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ABSTRACT 

 

Increasing population, urbanization and industrialization has put pressure on the irrigation sub-

sector to produce more yield using less water i.e. improving crop water productivity (WP). This 

can be achieved through the adoption of efficient irrigation systems such as micro-irrigation. 

Moistube irrigation (MTI) is a relatively new technology like subsurface drip irrigation (SDI) 

but with a semi-permeable membrane whose nanopores emit water in response to applied 

pressure and soil water potential. Being a new technology, there is little information regarding 

its hydraulic characteristics and soil water distribution which are necessary for its design, 

operation and management. Furthermore, the response of crops under a variety of soils and 

environmental conditions under MTI has not been covered extensively. Therefore, this study 

aimed at determining the hydraulic and clogging characteristics of MTI. The effect of soil 

texture on the soil water dynamics of MTI was also determined. Finally, the response of 

cowpea, an important but neglected African indigenous legume, to varying water regimes 

under MTI was also determined.  This study was based on the hypothesis that cowpea responds 

favourably to water regimes under MTI. The study was accomplished through laboratory, field 

experiments and agro-hydrological models. AquaCrop and HYDRUS 2D/3D were chosen for 

this study due to their reliability in predicting crop yield responses to water availability and soil 

water dynamics respectively. The laboratory experiments were conducted in soil bins to 

determine the soil water dynamics of MTI under sandy clay and loamy sand soils which were 

used to calibrate the HYDRUS 2D/3D model. The hydraulic characteristics were determined 

at a pressure of between 10 kPa and 100 kPa while the effect of suspended and dissolved solids 

was determined under a pressure of 20 kPa and 30 kPa. The field experiments consisted of 

glasshouse and tunnels to examine the response of cowpea to full and deficit irrigation of MTI 

with SDI as the control. The results were used to parameterise and validate the AquaCrop 

model. Finally, HYDRUS 2D/3D and AquaCrop were coupled to draw into the strengths of the 

individual models and used to simulate the water use of cowpea under MTI in two agro-

ecological zones in South Africa.   

 

The results showed that the discharge – pressure relationship of Moistube followed linear and 

power functions. It was also established that suspended solids had severe clogging effect than 

dissolved solids. In the soil bin experiment, simulated water contents closely matched (R2 ≥ 

0.70 and RMSE ≤ 0.045 cm3 cm-3) the observed values in all the points considered for the two 

soil textures. The model slightly under-estimated or over-estimated the soil water content with 

percent bias less than 15.6%. There was no significant difference (p > 0.05) between the soil 

water distribution in lateral and downward direction for both sandy clay loam soil and loamy 

sand. However, the soil water content upward of the Moistube placement depth was 

significantly lower (p < 0.05) than both the lateral and downward soil water contents in loamy 

sand. The soil water dynamics under MTI while incorporating the root water uptake indicated 

that there was no significant difference between the root water uptake in SDI and MTI (p > 

0.05). Water loss through drainage was significantly higher (p < 0.05) under SDI than MTI in 

loam while it was negligible in clay for both irrigation types. Drainage increased with increased 

Moistube placement depth. The interaction between the distribution of root water uptake and 



vii 

 

the soil water distribution indicated that a suitable placement depth for cowpea under MTI was 

15 cm in loam and 20 cm in clay.  

 

There were no significant differences (p > 0.05) in the yield response of cowpea between MTI 

and SDI but the latter performed better under deficit irrigation conditions. AquaCrop model 

was parameterized and tested successfully under full and deficit irrigation. The results indicated 

the model simulated the canopy cover (CC) very well with R2 ≥ 0.85, RMSE ≤ 24.5%, EF ≥ 

0.45, and d ≥ 0.87. The simulated water content closely matched the observed with R2 ≥ 0.61, 

RMSE ≤ 11.3 mm, EF ≥ 0.51, and d ≥ 0.86 indicating that the model reasonably captured the 

soil water dynamics. Generally, yield and biomass were simulated satisfactorily by the model 

with R2 of 0.84 and 0.88, and RMSE of 282 kg ha -1 and 1307 kg ha -1, respectively, during 

parameterisation. Similarly, during model testing the model performance was very good with 

R2 of 0.96 and 0.99, and RMSE of 165 kg ha -1 and 798 kg ha -1 for yield and biomass, 

respectively. The highest WP was achieved under 70% ETc (crop water requirement) and 40% 

ETc for yield and biomass, respectively.  Having successfully calibrated and tested the 

HYDRUS 2D/3D and AquaCrop models, the two were used symbiotically to simulate the water 

use of cowpea in two environments characterized by clay and sandy soils. The crop 

characteristics were obtained using AquaCrop while HYDRUS 2D/3D was used to generate 

optimum irrigation schedules and the soil water balance. Thereafter, the water use and yield of 

cowpea was determined. The average grain yield and biomass were 2600 kg ha-1 and 10000 kg 

ha-1, respectively, with the difference between the two sites being less than 5% under both SDI 

and MTI. The water use and WP varied from 315 mm to 360 mm and 0.67 to 1.02 kg m-3, 

respectively, under the two irrigation types at the two sites considered. The WP was higher 

under SDI than MTI, but the differences were less than 10%. This showed that cowpea 

responded similarly under MTI and SDI. Further research is needed on the determination of 

the clogging characteristics due to fertigation. Finally, more field experiments under other 

environmental conditions need to be carried out to validate the results of this study.  
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1. INTRODUCTION 

 

1.1 Improving Water Productivity Using Efficient Irrigation Methods 

 

Rainfall distribution is increasingly becoming unreliable due to climate change. This has 

increased the uncertainties in rainfed crop farming. Irrigation is one option of ensuring yield 

stability and therefore enhancing the food security of the people who rely on agriculture as 

primary source of their livelihoods. However, irrigation which is the largest consumer of 

freshwater withdrawals is facing competition from increased domestic and industrial demand 

(Fereres and Soriano, 2007). This calls for prudent management of irrigation water through the 

adoption of efficient irrigation systems such as trickle systems.  

 

Moistube irrigation (MTI) is a relatively new technology which operates like subsurface drip 

irrigation (SDI). Under MTI, water is emitted throughout the length of the Moistube semi-

permeable membrane (unlike emitters in drip irrigation) in response to the system pressure and 

the soil water potential soil (Yang et al., 2008;Qi, 2013;Yang, 2016). MTI is  low pressure 

technology, therefore, it does not require pumping and thus minimal energy requirements since 

even a pressure head of 2 m can yield flows of about 0.24 ℓ hr -1m-1 (Qiu et al., 2015). Another 

advantage is that it does not require specialized skills for operation (Lyu et al., 2016).  

 

The design and management of irrigation systems require information on the soil water 

distribution. Design and management aspects such as the volume of the wetted zone, spacing 

of emission devices, irrigation schedules, etc relies on the soil water dynamics (Lubana and 

Narda, 2001). Knowledge of the soil wetted volume helps in the establishment of the emitter 

spacing and the duration of irrigation when the wetted volume is within the root zone 

(Provenzano, 2007). For optimum water application to the root zone in subsurface irrigation 

systems, there is need to determine precisely the depth of placement of laterals and spacing of 

emitters to minimize percolation losses (in the case of deeper depths) or soil  evaporation in 

the case of too shallow depths (Kandelous and Šimůnek, 2010b) . Soil water dynamics under 

irrigation systems depends on factors such as soil type, initial soil moisture content, system 

characteristics, crop type, evapotranspiration  (Subbaiah, 2013), spacing, and depth of laterals 

(Kandelous and Šimůnek, 2010a).  
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Soil water dynamics under irrigation systems can be determined using field and laboratory 

experiments and simulation models. However, carrying out field measurements using variety 

of soils with variable emitter flow rates and irrigation methods to determine the soil water 

distribution is costly and onerous (Phogat et al., 2012). HYDRUS 2D/3D is a numerical model 

used for the simulation of water movement and solute transport in 2D/3D variably-saturated 

porous media (Šimůnek et al., 2006). HYDRUS 2D/3D is superior to other models because of 

its user-friendly Windows-based interface unlike the DOS-based numerical codes of other 

numerical models such as SWMS 2D and in addition it accounts for root water uptake 

(Šimůnek et al., 2008). It has been applied successfully to simulate soil water distribution under 

various types of irrigation methods including drip irrigation (Kandelous and Šimůnek, 2010a) 

and MTI (Fan et al., 2018a;Fan et al., 2018b).  

 

MTI has been applied in the production of vegetable and fruit crops in China with promising 

results in terms of yields and water use efficiency (WUE). For instance, a comparison between 

MTI and SDI in tomato production showed that the former had more or less same yield per 

unit area compared to the latter but a 13% higher WUE (Xue et al., 2013b). A similar study by 

Lyu et al. (2016) found that MTI achieved 38% water savings than drip irrigation. In an 

experiment carried out by Yao et al. (2014), Moistube irrigated navel oranges achieved the 

highest yield than those under conventional irrigation and rainfed water conditions.  

 

1.2 Cowpea: An Under-utilized Indigenous Legume  

 

Cowpea (Vigna unguiculata (L.) Walp) is one of the most important legumes which falls under 

the category of African leafy vegetable. It is the most cultivated crop in resource scarce 

countries of Africa, Asia and Central America due to its ability to withstand extremely harsh 

environmental conditions such as high temperatures, limited water and  soil fertility (Shiringani 

and Shimelis, 2011). It is mostly under-utilized in Southern African Countries like South 

Africa, unlike in West Africa where majority of the world’s cowpea is produced (DAFF, 2014). 

It is dual-purpose crop where the grains (dry and fresh) and vegetable leaves are consumed by 

humans (Badiane et al., 2004) and its stalk utilized as livestock fodder (Sprent et al., 2009). In 

most parts of tropical and subtropical Africa, cowpea is grown together with other crops such 

as millet, sorghum and maize in a mixed farming system (Padulosi, 1997;Asiwe, 2009).  
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Cowpea grain is highly nutritious with  about 24% protein content and therefore an alternative 

to animal proteins for poor households besides generating income to the producers and traders 

(Quin, 1997). This makes cowpea an  attractive option for inclusion in cropping programmes 

aimed at addressing food and nutrition problems in Sub-Saharan Africa (Chivenge et al., 2015). 

Cowpea can also be used as a medicinal plant where the leaves help in inhibiting bacterial and 

fungal growth (Kritzinger et al., 2005).  

 

Water is a limiting factor in cowpea production especially in water scarce regions like South 

Africa. Although cowpea is considered a drought tolerant crop, insufficient soil moisture at 

critical growth stages such as reproduction phase is detrimental to its growth and yield response 

(Peksen, 2007;Ahmed and Suliman, 2010). Therefore, an adequate and uniformly distributed 

water should be provided across the crop growth stages to prevent yield reduction or crop 

failure. Irrigation would help in the expansion of cowpea to other areas and thus contribute to 

the improvement of the livelihoods of rural households.  

 

1.3 Modelling as a Tool for Improving Agricultural Water Management  

 

The assessment of yield response to water can be achieved by using field or crop models. 

AquaCrop is one such model developed by Food and Agriculture Organization (FAO) of the 

United Nations to help in assessing the response of crops to environmental and farm 

management practices and therefore, improvement in the WP in rainfed and irrigated 

agriculture (Raes et al., 2009). It has been applied in assessing the response of various crops to 

water (Vanuytrecht et al., 2014). Although the model has been applied in major crops, only 

few studies exist on its use in under-utilized crops such as bambara groundnut, sweet potato, 

quinoa, taro and teff (Geerts et al., 2009;Araya et al., 2010;Karunaratne et al., 2011;Mabhaudhi 

et al., 2014a;Rankine et al., 2015). To the best of available knowledge, AquaCrop has not been 

parameterized for cowpea.    

 

Most hydrological models that are used in agriculture focus primarily on the soil physical 

processes and simplify the processes of transpiration, root water uptake and crop growth while 

crop models, on the other hand, include detailed crop development processes but are inadequate 

in describing root zone processes (Vereecken et al., 2016). Complex crop and hydrological 

models require detailed or many input parameters which may not be available or are expensive 
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to collect. On the other hand, simple and user-friendly models have limitations due to 

simplification of processes.  Therefore, no single model can simulate satisfactorily all the 

outputs required for decision making in agricultural water management. Hence, it is important 

to integrate two or more models in such a way as to maximize and minimize on their individual 

strengths and weaknesses, respectively. 

 

1.4 Research Objectives  

 

Being a new technology, the information on the hydraulic and clogging characteristics which 

are important parameters in design and operation of irrigation systems is scanty. Also, there is 

little information on the soil water distribution under MTI for a variety of soils. Although some 

studies on the performance of MTI on the production of vegetables and fruits have been carried 

out, information on other crops under a variety of environmental conditions is unavailable. 

Therefore, the objectives of this study were; 

(a) To assess discharge characteristics of MTI under variable operating pressure and water 

quality scenarios 

(b) To determine the soil water distribution under MTI with respect to clay and sandy soils 

(c) To evaluate the effect of soil water distribution on MTI system design for cowpea  

(d) To determine the yield and water productivity of cowpea under MTI for different 

climatic conditions  

 

The study was based on the following hypotheses;  

a) The water flow from the Moistube has a positive relationship with operating pressure 

and negative relationship with suspended and dissolved solids concentration 

b) The shape of the wetting pattern is symmetrical for clay and asymmetrical for sandy 

soil with upward and lateral movements being less than downward movement    

c) The spacing and depth of placement of Moistube laterals are functions of the soil type, 

crop root characteristics, and Moistube flow 

d) The yield and water productivity of cowpea are higher in MTI than SDI 
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1.5 Thesis Outline  

 

This thesis is structured as follows: The review on Moistube irrigation is described in Chapter 

2 while in Chapter 3, the hydraulic characteristics and the effect of suspended and dissolved 

solids on the discharge of Moistube are discussed. The soil water dynamics under MTI without 

crop uptake is described in Chapter 4 while the soil water distribution incorporating crop water 

uptake is discussed in Chapter 5. In Chapter 6, the response of cowpea to water availability 

under MTI is described. The parameterisation and testing of AquaCrop model for cowpea 

under full and deficit water conditions under MTI is described in Chapter 7. The coupling of 

HYDRUS 2D/3D and AquaCrop in the simulation of water use of cowpea under varying 

environmental conditions is discussed in Chapter 8. Finally, the conclusion and 

recommendations are provided in Chapter 9.  
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2. MOISTUBE IRRIGATION TECHNOLOGY  

 

Edwin K. Kanda, Aidan Senzanje, Tafadzwanashe Mabhaudhi, Wenquan Niu 

 

This Chapter is under review in the Agricultural Research Journal  

 

Abstract  

Irrigated agriculture is under pressure to increase water use efficiency (WUE) and crop water 

productivity because of inter-sectoral competition for scarce water resources. The shift to 

micro-irrigation has improved crop quality, yield and WUE. Subsurface drip irrigation 

significantly reduces non-beneficial water balance components such as runoff and soil 

evaporation. However, the problem of water loss by deep percolation still exists in this method. 

Moistube irrigation is a relatively new type of irrigation method where water flows out of the 

Moistube nanopores as a function of soil water potential and operating pressure. It supplies 

water continuously to the crop at 80 – 90% of the field capacity. Therefore, it is a form of 

deficit irrigation. Based on the previous studies, this Chapter reviews Moistube irrigation 

technology by highlighting its hydraulic characteristics, crop growth and yield response, WUE, 

clogging characteristics and the soil water dynamics. From the review, the soil water dynamics 

under MTI is influenced by the soil texture, system pressure and depth of placement of 

Moistube laterals. The effect of water quality parameters such as suspended and dissolved 

solids need to be investigated further. The review also revealed that water savings and higher 

WUE could be achieved using MTI than conventional irrigation. There is need to investigate 

how other crops respond to MTI technology.   

 

Keywords: clogging characteristics, crop yield, soil water dynamics, semi-permeable 

membrane, subsurface irrigation, water use efficiency 

 

2.1 Introduction  

 

Rainfall, as a primary source of water for agricultural production, is becoming increasingly 

erratic perhaps due to climate change which has led to reduction in crop yields in several parts 

of the world and especially in Sub-Saharan Africa (Schlenker and Lobell, 2010). In arid and 

semi-arid regions where rainfall is hardly enough for crop production, irrigation is the main 
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option for ensuring food and cash crop production. However, some irrigation methods like 

furrow, basin, and flood among others, have low efficiencies. For instance, Ibragimov et al. 

(2007) established that an average water savings of 32% can be achieved by drip irrigation than 

furrow irrigation.  Kahlown et al. (2007) found that basin irrigation requires 67% more water 

than sprinkler irrigation. One of the options for reducing water losses in irrigated agriculture is 

the adoption of efficient irrigation systems such as micro-irrigation.  

 

Micro-irrigation technologies such as drip irrigation have gained popularity given their higher 

water application efficiencies.  Drip irrigation can achieve water use efficiency (WUE) as high 

as 95% as compared to 75% which can be achieved with sprinkler irrigation systems  (Locascio, 

2005). The use of subsurface irrigation helps in improving the WUE by minimizing the non-

beneficial water use components such as surface runoff, soil evaporation and percolation.  The 

development in subsurface irrigation has evolved since the beginning of man’s civilization 

through the use of buried clay pots (Bainbridge, 2001), porous subsurface clay pipes (Ashrafi 

et al., 2002), subsurface drip irrigation (SDI) (Camp, 1998)  and semi-permeable membranes 

utilized in Moistube irrigation (Yang et al., 2008).  

 

Micro-irrigation techniques such as drip irrigation have been studied extensively. A recent 

review by Lamm et al. (2012) highlighted the general applicability of SDI in the United States 

of America. It also highlighted the challenges facing its wider applicability and the 

opportunities arising from it. Some of the challenges included lack of clarity on depth and 

spacing of drip lines, crop germination and establishment, salt build up, clogging and damage 

by rodents. To eliminate some of the above problems, a relatively new technology (Moistube 

irrigation) was developed in China using nanotechnology (Yang et al., 2008;Yang, 2016). This 

technology can be considered as an upgrade of the porous irrigation pipes which have popularly 

been marketed as “leaky pipe” and “soaker hose’ (Yoder and Mote, 1995;Janani et al., 2011).  

However, instead of using micro porous, the pipes are made of flexible semi-permeable 

membranes whose pores are in the nano scale (Yang et al., 2008).  

 

This review aimed at understanding the existing knowledge of Moistube irrigation in terms of 

the pressure-discharge relationships, soil water dynamics including use of models and clogging 

characteristics and how various crops respond to it. The review was done to provide the basis 

for its adoption and applicability outside China especially in areas facing water scarcity. It 

would also provoke more research on its characteristics which could lead to further 
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development and refinement in design, operation and maintenance. The review was mainly 

conducted by searching through the articles available online especially in Google and Google 

Scholar using key words and phrases such as “Moistube irrigation”, “Moistube” and semi-

permeable membrane irrigation”. Other articles were obtained from the manufacturer of the 

product.  

 

The rest of this review is structured as follows: Firstly, a brief description of Moistube irrigation 

technology (MTI) is provided. Secondly, the design aspects such as the hydraulic 

characteristics and depth of placement are described. Thirdly, the soil water distribution in MTI 

is discussed. Fourthly, the response of some selected crops to water availability under MTI is 

described by highlighting the water savings and yield improvement as compared to 

conventional irrigation methods. Finally, the effect of suspended solids on the clogging 

characteristics of Moistube is described. At the end, conclusion including the prospects for 

further research is provided.  

 

2.2 Description of Moistube Irrigation 

  

MTI is a relatively new subsurface irrigation technology that utilizes nanotechnology where a 

polymeric semi-permeable membrane allows movement of water by osmosis. The semi-

permeable inner layer has approximately 100,000 nanopores per square centimetre with pore 

diameter range of 10-900 nm (Yang, 2016;Zou et al., 2017). The structure of Moistube is 

illustrated in Figure 2.1. Since it supplies water continuously throughout the crop growing 

season, MTI can be referred to as a continuous type of irrigation to distinguish it from 

conventional irrigation methods (Zhang et al., 2015a;Yang, 2016;Sun et al., 2018).  Moistube 

flow approximates that of line-source subsurface drip irrigation (Zhang, 2013). However, 

instead of closely spaced emitters, water oozes from the semi-permeable membrane to the 

surrounding soil due to the soil water potential difference  between the water inside the 

Moistube lateral and the adjacent soil (Yang et al., 2008;Qi, 2013;Yang, 2016).   
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Figure 2.1: Internal structure of Moistube ((Zou et al., 2017) 

 

Being a relatively new technology having been developed less than 10 years ago, most of the 

applications of MTI  are found in China where it has been used for the production of few 

vegetable, fruit, and cereal crops (Zhang et al., 2017e;Zou et al., 2017). Zou et al. (2017), 

described the developmental stages of Moistube irrigation technology where it has undergone 

three phases; first, second and third generation in terms of material and technical properties. 

The first generation consisted of a thin double layer nano-porous with non-woven protective 

outer layer. The second generation was a thick single layer nanotube with higher mechanical 

strength than the previous version. The third generation (which is the current product illustrated 

in Figure 2.2) involved improvement of the anti-clogging performance of the second 

generation. The semi-permeable membrane pipes have a nominal diameter of 16 mm and 

thickness of about 1 mm (Yu et al., 2017). This would fit in the nominal sizes available for drip 

irrigation systems (12 mm – 24 mm) and thus the pipe network is similar. 

 

 

Figure 2.2: Laying Moistube tapes  
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2.3 Design and Operation  

 

The design and operation aspects of MTI are discussed in the following sub-sections in terms 

of the operation requirements, water flow mechanism and design aspects i.e. the depth and 

spacing of Moistube laterals. 

  

2.3.1 Operation requirements  

 

MTI is low pressure technology; therefore, it does not require pumping and thus minimal 

energy requirements. It can be run on gravity though overhead tanks since even a low head of 

2 m can yield flows of about 0.24 ℓ hr -1m-1 (Qiu et al., 2015). Therefore, the technology has 

less operation costs and does not require specialized skills for operation (Lyu et al., 2016). SDI 

systems operate within a pressure head range of 17 m to 27.5 m and therefore, pumping is 

required (Camp and Lamm, 2003).  

 

In summary the advantages of MTI as outlined by the manufacture include more than 50% 

water savings, minimal energy costs (i.e. no pumping), reduced clogging, reduced maintenance 

cost, efficient fertilizer use and enhanced crop growth (yield and biomass), zero evaporation 

and minimum percolation losses (Envirogrower, 2017).  

 

2.3.2 Water flow mechanism  

 

The flow from Moistube occurs in two ways; besides the applied pressure, the flow also varies 

with respect to the soil water potential (Yang et al., 2008) as described below;  

a) In the absence of system pressure, Moistube discharge is a function of soil water 

potential. When the soil is dry, water oozes out of the Moistube until the potential 

difference between the two sides of the membrane is equal (when the soil approaches 

saturation point) when seepage reduces or stops (Figure 2.3).  

b) In presence of system pressure, the flow from a Moistube lateral is linearly proportional 

to the operating pressure as shown in Equation 2.1 (Niu et al., 2013b;Yang, 2016);  

𝑞 = 𝑎ℎ + 𝑏        (2.1) 

where q = emitter discharge (mℓ hr -1m-1), h = system operating pressure (m) and a, b are 

constants related to soil type. Niu et al. (2013b) found the value of a and b to be 64.8 and 25.6, 

respectively, for clay loam soil.   
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Figure 2.3: Moistube flow due to soil water potential (Yang, 2016) 

 

A soil box experiment by Niu et al. (2017) established that the flow from Moistube increases 

slightly with response to initial soil water content and then decreases until it reaches a stable 

steady state after 48 hours. They also found that at zero pressure, the Moistube flow could be 

predicted using the initial soil moisture content and the bulk density of the soil. The study also 

established that the effect of soil water potential described in Figure 2.3 was weak and it lasted 

only for 44 hours.  

 

A study by Qi et al. (2013) found that the Moistube flow in soil is 40 – 70% less than in the air 

due to the influence of the adjacent soil. The extent of decrease in discharge in buried emitters 

depends on the soil hydraulic characteristics, emitter flow rate, presence or absence of cavities 

around emitter outlet and the irrigation system properties (Shani et al., 1996). For the same soil 

texture, the reduction in discharge is proportional to the emitter flow rate (Gil et al., 2008). 

Thus, the pressure-discharge relationship in buried drip emitters is given by Equation 2.2 

(Shani et al., 1996); 

𝑞 = 𝑘(ℎ − ℎ𝑠)𝑥         (2.2) 

where hs = positive pressure which develop at the emitter outlet, k = emitter coefficient, x = 

emitter exponent, q and h are as defined in Equation 2.1 

 

From Equation 2.1, it can be inferred that Moistube flow rate is like the laminar flow regime 

(exponent close to one) in a drip emitter. Therefore, Moistube flow rate is sensitive to pressure 

variation.  

 

 
Water, 

Ψ = 0           

 

ψ water < ψ soil, less seepage from the Moistube 

ψ soil = ψ water, no seepage of water occurs 

ψ water > ψ soil, large volume of water seeps out 

of the Moistube 

Soil ψ ≤ 0 
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2.3.3 Spacing and depth of Moistube laterals  

 

The main factors that affect the line spacing of irrigation pipe laterals include the soil type, 

installation  depth and type of crop (Lamm and Trooien, 2003).  The depth of lateral placement 

depends on soil characteristics, crop type, tilling depth, and whether the system is used for crop 

establishment or another irrigation method is used until the crop is established (Charlesworth 

and Muirhead, 2003). Some studies have been carried out to determine the suitable Moistube 

layouts and placement depths for some crops as described in the following paragraphs. 

 

The depth of Moistube placement depends on the soil texture and crop type (root 

characteristics). In indoor soil box experiments, Niu et al. (2013b) found a suitable placement 

depth of between 15 – 20 cm for clay loam soil.  A study by Zhang et al. (2016b) found that a 

placement depth of 3.5 cm performed better than 8.5 for the growth of cabbages. After 

analysing three depths of 10 cm, 20 cm and 30 cm, Lyu et al. (2016)  and Niu et al. (2017) 

found the suitable placement depth for tomatoes in a greenhouse as 10 cm. However, Zhang et 

al. (2015c) found that a depth of 15 cm resulted in highest tomato yields than at 10 cm and 20 

cm. Similarly, Zhang et al. (2015b), established that the suitable Moistube depth for tomato 

under plastic mulch was 15 cm with less salt deposition than at 10 cm and 20 cm. In another 

study,  Guo et al. (2017) established that a placement depth of 3.5 cm for onions gave higher 

yields than at 7 cm. In a study to determine the growth and yield response of sunflower under 

MTI, Tian et al. (2016) found that the suitable depth was 20 cm where the crop growth and 

yield was significantly higher than at 10 cm. In summary, the placement depths of Moistube 

for a variety of crops are shown in Table 2.1 

 

Table 2.1 Placement depth in Moistube irrigation  

Crop  Placement depth (cm) Reference  

Cabbage  3.5 (Zhang et al., 2016b) 

Tomato 10 and 15  (Zhang et al., 2015b;Zhang et al., 2015c;Lyu 

et al., 2016;Niu et al., 2017) 

Onions  3.5 (Guo et al., 2017) 

Sunflower  20 (Tian et al., 2016) 
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In terms of lateral spacing, Moistube can be placed between rows where it serves rows of crops 

or in-line with the crop rows. In a study to determine the number of Moistube lines suitable for 

tomatoes, Lyu et al. (2016) established that for improved irrigation WUE, quality and yields 

coupled with economic considerations, one Moistube lateral per one ridge containing two rows 

of crops was appropriate. However, in a similar study, Niu et al. (2017) recommended 3 tubes 

serving one ridge containing 2 lines of tomatoes due to high salinization in a greenhouse. From 

this study, perhaps a low density of Moistube could have been recommended in open field. In 

fact, the three layouts considered (one, two and three Moistube lines) did not have a significant 

effect on the soil water distribution.  

 

2.4 Soil Water Dynamics  

 

The soil water distribution is necessary in the design of irrigation systems. The soil water 

dynamics in SDI systems depend on factors such as soil type, initial soil moisture content, 

emitter flow  rate, the rate of water application, crop type, evapotranspiration, spacing, and 

depth of laterals (Kandelous and Šimůnek, 2010a;Subbaiah, 2013).  

 

The soil water distribution in subsurface irrigation can be determined by field (or laboratory) 

experiments or by simulation using analytical, empirical or numerical models (Subbaiah, 

2013). The following sub-sections describe the field and laboratory experiments for the 

determination of the soil water distribution and infiltration characteristics in MTI and also the 

potential for using soil water models to determine the subsurface water flow.  

 

2.4.1 Field and laboratory experiments  

 

The following studies have been carried out in the determination of the soil water movement 

in MTI. For silt loam soil, Zhang et al. (2014) studied the effect of initial soil moisture content 

on the soil water flow in MTI. In the study, 2.1%, 5.6%, 8% and 10.1% initial moisture contents 

were used. Infiltration rate fitted almost perfectly (R2 > 0.99) the Kostiakov model as indicated 

in Equation 2.3. The infiltration rate decreased with time.  

 𝐼 = 𝐾𝑡𝛼          (2.3) 

where I = infiltration rate (LT-1), K = coefficient of infiltration, α = infiltration index, t = 

infiltration time (T).  The exponent α increased with increasing initial soil water content. In 
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general, the initial soil water content influenced the speed of the wetting front. A study by Niu 

et al. (2017) found that the initial soil moisture content had negative and significant relationship 

with the Moistube flow.   

 

However, when the Moistube is installed in a vertical direction, Yu et al. (2017) found that the 

infiltration rate fitted (R2 ≥ 0.92)  a modified Horton’s empirical model (Equation 2.4). The 

study was conducted for three soil textures (silt loam, sandy loam and sand). 

𝐼 = 𝐼𝑐 + (𝐼𝑖 − 𝐼𝑐)𝑒−𝑘(𝑡−1)       (2.4) 

where I = infiltration capacity (LT-1), Ic = final infiltration (LT-1), Ii = initial infiltration (LT-1)   

t = infiltration time ≥ 1 hour, k = infiltration constant. The infiltration rate varied with soil type. 

The average values of k in Equation 2.4 were 0.25, 0.18 and 0.13 in silt loam, sandy loam and 

sandy soil, respectively. 

  

A study by Niu and Xue (2014) found that the rate of infiltration has a positive correlation with 

degree of mineralization in silt loam soil and the volume of the wetted soil was higher than in 

distilled water. This was confirmed by another study by  Zhang et al. (2017c) where it was 

established that  the speed of the wetting front increased as the degree of mineralization 

increased from zero (distilled water), 2 g l-1, 2.5 g l-1 and 3 g l-1 then it decreased at 3.5 g l-1, 

and 5 g l-1. The study also found that the infiltration index in Equation 2.3 decreased with 

increasing degree of mineralization.  

 

An experiment by Xue et al. (2013a) established that the soil water movement in the soil is 

influenced by the hydraulic head where the speed of the wetting front increased with increasing 

head.  As illustrated in Equation 2.1, Moistube discharge is proportional to pressure. However, 

according to Zhang et al. (2015c), the effect of pressure on temporal and spatial variations was 

not significant. This could partly be explained by the fact that only two pressures were 

considered in this study and therefore the interaction between pressure and the variations in 

soil water content could not be analysed conclusively. When three pressure heads (1 m, 1.5 m 

and 2 m) were considered, Yu et al. (2017) established that the wetted volume increased with 

increasing head.  

 

A study by Zhang et al. (2017a) found that bulk density influenced the soil water movement 

under MTI where the cumulative infiltration was lower in soil with bulk density of 1.2 g cm-3 
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than that of 1.4 g cm-3. This was consistent with studies by Zhang et al. (2016a) where soil 

infiltration decreased with increase in clay content of the soil. Yu et al. (2017) found that soil 

type had significant effect on the soil water dynamics of MTI.  

 

Another study by Zhang et al. (2012) found that the downward movement of water was 10% 

and 17% higher than upward movement in clay loam and sandy soils, respectively.  Similarly, 

Xie et al. (2014b) found that the shape of the wetted volume in sandy loam soil was 

symmetrical about the Moistube lateral longitudinal axis and that the soil water movement was 

less influenced by gravity. Therefore, the soil water distribution under MTI is slightly different 

from that of SDI where Cote et al. (2003) established that the downward movement of water 

is about 50% higher than upward movement in sandy soils while that of silt is symmetrical. A 

study by Xu et al. (2015) found that altering the soil physical and hydraulic characteristics 

through the addition of biochar significantly reduced the infiltration rate, enhanced lateral 

movement of water, and reduced the upward flow in MTI.  

 

The placement depth of Moistube significantly influence the soil water dynamics and salt 

transport. Niu et al. (2017) established that low salinity and high soil water content were in the 

soil layer close to the Moistube lateral. Similarly, Niu et al. (2013b) found that the Moistube 

placement depth had a significant effect on the shape of the wetted soil. In this study, the 

horizontal water movement and the ratio of width and depth of the wetted volume decreased 

with increased placement depth.  

 

The above studies show that the soil water distribution under MTI is influenced by the type of 

the soil, system pressure, and the placement depth. Presence of impurities such as salts in the 

irrigation water also influenced the water flow in the soil.  

 

2.4.2 Simulation of soil water distribution under Moistube irrigation  

 

Carrying out field or laboratory measurements using a variety of soils with variable flow 

characteristics and irrigation methods in order to determine the soil water distribution is costly 

and difficult (Phogat et al., 2012). In the case of MTI, the main element which require 

adjustment is the pressure heads to achieve the desired flow. The soil water distribution in 

subsurface irrigation can be determined by solving the Richards’ Equation (RE) for 
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multidimensional soil water flow based on Darcy’s law and the continuity equation (Subbaiah, 

2013). 

 

Moistube irrigation can be modelled as a line source form of SDI. Its soil water distribution 

can, therefore, be represented by a two-dimensional form of RE (Equation 2.5) (Skaggs et al., 

2004).  
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Where 𝜃 = volumetric water content [L3L-3], h = soil water pressure head [L], K = unsaturated 

hydraulic conductivity [LT-1], t = time [T]; and x = horizontal spatial coordinate [L], and z = 

vertical spatial coordinate.  

 

The studies on soil water dynamics described in the preceding sub-section were mostly through 

laboratory experiments. A study was done by Zhang et al. (2015a) where HYDRUS-2D model 

was used to simulate the soil water dynamics under MTI and SDI as control. From the study, 

it was found that the shape of the soil water distribution in MTI and SDI was symmetrical at 

initial stages of irrigation. However, after 15 hours of irrigation, the water distribution in 

Moistube was still symmetrical while in drip it became asymmetrical with the upward 

movement being less than the downward movement. In a recent study by Fan et al. (2018b), 

HYDRUS 2D satisfactorily simulated the wetting pattern dimensions under MTI with average 

root mean square error (RMSE) of 0.43 cm. Similarly, Fan et al. (2018a), found RMSE of 0.03 

cm3/cm3, percent bias less than 10% and model efficiency of 0.955 when HYDRUS 2D was 

used to simulate the soil water content distribution in a  vertically-inserted Moistube. It is 

therefore possible to determine the soil water distribution under MTI for a variety of soils and 

flow rates using soil water models instead of the laborious, costly and time-consuming field or 

laboratory experiments.  

 

2.4.3 Spatial and temporal irrigation uniformity  

 

In the conventional irrigation such as drip or sprinkler, water is applied after a certain interval 

which can range from hours to days or weeks as per the irrigation schedule and as dictated by 

the soil water depletion. However, MTI is designed to apply water continuously throughout the 



20 

 

cropping season (Zhang et al., 2015a;Yang, 2016). This means that the crop will be relatively 

water stress-free throughout the season.  

 

In an illustration by Yang (2016) in Figure 2.4, the importance of continuous irrigation is 

evident whereby in conventional irrigation (intermittent irrigation), the crop would suffer some 

form of water stress, during redistribution stage (B-D in Figure 2.4a) or water logging in case 

of irrigation above the field capacity. The continuous irrigation is an optimized form of 

intermittent irrigation. According to Zou et al. (2017) in intermittent irrigation methods such 

as drip, the soil water content in the rootzone changes with time and this affects the plant growth 

which subsequently affect the crop yield.   
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a) Intermittent irrigation  

 

b) Continuous irrigation  

 

Figure 2.4 Soil moisture content (MC) curve under continuous and conventional (intermittent) 

irrigation (Yang, 2016). 

 

However, continuous irrigation does not necessarily lead to improved plant growth. In a 

challenge to the concept of continuous irrigation, Wei et al. (2014) found that MTI with 

alternate partial rootzone drying and irrigation interval of 2 days led to improved root water 

absorption capacity and increase in root to shoot ratio by almost 13% than conventional MTI.  

 

Spatial uniformity of water in the soil is important in ensuring that the crop gets the required 

amount of water. The distribution of water in the rootzone affects the yield response of the crop 

(Al-Ghobari, 2012). A study by Zhang et al. (2012) found that the irrigation uniformity of MTI 

was as high as 95% . Similarly, Zhang et al. (2015a) found that the uniformity of soil water 
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distribution in MTI was 81% which was higher than in SDI. Another study by Yu et al. 

(2017) found that the soil water distribution uniformity depended on the soil texture. The study 

found that the average Christiansen’s uniformity (CU) coefficient values were 86.7%, 85.7% 

and 66.9% for silt loam, sandy loam and sand, respectively. The CU values also increased with 

increasing pressure head with greater effect on sand than in silt loam and sandy loam.  

 

2.5 Increasing Water Use Efficiency and Crop Yield Under Moistube Irrigation 

 

MTI is a subsurface irrigation, and therefore, water losses due to runoff and evaporation are 

negligible. Since, it is a slow release kind of irrigation, deep percolation losses are minimal. As 

explained by Zhang et al. (2015a) the downward water movement under MTI is less than in 

SDI.  These features make MTI a promising technology in arid and semi-arid areas. 

 

A comparison between MTI and SDI for tomatoes in a greenhouse showed that the former had 

more or less same yield per unit area compared to the latter but a 13% higher WUE (Xue et al., 

2013b) . Another study by Lyu et al. (2016) found that MTI can achieve about 38% water 

savings than drip irrigation with mulch in production of tomatoes. Besides increase in total 

yield, the quality of the tomato in terms of fruit diameter, weight, vitamin C, soluble sugar and 

soluble acid ratio were 8.6%, 12%, 27%, 4.5% and 21% respectively, higher in MTI than in 

drip irrigation.  

 

An experiment was carried out by Yao et al. (2014) to compare conventional irrigation, MTI, 

and rainfed water conditions. In the study, Moistube irrigated navel oranges achieved the 

highest leaf respiration index, photosynthetic rate, specific leave area and quantum yield. A 

study by Zhang et al. (2016b) established the water savings can be achieved in Moistube 

irrigation in cabbage production but the results could not be verified and thus further studies 

were recommended. Yin et al. (2017) reported 21% water savings in MTI irrigated spinach 

than conventional irrigation.  However, Zhang et al. (2017e) found that maize yield decreased 

significantly in MTI than SDI but decreased non-significantly in wheat. In the same study, the 

crop WUE under MTI was not significantly different from SDI.  

 

The higher WUE and water savings in MTI than conventional drip can partly be explained by 

the fact that the former supply water at 80 – 90% of field capacity (Zhang et al., 2012) which 
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is a form of deficit irrigation and thus improves crop water productivity and WUE. From the 

studies above, MTI is a promising technology in terms of water savings. However, validation 

with other crops is required and more specifically under a variety of environmental conditions.  

 

2.6 Clogging Characteristics in Moistube Irrigation  

 

Clogging is a major problem in micro-irrigation systems especially in SDI. The physical, 

chemical and bacteriological characteristics of water play a significant role in the clogging of 

emitters. Water sources have varying degree of suspended solids, dissolved solids and 

biological impurities such as algae and bacteria which are responsible for clogging emission 

devices in irrigation systems.  

 

A study by Qiu et al. (2015) found that Moistube flow is influenced by water temperature. In 

the study, a unit change in temperature (oC) results in 4% increase in Moistube discharge. Since 

it is made of elastic material, an increase in temperature may lead to increase in the dimension 

of the pores. This may not be the case in drip emitters where Rodríguez-Sinobas et al. (1999) 

found flowrate to be insensitive to temperature changes.   

 

Presence of soil particles in the irrigation water cause clogging of Moistube pores. A study by 

Xie et al. (2014a) found that the sensitive particle size range which causes reduction in 

Moistube flow was between 0.037 mm and 0.074 mm. Similarly,  Zhu et al. (2015) found that 

clogging of Moistube pores was positively correlated with soil particle concentration and the 

sensitive particle size range was between 0.061 mm and 0.1 mm and that under same 

concentration, the clogging degree decreased with increasing pressure. Another study by Qi 

(2013) found that if the particle size was less than 0.1 mm, the concentration of suspended 

solids was a significant factor in the clogging of Moistube pores. Filtration of the irrigation 

water is necessary to remove suspended solids and therefore, prevent clogging of the Moistube 

laterals.  

 

Unlike in MTI, clogging of drip irrigation emitters have been studied extensively. Some of the 

recent studies on clogging of emitters due to suspended soil particles include by Bounoua et al. 

(2016) where it was established that even clay particles that pass through the filters could cause 

clogging of emitters as they aggregate downstream the laterals.  Studies on chemical clogging 
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has also demonstrated that precipitation of salts in irrigation water cause reduction in discharge 

of drip emitters. For example,  Lili et al. (2016) found that saline water (EC = 3560 µS cm-1) 

decreased discharge of some drip emitters to 46% after 126 hours of operation. Similarly,  Liu 

et al. (2015) found a reduction in discharge of up to 85% after 35 days of drip irrigation with 

hard water (water hardness = 500 mg l-1) and the primary component responsible for clogging 

was calcium carbonate. Clogging of drip emitters due to biological agents such as bacterial 

film in recycled wastewater has also been studied (Li et al., 2009;Yan et al., 2010). In these 

studies, the clogging occurs due to growth of bacterial slime along the flow path of the emitter.  

 

2.7 Conclusions and Recommendations  

 

The following conclusions can be deduced from this review 

a) The discharge from Moistube is a function of the system pressure and the soil water 

potential. The flow is higher in the air than in the soil due to the influence of soil 

properties 

b) The soil water dynamics is influenced by the soil type, depth of placement, system 

pressure and water quality.  

c) MTI supplies water continuously to the crop at between 80 – 90% of field capacity 

throughout the cropping season  

d) The technology has been applied on a few crops such as cabbages, tomatoes, onions, 

sunflower and oranges. These experiments have been conducted in greenhouses. From 

these experiments, it has been established that MTI improves the yield and WUE of 

crops. It has higher water savings than conventional methods such as drip irrigation.  

e) Clogging due to suspended solids such as clay particles has been reported in MTI. From 

the results reported, suspended solids reduce the discharge from the Moistube. 

Therefore, the clogging characteristics in MTI is like drip irrigation.   

 

The following are recommendations for further research arising from this review:  

a) There is need to investigate further the effect of other water quality parameters, 

especially dissolved solids on the hydraulic characteristics of MTI.  

b) The soil water distribution under different soil types and crops need to be further 

investigated. This could be accomplished using two-dimensional soil water models 

since field or laboratory experiments are costly and time consuming.  
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c) The suitability of MTI in other crops and environments need to be investigated by 

determining the growth and yield responses under different climates and soil types. This 

could be determined using suitable crop models such as AquaCrop or integration of 

crop and hydrological models.  
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3. HYDRAULIC AND CLOGGING CHARACTERISTICS OF 

MOISTUBE IRRIGATION AS INFLUENCED BY WATER 

QUALITY  
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Kanda, EK., Mabhaudhi, T. and Senzanje, A. 2018. Hydraulic and clogging characteristics of 

Moistube irrigation as influenced by water quality. Journal of Water Supply: Research and 

Technology – AQUA 67(5): 438 – 446 

 

Abstract  

Irrigation consumes approximately 70% of total freshwater use worldwide. This necessitates 

the use of efficient irrigation methods such as micro-irrigation. Moistube irrigation (MTI) is a 

new subsurface irrigation technology where the water emits from a semi-permeable membrane 

of the Moistube at a slow rate depending on the applied pressure and soil water potential. There 

is currently limited information on the performance of Moistube tapes with respect to discharge 

as a function of pressure or water quality. The aim of this study was to determine the flow 

characteristics of Moistube tapes as a function of pressure and the effect of suspended and 

dissolved solids on the emission characteristics. The pressure-discharge relationship was 

determined within a range of 20 kPa and 100 kPa. The clogging of the Moistube was 

determined using water containing low, moderate and high concentrations of suspended and 

dissolved solids at 20 kPa and 30 kPa. The results indicated that the Moistube discharge follows 

power and linear functions with the applied pressure. The discharge decreased linearly over 

time because of clogging. The discharge decreased by 25 – 53% and 12 – 45% due to suspended 

solids and dissolved solids respectively.  Suspended solids had a severe clogging effect on 

Moistube than dissolved solids. The results of this study would help in the design, operation 

and maintenance of MTI system.  

 

Keywords: dissolved solids, low-pressure irrigation, micro-irrigation, nanoporous pipe, 

subsurface irrigation, suspended solids 
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3.1 Introduction 

 

Irrigation constitutes approximately 70% of freshwater use in the world (Kulkarni, 2011). 

Consequently, irrigated agriculture is under pressure to increase crop water productivity. The 

use of subsurface irrigation helps in saving water by minimizing unproductive water loss 

components such as surface runoff, soil evaporation and percolation. Despite minimal water 

losses in subsurface drip irrigation, there is still a problem of leaching of nutrients and water, 

especially in light-textured soils (Cote et al., 2003). In an attempt to address this problem, a 

new subsurface irrigation technology was developed which utilizes semi-permeable membrane 

to supply water continuously to the plant at a slow rate (Zhang et al., 2012;Lyu et al., 2016). 

Moistube irrigation (MTI) is a new technology which is like drip irrigation. However, instead 

of emitters, water emits from the semi permeable membrane of the Moistube tape depending 

on the applied pressure and the soil water potential of the surrounding soil. The main 

distinguishing feature of Moistube is its ability to supply water, in the absence of applied 

pressure, in response to the soil water potential  (Zhang, 2013).  

 

The main types of porous irrigation pipes, based on the pipe material, include porous clay pipes 

(Gupta et al., 2009) and flexible porous pipes made of rubber and polyethylene (Amin et al., 

1998;Teeluck and Sutton, 1998;Liang et al., 2009). These can further be classified based on 

the size of the emission pores as microporous pipes (Amin et al., 1998;Teeluck and Sutton, 

1998), and nanoporous where Moistube tapes belong. These pipes function as both conveyance 

and emission of the irrigation water. Porous pipe irrigation can be categorized as line-source 

trickle irrigation where the water is emitted over the entire length through closely-spaced 

emission devices and whose wetting pattern is a continuous strip.   

 

Porous pipes have been applied in various parts of the world particularly in arid and semi-arid 

areas. They are popularly marketed as “leaky pipe” and “soaker hose’ (Yoder and Mote, 

1995;Janani et al., 2011). Isoda et al. (2007) found that the water use efficiency (WUE) of 

porous pipes was the same as that of drip irrigation. For tomatoes grown in greenhouses in 

China, Xue et al. (2013b) found that MTI had 13% higher WUE than drip irrigation while Lyu 

et al. (2016) found water savings of 38% in MTI than drip irrigation with mulch. The higher 

WUE and water savings in MTI than conventional drip can be explained by the fact that the 

former supply water at 80 – 90% of field capacity (Zhang et al., 2012) which is a form of deficit 
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irrigation and thus improves crop water productivity and WUE. Other advantages of MTI 

include energy savings, low operation costs and minimal percolation losses (Lyu et al., 2016).  

 

Design and operation of an irrigation system require the knowledge of the hydraulic 

characteristics. Porous pipes made of elastic and flexible materials such as rubber exhibit 

variable permeability with respect to the applied pressure which in turn affects its emission 

characteristics (Liang et al., 2009). The flow in a porous pipe decreases with time until a stable 

value is reached (Teeluck and Sutton, 1998;Liang et al., 2009). There is a need for research on 

discharge characteristics of irrigation pipes with nanopores as emission devices. The use of 

nanotechnology in the manufacture of porous irrigation pipes may help in achieving partial 

desalinization (Madramootoo and Morrison, 2013), which is useful in the utilization of saline 

water in irrigation.  

 

Water for agricultural use come from various sources such as reservoirs, municipal water 

supply systems, groundwater, and recycled wastewater. These water sources have a varying 

degree of quality which may pose problems to subsurface irrigation systems in terms of 

clogging of emission devices. Surface water sources contain impurities such as sand, silt and 

clay, and biological components like algae. Groundwater generally has high concentrations of 

dissolved ions such as calcium, iron, manganese, magnesium, carbonates, among others. 

Depending on the source and method of treatment, recycled wastewater contains organic 

matter, suspended solids, dissolved ions and microorganisms.  

 

Clogging is one of the serious problems in micro-irrigation systems where it discourages the 

users and results in the substitution of the system with less efficient irrigation methods 

(Nakayama et al., 2007). Emitter clogging can be classified as physical clogging due to 

suspended solids and organic materials, chemical clogging due to precipitates of dissolved 

solids and biological clogging due to algae and bacteria (Tripathi et al., 2014). Besides water 

quality, the type of emitter also determines the degree of clogging where pressure- 

compensating emitters have a higher resistance to clogging than laminar flow type emitters and 

labyrinth type emitters with a turbulent flow (Liu and Huang, 2009). Clogging of emitters leads 

to poor water distribution  hence limiting plant growth (Zhang et al., 2017d) and thereby 

negatively affecting crop yields.   
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Despite the continued use of porous irrigation pipes, especially in the arid and semi-arid areas, 

there is little information on its clogging characteristics. Xie et al. (2014a) found that irrigation 

water containing soil particle sizes of between 37 µm and 74 µm can clog Moistube pores. No 

study has been reported on the effect of dissolved solids on the clogging of Moistube. Clogging 

mechanism vary with water quality and the operation parameters and are, therefore, specific to 

a given site. 

 

The objective of this study was to determine discharge characteristics of Moistube as a function 

of operating pressure. The study also involved the determination of the effect of suspended 

solids and dissolved solids on the clogging characteristics of Moistube. The effect of dissolved 

solids on Moistube discharge is of primary importance in cases where groundwater or saline 

water are used for irrigation. This would help in understanding the design, operation and 

maintenance requirements of MTI system.   

 

3.2 Methodology 

 

The methods utilized in this study to achieve the objectives are explained in the following sub-

sections. These included the laboratory experiments needed to establish the hydraulic 

characteristics in terms of pressure – discharge relationship and the clogging characteristics.  

 

3.2.1 Pressure – discharge relationship 

 

To determine the pressure – discharge relationship, a laboratory experiment was set up to 

measure the discharge from the Moistube under a pressure range of 20 kPa to 100 kPa at 

intervals of 10 kPa. There is no guideline on the length required for testing the discharge 

characteristics of porous pipes. In this study, the length of the Moistube used was 1m. The 

length was kept small so that friction losses are minimized (Kirnak et al., 2004). The discharge 

was obtained by measuring the volume of water collected over 15 minutes using a 1000 ml 

graduated cylinder. This experiment was done in 5 replications. The duration of the experiment 

was 14 days.  

 

The discharge as a function of pressure was represented by a power function illustrated in 

Equation 3.1 (Keller and Karmeli, 1974); 
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𝑞 = 𝑘𝑝ℎ𝑥        (3.1) 

where q = flow rate (ℓ hr -1m-1), kp = emitter constant, h = operating pressure (m) and x = is 

emitter exponent; and a linear function (Equation 3.2) 

𝑞 = 𝑘𝑙ℎ + 𝑐        (3.2) 

where kl and c = constants while h is as defined in Equation 3.1 

 

The power relationship in irrigation emitters helps in the characterisation of the flow regime 

using the value of the exponent where a value of 1 indicates laminar flow and 0.5 shows a fully 

turbulent flow and the intermediate values represent a partially turbulent flow (Clark et al., 

2007) and values below 0.5 indicate pressure compensating properties.   

 

 The porous irrigation pipes have pores whose sizes and distribution vary randomly and thus, 

the emission along the pipe would vary (Yoder and Mote, 1995). The emission uniformity from 

the Moistube was determined by measuring the flow from 20 cm segments of the lateral over 

a length of 1 m. This was replicated 5 times. The Moistube lateral laid horizontally but the PVC 

gutter sloped gently (1%) to allow for the collection of water from the segments. The 

experimental set-up is shown in Figure 3.1. The performance was evaluated using the 

coefficient of variation (CV) according to Equation 3.3 (Liang et al., 2009): 

100=
q

S
CV         (3.3)  

where CV = manufacturer’s coefficient of variation (%), S = standard deviation of discharge 

(ℓ hr -1m-1) and 𝑞̅ = average discharge (ℓ hr -1m-1).  

 

The coefficient of variation expressed in Equation 3.3 is as a result of emitter design, the 

material used and the precision of the manufacturing process (Capra and Scicolone, 1998).   
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Figure 3.1 Setup for the determination of the coefficient of variation 

 

3.2.2 Emission characteristics due to clogging 

 

The effect of clogging due to the presence of suspended particles in irrigation water was 

determined by measuring the flow from Moistube at 20 kPa and 30 kPa using water containing 

silt and clay particles.  It was not possible to determine the effect of clogging on Moistube 

discharge at higher pressures due to unavailability of facilities. Soil passing through a 125 µm 

sieve was added to tap water to achieve a concentration of 25 mg ℓ-1 (TS1), 75 mg ℓ-1 (TS2) 

and 150 mg ℓ-1 (TS3) which has a low, medium and severe clogging risk, respectively 

(Nakayama and Bucks (1991),  as indicated in Table 3.1. Clogging due to dissolved solids was 

determined by adding equal proportions of calcium chloride, magnesium sulphate and sodium 

bicarbonate to give concentrations corresponding to low (TD1), moderate (TD2) and severe 

clogging risk (TD3), respectively as illustrated in Table 3.1 

 

Table 3.1 Experiment treatments 

Treatment  Clogging material  Clogging risk  

T0  Tap water  Control  

TS1 Suspended solids (25 mg ℓ-1) Low  

TS2 Suspended solids (75 mg ℓ-1) Moderate  

TS3 Suspended solids (150 mg ℓ-1) Severe  

TD1 Dissolved solids (250 mg ℓ-1) Low  

TD2 Dissolved solids (1000 mg ℓ-1) Moderate  

TD3 Dissolved solids (2500 mg ℓ-1) Severe  
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The experimental set-up is illustrated in Figure 3.2. The experiment consisted of a 260 ℓ tank 

situated in stand with two platforms at 2 m and 3 m.  This allowed for measurement at 20 kPa 

and 30 kPa.  The set-up also consisted of 50 cm length Moistube replicated 4 times in a 

manifold arrangement. The space between the laterals was 30 cm. The discharge was measured 

by collecting water using 1000 mℓ graduated cylinders for 15 minutes every 24 hours for a 

period of 14 days. To ensure adequate mixing and suspension of the soil particles, a low-head 

submersible pump was placed at the bottom of the tank.  

 

 

Figure 3.2 Experimental set-up 

 

The water quality in the tank was monitored by testing periodically over the duration of the 

experiment to ensure that they remain within the set limits (little, moderate and severe clogging 

risk) and any variation adjusted accordingly. The parameters tested were total suspended solids 

(TSS), pH, temperature (T), electrical conductivity (EC) and total dissolved solids (TDS), 

which were analysed using portable handheld TSS meter from HACH industries (TSS 

resolutions of 0.1 at 10 – 99.9 g ℓ-1 and 1 at greater than 100 g ℓ-1, and HI98129 combo Tester 

for pH/EC/TDS/temperature from Hanna Industries (resolutions: 0.01 pH, 1 µS cm-1, 1 ppm, 

0.1 °C). The water quality characteristics are shown in Table 3.2.  
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Table 3.2 Mean water quality characteristics 

Treatment pH TDS (mg ℓ-1) T (0C) EC (µS cm-1) 

 

TSS (mg ℓ-1) 

T0 7.8 ± 0.5 31.7± 1.6 19.2 ± 2.0 65.0 ± 2.1  

TS1 7.6 ± 0.2 32.0 ± 1.2 19.2 ± 0.6 64.8 ± 1.9 25.0 ± 4.9 

TS2 7.4 ± 0.1 34.4 ± 2.9 19.7 ± 0.5 70. 0 ± 4.1 73.2 ± 4.8 

TS3 7.5 ± 0.1 37.2 ±1.6 21.4 ± 0.7 74.6 ± 3.0 147.8 ±13.9 

TD1 7.2 ± 0.3 269.2 ± 14.0 17.3 ± 2.1 531. 4 ± 27  

TD2 6.9 ± 0.3 1036.1 ± 218.6 15.3 ± 1.1 2060.8 ± 434.1  

TD3 7.3 ± 0.1 2480.8 ± 68.0 18.8 ± 0.8 4678.5 ± 460.4  

 

 

The effect of suspended and dissolved solids was determined by examining relative discharge 

over the duration of the experiment. The relative discharge was computed as in Equation 3.4  

𝑞𝑟𝑒𝑙 =
𝑞𝑖

𝑞0
× 100         (3.4) 

where relq  = relative mean discharge (%); 

 qi= average discharge (ℓ hr-1m-1) at time, t (0 ≤ t ≤ 336) hrs and 

q0= average initial discharge obtained at the beginning of the experiment (ℓ hr-1m-1) 

The average initial discharge was the mean initial discharge of the four replicates at the 

beginning of the experiment.  

 

3.2.3 Statistical analysis  

 

The data was analysed using SPSS version 24 (IBM, New York, USA). Analysis of variance 

was carried out and the separation of means done by the least significant difference (LSD). The 

analysis was conducted at 5% significance level. 

 

3.3 Results and Discussion  

 

The relationship between discharge and pressure under MTI and the effect of suspended and 

dissolved solids on the emission characteristics of Moistube are described in the following sub-

sections.  
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3.3.1 Pressure – discharge relationship  

 

The discharge from Moistube under varying pressure can be represented by a power function 

(R2 = 0.98) and linear function (R2 = 0.96) as illustrated in Figures 3.3. The average discharge 

varied from 0.24 ℓ hr-1m-1 at 20 kPa to 1.73 ℓ hr-1m-1 at 100 kPa.  
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Figure 3.3 Discharge – pressure relationship 
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The relationship between discharge and pressure can be expressed by Equations 3.5 and 3.6 

q = 0.1116h 1.1948         (3.5) 

q = 0.1657h          (3.6)  

 

The exponent value greater than one indicates that MTI is sensitive to pressure changes which 

is similar to non-pressure compensating drip emitters and, thus the length of laterals should be 

short (Kirnak et al., 2004). The value of the exponent in Equation 3.5 shows that the flow 

regime is laminar (Clark et al., 2007) which is explained by the linear relationship in Figure 

3.3 .   

 The high sensitivity of discharge with pressure variation in MTI, as indicated by the exponent 

value greater than one, is consistent with studies carried out for porous irrigation pipes (Amin 

et al., 1998;Liang et al., 2009;Pinto et al., 2014).  

 

From Equations 3.5 and 3.6, there will be no discharge from the Moistube at zero pressure. As 

explained by Zhang (2013), the flow of Moistube varies with the soil water potential and the 

system pressure. Therefore, in the absence of pressure, the discharge will only occur when 

there is suction from the surrounding soil. The effect of the soil water potential is only limited 

to the first 44 hours as established by Niu et al. (2017).  

 

3.3.2 Emission uniformity along the lateral 

 

The coefficient of variation ranged from 4.4% to 16.1% (Figure 3.4) with an average of 11.6% 

which was within the acceptable range (<20%) for line-source emitters (Teeluck and Sutton, 

1998). Manufacturing variation is one of the factors that affect the uniformity of an irrigation 

system. The results of this study demonstrate that acceptable water application uniformity can 

be achieved with MTI if other design factors such as lateral diameter and spacing are 

implemented correctly. The CV values were better than those found by Teeluck and Sutton 

(1998) (23.9 – 58%)  and Liang et al. (2009) (14.3 – 48.7%) for porous plastic pipes. Yoder 

and Mote (1995) found the CV values in 30 cm segments of porous pipes to be within 

acceptable ranges. As illustrated in Figure 3.4, the CV decreased linearly (R2 = 0.98) with 

increasing pressure. This can be attributed to enlargement of pores and increase in the number 

of active pores which were not emitting at lower pressures.  Therefore, MTI can be designed 

and operated at pressures 50 kPa and 100 kPa where the CV values are less than 10%.  
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Figure 3.4 Emission variation along lateral length at varying pressure 

 

3.3.3 Clogging effect on emission characteristics  

 

a) Effect of suspended solids 

The effect of suspended solids on Moistube discharge, as measured by the relative discharge 

over time, is illustrated in Figure 3.5. In some instances, such as for T0 and TS1, the discharge 

increases slightly in the first 24 hours. This could be attributed to the production of more 

effective pores as the operation time increased and as the pipe gets soaked. There was no 

significant difference among the discharges for the first two days (p > 0.05) but it became 

significant as the time of operation increased (p < 0.05) indicating the reduction of discharge 

because of clogging.   
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Figure 3.5 Relative discharge at 20 kPa (TSS) 

 

The reduction in discharge from the Moistube followed a relatively linear relationship with R2 

values of 0.95, 0.93 and 0.96 for TS1 (low concentration), TS2 (moderate concentration) and 

TS3 (high concentration), respectively. The decrease in discharge in Moistube due to clogging 

is dissimilar with drip irrigation emitters where the rate of discharge declines gradually in the 

first few days then drastically in the latter stages.  

 

The difference in reduction of discharge, over the full-time range, was significant between the 

tap water (T0) and the other concentrations of suspended solids, between TS1 and TS2, and 

between TS1 and TS3 (p < 0.05). However, there was no significant difference between the 

reduction in discharge between TS2 and TS3 (p >0.05). Capra and Scicolone (2007) explained 

that suspended solids of about 50 mg ℓ-1 could be considered critical level which contributes 

to clogging. Taking 25% reduction in discharge (75% relative discharge) as a critical measure 

of clogging (Niu et al., 2013a), the Moistube tape could be said to be clogged after 168 hours, 

216 hours, and 312 hours for TS3, TS2 and TS1, respectively. Although the relative discharge 

in the control (T0) did not reach critical levels during the entire duration, there is a reduction 

in discharge, especially after 216 hours. This could be attributed to a higher pH (7.8 ± 0.5) in 

the tap water (Table 3.2) which is considered to have moderate clogging effect through 
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accelerated precipitation of dissolved ions. Liang et al. (2006), found that tap water, in 

comparison to distilled water, led to a decrease in emission rates over time from porous 

irrigation pipes due to clogging. However, Liang et al. (2009) found a decrease in emission 

from porous pipe even when distilled water is used which was attributed to structural changes 

in the pipe material.  

 

The relative discharge at 30 kPa is illustrated in Figure 3.6.  The discharge decreased with time 

and it passed the critical level of 75% after 144 hours, 200 hours, and 264 hours for TS3, TS2 

and TS1, respectively. The decrease in discharge between all the concentrations were 

significant except between TS2 and TS3.  
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Figure 3.6 Relative discharge at 30 kPa (TSS) 

 

The decrease in discharge over time under suspended solids at 30 kPa followed a linear 

relationship, as in the case with 20 kPa, with R2 of 0.97 for both TS1 and TS2, and 0.98 for 

TS3. 

 

The reductions in discharges at the end of the experiment (14 days) were 25.7%, 38.4% and 

43.3% at 20 kPa, and 31.8%, 49.5% and 52.7% at 30 kPa for TS1, TS2 and TS3, respectively. 

The difference between the initial and final discharges was significant for all the treatments 
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except T0 (p < 0.05). The reduction in discharge was higher at 30 kPa than 20 kPa. At the 

higher pressure, the collision of clay and silt particles increases which in turn creates 

coagulating effect and the relatively larger drag force makes the developed flocs unable to 

escape (Niu et al., 2013a).  Furthermore, at higher pressure, a relatively larger amount of soil 

particles passes through the Moistube pores because of higher discharge and consequently, the 

number of clogged pores is increased.  

 

The difference in clogging characteristics at 20 kPa and 30 kPa for paired respective 

concentrations was not significant (p > 0.05). This implies that pressure had no significant 

effect on the clogging characteristics due to suspended solids.  

  

b) Effect of dissolved solids  

The effect of dissolved solids on Moistube discharge is presented in Figures 3.7 and 3.8 for 20 

kPa and 30 kPa, respectively. The discharge increased slightly after 24 hours signifying the 

increase in the number of effective pores as the pipe gets soaked with water. The discharge 

from Moistube takes a while, especially during low pressures. 

 

There was no significant difference among the concentrations for the first six days (p < 0.05). 

This implies that clogging process had not initiated. However, from day seven, there were 

significant differences among the relative discharges indicating the effect of clogging due to 

the precipitation of the dissolved salts. The relative discharge was above 75% in all the 

concentrations at 20 kPa and at TD1 (low concentration) at 30 kPa. The discharge decreased 

to 55% and 64% for TD3 (high concentration) and TD2 (moderate concentration), respectively 

at 30 kPa. There was no significant difference between the initial and final discharges for T0 

and TD1 (p > 0.05) which signify low clogging levels. However, there was a significant 

difference between the initial and final discharge for TD2 at 30 kPa and TD3 at both pressures 

indicating clogging effect.  There was no significant difference among the relative discharges 

at 20 kPa (p > 0.05). There was a significant difference between T0 (control) and both TD2 

and TD1 and between TD1 and TD3 (p <0.05) at 30 kPa. However, the difference was not 

significant between T0 and TD1, and between TD2 and TD3. Previous studies on clogging of 

drip emitters indicated that they performed relatively worse than Moistube.  Lili et al. (2016), 

found that saline water (EC = 3560 µS cm-1) decreased discharge of some drip emitters to 46% 

after 126 hours of operation. Similarly,  Liu et al. (2015) found a reduction in discharge of up 

to 85% after 35 days of drip irrigation with hard water (water hardness = 500 mg/l) and the 
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primary component responsible for clogging was CaCO3. The possible explanation for 

relatively less clogging of Moistube is due to the numerous number of pores per unit surface 

area. This, therefore, increases the time taken for a significant number to be clogged by the 

precipitated ions.  

 

Dissolved solids do not cause clogging unless the ions precipitate (Nakayama et al., 2007). 

However, in this study, precipitation was enhanced by the addition of NaHCO3 which upon 

dissolution frees the CO3
2- which in turn react with Mg2+ and Ca2+ ions from the dissolved 

MgSO4 and CaCl2, respectively. Also, the pH level of greater than 7.5 in the tap water helped 

in accelerating the precipitation process.  Dissolved solids clog the porous irrigation pipes when 

the chemical precipitates flocculate around the emission pores partially or completely 

restricting the flow.  Lili et al. (2016), found that the major chemical compound responsible 

for clogging of drip emitters was CaCO3.  
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Figure 3.7 Relative discharge at 20 kPa (TDS) 
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Figure 3.8 Relative discharge at 30 kPa (TDS) 

 

The variation in clogging characteristics between the two pressures was significant for TD2 

and TD3 (p < 0.05). This implies that pressure had an effect on the Moistube clogging. This 

can be explained by the fact that at 30 kPa with moderate to high concentrations, a higher 

amount of precipitates passes through the Moistube per unit time and some are stuck in the 

pores since the pressure is not high enough to push them out. However, there was no significant 

difference in the relative discharge of TD1 between the two pressures. This means that at low 

concentration of dissolved solids, the effect of pressure is negligible. The decrease in discharge 

followed a linear relationship at 20 kPa with R2 of 0.66, 0.79 and 0.72 for TD1, TD2 and TD3, 

respectively and a good linear relationship at 30 kPa with R2 values of 0.86, 0.93 and 0.80 for 

TD1, TD2 and TD3, respectively.  

 

Multiple analysis of variance indicated that time and concentration were significant factors 

which affect discharge from Moistube. Discharge decreased with increasing time at varying 

rates because of clogging by suspended and dissolved solids. There was a significant difference 

between the relative discharges for suspended and dissolved solids. Suspended solids had a 

greater effect on clogging than dissolved solids. All the concentrations of suspended solids had 

a significant effect on the relative discharge while the effect of dissolved solids on the relative 
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discharge was only significant at TD3 (p < 0.05).   Therefore, water devoid of suspended solids 

should be used in MTI. In this regard, filtration systems like those of drip irrigation should be 

used in MTI to reduce the effect of clogging.   

 

3.4 Conclusions and Recommendations  

 

From the findings of this study, the following conclusions can be drawn;  

1) The Moistube discharge increased with increasing pressure. The pressure discharge 

relationship follows linear and power functions. The exponent in the power function 

was greater than one indicating laminar flow regime. Therefore, the flow from 

Moistube is sensitive to pressure changes.  

2) The manufacturing coefficient of variation decreased with increasing pressure because 

of the balancing or evening-out effect. The best operating pressure range for MI is 

between 50 kPa and 100 kPa where the CV values were less than 10%. 

3) The reduction in discharge ranged from 32% to 53% because of suspended solids and 

12% to 45% due to dissolved solids. Moistube laterals were relatively resistant to 

clogging due to dissolved solids less than 1000 mg ℓ-1. Suspended solids had a 

significantly higher effect on reduction in Moistube flow than dissolved solids.  

 

The CV experiment in this study was carried out over 1 m length of the Moistube. Further 

experiments are needed to determine the variation in discharge over longer lengths such as 3m, 

6m, 10m, etc, to mimic the actual field conditions. It would also be interesting to determine the 

discharge variation along the length of the pipe for different land slopes to facilitate the design 

of suitable field layouts of the Moistube laterals.  

 

Water quality is paramount in MTI and therefore, appropriate treatment methods for removal 

of suspended and dissolved solids need to be used to prevent clogging. Further research needs 

to be carried out under a wide range of pressures to fully understand the effect of pressure on 

Moistube clogging characteristics.  Long-term clogging tests are needed to determine the effect 

of suspended and dissolved solids in a typical growing season of crops. This could be important 

in determining whether fertigation could be practiced in MTI without reducing the Moistube 

discharge.  
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4. SOIL WATER DYNAMICS UNDER MOISTUBE IRRIGATION  

Edwin K. Kanda, Aidan Senzanje, Tafadzwanashe Mabhaudhi 

Abstract  

The design and management of irrigation systems require the knowledge of soil water 

movement. There are few studies on soil water dynamics of Moistube irrigation (MTI) since it 

is a relatively new type of subsurface irrigation technology. This study aimed at determining 

the soil water distribution experimentally and numerically using HYDRUS 2D/3D model for 

two soil textures (loamy sand and sandy clay loam). The study was based on the hypothesis 

that soil texture influences the soil water distribution under MTI. The experiment consisted of 

a soil box filled with soil and Moistube, supplied with water under a constant pressure head of 

60 kPa, placed at 20 cm below the top of the soil surface. The soil water was measured using 

MPS-2 sensors installed at depths of 5 cm, 10 cm, 15 cm, 20 cm, 30 cm, 40 and 50 cm and 

laterally at 10 cm, 20 cm and 30 cm. The soil water contents were measured over a period of 

72 hours. The results showed that the simulated water contents closely matched (R2 ≥ 0.70 and 

RMSE ≤ 0.045 cm3 cm-3) the observed values in all the points considered for the two soil 

textures. The model slightly under-estimated or over-estimated the soil water content with 

percent bias less than 15.6%. There was no significant difference (p > 0.05) between the soil 

water distribution in lateral and downward direction for both sandy clay loam soil and loamy 

sand. However, the soil water content upward of the Moistube placement depth was 

significantly (p < 0.05) lower than both the laterally and downwards soil water contents in 

loamy sand where the soil water contents at 10 cm upward, downward and lateral after 24 hours 

were 0.08 cm3 cm-3, 0.23 cm3 cm-3 and 0.20 cm3 cm-3, respectively. On the other hand, the 

corresponding values for sandy clay loam were 0.28 cm3 cm-3, 0.32 cm3 cm-3 and 0.31 cm3 cm-

3 at 10 cm upward, downward and lateral, respectively. The simulations for wetted distance in 

both soil textures were also close to the observed values (R2 ≥ 0.97, RMSE ≤ 3.99 cm). Soil 

texture had a significant effect (p < 0.05) on soil water movement with upward movement 

faster in sandy clay loam than in loamy sand. The lateral and downward distances were 23 cm 

and 24.6 cm, respectively, for loamy sand after 24 hours. Similarly, for sandy clay loam, the 

lateral and downward distance was 19 cm. This should be considered in the design of MTI in 

terms of depth of placement and lateral spacing. The results of this study demonstrated the 

usefulness of HYDRUS-2D/3D model in the prediction of soil water movement for optimum 

design of MTI.  

Keywords: HYDRUS 2D/3D, soil texture, soil water distribution, subsurface irrigation  
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4.1 Introduction 

 

Competition for the scarce water resources because of increased population, urbanization and 

industrialization has put pressure on irrigated agriculture to improve water use efficiency 

(WUE) and crop water productivity (WP). WP is defined as the aggregate biomass or yield 

(grain, tuber, or any other useful output) produced for every unit quantity of water consumed, 

which can be in the form of rainfall or irrigation (Ali and Talukder, 2008). WUE, on the other 

hand, developed from its predecessor irrigation efficiency where the latter denotes the ratio of 

crop water consumption to the total amount of irrigation water applied (Heydari, 2014). One 

of the options for reducing water losses in irrigated agriculture is the adoption of efficient 

irrigation systems such as micro-irrigation. Micro-irrigation technologies have gained 

popularity given their higher water application efficiencies as they minimize water losses via 

surface runoff, soil evaporation and drainage. Moistube irrigation (MTI) is one such technology 

which is subsurface type of irrigation where semi-permeable membrane allow water to emit 

continuously throughout the length of the lateral as a function of the applied pressure and the 

soil water (Yang et al., 2008;Yang, 2016). The review of MTI has been described in Chapter 

2.  

 

Soil water movement and distribution is necessary for the design and management of irrigation 

systems. Design and management aspects such as the volume of the wetted zone, spacing of 

emission devices, irrigation schedules, etc relies on the soil water distribution (Lubana and 

Narda, 2001). Knowledge of the soil wetted volume helps in the establishment of the emitter 

spacing and the duration of irrigation when the wetted volume is within the root zone 

(Provenzano, 2007).  

 

The soil water dynamics in the case of SDI systems depend on factors such as soil type, initial 

soil moisture content, emitter discharge, the rate of water application, crop type, 

evapotranspiration, spacing, and depth of laterals (Kandelous and Šimůnek, 2010a;Subbaiah, 

2013). For optimum water application to the root zone in subsurface irrigation systems, there 

is need to determine precisely the depth of placement of laterals and spacing of emitters to 

minimize percolation losses (in the case of deeper depths) or soil  evaporation in the case of 

too shallow depths (Kandelous and Šimůnek, 2010b).   
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The determination of soil water distribution around an irrigation emitter can be determined 

using laboratory and field experiments or by using simulation models (Subbaiah, 2013). 

However, carrying out field measurements using variety of soils with variable emitter flow 

rates and irrigation methods for purposes of investigating the soil water distribution is costly 

and require a considerable amount of time (Phogat et al., 2012). Soil water distribution models 

can be categorized into analytical, numerical and empirical.   

 

Analytical methods give an exact solution, however, they are usually used to solve the water 

flow equations under specific conditions (Naglič et al., 2012) and therefore the results need to 

be used as a guideline (Thorburn et al., 2003). Due to non-linearity of the equation governing 

soil water flow, it is difficult to solve using analytical methods and in addition, the models 

developed are based  on assumptions of soil homogeneity  and uniform initial soil moisture 

distribution (Naglič et al., 2012),  simple geometries of transport domain (Subbaiah, 2013), 

and source configuration and thus limit their use in trickle irrigation management (Cote et al., 

2003). 

 

Numerical models solve variably saturated flow problems, using finite difference, finite 

element, or some other kinds of boundary approximation techniques, finite volumes  and 

reformulating the partial differential equations (Öztekin, 2002;Naglič, 2014). Numerical 

methods have become popular because of the limitations of analytical models which are based 

on numerous assumptions. Numerical models require fewer assumptions, inbuilt into them, but 

require considerable computing power (Cook et al., 2006). However, with the recent 

advancement in computer technology,  with fast computer speeds, numerical models have 

gained wide applicability (Kandelous and Šimůnek, 2010b;Naglič, 2014).  

 

HYDRUS 2D/3D is a model used for the simulation of water movement and solute transport 

in 2D/3D variably-saturated porous media (Šimůnek et al., 2006). HYDRUS 2D/3D is superior 

to other models because of its user-friendly Windows-based interface unlike the DOS-based 

numerical codes of other numerical models such as SWMS-2D and in addition it accounts for 

root water uptake (Šimůnek et al., 2008). The model has been applied successfully to simulate 

soil water distribution under various types of irrigation methods such as furrow irrigation 

(Zhang et al., 2013b), surface drip irrigation and SDI (Kandelous and Šimůnek, 2010b). For 

instance, Mante and Ranjan (2017), used HYDRUS 2D/3D in simulating the soil water contents 

in sandy loam under potato cultivation and found model efficiency values greater than 0.80 and 
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percent bias less than 10%. Similarly, Patel and Rajput (2010) found root mean square errors 

(RMSE)  and absolute error values less than 5% in the simulation of soil water content under 

SDI using HYDRUS 2D. Skaggs et al. (2004), satisfactorily simulated soil water content under 

drip irrigation with RMSE less than 0.04 cm3 cm-3.  From the studies above, it is evident that 

HYDRUS 2D/3D is suitable for simulating soil water distribution under irrigation systems. 

 

MTI is a relatively new irrigation technology whose design aspects such as spacing and depth 

of placement under varying soil types is still under investigation as discussed in Chapter 2. 

This study aimed at determining the soil water dynamics of MTI under loamy sand and sandy 

clay loam soils using laboratory experiments and numerical simulations. It was based on the 

hypothesis that soil texture influences the soil water distribution under MTI. The findings of 

this study would aid in the understanding of the soil water distribution under MTI which would 

be useful in its design and management.    

 

4.2 Materials and Methods 

 

This study was carried out using laboratory experiments and numerical modelling using 

HYDRUS 2D/3D as described in the following sub-sections.  

 

4.2.1 Laboratory experiment  

 

The experiments were conducted in the Soil and Water Engineering laboratory of the 

University of KwaZulu-Natal at the Ukulinga Research Farm, Pietermaritzburg. The 

experiment consisted of 100 cm long, 50 cm wide and 100 cm high wooden soil box with one 

face made of transparent Plexiglas. The Moistube pipe was placed 20 cm below the top surface. 

The soil water content was measured using MPS-2 sensors installed at depths of 5 cm (T3), 10 

cm (T2), 15 (T1) cm, 20 cm (D0), 30 cm (D1), 40 cm (D2) and 50 cm (D3) and laterally at 10 

cm (S1), 20 cm (S2) and 30 cm (S3). The MPS- 2 sensors were calibrated in the laboratory 

using gravimetric measurements. The measurements were recorded every 5 mins for 72 hours. 

The experimental set- up is illustrated in Figure 4.1. The soil was sieved through 2 mm sieve 

to remove stones and gravel and placed in the soil bin gently to avoid compaction. The soil 

textures were loamy sand and sandy clay loam with the characteristics shown in Table 4.1.  
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Figure 4.1 Experimental layout 

 

Table 4.1 Soil textural characteristics 

Soil textural class  Sand (%) Silt (%) Clay (%) Bulk density (g cm-3) 

Loamy sand   84.9 9.3 5.8 1.5 

Sandy clay loam  62.3 12.7 25.1 1.3 

 

4.2.2 Numerical modelling  

 

The uniformly and variably saturated movement of water through a porous media can be 

described by the mixed form of the Richards’ Equation as in Equation 4.1  (Šimunek et al., 

2007); 
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where 𝜃 = volumetric water content [L3L-3], h = soil water pressure head [L]; K = unsaturated 

hydraulic conductivity [LT-1]; Kij
A = elements of a dimensionless anisotropy tensor KA (it is a 

unit matrix for isotropic media); S = general sink/source term [L3L-3T-1] which accounts for 

uptake of water by the roots; t = time [T]; and xi = spatial coordinate [L]. The first and second 

terms on the right side of Equation 4.1 accounts for capillarity and gravity effects, respectively 

(Naglič, 2014). 
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However, the water flow in line sources such as MTI is a two-dimensional problem and so the 

governing equation, assuming homogeneous and isotropic soils, is the 2D form of RE 

(Equation 4.2) (Skaggs et al., 2004); 
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where, θ, K, h, and t are as described in Equation 4.1 while x, is the horizontal space coordinate 

and z, is the vertical space coordinate.  

 

HYDRUS 2/3D uses the Galerkin finite element technique to solve the 2D or 3D form of RE 

represented in Equations 4.1 and 4.2 (Kandelous and Šimůnek, 2010b). The finite element 

method is applied to a network of triangulated elements and the time integration is achieved 

through backward implicit finite difference scheme (Kandelous et al., 2012).  

 

a) Soil hydraulic parameters  

Model set-up requires specification of soil hydraulic parameters in the van Genuchten Equation 

described by the van Genuchten-Mualem constitutive relationships as represented by Equations 

4.3 to 4.5 (Skaggs et al., 2004); 

 

𝜃(ℎ) =  {
𝜃𝑟 +

𝜃𝑠−𝜃𝑟

(1+|𝛼ℎ|𝑛)𝑚

 𝜃𝑠 
} 

ℎ < 0
 ℎ ≥ 0

      (4.3) 

 

𝐾(ℎ) = 𝐾𝑠𝑆𝑒
𝑙  [1 − (1 − 𝑆𝑒

1/𝑚
)𝑚]

2
      (4.4) 

 

𝑆𝑒 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
     , 𝑚 = 1 −

1

𝑛
       (4.5) 

where; θ = Volumetric water content [L3 L-3], h = soil water pressure head [L], Se = effective 

saturation, θs = saturated water content [L3 L-3]; θr = residual water content [L3 L-3]; K = 

unsaturated hydraulic conductivity [LT-1]; Ks = saturated hydraulic conductivity [LT-1]; and α, 

m, n and l = empirical coefficients that affect shape parameters of the hydraulic functions.  

 

The soil hydraulic properties were initially estimated using ROSETTA (Schaap et al., 2001) 

with percentages of clay, silt and sand and bulk density as inputs. The saturated hydraulic 
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conductivity was measured using constant head permeability apparatus. The initial hydraulic 

parameters of the two soil textures are shown in Table 4.2.  

 

Table 4.2 Initial soil hydraulic parameters (van Genuchten-Mualem model) 

Texture class θr (cm3 cm-3) θs (cm3 cm-3) α (cm-1) n Ks (cm day-1) l 

Loamy sand 0.0486 0.3993 0.0382 2.0962 189.48 0.5 

Sandy clay loam 0.0738 0.4766 0.0216 1.4119 54.67 0.5 

 

b) Transport domain  

The transport domain consisted of 100 cm by 100 cm with the Moistube lateral placed at a 

depth of 20 cm from the top surface. However, due to symmetry, one side was used in the 

simulation as illustrated in Figure 4.2. The transport domain was discretized into 2311 nodes 

and 4444 finite elements with finer grid around the Moistube (0.2 cm) and coarser grid (1 cm) 

in the remaining surface. Observation nodes were placed at co-ordinates corresponding to 

sensor positions as illustrated in Figure 4.1.  

 

c) Initial and boundary conditions  

The initial conditions were specified in terms of constant pressure as measured by the MPS-2 

sensors. The initial pressure heads were 2000 kPa and 3000 kPa for loamy fine sand and sandy 

clay loam, respectively. The boundary conditions were constant flux at the location of the 

Moistube lateral, free drainage at the bottom boundary and no flux at the sides of the 

rectangular domain as indicated in Figure 4.2.  The constant flux of  21.85 cm day -1 was 

obtained by dividing the Moistube flow rate by the model surface area (1 cm radius located 20 

cm below the top boundary) as in Equation   4.6 (Skaggs et al., 2004); 

areasurface

rateflow
q =        (4.6) 

where q = water flux (LT-1) 
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Figure 4.2 Boundary conditions 

 

d) Model calibration and evaluation  

The initial soil hydraulic properties in Table 4.2 were adjusted until the model simulations 

closely matched the observed soil water contents. The calibrated hydraulic characteristics are 

illustrated in Table 4.3. 

 

Table 4.3 Calibrated soil hydraulic parameters (van Genuchten-Mualem model) 

Texture class θr (cm3 cm-3) θs (cm3 cm-3) α (cm-1) n Ks (cm day-1) l 

Loamy sand 0.0473 0.3796 0.0367 2.0716 178.23 0.5 

Sandy clay loam 0.0736 0.4610 0.0216 1.4102 42.32 0.5 

 

Model assessment was done using coefficient of determination (R2), root mean square error 

(RMSE) and percent bias (PBIAS) as in Equations 4.7 – 4.9 (Moriasi et al., 2007);  

 

Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋 − 𝑌)2𝑛

𝑖=1          (4.7) 

where; X = Observed value of the parameter being evaluated, Y= Simulated value of the 

parameter being evaluated, n = total number of observations and i = numbers 1, 2, 3 …n 
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Percent Bias (PBIAS) 

𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑋−𝑌)𝑛

𝑖=1

∑ 𝑋𝑛
𝑖=1

          (4.8) 

  

where PBIAS is the deviation of data being evaluated, expressed as a percentage and X, Y, n 

and i are as described in equation 4.7. The lower the RMSE and PBIAS values, the better the 

model performance. 

 

Coefficient of Determination (R2) 

𝑅2 = [
𝑛(∑ 𝑋𝑌)−(∑ 𝑋)(∑ 𝑌)

√[𝑛 ∑ 𝑋2−(∑ 𝑋)
2

][𝑛 ∑ 𝑌2−(∑ 𝑌)
2

]

]

2

      (4.9) 

where X, Y, n and i are as described in equation 4.7 

Values of R2 greater than 0.5 indicate better model performance. A value of 1 indicate a perfect 

model while a value of 0 indicates a poor model.  

 

e) Data analysis  

The difference between the soil water distribution and soil water contents between the soil 

types was analysed using analysis of variance (ANOVA) with 95% confidence interval.  

 

4.2.3 Scenarios  

 

Micro-irrigation systems such as drip can be improved through adjustment of system designs 

and management strategies with the aim of minimizing water losses such as drainage (Cote et 

al., 2003). Among the options of improving the performance of trickle irrigation systems, by 

optimizing the wetted volume, is the selection of optimum emitter flow rate taking into 

consideration the soil properties. Therefore, in line with the above strategy, the Moistube 

placement depth was maintained at 20 cm and the wetting pattern dimensions were simulated 

using HYDRUS -2D/3D for discharges of 0.2 ℓ hr-1m-1, 0.3 ℓ hr-1m-1 and 0.4 ℓ hr-1m-1 which 

corresponded to applied pressure of 20 kPa, 25 kPa and 30 kPa respectively.  This was guided 

by the manufacturer’s range of operating pressures of 20 – 60 kPa.  
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4.3 Results and Discussion 

 

This section describes the soil water dynamics in terms of the soil water distribution and the 

wetted dimensions as influenced by soil texture and Moistube discharge rates.  

 

4.3.1 Soil water distribution   

 

The results of soil water content variations with time and the soil water distributions for loamy 

sand and sandy clay loam are shown in Figures 4.3 to 4.6.  The simulated values were close to 

observed values in all the points considered as illustrated in Figures 4.5 and 4.6. For loamy fine 

sand the R2 values were between 0.74 and 0.99 while RMSE values ranged from 0.016 cm3 

cm-3 to 0.045 cm3 cm-3. In sandy clay loam, the R2 values ranged from 0.70 to 0.98 and RMSE 

were between 0.018 cm3 cm-3 to 0.045 cm3 cm-3 for all the observation points.   The PBIAS 

values were below 15.6% in all the points considered in both soil types.  The above results 

indicated that the model was satisfactory in predicting the water contents vertically and 

laterally. The model performance indicated in Figures 4.5 and 4.6 concurred with similar 

studies on the use of HYDRUS-2D in the simulation of soil water dynamics in SDI and MTI 

where RMSE values ranged from 0.01 to 0.049 (Siyal and Skaggs, 2009;Kandelous and 

Šimůnek, 2010b;Phogat et al., 2012;Fan et al., 2018b).  This demonstrates the suitability of 

HYDRUS 2D/3D in predicting the soil water dynamics in trickle irrigation systems.  

 

Soil texture influenced the soil water distributions. The water contents in loamy sand were 

significantly different in all the directions (p < 0.05). It was lowest in upward direction and 

highest in downward direction. However, in sandy clay loam, there was no significant variation 

in the water contents in all directions (p > 0.05). After 72 hours of irrigation the average water 

contents within 10 cm radius were 0.352 cm3 cm-3 and 0.201 cm3 cm-3 in sandy clay loam and 

loamy sand, respectively.   
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Simulated  

 

Observed  

Figure 4.3 Simulated and observed soil water distribution in loamy sand after 72 hours 
 

 

 

Simulated  

 

Observed  

Figure 4.4 Simulated and observed soil water distribution in sandy clay loam after 72 hours 
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Figure 4.5 Observed and simulated soil water contents at observation nodes in loamy sand 
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Figure 4.6 Observed and simulated water contents at observation nodes in sandy clay loam 
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4.3.2 Wetting pattern dimensions  

 

The dimensions of the wetted area in terms of downward and lateral distance are shown in 

Figure 4.7 under the same pressure of 60 kPa. The simulated values were close to the observed 

values with average RMSE and R2 values of 3.50 cm and  0.98, respectively. The model 

overestimated the wetting front distance by an average PBIAS of 13.56%. Therefore, the model 

was satisfactory in simulating the wetting pattern of MTI. In similar study on soil wetting 

pattern under SDI, Kandelous and Šimůnek (2010b) found that HYDRUS-2D simulated 

wetting dimensions satisfactorily with average RMSE value of 2.78 cm. In MTI, HYDRUS-

2D simulated the wetting patterns reasonably well with RMSE of 1.1 cm and 0.43 cm in 

vertically installed and horizontally laid arrangement, respectively (Fan et al., 2018a;Fan et al., 

2018b). The upward distance reached the soil surface in sandy clay loam and thus, the upward 

wetted distance is not presented. Fan et al. (2018b), found that for sandy loam, loam and silt 

loam soil under pressure heads of 0.6 m, 1.2 m and 1.8 m, the wetting front reached the soil 

surface when the Moistube placement depth was 20 cm below the soil surface.  

 

Moistube is designed to provide water continuously unlike conventional types such as drip 

where water is supplied intermittently (Zhang et al., 2015a;Sun et al., 2018). Therefore, the 

wetting pattern dimensions over 24-hour period is important to determine the appropriate 

placement depth and spacing of Moistube laterals. From Figure 4.7, the lateral and downward 

distances were 23 cm and 24.6 cm respectively for loamy fine sand after 24 hours. Similarly, 

for sandy clay loam, the lateral and downward distance was 19 cm. Although, the wetted 

volume is larger in loamy sand, its average water contents were lower than in sandy clay loam. 

Therefore, depending on the type of the crop, the spacing of Moistube laterals should consider 

the soil texture as it would influence the available soil water.  
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Figure 4.7 Observed and simulated wetted distances for loamy sand and sandy clay loam 

 

4.3.3 Effect of discharge on the wetting dimensions  

 

The results of model simulations for the wetting dimensions (upward, lateral and downward) 

for the two soil types are shown in Figure 4.8. The wetting dimensions increased with 

increasing discharge and time. This was consistent with findings by Fan et al. (2018b) where 

the soil wetting pattern under MTI was positively correlated with pressure head for a given soil 

texture and initial soil water content.  

 

Soil texture significantly influenced the downward movement of water whereby after 24 hours, 

the downward distance was 21.4 cm in loamy sand and 16.8 cm in sandy clay loam for the 

discharge of 0.4 ℓ hr-1m-1. On average, the downward distance was 26% farther in loamy sand 

than in sandy clay loam.   However, there was no significant difference ithe upward distance 

between the two soil textures (18.7 cm and 15.8 cm in sandy clay loam and loamy sand 

respectively). For a given discharge the size of the wetted volume was smaller in sandy clay 
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loam than in loamy sand. Similar studies by Fan et al. (2018b) on horizontally laid Moistube 

and Fan et al. (2018a) for vertically installed Moistube found that the soil wetted volume was 

smaller in the finer textured soil than in the coarser-textured soil.  

 

An optimum installation depth for subsurface irrigation systems require a balance between 

maintaining dry soil surface and minimizing deep percolation losses. Unlike in the previous 

sub-section (discharge of 0.58 ℓ hr-1m-1) where the wetting pattern reached the soil surface, the 

wetting pattern were all below the soil surface after 24 hours. This showed that at the Moistube 

placement depth of 20 cm, the operating pressure should be between 20 – 30 kPa (discharge of 

0.2 – 0.4 l ℓ hr-1m-1) for these soil textures. In subsurface porous pipes Ashrafi et al. (2002) 

found that the wetting pattern geometry is sensitive to the installation depth and the irrigation 

amount for a given soil texture.  

 

The wetted dimensions (upward, lateral and downward), for a given soil texture, can be 

represented as power function of time (Equation 4.10) 

𝐷 = 𝑏𝑡𝑐         (4.10) 

where D = wetted dimension (cm), b = constant which depends on the discharge rate and soil 

type, and c = empirical constant. The value of b increases with increasing discharge (2.9 to 3.7 

and 3.6 to 4.4 for sandy clay loam and loamy sand, respectively) while c is approximately the 

same value for the two soil textures (≈ 0.5).   

 

Crop establishment in subsurface irrigation systems  is a challenge especially in light-textured 

soils due to the domination of gravity than capillary forces (Charlesworth and Muirhead, 2003). 

For the given installation depth of 20 cm, crop establishment under MTI for sandy clay loam 

and loamy sand could be achieved with discharge of 0.3 ℓ hr-1m-1 and 0.4 ℓ hr-1m-1 where the 

upward soil water movement reached about 5 cm below the soil surface after 24 hours of water 

application (Figure 4.8). To allow for crop establishment under 0.2 ℓ hr-1m-1, a shallower 

Moistube installation depth need to be considered. However, the placement should not be too 

shallow to allow water to reach the soil surface as this would contribute to water losses via 

evaporation.  
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Figure 4.8 Simulated wetted dimensions under varying discharge  
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RSME ≤ 3.99 cm and PBIAS ≤ 19.3%) indicating the suitability of the model in determining 

the soil water distribution under MTI. The use of models would overcome the challenges of 

using costly and time-consuming field and laboratory conditions.  

 

The results of this study indicated that the soil water distribution in MTI depend on the soil 

texture and discharge. The soil water content and wetting dimensions increased with increasing 

discharge. The optimum depth and spacing of Moistube laterals can be obtained by varying the 

discharge with the aim of minimizing runoff, soil evaporation and percolation water losses. For 

sandy clay loam and loamy sand, a discharge of between 0.2 ℓ hr-1m-1 and 0.4 ℓ hr-1m-1 

maintained a dry soil surface over 24 hours of continuous irrigation and minimized deep 

percolation as well when the Moistube was placed at a depth of 20 cm.  

 

This study was carried out for two medium soil textures which are closely related with sand 

content above 60% and clay content less than 30%. Further research on heavy textured soils 

would help in understanding fully the soil water dynamics under MTI. The soil water dynamics 

under subsurface irrigation is also influenced by crop characteristics besides the soil texture 

and system parameters. Therefore, further studies are required to determine the soil water 

dynamics of Moistube irrigation considering root water uptake and under actual field 

conditions. This is covered in Chapter 5 where the soil water distribution under cowpea was 

determined.   
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5. SOIL WATER DISTRIBUTION UNDER MOISTUBE IRRIGATED 

COWPEA (Vigna unguiculata (L.) Walp)  

 

Edwin K. Kanda, Aidan Senzanje, Tafadzwanashe Mabhaudhi 

Abstract  

The determination of the soil water dynamics while considering crop evapotranspiration is 

necessary for optimal design and management of irrigation systems thereby minimizing water 

losses by soil evaporation, surface run-off and deep percolation. Moistube irrigation (MTI) is 

a type of technology which uses semi-permeable membrane to emit water continuously in 

response to the soil water potential and the applied pressure. Soil water dynamics under MTI 

incorporating plant water uptake has not been studied. Moreover, cowpea is a neglected but 

important legume which, if promoted, could help in improving the livelihoods of rural 

households. Therefore, this study aimed at determining the soil water distribution of Moistube 

irrigated cowpea. The effect of Moistube placement depth on the soil water dynamics under 

MTI was also determined.  It was based on the hypothesis that root water uptake is influenced 

by the Moistube placement depth. The experiment was carried out in tunnels with MTI and 

subsurface drip irrigation (SDI) as a control. HYDRUS 2D/3D model was calibrated and 

thereafter used to simulate the soil water dynamics under 10 cm, 15 cm, 20 cm, and 30 cm 

Moistube placement depths in loam and clay soils. The simulated soil water contents closely 

matched (R2 ≥ 0.57 and RMSE ≤ 0.029 cm3 cm-3) the observed values for both MTI and SDI. 

The simulation errors were less than 10% indicating that HYDRUS 2D/3D can be used in the 

simulation of water dynamics of irrigated cowpea. There was no significant difference between 

the root water uptake (RWU) in SDI and MTI (p > 0.05). Water loss through drainage was 

significantly higher (p < 0.05) under SDI than MTI in loam while it was negligible in clay for 

both irrigation types. Drainage increased with increased Moistube placement depth. The 

Moistube placement depth did not significantly affect the RWU in loam but increased with 

increased placement depth in clay up to a maximum value at 20 cm depth. The interaction 

between the distribution of root water uptake and the soil water distribution indicated that a 

suitable placement depth for cowpea under MTI was 15 cm in loam and 20 cm in clay. This 

would balance between soil evaporation and percolation water losses and root water uptake.  

 

Keywords: HYDRUS 2D/3D, subsurface irrigation, root water uptake, soil water dynamics 

modelling  
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5.1 Introduction  

 

Optimization of water use in agriculture requires better estimation of soil water dynamics by 

incorporating the two important processes of evapotranspiration and drainage (Shelia et al., 

2018). It is imperative to ensure that the water applied remains within the root zone to minimize 

water and nutrient losses via drainage. In subsurface irrigation systems, the optimum placement 

depth of drip laterals is necessary to ensure that it is neither too deep nor shallow. This requires 

the knowledge of the soil water dynamics.  

 

Soil water distribution under cropped land is influenced by, among other factors, plant water 

uptake and the root characteristics in terms of the root length and distribution (Lubana and 

Narda, 2001). Root characteristics are a key driver which influence evapotranspiration and thus 

relevant in the process of deep percolation (Yu et al., 2016). The interaction between plant 

roots and the soil influence the movement of water in and out of the unsaturated zone (Vrugt 

et al., 2001). Understanding the root water extraction patterns due to root characteristics 

throughout the growth cycle helps in achieving effective use of water in irrigation by ensuring 

that water is applied where root activity is at a maximum and at a rate consistent with plant 

uptake (Andreu et al., 1997). Root distribution is important in the design of irrigation systems 

and the wider concept of agricultural water management as it affects the optimal water 

application rates, irrigation scheduling and drainage losses (Kandelous et al., 2012). Apart from 

soil texture, crop root characteristics determine the optimum depth of subsurface drip irrigation 

(SDI) laterals (Patel and Rajput, 2010).   

 

The determination of the soil water dynamics in cropped lands under irrigation or rainfed 

systems can be accomplished by use of field experiments or models.  Andreu et al. (1997), 

established that the soil water content varied in relation to the position of the plant roots relative 

to the emitter. In drip irrigation for corn, Coelho and Or (1996) found that root water uptake 

depended on the configuration (within the crop row or between rows) and whether the emitters 

were on the surface or buried. However, the field or laboratory determination of soil water 

distribution under a variety of soils and water regimes is costly and time consuming and 

therefore use of models is necessary.  

 

HYDRUS 2D/3D has been widely used in the simulation of soil water distribution under 

irrigated or rainfed agricultural systems. For example, Karandish et al. (2017) simulated the 
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effect of groundwater conditions on the soil water distribution in a canola field  under rainfed 

conditions. Their study demonstrated the usefulness of simulation models in the development 

of optimum scenarios for crop production under shallow groundwater conditions.  The model 

has also been used in the development of optimum irrigation schedules in drip systems for a 

variety of crops such as strawberry (García Morillo et al., 2017). Similarly,  Autovino et al. 

(2018) used HYDRUS 2D to simulate actual transpiration and soil water content in olive 

orchard and demonstrated the capacity of the model in designing irrigation scenarios which 

minimize water stress during critical crop growth stages. Egea et al. (2016) used HYDRUS 2D 

to determine the soil water dynamics and assess the effect of irrigation time on drainage loss 

under both full and deficit irrigation in hedgerow olive orchard field. In another study, Patel 

and Rajput (2010) used HYDRUS 2D to simulate the soil water distribution at different growth 

stages of potato which aided in the design of drip irrigation system which would minimize loss 

of water through drainage. Dabach et al. (2013) used HYDRUS 2D/3D to develop irrigation 

schedules of bean and bell pepper plants based on soil water status. In this study, irrigation 

thresholds and amounts were derived using triggered irrigation boundary condition in 

HYDRUS 2D/3D.  

 

HYDRUS 2D/3D model has also been used in the determination of optimum depth of 

placement of drip irrigation laterals and emitters. For instance, Patel and Rajput (2008) while 

using HYDRUS-2D, established that the optimum depth of drip irrigation laterals for the 

growth of onions was 15 cm. In eggplant production a suitable placement depth of 20 cm was 

found in sandy loam (Ghazouani et al., 2016). A similar study on eggplant by Müller et al. 

(2016) established that root density pattern had an effect on the spatial and temporal soil water 

distribution. This therefore implies that root water uptake needs to be considered for a better 

representation of the soil water distribution under irrigation. The above studies have 

demonstrated the ability of HYDRUS 2D/3D model in the development of optimum 

agricultural water management strategies.  

 

Moistube irrigation (MTI) is designed as continuous types of irrigation where water is supplied 

over a 24-hour period at a slow rate. As described in Chapter 4, there are few studies on soil 

water dynamics under MTI (Zhang et al., 2012;Niu et al., 2013b;Zhang et al., 2015a;Fan et al., 

2018b). However, no study has been done so far on the soil water dynamics in MTI under field 

conditions considering plant water uptake. This study, therefore, had two objectives; a) to 

determine the soil water dynamics of Moistube irrigated cowpea and b) to determine the effect 
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of Moistube placement depth on soil water dynamics of Moistube irrigated cowpea. It was 

based on the hypothesis that root water uptake is influenced by the Moistube placement depth. 

This would help in determining the appropriate depth of placement of Moistube tapes in 

cowpea production which minimizes water losses via drainage and soil evaporation and thereby 

improve the water use efficiency.  

 

5.2 Materials and Methods 

 

This study was accomplished by field experiments and numerically using HYDRUS 2D/3D as 

described in the following sub-sections. 

 

5.2.1 Tunnel experiments  

 

a) Controlled experiment  

The experiment consisted of cowpea planted in tunnels situated in the Controlled Environment 

Facility (CEF) at the University of KwaZulu-Natal, Pietermaritzburg (29o 35’ S and 30o 25’ E, 

806 m a.s.l). The cowpea (mixed brown variety) was planted on 14th February 2018 in rows of 

50 cm and 30 cm spacing between plants giving a plant population of 66667 plants ha-1. It was 

planted on raised beds measuring 75 cm by 11.5 m with soil layer of 0.6 m. Cowpea were 

planted under MTI with SDI as control with three replications. Each type of irrigation occupied 

one bed while the subplots representing replications were separated by 50 cm buffer. Each 

replication occupied a plot size of 3 m by 0.75 m. The Moistube and the drip tapes were placed 

at a depth of 15 cm. Phosphorous fertilizer were applied at a rate of 60 kg ha-1 Single 

Superphosphate (10.5% P) based on soil fertility tests conducted at Cedara Agricultural 

College. Other agronomic management practices such as weed, pest and disease control were 

done accordingly based on recommended best practices.  

 

Soil water contents were obtained by converting the daily matric potentials measured using 

MPS-2 sensors (Decagon, Inc. USA) placed at distances of 10 cm and 20 cm away from the 

Moistube lateral and at depths of 10 cm, 20 cm and 40 cm. For SDI, the sensors were placed at 

depths of 10 cm, 20 cm and 40 cm. Gravimetric water measurements were carried out 

occasionally and together with volumetric measurements obtained from EC-5 sensors 

(Decagon, Inc. USA) used to calibrate the MPS-2 measurements (Figure A.2) 
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b) Ukulinga experiment  

The experiment was carried at UKZN’s Ukulinga Research farm. It was carried out in a 12 m 

by 5 m tunnel with open ends to allow free movement of air. The experiment was laid out in a 

split-plot design arranged in randomized complete block design with SDI and MTI occupying 

the main blocks. The treatments were replicated three times. Cowpea spacing was like in the 

tunnel experiment at CEF, but the crop was planted on 25th May 2018. Soil fertility test 

conducted at Cedara Agricultural College indicated that the soil did not have nutrient 

deficiency at Ukulinga and therefore, fertilizer was not applied. Other best management 

practices were carried out as appropriate.  

  

Soil water content and Leaf Area Index (LAI) were measured weekly using PR2/6 profile Probe 

(Delta-T Ltd, UK) and LAI 2200 canopy analyser (LI-COR Inc. USA), respectively. The soil 

water contents were measured at depths of 10 cm, 20 cm, 30 cm and 40 cm.  

 

MTI was designed to supply water continuously throughout the crop cycle. However, due to 

limitation in the water regulation devices, it was not possible to water the crop 24 hours in a 

day throughout the season but was adjusted in such a way that the crop was irrigated between 

6 – 8 days and 3 – 5 days continuously every 10 days, depending on the crop water 

requirements, for CEF and Ukulinga experiments, respectively.  

 

5.2.2 Numerical modelling  

 

HYDRUS 2D/3D was used to simulate the soil water dynamics while considering plant water 

uptake. The procedure described in Chapter 4 was used with the modifications which are 

described in the following paragraphs.  

 

The soil in the CEF tunnel was a shallow soil layer having a loam textual classification (42.3% 

sand, 33.3% silt, 24.4% clay) and bulk density of 1.36 g cm-3. The soil at Ukulinga, on the 

other hand, was classified as clay (24.3% sand, 23.6% silt and 52.1% clay) with bulk density 

of 1.23 g cm-3. The saturated hydraulic conductivity was measured using double ring 

infiltrometer and Guelph Permeameter (Eijkelkamp, The Netherlands). The soil water 

retentions parameters were estimated using ROSETTA as explained in Chapter 4 using soil 
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texture, bulk density and the soil water contents at field capacity. The initial soil water retention 

characteristics are indicated in Table 5.1. 

 

Table 5.1 Initial soil water retention characteristics (van Genuchten-Mualem model) 

Texture class θr (cm3 cm-3) θs (cm3 cm-3) α (cm-1) n Ks (cm day-1) l 

loam 0.0705 0.4285 0.0114 1.4843 14.73 0.5 

Clay 0.1029 0.5206 0.0195 1.3075 10.24 0.5 

 

The values in Table 5.1 were adjusted until the simulated water contents closely matched the 

observed values as assessed with the help of statistical techniques described in section 5.3. The 

calibrated soil hydraulic parameters are illustrated in Table 5.2.   

 

Table 5.2 Calibrated soil water retention characteristics (van Genuchten-Mualem model) 

Texture class θr (cm3 cm-3) θs (cm3 cm-3) α (cm-1) n Ks (cm day-1) l 

loam 0.0655 0.4510 0.0109 1.4054 18.60 0.5 

Clay 0.0980 0.5304 0.0180 1.2061 3.24 0.5 

 

The plant water uptake is taken into account by the incorporation of the sink term  as in 

Equation 4.1 following the empirical model developed by Feddes et al. (1978) . The sink term 

(S), is the amount of water extracted from the soil per unit time as shown in Equation 5.1 

(Šimůnek et al., 2006).   

𝑆(ℎ) = 𝛽(ℎ)𝑆𝑝         (5.1) 

Where β(h) is the dimensionless water stress function which varies from zero to one, Sp is the 

potential water uptake (T-1).  

 

The potential root water uptake corresponds to the potential evapotranspiration and thus 

influenced by climatic parameters (Šimůnek and Hopmans, 2009). Root water uptake can be 

simulated as compensated or uncompensated where the former allows for water extraction in 

lower layers by water-stressed plants. However, in this study, compensated root water uptake 

was not considered since no water stress was imposed during the experiments. The model uses 

the two dimensional functions described in Vrugt et al. (2001).  Since, there is no measured 

data on root water uptake parameters for cowpea, the root water uptake model parameters 

adopted were for the common bean in the HYDRUS 2D/3D database. This included critical 
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pressure heads; PO (pressure head below which plant roots begin water extraction), POpt which 

is the pressure head below which the plant roots begin water extraction at maximum possible 

rate, P2H and P2L being the high and low pressure heads, respectively, below which the 

maximum root water extraction is no longer possible, and P3 which is the pressure head 

corresponding to wilting point (Li et al., 2015). The root water distribution was assumed to 

vary linearly with depth. The HYDRUS 2D/3D water uptake and root parameters used in the 

study are indicated in Table 5.3. 

 

Table 5.3 Root water uptake parameters based on common bean 

Parameter  Value  

Root water uptake   

Root water uptake model  Feddes, et al. (1978) 

Critical pressure heads (cm) PO = -10, POpt = -25, P2H = -750, P2L = -2000,  

P3 = -8000 

Limiting potential transpiration rates 

(cm day-1)  

r2H = 0.5, r2L = 0.1  

Root distribution   

Maximum rooting depth, Zm (cm) 60 

Depth of maximum root density (cm) 20 

Maximum rooting radius, r (cm) 20 

Radius of maximum root density (cm) 10 

Empirical parameters  Pz = Px = 1 

 

The simulation domain was 25 cm (corresponding to half the row spacing) by 100 cm. The 

finite element mesh was discretized into 1828 triangular nodes, 175 1-D and 3479 2-D elements 

by using a grid size of 0.2 cm around the location of the water source (Moistube or dripper) 

and 1 cm on the other areas. The boundary conditions (BC) were variable flux (determined 

using Equation 4.6) of 0.25 cm hr-1 and 5.41 cm hr-1 under MTI and SDI, respectively. The 

variable flux BC was placed at 15 cm where the Moistube and drip tape were located and 

atmospheric BC at the top of the domain to allow for evapotranspiration fluxes. The lower 

boundary was free drainage while the other remaining boundaries were assigned no flux BC as 

shown in Figure 5.1.  The soil water content at planting was the initial conditions in the model.  
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Figure 5.1 Boundary conditions 

 

HYDRUS 2D/3D requires input of separate values of potential soil evaporation and 

transpiration. Therefore, evapotranspiration (ET) was split into potential transpiration (Tp) and 

evaporation (Ep) using Beer’s law represented by Equations 5.2 and 5.3 (Šimůnek et al., 2013); 

Tp = ET𝑐 × [1 − exp(−𝜆 × LAI)]        (5.2) 

Ep = ETc × exp(−𝜆 × LAI)         (5.3) 

where ETc = potential crop evapotranspiration = ET0 × Kc    (5.4) 

𝜆 = light extinction coefficient, LAI = leaf area index,  

ETo = reference crop evapotranspiration, and Kc = crop coefficients 

 

The ETo values were computed using FAO Penman-Monteith method described by Allen et al. 

(1998) using daily weather data from the study sites. LAI values were measured weekly using 

LAI-2200 canopy analyser. The light extinction coefficient for cowpea obtained by Chimonyo 

et al. (2018) was used in this study. The values for partitioned ET into Tp and Ep are indicated 

in Figure 5.2. The LAI values were very low during winter (Figure 5.2b) due to low temperature 

which inhibited most of the growth parameters and thus the Ep values were not low, as 

expected, during the mid-season stage.  
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a) 

 

b) 

 

Figure 5.2 Potential evaporation (Ep) and transpiration (Tp) 

 

Simulations were run for 100 days and 105 days for CEF and Ukulinga experiments, 

respectively, which were the growing periods for cowpea.  

 

5.2.3 Effect of Moistube placement depth and soil texture on soil water dynamics  

 

After successful model calibration and validation through the adjustment of the hydraulic 

properties (Tables 5.1 and 5.2) until the simulated water contents closely matched the observed 
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values, the model was used to determine the optimum placement depth of Moistube laterals. 

This was obtained by simulating the soil water dynamics under four Moistube placement depths 

of 10 cm, 15 cm, 20 cm and 30 cm and the two soil types, i.e. clay and loam described in Table 

5.2. The boundary conditions were maintained as illustrated in Figure 5.1.  The atmospheric 

boundary conditions for CEF data was utilized for the two soil types. The root distribution 

parameters were the same as in Table 5.3.  

 

The initial soil water content was obtained by solving Equation 5.5 (Selim et al., 2013);   

θe =
θi−θr

θs−θr
         (5.5) 

 where θe = effective saturation θi = initial volumetric water content [L3 L-3], θs = saturated 

water content [L3 L-3]; and θr = residual water content [L3 L-3]. Selim et al. (2013) used θe 

values of 0.25 cm3 cm-3 and 0.33 cm3 cm-3 which corresponded to 54% and 70% of the average 

saturated soil water contents of the soils used in the study. Therefore, in the present study, 60% 

of the average saturated soil water contents for the two soils (Table 5.2) which gave θe of 0.30 

cm3 cm-3 was used. Therefore, the initial soil water contents were 0.18 cm3 cm-3 and 0.23 cm3 

cm-3 for loam and clay soil, respectively.  

 

5.3 Data Analysis and Model Evaluation  

 

The performance of HYDRUS 2D/3D model in simulating the soil water dynamics was 

assessed using RMSE and R2 as described in Chapter 4. The difference between the two types 

of irrigation was assessed using ANOVA at 95% confidence interval.  

 

5.4 Results and Discussion  

 

The model performance as assessed by comparing the observed and simulated soil water 

contents is described in this section as well as the root water uptake and drainage fluxes in MTI 

and SDI. The effect of Moistube placement depth and soil texture on the soil water dynamics 

is also discussed in this section.  
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5.4.1 Soil water content  

 

The simulated and observed soil water contents are indicated in Figures 5.3 to 5.6. The results 

indicate that simulated soil water content reasonably matched (R2 ≥ 0.68 and RMSE ≤ 0.026 

cm3 cm-3) the observed values in all the points considered under MTI for both experimental 

sites. Similarly, the simulated water contents over the growing period closely matched (R2 ≥ 

0.57 and RMSE ≤ 0.029 cm3 cm-3) the observed values under SDI indicating satisfactory model 

performance. In general, the errors in the simulated soil water contents were less than 10% 

which indicated that HYDRUS 2D/3D can be used in simulating the soil water dynamics of 

cowpea under SDI and MTI. The results of the simulations in this study were consistent with 

other studies reported in literature on use of HYDRUS 2D/3D in the simulation of soil water 

dynamics of various crops under irrigation. For instance,  Zhang et al. (2017b) reported RMSE 

values less than 0.029 cm3 cm-3 when simulating the soil water contents of cotton under SDI 

and border irrigation. Similarly, Li et al. (2015) found an average RMSE value of 0.039 cm3 

cm-3 in the simulation of soil water contents in inter-cropped corn-tomato field under drip 

irrigation. In potato production under SDI, HYDRUS 2D simulated the soil water contents 

satisfactorily with RMSE of 0.012 cm3 cm-3 (Mguidiche et al., 2015). Phogat et al. (2012) 

reported RMSE less than 0.046 cm3 cm-3  and 0.032 cm3 cm-3 in the simulation of soil water 

contents under intermittent and continuous surface drip irrigation, respectively, of almond tree.  

Egea et al. (2016) found RMSE values of between 0.035 cm3 cm-3 and 0.056 cm3 cm-3 during 

the simulation of soil water dynamics in full and deficit irrigated orchard. Finally, Xi et al. 

(2016) reported RMSE less than 0.038 cm3 cm-3 when simulating soil water contents of Chinese 

white poplar (Populus tomentosa) under SDI. The above results demonstrated that HYDRUS 

2D/3D can be used reliably in the simulation of soil water dynamics of irrigated crop systems.  
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Figure 5.3 Observed and simulated soil water content under cowpea for SDI at CEF (Loam 

soil) 
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Figure 5.4 Observed and simulated soil water content under cowpea for MTI at CEF (loam 

soil) 
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Figure 5.5 Observed and simulated soil water contents under cowpea for SDI at Ukulinga (clay 

soil) 
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Figure 5.6 Observed and simulated soil water contents under cowpea for MTI at Ukulinga 

(Clay soil) 
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water contents were above and within FC about 10 cm radii from the dripper and Moistube, 

respectively. In clay soil, the soil water content was within the FC under MTI (Figure 5.8) but 

slightly above FC but below saturation under SDI.  Similar results were reported by Patel and 

Rajput (2008) where a saturated zone was found within 9 cm radius around a SDI dripper in 

onion. The downward movement was faster in clay under SDI than under MTI where the soil 

was dry below 35 cm in the latter. The lateral movement of water was faster under SDI than 

MTI.  

SDI 

 

MTI 

 

Figure 5.7 Soil water distribution in loam at Day 30 
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Figure 5.8 Soil water distribution in clay at Day 30 
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5.4.3 Root water uptake and drainage fluxes 

 

HYDRUS 2D/3D simulates the plant water uptake as a function of the potential crop 

transpiration and the soil water status (Mante and Ranjan, 2017). The simulations for actual 

root water uptake (RWU) under SDI and MTI are shown in Figure 5.9. There was no difference 

in the RWU between the two types of irrigation for the CEF experiment implying that none 

induced water stress to the crop, since according to Deb et al. (2013), the RWU is relatively 

lower under water stress than under well-watered conditions when compensatory mechanism 

is not considered. Similarly, there were no significant differences between the seasonal RWU 

in SDI and MTI at Ukulinga trial, although towards the end MTI recorded higher values than 

SDI.  The drainage fluxes for SDI was significantly higher (p < 0.05) than MTI especially after 

mid-season stage (Figure 5.10). Drainage was negligible at Ukulinga trials under both SDI and 

MTI.  

 

  

Figure 5.9 Actual root water uptake of cowpea 
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Figure 5.10 Drainage flux under MTI and SDI 

 

5.4.4 Effect of Moistube placement depth and soil texture on soil water dynamics  

 

The soil water distributions in loam and clay soil in 10 cm, 15 cm, 20 cm and 30 cm Moistube 

placement depths at Day 50 are shown in Figures 5.11 and 5.12. The soil water content above 

the Moistube decreased with increasing placement depth. The soil water content was within 

the FC within 10 cm radius under Moistube placement depth of 10 cm and 15 cm. Greatest 

downward movement occurred under 30 cm placement depth in loam soil which implied loss 

of water out of the root zone.  The downward movement of water was limited in clay soil in all 

the four depths.  
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Figure 5.11 Soil water distribution in loam at different Moistube placement depths at Day 50 
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Figure 5.12 Soil water distribution in clay at different Moistube placement depths at Day 50 

 

The distribution of roots of a particular crop influences the soil water dynamics and root water 

uptake distribution and water loss through deep percolation (Kandelous et al., 2012). The 

distribution of the root water uptake under the four placement depths in loam is indicated in 

Figure 5.13. The maximum root water extraction occurred in the upper 20 cm of the soil layer. 

From the results, the soil water content (Figure 5.11) was lower in the upper 20 cm under 

placement depth of 30 cm and thus not suitable since the maximum root water uptake (Figure 

5.13) was above the maximum water content zone.  Similarly, the root water uptake distribution 

in clay soil was higher in the upper 20 cm of the soil (Figure 5.14). The root water uptake at 

placement depth of 30 cm was negligible in upper 5 cm below the surface which is attributed 

to low soil water content as shown in Figure 5.12.  
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Figure 5.13 Root water uptake distributions in loam at Day 50 

 

The root water extraction pattern illustrated in Figure 5.13 decreases in a linear pattern from 

the upper to lower soil layers.  This could be explained as a standard root water uptake of 40%, 

30%, 20% and 10% in the upper to lower soil layers, respectively during optimum water 

availability conditions (Steduto et al., 2009). This imply that placement depths of irrigation 

laterals need to ensure enough water is available in the upper soil layers.   
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Figure 5.14 Root water uptake distribution in clay at Day 50 

 

The seasonal water balance for the 10 cm, 15 cm and 20 cm and 30 cm Moistube placement 

depths were obtained from the cumulative fluxes simulated by HYDRUS 2D/3D. The 

proportion of drainage, evaporation and root water uptake as a percentage of the applied water 

is shown in Figure 5.15. In loam soil, the root water uptakes were the same for all the depths 

except at 30 cm where it was slightly lower. However, in clay soil, the root water uptake 

increased with increasing placement depth until 20 cm and declined at 30 cm. The water loss 

via drainage in loam soil increased with increasing placement depth. This concurred with a 

study by  Fan et al. (2018b) where deeper installation depth of Moistube tapes enhanced 

downward movement of water.  There was no difference between the drainage under 10 cm 

and 15 cm placement depths in loam soil. In clay soil, drainage was insignificant in all the 

placement depths. This was expected due to the low hydraulic conductivity in clay soil which 

hinders rapid downward movement.  Soil evaporation increased with decrease in the placement 

depth. There was no significant difference in soil evaporation in loam soil at 10 cm, 15 cm and 

20 cm placement depths except at 30 cm where it was significantly lower, respectively.  
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Figure 5.15 Soil water balance components under difference Moistube placement depths 

 

The choice of the optimum placement depth in subsurface irrigation systems is based on two 

factors; the need to minimize water loss through evaporation and drainage while ensuring that 

the wetting front is close to the soil surface for crop establishment. Balancing between 

evaporation and drainage losses, a suitable placement depth of 15 cm could be considered ideal 

for cowpea under MTI in loam soil. In clay soil, 20 cm could be the suitable placement depth 

as it had highest root water uptake than the other depths. There are few studies on SDI on 

cowpea production. One such study was by  DeTar (2009) where the drip laterals were placed 

at a depth of 26 cm.  

 

There is no study in literature on the optimum placement depth in MTI for cowpea or any other 

related species. However, Moistube placement depths for few other crops are described in 

Chapter 2 and recap of some of the examples is provided here. The suitable Moistube placement 

depth for optimum tomato production in silt loam was found to be 10 cm (Lyu et al., 2016;Niu 

et al., 2017). In a study by Tian et al. (2016), a Moistube placement depth of 20 cm was found 

suitable for sunflower growth. Niu et al. (2013b) established that a suitable Moistube placement 

depth of between 15 and 20 cm in clay loam. Therefore, the choice of Moistube placement 

depth is influenced by the root characteristics and the soil texture (Fan et al., 2018a). Generally, 

in subsurface irrigation systems such as drip, shallower installation depth is required in light-

textured soils than heavy-textured soils (Camp, 1998).   
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5.5 Conclusion 

  

The objectives of this study were to determine the soil water dynamics of cowpea under MTI 

and the effect of Moistube placement depth on soil water dynamics of Moistube irrigated 

cowpea. It was based on the hypothesis that root water uptake is influenced by the Moistube 

placement depth. This was achieved using field experiments and numerical simulations with 

HYDRUS 2D/3D.  

 

The simulated temporal and spatial soil water contents closely matched the observed values 

with average R2 of 0.78 and RMSE of 0.017 cm3 cm-3 under MTI in both experimental sites. 

The model also satisfactorily simulated the soil water contents under SDI with average R2 of 

0.68 and RMSE of 0.026 cm3 cm-3. The errors were less than 10% which indicated satisfactory 

model performance. The root water uptakes were similar under MTI and SDI indicating that 

there was no water stress over the growing period. The water movement was faster under SDI 

than MTI. The cumulative drainage over the growing period was significantly higher in SDI 

than in MTI.  

 

The satisfactory performance of HYDRUS 2D/3D in this study indicates that it can be used to 

assess various design options like appropriate placement depths. The effect of Moistube 

placement depth on soil water dynamics in cowpea under MTI in clay and loam soil was also 

determined. The results indicated that soil evaporation was inversely proportional with 

Moistube placement depth. Drainage increased with increasing placement depth. Plant water 

uptake was not affected by placement depth in loam. In clay soil, on the other hand, plant water 

uptake increased with increase in placement depth until 20 cm but declined slightly at depth 30 

cm. Therefore, the hypothesis of this study could be accepted for clay but rejected with respect 

to loam soil. Based on the soil water distribution, root water uptake and balancing between soil 

evaporation and drainage water losses, the optimum Moistube placement depth was 15 cm and 

20 cm in clay and loam, respectively.  

 

This study was limited to loam and clay soils. The soil water dynamics in other soil types, crops 

and Moistube discharges need to be investigated. This would give general guidelines on the 

appropriate placement depths in MTI.  Considering that the root characteristics of cowpea were 

assumed, there is need for experimental determination of the spatial root distribution for 
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accurate determination of the root water uptake. This study considered macroscopic root water 

uptake without compensation. Further studies need to be carried out to determine compensated 

root water uptake dynamics under water stress conditions.  The finding in this study, indicating 

that the root water uptake was not significantly different under MTI and SDI was further 

explored in Chapter 6 where the response of cowpea under the two irrigation types was 

determined.  
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6. RESPONSE OF COWPEA (Vigna unguiculata (L.) Walp) TO 

VARYING WATER REGIMES UNDER MOISTUBE IRRIGATION 

 

Edwin K. Kanda, Aidan Senzanje, Tafadzwanashe Mabhaudhi 

 

Abstract  

Cowpea is among the neglected and underutilized indigenous legumes. Water is one of the 

major factors limiting cowpea production. Although, irrigation helps in stabilizing crop yields, 

it is the largest water consuming sector. Therefore, there is need for the adoption of efficient 

irrigation methods and water management practices like deficit irrigation (DI). There is lack of 

information on how various crops respond to MTI since it is new technology. The aim of this 

study was to determine the growth and yield response of cowpea to varying water regimes 

under MTI. It was hypothesized that there was no difference between MTI and SDI (control) 

and that water use efficiency of cowpea could be improved by DI strategy. The experiment was 

a split plot design arranged in a randomized complete block design with three replications. The 

water treatments consisted of full irrigation [100% of crop water requirement (ETc)], and DI 

of 70% ETc and 40% ETc. The results showed that water deficit had significant effect (p < 

0.05) on time to 50% flowering where plants under 40% ETc flowered 14 days earlier in 

relation to plants at 100% ETc.  The results further indicated that there were significant (p < 

0.05) differences in yield components among treatments. The mean pod number per plant were 

10.93, 18.70 and 24.37 while the seed number per plant were 162.1, 267.6 and 349.9 for 40% 

ETc, 70% ETc and 100% ETc, respectively. Grain yields were 1280 kg ha-1, 2401 kg ha-1 and 

3189 kg ha-1 for 40% ETc, 70% ETc and 100% ETc, respectively. There was no significant 

difference in yields between SDI and MTI (p > 0.05) in all the water treatments. However, at 

40% ETc, SDI had 15% higher yield than MTI.  Biomass varied significantly with the type of 

irrigation and water treatment (p < 0.05). The biomass trend was 40% ETc MTI < 40% ETc 

SDI < 70% ETc MTI < 70% ETc SDI < 100% ETc MTI < 100% ETc SDI. However, there was 

no significant differences (p > 0.05) between biomass under MTI and SDI at 100% ETc. There 

was no significant difference between MTI and SDI in water use efficiency. Generally, DI 

improved the water productivity of cowpea. Therefore, DI could be considered as a water 

management strategy in areas experiencing water scarcity.  

 

Keywords: Biomass, deficit irrigation, indigenous legume, water use efficiency, yield 
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6.1 Introduction  

 

Cowpea (Vigna unguiculata (L.) Walp) is one of the most important legumes grown in most 

parts of the world (Sebetha et al., 2010). It is the mostly cultivated crop in resource scarce 

countries of Africa, Asia, Central and South America due to its ability to withstand extremely 

harsh environmental conditions such as high temperatures, limited water availability and poor 

soil fertility (Shiringani and Shimelis, 2011). It is also grown in European countries around the 

Mediterranean such as Turkey (Peksen, 2007;Basaran et al., 2011). Cowpea in South Africa is 

cultivated in Limpopo, Kwazulu-Natal, Mpumalanga and Northwest provinces (DAFF, 2014). 

It can also be found in the wild in KwaZulu-Natal, Mpumalanga and Limpopo provinces (Van 

Rensburg et al., 2007). Cowpea is nutritionally valuable in humans and animals.  It is consumed 

as grains (dry and fresh) and vegetable leaves (Badiane et al., 2004) and haulms utilized as 

forage for livestock (Sprent et al., 2009). Cowpea grains are rich in proteins which could help 

in complementing the diets of majority of African households whose diets mainly consist of 

starch (Singh et al., 2003) .  

 

Cowpea is tolerant to limited water availability, however insufficient soil moisture at critical 

stages can have detrimental effect on growth and yield.  Studies have demonstrated that water 

deficit at flowering negatively affected yields of cowpea (Anyia and Herzog, 2004a;Peksen, 

2007;Ahmed and Suliman, 2010;Toudou Daouda et al., 2018). However, a study by Ntombela 

(2012) found that water stress at vegetative stage had a higher significant effect on yield 

components than at flowering. In the case where the crop is stressed throughout the season, 

Abayomi and Abidoye (2009) found that it led to a reduction in growth and yield parameters.  

 

From the studies above, it is evident that cowpea is sensitive to water stress especially at 

flowering stage. Therefore, enough soil moisture should be available at this stage to ensure 

yield is not reduced. Most of the cowpea production is under rainfed systems. Unavailability 

of rainfall or non-uniform distribution means that yields cannot be guaranteed exposing 

households depending on cowpea to risks of crop failure, hunger and malnutrition. Irrigation 

helps in stabilizing yields and acts as insurance to farmers. It also helps in growing of the crop 

throughout the year especially in the tropics and subtropics where temperature is conducive.  

 

Irrigation helps in yield reliability and stabilization, but it is the biggest consumer of water 

resources. In arid and semi-arid areas, irrigation consumes about 70% of the total water use 



102 

 

(Fereres and Soriano, 2007). Irrigation sector in South Africa contributes  about 60% of the 

total water use  (Reinders et al., 2010).  This, therefore, requires adoption of efficient irrigation 

systems and prudent agricultural water management practices.  Deficit irrigation (DI) is one of 

the main water saving irrigation strategies where volume of water applied is below the crop 

water requirement with the aim of maximizing economic farm output per unit volume of water 

(Fereres and Soriano, 2007). Adoption of efficient irrigation methods such as subsurface drip 

irrigation (SDI) helps in reducing the agricultural water use by minimizing the non-beneficial 

components such as soil evaporation, runoff and percolation (Ayars et al., 1999).  

 

Moistube irrigation (MTI) is a relatively new type of irrigation technology which originated in 

China. It is like SDI where instead of emitters, water flows out of the Moistube membrane as 

a function of applied pressure and the soil water potential. Some studies have shown that it 

saves more water than drip irrigation as discussed in Chapter 2. However, being a new 

technology, there is lack of information on how various crops respond to it. The aim of this 

study, therefore, was to determine the growth and yield response of cowpea to varying water 

regimes under MTI. This study was based on two hypotheses. First, it was hypothesized that 

there was no significant difference between the response of cowpea under MTI and SDI, and 

secondly, that water use efficiency of cowpea could be improved by deficit irrigation strategy.  

 

6.2 Materials and Methods  

 

The methodology adopted in this study is described in the following sub-sections. This 

included the description of the experimental designs and procedures as well as data collection 

and analysis. 

 

6.2.1 Study area and experimental design  

 

The study was carried out in tunnels at the Controlled Environment Facility (CEF) of UKZN, 

Pietermaritzbug Campus (29.580 S, 30.420 E) and UKZN’s Ukulinga Research farm (29.670 S, 

30.410 E.) The experiment at CEF was carried out in a glasshouse with raised beds measuring 

11 m long, 0.75 m wide and 0.75 m high. The soil texture was loam (42.3% sand, 33.3% silt, 

24.4%) with bulk density of 1.36 g cm-3. At Ukulinga, the experiment was carried out in a 12 

m by 5 m tunnel where the soil texture was clay (24.3% sand, 23.6% silt and 52.1% clay) with 
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bulk density of 1.23 g cm-3. The tunnel at Ukulinga had open ends to replicate as much as 

possible the field conditions with free movement of air.  

 

The experiment was laid out in a split-plot design arranged in randomized complete block 

design. The main block was the irrigation type (SDI and MTI) while the sub-plots were the 

three water regimes replicated three times. The water regimes imposed consisted of full 

irrigation to meet the crop water requirement (100% ETc), and DI of 70% ETc and 40% ETc. 

The drip emitters and Moistube tapes were installed at a depth of 15 cm. The experimental 

layouts are shown in Figures 6.1 and 6.2 for CEF and Ukulinga, respectively.  

 

 

Figure 6.1 Experimental layout for CEF experiment  
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Figure 6.2 Experimental layout for Ukulinga experiment  

 

Cowpea (brown mix variety) was planted on 14th February 2018 at CEF and 25th May 2018 at 

Ukulinga. The spacing was 50 cm between rows and 30 cm within rows giving a density of 

66667 plants ha-1. Soil fertility test conducted at Cedara Agricultural College indicated that the 

soil did not have nutrient deficiency at Ukulinga but soil at CEF required phosphorus at a rate 

of 60 kg ha-1 Single Superphosphate (10.5% P). The DI treatments were introduced 21 days 

after planting (DAP) at CEF and 30 DAP at Ukulinga when the crops were fully established. 

Other agronomic management practices such as weed, pest and disease control were done 

accordingly based on recommended best practices.  

 

6.2.2 Determination of crop water requirements  

 

The procedure for determination of crop water requirements was as follows;  

a) The crop water requirements (ETc) for each crop growth stage were determined using 

potential evapotranspiration and crop coefficients as describe in Equation 5.4 (Chapter 

5).  

b) The net irrigation requirement (Inet) was the same ETc since rainfall was zero   

c) The volume of irrigation water was computed using Equation 6.1 

𝑉 = 10 × ∑ d𝑛
𝑖=1          (6.1) 
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Where V = volume of water (m3 ha-1), d = irrigation depth (mm), and n = number of water 

applications derived from the irrigation interval.  

d) The net irrigation depth was computed using Equation 6.2  

dnet = ρ * (FC – PWP) * D        (6.2) 

Where dnet = The net irrigation depth (mm), D = The depth of the root zone of the crop (mm), 

and ρ = allowable depletion level which was taken as 50%, FC = field capacity, PWP = 

permanent wilting point. The root zone was limited by the soil layer thickness which was 0.60 

m and thus this was taken as the effective rooting depth.  

e) The gross irrigation depth can then be calculated using Equation 6.3 

dgross = dnet/Ea          (6.3) 

Where dgross = The gross irrigation depth (mm) and Ea = The field application efficiency which 

was taken as 90% for both MTI and SDI.  

f) The irrigation interval (T) computed using Equation 6.4 

T = dnet/ETc           (6.4) 

Where ETc is the crop water requirement per decade  

 

The different water regimes were applied by varying the irrigation interval in such a way that 

the total amount of irrigation was 100%, 70% and 40% of ETc. MTI was supposed to be 

continuous i.e. water applied throughout the cropping cycle but due to infrastructural 

challenges, the flow regulation was not sufficiently low enough to allow for continuous water 

application. Therefore, the water application was applied intermittently ranging from as low as 

3 days continuously per decade to 8 days per decade for 40% ETc and 100% ETc, respectively.     

 

6.2.3 Data collection and analysis  

 

Weather data was obtained inside the tunnel using HOBO data logger sensors (Onset Computer 

Corporation, USA). The variables measured were temperature, relative humidity, solar 

radiation. Wind speed was measured using Kestrel 3000 anemometer (Nielsen-Kellerman, Inc. 

USA). Soil water content was measured weekly using Water Mark sensors (Irrometer Inc. 

USA) and MPS-2 sensors (Decagon, Inc. USA) installed at 10 cm, 20 cm and 40 cm depths. 

The soil water potential values obtained were calibrated using gravimetric measurements 

(Figure A.1).  At Ukulinga, the water content was measured using PR2/6 profile probe (Delta-

T Ltd, UK). Leaf area index (LAI) was measured weekly using LAI 2200 canopy analyser (LI-

COR Inc. USA). Time to 50% flowering was determined by counting the number of flowered 
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plants. Determination of yield components was done by sampling 10 plants per plot excluding 

border plants. All the pods were harvested from each plant and counted then shelled for yield 

analysis. Above ground biomass was determined by cutting each of the 10 plants per plot then 

weighing after air drying.  

 

The harvest index (HI) was computed using Equation 6.5 (Cisse, 2001). 

𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 =
𝐺𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 (𝑘𝑔 ℎ𝑎−1

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑘𝑔 ℎ𝑎−1)
× 100%   (6.5) 

 

The reported data was analysed using ANOVA with the help of GenStat® version 18 (VSN 

International, Hemel Hempstead, UK). Separation of means of significant variables were done 

using Least Significant Differences (LSD) at 5% significance level. Correlation analysis was 

carried out on growth and yield components to determine the relationship between variables.  

 

6.3 Results and Discussion  

 

The cowpea at the Ukulinga trial facility failed to flower due to low temperatures. The night 

temperatures were, in most cases, very low (< 10oC) which affected most of the growth 

parameters. The low temperatures significantly delayed time to emergence (≈15 days) and led 

to decline in LAI and failure of flowering. Therefore, the results reported here were for 

controlled experiment only.  

 

6.3.1 Time to flowering  

 

Water deficit affects crop growth and development by not only retarding cell division and 

expansion but also by altering the initiation and duration of phenological stages (Prasad et al., 

2008). Time to flowering is an environmental adaptive feature of most annual crops (Ishiyaku 

et al., 2005).  In the present study, the number of days to 50% flowering varied significantly 

across the water regimes (p < 0.05) as illustrated in Table 6.1. Cowpea matured earlier at 40% 

ETc for both MTI and SDI. MTI 70% ETc matured 5 days later than MTI 40% ETc though 

they were not significantly different (p > 0.05). Similarly, there was no significant difference 

between SDI at 70% ETc and MTI at 100% ETc. There was significant difference (p < 0.05) 

between SDI at 100% ETc and all the other water regimes.   
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Table 6.1 Time to flowering  

Irrigation type Water regime Time to flowering (days) 

Moistube  40% ETc 55.33 (2.52) a  

Drip 40% ETc 56.67 (2.08) a 

Moistube 70% ETc 59.67 (4.51) a 

Drip 70% ETc 67.33 (2.08) b 

Moistube 100% ETc 65.67 (3.06) b  

Drip 100% ETc 74.33 (4.16) c  

LSD (Irrigation)  3.30 

LSD (ETc)  4.04 

LSD (Irr x ETc)  5.72 

CV (%)  5.10 

Mean values in same column followed by same superscript letter do not significantly differ (p < 0.05) 

by LSD. Data in parenthesis are the standard deviations 
 

 

The accelerated time to flowering due to water deficit reported in this study were consistent 

with those reported by Ilunga (2014) for the same variety (mixed brown) where rainfed induced 

water deficit led to early flowering by 7 days.  Moistube supplies water to the crop at 80 – 90% 

of field capacity (Zhang et al., 2012). This could possibly explain the non-significant difference 

between time to 50% flowering under 70% ETc SDI and 100% ETc under MTI.   The shorter 

duration to flowering as a result of water deficit is considered as a drought escape mechanism 

in cowpea (Ehlers and Hall, 1997). However, some studies have reported delayed flowering 

due to water stress (Abayomi and Abidoye, 2009;Ntombela, 2012;Faloye and Alatise, 2017). 

The response of time to flowering under water deficit in cowpea depends on the genotype as 

found by Dadson et al. (2005) where some exhibited early flowering while others had delayed 

flowering.  

 

6.3.2 Leaf area index 

 

LAI is an important growth parameter as it  signifies the extent of the assimilative capacity of 

a crop under  existing environmental conditions (Farooq et al., 2012). In the present study, the 

LAI varied among the treatments. Full irrigation attained a maximum LAI of 4.00 and 3.88 for 

MTI and SDI, respectively (Figure 6.3). The lowest maximum LAI was under MTI at 40% ETc 
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(2.88). There were no significance differences among drip 70% ETc (2.396 ± 1.350), Moistube 

70% ETc (2.390 ± 1.100) and drip 40% ETc (2.205 ± 1.218).  

 

The difference between the mean LAI at MTI 40% ETc (1.926 ± 1.000) and both MTI 100% 

ETc (2.588 ± 1.371) and SDI 100% ETc (2.205 ± 1.318) was highly significant (P < 0.05). This 

represented a decline of 25.6% under MTI at 40% ETc. These results were consistent with 

those reported by Souza et al. (2017) where LAI declined by between 13% and 47% due to 

water deficit. The reduction in LAI could be attributed to decreased leaf appearance rate and 

abscission which are considered as drought avoidance mechanism (Abayomi and Abidoye, 

2009). Reduction in leaf area due to water deficit arises because of inhibited cell growth (Fathi 

and Tari, 2016). According to Prasad et al. (2008) mild water deficit causes reduction in leaf 

number, retarded leaf expansion rate and reduced leaf size while severe water deficit inhibits 

the growth of new leaves.   
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b) 

 

 

 

 

Figure 6.3 Leaf area index for different irrigation treatments (a) SDI and (b) MTI 
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6.3.3 Yield and yield components   

 

The yield and yield components showed significant differences among the water regimes as 

illustrated in Table 6.2. There were significant differences in the number of pods and pod mass 

per plant among the three water regimes considered under both SDI and MTI (p < 0.05). The 

type of irrigation did not significantly affect the number of pods and pod mass (p > 0.05), 

although SDI had slightly higher number of pods (17.4%) and pod mass (22.7%) than MTI at 

40% ETc. The number of seeds per plant exhibited significant variations across the type of 

irrigation and water regimes (p < 0.05). Under MTI, the seed number was significantly lower 

at 40% ETc than both at 70% ETc and 100% ETc. Similarly, the number of seeds at 70% ETc 

was significantly lower than at 100% ETc.  In SDI, the seed number was significantly lower at 

40% than both 100% ETc and 70% ETc but there was no significant difference (p > 0.05) 

between 70% ETc and 100% ETc. Whereas the number of seeds per plant decreased because 

of water deficit, the mean number of seeds per pod varied from 14 to 17 and the difference was 

not statistically significant (p > 0.05). Seed mass followed the same trend as number of seeds 

with significant difference (p < 0.05) recorded across the water regimes. The type of irrigation 

did not have a significant effect on seed mass per plant, but SDI performed better than MTI in 

all the water regimes except at 100% ETc. 

 

The above results were similar to those found by Mousa and Qurashi (2017) where water deficit 

led to the decline in the number of pods per plant. Similarly, Abayomi and Abidoye (2009) 

found reduced pod weight and number of seeds per plant due to water deficit. In another study, 

Hamidou et al. (2007) reported an average reduction of 60% in the number of pods per plant 

due to water deficit. The reduction in the number of pods per plant could be attributed to lower 

number of flower buds and loss of flowers due to water deficit in the reproductive stage (Maleki 

et al., 2017;Toudou Daouda et al., 2018).  

 

Biomass per plant showed significant variations with respect to water regimes (p < 0.05). 

Compared to 100% ETc, there was an average 38.5% reduction in biomass at 40% ETc in MTI. 

SDI recorded significantly higher (p < 0.05) biomass per plant than Moistube at 40% ETc and 

70% ETc. However, there was no significant difference between the two types of irrigations at 

100% ETc (p > 0.05).
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Table 6.2 Yield and yield components 

Irrigation  

Water  

regime  

Pods  

plant-1  

Pod mass  

plant-1 (g) Seeds plant-1   

Seed mass  

plant-1 (g) 

Biomass  

plant-1 (g) 

Grain yield  

(kg ha-1) 

Biomass  

(kg ha-1) 

Harvest  

Index (%) Shelling (%) 

Moistube  40% ETc 10.9 (5.3) a  29.9 (19.4) a  162.1 (84.4) a  19.4 (9.1) a  85.5 (10.0) a  1280 (598) a 5701 (926) a 22.4 (9.2) a  71.23 (20.6) a b  

Drip 40% ETc 12.8 (4.9) a  36.7 (15.3) a  174.6 (59.8) a  22.8 (7.0) a  100.4 (18.9) b  1505 (462) a 6694 (1263) b 22.6 (4.8) a  66.54 (17.8) a  

Moistube 70% ETc 18.7 (6.4) b  50.1 (17.6) b  267.6 (95.4) b  36.4 (9.4) b  120.2 (15.7) c  2401 (612) b 8012 (1048) c 30.1 (5.5) b  75.1 (13.0) b  

Drip 70% ETc 18.5 (5.9) b  52.1 (15.8) b  315.0 (96.2) c  39.5 (10.6) b 128.9 (20.1) d 2605 (701) b 8590 (1339) d 30.5 (6.0) b  77.3 (11.8) b  

Moistube 100% ETc 24.4 (7.2) c  67.8 (16.7) c  349.9 (94.3) c 48.3 (9.6) c  139.1 (18.7) e 3189 (634) c 9272 (1247) e 34.8 (5.3) c  72.4 (8.0) a b  

Drip 100% ETc 24.7 (7.4) c 67.3 (20.7) c  345.2 (101.4) c  45.8 (10.5) c  145.2 (16.5) e  3025 (695) c 9678 (1098) e 31.5 (6.2) b  70.5 (11.7) a b  

LSD (Irrigation)  1.8 5.2 9.5 2.6 5.3 88.3 350.6 1.72 2.6 

LSD (ETc)  2.3 6.4 11.6 3.2 6.44 108.1 429.4 2.1 3.1 

LSD (Irr x ETc)  3.2 9.0 16.4 4.6 9.11 152.9 607.2 2.9 4.4 

CV (%)  24.1 24.5 23.3 20.9 15.3 20.9 15.3 17.4 13.3 

 

Mean values in same column followed by same superscript letter do not significantly differ (p < 0.05) by LSD. Data in parenthesis are the standard deviations 
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Grain yield (kg ha-1) and biomass (kg ha-1) being a product of yield and biomass per plant 

respectively followed same trend across water regimes. Compared to SDI at 100% ETc, 

significant reduction in yield (57.7%) was recorded at 40% ETc under MTI while drip at 40% 

ETc led to a decline in yield by 50.2%. Similarly, the decline in yields at 70% ETc was 13.9% 

and 20.5% under SDI and MTI respectively. There was significant difference between MTI 

and SDI at 40% ETc. The main contributor of lower yields because of water deficit was number 

of pods per plant, pod mass per plant, HI and LAI which were significantly reduced under 

deficit irrigation. Maleki et al. (2017) reported a decline of between 4% and 59% in cowpea 

yields under water regime of 40-80% of full irrigation. Reduction in yield due to water deficit 

is attributed to reduced photosynthetic active radiation absorption rate by plants and reduction 

in radiation efficiency (Fathi and Tari, 2016). According to Prasad et al. (2008), water deficit 

generally reduces grain yields via its influence on the plant matter production prior to flowering 

and negatively affecting the reproduction phase of pollination.  

 

Total biomass ((kg ha-1) of cowpea followed the same trend as grain yield where MTI recorded 

41% and 17% decline in biomass at 40% ETc and 70% ETc, respectively. These results were 

similar to those reported by Faloye and Alatise (2017) where a reduction of between 23% and 

49% was recorded under water regime of between 40% and 80% of full irrigation.  Water 

deficit leads to decline in leaf expansion, lower production of leaves and leaf senescence which 

ultimately decreases the biomass (Figueiredo et al., 2001). Besides reduced leaf area, Anyia 

and Herzog (2004b) associated decline in biomass of cowpea with reduced leaf gas exchange 

due to water deficit.  

 

The partitioning of biomass to grain yield, represented by HI, showed differences across water 

treatments and irrigation type. The highest HI was recorded at 100% ETc and the lowest at 

40% ETc under MTI. The HI was significantly higher (p < 0.05) in MTI than SDI at 100% 

ETc. There was no significant difference in HI between SDI and SDI at 40% ETc and 70% 

ETc. Also, the HI was not significant at 70% ETc and SDI at 100% ETc. With respect to SDI, 

the HI was 29% lower at 40% ETc. This could be attributed to significant reductions in grain 

yield due to water deficit. Reduction of HI in cowpea due to water deficit was also reported by 

Hamidou et al. (2007) where a reduction of 63% was observed. Shelling percentage signifies 

the efficiency in which the pods are filled with grains (Mkandawire and Sibuga, 2002) . In the 

present study, shelling percentage was not significantly affected by water regime (p > 0.05). 
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However,  Abayomi and Abidoye (2009) reported reduction in shelling percentage of cowpea 

due to water deficit. 

 

Yield is a product of several components such as number of germinated plants, dry matter 

partitioning, seed numbers, and size of the seeds (Prasad et al., 2008). There was a strong 

positive association between the total grain yield and number of pods per plant (r = 0.97), pod 

mass per plant (r = 0.96), number of seeds per plant (r = 0.96), biomass and HI (r = 0.94) as 

shown in Table 6.3.  Among these attributes, pod mass and HI had a significant contribution to 

grain yield (p < 0.05). Total grain yield (r = 0.85) and biomass (r = 0.76) were significantly 

correlated with LAI (p < 0.05). However, yield was strongly and negatively correlated with the 

number of days to 50% flowering (r = - 0.80).  
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Table 6.3 Correlation analysis of growth and yield components  

  Pod No.  

Pod mass  

plant -1  

Seeds  

plant-1   

Grain yield  

(kg ha-1)  

Biomass  

(kg ha-1)   

Harvest index  

(%) LAI Days to flowering 

Pods  1.00        

Pod mass plant -1  0.99 1.00       

Seeds plant-1   0.96 0.97 1.00      

Grain yield (kg ha-1) 0.97 0.96 0.96 1.00     

Biomass (kg ha-1)   0.98 0.98 0.98 0.98 1.00    

Harvest index (%) 0.95 0.94 0.95 0.94 0.93 1.00   

LAI 0.85 0.85 0.78 0.85 0.76 0.89 1.00  

Days to flowering -0.83 -0.81 -0.77 -0.80 -0.71 -0.78 -0.77 1.00 
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6.3.4 Water use efficiency  

 

The results of the water use efficiency (WUE), defined as the ratio of yield or biomass to 

volume of water applied, for SDI and MTI under the three water regimes are shown in Table 

6.4.   

 

Table 6.4 Water use efficiency for cowpea under MTI and SDI 

Water regime 
Water use efficiency (kg m-3) 

Grain Biomass 

Moistube 100% ETc 0.916 (0.182) ab 2.664 (0.358) a 

Drip 100% ETc 0.820 (0.188) ab 2.623 (0.298) a 

Moistube 70% ETc 0.954 (0.243) b 3.179 (0.416) b 

Drip 70% ETc 0.961 (0.259) b 3.170 (0.494) b 

Moistube 40% ETc 0.790 (0.369) a 3.519 (0.411) c 

Drip 40% ETc 0.860 (0.264) ab 3.825 (0.722) d 

LSD (ETc) 0.093 0.169 

LSD (Irrigation) 0.076 0.138 

LSD (Irrigation x ETc) 0.132 0.239 

CV (%) 19.2 14.8 

Mean values in same column followed by same superscript letter do not significantly differ (p < 0.05) by LSD. 

Data in parenthesis are the standard deviations 

 

Grain WUE varied significantly (p < 0.05) among water regimes. The highest WUE was 

achieved under SDI at 70% ETc but was not significantly different from MTI 70%. MTI at 

40% had the lowest WUE. At 100% ETc, MTI had 11.7% higher WUE than SDI though not 

significantly different (p > 0.05). With respect to SDI, DI improved WUE by 17.3% and 4.9% 

under 70% and 40%, respectively. In MTI, DI improved WUE by 4.1% at 70% ETc but 

decreased by 17% at 40% ETc. This shows that DI at 40% under MTI is not beneficial in grain 

yield in relation to water consumption. 

 

Biomass WUE showed significant variations across the three water regimes (p < 0.05). 

However, the type of irrigation did not significantly affect the biomass WUE in all the water 

regimes except at 40% ETc SDI where it was the highest. DI significantly improved WUE by 

up to 45.8% and 21.2% under 40% ETc and 70% ETc respectively. Therefore, in areas of water 
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scarcity, cowpea can best be grown for biomass rather than grain yield. The cowpea variety 

used in this study (mixed brown) favours vegetative growth thus gives more biomass than grain 

yield (Ilunga, 2014). The results of this study were consistent with those found by Maleki et 

al. (2017) where the grain WUE was the highest at 80% of full irrigation compared to 60% and 

40%. Similarly, Mousa and Qurashi (2017) reported increased WUE under water deficit 

imposed at various growth stages except during combination of flowering and pod filling stage 

where it decreased marginally.  However,  Ahmed and Suliman (2010) reported decreased 

WUE due to water deficit which was attributed to reduced photosynthetic activity.  

 

In a nutshell, there was no significant difference in growth and yield parameters, and WUE 

between MTI and SDI. Zhang et al. (2017e) found significantly lower summer maize yields in 

MTI than SDI. In the same study, the yield of winter wheat was higher under SDI than MTI 

but not significantly different. Further, the WUE were not significantly different between MTI 

and SDI in both maize and wheat. In another study, Zhang et al. (2016c), found that SDI 

marginally increased WUE of summer maize compared to MTI due to the former having a 2% 

higher average soil moisture content over the growing season.  Therefore, the crop performance 

under MTI and SDI is not significantly different.  

 

6.4 Conclusion 

 

This study sought to determine the response of cowpea to varying water regimes under MTI. 

It was based on two hypotheses. The first hypothesis was that the new technology (MTI) was 

not different from SDI in terms of crop performance. Secondly, it was hypothesized that that 

WUE of cowpea could be improved by DI strategy.  From the study findings, majority of the 

growth and yield components of cowpea were not significantly different in MTI and SDI 

particularly under full irrigation and moderate DI. However, MTI performed poorly under 40% 

ETc compared to 40% SDI, especially for LAI and biomass. For both types of irrigation, water 

deficit negatively affected LAI and yield components. Water deficit also hastened the time to 

50% flowering. This was particularly significant under MTI where the time to 50% flowering 

were significantly shorter under DI. At moderate DI conditions SDI was better than MTI while 

under full irrigation, MTI performed better in terms of grain yield, although the differences 

were not significantly different between the two types of irrigation. Therefore, the response of 

cowpea to water regimes under MTI was largely the same as that of SDI. Yield reductions of 
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less than 20% could be achieved with 70% ETc. Therefore, the hypothesis that cowpea 

response under MTI was not different from SDI could be partly accepted and partly rejected 

based on the growth and yield parameters.  

 

The grain WUE was improved by water deficit under SDI but only at 70% ETc under MTI. 

Biomass WUE was significantly improved by water deficit under both SDI and MTI. 

Therefore, the hypothesis that DI improves WUE of cowpea was accepted for biomass. The 

mixed brown variety of cowpea used in this study is highly vegetative and thus suitable for 

biomass production rather than grain yield. Therefore, it is best suited as leafy vegetable and 

fodder for human and animal consumption, respectively. This implies that DI could be a 

successful agricultural water management strategy in water scarce regions.  

 

The results reported in this study was for the experiment conducted in controlled facility (CEF) 

during summer since the crop planted during winter at Ukulinga failed to flower. It is worth 

noting that majority of the experiments reported in literature on crop response to MTI was 

conducted under greenhouse conditions. Therefore, further studies need to be done in actual 

field scenario to determine the crop response to water availability under MTI. This would help 

in drawing conclusion on whether crops respond favourable to field conditions under MTI.  

 

The response of cowpea under varying water regimes was conducted using field experiments. 

However, this is costly and time consuming. This could have been achieved using a well 

calibrated and tested crop model. The parameterisation and testing of AquaCrop model for 

cowpea is discussed in Chapter 7.  
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unguiculata (L.) Walp)   
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This Chapter is under review in Agricultural Water Management  

 

Abstract  

Assessment of the response of crops to varying water regimes using crop models helps in 

optimizing water use and improving water productivity (WP) in agriculture. AquaCrop is 

water-driven model used for simulating crop responses to varying environmental conditions 

and farm management practices. AquaCrop has not been parameterised for cowpea. Therefore, 

the study aimed at parameterising and testing AquaCrop under full and deficit irrigation. The 

experiments consisted of subsurface drip irrigation (SDI) and Moistube irrigation (MTI) with 

three water regimes i.e. full irrigation [100% of crop water requirement (ETc)] and deficit 

irrigations of 70% ETc and 40% ETc. The model was parameterised and tested under MTI and 

SDI experiments, respectively. The parameterisation results indicated the model simulated the 

canopy cover (CC) very well with R2 ≥ 0.96, RMSE ≤ 9.8%, NRMSE ≤ 15.5%, EF ≥ 0.90, and 

d ≥ 0.98 under 100% ETc and 70% ETc.  However, it simulated less satisfactorily (R2 = 0.85, 

RMSE = 24.5%, NRMSE =37.5%, EF = 0.45, and d = 0.87) during testing under 40% ETc. 

The simulated water content, during parameterisation and testing, closely matched the observed 

with R2 ≥ 0.61, RMSE ≤ 11.3 mm, NRMSE ≤ 17.8%, EF ≥ 0.51, and d ≥ 0.86 indicating that 

the model reasonably captured the soil water dynamics. The yield and biomass were simulated 

satisfactorily by the model with NRMSE values less than 17.1% during parameterisation. The 

model was very good in simulating yield and biomass with NRMSE less than 10% during 

testing. The highest WP was achieved under 70% ETc and 40% ETc for yield and biomass, 

respectively. This implied that cowpea is suitable in areas experiencing water scarcity. The 

above results demonstrated the ability of AquaCrop in simulating the response of cowpea to 

varying water regimes. Therefore, the model can be used to evaluate the response of cowpea 

to a variety of environmental conditions and management scenarios.  

Keywords: Crop modelling, Moistube irrigation, subsurface drip irrigation, water 

productivity, yield.  
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7.1 Introduction 

  

Rainfall in South Africa is low and unevenly distributed with about 9% translating to useful 

runoff making the county one of the most water scarce countries in the world (Molobela and 

Sinha, 2011). This makes traditionally rainfed crops such as cowpea a risky enterprise.  

Irrigated agriculture being the largest consumer of the available water resources is under 

pressure from increasing population, urbanization and industrialization (Fereres and Soriano, 

2007). Therefore, producing more yields per unit volume of water, i.e improving crop water 

productivity (WP) is important.   

 

Some of the main techniques for improving WP include using efficient irrigation methods and 

adoption of water management strategies such as deficit irrigation (Ali and Talukder, 2008). 

Deficit irrigation helps in improving water productivity by ensuring that all the water are in the 

root zone for use by the crop (Fereres and Soriano, 2007) and by  making the crop to extract 

more water in the soil reservoirs (Hsiao et al., 2007) through compensatory root water uptake 

mechanisms. Micro-irrigation techniques such as sub-surface drip irrigation (SDI) improves 

water use efficiency (WUE) by minimizing the components of water use which are not required 

for crop transpiration like soil evaporation, surface runoff and percolation. Moistube irrigation 

(MTI) is one such efficient irrigation method as discussed in Chapter 2.  

 

Assessing the WP and WUE in agriculture is achieved by examining water consumption of 

crops and their response to varying water regimes through field or laboratory tests which are,  

however,  costly and labour intensive (Geerts and Raes, 2009).  Therefore, there is need for the 

use of crop models. Crop models can be used in the assessment of crop response to varying 

environmental and management conditions. They can be used to assess the scenarios which 

can improve WP and WUE such as deficit irrigation strategies, conservation agricultural 

practices like mulching, organic fertilization, zero-tillage and minimum tillage. Crop models 

can be classified using various criteria. One such criterion is based on the crop growth module 

(how the model estimates biomass from the carbon dioxide, solar radiation and water captured 

by the plant). Using this criterion, crop models can be water-driven, carbon-driven and 

radiation-driven as described by Todorovic et al. (2009). AquaCrop is a water-driven model 

developed the United Nations’ Food and Agriculture Organization (FAO) to simulate the 
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response of crops to various environmental and management practices (Raes et al., 

2009;Steduto et al., 2009).  

 

AquaCrop has gained popularity because it is a simple model since it does not require technical 

modelling skills, robust enough as it represents all the key physiological processes and require 

few parameters in comparison to other crop models without compromising on accuracy 

(Vanuytrecht et al., 2014).  The model has been applied in major crops, however, few studies 

have been done on under-utilized crops. These include quinoa, teff, taro, bambara groundnut, 

sweet potato and amaranthus (Geerts et al., 2009;Araya et al., 2010;Karunaratne et al., 

2011;Walker et al., 2012;Mabhaudhi et al., 2014b;Mabhaudhi et al., 2014a;Rankine et al., 

2015;Bello and Walker, 2017). This study, therefore aimed at parameterising and testing 

AquaCrop for cowpea which is one of the neglected and under-utilized African leafy vegetables 

and indigenous legumes. This was done using two efficient irrigation methods in MTI and SDI. 

This would also determine whether the WP of cowpea could be improved by using deficit 

irrigation strategy.  

 

7.2 Methodology  

 

The process of parameterisation and testing of AquaCrop model is described in this section by 

highlighting the model features, field experiments and data collection procedures.  

 

7.2.1 Model description  

The main unique features of AquaCrop include (Steduto et al., 2009;Vanuytrecht et al., 2014); 

a) simulating foliage development in the form of canopy cover (CC) instead of LAI. 

b) partitioning of the evapotranspiration (ET) into crop transpiration (Tr) and soil 

evaporation.  

c) using a simple canopy growth and senescence model, treating final yield (Y) as a 

product of final biomass (B) and harvest index (HI) as shown in Equation 7.2, and  

d) separating the effects of water stress into canopy growth, canopy senescence, Tr, and 

HI. 

 

The calculation scheme in AquaCrop as illustrated in Figure 7.2 is described by Raes et al. 

(2009) as follows. Throughout the crop cycle, the quantity of water stored in the root zone is 

simulated by considering water inflow and outflow from the root zone. The root zone water 
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depletion determines the level of the water stress coefficient which ultimately affects the HI. 

Above ground biomass accumulation is a function of transpiration using a conservative water 

productivity parameter as in Equation 7.1.  

B = WP × ∑ Tr       (7.1) 

Y = B × HI        (7.2) 

where B = above ground biomass (kg ha-1), WP = water productivity (kg m-3), Tr = crop 

transpiration (m3 ha-1), HI = harvest index, and Y = Yield (kg ha-1). The full model description 

is found in  Raes et al. (2009) and Steduto et al. (2012). 

 

 

Figure 7.1 Calculation scheme in AquaCrop (Raes et al., 2009) 

 

7.2.2 Experimental design  

 

The experimental design is as described in Chapter 6 where cowpea (mixed brown variety) was 

planted in a split-plot arranged in randomized complete block design involving MTI and SDI 

with 3 treatments of water applications (100% ETc, 70% ETc and 40% ETc) with 3 

replications. The data obtained from MTI experiment was used to parameterise the model while 

SDI experiment was used for testing.   



125 

 

7.2.3 Data collection   

 

The measurement of growth and yield parameters were done as explained in Chapter 6. The 

additional measurements required by AquaCrop model are explained in the following sections.  

 

a) Crop growth parameters 

Time to emergence in AquaCrop is the duration to which 90% of the seeds have emerged (Heng 

et al., 2009). This is influenced by temperature and field preparation practices. Time to 

emergence was obtained by counting the number of plants that had emerged in each of the 

plots.  

The LAI values obtained using LAI 2200 canopy analyser (LI-COR Inc. USA ) described in 

Chapters 5 and 6 were used to compute CC using Equation 7.3 (Farahani et al., 2009).  

 

CC = 100 × [1 − (exp  (−𝜆 × LAI))]      (7.3) 

Where 𝜆 is the light extinction coefficient. The light extinction coefficient values for cowpea 

were obtained from Chimonyo et al. (2018) where the values varied depending on the stages 

of development, i.e. from 0.42 during initial to 0.62 in the grain filling stage.  

  

The minimum root depth was obtained by measuring the seedling roots at 90% emergence. The 

root growth was restricted by the soil layer in the raised beds; therefore, the depth of the soil 

layer in the bed (0.6 m) was taken as the maximum root depth of cowpea.  

 

b) Actual evapotranspiration  

Actual evapotranspiration for cowpea over the growing period was computed using the water 

budget method shown in Equation 7.4 (Qin, 2015);  

 

ETa = P + I + C − D − R ± ∆S       (7.4) 

where ETa = actual evapotranspiration, P = rainfall, I = irrigation, C = capillary rise, R = surface 

runoff, D = drainage, and ΔS = change in soil water storage. 

 

The experiments were carried out in a glasshouse and therefore, rainfall was zero. Also, 

capillary rise was assumed to be zero because of the raised beds. Drainage was computed from 

accumulating the water content above the field capacity in the soil layer. Subsurface irrigation 
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eliminates the runoff component.  Therefore, the ETa was computed using a simplified 

Equation7.4 (Equation 7.5) 

ETa = I − D ±  ∆S         (7.5) 

ETa (m3 ha-1) was obtained by multiplying the value obtained in Equation 7.5 by 10 (Allen et 

al., 1998).   

 

c) Soil hydraulic properties  

The soil texture was characterised as loam (42.3% sand, 33.3% silt, 24.4%) with bulk density 

of 1.36 g cm-3 with the hydraulic properties indicated in Table 7.1. The saturated hydraulic 

conductivity was measured using double ring infiltrometer. Field capacity, saturation and 

wilting point were estimated using retention data presented in Chapter 5 (Figure B.2). 

 

Table 7.1 Soil hydraulic properties   

Texture class θFC (cm3 cm-3) θWP (cm3 cm-3) θsat (cm3 cm-3)  Ks (mm d-1) TAW (mm) 

loam 0.315 0.160 0.458 186 155 

N/B: θFC = water content at field capacity, θPWP = water content at wilting point, θsat = water content at saturation, Ks = saturated 

hydraulic conductivity, TAW = Total available water    

 

d) Crop water productivity 

The water productivity (WP) for grain yield and biomass was determined as the ratio of yield 

or biomass to actual evapotranspiration (Equations 7.6) 

WP =
Grain yield or Biomass (kg ha−1)

ETa(m3 ha−1)
       (7.6) 

 

7.2.4  Parameterisation of AquaCrop model  

 

The model was parameterised using MTI data which was different from the SDI data used for 

testing.  The procedure involved creating the following files in the model (Raes et al., 2009);  

a) Climate file was created consisting of ETo (computed from daily weather data), and 

daily minimum and maximum temperature which would induce either chilling, heat 

stress or optimum growth conditions.  

b) Soil data file was created with the soil characteristics in Table 7.1. 

c) Irrigation file was created using the irrigation events corresponding to 100% ETc 

(optimum water conditions) and deficit water conditions of 70% ETc and 40% ETc.  
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d) Initial conditions file which indicated the soil water content during planting (beginning 

of simulation period) was created. The average soil water content was obtained from 

the PR2/6 profile probe installed in the plots. Soil salinity was assumed to be zero.  

e) Crop file was created as described in the following paragraphs.  

 

There is no default cowpea in AquaCrop crop files, therefore a new grain and fruit (C4) crop 

was created. The model was parameterised for canopy, yield and biomass, and soil water 

content. The parameters adopted for cowpea are indicated in Table 7.2.  These crop parameters 

were obtained by adjusting by trial and error some of the coefficients such as CGC, CDC, 

reference HI, water stress coefficients and normalized water productivity parameter (WP*) 

until the observed CC, biomass and yield closely matched the measured data.  
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Table 7.2 AquaCrop model parameters for cowpea 

Parameter Description  Value  

Seedling size (cm2) Seedling leaf area (cm2) 4.50 

Planting density Number of plants per hectare 66667 

CCo Initial canopy cover at 90% emergence  0.3 

Time to emergence (GDD) Time to 90% emergence  88 

Time to CCx (GDD) Time taken to achieve maximum CC  787 

Canopy senescence (GDD) Time taken to canopy senescence  1101 

Time to maturity (GDD) Time to physiological maturity 1259 

Canopy Expansion The rate of canopy expansion  Very fast  

Maximum canopy cover (%) Consistent max canopy cover observed  90 

Canopy Growth Coefficient (%day-1) Units of fractional growth in CC per unit of time 16.2  

Canopy Decline Coefficient (%day-1) Units of fractional reduction in CC per unit of time 0.78 

Length building up HI (GDD) The time required for the Harvest Index (HI) to increase 

from 0 to its reference values (Hio).  

288 

Duration of flowering (GDD) The number of days the crop was flowering 217 

Time to flowering (GDD) Time taken to 50% of the plants to form flowers 916 

Time to maximum root depth (GDD) Time taken for roots to reach maximum root depth 831 

Minimum effective rooting depth (cm) Root depth at 90% emergence  15 

Maximum effective rooting depth (cm) Reached, around the beginning of canopy senescence unless 

presence of impermeable layer 

60* 

Base temperature (oC) Temp below which crop development does not progress 10 

Upper temperature (oC) Temp above which the crop development no longer 

increases 

36 

Reference Harvest Index (%) The reference Harvest Index (HI0) is the ratio of the pod 

yield mass to the total aboveground biomass for non-

stressed conditions 

26 

Water stress:   3 

a) Canopy expansion Ksexp Depletion of TAW, p (upper)  

P (lower)  

0 

0.3 

b) Stomata closure, Ks sto p (upper) 0.6 

c) Early canopy senescence, Ks sen  

p (upper) 

0.4 

d) harvest index  Strong negative effect during flowering and due to stomata 

closure  

 

e) Shape factor  Represents the degree of response to water stress  3 

WP*  WP normalized for ETo and CO2  15 

* Limited by soil layer thickness  
 

The seedling leaf area (4.5 cm2) was measured destructively by sampling plants at 90% 

emergence. This value was used by the model to compute the initial canopy cover (CCo). The 

value of CCx obtained using Equation 7.3 and the time to reach CCx (observed from the CC 

curve) was input into the model and thereafter the model determined the CGC.  Time to 
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senescence was read from the CC curve when the CC started to decline which was then input 

to the model for derivation of CDC. The time to flowering was defined as the time from 

planting to time when 50% of the plants had flowered and duration of flowering was date after 

50% flowering to the date when 50% of the plants had formed pods (Brink, 1997).  

 

The minimum root depth obtained by destructively sampling and determining the root length 

at 90% emergence, time to reach maximum root depth was assumed to be beginning of 

flowering, and the maximum root depth were entered as inputs. These were used by the model 

to derive the root expansion rate. The reference HI value was determined by using the value 

determined in Chapter 6 as the starting point and adjusting until the simulated yield closely 

matched the observed. A value of 26% gave good simulations of yield under optimum 

conditions and thus adopted as the reference HI.  Default WP* of 15 g cm-2 was adopted for 

cowpea in this study. Karunaratne et al. (2011) used WP* of 12 g cm-2 for bambara groundnut.  

 

The water stress parameters in Table 7.2 were adjusted manually to achieve the desired 

reduction in growth until the simulated CC reasonably matched the observed value. The base 

and maximum temperatures for growth of cowpea was obtained from Craufurd et al. (1997).  

 

7.2.5 Model evaluation  

 

The statistics used for evaluation of the model performance were coefficient of determination 

(R2) and root mean square error (RMSE) as described in Chapter 4. The other statistical 

techniques used for assessing the model performance were normalized RMSE (NRMSE), 

Index of agreement (d), and model efficiency (EF) computed using Equations 7.7 to 7.9 (Yang 

et al., 2014). These statistical indices are computed by the model automatically.  

 

NRMSE =
RMSE

X̅
         (7.7) 

𝑑 = 1 −
∑(Yi−Xi)2

∑(|Yi−X̅|+|Xi−Y̅|)2         (7.8) 

EF = 1 −
∑(Yi−Xi)2

∑(Xi−X̅)2           (7.9) 

where; Yi and Xi are simulated and observed values respectively, while Ȳ and X̄ are the mean 

of simulated and observed values, respectively.  
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The model performance was categorized as follows; very good when NRMSE ≤ 10%, good 

when 10% < NRMSE ≥ 15%, acceptable when 15% < NRMSE ≥ 20%, marginal when 20% < 

NRMSE ≥ 25%, and poor when NRMSE >25% (Stöckle et al., 2004). EF ≥ 0 and d ≥ 0.75 are 

considered as the minimum values for crop models in simulating crop growth and yield outputs 

while EF ≥ 0 and d ≥ 0.75 while EF ≥ -1.0 and d ≥ 0.60 are the minimum acceptable values for 

soil water content (Yang et al., 2014) .  

 

7.3 Results and Discussion  

 

This section is divided into two; parameterisation and testing. The model was parameterised 

and tested for canopy cover, yield and biomass, soil water content and water productivity.  

 

7.3.1 Parameterisation  

 

a) Canopy cover  

The model was first parametrized for canopy cover (CC). The results are indicated in Figure 

7.2. The model results were good (R2 ≥ 0.96, EF ≥ 0.86, RMSE ≤ 9.9%, NRMSE ≤ 19.6% and 

d ≥ 0.96) for all the water regimes. These results compared well with other studies reported in 

literature. For instance, a study by Karunaratne et al. (2011) found R2 = 0.88 and RMSE = 

14.75% for bambara groundnut. Similarly, Paredes and Torres (2017) found R2 ≥ 0.91 and 

RMSE ≤ 14.3 % for CC in vining pea.  
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Figure 7.2 Canopy cover and soil water content for cowpea during parameterisation 
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b) Yield and final biomass  

The observed and simulated yield and biomass are shown in Table 7.3. The model performance 

was good in simulating the yield (RMSE = 282.41 kg ha-1, NRMSE = 12.33% and R2 = 0.84) 

and reasonably in biomass (RMSE = 1307.48 kg ha-1, NRMSE = 17.06% and R2 = 0.88). The 

model under-estimated and over-estimated the yield under optimum and deficit water 

conditions, respectively. The simulated yield values matched closely the observed values at 

100% ETc and 70% ETc with deviations (D) less than 16%. However, the model largely over-

estimated (D ≈ 39%) the yield at 40% ETc. Nevertheless, the over-estimations were within the 

standard deviations of the observed data which implied that yield simulations were very good.  

Biomass simulations were satisfactory (D < 16%) under optimum water conditions.  However, 

the model over-simulated biomass under water deficit conditions by up to 33%. Hadebe et al. 

(2017) reported high over-estimations (about 100%) of yield and biomass for sorghum 

especially during water deficit conditions. Similarly, Katerji et al. (2013) found deviations of 

up to 59% between simulated and observed biomass of maize under severe water deficit 

conditions The inability of AquaCrop to accurately simulate yield and biomass when water 

availability is low could be attributed to the possible errors in the determination of  canopy 

senescence (Espadafor et al., 2017).  

 

Table 7.3 Observed yield and final biomass during parameterisation  

Water Regime 
Yield (kg ha -1) Biomass (kg ha -1) 

Observed Simulated D (%) Observed Simulated D (%) 

Moistube 100% 3189 (634) 2786 12.63 9272 (1247) 10715 -15.56 

Moistube 70% 2401 (612) 2779 -15.55 8012 (1048) 10690 -33.42 

Moistube 40% 1280 (598) 1783 -39.30 5701 (666) 7348 -28.89 

RMSE (kg ha-1) 282.41   1307.48   

* Data in parenthesis are the standard deviations, D (Deviation) = [(Observed – Simulated) ÷ 

Observed] x 100  

 

c) Soil water content  

The accurate simulation of soil water balance is necessary as it drives the process of yield and 

biomass formation through the soil transpiration process (Vanuytrecht et al., 2014) and it also 

influences the water stress functions in the model (Farahani et al., 2009). The results for 

observed and simulated water content during the growing period are indicated in Figure 7.2. 

The water contents were satisfactorily simulated with R2 ≥ 0.74, RMSE ≤ 9.5 mm NRMSE ≤ 

7.4%, d ≥ 0.91 and EF ≥ 0.73.  
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d) Water productivity  

Assessment of WP helps in the development of water management strategies aimed at 

addressing crop responses to climatic variables (Tsegay et al., 2012). The observed and 

simulated WP for grain yield (WPy) and biomass (WPb) is shown in Table 7.4. The simulations 

for WPy were very good with RMSE = 0.09 kg m-3, NRMSE = 8.6% and R2 = 0.96. Similarly, 

WPb simulations were satisfactory with RMSE = 0.52 kg m-3, NRMSE = 14.9% and R2 = 0.58. 

Generally, the model the simulations for WPy were good (D ≤ 9.3%) under optimum and 70% 

ETc conditions. However, the model over-estimated WPy under 40% ETc.   

 

Table 7.4 Crop water productivity for cowpea during parameterisation  

Water Regime WPy (kg m-3)  WPb (kg m-3) 

 Observed Simulated D (%) Observed Simulated D (%) 

Moistube 100% 1.08 1.18 -9.26 3.15 3.97 -26.03 

Moistube 70% 1.14 1.19 -4.39 3.68 4.24 -15.22 

Moistube 40% 0.81 1.01 -24.53 3.59 4.53 -26.18 

RMSE (kg m-3) 0.09  0.52  

* Data in parenthesis are the standard deviations, D (Deviation) = [(Observed – simulated) ÷ 

observed] x 100  

 

7.3.2 Model testing  

After the model was satisfactorily parameterised, it was tested using the data obtained in the 

SDI experiments. 

 

a) Canopy cover  

The results of simulated CC are shown in Figure 7.3. The model performance was good under 

optimum and moderate water deficit conditions with R2 ≥ 0.94, RMSE ≤ 10.5%, NRMSE ≤ 

17.6%, d = 0.98 and EF ≥ 0.90). However, the model performance was less satisfactory (R2 = 

0.85, EF = 0.45, RMSE = 24.5%, NRMSE = 37.5% and d = 0.87) under 40% ETc. The model 

under-simulated the canopy growth under 40% ETc. In general, the model simulated rapid 

canopy decline rather than the gradually decreasing rate that was observed. Similarly, canopy 

expansion at initial stages of crop development was under-estimated by the model. In the 

present study the model simulated slow canopy expansion rate at initial stages than the 

observed values. Similar results were found by Paredes et al. (2015) for soybean. Similarly, 

the model tended to over-estimate the canopy decline which could be attributed to the 
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indeterminate growth characteristic of cowpea with delayed canopy senescence due to water 

stress.  Hadebe et al. (2017) found similar results where AquaCrop did not simulate 

satisfactorily the canopy decline of indeterminate sorghum genotypes. Mabhaudhi et al. 

(2014a) attributed the poor performance of AquaCrop in simulating canopy growth of taro 

under water deficit conditions to the model’s inability to capture the steep canopy decline due 

to limited water availability.   
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Figure 7.3 Canopy cover and soil water content of cowpea during model testing  
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b) Yield and final biomass  

Reasonable simulation of canopy growth implies that the model can simulate final biomass and 

grain yield. The model performed better with the testing data than during parameterisation with 

deviations less than 5% under optimum and moderate water deficit conditions as shown in 

Table 7.5. However, the model over-estimated the yield under 40% ETc by 27.7% but it was, 

like in parameterisation, within the standard deviation of the observed data. The model 

reasonably (D ≤ 17.9%) simulated the biomass for all the water regimes. Generally, the model 

performed very well in simulating the yield (RMSE = 165.06 kg ha-1, NRMSE = 6.9% and R2 

= 0.96) and biomass (RMSE = 798.48 kg ha-1, NRMSE = 9.6% and R2 = 0.99). These results 

compared favourably with those found by other researchers. In a study for  bambara groundnut, 

Karunaratne et al. (2011) found R2 = 0.78 and 0.72, and RMSE = 730 kg ha-1 and 360 kg ha-1 

for biomass and yield, respectively.  In South African bambara groundnut landraces, 

Mabhaudhi et al. (2014b) found RMSE of 290 kg ha-1 and 1700 kg ha-1  in simulation of yields 

and biomass, respectively.  In soybean production, Paredes et al. (2015) found RMSE of about 

300 kg ha-1 and 1050 kg ha-1 for yield and biomass simulations, respectively. Similarly, Paredes 

and Torres (2017) reported deviations ≤ 10.5% and 36% for yield and biomass, respectively, 

in pea. Espadafor et al. (2017) reported RMSE ≤ 280 kg ha-1 in simulating yield of dry beans.  

 

The above results demonstrate the reliability of AquaCrop in the simulation of yields and 

biomass of crops including the under-utilized and neglected ones such as cowpea. Therefore, 

the model can be utilized in the assessment of response of cowpea to a variety of water 

availability scenarios.  

 

Table 7.5 Observed and simulated yield and biomass during model testing  

Water Regime 
Yield (kg ha -1) Biomass (kg ha -1) 

Observed Simulated D (%) Observed Simulated D (%) 

Drip 100% 3025 (695) 2967 1.92 9678 (1098) 11411 -17.91 

Drip 70% 2605 (701) 2489 4.45 8590 (1339) 9574 -11.46 

Drip 40% 1505 (462) 1922 -27.71 6694 (1263) 7395 -10.47 

RMSE (kg ha-1) 165.06  798.48  

* Data in parenthesis are the standard deviations, D (Deviation) = [(Observed – Simulated) ÷ 

Observed] x 100  
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c) Soil water content  

The water contents reasonably matched (R2 ≥ 0.61, RMSE ≤ 11.3 mm, NRMSE ≤ 17.8%, d ≥ 

0.86 and EF ≥ 0.51) the observed values as indicated in Figure 7.3.  EF values were greater 

than 0.5 which indicated reasonable model efficiencies for crop models as suggested by Yang 

et al. (2014). The model performance in simulating the soil water content in the present study 

were consistent with those reported by other researchers. Andarzian et al. (2011) reported 

average RMSE value of 18.5 mm in simulating the soil water content of wheat under optimum 

and deficit water conditions. Tsegay et al. (2012) reported RMSE values of between 14.42 and 

18.27 mm in the simulation of soil water content for tef. Zhang et al. (2013a) found RMSE of 

between 5.7 and 22.6 mm in soil water content simulations in winter wheat. Similarly, Saab et 

al. (2014) found RSME ≤ 12.91 mm and ≤ 14.96 mm when simulating soil water content in 

soybean and sunflower productions, respectively, under varying irrigation amount regimes.  

Therefore, AquaCrop can simulate soil water dynamics with reasonable accuracy. 

 

d) Water productivity  

The observed and simulated WP for grain yield (WPy) and biomass (WPb) are indicated in 

Table 7.6. The model satisfactorily simulated WPy with RMSE = 0.12 kg m-3, NRMSE = 11.4% 

and R2 = 0.99. The simulations for WPb closely match (RMSE = 0.09, NRMSE = 2.6% and R2 

= 0.87) the observed values. However, just like during parameterisation, the model over-

estimated WPy by 26%. The model performance in the simulation of WPb was very good with 

over-estimation or under-estimation of less than 5%.  The under-estimation or over-estimation 

could be attributed to accumulation of errors in the simulation of canopy, yield, biomass, and 

soil water content. The results obtained in this study were consistent with other studies in 

literature.  Kumar et al. (2014) found similar results for wheat subjected to saline water where 

the simulations were relatively poor (deviations up to 37%) under severe salt stress for non-

tolerant varieties. Salemi et al. (2011), found better simulations of WP of winter wheat where 

the deviations were less than 2%.  
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Table 7.6 Crop water productivity for cowpea during model testing  

Water Regime WPy (kg m-3)  WPb (kg m-3) 

 Observed Simulated D (%) Observed Simulated D (%) 

Drip 100% 1.06 1.21 -14.15 3.39 3.26 3.83 

Drip 70% 1.10 1.20 -9.09 3.67 3.85 -4.90 

Drip 40% 0.98 1.24 -26.53 4.35 4.22 2.76 

RMSE (kg m-3) 0.12   0.09   

* Data in parenthesis are the standard deviations, D (Deviation) = [(Observed – Simulated) ÷ 

Observed] x 100.  

 

Being a first attempt at developing the crop parameters for cowpea, the data sets were not 

enough to allow for satisfactory determination of WP*. More experiments under a variety of 

climatic conditions are required to fully ascertain the reliable value of WP* for cowpea. 

Therefore, the value of 15 g cm-2 and other parameters indicated in Table 7.2 could be used as 

a reference point for future research 

 

It was observed, like during parameterisation, that higher WPy was obtained under moderate 

deficit condition. The highest WPb values were obtained under 40% ETc followed by 70% 

ETc. This demonstrates that deficit irrigation can be considered as water management strategy 

in agriculture especially in arid and semi-arid lands.  Cowpea variety used in this study is 

vegetative and therefore it can best be utilized as a leafy vegetable (where the fresh leaves are 

consumed) or as livestock fodder since it has higher WPb.  

 

7.4 Conclusion  

 

The AquaCrop model was parameterised and tested for cowpea under full and deficit irrigation. 

The model was parameterised for canopy development, soil water content, yield, biomass, and 

water productivity using Moistube irrigation data.  The parameters obtained were then used to 

test the model using data obtained from drip experiments. The model satisfactorily simulated 

canopy cover although it slightly under-estimated the initial canopy expansion for all 

treatments and the canopy decline during deficit irrigation treatments. This could be attributed 

to the indeterminate growth characteristic of cowpea where it delays senescence due to 

deficient water availability. The simulations for soil water content closely matched the 

observed values with low RMSE values. The model reasonably simulated the yield and 

biomass of cowpea under optimum water conditions but over-estimated under severe water 
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deficit conditions particularly during model testing. The deviations fall reasonably close to the 

standard deviations of the observed data. This is the first attempt at evaluating the suitability 

of AquaCrop in simulating the response of cowpea (an under-utilized and neglected crop) to 

water availability under full and deficit water availability conditions. The results obtained in 

this study shows that AquaCrop can be used with reasonable accuracy, considering few data 

requirements and model simplicity, in the simulation of responses of cowpea to varying water 

regimes. Further experiments need to be carried out to fine tune the parameters developed in 

this study to cover other environmental conditions.  

 

Crop models such as AquaCrop may exhibit some limitations when simulating the soil water 

dynamics since they adopt the tipping bucket approach in simulating the soil water flow in the 

vadose zone. These crop models simulate the soil water dynamics in one-dimensional whereas 

water flow from irrigation is a multi-dimensional problem. Therefore, it may be feasible to 

couple them with hydrological models which use different approach, like the Richards’ 

Equation, in the simulation of the soil water dynamics. Chapter 8 explores the possibility of 

using a combination of AquaCrop and HYDRUS 2D models in the simulation of water use in 

cowpea.  
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8. COUPLING HYDRUS 2D/3D AND AQUACROP MODELS FOR 

SIMULATION OF WATER USE IN COWPEA (Vigna unguiculata 

(L.) Walp) 

 

This Chapter was published (in part) as follows:  

Kanda, E.K., T. Mabhaudhi and A. Senzanje, 2018. Coupling hydrological and crop models 

for improved agricultural water management – A review. Bulgarian Journal of Agricultural 

Science, 24 (3): 380-390. 

 

Abstract  

Simulation of the soil water balance requires reliable representation of the main hydrological 

processes such as infiltration, drainage, evapotranspiration and run off. In a cropping system, 

the determination of the soil water balance is necessary to facilitate decisions regarding water 

management practices such as irrigation scheduling. This may require the coupling of 

hydrological and crop models. This study sought to determine the water use of cowpea under 

irrigated conditions in different environments of South Africa. The study considered two 

irrigation types, subsurface drip irrigation (SDI) and Moistube irrigation (MTI) and two 

environments characterized by clay and sandy soils. The study was accomplished using a 

hydrological model (HYDRUS 2D/3D) and AquaCrop which is a crop model. The crop 

characteristics were obtained using AquaCrop while HYDRUS 2D/3D was used to generate 

optimum irrigation schedules and the soil water balance. Thereafter, the water use and yield of 

cowpea was determined. The average grain yield and biomass was 2600 kg ha-1 and 10000 kg 

ha-1, respectively, with the difference between the two sites being less than 5% under both SDI 

and MTI. The water use and water use efficiency (WUE) varied from 315 mm to 360 mm and 

0.67 to 1.02 kg m-3, respectively, under the two irrigation types in the two sites considered. The 

WUE was higher under SDI than MTI, but the differences were less than 10%. This showed 

that response of cowpea under MTI was not different from SDI.  

 

Keywords: Agro-hydrological model, irrigation scheduling, soil water balance, water use 

efficiency  
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8.1 Introduction  

 

Yield and biomass production are complex processes which rely significantly on the interaction 

between the soil, crop and atmosphere, and are influenced by human activities (Vereecken et 

al., 2016). Agricultural water management practices such as irrigation scheduling require the 

analysis of the soil water balance to ensure that appropriate amount of water is applied to the 

crop. Simulation of the soil water balance needs the accurate representation of the infiltration 

process, runoff, drainage, root water uptake and evapotranspiration (Ritchie, 1998). Soil water 

balance models utilize either a simple tipping bucket approach where the only input data 

required include rainfall/irrigation, evapotranspiration and soil properties or those which 

describe soil water dynamics in a complex and rigorous way including the interactions of the 

various components of the system (Zhang et al., 2002).  In crop models, the soil water balance 

serves to estimate the soil water content (driver for nutrient mineralization, and gaseous 

exchange)  and the water stress indices which drives the functioning of the plant (Brisson et 

al., 2006) 

 

Most hydrological models that are used in agriculture focus primarily on the soil physical 

processes and simplify the processes of transpiration, root water uptake and crop growth while 

crop models, on the other hand, include detailed crop development processes but are inadequate 

in describing the root zone processes (Vereecken et al., 2016).  Complex crop and hydrological 

models require detailed or many input parameters which may not be available or are expensive 

to collect. They also have complicated procedures which require users to have enough 

knowledge and skills in modelling. On the other hand, simple and user-friendly models often 

have limitations due to simplification of processes.   

 

The main reason for coupling crop and hydrological models is to help in the understanding of 

the complex processes which cannot be represented by a single model due to their spatial and 

temporal dynamics. Most crop models are point scale models and therefore do not consider 

spatial heterogeneity. Being point-scale models, simulation of water distribution in one 

dimensional (vertical) and does not represent actual field scenario which comprises 

heterogeneous soils and slopes among other aspects. Simple models consider only some 

processes of the hydrological cycle and thus simplify others depending on the intended purpose 

of the model. Thus, two or more simple models are linked to provide a relatively accurate 

representation of the processes considered in the system than when individual models are used.  
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Coupled hydrological and crop models have been used in the simulation of various agricultural 

water management practices. For instance,  Li et al. (2012) coupled WOFOST and HYDRUS  

1D for modelling irrigated maize production. Soil water balance, soil water content and the 

groundwater depth were computed by HYDRUS 1D while carbon assimilation and partitioning 

were computed by WOFOST. The crop height, rooting depth and LAI computed by WOFOST 

were then used as inputs in HYDRUS 1D model. Akhtar et al. (2013) combined HYDRUS 1D 

and AquaCrop in the optimization of irrigation schedules for cotton. Due to the deficiency of 

AquaCrop in simulating capillary rise, HYDRUS 1D was used to simulate the capillary rise. 

AquaCrop was then used to develop optimum irrigation schedules considering the contribution 

by groundwater in the form of capillary rise. Finally, Shelia et al. (2018) coupled DSSAT and 

HYDRUS  1D in the simulation of the soil water balance for peanut and soybean under rainfed 

systems.  

 

The popularity of HYDRUS 1D in coupling with crop models could be attributed to its use of 

Richards’ Equation (RE) in simulating the soil water dynamics. Models that use RE perform 

satisfactorily in simulating soil water dynamics than those which rely on simple bucket or 

cascade approach. For example, Gandolfi et al. (2006) compared one-dimensional models that 

use the two approaches and found that the models that use Richard’s Equation satisfactorily 

captured the soil water distribution better while the conceptual models using cascade approach 

performed poorly, especially in heavy soils.  

 

HYDRUS 2D/3D has been applied successfully in simulating the soil water dynamics under 

irrigated agriculture as described in Chapters 2, 4 and 5. Similarly, AquaCrop has been applied 

in the simulating responses to varying environmental conditions and management practices as 

described in Chapter 7 and also in a review by Vanuytrecht et al. (2014). The popularity of 

these two models makes them prime candidates for agro-hydrological simulations.  However, 

no study has been done using a combination (coupling) of HYDRUS2D and any crop model 

including AquaCrop. This study, therefore sought to evaluate the water use of cowpea under 

Moistube irrigation (MTI) under two agro-ecological zones of South Africa using a loose 

coupling of HYDRUS 2D and AquaCrop models.  
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8.2 Methodology  

 

The description of the experimental sites and the modelling approach, development of optimum 

irrigation schedules and assumptions used in the study are described in this section. 

 

8.2.1 Experimental sites  

 

The experimental sites identified for the simulations were Ukulinga and Wartburg which 

belonged to 2 agro-ecological zones. The weather data for Ukulinga (2000 – 2017) was 

obtained from the automatic weather station situated within the Ukulinga Research Farm while 

for Wartburg (2015 – 2018), it was obtained from South African Sugar Research Institute 

(SASRI) weather web portal (https://sasri.sasa.org.za/weatherweb). The sites were chosen 

based on the availability of data. The descriptions of the sites are presented in Table 8.1. 

 

Table 8.1 Description of sites  

Site  Ukulinga Research Farm   Wartburg Fountain-Hill  

Co-ordinates  29o 40’3’’ S, 30o, 24’22’’ E  29°27'2" S, 30°32'42" E 

Altitude (m.a.s.l) 811  853 

Average annual rainfall (mm) 694 a  750 

Average temperature  25 a  20 a 

Average maximum temperature  26 a  29 a 

Average min temperatures 10 a  17 a 

Soil type Clay a  Sandy a 

Bio-resource group Moist Coast Hinterland a  Moist Midland a 

a Chibarabada et al. (2017).  

 

8.2.2 Modelling  

The study was accomplished using light or loose coupling where the output from the first model 

formed the input of the second model. The two models had been calibrated and tested 

satisfactorily in Chapter 5 (HYDRUS 2D/3D) and Chapter 7 in the case of AquaCrop.  

The modelling approach was as follows 

a) AquaCrop model was used to simulate root distribution, rooting depth, partitioned 

potential evapotranspiration and initial irrigation schedules  

https://sasri.sasa.org.za/weatherweb
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b) HYDRUS 2D /3D was used to compute the soil water contents, soil water distribution, 

actual evapotranspiration in the form of transpiration and evaporation and the optimized 

irrigation schedules  

c) AquaCrop was used to simulate the yield of cowpea using the optimized irrigation 

schedules  

d) Water productivity was computed from simulated yield and actual evapotranspiration  

 

The modelling framework is shown in Figure 8.1  

 

 

Figure 8.1 Modelling framework 

 

The descriptions of HYDRUS 2D/3D and AquaCrop models have been provided in the 

preceding chapters. The boundary conditions (BC) and transport domain in HYDRUS 2D/3D 

were the same as in Chapter 5 except for the atmospheric and the variable flux BC which were 

adjusted based on the climate data and irrigation schedules for the experimental sites.  

 

The crop data generated from AquaCrop was obtained under optimum conditions to ensure that 

the canopy development was not hindered by water stress. AquaCrop uses canopy development 

in partitioning ET to E and Tr and therefore, full canopy development is necessary so that 

reliable values are transferred to HYDRUS 2D/3D. The optimum water conditions were 
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obtained by adopting the irrigation scheduling options available in the model. AquaCrop uses 

depth and time criteria in generating irrigation schedules. In time criterion, irrigation is applied 

when a certain fraction of the total available water (TAW) is depleted while a fixed amount of 

water is applied under the depth criterion (Geerts et al., 2010). In this study, an allowable 

depletion of 20% and 30% of TAW for Wartburg and Ukulinga, respectively, were used and 

the soil water content restored to field capacity.   

 

8.2.3 Development of optimum irrigation schedules 

 

The optimum irrigation schedules were obtained using the triggered irrigation boundary 

conditions in HYDRUS 2D/3D at an observation node as described in Dabach et al. (2013). 

When the soil tension falls below the specified threshold, an irrigation is initiated (Müller et 

al., 2016). In the present study, the observation node triggering irrigation was placed at 10 cm 

away from the Moistube or drip emitter. The aim is to have maximum possible root water 

uptake, i.e. when the irrigation amount is the same as the potential root water uptake (Dabach 

et al., 2013). In this study, the thresholds were varied from -10 cm to -300 cm until the ratio of 

irrigation amount and potential root water uptake was unity. The growth stages derived by the 

AquaCrop model were split into two stages; the first 30 days which represented the initial 

growth stages and the remaining 70 days representing development to crop maturity stages.  

 

8.2.4 Assumptions  

 

The simulated scenarios for the two sites were based on the following assumptions  

a) The planting date was in the month of October as recommended by the Department of 

Agriculture (DAFF, 2014). Therefore, a planting date of 15th October was used. 

b) Rainfall was not considered and therefore cowpea was grown under irrigation.  

c) The plant density of 66667 plants ha-1 was used. This corresponds to a plant spacing of 

50 cm inter-row and 30 cm within row.  

d) The drip and Moistube laterals were placed beneath each row.  

e) The initial moisture content was at field capacity.  
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8.3 Results and Discussion  

 

The irrigation thresholds and schedules, soil water balance, simulated grain yields and biomass 

and finally water productivity are featured in this section. 

 

8.3.1 Irrigation thresholds and scheduling  

 

The optimum thresholds obtained were higher (> - 200 cm) under SDI but lower (< -50 cm) 

under MTI. For instance, as shown in Figure 8.2, at Ukulinga, the threshold when the ratio of 

irrigation amount to potential transpiration was unity was at -15 cm while that for SDI was 

slightly above -200 cm. The low thresholds for MTI was due to the low flowrates which 

necessitated frequent water applications.  

 

  

Figure 8.2 Irrigation thresholds under MTI and SDI 

 

The optimized irrigation for MTI in Ukulinga was 7 mm at an interval of 2 days which led to 

a total irrigation of 336 mm. Under SDI, the irrigation consisted of two applications of 20 mm 

at 7 and 22 days after planting for the initial stage (first 30 days) and thereafter 25 mm after 7 

days giving total of 315 mm in a season. The irrigation interval in Wartburg under MTI was 5 

mm every 2 days after emergence to the 30th day after planting and thereafter 9 mm every 2 

days. The irrigation schedule for SDI, on the other hand, was 10 mm after every 4 days from 

day 6 to day 30 and thereafter 30 mm every 6 days. The last 10 days under SDI was not irrigated 

while under MTI 5 mm it was applied at the same rate as the initial growth stage. These 

accumulated to 360 mm and 355 mm under SDI and MTI, respectively.  
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MTI is designed as a continuous irrigation where the water is applied every day for the rest of 

the cropping season (Zhang et al., 2015a;Sun et al., 2018). However, from the results above, 

the optimized irrigation can be achieved by irrigating at an interval of 2 days. Similar results  

were found by Wei et al. (2014)  where MTI with an irrigation interval of 2 days produced the 

same tomato yield as conventional MTI, but with 12% lower water use and 29% higher WUE.  

In another study, Yin et al. (2017), reported about 20% of water savings when spinach was 

grown under alternating irrigation interval than the conventional MTI.   Therefore, in some 

circumstances, the crop water requirement can be met under intermittent than conventional 

MTI. This could be necessary especially for crops which are tolerant to limited water 

availability.  

 

8.3.2 Soil water balance   

 

The soil water balance components simulated by HYDRUS 2D/3D are illustrated in Table 8.2. 

The actual evapotranspiration (ETa) were higher in Wartburg than in Ukulinga. The ETa values 

under MTI were higher than SDI for both sides. Drainage was lower in Ukulinga possibly due 

to the low hydraulic conductivity of clay soil. The drainage component was about 30% lower 

in Wartburg under MTI than SDI. However, MTI had a marginally lower drainage in Ukulinga 

than SDI.   

 

Table 8.2 Soil water balance under SDI and MTI as simulated by HYDRUS 2D/3D 

Component     Ukulinga      Wartburg   

    MTI SDI     MTI SDI 

Actual evapotranspiration (mm)    285.9 260.4     334.2 332.9 

Irrigation (mm)    336 315.0     355 360 

Drainage (mm)    12.6 15.1     20.8 30.3 

Evaporation (mm)     46.1 47.9     82.0 77.8 

 

8.3.3 Grain yield and biomass   

 

The AquaCrop simulated grain yield and biomass using the optimized irrigation schedules in 

Ukulinga were 2662 kg ha-1 and 10238 kg ha-1, respectively, under MTI. Similarly, under SDI 

the yield and biomass were 2660 kg ha-1 and 10232 kg ha-1, respectively. This shows that under 
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the optimum conditions, cowpea respond the same under SDI and MTI. These simulated yields 

were consistent with those found by Ilunga (2014) for the same cowpea variety (mixed brown) 

planted late August in 2013 at Ukulinga under irrigation where the observed yields were 2760 

kg ha-1. The deviations between the simulated and the observed in this case was 3.6%. This 

shows that the schedule developed in this study were satisfactory. Therefore, HYDRUS 2D/3D 

can be used in the development of optimum irrigation schedules and AquaCrop model used for 

yield estimation.  

 

The simulated grain yield and biomass in Wartburg under MTI were 2590 kg ha-1 and 9993 kg 

ha-1, respectively. Similarly, under SDI, the yield and biomass were 2625 kg ha-1 biomass 

10097 kg ha-1, respectively. There are no observed data on cowpea yields under irrigation in 

Wartburg. However,  Chibarabada et al. (2017) reported cowpea yield of 1214 kg ha-1 under 

rainfed system. This indicates that irrigation could be used to improve (double) the yields of 

cowpea. The results of the two sites indicate that cowpea yield of about 2600 kg ha-1 and 

biomass of 10000 kg ha-1 could be obtained under irrigation. The yields between the two sites 

were not, as expected, different since non-limiting production conditions were assumed. The 

results could have been different under different constraints such as fertility, salinity and water 

deficit conditions.  

 

8.3.4 Water productivity   

 

The water productivity (WP) values computed from the simulated yield and ETa in Ukulinga 

were 0.93 kg m-3 and 1.02 kg m-3   under MTI and SDI, respectively. In Wartburg, the WUE 

were 0.77 and 0.79 under MTI and SDI respectively. SDI had higher WP than MTI, especially 

at Ukulinga. From the WP perspective, it could be said that crops which are tolerant to limited 

water availability perform relatively better under SDI than MTI and vice versa. This may 

explain the relatively higher WP of tomato, sunflower and onion under MTI than drip irrigation 

(Xue et al., 2013b;Tian et al., 2016;Guo et al., 2017).  

 

8.4 Conclusion 

 

This study aimed at exploring the possibility of utilizing two widely applied models to predict 

the water use and yield of irrigated cowpea under two environments with different climate and 
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soil characteristics. HYDRUS 2D/3D, being suited for simulating soil water dynamics, was 

used to generate optimized irrigation schedules and simulation of the actual evapotranspiration. 

AquaCrop, a prominent crop model, was used to develop the crop characteristics and the 

simulation of the crop yields under the two environments. This was to draw into the strengths 

of the individual models by using the output of one model as input in the other. This type of 

model linking avoided the need for programming which could not be done in this study due to 

limited resources.  

 

From the simulations, the yields and biomass of cowpea were more or less the same, but SDI 

performed better than SDI in WP especially in Ukulinga. The results obtained indicated were 

close to the observed yields in Ukulinga. The water use varied from 315 to 360 mm indicating 

an average of 3.42 mm per day in a determinate cowpea variety maturing after 100 days. MTI 

could be used as intermittent irrigation, though designed as continuous irrigation, especially in 

crops which are tolerant to limited water availability.  

 

The irrigation scheduling developed in this study could not be verified further with field 

experiments due to financial and time constraints. Further, there was no independent data on 

yields and biomass of cowpea under irrigated conditions, except at Ukulinga, since it is grown 

mostly under rainfed systems and being a neglected and under-utilized species. Therefore, 

more field experiments need to be conducted to validate the irrigation schedules developed and 

to determine the response of cowpea under irrigated conditions, particularly MTI in other 

environments. This should also include crop stress parameters such as deficient water and 

fertility, and salinity conditions.   
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9. CONCLUSIONS AND RECOMMENDATIONS 

 

9.1 Conclusions 

 

Design, operation and management of irrigation systems require the knowledge of the soil 

water dynamics. The soil water dynamics in subsurface irrigation depends on, among other 

factors, soil type, system characteristics, depth of lateral placement and root water uptake. 

There is lack of clarity on some of the design aspects of MTI regarding the pressure-discharge 

relationship, the effect of dissolved and suspended solids on the Moistube discharge and the 

soil water dynamics under different soils and crop characteristics. There is scarcity of 

information on how various crops respond to water availability under MTI. Therefore, this 

study addressed the above issues as described in the following paragraphs. 

 

The hydraulic characteristics (in terms of the pressure vs discharge relationship) and the effect 

of suspended and dissolved solids were studied. The results indicated that the discharge from 

Moistube followed a power or linear function with respect to the applied pressure. The study 

also established that Moistube discharge decreased with time when water containing suspended 

or dissolved solids was used which indicated clogging of the nano-pores. Suspended solids had 

a significant effect on the clogging characteristics than dissolved solids. The clogging 

characteristics under suspended and dissolved solids in MTI were consistent with results 

reported in literature for SDI. The hypothesis that Moistube discharge has a positive 

relationship with applied pressure and negative relationship with dissolved and suspended 

solids concentration was confirmed.  

 

The effect of soil texture on the soil water dynamics under MTI was done experimentally and 

numerically using HYDRUS 2D/3D model. The model was calibrated for sandy clay loam and 

loamy sand. It was established that soil texture had significant effect on the soil water 

movement under MTI with downward movement being faster in loamy sand than sandy clay 

loam. Therefore, the hypothesis that soil texture influences the soil water dynamics under MTI 

was accepted. It was also found that Moistube discharge had significant effect on the soil water 

dynamics. Moistube discharge of between 0.2 l ℓ hr-1m-1 and 0.4 ℓ hr-1m-1 was found suitable 

when the placement depth was 20 cm for the two soil types considered.  

 



156 

 

The soil water dynamics while incorporating the root water uptake of cowpea was investigated 

using field experiments and numerically with HYDRUS 2D/3D. In these experiments, SDI was 

the control. The root water uptake between the two types of irrigation were not significantly 

different which implied that none induced water stress on the crop. The drainage losses were 

higher under SDI than MTI in loam soil (CEF experiment). The drainage losses were 

insignificant in clay soil (Ukulinga experiment) under both SDI and MTI. The suitable 

placement depth of Moistube laterals were found to be 15 cm and 20 cm in loam and clay soil 

respectively.  

 

The response of cowpea, a neglected but important legume, to water availability under MTI 

was determined. It was established that there were no significant differences in grain yield and 

biomass between SDI and MTI for all the water regimes (100% ETc, 70% ETc and 40% ETc) 

considered. However, the time to flowering was significantly delayed under SDI at 100% ETc 

than MTI. The leaf area index was significantly lower under MTI at 40% ETc. Therefore, SDI 

performed better than MTI under deficit water conditions. Hence the hypothesis that the 

response of cowpea to water availability under MTI was like that of SDI was partly true. The 

irrigation water productivity was highest under both MTI and SDI at 70% ETc but lowest under 

Moistube at 40% ETc. This illustrated the improvement of water productivity under moderate 

water deficit conditions. Irrigation water productivity for biomass was highest under 40% ETc 

which indicated favourable conditions biomass production. The mixed brown variety used in 

this study is highly vegetative and therefore suitable as leafy vegetable (consumption of leaves) 

in human or animal fodder.   

 

AquaCrop model was successfully parameterised and validated for full and deficit irrigated 

cowpea. MTI and SDI were used for calibration (parameterisation) and validation respectively.  

The model satisfactorily simulated canopy cover, water content, yield and biomass. The model 

tended to under-simulate the canopy expansion and canopy decline which could be attributed 

to the indeterminate growth characteristic of cowpea. The model over-simulated the grain yield 

and biomass under water deficit conditions. Generally, the under or over-simulations were 

within the standard deviations of the observed grain yield and biomass. This indicated that 

AquaCrop model can be used satisfactorily in assessing the response of cowpea to varying 

water regimes.  
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The simulation of the yield response of cowpea to optimum water conditions under MTI was 

simulated using a symbiotic combination of HYDRUS 2D/3D and AquaCrop models. The 

simulations were done for two agro-ecological zones in KwaZulu -Natal province with clay 

soil (Ukulinga) and sandy soils in Wartburg. It was established that MTI can best be designed 

as intermittent irrigation where water is applied every 2 days instead of the conventional one 

where water is supplied continuously. The simulated yield at Ukulinga were close to the 

observed yields reported in literature. This indicates that AquaCrop and HYDRUS 2D/3D 

could be used together for optimum irrigation water management. The yield and biomass for 

the two sites were similar indicating that irrigation can be used to stabilize production in in 

agriculture.  

 

9.2 Recommendations 

 

The following recommendations can be drawn from the findings of this study. 

a) The effect of suspended and dissolved solids on the discharge characteristics of 

Moistube was carried out for 14 days. Further research is needed for a longer duration 

or for a typical growing period.  

b) The movement of solutes need to be investigated. This could be done in conjunction 

with fertigation  

c) The optimum placement depth of Moistube laterals need to be verified in the field to 

determine its effect on crop response.   

d) The AquaCrop crop parameters developed in this study were obtained with data 

obtained under controlled environment. Therefore, further fine-tuning should be done 

under field conditions and other environmental and management scenarios such as soil 

fertility.   

e) The mechanism of coupling AquaCrop and HYDRUS 2D/3D adopted in this study was 

simple input – output model. There is need to modify the coupling mechanism in such 

a way that the common processes are ‘read’ in one interface. In addition, the irrigation 

schedules developed were only verified for one site due to insufficient data. Therefore, 

these schedules or the modelling framework need to be implemented in the field, 

besides exploring the possibility of deficit irrigation scheduling.  
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11. APPENDICES  

 

11.1 Appendix A: Calibration of Sensors  

 

 

Figure A.1 Calibration for Water Mark Sensors  

 

 

Figure A.2 Calibration for MPS2-2 sensors  
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11.2 Appendix B: Soil Water Retention Characteristics  

 

 

Figure B.1 Soil water retention characteristics curve for loam soil  


