty bit. The significance of these bits is described
in detail below while the request format is illustrated in figure K.7.

From a programme use: CALL EXEC (3, ICNWRD <IPRM1>)
where ICNWRD = LU + (function code NN) * 64
From a terminal use: :CN, LU, function code NN <|PRM1>

Possible values for the function code NN are:
00B Interface clear — abort any pending requests
1B Space IPRMtlines on terminal (—ve IPRM1 causes a Form feed)
20B Enable terminal for interactive work — enables PRMPT
21B Disable terminal so break mode is not usable
22B Set timeout to IPRM1/100 seconds
23B Flush all queued requests
30B Configure terminal using IPRM1 (see figure K.1)

Figure K.6 Control calls for the RMUX interface.

Read CALL EXEC (1, ICONWD, IBUF, IBUFL)
Write CALL EXEC (2, ICONWD, IBUF, IBUFL)

where IBUF is the array in which input data will be stored
IBUFL is the buffer length (+ve => words, —ve => characters)
ICONWD is constructed as:
Bit5~0 hold LU of the terminal
Bit 6 ASClI/Binary (0/1)
Bit7 Echo bit (set to enable read echo)
Bit 9 Honest mode bit. (No special character processing)
B10-BS Both set (11) for programme enabled block read

Figure K.7 Read/Write calls for the RMUX interface

203

ASCII/BINARY bit. In ASCII mode input is only terminated by receiving a return
(CR) upon which a (CR, LF) is echoed. Should the input string be longer than the
request buffer, then the buffer will be filled and all subsequent characters ignored
until the ’CR’ character is detected.

ASCII output is terminated by a newline pair (CR,LF) unless the special case
occurs where the last character in the record is an underline (__’). In this case the
underline will not be output, nor will 2 newline (CR,LF).

In BINARY mode there is no special character processing and all input is stored in
the buffer until the buffer is full, at which time a return to the caller is made. If an
odd number of characters is requested, then in Binary mode the last word is right
padded with a null whereas in ASCII mode it is padded with an ASCII ‘space.
Binary mode output.causes all characters (bytes) to be sent with no special
processing and no CR or LF.

ECHO bit. If the ECHO bit is set then all input is echoed back to the terminal
otherwise no echo occurs. The state of this bit can be toggled during an input line
by using the CNTL Z key. This function is independent of the ASCII/Binary bit
and is ignored during output.

HONESTY mode. In HONESTY mode input, (IE. B10 set, B9 clear), all special
characters are stored in the buffer without any special processing. However input

still terminates upon receipt of a return character and not a on buffer full
condition.

Output in HONESTY mode causes all characters in the record to be output
irrespective of value. No new line characters (CR,LF) are sent to the terminal at
the end of the record. This bit is only effective in ASCII mode.

BLOCK READ mode. In BLOCK READ mode (Both B9 and B10 set) the DC1
which precedes any read request (HP handshake only) will trigger a block of data
from the terminal. This data is accepted without any special processing, is not
echoed, but is terminated by the transmission of a CR,LF pair. This mode is used
exclusively for HP terminals strapped for line mode block reads and is only

effective for reads. For write requests it is treated as Honesty mode since bit 10 is
set. '

204

K.6 Signal Connections and Wiring Tables

Each port has eight signals plus a common, and these are all buffered through
RS232 line drivers or receivers and brought out via a 48 way edge connector. The

signal pin numbers are shown in table K.1.

Table K.1 Signal Pinouts on terminal interface

TRACK SIDE PIN No. COMPONENT SIDE
COMMON A 1 COMMON
DSR 3 B 2 CTS3
CLKIN 3 C 3 /RXD 3
CTS2 D 4 DTR 3
DSR 2 E 5 CLKOUT 3
/RXD 2 F 6- RTS 3
DTR 2 H 7 CLKIN 2
/TXD 3 J 8 RTS 2
CLKOUT 2 K 9 ,

" L 10 JTXD 2

" M 1 ,

. N 12 -

CTS1 P 13 -

- R 14 DSR1

, S 15 ,

CLKIN 1 T 16 JRXD 1
RTS1] 17 DTR1
.- \Y; 18 .

JTXD1 W 19 CLKOUT1
/RXD 0 X 20 CLKINO
JTXD O Y 21 RTSO
CLKOUT 0 Z 22 DTRO
DSR 0 AA 23 CTSO
COMMON BB 24 COMMON

** This is the EPROM end of the connector **
* the ’/" sign indicates inversion or negative true logic

205

K.7 Definition of the RS 232 — C Signals

/TXD_ Transmit Data. This is the negative true transmitted data signal with
voltage levels according to EIA RS232 standards.

/RXD Received Data. Negative true received data input line.

RTS Request to Send. This positive true output will be set true (positive)
whenever the interface desires to transmit data. It will be maintained true for the
entire duration of a record, and then will be set false again after the last character
of the record has been sent.

CTS Clear to Send. Positive true input signal to the interface. This signal must
be true for any data to be transmitted. Normally CTS is set true in response to
RTS whenever the modem is ready to accept data. If CTS is set false in the middle
of transmitting a character, then transmission will terminate one character after
the character which was being transmitted when CTS went false. This is due to the
double buffering feature of the interface output USART [3%. When CTS is once
again set true, transmission resumes with the re-transmission of the last character -
IE. the one that was sent while CTS was false. If the interface is driving a terminal
directly and not through a modem then RTS and CTS should be connected
together.

DTR Data Terminal Ready. Positive true output set true prior to the first
interface transaction and maintained true continuously thereafter.

DSR Data Set Ready. Positive true input, the state of which is indicated in the
EQT status word bit 4. It has no effect upon the interface operation.

CLKOUT Programmable RS-232 level output clock running at 16 times the baud
rate set by the last configure command (see figure K.1).

CLKIN This input must be driven by an RS-232 level compatible square wave
clock with a frequency of 16 times the nominal baud rate. The most common
connection for this signal is to connect it to CLKOUT enabling the user to set the
terminal baud rate under programme control. However, if connected to a modem
this could be driven by the modem clock.

206

Table K.2 below gives the connections of each signal to an RS-232 compatible
connector — a D25 type. The wiring shown is for the interface to appear as Data

Terminal Equipment (DTE) as defined by the RS-232 standard [40]

Table K.2 DTE connections according to RS232C

PIN no. SIGNAL
1 Protective gr ound - should connect to system earth
2 /TXD Transmitted data from Interface
3 /RXD Received data to Interface
4 RTS Request to Send
5 CTS Clear to Send
6 DSR Data Set Ready
7 COMMON
15 CLKIN Transmit clock from modem
17 CLKIN Receive clock from modem
20 DTR Data Terminal Ready
24 CLKOUT Clock signal to Modem

10

12

13

14

208

REFERENCES

Hewlett Packard Company, A Pocket Guide to Interfacing HP Computers. (1970)

Hewlett Packard Company, HP12581 Buffered TTY Interface. Installation,
Service and Reference Manual. (1972)

Hewlett Packard Company, HP12894A-E01/E02. Multiplezed Input/Output
Accessory Kit. Operating and Service Manual. (1976)

Sperry Univac Corporation, PPLS 1100 System User Reference. (1979)

INTEL Corporation, 8257 /825745 Programmable DMA Controller. p6-125,
MCS80/85 Family User’s Manual. (1979)

E.WDijkstra, Co-operating Sequential Processes, F.Genuys,ed., Academic Press,
New programming Languages,York,NY. (1968)

Per Brinch Hansen, Operating System Principles. Prentice-Hall, Englewood
Cliffs, NJ. (1973)

R Peplow, RMUX Application Code. Source Code Unpublished. (1979)

Hewlett Packard Company, HP2621b Interactive Terminal Owners Manual,
pp5-3 to 5-5. (1982)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
pp3-26 to 3-30. (1980)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
p3-26. (1980)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
pp2-5 & 3-2. (1980)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
pp2-5 & 2-6. (1980)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
pp3-22 to 3-25. (1980)

15

16

17

18

19

20

21

22

22

22

25

26

27

28

29

30

209

Hewlett Packard Company, HP12581 Buffered TTY Interface. Installation,
Service and Reference Manual. (1972)

Hewlett Packard Company, RTE Driver DVROO for Multiple Device System
Control - Programming and Operating Manual. (1975)

Hewlett Packard Company, HP12620 Breadboard Interface Kit — Operating and
Service Manual. (1970)

Hewlett Packard Company, A Pocket Guide to Interfacing HP Computers. (1970)

Hewlett Packard Company, HP12894A-E01/E02. Multiplezed Input/Output
Accessory Kit. Operating and Service Manual. (1976)

Intersil Inc., IM6402/IM6408 Universal Asynchronous Receiver Transmitter
(UART) p2-3 Hot Ideas in CMOS. (1983/1984)

Hewlett Packard Company, HP2754A /B Teleprinter — Operation and Service
Manual. (1970)

Honeywell Corporation, Model 112 Lineprinter Maintenance Manual. (Modified
by R Peplow 1979)

Honeywell Corporation, Model 112 Lineprinter Maintenance Manual pp2-3 to
2-20. (Modified by R Peplow 1979)

Honeywell Corporation, Model 112 Lineprinter Maintenance Manual p3—45.
(Modified by R Peplow 1979)

INTEL Corporation, 82387/8287-2 High Performance Programmable DMA
Controller. p6-101, MCS80/85 Family User’s Manual. (1979)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
(1980)

Hewlett Packard Company, A Pocket Guide to Interfacing HP Computers. (197 0)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
pp2-5 & 2-6. (1980)

INTEL Corporation, 8257/8257-5 Programmable DMA Controller. p6-125,
MCS80/85 Family User’s Manual. (1979)

INTEL Corporation, 8257/8257-5 Programmable DMA Controller. p6-123,
MCS80/85 Family User’s Manual. (1979)

31

32

33

34

35

36

37

38

39

40

Hewlett Packard Company, A Pocket Guide to Interfacing HP Computers. p3-16.
(1970)

INTEL Corporation, 8257/8257-5 Programmable DMA Controller. p6-125,
MCS80/85 Family User’s Manual. (1979)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
pp3-26 to 3-30. (1980)

Hewlett Packard Company, RTE Operating System Driver Writing Manual p2-3.
(1980)

Hewlett Packard Company, RTE Operating System Driver Writing Manual.
pp3-1 to 3-8. (1980)

Hewlett Packard Company, RTE Operating System Driver Writing Manual,
p3-23. (1980) |

INTEL Corporation, 8080/8085 Assembly Language Programming Manual.
(1979)

Hewlett Packard Company, HP92068A RTE-IVB System Managers Manual
p5-18. (1980)

INTEL Corporation, 8251 Programmable Communication Interface. p6-160,
MCS80/85 Family User’s Manual. (1979)

Electronic Industries Association, EIA Standard RS-292-C. (1969)

210

	Peplow_Roger_Charles_Samuel_1987.front.p001
	Peplow_Roger_Charles_Samuel_1987.front.p002
	Peplow_Roger_Charles_Samuel_1987.front.p003
	Peplow_Roger_Charles_Samuel_1987.front.p004
	Peplow_Roger_Charles_Samuel_1987.front.p005
	Peplow_Roger_Charles_Samuel_1987.front.p006
	Peplow_Roger_Charles_Samuel_1987.front.p007
	Peplow_Roger_Charles_Samuel_1987.front.p008
	Peplow_Roger_Charles_Samuel_1987.front.p009
	Peplow_Roger_Charles_Samuel_1987.front.p010
	Peplow_Roger_Charles_Samuel_1987.front.p011
	Peplow_Roger_Charles_Samuel_1987.front.p012
	Peplow_Roger_Charles_Samuel_1987.front.p013
	Peplow_Roger_Charles_Samuel_1987.front.p014
	Peplow_Roger_Charles_Samuel_1987.front.p015
	Peplow_Roger_Charles_Samuel_1987.p001
	Peplow_Roger_Charles_Samuel_1987.p002
	Peplow_Roger_Charles_Samuel_1987.p003
	Peplow_Roger_Charles_Samuel_1987.p004
	Peplow_Roger_Charles_Samuel_1987.p005
	Peplow_Roger_Charles_Samuel_1987.p006
	Peplow_Roger_Charles_Samuel_1987.p007
	Peplow_Roger_Charles_Samuel_1987.p008
	Peplow_Roger_Charles_Samuel_1987.p009
	Peplow_Roger_Charles_Samuel_1987.p010
	Peplow_Roger_Charles_Samuel_1987.p011
	Peplow_Roger_Charles_Samuel_1987.p012
	Peplow_Roger_Charles_Samuel_1987.p013
	Peplow_Roger_Charles_Samuel_1987.p014
	Peplow_Roger_Charles_Samuel_1987.p015
	Peplow_Roger_Charles_Samuel_1987.p016
	Peplow_Roger_Charles_Samuel_1987.p017
	Peplow_Roger_Charles_Samuel_1987.p018
	Peplow_Roger_Charles_Samuel_1987.p019
	Peplow_Roger_Charles_Samuel_1987.p020
	Peplow_Roger_Charles_Samuel_1987.p021
	Peplow_Roger_Charles_Samuel_1987.p022
	Peplow_Roger_Charles_Samuel_1987.p023
	Peplow_Roger_Charles_Samuel_1987.p024
	Peplow_Roger_Charles_Samuel_1987.p025
	Peplow_Roger_Charles_Samuel_1987.p026
	Peplow_Roger_Charles_Samuel_1987.p027
	Peplow_Roger_Charles_Samuel_1987.p028
	Peplow_Roger_Charles_Samuel_1987.p029
	Peplow_Roger_Charles_Samuel_1987.p030
	Peplow_Roger_Charles_Samuel_1987.p031
	Peplow_Roger_Charles_Samuel_1987.p032
	Peplow_Roger_Charles_Samuel_1987.p033
	Peplow_Roger_Charles_Samuel_1987.p034
	Peplow_Roger_Charles_Samuel_1987.p035
	Peplow_Roger_Charles_Samuel_1987.p036
	Peplow_Roger_Charles_Samuel_1987.p037
	Peplow_Roger_Charles_Samuel_1987.p038
	Peplow_Roger_Charles_Samuel_1987.p039
	Peplow_Roger_Charles_Samuel_1987.p040
	Peplow_Roger_Charles_Samuel_1987.p041
	Peplow_Roger_Charles_Samuel_1987.p042
	Peplow_Roger_Charles_Samuel_1987.p043
	Peplow_Roger_Charles_Samuel_1987.p044
	Peplow_Roger_Charles_Samuel_1987.p045
	Peplow_Roger_Charles_Samuel_1987.p046
	Peplow_Roger_Charles_Samuel_1987.p047
	Peplow_Roger_Charles_Samuel_1987.p048
	Peplow_Roger_Charles_Samuel_1987.p049
	Peplow_Roger_Charles_Samuel_1987.p050
	Peplow_Roger_Charles_Samuel_1987.p051
	Peplow_Roger_Charles_Samuel_1987.p052
	Peplow_Roger_Charles_Samuel_1987.p053
	Peplow_Roger_Charles_Samuel_1987.p054
	Peplow_Roger_Charles_Samuel_1987.p055
	Peplow_Roger_Charles_Samuel_1987.p056
	Peplow_Roger_Charles_Samuel_1987.p057
	Peplow_Roger_Charles_Samuel_1987.p058
	Peplow_Roger_Charles_Samuel_1987.p059
	Peplow_Roger_Charles_Samuel_1987.p060
	Peplow_Roger_Charles_Samuel_1987.p061
	Peplow_Roger_Charles_Samuel_1987.p062
	Peplow_Roger_Charles_Samuel_1987.p063
	Peplow_Roger_Charles_Samuel_1987.p064
	Peplow_Roger_Charles_Samuel_1987.p065
	Peplow_Roger_Charles_Samuel_1987.p066
	Peplow_Roger_Charles_Samuel_1987.p067
	Peplow_Roger_Charles_Samuel_1987.p068
	Peplow_Roger_Charles_Samuel_1987.p069
	Peplow_Roger_Charles_Samuel_1987.p070
	Peplow_Roger_Charles_Samuel_1987.p071
	Peplow_Roger_Charles_Samuel_1987.p072
	Peplow_Roger_Charles_Samuel_1987.p073
	Peplow_Roger_Charles_Samuel_1987.p074
	Peplow_Roger_Charles_Samuel_1987.p075
	Peplow_Roger_Charles_Samuel_1987.p076
	Peplow_Roger_Charles_Samuel_1987.p077
	Peplow_Roger_Charles_Samuel_1987.p078
	Peplow_Roger_Charles_Samuel_1987.p079
	Peplow_Roger_Charles_Samuel_1987.p080
	Peplow_Roger_Charles_Samuel_1987.p081
	Peplow_Roger_Charles_Samuel_1987.p082
	Peplow_Roger_Charles_Samuel_1987.p083
	Peplow_Roger_Charles_Samuel_1987.p084
	Peplow_Roger_Charles_Samuel_1987.p085
	Peplow_Roger_Charles_Samuel_1987.p086
	Peplow_Roger_Charles_Samuel_1987.p087
	Peplow_Roger_Charles_Samuel_1987.p088
	Peplow_Roger_Charles_Samuel_1987.p089
	Peplow_Roger_Charles_Samuel_1987.p090
	Peplow_Roger_Charles_Samuel_1987.p091
	Peplow_Roger_Charles_Samuel_1987.p092
	Peplow_Roger_Charles_Samuel_1987.p093
	Peplow_Roger_Charles_Samuel_1987.p094
	Peplow_Roger_Charles_Samuel_1987.p095
	Peplow_Roger_Charles_Samuel_1987.p096
	Peplow_Roger_Charles_Samuel_1987.p097
	Peplow_Roger_Charles_Samuel_1987.p098
	Peplow_Roger_Charles_Samuel_1987.p099
	Peplow_Roger_Charles_Samuel_1987.p100
	Peplow_Roger_Charles_Samuel_1987.p101
	Peplow_Roger_Charles_Samuel_1987.p102
	Peplow_Roger_Charles_Samuel_1987.p103
	Peplow_Roger_Charles_Samuel_1987.p104
	Peplow_Roger_Charles_Samuel_1987.p105
	Peplow_Roger_Charles_Samuel_1987.p106
	Peplow_Roger_Charles_Samuel_1987.p107
	Peplow_Roger_Charles_Samuel_1987.p108
	Peplow_Roger_Charles_Samuel_1987.p109
	Peplow_Roger_Charles_Samuel_1987.p110
	Peplow_Roger_Charles_Samuel_1987.p111
	Peplow_Roger_Charles_Samuel_1987.p112
	Peplow_Roger_Charles_Samuel_1987.p113
	Peplow_Roger_Charles_Samuel_1987.p114
	Peplow_Roger_Charles_Samuel_1987.p115
	Peplow_Roger_Charles_Samuel_1987.p116
	Peplow_Roger_Charles_Samuel_1987.p117
	Peplow_Roger_Charles_Samuel_1987.p118
	Peplow_Roger_Charles_Samuel_1987.p119
	Peplow_Roger_Charles_Samuel_1987.p120
	Peplow_Roger_Charles_Samuel_1987.p121
	Peplow_Roger_Charles_Samuel_1987.p122
	Peplow_Roger_Charles_Samuel_1987.p123
	Peplow_Roger_Charles_Samuel_1987.p124
	Peplow_Roger_Charles_Samuel_1987.p125
	Peplow_Roger_Charles_Samuel_1987.p126
	Peplow_Roger_Charles_Samuel_1987.p127
	Peplow_Roger_Charles_Samuel_1987.p128
	Peplow_Roger_Charles_Samuel_1987.p129
	Peplow_Roger_Charles_Samuel_1987.p130
	Peplow_Roger_Charles_Samuel_1987.p131
	Peplow_Roger_Charles_Samuel_1987.p132
	Peplow_Roger_Charles_Samuel_1987.p133
	Peplow_Roger_Charles_Samuel_1987.p134
	Peplow_Roger_Charles_Samuel_1987.p135
	Peplow_Roger_Charles_Samuel_1987.p136
	Peplow_Roger_Charles_Samuel_1987.p137
	Peplow_Roger_Charles_Samuel_1987.p138
	Peplow_Roger_Charles_Samuel_1987.p139
	Peplow_Roger_Charles_Samuel_1987.p140
	Peplow_Roger_Charles_Samuel_1987.p141
	Peplow_Roger_Charles_Samuel_1987.p142
	Peplow_Roger_Charles_Samuel_1987.p143
	Peplow_Roger_Charles_Samuel_1987.p144
	Peplow_Roger_Charles_Samuel_1987.p145
	Peplow_Roger_Charles_Samuel_1987.p146
	Peplow_Roger_Charles_Samuel_1987.p147
	Peplow_Roger_Charles_Samuel_1987.p148
	Peplow_Roger_Charles_Samuel_1987.p149
	Peplow_Roger_Charles_Samuel_1987.p150
	Peplow_Roger_Charles_Samuel_1987.p151
	Peplow_Roger_Charles_Samuel_1987.p152
	Peplow_Roger_Charles_Samuel_1987.p153
	Peplow_Roger_Charles_Samuel_1987.p154
	Peplow_Roger_Charles_Samuel_1987.p155
	Peplow_Roger_Charles_Samuel_1987.p156
	Peplow_Roger_Charles_Samuel_1987.p157
	Peplow_Roger_Charles_Samuel_1987.p158
	Peplow_Roger_Charles_Samuel_1987.p159
	Peplow_Roger_Charles_Samuel_1987.p160
	Peplow_Roger_Charles_Samuel_1987.p161
	Peplow_Roger_Charles_Samuel_1987.p162
	Peplow_Roger_Charles_Samuel_1987.p163
	Peplow_Roger_Charles_Samuel_1987.p164
	Peplow_Roger_Charles_Samuel_1987.p165
	Peplow_Roger_Charles_Samuel_1987.p166
	Peplow_Roger_Charles_Samuel_1987.p167
	Peplow_Roger_Charles_Samuel_1987.p168
	Peplow_Roger_Charles_Samuel_1987.p169
	Peplow_Roger_Charles_Samuel_1987.p170
	Peplow_Roger_Charles_Samuel_1987.p171
	Peplow_Roger_Charles_Samuel_1987.p172
	Peplow_Roger_Charles_Samuel_1987.p173
	Peplow_Roger_Charles_Samuel_1987.p174
	Peplow_Roger_Charles_Samuel_1987.p175
	Peplow_Roger_Charles_Samuel_1987.p176
	Peplow_Roger_Charles_Samuel_1987.p177
	Peplow_Roger_Charles_Samuel_1987.p178
	Peplow_Roger_Charles_Samuel_1987.p179
	Peplow_Roger_Charles_Samuel_1987.p180
	Peplow_Roger_Charles_Samuel_1987.p181
	Peplow_Roger_Charles_Samuel_1987.p182
	Peplow_Roger_Charles_Samuel_1987.p183
	Peplow_Roger_Charles_Samuel_1987.p184
	Peplow_Roger_Charles_Samuel_1987.p185
	Peplow_Roger_Charles_Samuel_1987.p186
	Peplow_Roger_Charles_Samuel_1987.p187
	Peplow_Roger_Charles_Samuel_1987.p188
	Peplow_Roger_Charles_Samuel_1987.p189
	Peplow_Roger_Charles_Samuel_1987.p190
	Peplow_Roger_Charles_Samuel_1987.p191
	Peplow_Roger_Charles_Samuel_1987.p192
	Peplow_Roger_Charles_Samuel_1987.p193
	Peplow_Roger_Charles_Samuel_1987.p194
	Peplow_Roger_Charles_Samuel_1987.p195
	Peplow_Roger_Charles_Samuel_1987.p196
	Peplow_Roger_Charles_Samuel_1987.p197
	Peplow_Roger_Charles_Samuel_1987.p198
	Peplow_Roger_Charles_Samuel_1987.p199
	Peplow_Roger_Charles_Samuel_1987.p200
	Peplow_Roger_Charles_Samuel_1987.p201
	Peplow_Roger_Charles_Samuel_1987.p202
	Peplow_Roger_Charles_Samuel_1987.p203
	Peplow_Roger_Charles_Samuel_1987.p204
	Peplow_Roger_Charles_Samuel_1987.p205
	Peplow_Roger_Charles_Samuel_1987.p206
	Peplow_Roger_Charles_Samuel_1987.p208
	Peplow_Roger_Charles_Samuel_1987.p209
	Peplow_Roger_Charles_Samuel_1987.p210

