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Abstract

The co-movements and integration of financial markets has been a subject of great concern among

many researchers and economists due to an interest in the impacts of stock market integration in

terms of international portfolio diversification, asset allocation and asset pricing efficiency. Under-

standing the interdependence among financial markets is thus of immense importance especially to

investors and stakeholders in making viable decisions, managing risks and monitoring portfolio per-

formances. In this thesis, we investigated the levels of interdependence and dynamic linkages among

the five emerging economies well known as the BRICS: Brazil, Russia, India, China and South Africa,

using a Vector autoregressive (VAR), univariate GARCH(1,1) and multivariate GARCH models. Our

data sample consisted of the BRICS weekly returns from the period of January 2000 to December

2012. We used a VAR model to examine the linear dependence among the BRICS markets. The

results from the VAR model analysis provided some evidence of unidirectional linear dependencies

of the Indian and Chinese markets on the Brazilian stock market. The univariate GARCH(1,1) and

multivariate GARCH models were employed to explore the volatility and dynamic correlation in the

BRICS stock returns respectively. The results of the univariate GARCH model suggested volatil-

ity persistence among all the BRICS stock returns where China appeared to be the most volatile

followed by the Russian stock market while the South African market was found to be the least

volatile. Results from the multivariate GARCH models revealed similar volatility persistence. Fur-

thermore, we found that, the correlations among the five emerging markets varied with time. From

this study, evidence of interdependence among the BRICS cannot be rejected. Moreover, it appears

that there are other factors apart from the internal markets themselves that may affect the volatility

and correlation among the BRICS.
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Chapter 1

Introduction

1.1 Background

The integration of financial markets in the world today is an outcome of international trade, financial

flows, the exchange of technology and information and the movement of people. The dynamic

linkage among nations has been of great interest to policy makers and investors through different

opportunities that manifest themselves especially with the upcoming emerging key markets among

them the BRICS (Brazil, China, India, Russia and South Africa).

The BRIC national economies, currently known as BRICS were originally formed by Jim O’Niel

in 2001 before the official inclusion of South Africa in 2011 (Pasumarti, 2013). These emerging

economies are widely recognized to be the future driving forces for global demand and supply of

goods.

BRICS countries have come into focus as a symbol of the shift in world economic influence away from

the G7 (the US, United Kingdom, France, Italy, Canada, Germany and Japan) economies towards

the developing world. Estimates by O’Neill and Goldman (2001) show that BRICS economies will

have outrun the G7 economies by 2050 and that, China and India would become the first and

third largest economies followed by Brazil, Russia and South Africa by then. The brisk economic

growth and demographics of India and China are expected to mount a large middle class base

whose consumption would help energize the BRICS economic development and expansion of the
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world economy. The economic growth of the BRICS nations collectively, accounted for 30% of the

increase in global output during the period of 2000 to 2008 (O’Neill et al., 2009).

However, the recent global crisis is, the mid 2007 global recession which manifested itself in 2008,

affected almost the whole world including the five outstanding emerging markets with potential

to disrupt their recovery in the world economic array. According to O’Neill et al. (2009), Russia

suffered the most from the crisis where as China, Brazil and India experienced a relatively mild effect.

The 2008 financial crisis was mainly due to the downfall of the US market caused by loose credit

policy of its banks (Gupta, 2011). The aftermath of the 2008 global recession has been among the

major issues of attraction towards economists, traders, policy makers and academicians due to the

potential destructive effects and the extreme dependency structure of financial markets.

This study seeks to investigate the dynamic relationships among the BRICS financial markets using

a multivariate time-series analysis approach. The bulk of this study is based on two key concepts

of interest which are interdependence and volatility patterns in the BRICS stock returns. Here

interdependence refers to the behavioural pattern observed on a variable or market due to the

influence of another variable or market. This feature is captured by a vector autoregressive (VAR)

model. VAR models are essentially multivariate extensions of univariate autoregressive (AR) models

and are useful in capturing the dynamic behaviour and interdependence of financial time series by

modeling the conditional mean of return or time series data (Wang and Zivot, 2006).

Volatility is another crucial aspect especially in the fields of finance and economics use in the

management of financial risks, decision making and portfolio selections among other issues. Volatility

can be defined as the explosive or impulsive behaviour of financial markets (Wang and Zivot, 2006).

In statistics, volatility is often measured by the variance or standard deviation of return series (Tsay,

2010). Different statistical models have been developed by different researchers that can model

volatility together with its stylized facts such as volatility clustering, the dynamic patterns of fat

tails and time varying volatility as often observed in financial time series.
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1.2 Literature review

Several studies on methods and approaches to univariate and multivariate volatility or VAR modeling

of different financial markets have been conducted by several researchers. In this section we shall

review both empirical and theoretical studies that have been conducted regarding VAR and volatility

models and other findings related to this study.

The work of Sims (1980) popularized the use of VAR models which thereafter became very useful

tools for econometric and statistical analysis. Prior to Sims (1980) researchers using multivariate

time-series data relied on large scale simultaneous equation models which had a fundamental limi-

tation of excluding variables in the equations most often, endogenous lagged variables without any

statistical or theoretical justifications (Sims, 1980). The approaches produced very poor forecasts

and were plagued with numerous methodological restrictions. Over a decade later, Lütkepohl (1999)

worked on vector autoregressive analysis with special emphasis on cointegration. Two or more non-

stationary time series are said to be cointegrated if there exists a linear combination of them that is

stationary (Wang and Zivot, 2006). Lütkepohl (1999) stipulates that, characteristics such as trend-

ing properties and seasonal fluctuations for instance, determine to some extent a suitable model for

a data set. Furthermore, he argues that, for variables with stochastic trends, cointegrating relations

do not appear explicitly on VAR model equations but are rather easily analyzed within a vector error

correction model (VECM).

Whether a process is integrated or cointegrated of any arbitrary order, Toda and Yamamoto (1995)

argue that, for as long as the order of integration of the process does not exceed the true lag length

of the model, a VAR model can be estimated and general restrictions on the parameters can be

tested. Their idea of restrictions on the parameters of a VAR model seeks to avoid pretests for unit

roots and cointegrating ranks by simply adding extra lags in the estimation process.

Ono (2011) examined the impact of oil prices on real stock returns for the BRIC markets from 1999

to 2009 using a VAR model. With an exception of Brazil, the results of the study indicated positive

significant responses to some of the oil price indicators from China, Russia and India. Furthermore,

significant asymmetric effects of oil shocks were only observed in India.

Byström et al. (2013) used a VAR and a constant GARCH (CGARCH) model to estimate the

volatilities and spillover effects between developed and emerging market economies. The developed
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markets consisted of USA, France and Germany whereas the emerging markets consisted of Russia,

China and India. Results from their study suggested that, the emerging markets with an exception of

Russia were influenced by the developed markets and that volatility spillovers moved from developed

to emerging markets.

Campbell (1991) conducted a study on variance decomposition for stock returns using the New

York Stock Exchange monthly data. He compared the autoregressive (AR) time series model with

the VAR approach for variance decomposition of stock returns. Among the results reported by

Campbell (1991) was the predominant existence of negative autocorrelations in the stock returns.

This result was easily captured by the VAR model while the AR model which exclusively focused on

the autocovariances of the stock returns could not capture such definite results suggesting that, the

VAR model performed better than the AR model. AR models can be perceived as restricted cases

of VAR models because VAR models capture more data features and are more flexible compared to

AR models (Brooks, 2008).

Bjørnland (2000) used a structural VAR model to analyze the sources of business cycles using real

gross domestic product (GDP) data for four markets (Norway, Germany, United Kingdom and United

States). After imposing a series of short and long run restrictions, the model was able to pick up

different shocks that affected the four markets’ economy and these shocks were in line with actual

events that occurred in previous historical periods. According to Tsay (2010) structural VAR models

are suitable for exploring explicit concurrent relationships between component series however, the

reduced-form of VAR models is more preferable in time series analysis because concurrent correla-

tions cannot be used in forecasting and the parameters are much easier to estimate compared to

the structural VAR model parameters.

Ghirmay (2004) investigated the causal link between the level of financial development and eco-

nomic growth in 13 sub-Saharan countries using a VAR model framework based on the theory of

cointegration and error-correction representation. The outcome of the study revealed evidence of

a long-run relationship between financial development and economic growth in 12 of the countries.

Furthermore, financial development played a causal role on economic growth in 8 of the countries

with bidirectional causal relationship in 6 of the countries.

Similar to the work by Ghirmay (2004), Piesse and Hearn (2002) used a VAR model in the context of
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cointegration techniques on three market indices of the Southern African Customs Union to explore

equity market integration. The results of their study show evidence of progress in institutional build-

ing which is considered a valuable contribution to market integration throughout financial markets

in the SADC community.

Enisan and Olufisayo (2009) used a VAR model to examine the long run and causal relationships be-

tween stock market performance and economic growth from seven countries in sub-Saharan Africa.

Results from their study indicated the presence of a bidirectional relationship between the stock

markets’ development and economic growth for Cote D’lvoire, Kenya, Morocco and Zimbabwe.

Most traditional econometric models and statistical models such as the autoregressive moving aver-

age (ARMA) assume constant variance but, in reality most financial time series have non-constant

variances. Therefore, in order to capture uncertainties in financial markets, Engle (1982) introduced

a new class of stochastic processes called the ARCH model in attempt to model changes in market

volatility. According to Engle (1982), ARCH processes have the characteristics of being serially un-

correlated with varying variances conditional on the past but with constant unconditional variances.

To test for the presence of ARCH errors in the innovations of a time series data, Engle (1982) used

the Lagrange multiplier procedure by Granger and Andersen (1978).

A few years later the ARCH model was further extended to a generalized form known as the gener-

alized autoregressive (GARCH) model by Bollerslev (1986) so as to take into account the dynamic

behaviour of the conditional variance such as leptokurtic effects and volatility clustering. In the

empirical application of ARCH models, relatively long lag lengths are required in the conditional

variance equation in order to capture the effects of past returns on current volatility (Danielsson,

2011). Thus, the GARCH model by Bollerslev (1986) allows for a longer memory and a more supple

lag structure by including the lagged values on the conditional variance. GARCH models also provide

a much better fit and a more practical learning methodology compared to ARCH models (Boller-

slev, 1986). To check for the behaviour of time series in the conditional variance, Bollerslev (1986)

employs the use of autocorrelation and partial autocorrelation functions on the squared residuals.

Despite the fact that GARCH models capture volatility clustering and leptokurtic effects, they fail to

capture features such as leverage effects (the impact of positive and negative innovations or shocks)

(Danielsson, 2011). This limitation calls for more manageable volatility models that account for
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asymmetric responses of positive and negatives shocks such as the exponential GARCH (EGARCH)

by Nelson (1991), the threshold-GARCH (TGARCH) by Glosten et al. (1993) and the asymmetric

power ARCH (APARCH) models by Ding et al. (1993).

Kasman (2009) assessed the impact of sudden changes on the persistence of volatility in the BRIC

markets using a GARCH model. The results of the study showed that incorporating sudden changes

such as structural breaks in the GARCH model significantly reduced the persistence of volatility in

each of the BRIC returns suggesting that, less weight be given to past volatility values and more

weight to the current shocks in hedging strategies.

A bivariate AR(1)-EGARCH(1,1) model was used by Bhar and Nikolova (2009) to investigate on

the oil price and equity returns in the BRIC countries. The results of their study showed that the

volatility of the BRIC stock returns did not have any significant impact on the volatility of global

oil prices despite the countries’ aggressive economic growth.

Morales and Gassie (2011) conducted a research on structural breaks and financial volatility in the

BRIC countries together with the US and some energy markets using GARCH and TGARCH models.

From their results the Brazilian, Indian and Russian stock markets were found to be more influenced

by international shocks from the US stock markets and energy market fluctuations whereas, the

Chinese market appeared to be isolated from external shocks showing a higher level of stability

compared to the rest of the emerging markets.

Kiani (2007) conducted a study on the determination of volatility and mean returns with evidence

from the Jamaican Stock Price Index. Kiani (2007) used state space models with stable distributions

that accounted for non-normality and GARCH-like effects that may be present in the return series.

The results of the study revealed some significant leptokurtosis in the market together with evidence

of volatility in excess returns. However, leverage effects in the Jamaican stock market appeared to

be insignificant implying that, negative shocks do not necessarily imply future rise in volatility than

positive shocks of the same magnitude.

Goudarzi and Ramanarayanan (2010) assessed volatility and its stylized facts on the Indian stock

market daily returns from 2000 to 2009 using ARCH and GARCH model. Findings of the study

suggested the GARCH(1,1) model as the most appropriate model in explaining volatility clustering,

mean reverting and fat tails in the Indian stock market compared to the ARCH model which often
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requires a lot of parameters to adequately describe the volatility process.

Hearn and Piesse (2010) modeled the size and illiquidity in West African equity markets using a

capital asset pricing model (CAPM) and GARCH model. Their analysis revealed that investment

strategies based on Fracophone markets performed better than those of Anglophone markets in

Africa. Moreover, there was also some evidence of limited benefits to investors due to the inclusion

of the small and highly illiquid markets of Cote d’Ivoire and Ghana.

Chinzara and Aziakpono (2009) used both univariate GARCH and multivariate VAR models in in-

vestigating dynamic returns linkages and volatility transmission between South African and world

major stock markets. Results of their study showed that both returns and volatility linkages existed

between South Africa and the world major stock markets whereby Australia, china and the US had

the most influence on the South African returns and volatility.

Kuen and Hoong (1992) compared volatility forecasts produced by the historical sample variance,

GARCH and EWMA models using daily closing prices of five value-weighted indices of the Singapore

stock market. Their findings strongly suggested that the EWMA model performed better than the

other two models. Minkah (2007) carried out a similar study by evaluating the forecasting per-

formance of three models which are Historical Variance, GARCH and EWMA on the Swedish and

US stock markets. Results of his findings showed that, under the in-sample volatility forecasts, the

GARCH and EWMA models out performed the simple Historical Variance where as under the out-

of-sample forecast accuracy comparisons, the GARCH model performed better for shorter horizon

forecasts while the simple Historical Variance model out performed the other two models for longer

horizon forecasts.

Lopez (2001) assessed the predictive accuracy of volatility models by comparing stochastic volatility

models to GARCH and EWMA using four daily exchange rate series from Britain, Canada, Japan and

Germany. His results found no difference on forecasting performance among the models. Danielsson

(2011) on the other hand argues that, EWMA models produce poor forecasts compared to GARCH

models due to their simplicity in structure.

Danielsson (2011) used the daily stock returns of IBM and Microsoft to compare the estimation effi-

ciency of the EWMA, orthogonal-GARCH (OGARCH) and DCC models. From his findings, EWMA

produced the most volatile correlation forecasts where as the DCC and OGARCH had more stable
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correlations. He suggested that the enormous swings in EWMA correlations could have been an

overreaction but significant compromises are the price paid for tractability by all the three models.

Understanding the correlation between financial variables is of great importance especially in the

areas of financial management such as asset allocations and risk management. Engle (2002) and

Tse and Tsui (2002) proposed a simple class of multivariate GARCH models known as the dynamic

conditional correlation (DCC) that account for time varying correlations and their dynamics in fi-

nancial data. The DCC model is an extension of the constant conditional correlation (CCC) model

which has the shortcomings of the assumption of constant conditional correlation and nonstability

by aggregation (Francq and Zakoian, 2010). Tse and Tsui (2002) argued that the DCC model main-

tains the perception and interpretation of the GARCH model and still satisfies the positive-definite

condition of the variance covariance matrix. The DCC models are not linear but can be easily esti-

mated with univariate or two-step estimation technique depending on the likelihood function (Engle,

2002). The two-step estimator is asymptotically normal and consistent (Engle and Sheppard, 2001).

Bianconi et al. (2012) conducted a study on the behaviour of stocks and bond markets of the US

and BRIC nations using a DCC model. The results of the study showed that all of the BRIC returns

displayed significant conditional heteroskedasticity with Russia as the most responsive to conditional

volatility news. Moreover the dynamic conditional correlations among the bond returns of the BRIC

nations and the US financial stress appeared to have increased after the 2008 global crisis with an

exception of India which appeared to be uncorrelated with the rest of the BRIC countries. Aloui

et al. (2011) used the GARCH-in-mean and copula functions to examine the extent of current global

crisis and contagion effects induced by conducting an empirical investigation of the extreme financial

interdependences of the BRIC and markets. The results of their study revealed a strong evidence

of time-varying dependence between each of the BRIC markets and the US markets with a stronger

dependence for commodity-price dependent markets than for finished-product export oriented mar-

kets.

Wang and Zivot (2006) examined the existence of contagion effects between the stock markets of

Thailand and Chinese Economic Area (CEA) during the 1997-98 Asian financial crisis period using

a DCC model. To account for contagion effect Wang and Zivot (2006) compared the DCC mean

coefficients of the post-crisis and pre-crisis periods. The results of the study revealed the existence
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of contagion between the markets with a significant increase in the means of correlation coefficients

across the markets between the pre and post crisis periods.

Schwert (2010) explored the forecasting capacity of a DCC-GARCH model relative to simple uncon-

ditional correlation estimate applied to extreme market environments using the US financial markets.

Using five asset series the results of the study suggested that the forecasting performance of the

DCC-GARCH model relative to the unconditional model was mainly determined by the asset pair

involved rather than the time period.

Cappiello et al. (2006) examined the asymmetries in the conditional variances, covariances and

correlations of the FTSE All-World index series and DataStream Benchmark bond returns using a

DCC model. The results of their findings strongly suggested the presence of asymmetries in the

conditional variance of both equity and bond returns in noticeably different manners. The study

also portrayed a strong evidence of market volatility correlation for equity returns of the annualized

average volatility series.

Ndako (2013) investigated on the dynamics of stock prices and exchange rates relationship for 5 sub-

Saharan African financial markets which were Ghana, Kenya, Mauritius, Nigeria and South Africa

using a VAR and DCC model. Results from the VAR model showed no evidence of cointegration

among any of the five markets and the DCC model results indicated negative time-varying correla-

tions for all the five markets with an exception of Ghana that indicated a positive correlation.

Engle (2007) revisited the DCC model with a new convenient estimation approach called the Mac-

Gyver method. He compares the DCC with the FACTOR ARCH and the FACTOR DOUBLE ARCH

models. The DCC model was then combined with the FACTOR DOUBLE ARCH model to produce

the FACTOR DCC model. Using data from 18 US large cap stocks Engle (2007) compares the

efficiency of the methods and the results of his findings suggested the FACTOR DCC model as the

best approach followed by the FACTOR DOUBLE ARCH.

1.3 Comment on the review

Despite the fact that there is a considerable amount of literature on the analysis of volatility and

interdependence between financial markets surprisingly, scarce empirical research has been conducted
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on emerging markets, a clear gap of research has been found regarding the BRICS economies. Most

of the studies conducted regarding volatility and interdependence of stock markets are focused on

the developed economies. Furthermore, based on the available information, there has only been

a few researchers such as Mallick and Sousa (2009) and Rengasamy (2012) who have conducted

studies on the BRICS markets with the South African market included. To add to the body of

knowledge on emerging markets and especially in the BRICS financial markets, multivariate GARCH,

the vector autoregressive model and its extensions need to be utilized within the BRICS to have

better understanding of the dependence structure and dynamics in the volatility and correlations

within the markets. The South African economy needs to be acknowledged in the analysis of the

BRICS in order to understand its influence and contribution to the five emerging markets. One

of the impediments to lack of information from developing and emerging markets, has been easy

access and availability of data. Probably with increased availability of data from such markets this

will change.

1.4 Problem statement

Interdependence among financial markets is of substantial significance due to possible gains of

international investment and portfolio diversification. In addition to that, financial stability, monetary

policy and stock market efficiency are also influenced by international linkage of stock markets.

Moreover, the increasing co-movement among stock markets has brought much attention to the

study of dynamic correlations between financial markets. However, strong linkages of financial

markets could be harmful to the world’s financial stability through contagion a scenario whereby

small shocks which initially affect a few financial markets, further spread to the rest of the markets.

In this regard, understanding the linkage between financial markets is of great importance especially

to investors and policy makers in order to effectively formulate and implement different policies that

govern financial trade.

The degree to which financial prices fluctuate whereby large changes tend to be followed by large

changes and small changes by small changes has attracted a great deal of research in econometrics,

financial economics and statistics. This property of time series data is known as volatility clustering.
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Intuitively one could say large price fluctuations reflect investor uncertainty due to fundamental

uncertainties in the economy. A peculiar feature of volatility is its uncertainty a feature that has

lead to the development of many models that can capture and forecast volatility. Understanding

volatility together with its stylized facts is significant because it aids in decision making, asset pricing,

risk management and portfolio allocation.

1.5 Objectives of the study

1.5.1 Broad objective

The primary objective of this study is to evaluate the levels of interdependence and dynamic linkage

among the RBICS financial markets using appropriate univariate and multivariate time-series models.

1.5.2 Specific objectives

To achieve the broad objective we shall:

• Investigate and review the statistical properties of the main time-series models (VAR, GARCH

and multivariate GARCH models) that shall be considered,

• Determine, empirically, an appropriate VAR(p) model for the BRICS return series and estimate

the linear dependency among the five markets,

• Estimate and fit an appropriate GARCH(p,q) model to each of the BRICS market return series,

• Produce and evaluate the quality of forecasts arising from the GARCH model selected,

• Identify appropriate multivariate GARCH models for the BRICS returns.
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1.6 Structure of the thesis

This thesis consists of five chapters. Following this introductory chapter, the second chapter provides

a research methodology of the VAR model together with the model application on the BRICS returns.

Chapter three, gives a research methodology of the univariate GARCH model and its application on

the BRICS markets. In chapter four, we present the multivariate GARCH models’ methodology and

application on the BRICS financial returns and finally, in chapter five a discussion and conclusion

of the study is provided. The data used in this thesis was obtained from Yahoo! Finance on 13th

March 2013. The entire analysis of the data in this thesis was done using the R programing language,

version 3.0.1 that was originally introduced by Ihaka and Gentleman (1996).
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Chapter 2

Vector Autoregressive (VAR)

Modeling of BRICS stock returns

2.1 Introduction

This chapter discusses about VAR modeling with several sections that explain about; the model de-

scription, parameter estimation, diagnostic tests carried out on the selected VAR model, forecasting,

strengths and weaknesses of the VAR model, application of the model unto the data and a summary

of the results.

2.2 Model description

The variables in a VAR model are treated symmetrically where each variable has an equation de-

scribing its progression based on its own lags and the lags of all other variables in the model.

Consider an N × 1 random vector of endogenous variables yt = (y1t, . . . , yNt)
′ for t = 1, . . . , N . A

VAR process of order p can be written as

yt = c+A1yt−1 + . . .+Apyt−p + ut, (2.1)
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where Ai are N ×N fixed coefficient matrices for i = 1, . . . , p, c = (c1, . . . , cN) is an N × 1 vector

of constants and ut = (u1t, . . . , uNt) is an N -dimensional white noise process with E(ut) = 0,

E(ut,u
′
s) = 0 for s 6= t and a time-invariant positive definite covariance matrix E(utu

′
t) = Σu.

Definition 1 (Stationary process). A stochastic process yt is said to be stationary if

i E(yt) = µ for all t and

ii E[(yt − µ)(yt−h − µ)′] = Γy(h) = Γy(−h)′ for all t and h = 0, 1, 2 . . .,

where µ is a vector of finite mean terms and Γy(h) is matrix of finite covariances. The first condition

implies that all the components in yt have the same finite mean vector and the second condition

calls for the autocovariances to depend only on the time period h between the vectors yt and yt−h.

Unless stated, the return series of financial assets are assumed to be weakly stationary (Tsay, 2010).

If yt in equation ( 2.1) is said to be covariance stationary then the unconditional mean is given by

µ = (IN −A1 − . . .−Ap)
−1c,

where IN is an identity matrix. The mean-adjusted form of the VAR(p) process is then

yt − µ = A1(yt−1 − µ) +A2(yt−2 − µ) + . . .+Ap(yt−p − µ) + ut.

Definition 2 (Stability Condition). A VAR(p) is said to be stable if the eigenvalues of

det(IN −A1z − . . .−Apz
p) 6= 0

have a modulus less than one that is, |z| < 1. Assuming that the VAR process has been initialized in

the infinite past, then a stable VAR(p) process is a stationary time-series with time invariant means,

variances and autocovariance structures.

Consider a lag operator L such that Lyt = yt. We can rewrite the VAR(p) process in equation

( 2.1) as

A(L)yt = c+ ut, (2.2)

where A(L) = IN −A1L− . . .−ApL
p. Now let

Φ(L) =
∞∑
i=0

ΦiL
i
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be an operator such that

Φ(L)A(L) = IN .

Multiplying Φ(L) by equation ( 2.2) we get

yt = Φ(L)c+ Φ(L)ut

= c
∞∑
i=0

Φi +
∞∑
i=0

Φiut−i. (2.3)

Equation ( 2.3) is known as the stable VAR(p) representation of an infinite MA process with Φ0 =

IN . The Φi can be calculated recursively as

Φi =
i∑

s=1

Φi−sAs, (2.4)

where As = 0 for s > p.

2.3 Lag selection

Before estimating the parameters of a VAR(p) model, one has to consider the selection of an

appropriate lag that is, the order of p. This step does not give information on how well the model

fits the data but rather suggests a candidate model that can be tested using suitable diagnostic tests.

As with the univariate autoregressive process, the lag length can be determined using information

criteria such as the Akaike (AIC), Hannan and Quinn (HQ) or Schwarz (SC). These measures are

defined as

AIC(p) = logdet(Σ̃u(p)) +
2

T
pN2,

HQ(p) = logdet(Σ̃u(p)) +
2log(log(T ))pN2

T
,

SC(p) = logdet(Σ̃u(p)) +
log(T )

T
pN2,

where Σ̃u(p) = T−1ΣT
t=1ûtû

′
t, and p assigns the lag order. The selection from these criteria is based

on the minimum value they produce.
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2.4 Model parameter estimation

The coefficients of a VAR(p) process can be estimated efficiently by a least squares or the maximum

likelihood approach. However, the two methods are asymptotically alike Tsay (2005). In this section

we shall use the Maximum likelihood estimation (MLE) method assuming the the VAR(p) process

yt is Gaussian that is to say u ∼ N(0,Σu). T is the number of observed data that is used in the

estimation of VAR and GARCH models. The matrix notation of a VAR(p)-process can be written

as

Y = BZ + ζ,

where

Y = (y1, . . . ,yT )′,

B = (c,A1, . . . ,Ap)
′,

Zt = (1,yt, . . . ,yt−p+1)

Z = (Z0, . . . ,ZT−1)
′,

ζ = (u1, . . . ,uT )′.

Y , B, Z and ζ are (N × T ), (N × (Np+ 1)), ((Np+ 1)× T ) and (N × T ) matrices respectively.

We define the following notations that will be used in the ML estimation of the VAR(p) model:

y = vec(Y ),

b = vec(B′),

u = vec(ζ)

Y ∗ = (y1−µ, . . . ,yT−µ),

X = (Y ∗0, . . . ,Y
∗
T−1),

α = (A1, . . . ,Ap),

where y, b, u and α are (NT ×1), ((N2p+N)×1), (NT ×1) and (N2p×1) vectors respectively,

Y ∗ and X are (N × T ) and (Np× T ) matrices. The probability density function of u is given as

fu(u) =
1

(2π)
NT
2

|Σu|−
1
2 exp

(
−1

2
u′Σuu

)
, (2.5)
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where u is expressed as

u = y − µ∗ − (X ′ ⊗ IN)α (2.6)

such that, µ∗ = (µ′, . . . , µ′). Using equation ( 2.6)

fy(y) =

∣∣∣∣ ∂u∂y′
∣∣∣∣ fu(u)

=
1

(2π)
NT
2

|IT ⊗Σu|−
1
2 exp

(
− 1

2
(y − µ∗ − (X ′ ⊗ IN)α)′(IT ⊗Σ−1u )

(y − µ∗ − (IN ⊗X ′)α)

)
Thus, the log-likelihood function

logL(µ,α,Σu) = − NT

2
log(2π)− T

2
log(Σu)−

1

2
(y − µ∗ − (X ′ ⊗ IN)α)′(IT ⊗Σ−1u )

× (y − µ∗ − (X ′ ⊗ IN)α)

= − NT

2
log(2π)− T

2
log|Σu| −

1

2

T∑
t=1

(
(yt − µ)−

p∑
i=1

Ai(yt−i − µ)

)′
Σu

×

(
(yt − µ)−

p∑
i=1

Ai(yt−i − µ)

)

= − NT

2
log(2π)− T

2
log|Σu| −

1

2

∑
t

(
yt −

∑
i

Aiyt−i

)′
Σ−1u

(
yt −

∑
i

Aiyt−i

)

+ µ′

(
IN −

∑
i

Ai

)′
Σ−1u

∑
t

(
yt −

∑
i

Aiyt−i

)

− T

2
µ′

(
IN −

∑
i

Ai

)′
Σ−1u

(
IN −

∑
i

Ai

)
µ

= −NT
2
log(2π)− T

2
log|Σu| −

1

2
tr[(Y ∗ −AX)′Σ−1u (Y ∗ −AX)].
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To obtain the maximum likelihood estimators of µ, α and Σu, we take the first order partial

derivative of the log-likelihood function:

∂logL

∂µ
=

(
IN −

∑
i

Ai

)
Σ−1u

∑
t

(
yt −

∑
i

Aiyt−i

)
− T

(
IN −

∑
i

Ai

)′
Σ−1u

(
IN −

∑
i

Ai

)
µ

= (IN −A[k ⊗ IN ])′Σ−1u

(∑
t

(yt − µ−AY ∗t−1)

)
,

∂logL

∂α
= (X ⊗ IN)(IT ⊗Σ−1u )(y − µ∗ − (X ′ ⊗ IN)α)

= (X ⊗Σ−1u )(y − µ∗)− (XX ′ ⊗Σ−1u )α,

∂logL

∂Σu

= −T
2

Σ−1u +
1

2
Σ−1u (Y ∗ −AX)(Y ∗ −AX)′Σ−1u ,

where K is a p × 1 vector of ones. Equating the systems of derivatives to zero yields the ML

estimators:

µ̂ =
1

T

(
IN −

∑
i

Âi

)−1∑
t

(
yt −

∑
i

Âiyt−i

)
,

α̂ = ((X̂X̂
′
)−1X̂ ⊗ IN)(y − µ̂∗),

Σ̂u =
1

T
(Ŷ
∗
− ÂX̂)(Ŷ

∗
− ÂX̂)′.

2.5 Diagnostic tests

Once a VAR(p) model has been estimated, it is crucial to check whether the fitted residuals obey

the model’s assumptions. There are three main assumptions of a VAR(p) model and these are;

1. The absence of serial correlation of errors, tested using a Portmanteau test

2. The absence of heteroscedasticity in the errors, tested using an ARCH test

3. Normality distribution of the residuals, tested using a Jarque Bera test
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2.5.1 Portmanteau test

We shall use a Portmanteau test statistic by Edgerton and Shukur (1999) to test for the absence of

serial correlation. The portmanteau test is used to test following hypothesis,

H0: the residuals are not serially correlated versus

Ha: the residuals are serially correlated

The test statistic is described as

Qh = T 2

h∑
i=1

1

T − i
tr(Ĉ ′iĈ

−1
0 ĈjĈ

−1
0 ),

where Ĉi = 1
T

∑T
t=i+1 ûtût−i. The test statistic is asymptotically distributed as a χ2(N2h − n)

with n denoting deterministic terms of a VAR(p) model. The limiting distribution is only valid for

h tending to infinity at an appropriate growing sample size rate. Thus, the trade-off is between a

decent approximation to the χ2 distribution and a loss in power of the test when the selected h is

too large.

2.5.2 Multivariate ARCH test

To test for heteroscedasticity in the fitted residuals, we shall use a multivariate ARCH-LM test by

Breusch (1978). Assuming the error vector, ut = B1ut−1 + . . .+Bhut−h +ηt, where ηt is a white

noise. Then, the multivariate ARCH-LM test is based on the following regression

ût = c+A1yt + . . .+Apyt−p +B1ût−1 + . . .+Bhût−h + εt, (2.7)

where Ai and Bi are coefficient matrices and εt is the regression error term. The null hypothesis

is,

H0:B1 = B2 = . . . = Bh = 0 (absence of ARCH errors) versus

Ha:Bi 6= 0 (presence of ARCH errors).

Under the null hypothesis, ut = ηt. The multivariate ARCH-LM test statistic is given as

LMh = T ĉ′hΣ̂
−1
c ĉh,

whereas ch = (C1, . . . , Ch)
′ such that, Ch = 1

T

∑T
t=h+1 utu

′
t−h, Σ̂c is the covariance matrix of the

residuals from equation ( 2.7). LMh ∼ χ2(hN2).
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2.5.3 Jarque-Bera test

We shall follow Lütkepohl (2005) multivariate Jarque-Bera (JB) test approach which was initially

introduced by Jarque and Bera (1980). The test can be computed by using residuals standardized

by a Choleski decomposition of the variance-covariance matrix of a VAR(p) model (Pfaff, 2008).

Moreover, the test is based on the third and fourth central moments (Skewness and kurtosis) of a

Gaussian distribution. For instance, for a univariate random variable y, following a standard normal

distribution, its third and fourth moments are given as E(y3) = 0 and E(y4) = 3. The null

hypothesis for the JB test is,

Ho: the residuals are normally distributed versus

Ha: the residuals are not normally distributed.

The multivariate Jarque-Bera test statistic is defined as

JBmv = τ s + τ k,

where τ s and τ k are calculated as

τ s =
Tb′1b1

6
,

τ k =
T (b2 − 3N)′(b2 − 3N)

24
,

where b1 and b2 are third and fourth non-central moment vectors of the standardized residuals

ûst = P̂ − (ût − ¯̂ut) and P̂ is a lower triangular matrix with positive diagonal such that P̂ P̂ ′ = Σ̂u

which is the Choleski decomposition of the residual covariance matrix. The JBmv test statistic is

distributed as χ2(2N) while the multivariate skewness, τ s and kurtosis, τ k are distributed as χ2(N).

2.6 Forecasting

Prediction of future values based on previously observed values of a time series is one of the objectives

of multivariate time series analysis. Once a VAR model has been estimated and passed the required

diagnostic tests it can then be used for forecasting. Given a VAR(p), h-step ahead forecasts may be

computed using the chain-rule of forecasting as

yT+h|T = c+A1yT+h−1 + . . .+ApyT+h−p|T ,
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where yT+j|T = tT+j for j ≤ 0. The h-step prediction errors can be expressed as

yT+h − yT+h|T =
h−1∑
s=0

Ψsut+h−s

where the matrices Ψs are determined by a recursive substitution

Ψs =

p−1∑
j=1

Ψs−jAj,

with Ψ0 = IN and Aj = 0 for j > p. The forecasts are unbiased since all of the forecast errors

have an expectation of zero and the MSE matrix of yt+h|T is

Σ(h) = MSE(yT+h − yT+h|T )

=
h−1∑
j=0

ΨjΣΨ′j.

The forecast confidence bands can be calculated as

[yk,T+h|T − c1− γ
2
σk(h), yk,T+h|T + c1− γ

2
σk(h)],

where C1− γ
2

signifies the (1 − γ
2
) percentage point of the normal distribution and σk(h) is the

standard deviation of the kth variable h-steps ahead.

2.7 Strengths and weaknesses of a VAR model

Most statistical models have both limitations and advantages regardless of their goodness of fit.

This section outlines a few cons and prons of a VAR(p) model.

• Strengths

VAR models have several advantages compared to univariate time series models or simultane-

ous equations structural models. These include;

(i) One does not need to specify which variables are endogenous or exogenous as all variables

are endogenous. This is crucial because as a requirement for simultaneous equations

structural models to be estimable, all equations in the system have to be identified.
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(ii) VAR models allow the value of a variable to depend on more than just its own lags or

combinations of white noise terms that is, VAR models are more flexible than univariate

AR models. Hence, VAR models can offer a very rich structure implying a capability of

capturing more data features.

(iii) VAR models provide better predictions as compared to traditional structural models.

Large-scale structural models portray a poor performance in terms of their out-of-sample

forecast accuracy. This could be due to the ad hoc nature of restrictions imposed on the

structural models.

• Weaknesses

(i) VAR models use very little theoretical information about the relationship between the

variables to guide the specification of the model while a simultaneous structural system

with valid exclusion restrictions that ensure identification of equations gives information

about the structure of the model. The outcome of this is that VAR models are less

responsive to theoretical analysis.

(ii) Inclusion of too many variables (over fitting) in the system may result to poor performance

of the VAR-derived forecasts. This happens when the lags of the variables in the system

pick up spurious relations in the data. Therefore, unless the set of variables and lag

lengths are maintained relatively small, predictions from a VAR model are likely to be

inaccurate.

(iii) In the case of relatively small sample sizes, degrees of freedom are more likely to be

rapidly used up indicating the presence of large standard errors and henceforth wide

confidence bounds for the model coefficients.

2.8 Application

This section provides an application of the theory discussed above on an empirical data. The data

used was weekly stock returns of BRICS markets from 2000 to 2012. The stocks returns were
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generated using the following formula

Rt = ln

(
Pt
Pt−1

)
,

where Pt is the price index, t is the time (weekly in this case) and Rt is the stock return. A

summary of the stock returns, correlation, cross-correlation analysis and VAR modeling of the data

are provided in this section.

2.8.1 Data summary

A plot of the stock returns is provided on Figure 2.1 where sd stands for the standard deviation of

the mean, min and max represent the minimum and maximum values respectively. All the returns

appear to be mean stationary with a lot of volatility between 2008 to 2009. This can be explained as

a result of the 2008 global recession that occurred whereby many stock markets where affected as a

result of the downfall of the US market. A summary of the stock returns is provided on Table 3.1.

JSE appears to have the highest mean value of 0.0025(±0.03) and IBOV with the lowest mean

value of 0.00026(±0.04). JSE appears to have the highest maximum value of −0.10 where as RTSI

appears to have the lowest minimum value of −0.24. None of the stock market returns appear

to have a normal distribution as the values of the kurtosis and skewness are non zero that is, the

markets are either skewed to the left or right and they all appear to be more peaked compared to a

standard normal distribution based on the values of the kurtosis.

Table 2.1: A summary of the BRICS weekly stock returns

Stock

return

Mean sd Min Max Kurtosis Skweness

IBOV 0.0003 0.04 -0.22 0.17 3.51 -0.57

RTSI 0.0024 0.05 -0.24 0.34 4.68 -0.31

BSE 0.0004 0.04 -0.17 0.13 2.52 -0.52

SSE 0.0005 0.03 -0.15 0.14 2.01 0.12

JSE 0.0025 0.03 -0.10 0.16 3.36 -0.09
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Figure 2.1: A plot of the BRICS weekly returns where BSE represents the Indian stock market,

IBOV represents the Brazilian stock market, JSE represents the South African stock market,

RTSI represents the Russian stock market and SSE represents the China stock market

2.8.2 Correlation analysis

A summary of correlation among the stock returns is given on Table 3.2. From the table of cor-

relations, the strongest correlation is observed between RTSI and JSE with a correlation of 0.81

followed by RTSI and BSE with a correlation of 0.76. The Chinese stock market (SSE) appears

to be negatively correlated with all the other stock markets with an exception of the JSE which

however, has a very low correlation of 0.13. This can be explained by the fact that, the scale of

China’s economy has far out-stripped that of the other four emerging markets. The rest of the stock

returns appear to be positively correlated with each other but with a relatively low correlation of

≤ 0.50.
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Table 2.2: A table of the correlation summary for the BRICS weekly returns

Stock

return

IBOV RTSI BSE SSE JSE

IBOV 1.00 0.34 0.56 -0.82 -0.26

RTSI 0.34 1.00 0.76 -0.42 0.81

BSE 0.56 0.76 1.00 -0.48 0.48

SSE -0.82 -0.42 -0.48 1.00 0.13

JSE -0.26 0.81 0.48 0.13 1.00

2.8.3 Cross-correlation analysis

We carry out cross-correlation analysis in order to see how much of the variability of one market

is predicted to influence another market at different lags. A cross-correlation analysis can have

three possible outcomes which are: 1) a positive correlation where as one variable rises, the other

variable is expected to rise as much, 2) zero on no correlation 3) a negative correlation whereby one

variable falls while the other one rises. Figure 2.2 shows a cross-correlation plot of the BRICS stock

returns. Positive lags on the plots explain past values while negative lags explain future values of

the stock returns. Lag zero accounts for present values of the stock returns. From Figure 2.2, some

significant correlations are observed between South Africa (JSE) and the past values of China (SSE),

India(BSE) and the past values of China (SSE) and Brazil (IBOV) and the past values of China

(SSE) indicating that SSE has an influence on the JSE, BSE and IBOV stock markets as the latter

markets portray a linear dependence on the past values of SSE. China (SSE) and Russia (RTSI) on

the other hand, show some significant correlations in the future lags suggesting that there exists a

linear dependence between SSE and the future values of RTSI. The rest of the markets on Figure 2.2

show significant correlations only at lag zero implying that the stock returns have a strong correlation

with their present values only. However, to have a better understanding of the dependencies among

multiple return series data, a more informative approach such as building a multivariate model for

the series is necessary. This is because a correctly specified model will consider simultaneously the
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serial and cross-correlations among the series (Tsay, 2010).

Figure 2.2: Cross-correlation plots of the BRICS weekly returns where BSE represents the

Indian stock market, IBOV represents the Brazilian stock market, JSE represents the South

African stock market, RTSI represents the Russian stock market and SSE represents the China

stock market

2.8.4 VAR modeling

This section gives a summary of the procedures carried out while fitting a VAR model.

2.8.4.1 Lag selection

Firstly, the lag length of p for the VAR model was selected based on the three information criteria

which were; the AIC, HQ and SC. These criteria aided in choosing the best lag order for p which

is the fit with the lowest criterion value. Six different lags were fitted and from Table 3.3 Fit 1

corresponding to VAR with lag length one appears to have the lowest value from all the three

information criteria with a value of −34.06 from the AIC, −33.97 from the HQ and −33.83 from

the SC. Thus the VAR(1) model was fitted and the parameters were estimated.
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Table 2.3: A summary of the VAR-model lag selection

Fit Model AIC HQ SC

1 VAR(1) -34.06 -33.97 -33.83

2 VAR(2) -34.02 -33.86 -33.61

3 VAR(3) 34.02 -33.78 -33.41

4 VAR(4) -33.98 -33.67 -33.19

5 VAR(5) -33.95 -33.57 -32.97

6 VAR(6) -33.92 -33.46 -32.75

2.8.4.2 Parameter estimation

Before estimating the parameters of the VAR(1) model, the eigenvalues of the coefficient matrices

were checked to see if their moduli are less than one. Table 2.4 gives a summary of the eigenvalues.

All the eigenvalues appear to have a moduli less than one implying that the VAR(1) model is stable

thus, parameter estimation of the VAR(1) model was then carried out. Table 2.5 presents a summary

of the VAR(1) model parameter estimates, their residuals, t-values and their significance based on

the p-values. All parameter estimates with p-values< 0.05 are significant. The parameter estimates

represent the coefficient matrix Φ of the VAR(1)-model. The matrix accounts for the dynamic

relationship of yt. From Table 2.5 the only autoregressive matrix coefficients that appear to be

significant are: AR(1)11, AR(1)31, AR(1)41, AR(1)43 and AR(1)55 which have the implication

that, there exists a linear dependency between IBOV and its own past values, BSE and the past

values of IBOV, SSE and the past values of IBOV, SSE and the past values of BSE and JSE and its

own past values respectively. All these linear dependencies are unidirectional because the latter past

values do not depend on the former markets’ past values. Thus, the equations for the VAR(1)-model

for each variable with significant parameters can now be written as

IBOV = −0.18(±0.05)IBOV1,t−1 + u1,t (2.8)

BSE = 0.09(±0.05)IBOV1,t−1 + u3,t (2.9)
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SSE = 0.10(±0.04)IBOV1,t−1 + (±0.05)0.10BSE3,t−1 + u4,t (2.10)

JSE = −0.14(±0.06)JSE5,t−1 + u5,t (2.11)

Concurrent relationships among the stock returns is explained by the off diagonal elements of the

variance-covariance matrix displayed on Table 2.6. If the off diagonal elements are zero then the

implication is the absence of any concurrent relationship between the variables of interest. In this

case however, all the off diagonal elements appear to be non-zero implying the presence of concurrent

relationships among all the stock returns.

Table 2.4: Eigenvalues of the fitted VAR(1)

Coefficient matrix Eigenvalue

Φ1 0.25

Φ2 0.17

Φ3 0.06

Φ4 0.008

Φ5 0.006
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Table 2.5: Model Parameter Estimates of the fitted VAR(1) model

Stock

return

Parameter Variable Estimate SE t-value p-value

IBOV AR(1)11 IBOVt−1 -0.18 0.05 -3.45 0.0006

AR(1)12 RTSIt−1 0.03 0.04 0.78 0.44

AR(1)13 BSEt−1 0.08 0.06 1.46 0.14

AR(1)14 SSEt−1 -0.02 0.05 -0.44 0.66

AR(1)15 JSEt−1 0.08 0.07 1.05 0.30

RTSI AR(1)21 IBOVt−1 0.11 0.07 1.59 0.11

AR(1)22 RTSIt−1 -0.01 0.05 -0.19 0.85

AR(1)23 BSEt−1 0.03 0.08 0.44 0.66

AR(1)24 SSEt−1 0.03 0.07 0.43 0.67

AR(1)25 JSEt−1 0.04 0.002 1.03 0.30

BSE AR(1)31 IBOVt−1 0.09 0.05 2.00 0.04

AR(1)32 RTSIt−1 0.02 0.03 0.71 0.48

AR(1)33 BSEt−1 -0.05 0.05 -1.04 0.30

AR(1)34 SSEt−1 0.004 0.04 0.10 0.92

AR(1)35 JSEt−1 0.08 0.07 1.14 0.25

SSE AR(1)41 IBOVt−1 0.10 0.04 2.24 0.03

AR(1)42 RTSIt−1 0.01 0.03 0.34 0.74

AR(1)43 BSEt−1 0.10 0.05 2.09 0.04

AR(1)44 SSEt−1 0.03 0.04 0.70 0.48

AR(1)45 JSEt−1 -0.03 0.07 -0.41 0.68

JSE AR(1)51 IBOVt−1 0.06 0.04 1.69 0.09

AR(1)52 RTSIt−1 -0.006 0.03 -0.21 0.83

AR(1)53 BSEt−1 0.03 0.04 0.84 0.40

AR(1)54 SSEt−1 -0.01 0.03 -0.27 0.79

AR(1)55 JSEt−1 -0.14 0.06 -2.60 0.01
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Table 2.6: A variance-covariance matrix of the fitted VAR(1) model

Variable IBOV RTSI BSE SSE JSE

IBOV 0.002 0.001 0.001 0.0003 0.001

RTSI 0.001 0.003 0.001 0.0002 0.001

BSE 0.001 0.001 0.001 0.0002 0.001

SSE 0.0003 0.0002 0.0002 0.001 0.0001

JSE 0.001 0.001 0.001 0.0001 0.001

2.8.4.3 Diagnostic tests for VAR(1)

Three diagnostic tests were carried out on the VAR(1) model which were; the portmanteau test

which tests for serial correlation of the fitted residuals, the ARCH test which tests for the presence

of ARCH errors and the Jarque-Berra test which tests for the normality of the fitted residuals and

also accounts for the values of skewness and kurtosis. The hypotheses of these tests are listed under

Section 2.5. Table 2.7 gives a summary of the diagnostic test results that were carried out on the

VAR(1) model. All the p-values from the table appear to be less than 0.05 giving an implication of

the acceptance of the alternative hypotheses for all the tests. This means that the residuals of the

fitted VAR(1) model are serially correlated, contain ARCH errors and are not normally distributed.

In this regard, the VAR(1) did not pass any of the diagnostic tests and therefore, can not be used

to forecast future values of the stock returns.

30



Table 2.7: Summary Diagnostic tests of the fitted VAR(1) model

Test Statistic DF p-value

Portmanteau 156.71 125 0.03

ARCH 2767.16 1350 < 0.001

JB 930.59 10 < 0.001

Kurtosis 837.63 5 < 0.001

Skewness 56.95 5 < 0.001

2.9 Summary

This chapter provided a discussion on the theory of a Vector autoregressive model and a summary

of the model’s application on the BRICS stock returns. From the application of this model we

were able to determine the correlation, concurrent relationships and linear dependencies among the

BRICS stock returns. The strongest correlation was observed between the JSE (South Africa) and

RTSI (Russia) followed by RTSI and BSE (India) stock markets. Following the cross-correlation

analysis, SSE (China) appeared to have an influence on all the stock returns with an exception of

RTSI (Russia). From the VAR model estimation, we were able to observe concurrent relationships

and unidirectional linear dependencies among the BRICS stock returns where BSE was observed to

have an influence on the Indian (BSE) and Chinese (SSE) stock markets. However, forecasting was

not carried out simply because the selected VAR model that is, the VAR(1) did not pass any of

the diagnostic tests. Thus, a volatility model such as the Generalized Autoregressive Conditionally

heteroscedastic (GARCH) will be necessary as an alternative model that will account for the ARCH

effects present in each of the BRICS returns as seen in Section 2.8. This will be the focus of the

next chapter of the thesis.
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Chapter 3

Univariate GARCH Modeling of

BRICS stock returns

3.1 Introduction

This chapter addresses the issue of univariate volatility modeling for each of the BRICS markets using

the GARCH(p,q) model. Model description, parameter estimation, diagnostic tests, forecasting and

application of the univariate GARCH model are all discussed in this chapter.

3.2 GARCH(p,q) model description

The GARCH model by Bollerslev (1986) is an extension of the ARCH model that was introduced by

Engle (1982). GARCH models are the simplest and basic forms of modeling volatility. The funda-

mental concept behind GARCH models is the conditional variance, that is, the variance conditional

on the past. The conditional variance can be expressed as a linear function of the squared past time

series innovations. Consider a log return series rt given as

rt = µt + εt, (3.1)
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where εt is the innovation or shock at time t and µ is the mean.

Definition 3 (A GARCH(p,q) process). Let ηt be an iid sequence with mean 0 and variance 1.

Then, the GARCH(p,q) process is satisfied if

εt = σtηt, σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j, (3.2)

where αi and βj are nonnegative constants, α0 is a strictly positive constant and
∑max(p,q)

i=1 (αi+βi) <

1. The constraint on αi + βi implies that the unconditional variance of εt is finite where as its

conditional variance σ2
t evolves over time. Let ζt = ε2t − σ2

t therefore, σ2
t = ε2t − ζt. Substituting

σ2
t−i = ε2t−i − ζt−i (i = 0, . . . , q) into equation (3.2), we can then rewrite the GARCH (p,q) model

as

ε2t = α0 +

max(p,q)∑
i=1

(α1 + βi)ε
2
t−i + ζt −

q∑
j=1

βjζt−j. (3.3)

Equation (3.3) is an ARMA representation of the GARCH(p,q) model for the squared innovations ε2t .

ζt can easily be shown to be a martingale difference sequence satisfying E[ζt] = 0 and cov(ζt, ζt−j) =

0 for j ≥ 1 but, ζt is generally not an iid sequence (Tsay, 2010).

Fitting a high order GARCH model is not easy. Only the lower order GARCH models such as

GARCH(1,1), GARCH(1,2) and GARCH(2,1) are often used in application (Tsay, 2010). In this

chapter a GARCH(1,1) model will be used in modeling each of the BRICS returns. A GARCH(1,1)

model can be written as

σ2
t = α0 + α1ε

2
t + β1σ

2
t , (3.4)

where α1, β1 > 0, α0 = γVL, where VL is the average long run or unconditional variance and γ is

the weight added to the long run variance. The condition α1 + β1 + γ = 1 needs to be satisfied to

obtain the average long run variance VL given as

VL =
α0

1− α1 − β1
. (3.5)

Therefore, equation (3.4) can be rewritten as

σ2
t = γVL + α1ε

2
t + β1σ

2
t . (3.6)

33



3.3 GARCH (p,q) model estimation

The most common method used in the estimation of GARCH model parameters is the maximum

likelihood estimation (MLE). In order to predict the volatility for a time series, one has to first

fit the GARCH model to the time series of interest. This is possible only after model parameter

estimation. In this section we present estimation through a likelihood approach which therefore

requires distributional assumptions to be clearly understood.

3.3.1 Maximum-Likelihood Estimation (MLE)

Consider a data set of observations r1, . . . , rN assumed to be random from a distribution Fr(r; θ)

that depends on the unknown parameters θ where in our case θ = [α0, α1, . . . , αp, β1, . . . , βq] for

a GARCH(p,q) model with parameter space Θ as earlier defined. R has a probability distribution

function pr(R; θ) which defines the probability that R = r that is, p(R = r). Suppose the probability

function is known, then the unknown θ’s can be estimated using the likelihood function

L(θ) = pr(r1; θ)× . . . , pr(rN ; θ),

where L(θ) explains the probability that the values r1, . . . , rN are a realization of a random sample

of size N from the distribution. By letting the unknown θ assume all the values in the parameter

space Θ, the values of θ for which L(θ) is maximum can be estimated. These values are symbolized

as θ∗. Thus the estimation of θ is chosen such that L(θ∗) is maximized for the observed r1, . . . , rN .

3.3.1.1 Stationarity

The concept of stationarity is crucial for statistical analysis of time series data with GARCH models.

This suggests constraints on the estimated GARCH model parameters using the maximum-likelihood

estimation. The two conditions that state the restrictions on the estimated parameters in the

GARCH(p,q) model for stationarity are the strictly and weakly stationary conditions which are

Condition 1 : The GARCH(p,q) process with an independent and identically distributed random

sequence εt = σtηt such that E[η2t ] = 1 and E[ηt] = 0, is strictly stationary with a finite variance if
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the constraints in equation (3.2) are satisfied.

Condition 2: A GARCH(p,q) process is weakly stationary if and only if the constraints in equation

(3.2) are satisfied with

• E[εt] = 0,

• V ar(εt) = α0

[
1−

(∑p
i=1 αi +

∑q
j=1 βj

)]−1
and

• cov(εt, εs) = 0, for t 6= s.

3.3.1.2 Gaussian Quasi-Maximum-Likelihood Estimation (QMLE)

The likelihood estimation under the assumption of Gaussian or normal innovations is a commonly

used method which is widely used for inference in time series models. However, establishing con-

sistency and asymptotic normality of the quasi-maximum-likelihood estimator is not easy. Thus,

understanding the probabilistic structure generated by the model is crucial (Straumann and Mikosch,

2006). Suppose the innovation or shock ηt, in the GARCH(p,q) model assumes a conditional nor-

mal distribution. Then, εt is a Gaussian N(0, σ2
t ) given past values εt−1, εt−2, . . . and conditioning

argument yields the density function given as pεp,...,εN of εp, . . . , εN through the conditional Gaussian

densities of the εt’s given r1, . . . , εN = rN :

pεp,...,εN (rp, . . . , rN) =
1

(
√

2π)n−(p+1)

N∏
t=p+1

e
− r2t

2σ2t

σt
pεp(rp).

Conditioning on εp = rp and replacing t = p+1 with t = 1, the Gaussian log-likelihood of ε1, . . . , εN

can be expressed as

lN(α0, α1, . . . , αp, β1, . . . , βq) =
1

2

N∑
t=1

logσ2
t +

ε2t
σ2
t

+ log2π.

The likelihood function is then maximized as a function of αi’s and βj’s. Thus, the resulting value

in the parameter space is the normal quasi maximum likelihood estimator for the GARCH(p,q)

parameters.
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3.3.1.3 Heavy-tailed MLE

Time series data do not always necessarily assume a normal distribution, therefore, it is important

to use a distribution that reflects on the features of a time series such as skewness, long, short or

fat tails and estimate the model parameters using this distribution in the likelihood function. This

approach helps in dealing with non-Gaussian errors. There are many heavy tailed distributions such

as the Student-t, log-normal, cauchy and the Generalized Error Distribution(GED) to mention a few.

However, in this section we only consider the Student-t distribution. Consider a returns data set

with observations r1, . . . , rN , that are assumed to follow the Student-t distribution has the following

density function

fR(r; v) =
Γ[v+1

2
]

√
vπΓ[v

2
](1 + r2

v
)
v+1
2

,

where v denotes the degrees of freedom. Like the normal distribution, the Student-t distribution is

symmetric. The mean, variance and kurtosis of the distribution are

1. µ = 0 for v ≥ 2

2. σ2 = v
v−2 for v ≥ 3

3. kurtosis = 6
v−4 for v ≥ 5.

Now, for a real-valued discrete time stochastic process εt, the log-likelihood function for a Student-t

distribution is given as

lN(α0, α1, . . . , αp, β1, . . . , βq) =
N∑
t=1

{
logΓ(

v + 1

2
)− logΓ(

v

2
)− 1

2
log(π(v − 2))

− 1

2
logσ2

t −
v + 1

2
log

[
1 +

ε2t
σ2
t (v − 2)

]}
.

The log-likelihood function is then maximized with respect to the unknown parameters of the

GARCH(p,q) model and the MLE parameter estimates are obtained through iterative optimization

methods.
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3.4 GARCH(p,q) model diagnostics

The goodness of fit of a GARCH model is assessed by checking the significance of the parameter

estimates and measuring how good it models the volatility process. There are three commonly used

statistical tests that can be carried out on a fitted GARCH(p,q) model and these are

• Ljung-Box test

• ARCH-LM test

• Normality test

3.4.1 Ljung-Box test

Volatility clustering in returns is evident as autocorrelation in squared and absolute returns. The

importance of these autocorrelations can be tested using the Ljung-Box Q-statistic by Ljung and

Box (1978) given as

Q(p) = N(N + 2)

p∑
k=1

ρ̂2k
N − k

,

where ρ̂k denotes the k-lag sample autocorrelation of the squared or absolute return and N is the

sample size. The Ljung-Box tests the null hypothesis that the data are independently distributed

against the alternative that they are not. If the data are white noise then the Q(p) statistic will have

an asymptotic chi-square distribution with p degrees of freedom. An insignificant Q statistic value

with a p-value greater than 0.05 provides evidence of absence of any significant autocorrelations in

the fitted residuals and vice versa.

3.4.2 ARCH-LM test

The ARCH-LM test in this section is similar to that discussed in Chapter 2 except that, it’s application

here is under a univariate approach. Consider an ARCH(p) regression given as

σ2
t = α0 + α1ε

2
t−1 + . . .+ αpε

2
t−p. (3.7)
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Since E(εt) = 0 and Et−1(ε
2
t ) = σ2

t , equation (3.7) can be rewritten as

ε2t = α0 + α1ε
2
t + . . .+ αpε

2
t−p + ut, (3.8)

where ut = ε2t −Et−1(ε2t ) is a zero mean white noise process. Equation (3.8) represents an Autore-

gressive (AR) process for ε2t . Bollerslev (1986) indicated that, since an ARCH model denotes an

(AR) model for the squared innovations ε2t then, a simple Lagrange multiplier (LM) test for ARCH

errors can be used based on the auxiliary regression (3.8). α1 = α2 = . . . = αp = 0 is the null

hypothesis under which there are no ARCH effects and the alternative hypothesis is the presence of

ARCH effects. The ARCH-LM test statistic given as

LM = N.R2,

where N is the sample size and R2 is the squared multiple correlation coefficient calculated from the

auxiliary regression equation (3.8) using estimated innovations. The test statistic has an asymptotic

chi-square distribution with p degrees of freedom.

3.4.3 Normality test

A GARCH model may assume several kinds of distributions depending on the nature of the time

series data under consideration. The most common distribution is the normal distribution however,

most financial time series data are not always consistent with this kind of distribution (Danielsson,

2011) therefore, it is crucial to determine an appropriate distribution for the data. A Jarque-Berra

(JB) test is often used in the test for normality of fitted residuals. The JB test is used to test the

following hypothesis

H0: the innovations (εt) are normally distributed versus

Ha: the innovations are not normally distributed.

The test statistic is given as;

SN = N

(
τ̂ 2

6
+

(k̂ − 3)2

24

)
,

where

τ̂ =
1
N

∑N
t=1(εt − ε̄)3(

1
N

∑N
t=1(εt − ε̄)2

) 3
2

, k̂ =
1
N

∑N
t=1(εt − ε̄)4(

1
N

∑N
t=1(εt − ε̄)2

)2 , ε̄ =
1

N

N∑
t=1

εt,
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N is the sample size, τ̂ and k̂ are the estimators of skewness τ and kurtosis k respectively. Skewness

is the measure of the asymmetry of a probability distribution whereas kurtosis is the measure of the

degree of peakedness of a distribution relative to the tails. However, there are a number of weaknesses

that have been noted with JB test in literature. Chen and Kuan (2003) argue that, the JB test is not

the most preferable test for normality because the test works best only if, (i) the conditional mean

function has an intercept term but does not depend on past innovations and if (ii) the innovations

have a conditionally constant variance. Moreover, Thadewald and Büning (2007) add that, the JB

test is poor for short tailed distributions and that the test is biased at times. In this regard we opt

for a graphical approach such as the QQ-plots (quantile quantile plots) that analyze the tails of a

distribution. QQ plots assess how well a theoretical distribution fits a set of observations. If the

quantiles of a theoretical and sample data distribution coincide then the QQ plot takes the shape

of the line y = x (Karlsson, 2002). Large deviations of the fitted points away from the prediction

line imply deviations from a particular distribution. Deviations from normality could imply other

distributions such as the Student-t, GED, a Skewed distribution and so on depending on the shape

the QQ-plot takes. To aid in the selection of an appropriate distribution that best describes the

data’s features when modeling with a GARCH model, information criteria such as the AIC can be

used. An AIC can be expressed as;

AIC = −2log(L) + 2k,

where k is the number of parameters in the model, L is the maximized value of the likelihood

function for the estimated model (GARCH(p,q) in this case). The distribution with the lowest AIC

value is often considered as the appropriate distribution for the data.

3.5 Forecasting using a GARCH(1,1) model

Predictions of a GARCH model can be obtained recursively. Assuming the prediction origin as h, a

one-step ahead prediction of a GARCH(1,1) model is given as

σ2
h+1 = α0 + α1ε

2
h + β1σ

2
h,
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where ε2h and σ2
h are known at time index h. For multi-step ahead predictions, we use ε2t = σ2

t η
2
t

and rewrite the volatility equation from equation (3.2) as

σ2
t+1 = α0 + (α1 + β1)σ

2
t + α1σ

2
t (η

2
t − 1).

For t = h+ 1, the equation now becomes

σ2
h+2 = α0 + (α1 + β1)σ

2
h+1 + α1σ

2
h+1(η

2
h+1 − 1).

Since E[η2h+1|Fh] = 0 where, Fh is the information available at time h, the 2-step ahead prediction

at the origin h becomes

σ2
h+2 = α0 + (α1 + β1)σ

2
h+1.

Generally for an m-step ahead forecast,

σ2
h+m = α0 + (α1 + β1)σ

2
h(m− 1), m > 1. (3.9)

This result is similar to the predictions of an ARMA(1,1) model with an Autoregressive polynomial

1− (α1 + β1)B, where B is a backward shift operator. With recursive substitutions in Eq(3.9), the

m-step ahead prediction can be rewritten as

σ2
h+m =

α0[1− (α1 + β1)
m−1]

1− α1 − β1
+ (α1 + β1)

m−1σ2
h+1.

Hence,

σ2
h+m →

α0

1− α1 − β1
as m→∞,

provided that α1 + β1 < 1. Therefore, the multi-step ahead volatility predictions of a GARCH(1,1)

model converge to the unconditional variance of ηt as the prediction region escalates to infinity for

as long as the V ar(εt) exists.

3.6 Application

3.6.1 Introduction

This section gives a summary of the univariate GARCH model application to each of the weekly

BRICS stock returns. The data used in this section consist of weekly returns of the BRICS markets
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from Jan 2000 to Dec 2012. The BRICS stock returns used are IBOVESPA (Brazilian stock market),

RTSI (Russian stock market), BSE (Indian stock market), SSE composite (Chinese stock market)

and JSE all share (South African stock market). The first section presents a summary of the

exploratory data analysis, the second section, provides a summary of the GARCH(1,1) parameter

estimation for each stock return, the third section gives a summary of diagnostic tests carried out

on the fitted GARCH(1,1) model, the fourth section presents a summary of the predicted returns

and the last section gives a summary conclusion of the GARCH(1,1) model application.

3.6.2 Exploratory data analysis

An exploratory analysis was conducted on the BRICS stock returns whereby the Autocorrelation

function (ACF) of each stock return and their squared returns were plotted against several lags as

shown on Figure 3.1 and Figure 3.2 respectively. From Figure 3.1 all the stock returns appear to be

serially uncorrelated with an exception of a few minor lags which indicate weak serial correlation in

the return series. However, it is clear from Figure 3.2 that the squared returns are serially correlated

indicating the presence of some ARCH errors in the BRICS return series. To confirm these results,

a Ljung-Box and an ARCH test were carried out to check for serial correlation and the presence of

ARCH errors respectively in the BRICS returns. The results of these tests are given on Table 3.1.

From Table 3.1 all the stock returns appear to be serially uncorrelated but with the presence of

ARCH errors in all the stock returns. Under the Ljung-Box test results all the p-values appear to be

greater than or equal to 0.05 implying the absence of serial correlation in the stock returns where

as the p-values under the ARCH test results appear to be less than 0.05 indicating the presence of

some ARCH errors in all the BRICS returns. In this regard, a model that accounts for volatility such

as the GARCH model needs to be employed in the modeling of the BRICS returns.
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Figure 3.1: ACF plots of the BRICS returns where, JSE represents the South African stock

market, IBOV represents the Brazilian stock market, RTSI represents the Russian stock market

BSE represents the Indian stock market and SSE represents Chinese stock market

Figure 3.2: ACF plots of the BRICS squared returns where JSE represents the South African

stock market, IBOV represents the Brazilian stock market, RTSI represents the Russian stock

market, BSE represents the Indian stock market and SSE represents the Chinese stock market
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Table 3.1: Ljung-Box and ARCH-LM tests for the BRICS stock returns diagnostics

Stock

return

Ljung-

Box

p-value ARCH-

LM

p-value

IBOV 34.81 0.05 70.14 < 0.001

RTSI 0.60 0.42 121.17 < 0.001

BSE 1.15 0.28 68.56 < 0.001

SSE 2.61 0.12 54.97 < 0.001

JSE 5.50 0.06 119.75 < 0.001

3.6.3 GARCH(1,1)

This section provides a discussion on univariate volatility modeling of the BRICS returns using a

GARCH(1,1) model. As observed on the previous section, all the stock returns showed some pres-

ence of ARCH errors thus, a GARCH(1,1) model was fitted to each of the BRICS returns in order

to capture volatility.

A GARCH(1,1) model may assume several conditional distributions depending on the nature of the

time series data. However, the most common conditional distribution is the Gaussian normal dis-

tribution therefore, each of the BRICS returns was firstly fitted under this assumption and a Q-Q

plot for each of the returns was plotted as shown on Figure 3.3. For a standard normal Gaussian

distribution a theoretical Q-Q plot takes the shape of the line y = x thus, an empirical data is

expected to have its points lying around normal prediction line. Further deviations of the points

away from this line indicate deviations from normality. From Figure 3.3, most of the points lie on

the normal line however, towards the lower ends of the plots, the points of each return series appear

to move relatively to the normal line indicating the presence of heavy left tails. In practice, the right

and left tail distributions of returns are in most cases different it is therefore, good practice to allow

the conditional distribution to be a skewed one. In this regard, two conditional distributions which

were the student-t distribution (std) and the skew student-t distribution (sstd) were fitted on the

GARCH(1,1) model and based on the AIC values the distribution with the lowest AIC value was

43



then used to fit the data. A summary of the AIC values is given on Table 3.2.

(a) IBOV (b) RTSI

(c) BSE (d) SSE

(e) JSE

Figure 3.3: Q-Q plots for (a) Brazil (b) Russia (c) India (d) China and (e) South African stock

returns under the Gaussian normal distribution assumption
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Table 3.2: AIC values of the GARCH(1,1) model under the student-t (std) and skew student-t

(sstd) conditional distributions for each of the BRICS returns

Returns AIC

std sstd

IBOV -3.69 -3.70

RTSI -3.29 -3.30

BSE -3.99 -4.00

SSE -4.01 -4.02

JSE -4.47 -4.49

From Table 3.2 the distribution that appears to have the lowest AIC values with all the stock

returns is the skew student-t distribution (sstd) therefore, each stock return was then fitted with

the GARCH(1,1) model under the sstd.

3.6.3.1 Parameter estimation

Based on the AIC results from Table 3.2, the estimates of the GARCH(1,1) model under the sstd

assumption for each stock return are presented on Table 3.3. The parameter µ symbolizes the mean

part of the model where as α0, α1 and β1 symbolize the volatility part.
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Table 3.3: A summary table of the GARCH(1,1) model parameter estimates for each of the

BRICS stock returns

Returns Parameter Estimate SE p-value Longrun-

variance (VL)

IBOV µ 0.000113 0.00155 0.94 0.000747

α0 0.0000714 0.0000367 0.05

α1 0.00238 0.023 0.30

β1 0.902 0.035 < 0.001

RTSI µ 0.00375 0.00186 0.04 0.00272

α0 0.000128 0.0000617 0.04

α1 0.137 0.0429 0.001

β1 0.816 0.0515 < 0.001

BSE µ 0.00122 0.00131 0.35 0.00112

α0 0.0000693 0.0000365 0.06

α1 0.111 0.0404 0.01

β1 0.828 0.06 < 0.001

SSE µ −0.000411 0.00133 0.76 0.00114

α0 0.0000211 0.0000141 0.14

α1 0.0603 0.0207 0.004

β1 0.922 0.0266 < 0.001

JSE µ 0.001 0.00101 0.32 0.000456

α0 0.0000547 0.0000245 0.03

α1 0.062 0.0654 0.34

β1 0.818 0.0518 < 0.001

From the results on Table 3.3, the GARCH(1,1) model equation for each stock return can now be

written as follows;

rt(ibov) = 1.13e−4(±1.55e−3) + at,

σ2
t = 7.14e−5(±3.67e−5) + 2.38e−2(±2.30e−2)a2t−1 + 9.02e−1(±3.50e−2)σ2

t−1

(3.10)

rt(rtsi) = 3.75e−3(±1.86e−3) + at,

σ2
t = 1.28e−4(±6.17e−5) + 1.37e−1(±4.29e−2)a2t−1 + 8.16e−1(±5.15e−2)σ2

t−1

(3.11)

46



rt(bse) = 1.22e−3(±1.31e−3) + at,

σ2
t = 6.93e−5(±3.65e−5) + 1.11e−1(±4.04e−2)a2t−1 + 8.28e−1(±6.00e−2)σ2

t−1

(3.12)

rt(sse) = −4.11e−4(±1.33e−3) + at,

σ2
t = 2.12e−5(±1.41e−5) + 6.03e−2(±2.07e−2)a2t−1 + 9.22e−1(±2.66e−2)σ2

t−1

(3.13)

rt(jse) = 1.00e−3(±1.01e−3) + at,

σ2
t = 5.47e−5(±2.45e−5) + 6.02e−2(±6.45e−2)a2t−1 + 8.18e−1(±5.18e−2)σ2

t−1

(3.14)

rt represents the return for each stock return whereas σ2
t represents the volatility part of the

GARCH(1,1) model equation for each stock return. The sum of estimates α̂1 and β̂1 is less than one

for all of the BRICS return series implying that the unconditional volatility for each of the BRICS

return series is finite. Furthermore, SSE is seen to have the highest volatility persistence with a

value of α̂1 + β̂1 = 0.982, followed by RTSI with a volatility persistence of α̂1 + β̂1 = 0.953 whereas,

JSE appears to have the lowest volatility persistence of α̂1 + β̂1 = 0.88.

Figure 3.4 presents plots of the BRICS estimated volatility. Based on the volatility scale on the

plots RTSI (Russia) appears to have the highest volatility followed by BSE (India). It is clear from

Figure 3.4 that, all of the BRICS returns portray a high volatility between the year 2008 to 2009.

This can be attributed to the 2008 global recession.
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Figure 3.4: Plots of the BRICS estimated volatility where IBOV stands for the Brazilian stock

market, RTSI stands for the Russian stock market, BSE stands for the Indian stock market,

SSE stands for the Chinese stock market and JSE stands for the South African stock market.

3.6.3.2 Diagnostic tests

For any model to be rendered adequate it must undergo some diagnostic assessments after being

fitted. Several diagnostic tests were carried out on the fitted GARCH(1,1) model which include

the Jarque-Berra (JB) test, Ljung-Box test and the ARCH-LM test. The JB test checks for the

normality of fitted residuals, Ljung-Box test checks for serial correlation of the fitted residuals and

the ARCH-LM test checks for the presence of ARCH errors in the fitted residuals. The Ljung-Box

test was carried out on both residuals of returns and squared returns for each of the BRICS stock

market. A summary of the diagnostic test results is provided on Table 3.4
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Table 3.4: Summary results of the GARCH(1,1) model diagnostic tests performed on each of

the BRICS returns

Returns Diagnostic test Statistic p-value

IBOV JB 210.12 0.00

Ljung-Box(R) 12.23 0.27

Ljung-Box(R2) 6.30 0.79

ARCH-LM 6.34 0.90

RTSI JB 93.70 0.00

Ljung-Box(R) 9.99 0.44

Ljung-Box(R2) 8.42 0.59

ARCH-LM 10.98 0.53

BSE JB 94.31 0.00

Ljung-Box(R) 10.34 0.41

Ljung-Box(R2) 7.96 0.63

ARCH-LM 10.81 0.55

SSE JB 44.14 0.00

Ljung-Box(R) 27.26 0.20

Ljung-Box(R2) 4.42 0.93

ARCH-LM 5.31 0.95

JSE JB 103.62 0.00

Ljung-Box(R) 8.32 0.60

Ljung-Box(R2) 3.90 0.95

ARCH-LM 3.74 0.99

It is clear from Table 3.4 that none of the BRICS returns posses any ARCH errors nor serial corre-

lation in the fitted residuals since all the test statistic values of the ARCH-LM and the Ljung-Box

tests are significant at 5% level of significance. The JB test on the other hand rejects the property

of normality on the fitted residuals of all the BRICS returns. Many studies however, have shown that

the application of the JB test on conditional heteroscedastic models is weak. Therefore, a graphical

assessment on normality was carried out on each of the fitted residuals of the BRICS stock return

series using a normal Q-Q plots as shown on Figure 3.5.
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(a) IBOV (b) RTSI

(c) BSE (d) SSE

(e) JSE

Figure 3.5: Q-Q plots of the GARCH(1,1) fitted residuals for (a) Brazil (b) Russia (c) India (d)

China and (e) South Africa stock returns under the Skewed Student-t distribution assumption

The Q-Q plots on Figure 3.5 appear to support normally distributed residuals with a few outliers

since most of the points lie on the normal line or very close to it. Thus, the GARCH(1,1) model

under the skew student-t distribution appears to be an adequate model for each of the BRICS

returns.

3.6.3.3 Forecasting

Having passed the diagnostic tests, the GARCH(1,1) model appeared to be sufficient enough to be

used for forecasting the volatility of each of the BRICS returns. The volatility of each return series

was forecasted 4 weeks ahead that is to say, one month ahead. Table 3.5 presents a summary of
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the mean and volatility forecasts for each of the BRICS return series where CI on Table 3.5 stands

for confidence intervals.

Table 3.5: A summary representation of the Mean and volatility forecasts for the BRICS weekly

return series

Return Time

(weeks)

Mean

forecast

Mean error Volatility

forecast

95%Lower

CI

95% Upper

CI

IBOV 1 0.00011 0.0309 0.03090 -0.06700 0.05539

2 0.00011 0.0309 0.03091 -0.06700 0.05541

3 0.00011 0.0309 0.03093 -0.06703 0.05543

4 0.00011 0.0309 0.03093 -0.06705 0.05545

RTSI 1 0.00374 0.0329 0.03293 -0.06712 0.06382

2 0.00374 0.0341 0.03407 -0.06958 0.06590

3 0.00374 0.0351 0.03513 -0.07186 0.06783

4 0.00374 0.0361 0.03610 -0.07396 0.06961

BSE 1 0.00122 0.0235 0.02347 -0.04957 0.04326

2 0.00122 0.0242 0.02421 -0.05118 0.04497

3 0.00122 0.0249 0.02489 -0.05265 0.04620

4 0.00122 0.0255 0.02551 -0.05399 0.04732

SSE 1 -0.00041 0.0285 0.02847 -0.05598 0.05775

2 -0.00041 0.0286 0.02858 -0.05620 0.05798

3 -0.00041 0.0287 0.02869 -0.05642 0.05820

4 -0.00041 0.0288 0.02880 -0.05663 0.05842

JSE 1 0.0010 0.0182 0.01824 -0.03298 0.03298

2 0.0010 0.0186 0.01865 -0.04004 0.03368

3 0.0010 0.0190 0.01899 -0.04080 0.03429

4 0.0010 0.0193 0.01929 -0.04147 0.03482

A plot of the predicted volatilities for each of the BRICS markets with a 95% confidence interval

is presented on Figure 3.6. The future volatilities of IBOV, BSE, JSE and RTSI stock markets are

observed to decline in the first few weeks of Jan but increase towards the end of the month. The

volatility of RTSI on the other hand, increases in the first few weeks of Jan but follows a steady

trend towards the end of the month.
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(a) IBOV (b) RTSI

(c) BSE (d) SSE

(e) JSE

Figure 3.6: GARCH(1,1) four weeks ahead volatility forecast plots for (a) Brazil (b) Russia (c)

India (d) China and (e) South Africa stock returns

3.7 Summary

This chapter presented a discussion on the GARCH(p,q) model theory and a summary application

using a GARCH(1,1) model on the BRICS weekly returns. Three distributions namely: the Gaussian

normal, the student-t and the skew student-t distributions were fitted on the GARCH(1,1) model in
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order to find an adequate GARCH model for each of the BRICS return series. Based on the Q-Q

plots and the AIC values, the GARCH(1,1) model under the Skew Student-t distribution appeared

to be the best model among the three distributions and this was justified through diagnostic tests

and graphical assessments that were performed on the model.

From the estimation of the GARCH(1,1) model, volatility was observed to be persistent in all of the

BRICS stock returns. Moreover, SSE appeared to have the highest volatility persistence followed

by RTSI with JSE having the lowest volatility persistence. High volatility levels increase the risk of

a stock market which in turn corresponds to a higher probability of a declining market. High levels

of volatility have direct impacts on portfolios. This aspect raises the investors’ concern on their

portfolios worth as they watch them move aggressively and decline in value.

The issue of non-normality of stock returns has crucial impacts in finance especially in risk manage-

ment fields. Assuming normality of returns in risk calculations may lead to underestimation of risk

and poor investment choices (Greenspan, 1997). The use of non-normal methods is obscure but

when used correctly leads to proper outcomes.

This chapter emphasized on the use of a univariate GARCH model in modeling the volatility of

each of the BRICS markets. The next chapter focuses on multivariate volatility models and their

applications on the BRICS returns.
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Chapter 4

Multivariate GARCH Modeling of

BRICS stock retuns

4.1 Introduction

In this chapter we extend univariate volatility modeling to a multivariate approach and discuss

some methods for modeling the dynamic relations in the volatility processes of the BRICS financial

markets. The first section gives a general description of multivariate models, the second section

discusses the exponentially weighted moving average (EWMA) model, the third section discusses

the dynamic conditional correlation (DCC) model, the fourth section presents a summary of the

models’ application on the BRICS stock markets and the last section gives a summary of the whole

chapter.

4.2 Multivariate GARCH models

Modeling the co-movement of multiple return series is of great significance as most applications

deal with portfolios where it is essential to understand the dynamic relations among asset returns

in order to make proper decisions on their allocations. The most important part in multivariate

volatility modeling is the covariance matrix that is, the conditional covariance matrix of multiple
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asset returns. The covariance matrix is essential for applications such as portfolio selection, asset

allocation, contagion and risk management. However, multivariate volatility models face the obstacle

of dimensionality due to excessive number of parameters in the GARCH model leading to difficulties

in parameter estimation. This in turn limits the number of asset returns to be included in the

model for easy estimation. Thus, many multivariate volatility models encounter complexities in real

application despite their appealing structure. In this chapter we shall illustrate two of the multivariate

volatility models that are useful and manageable in empirical application.

Consider a multivariate return series rt of dimension N × 1 such that, rt = (r1t, . . . , rNt)
′. Given

a vector of innovations εt = (ε1t, . . . , εNt)
′ rt can be written as

rt = µt + εt, (4.1)

where µt = E[rt|F t−1] is the conditional expectation of rt provided the past information F t−1 is

known and εt = H
1
2
t ξt where ξt is an N × 1 sequence of independent and identically distributed

variables with mean zero and an identity covariance matrix IN . H
1
2
t is an N ×N positive definite

covariance matrix whereby

H t = Cov[rt|F t−1] =


σ11,t · · · σ1N,t

...
. . .

...

σN1,t · · · σNN,t

 ,

the diagonal element σii,t is the variance of the ith return and the (i, j)th element is the covariance

between rit and rjt.

Definition 4 (Second-order stationarity). The process rt is said to be second-order stationary if

i E[r2it] <∞, ∀t ∈ Z, i = 1, . . . , N ,

ii E[rt] = µ, ∀t ∈ Z,

iii Cov[rt, rt+h] = E[(rt − µ)(rt+h − µ)′] = Γ(h), ∀t, h ∈ Z.

The mean function is an N -dimensional vector of unconditional expectations of rt, the function

Γ(h) is a covariance matrix of dimension N × N . At lag zero, Γr(0) = V ar(rt) is a symmetric

matrix.
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4.2.1 Exponentially Weighted Moving Average (EWMA) model

The EWMA model was popularized by Morgan (1995) whereby more emphasis is placed on the

most recent returns using a decaying factor λ. The underlying principle behind the concept is that

recent price fluctuations are better predictors of future movements so they should be given greater

consideration.

Definition 5. The sample covariance matrix of (rt)t∈Z from equation (4.1) is given by

Σ =
1

T − 1

T∑
t=1

(rt − µ)(rt − µ)′,

where µ is an N × 1 of sample mean vector. In this expression the same weight ( 1
T−1) is applied

to each term in the summation. To allow for time varying covariance matrix and to emphasize on

more weight added to the most recent innovations, the covariance matrix is estimated by

Σ̂ =
1− λ

1− λt−1
t−1∑
i=1

λi−1εt−iε
′
t−i, (4.2)

where 0 < λ < 1 and the weights (1−λ)λi−1

1−λt−1 sum to one. When t is very large such that λt−1 ≈ 0,

then equation (4.2) can be rewritten as

Σ̂ = (1− λ)εt−1ε
′
t−1 + λΣ̂t−1 (4.3)

with individual elements given by

σ̂t,ij = λσ̂t−1,ij + (1− λ)εt−1,iεt−1,j, i, j = 1, . . . , N. (4.4)

Equation (4.3) is referred to as the exponentially weighted moving average (EWMA) model. Given

λ and an initial estimate Σ1, the time varying exponential weighted covariance matrices can be

computed from equation (4.3). Correlations from the EWMA model can be obtained by

ρt,ij =
λσt−1,ij + (1− λ)rt−1,i, rt−1,j√

[λσ2
t−1,i + (1− λ)r2t−1,i][λσ

2
t−1,j + (1− λ)r2t−1,j]

, (4.5)

where σ2
t,i and σ2

t,j are the variances for the individual series rt,i and rt,j respectively. The EWMA

model is widely used in industry especially for portfolio value at risk (VaR) and as an industry

standard for market risk. The main advantage of the EWMA model is that it is tremendously easy
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to estimate volatility because there are no parameters involved in estimation. However, the limitation

of the EWMA model is its restrictiveness due to the simplicity of its structure and the assumption

of non-estimated λ. Moreover, the fact that λ is identical to all assets and time periods is not

realistic. However, one can estimate λ using a quasi-maximum likelihood approach by assuming εt

in equation (4.3) follows a multivariate normal distribution with zero mean and Σt = Covt−1(εt) as

the covariance of εt conditional on the past (Danielsson, 2011). The log likelihood function of the

time series data can be written as

logL = −NT
2
log(2π)− 1

2

T∑
t=1

|Σt| −
1

2

T∑
t=1

(rt − µ)′Σ−1t (rt − µ).

Thus, given the initial value Σ1, the mean vector µ and λ from can be treated as unknown and

estimated using a quasi-maximum likelihood estimation method.

4.2.2 Dynamic Conditional Correlation (DCC) model

The model in this class was developed on the idea of modeling the conditional variances and correla-

tions instead of directly modeling the conditional covariance matrix. The DCC model was suggested

by Engle (2002) and Tse and Tsui (2002) as an extension of the constant conditional correlation

(CCC) model by Bollerslev (1990). The DCC model was developed to attempt to overcome the

shortcoming of the CCC model that is, the assumption of constant correlation which did not seem

realistic in real application.

Definition 6. The DCC model by Tse and Tsui (2002) is described as

H t = DtP tDt (4.6)

where Dt = diag(hii,t)
1
2 is an N × N diagonal matrix, hii can be expressed as any univariate

GARCH model and

P t = (1− θ1 − θ2)P + θ1P t−1 + θ2Ψt−1. (4.7)

θ1 and θ2 from equation (4.7) are assumed to be positive scalars with θ1 + θ2 < 1, P = [ρij] is

a time-invariant N × N positive definite correlation matrix with unit diagonal elements and Ψt−1

is an N ×N correlation matrix of the standardized residuals (ηt−1, . . . , ηt−K) for a prespecified K.
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The (i, j)th element of Ψt−1 is given as

Ψij,t−1 =

∑K
h=1 ηi,t−hηj,t−h√

(
∑K

h=1 η
2
i,t−h)(

∑K
h=1 η

2
j,t−h)

, 1 ≤ i < j ≤ N (4.8)

where ηit =
εij√
hii,t

for i = 1, . . . , N .

Definition 7. The DCC model by Engle (2002) is described as

DtP tDt, (4.9)

where P t is the conditional correlation matrix of the standardized innovations ηt such that ηt =

D
− 1

2
t εt ∼ N(0,P t). The conditional correlation matrix P t is described as

P t = (diag(St))
− 1

2St(diag(St))
− 1

2 , (4.10)

where St is an N ×N symmetric positive definite correlation matrix defined by

St = (1− θ1 − θ2)S̄ + θ1ηt−1η
′
t−1 + θ2St−1. (4.11)

As in equation (4.7) θ1 and θ2 are positive scalars satisfying the constraint θ1 + θ2 < 1. S̄ is an

N ×N unconditional covariance matrix estimated by

S̄ =
1

T

T∑
t=1

ηtη
′
t.

Individual correlation elements of P t are given as ρij,t =
sij,t√
sii,tsjj,t

, where si,t are elements of the

matrix St. Furthermore, St has to be positive definite to ensure P t is positive definite.

The DCC model has an advantage of being estimated consistently using a two-step estimation

technique. Engle and Sheppard (2001) show that the log-likelihood can be broken into two parts:

one is for parameters accounting for univariate volatilities or univariate GARCH parameters and

the other part is for parameters determining the correlations. This is an advantage because large

covariance matrices can be estimated reliably with this approach without the need of too much

computational power.

The limitation of the DCC model is that the parameters θ1 and θ2 are constants suggesting that the

conditional correlations of all returns are determined by identical dynamics an assumption which is

often idealistic. However, θ1 and θ2 are essential to guarantee P t is positive definite at all times

through sufficient constraints on the parameters.
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4.2.2.1 DCC Model parameter estimation

In this section we describe the two step estimation approach of the DCC model parameters using a

quasi-maximum likelihood estimation. Under the assumption of multivariate Gaussian distribution

of the innovations εt the likelihood function can then be expressed as

L(θ) =
T∏
t=1

1√
2π|H t|

exp(−1

2
ε′tH

−1
t εt),

where T is the time period used to estimate the model, θ = (ω1, α11, . . . , α1p, β11, . . . , β1q, ω2, . . . , βNq, ρ12, . . . , ρN−1,N , θ1, θ2)

is a vector of the DCC model parameters with p and q representing the order of the GARCH(p,q)

model. The log-likelihood function is given as

log(L(θ)) = −1

2

T∑
t=1

(
Nlog(2π) + log(|H t|) + ε′tH

−1
t εt

)

= −1

2

T∑
t=1

(
Nlog(2π) + log(|DtP tDt|) + ε′tD

−1
t P

−1
t D

−1
t εt

)

= −1

2

T∑
t=1

(
Nlog(2π) + 2log|Dt|+ log|P t|+ ε′tD−1t P−1t D−1t εt

)
(4.12)

which can then be decomposed into two parts namely the volatility component which is the sum of

the univariate GARCH likelihoods and the correlation component. The likelihood in the first step

is the outcome of replacing P t with the identity matrix IN which results in the quasi-likelihood

function while in the second step, the correlation parameters are estimated using the correctly

specified log-likelihood function given the volatility parameters. The volatility component is given

by

log(Lv(σ)) = −1

2

T∑
t=1

(
Nlog(2π) + 2log|Dt|+ log|IN |+ ε′tD−1t IND−1t εt

)

= −1

2

T∑
t=1

(
Nlog(2π) + 2log|Dt|+ ε′tD−1t IND−1t εt

)

= −1

2

T∑
t=1

(
Nlog(2π) +

N∑
i=1

[
log(hiit) +

ε2iit
hiit

])

=
N∑
i=1

(
− 1

2

T∑
t=1

[
log(hiit) +

ε2iit
hiit

]
+ c

)
,
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where σ is a vector of parameters for the univariate GARCH component for each asset i = 1 . . . , N

and c is a constant. From this step the log likelihood is maximized with respect to σ to obtain the

volatility estimates (σ∗). Following the first step, only the correlation parameters are unknown to

the second step thus, the quasi-likelihood for the correlation component is expressed as

log(Lc(ρ)) = −1

2

T∑
t=1

(
Nlog(2π) + 2log|Dt|+ log|P t|+ ε′tD−1t P−1t D−1t εt

)

= −1

2

T∑
t=1

(
Nlog(2π) + 2log|Dt|+ log|P t|+ η′tP−1t ηt

)
,

where ρ denotes a vector of parameters for the correlation component. Since Dt is constant when

conditioning on the parameters from the first step, we eliminate the constant terms and maximize

log(Lc(ρ
∗|σ∗)) = −1

2

T∑
t=1

(
log|P t|+ η′tP−1t ηt

)
.

In each step the constraints on θ1 and θ2 must be satisfied throughout the iterations otherwise

P t may become an explosive sequence. The estimates under this procedure are consistent but not

fully efficient because σ̂∗ and ρ̂∗ are limited information estimators (Engle and Sheppard, 2001).

Bauwens et al. (2006) suggest that, the use of one iteration of Newton-Raphson algorithim applied

to equation (4.12) will yield an estimator that is asymptotically efficient.

4.2.2.2 DCC model diagnostics

To determine the adequacy of the DCC model in its estimation performance and statistical inference

we use the Ljung-Box test for serial correlations and the Lagrange Multiplier (LM) test for constant

correlations. In both tests, the standardized residuals are used. The Ljung-Box test in this case is

a univariate one and is similar to the one described in Chapter 3. A univariate Ljung-Box test is

preferred and applied on the standardized residuals of each fitted variable because its multivariate

version for the squared standardized residuals is not sensitive to misspecification of the conditional

correlation structure (Matteson and Ruppert, 2011).

Bauwens et al. (2006) argue that, Lagrange multiplier tests are usually more powerful compared to

portmanteau tests even though they can be asymptotically equivalent under certain circumstances.

Engle and Kroner (1995) and Bollerslev et al. (1988) among others have developed several LM tests
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for multivariate GARCH models. However, we are going to use the LM test for constant correlations

by Engle and Sheppard (2001). Let ξ̂t = P̂
− 1

2

t D̂
−1
t ε̂t denote the N × 1 vector of standardized

residuals. Following Engle and Sheppard (2001) the LM test is based on the following regression

vechs(ξ̂tξ̂t
′
− IN) = β∗0 + β∗1vech

s(ξ̂t−1ξ̂
′
t−1 − IN) + . . .+ β∗pvech

s(ξ̂t−pξ̂
′
t−p − IN) + η∗t , (4.13)

where vechs is an operator that stacks a matrix as a column but it only chooses the elements above

the diagonal. The null hypothesis under this test is H0 : P t = P̄ tested against the alternative

H1 : vech(P ) = vech(P̄ ) + β1 ∗ vech(P t−1) + · · · + βpvech(P t−p) where P̄ implies constant

correlation. Under the null hypothesis, the coefficients of equation (4.13) are equivalent to zero.

The test can be carried out as δ̂X′Xδ̂
′

σ̂2 which is asymptotically χ2
p+1, where δ̂ are the estimated

regression parameters and X is a matrix of containing the regressors (Engle and Sheppard, 2001).

4.3 Application

4.3.1 Introduction

This section provides a summary application of EWMA and DCC models on the BRICS weekly

returns from 2000 to 2012. The first section gives a summary of multivariate volatility estimation of

the BRICS markets using the EWMA model, the second section provides a summary of multivariate

volatility estimation of the BRICS markets using the DCC model, the third section presents a

summary of the estimation comparison between EWMA and DCC models and the last section gives

a summary of the chapter.

4.3.2 EWMA application results

Since the formation of the model by Morgan (1995) it has been common practice to assume λ = 0.94

for daily data and λ = 0.97 for monthly data. However, λ is a constant therefore, one may choose

any λ close to 1 to ensure that more weight is emphasized on the most recent returns. On the other

hand, if λ → 0 then more weight is given to older information thus, equation (4.3) will produce

poor predictions of the future price movements. In this section we use λ = 0.94 to estimate the
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volatility of the BRICS weekly returns. Based on the recursive estimation of the covariance matrix

from equation (4.3) the volatilities of the BRICS returns were estimated and plotted on Figure 4.1.

(a) BSE (b) IBOV

(c) JSE (d) RTSI

(e) SSE

Figure 4.1: EWMA estimated volatility plots for (a) India (b) Brazil (c) South Africa (d) Russia

and (e) China stock returns.

From Figure 4.1 the volatility estimates of the BRICS returns between 2003 to 2006 appear to be

moving in a rather steady manner. An obvious sharp rise in volatility is observed in all the BRICS

markets between 2008 to 2009 a pattern which could be explained by the 2008 global recession

which caused a lot of instabilities within these markets as reported by O’Neill et al. (2009). From

2009 to 2010 a sudden drop off in volatility in all markets is observed indicating a rise in the stock

markets performance during this period. Towards 2012 the volatility of the BRICS stock returns

show low fluctuations indicating a stable recovery from the global crisis.
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From the estimation of the covariance matrix Σt, correlations between the BRICS financial returns

were also estimated and plotted on Figure 4.2

Figure 4.2: Estimated correlation plots for the BRICS stock returns using an EWMA model

where BSE is the Indian stock market, IBOV is the Brazil stock market, JSE represents the

South Africa stock market, RTSI represents the Russia stock market and SSE represents the

China stock market.

Looking at Figure 4.2 the estimated correlation plots show a more non stable pattern although, the

moving pattern appears to be centralized around an upward trend correlation. For most of the plots

a decline in correlation between the markets is observed between 2008 to 2009. However, the degree

of decline in correlation differs for instance the correlation between RTSI and JSE appears to be

approximately 0.4 between 2008 to 2009 whereas the correlation between JSE and SSE appears to

be approximately −0.2. Again within the same period of financial turmoil, the correlation between

BSE and IBOV appears to be is approximately 0.39 whereas the correlation between BSE and RTSI

is approximately 0 implying absence of any correlation between the Russian and Indian stock market

during that time. This is an interesting result because with a shrewd approach the correlation

between two assets during a shock is expected to increase simply because the majority of asset

prices are moving in the same direction. Thus, from Figure 4.2 it seems that the global financial
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turmoil affected the correlations among the BRICS markets to a point of driving the correlations

down to negative values for some markets implying opposite movements of these assets during the

crisis.

4.3.3 DCC application results

In this section we apply the theoretical frame work of the DCC methodology on the BRICS weekly

returns and present the results of the model estimation together with the diagnostic test results of

the fitted model using the Ljung-Box and Langrange multiplier tests.

4.3.3.1 Parameter estimation

Table 4.1 gives a summary of the DCC model parameter estimates. The univariate GARCH(1,1)

parameter estimates for each of the BRICS returns represent the diagonal elements of Dt as de-

fined in equations (4.6) and (4.9) whereas, θ1 and θ2 represent the DCC conditional correlation

parameters. All the parameter estimates appear to be significantly different from zero at 5% level of

significance which implies that they all have a significant effect. The significance of the univariate

GARCH parameters α1 and β1 imply that the conditional volatility of the BRICS markets is highly

persistent and that the stock markets are reacting to different shocks received from other markets.

Moreover, the sum of the estimates (α̂1 + β̂1) is less than one for all the BRICS stock returns with

SSE having the highest value of 0.982, followed by RTSI and BSE with the value 0.958. The results

suggest that China has the highest volatility persistence among the BRICS stock returns. The DCC

correlation parameters on the other hand, are significantly different from zero implying that the cor-

relations between the BRICS markets is dynamic. In addition, the correlation parameter estimates

show adherence to the restriction imposed on them that is, θ̂1 + θ̂2 = 0.952 < 1 suggesting that

the estimated correlation matrix P t is positive definite.
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Table 4.1: A summary table of the DCC model parameter estimates for the BRICS stock

returns

Market Parameter Estimate SE p-value

BSE α0 0.00005 0.000025 0.037

α1 0.100 0.037 0.007

β1 0.856 0.048 0.000

IBOV α0 0.00006 0.000037 0.043

α1 0.063 0.023 0.006

β1 0.895 0.038 0.000

JSE α0 0.00003 0.000020 0.027

α1 0.117 0.035 0.001

β1 0.844 0.049 0.000

RTSI α0 0.00006 0.000059 0.034

α1 0.139 0.047 0.003

β1 0.819 0.055 0.000

SSE α0 0.00002 0.000012 0.031

α1 0.055 0.020 0.005

β1 0.927 0.024 0.000

θ1 0.014 0.002 0.000

θ2 0.983 0.003 0.000

A plot of the estimated conditional correlations by the DCC model is presented on Figure 4.3. From

the figure 4.3 a general impression is that most markets show a decline in correlation at the beginning

of the estimated period especially form 2000 to 2003 and an upward trend with few correlations

afterwards. With such trends it appears that portfolio diversification was higher between 2003 to

2004 compared to the period after, as the correlations in the former period appear to be lower

than those in the latter period. Looking at Figure 4.2 the correlation estimates for EWMA appear

to be highly exaggerated as some the correlations drop down to negative values. For instance,

looking at the correlation plots for JSE and SSE on both figures between the period of 2007 to

2009, the estimates from Figure 4.2 show an approximate decline in correlation from 0.32 to 0.1

while on Figure 4.3 the decline in correlation during the same period is approximately from 0.6 to

−0.2 suggesting an opposite movement of the two markets under the EWMA estimation during the
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financial catastrophe while the movements of the same markets under the DCC estimation appear

to be moving in the same direction during the crisis.

Figure 4.3: Estimated conditional correlation plots for the BRICS stock returns using a DCC

model where BSE is the Indian stock market, IBOV is the Brazil stock market, JSE represents

the South Africa stock market, RTSI represents the Russia stock market and SSE represents

the China stock market.

4.3.3.2 Diagnostic tests

Having the parameters estimated, we then investigated the adequacy of the model using the stan-

dardized residuals. To test for serial correlation we apply the univariate Ljung-Box test on each of the

BRICS standardized residuals. A summary table of the Ljung-Box statistic is presented on Table 4.2.

From Table 4.2 we accept the null hypothesis of no serial correlation since all the p-values appear to

be > 0.05. To test for constant correlation we use the LM test by Engle and Sheppard (2001). The

results of the LM test are summarized on Table 4.3. From Table 4.3 the residuals appear to have

p− values < 0.05 suggesting the rejection of the null hypothesis of constant correlation. Therefore

this confirms that the DCC model is a good fit and that correlations among the BRICS markets

evolve over time.
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Table 4.2: A summary Table for the DCC model diagnostics under the Ljung-Box test

Stock return Q-statistic p-value

BSE 34.28 0.50

IBOV 49.43 0.05

JSE 36.62 0.39

RTSI 42.43 0.18

SSE 114.29 0.06

Table 4.3: A summary Table for the DCC model diagnostics under the multivariate LM test

Lags LM-

Statistic

p-value

10 39.22 < 0.001

20 51.23 < 0.001

30 6.22 < 0.001

40 82.48 < 0.001

4.3.4 DCC and EWMA estimation comparison

Both EWMA and DCC models are capable of estimating the correlations of the BRICS markets

however, we are interested to find out which model outperforms the other in estimation. Since the

two models are not nested a likelihood ratio test approach would not be very informative in this

case therefore, we are simply going to compare the plots of the estimated correlations by the two

models using JSE and SSE markets as examples as shown on Figure 4.4.
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Figure 4.4: A plot of the Estimated correlations for South Africa (JSE) and China (SSE) stock

markets using EWMA and DCC models.

From Figure 4.4 the correlation estimates for DCC appear to be stable with low fluctuations whereas

the correlation estimates for EWMA seem to be more volatile which is not surprising since the

correlations by the EWMA model are modeled in simple and direct manner as shown in equation

(4.5). Looking at the recession period between 2008 and 2009 on Figure 4.4, the correlation

estimates for the EWMA appear to be overestimated to a negative value while those for the DCC

drop down but with a positive correlation indicating a high probability of portfolio diversification

with minimal risk in expected asset returns from EWMA correlation estimates compared to the

DCC estimates. From this graphical analysis, the DCC model appears to outperform the EWMA

model in estimation performance. Danielsson (2011) and Matteson and Ruppert (2011) among

other researchers obtained similar results when they compared the estimation performance of the

EWMA and DCC models.
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4.4 Summary

In this chapter we presented a discussion on multivariate volatility models with a theoretical approach

on the EWMA and DCC models together with their empirical applications on the BRICS weekly

returns. With both models, the conditional volatility and correlations of the BRICS returns were

estimated. Both models portrayed persistence of volatility in all of the BRICS returns with China

showing the highest volatility persistence whereas the Indian market appears to be the least volatile.

Unlike the univariate GARCH results, the JSE in this case does not seem to be the least volatile.

This could be attributed by its interaction with the other markets because a multivariate model

can capture simultaneously the interaction among multiple time series. The hypothesis of constant

correlation among the BRICS markets is rejected as the correlations among the BRICS returns appear

to vary with time. Diagnostic tests were carried out on the DCC to check for the adequacy of the

model. The results of the tests showed that the DCC model was sufficient enough to estimate

the volatility and correlations of the BRICS returns. Both EWMA and DCC models played an

important role in the estimation of volatility and correlations among the BRICS markets however,

based on graphical analysis of correlation estimations, the DCC portrayed better correlation estimates

compared to the EWMA model as the latter produced exaggerated estimates with very high or low

correlation swings. Therefore, in this chapter we conclude that the DCC model outperforms the

EWMA model in estimation.
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Chapter 5

Discussion and Conclusion

The main focus of this study was to assess the inter-relations and dynamic linkages among the BRICS

financial markets using multivariate time series models. It is well known that financial volatilities

move closely together across financial markets and assets (Orskaug, 2009). An appreciate of the

co-movements and levels of interdependencies among financial markets is thus of great importance

especially for stakeholders and investors, such information assist in managing risk and making viable

decisions regarding portfolios. In this thesis, we used a VAR, univariate and multivariate GARCH

models to investigate the dynamic structure, volatility and correlations among the BRICS stock

returns using weekly data from Jan 2000 to Dec 2012.

From the VAR model we were able to determine concurrent relationships among all the BRICS

markets together with unidirectional linear dependencies between India (BSE) and the past values

of Brazil (IBOV) and between China (SSE) and the past values of Brazil (IBOV) implying that

the Brazilian stock market has an influence on the Indian and Chinese stock markets. The linear

dependence obtained from the VAR model estimation was not surprising because of late, within the

BRIC nations, Brazil’s growth economic score was reported as the highest among the four emerging

markets with India having the lowest score (O’Neill et al., 2009). This could explain the influence

of Brazil on the two stock markets. Furthermore, we detected the presence of ARCH errors in the

BRICS return series suggesting the presence of volatility in the BRICS markets. To the best of our

knowledge, there has been very few studies, most of which are focused on the BRIC without the
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inclusion of South Africa that have previously been done on the analysis of the BRICS markets using

VAR models (see Mallick and Sousa (2009) and Ono (2011)). Furthermore, the results of these

studies are mainly focused on external factors influencing the BRIC/BRICS financial markets such

as oil prices, exchange rates and monetary policies to mention a few.

Following the ARCH error detection in the BRICS financial returns we proceeded with modeling and

forecasting the volatility of each of the BRICS markets using a univariate GARCH model. Estimates

from the univariate GARCH model revealed persistence of volatility in the BRICS returns with China

(SSE) having the highest volatility persistence followed by Russia (RTSI). These results are similar

to the study by Kasman (2009), where China had the highest volatility persistence among the BRIC

markets. However, Kasman (2009) argues that, ignoring structural breaks in a return series could

lead to overestimation of volatility persistence.

The EWMA and DCC models were both used to estimate the volatility and correlation among the

BRICS returns. Again we obtain similar results of high volatility persistence in the Chinese (SSE)

stock market from the GARCH components of the DCC model estimates. The high volatility persis-

tence in the Chinese stock market could be explained by factors such as uncertainties in the financial

policies in China or its interactions with developed markets such as the US which makes the country

prone to shock transmissions (see Kenourgios et al. (2011) and Byström et al. (2013)). Moreover,

the results from the DCC and EWMA models also revealed the presence of time-varying correlations

among the BRICS financial markets. Surprisingly, the correlation between the BRICS market pairs

appeared to be declining during the 2008 global crisis. Similar results were found by Hartman and

Sedlak (2013) whose study was focused on other markets which were the EURO and USD exchange

rates. Hartman and Sedlak (2013) however, did not provide any reasons to such ambiguity in their

results. In my opinion, this ambiguity can be attributed to the fact that the BRICS markets are

on different economic levels with different trading activities for instance, Russia is the biggest oil

producer among the BRIC nations (O’Neill et al., 2009) whereas South Africa’s largest trade is min-

erals thus, the markets tend to be decoupled during crises depending on the type of shock causing

financial instabilities in the BRICS economies.

An estimation comparison between the EWMA and DCC models was carried out to compare their

efficiency in estimating the correlations among the BRICS stock markets. The DCC model was
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found to be a better model compared to the EWMA model as the latter produced exaggerated

correlation estimates between the BRICS market pairs. Similar results were obtained by Danielsson

(2011) using IBM and Microsoft stock returns.

Modeling volatility with multivariate GARCH models is often challenging due to numerical complex-

ities that arise in estimation. Empirical applications of most multivariate GARCH models is difficult

and complex due to the curse of dimensionality. Moreover, unlike the univariate GARCH models,

the constraint for covariance stationarity is much more crucial with multivariate GARCH models

because if, the condition is violated the covariance matrix may no longer be invertible leading to

difficulties when evaluating the likelihood. Therefore, there is a great need to develop feasible mul-

tivariate GARCH models that can accommodate large numbers of assets without causing parameter

explosions during estimation.

Although we were able to capture volatility clustering among the BRICS markets, the GARCH mod-

els employed had a limitation of symmetric response to positive and negative shocks. Furthermore,

it is generally argued that a negative shock is likely to intensify the levels of volatility in a stock

return compared to a positive shock of the same magnitude thus, a symmetric GARCH model may

be incapable of capturing potential leverage effects (Brooks, 2008). For future research, we can

further extend this study to examine the leverage effects in the emerging market volatilities using

asymmetric models such as the EGARCH and GJR-GARCH models, investigate co-integration re-

lationships among the BRICS financial markets if any, and employ non stationary models such as

the vector error correction (VEC) model that can account for the long run relationships amog the

BRICS markets. Furthermore, in modeling the dynamic correlations, we could apply the orthogonal

GARCH (OGARCH) model that transforms correlated returns into uncorrelated portfolios and uses

a GARCH to forecast the volatilities of each uncorrelated portfolio individually. In addition to that,

with an OGARCH model it is possible to build a covariance matrix for large numbers of assets.
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Appendix A

R Codes for the Vector Autoregressive

(VAR), Univariate and Multivariate

GARCH Models

A.1 R Codes for the VAR(1) Model

library(vars)

###############################

#selecting an appropriate VAR(p)

###############################

VARselect(data,lag.max=6,type="const")

######################

#Fitting a VAR(1)

######################

data1=data[,c("IBOV","RTSI","BSE","SSE","JSE")]

fit<-VAR(data1,p=1,type="const")
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summary(fit)

############################

#Diagnostic tests for VAR(1)

############################

#portmanteau test

ser=serial.test(fit,lags.pt=6,type="PT.asymptotic")

#Jarque-bera test

norm=normality.test(fit, multivariate.only = TRUE)

#Multivariate ARCH-LM test

arch=arch.test(fit,lags.multi=6,multivariate.only=TRUE)

A.2 R codes for the univariate GARCH(1,1) model

library(rugarch)

#####################################

#GARCH(1,1) assuming a t distribution

#####################################

garch11.t.spec = ugarchspec(variance.model = list(garchOrder=c(1,1)),

mean.model = list(armaOrder=c(0,0)),

distribution.model = "sstd")

fit1 = ugarchfit(data = IBOV[,1], spec = garch11.t.spec)

plot(fit1)

fit2 = ugarchfit(data = RTSI[,1], spec = garch11.t.spec)

plot(fit2)

fit3 = ugarchfit(data = BSE[,1], spec = garch11.t.spec)

80



plot(fit3)

fit4 = ugarchfit(data = SSE[,1], spec = garch11.t.spec)

plot(fit4)

fit5 = ugarchfit (data= JSE[,1], spec= garch11.t.spec)

plot(fit5)

#####################################

#Forecasting with the GARCH(1,1) model

#####################################

forc1 = ugarchforecast(fit1, n.ahead=75,n.roll=0)

plot(forc1)

forc2 = ugarchforecast(fit2, n.ahead=4,n.roll=0)

plot(forc2)

forc3 = ugarchforecast(fit3, n.ahead=4,n.roll=0)

plot(forc3)

forc4 = ugarchforecast(fit4, n.ahead=4,n.roll=0)

plot(forc4)

forc5 = ugarchforecast(fit5, n.ahead=4,n.roll=0)

plot(forc5)

A.3 R codes for the EWMA model

t=length(data[,1])

lambda=0.94

#creating a matrix that holds the covariance matrix for each t

ewma=matrix(nrow=t,ncol=15)

#intial covariance matrix

s=cov(data)

ewma[1,]=c(s)[c(1,7,13,19,25,2,3,4,5,8,9,10,14,15,20)]

#loop through the sample data
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for(i in 2:t){

temp=as.numeric(data[i,])

s=lambda*s+(1-lambda)*temp%*%t(temp)

ewma[i,]=c(s)[c(1,7,13,19,25,2,3,4,5,8,9,10,14,15,20)]

}

########################

#extracting volatilities

#########################

volat=ewma[,1:5]

########################

#extracting correlations

########################

#RTSI and SSE

ewmarho1=ewma[,15]/sqrt(ewma[,4]*ewma[,5])

#JSE and SSE

ewmarho=ewma[,14]/sqrt(ewma[,3]*ewma[,5])

#JSE and RTSI

ewmarho2=ewma[,13]/sqrt(ewma[,3]*ewma[,4])

#IBOV and SSE

ewmarho3=ewma[,12]/sqrt(ewma[,2]*ewma[,5])

#IBOV and RTSI

ewmarho4=ewma[,11]/sqrt(ewma[,2]*ewma[,4])

#IBOV and JSE

ewmarho5=ewma[,10]/sqrt(ewma[,1]*ewma[,3])

#BSE and SSE

ewmarho6=ewma[,9]/sqrt(ewma[,1]*ewma[,5])

#BSE and RTSI
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ewmarho7=ewma[,8]/sqrt(ewma[,1]*ewma[,4])

#BSE and SSE

ewmarho8=ewma[,7]/sqrt(ewma[,1]*ewma[,3])

#BSE and IBOV

ewmarho9=ewma[,6]/sqrt(ewma[,1]*ewma[,2])

A.4 R codes for the DCC model

library(ccgarch)

#Univariate GARCH(1,1)specifications for each series

garch11.spec = ugarchspec(mean.model = list(armaOrder = c(0,0)),

variance.model = list(garchOrder = c(1,1),model = "sGARCH"),

distribution.model = "sstd")

#dcc specification - GARCH(1,1) for conditional correlations

dcc.garch11.spec = dccspec(uspec = multispec( replicate(5,garch11.spec)),

dccOrder = c(1,1),distribution = "mvnorm")

#estimating the DCC model

dcc.fit = dccfit(dcc.garch11.spec,data)

plot(dcc.fit)

#extracting correlations

dcc.fit@mfit$R

#extracting volatities

dcc.fit@mfit$H
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