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ABSTRACT 

Traditional chemotherapeutic drugs are often restricted by severe side effects and a lack of 

specificity.  An approach aimed at improving the selectivity of cancer drugs includes the use of 

prodrugs that can be selectively activated in tumour tissue (tumour-activated prodrugs).  Peptide 

prodrugs cleavable by proteases in the tumour environment have been widely explored to improve 

the therapeutic index of cytotoxic drugs.  In this study we demonstrate that the cell surface 

proteases over expressed in tumour cells are capable of cleaving the peptide CKAFKRK attached to 

gold nanoparticles (GNPs).  This proteolic cleavage exposes the potential cytotoxic “agent” to the 

tumour cell.  As these proteases are not over expressed in healthy cells, the prodrug will take much 

longer to be activated.  A simple system is developed in this study as a proof of concept by 

replacing the cytotoxic agent with a fluorophore.  An enhanced fluorescence emission is expected 

on exposure of the peptide functionalised GNP to the tumour cells, whereas a constant level of 

emission is anticipated on exposure to the healthy cell line.  
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1. CHAPTER 1:  INTRODUCTION 

This is a multidisciplinary study (Chemistry and Biochemistry).  It is not possible to adhere to the 

usual format of both disciplines in this dissertation.  It is also difficult to satisfy the expectation of 

the expert reader in terms of the depth of discussion of all aspects involved in this study.  This 

dissertation was written from a chemistry perspective.  The format of this thesis and the references 

are based on standard practice in the School of Chemistry.  Since the study was performed from a 

chemistry background, some basic chemical knowledge is assumed.  For the convenience of non-

biologists/biochemists, footnotes are used to explain and define various biochemical concepts that 

may seem standard knowledge to people in the field.   

1.1. GENERAL BACKGROUND 

Cancer is a life threatening illness that affects millions of people worldwide and is one of the most 

feared diseases to date.   

Cancer is able to affect many organs in the human body.1,2  These organs are made up of cells that 

divide and multiply when required by the body and this process of cell division is strictly 

regulated.3  Sometimes, however, the regulatory mechanism is compromised and the affected cells 

continue to multiply in an uncontrolled fashion, resulting in a mass or growth called a tumour that 

could either be considered benign (non-cancerous) or malignant (cancerous).1,3  Benign tumours are 

rarely fatal and do not spread to other parts of the body, whereas the cells within malignant tumours 

spread the disease by invading neighbouring tissues and organs.3,4  The cancerous cells within 

malignant tumours can also break free from the tumour, enter the blood stream, and spread the 

disease to other organs, a process known as metastasis.3   

There are many causes of cancer, including environmental factors such as viruses, chemicals, 

radiation, lifestyle (smoking and excessive alcohol consumption), and internal factors such as 

inherited conditions and hormonal levels.4  Presently, treatments available for the disease include 

surgery, chemotherapy, radiation therapy, immunotherapy and biological therapy.2  The chances of 

successful treatment depend mainly on the type of cancer and how early the cancer was diagnosed.4  

Factors such as the type and level of metastasis, age and general health determine the choice of 

treatment and unfortunately no single method is curative in all cases.  Often, several therapeutic 

modalities may be used in order to provide the most complete treatment for the patient.  However, 
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even this multi-modality approach has limitations, especially with regard to disseminated cancer, 

since small clusters of malignant cells can easily evade detection and cannot be effectively treated 

by surgery or radiation therapy.  In these cases, chemotherapy remains the only viable treatment 

method.4   

The major drawback of current chemotherapeutic agents is their inability to discriminate between 

normal and tumour cells and in order to prevent toxicity to the host, only limited doses of the 

therapeutic drugs can be administered.5-8  In most cases, however, the doses administered are 

seldom sufficient to eradicate cancer cells entirely.5  

1.2. TARGETING 

Ultimately, the goal of cancer drug research is the development of agents that will selectively attack 

cancer cells, sparing the normal tissue of the host.  One approach to obtain specificity, is molecular 

targeting that uses drugs that attack molecular pathways responsible for maintaining and 

propagating the disease, without disrupting the normal functions of cells and tissue.5,6  The design 

of such tumour targeting drugs begins with understanding how cancer cells metastasize and 

identifying characteristic as well as targetable differences between normal and tumour cells. 

1.2.1. Tumour targeting prodrugs 

These drugs are referred to as prodrugs and are substances administered in an inactive form that are 

then metabolized in the body to yield the active compound.5,7  Prodrugs can be activated by tumour 

associated antigensa, enzymes or receptors that are over-expressed on cell surfaces and recognised 

for therapy by a tumour seeking molecule.9,7  Such tumour activated prodrugs (TAP) can be 

selectively activated by several mechanisms, namely selective enzyme expression, hypoxiab, and 

low extracellular pH in the vicinity of the tumour.10,7  The attachment of peptides onto drugs can 

facilitate the release of the drug upon selective cleavage of the peptides by enzymes known to be 

produced and secreted preferentially by tumour cells.5  An example of an enzyme preferentially 

secreted by tumour cells is the serine protease plasmin. 

                                                 

a An antigen is a substance that prompts the production of antibodies, thereby generating an immune response.  
b Hypoxia refers to a condition in which the entire body (generalized hypoxia) or a region of the body (tissue hypoxia) 
is deprived of an adequate oxygen supply.  
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1.2.2. Activation of prodrugs by the serine protease plasmin 

A targetable characteristic of cancer cells is the over proliferation of the serine protease 

plasminogen activatorc.8  The cleavage of the zymogen, plasminogen, by serine protease 

plasminogen activator generates the serine protease, plasmin.  Small amounts of activator are able 

to produce significant amounts of plasmin, the activity of which is tightly regulated by normal 

controls on plasminogen activator.  Protease inhibitors are capable of inactivating free plasmin 

ensuring that the tumour associated plasmin activator is highly localised around the area of the 

tumour cell.    

The generation of plasmin by cancer cells provides an attractive option for the activation of 

anticancer prodrugs.8  An example of such a prodrug system is the incorporation of a tumour 

specific recognition site within the prodrug, such as the tumour-specific sequence, D-Ala-Phe-Lys, 

that is selectively recognised by the tumour-associated protease, plasmin.5  In such a system the tri-

peptide would be cleaved by the enzyme, exposing the cytotoxic agent to the tumour.  This carrier 

or drug delivery vehicle for cytotoxic agents may possess immeasurable value as potential 

anticancer treatments due to its ability to deliver cytotoxic agents to tumour tissue and cells while 

protecting the drug from premature activation during transport.6   

1.2.3. Colloidal nanoparticles as delivery vehicles of anticancer drugs 

Nanoparticles (NPs) are sub-micronic (<1 µm) colloidal systems.  They are envisaged as promising 

drug carrier systems due to the following attributes: 

 Small size,  
 ease of synthesis,  
 ease of functionalisation,  
 high binding capacity,  
 non-toxicity,  
 stability,  
 inertness in the human body, 

                                                 

c Plasminogen activator is an enzyme that catalyzes the conversion of plasminogen to plasmin, the major enzyme 
responsible for the breakdown of blood clots. 
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 NPs less than 50 nm in diameter, are suitably sized for passive uptake by the leaky 

vasculatured of tumour tissue.6   

The incorporation of anti-tumour drugs onto the surface of NPs has been reported to improve the 

effectiveness of the drug in the following ways:6   

 Overcome non-cell and cell based mechanisms of resistance, 

 increase the selectivity of the drug to cancer cells, 

 reduce the toxicity of the drugs to normal cells,  

 increase drug concentrations in cancer tissue,  

 enhance antitumor efficacy.6 

NPs do, however, have the considerable drawback of an extremely short circulation time of only 3-

5 minutes after intravenous administration.  This is caused by the massive capture of the NPs by the 

macrophages of the bone marrow (MPS) organ.5,6  As a result, alternate NP systems have been 

investigated in order to target tumour organs in preference to the MPS area.   

Extensive interest has been focussed on so-called stealth particles that are promising candidates as 

anticancer drugs due to their: 

 Prolonged half-life in the blood compartment, 

 invisibility to macrophages,6   

 ability to target many tumours outside the MPS region.6   

Stealth particles are characterised by a high curvature, extremely small size (<100 nm) and are 

differentiated from conventional hydrophobic NPs by their hydrophilic surface.6  The hydrophilic 

coatings such as polyethylene glycol, poloxamines, poloxamers, polysaccharides and peptides, 

create a layer of hydrophilic and neutral chains at the particle surface which act to repel plasma 

proteins.  These coatings are easily attached to the surface by adsorption of surfactants or by the use 

of block or branched co-polymers.  The latter method of attachment/functionalisation is preferred as 

it avoids the possibility of rapid coating desorption upon dilution or after contact with blood 

components.6  The functionalisation of gold nanoparticles (GNPs) allows the properties of GNPs to 

be adjusted to impart the required stability, solubility and selective targeting of the macromolecule.   

                                                 

d The network of blood vessels in an organ is referred to as the vasculature of the organ in question.  Most cancers have 
leaky vasculature of the blood capillaries in the tumour that result in defective vascular architecture (broken or 
incomplete blood capillaries).   
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1.3. AIMS OF THIS PROJECT 

The design of a drug delivery system exploiting the differential rates of biochemical reactions in 

tumour versus healthy cells has not, to the best of our knowledge, been reported.  Due to the lack of 

drug specificity, this project aims at investigating the relationship between the structures of peptides 

attached to GNPs and their susceptibility toward enzyme degradation, as a novel mechanism for 

selective cancer drug delivery.  This delivery system will be based on the principle that cancer cells 

are more active than healthy cells in terms of the over proliferation of proteases.   

The proposed drug is envisaged to have the following features:  

 A timing device that “turns on” the destructive mode of the drug in cancerous cells,  

 a “forest” of long peptides protecting the healthy cells from the drug action until the timing 

device has switched off the drug action and,  

 a timing device that “switches” the cancer destructive mode of the drug off at a certain time.   

If that can be achieved, a tumour specific drug could be within reach.        

The long term (post MSc) goal of this project is to destroy cancer cells by means of a short distance 

radioactive atom attached to a DNA intercalator.  The radioactive DNA intercalator will be attached 

to a GNP by means of a short peptide sequence.  Also attached to the GNP will be a forest of longer 

peptide chains specifically designed to be consumed by the over expressed proteases in cancer cells.  

When the GNP prodrug is delivered to a cancerous cell the over expressed proteases will ensure a 

fast rate of consumption of the protective peptide shield.  Once the radioactive intercalator is 

exposed to the DNA of the cancer cell it would cause irreversible damage to the DNA of the cell 

leading to a systematic destruction of the cancerous cells.   

The half-life of the radionucleotide will be chosen such that it will have decayed to negligent levels 

by the time the much slower proteolysis of the healthy cells will have exposed the radioactive DNA 

intercalator.  Since a short distance radioactive element will be used, damage to healthy cells will be 

limited due to the effective shielding of the radiation by the forest of long peptide chains.  The 

theory is illustrated as shown in Figure 1. 
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Figure 1:  Proposed schematic of peptide strands attached to gold NPs.   

It was decided to establish proof of concept using a simplified system for this project.  Replacing 

the radioactive part of the prodrug with a fluorescent tag would eliminate the risk factor of working 

with radioactive nucleotides.  It is envisaged that the uptake of the GNP into living cells could be 

monitored using fluorescent tags.  The intensity and wavelength of fluorescence should also change 

when the forest of longer peptides is removed by the protease reaction.  The fluorescent tags should, 

therefore, also enable determination of the different rates at which cancer cells versus normal cells 

consume the longer peptides.  In turn this will direct the choice of radioactive element to be used in 

future studies. 
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A peptide containing the sequence Cys-Alan-(Lys-Ala-Phe-Lys-Arg-Lys)n [CAn(KAFKRK)n], will 

be synthesised.  The particular amino acid residues were selected on the basis of the following 

considerations: 

 The cysteine residue facilitates the covalent attachment of the peptide sequence to the gold 

surface, 

 the incorporation of the tumour specific sequence D-AFK is necessary for selective cleavage 

by cancer cells, 

 the incorporation of D-Alanine prevents the formation of β-sheet structures,  

 hydrophilic residues, such as lysine and arginine are required to,  

o ensure water solubility,   

o facilitate membrane permeability of the peptide capped GNPs,11   

 hydrophobic D-Alanine and phenylalanine are incorporated to impart the necessary stability 

to the GNP macromolecule, thereby preventing aggregation of the particles. 

Coumarin-3-carboxylic acid, a fluorescent dye, will be attached to the terminal lysine in the shortest 

peptide strand.  The GNPs will be modified with CAn(KAFKRK)Coum, and CAn(KAFKRK)n.  

Since the length of the latter is significantly longer than that of the former, the Coumarin will be 

surrounded by the long peptide strands, providing an outer layer that is required to protect the 

healthy cells against radiation in a later part of the project (Figure 1).  Fluorescence testing will 

establish the ratio of CAn(KAFKRK)Coum to CAn(KAFKRK)n, as well as the required length of 

the segment KAFKRK to prevent significant quenching of the fluorophore by the GNPs.  

Trypsin/versene digestion studies (section 5.6.3., page 77) are expected to reveal the necessary 

spacing required for complete digestion of the peptide prior to cell testing.   

The correct length of the peptide segment AnKAFKRK, necessary to prevent the occurrence of 

fluorescence resonance energy transfer between the fluorophore and the gold surface, must be 

elucidated.  The ratio of CAn(KAFKRK)n and CAn(KAFKRK)Coum must be determined such that 

the fluorescence emission intensity is clearly visible.  These constraints will ensure a distinct 

change in fluorescence intensity when the longer peptide chains are digested to the extent where the 

fluorescent tag is exposed.  This theory will be tested using trypsin/versene digestion studies: It is 

proposed that after cleavage of the „forest of peptides‟ (long peptide), the shorter peptide will be 

exposed thereby revealing enhanced fluorescence intensity (section 5.2., page 68).  Enzymatic 

degradation studies should reveal an increase in fluorescence on incubation of malignant cells with 

protected GNPs as opposed to healthy cells.  This would indicate an increased rate of consumption 
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of the protective peptides CAn(KAFKRK)n by unhealthy cells due to the over proliferation of 

proteases.   

As GNPs play a central role in this project, they will be discussed further in Chapter 2.   
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2. CHAPTER 2:  GOLD NANOPARTICLES 

NPs are materials that have a characteristic size of <100 nm.  Interest in NPs has grown 

tremendously in many fields including chemistry, physics, biology, materials science, catalysis, 

engineering and computer science due to the unique chemical, electrical, magnetic and optical 

properties.  As a result GNPs are the most widely investigated element in nanoscale science.12 

2.1. GOLD – A SHORT HISTORY 

Gold has a legendary status of being the most noble of all metals as it never tarnishes on exposure 

to the atmosphere and is unaffected by most chemicals.13  It has been used as a monetary standard 

throughout the history of mankind, and has been the source of many beautiful historical artefacts, 

works of art and jewellery.14   

People have unknowingly used gold in its sub-micronic form for centuries with the oldest 

documented example being its use for decorative purposes in the Lycurgus cup from the fourth 

century AD.14  In direct light the cup resembles jade with an opaque greenish-yellow tone, but 

when transmitted light shines through the glass it turns into a translucent ruby colour (Figure 2 A-

B).  The unique optical properties of the cup are a result of the presence of colloidal gold (Figure 2 

C) and this antiquity represents one of the outstanding achievements of the ancient Roman glass 

industry.14    
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Figure 2:  Lycurgus cup, Roman Era (4th century A.D).  It appears green in reflected light (A) and 

red in transmitted light (B).  It contains gold and silver particles approximately 70 nm in a ratio of 

1:14 (C).  The spectral colour effects are due to these nanocrystals.  Figure from the British 

Museum, http://www.thebritishmuseum.ac.uk (Accessed 16 August 2009). 

It was not until 1857 that Michael Faraday reported a systematic study of the synthesis and colour 

of colloidal gold.  Faraday‟s work was at the frontier of colloidal science and led to the broadening 

interest in colloidal gold during the last quarter of the 19th and beginning of the 20th century.13  

Presently, GNPs are investigated in the field of material science, catalysis, surface science and 

synthesis due to their many attributes, such as: 

 Ease of synthesis, 

 ease of modification in terms of size and shape,15   

http://www.thebritishmuseum.ac.uk/
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 ease of functionalisation,  

 small size,  

 stability,  

 interesting optical and electrical properties: GNPs have enormous visible light molar 

absorbtivity (ε>105 mol-1 cm-1), which is several magnitudes higher than even the best 

organic dye molecule (see section 2.4., page 19, for details),16   

 ability to carry high payloads of drug,17  

 inherent lack of toxicity to human cells:  Shukla (2005)18 and Connor (2005)19 have found 

that in spite of efficient uptake into human cells by endocytosis, GNPs capped with 

hydrophilic coatings show little cytotoxicity. 

2.2. FORMATION AND STABILIZATION OF GNPS  

Since the pioneering work of Faraday, extensive research has been conducted on GNPs with the 

intention of developing simplified methods for the formation and stabilization of gold NPs.   

2.2.1. The formation of GNPs 

Over the last 20 years, a variety of methods have been introduced for synthesising GNPs with a 

unified goal of producing NPs that: 

 Are of a monodispersee nature,  

 are controlled and uniform in diameter,  

 remain colloidally stablef.  

Most reports follow a similar regime to produce atomic gold, and make use of a reducing agent to 

donate electrons to the positively charged gold ions in solution.11  This process is illustrated in the 

following equation. 

Au3+
+  3e- Au0

 

                                                 

e A collection of particles are referred to as monodisperse if they all have the same size and shape. 
f Remain in suspension and resists settling. 



12 

Reducing agents used in this process include sodium citrate (section 2.3.1., page 16), sodium 

borohydride (section 2.3.3., page 19) and sodium thiocyanate.20  The process of reduction of gold 

tetrachloroaurate (HAuCl4) to atomic gold is illustrated in Figure 3. 

 

Figure 3:  Nucleation of GNPs.  Redrawn from Chandler et al. (2009).21   

Before the addition of any reducing agent, the solution consists solely of gold ions and as the 

reducing agent is added, the gold ions are transformed to gold atoms (y axis).  After the addition, 

there is a sharp increase in the gold atom content until super-saturation is reached.  Aggregation 

follows super-saturation in a process called nucleation in order to decrease the super-saturation of 

the gold atoms in solution.  The remaining gold atoms continue to bind to the nucleation sites under 

an energy-lowering gradient to efficiently remove all the atoms from the solution.  The number of 

particles that grow in solution is defined by the number of nuclei that initially form.  As the 

concentration of reducing agent is increased, the number of nuclei that form increases, resulting in 

the formation of smaller GNP sizes.21  It is thus imperative to establish the ideal manufacturing 

conditions such that all nucleation sites are formed instantaneously and simultaneously.  This will 

result in GNPs of the same size (monodispersity).   

The synthesis of GNPs under conditions that are not ideal often results in irreproducible GNP sizes 

that yield unstable gold conjugates.21  These poorly dispersed GNP solutions are easily identified 

by their bluish or purple colour as opposed to the cherry red colour that indicates a well prepared 

solution as shown in Figure 4.22  Under conditions of extreme aggregation, the solution becomes 

colourless and a black precipitate can be observed.22   
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Figure 4:  Illustration of different qualities/geometries of GNPs.  A) Well manufactured gold:  

Cherry red, excellent monodispersity, all spherical.  B) Poorly manufactured gold:  Purple, poor 

monodispersity, odd shapes.  Redrawn from Chandler et al. (2009).21 

The optical properties of GNPs depend strongly on their size and shape.  These effects are the result 

of a phenomenon known as surface plasmon resonance, described further in section 2.4. (page 19). 

2.2.2. Stabilization of GNPs 

The stabilization of GNPs can be achieved by two methods: 

 Electrostatic stabilization,  

 steric hindrance.23,24   

Electrostatic stabilization involves the creation of an electrical double layer arising from the ions 

adsorbed on the particle surface.  The GNPs are suspended and prevented from agglomeration by 

this negative charge layer surrounding each particle.  This charge layer arises from the residual 

negative ions in solution as shown in Figure 5. 

 

Figure 5:  Electrostatic hindrance due to the coulombic repulsion between the adsorbed ions on the 

particle surface.  Redrawn from Chandler et al. (2009).21 
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This form of stabilization should prevent aggregation of the particles as long as the electric potential 

associated with the double layer is sufficiently high.23   However, over extended periods of time in 

solution these electrostatically stabilised particles are increasingly more susceptible to oxidation or 

the attractive interparticle Van der Waal‟s forces.  As a result the particles may aggregate and 

precipitate from solution.25   

To prevent this, the electrostatic stabilization can be further enhanced by the incorporation of 

stabilizing agents such as phosphine, thiol, carboxylate, or amine containing molecules onto the 

GNP monolayer.25  This form of stabilization is referred to as stabilization via steric hindrance and 

can be achieved by the adsorption of large molecules on the particle surface (Figure 6).20   

 

Figure 6:  GNPs separated via steric hindrance.  Redrawn from Chandler el al. (2009).21 

Particles stabilised in this manner are known as monolayer protected clusters (MPCs) or self 

assembled monolayers (SAMs).26  In the case of electrostatically stabilised GNPs, ligands can be 

incorporated onto the GNP surface by means of an exchange reaction with the electrostatically 

stabilised NP (refer to section 2.3.1., page 16, for details on synthesis).  Ligands can also be 

incorporated onto the GNPs monolayers by reductively generating the NPs in the presence of the 

ligand (refer to section 2.3.3., page 19, for details on synthesis).  The ligands are adsorbed onto the 

surface of the gold via the following mechanisms as shown in Figure 7. 

1. Charge attraction of the positively charged ligand to the negatively charged gold particle,   

2. hydrophobic adsorption between certain ligand residues to the particle surface, 

3. dative/covalent bonding between sulfur residues of the ligand and the gold particle.21   



15 

 

Figure 7:  Binding forces between amino acids and a gold particle.  Lysine is attached to the 

surface of the gold particles through mechanism 1, cysteine is attached via mechanism 2 and 

tryptophan is attached by means of mechanism 3.  Figure redrawn from Chandler et al. (2009).21   

Both methods of GNP stabilization allow the ability to select the ligand attached to the GNP such as 

proteins and nucleic acids.  This introduces a means by which the NPs may be directed to a target 

site in a body or in a cell for detection, diagnosis, or therapeutic purposes.  The general structure of 

the ligands and their attachment to the gold can be seen in Figure 8.  The hydrophilicity of the 

spacer and tailgroup greatly affects the overall water solubility of the capped GNPs, a prerequisite 

for most biological studies (refer to section 2.6., page 22).  

 

Figure 8:  Diagram of an alkanethiol adsorbate on the surface of gold, depicting the tailgroup, alkyl 

chain and headgroup.  Redrawn from Colorado et al. (2001).27 
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2.3. SYNTHESIS OF GNPS 

Many techniques are currently available for the synthesis of GNPs.  Three common methods that 

are used are sodium citrate reduction, the brust and the sodium borohydride method.  

2.3.1. Sodium citrate reduction 

The sodium citrate method, also known as the “Turkevitch”28 method was discovered as early as 

1850, when Michael Faraday reported a study of the synthesis and properties of GNPs based on the 

citrate reduction of HAuCl4 to Au colloids in water.29  The procedure entails the following:  An 

aqueous solution of HAuCl4 was brought to boiling point.  A reducing agent, trisodium citrate, was 

rapidly added with stirring under reflux.  This agent reduced Au(III)3+ to Au(0).  The initial pale 

yellow solution immediately turned to bright red indicating the formation of spherical GNPs.   

6 AuCl4   +  C6H8O7 +   5H2O 6CO2  +  24 Cl-   +  6Au0 + 18H+
30 mins
Reflux

 

In this procedure, citrate acts as both a reducing and capping agent.  Citrate is an effective capping 

agent as it forms a layer of citrate ions over the GNP surface that induces sufficient electrostatic 

repulsion between individual particles to ensure that they remain well dispersed in the reaction 

medium.  The Turkevitch method yields ~15 nm nano-spheres with a narrow size distribution that 

can be varied by adjusting the concentration of reducing agent to gold salt (the larger the ratio, the 

smaller the particle size).30,31  Once the colloid is formed, the addition of excess sodium citrate or 

prolonged heating has no effect on the particle size.   

The major drawback of this procedure is due to the electrostatic nature of stabilization.  The 

electrostatic-stabilised NPs can irreversibly aggregate, complicating further handling and 

manipulation of the NPs.29  This can however be prevented by the attachment of thiolated linked 

ligands to the GNPs (Figure 9).  
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Figure 9:  Construction of thiol stabilised MPCs through the sodium citrate reduction method.  

Redrawn from Hu et al. (2006).29  

The lack of stability of sodium citrate stabilised GNPs over extended periods has resulted in the 

discovery of more robust and versatile versions of the synthesis that affords the use of better 

stabilising agents.  In 1994, Brust and Schiffirin reported the synthesis of the first MPCs or 

SAMs.32  The introduction of thiolated molecules improves the stability of the NPs allowing them 

to be dispersed in various solvents without aggregation.  NPs synthesised in this way are 

particularly appealing as the addition of covalently bonded thiolated molecules endow the NPs with 

useful catalytic, transport and recognition properties.29   

2.3.2. Brust method of synthesis of thiol derivatised GNPs by biphasic reduction 

In 1988, Mathias Brust discovered a novel synthesis of GNPs that affords excellent control and 

uniformity in size of GNPs.  The Brust synthesis is carried out in organic solvents and involves the 

transfer of tetrachloroaurate anions from an aqueous phase to an organic (toluene) phase by 

tetraoctylammonium bromide ions (TOAB).  The toluene solution is then stirred with sodium 

borohydride (NaBH4) in the presence of alkanethiols.  The NaBH4, reduces the HAuCl4, while the 

alkanethiol molecule capps the AuCl4
- to yield stable GNPs (Figure 10).33  On addition of the 

reducing agent, the organic phase rapidly changes colour from orange to deep brown.  

 

Figure 10:  Preparation of thiol stabilised GNPs by the Brust method. 
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The two step reaction is shown in the following reactions: 

AuCl4-(aq)  +  N(C8H17)4
+(C6H5Me) n(C8H17)4

+AuCl4-(C6H5Me)

mAuCl4-(C6H5Me) + nC12H25SH(C6H6Me) + 3 me- 4mCl-(aq)  + (Aum)(C12H25SH)n(C6H5Me)  

The particle sizes can be adjusted to between 1-5 nm depending on the ratio of thiol to gold atoms, 

with the larger ratios yielding smaller NP diameters.  The synthesis of NPs in organic solvents 

offers several advantages such as: 

 Greater control of particle size that in turn results in monodispersed particles,  

 can be easily and quickly dried, 

 can be easily re-dispersed in a variety of organic solvents.   

These MPC‟s can be further elaborated by the Murray place exchange reactions, whereby ligands 

can be replaced by other thiol-ended groups to yield mixed monolayer-protected gold clusters 

(MMPCs) (Figure 11).31
 

 

Figure 11:  Modification of MPCs by the Murray place exchange reaction to yield MMPCs.  

Despite the numerous advantages offered by the Brust method, NPs synthesised by this technique 

are unsuitable for use in biological applications.  This is due to the synthesis being carried out in 

organic solvents, resulting in GNPs that inherently lack the necessary stability and solubility in 

aqueous media, a fundamental requirement in biological applications.34-36  As a result, an alternate 

technique should be employed to accommodate the biological requirements of the resultant GNPs.   

The NP synthesis can be carried out using the NaBH4 reduction, in which the GNPs can be 

synthesised in an aqueous environment.   
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2.3.3. Sodium borohydride method 

The reduction of HAuCl4 by the NaBH4 reduction method is a simple process:  An aqueous solution 

of NaBH4 is added as the reducing agent in the presence of thiolate ligands (Figure 12) to an 

aqueous solution of HAuCl4.
33   

 

Figure 12:  Construction of thiol stabilised MPCs through the NaBH4 reduction method. 

As in the citrate method, the particle size can be varied by adjusting the concentration of reducing 

agent to gold salt - the larger the ratio, the smaller the particle size.30,31  The ligands control 

solubility and prevent aggregation of the resulting NPs.  The reduction by NaBH4 is simple, rapid 

and does not require the use of phase transfer agents such as TOAB that is used in the Brust 

method.  The reduction can be performed at room temperature, unlike the citrate reduction 

procedure which requires refluxing and ultraclean glassware.  This method is also advantageous as 

the synthesis is carried out in one easy step.  As the GNPs are synthesised in an aqueous 

environment, the resultant GNPs are suitable for the use in biological applications.   

2.4. OPTICAL PROPERTIES OF GNPS 

GNPs are known for their beautiful cherry red colour in solution as well as their extremely high 

molar absorbtivity.37  The strong light absorbance of GNPs is ascribed to the transverse oscillations 

of the conduction electrons at the surface of the NPs in response to the alternating electromagnetic 

field of the incoming light which induces a dipole moment.30,29,38  This phenomenon is known as 

plasmon resonance and is depicted in Figure 13.   
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Figure 13:  Schematic drawing of the principle of plasmon resonance.  A dipole is induced (A), 

which oscillates in phase with the electric field of the incoming light (B).  Redrawn from Huang 

(2006).39 

The maximum absorbance wavelength of the surface plasmon band of GNPs is around 520 nm and 

is responsible for the brilliant colour of the NP in solution (Figure 14).29 
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Figure 14:  Typical surface plasmon absorption spectrum of spherical GNPs.  Redrawn from 

Huang (2006).39   

As mentioned previously, the surface plasmon resonance band is dependent on the size of the 

NPs.37  An increase in size results in a red shift of the absorbance maximum of the surface plasmon 

resonance band to longer wavelengths (518 to 533 nm).  The bandwidth is also affected by the NPs 

size - the bandwidth decreases with increasing size when the NPs are less than 20 nm and increases 

with increasing NP size when the NPs are greater than 20 nm.  Inter-particle distance also has an 

effect on the surface plasmon band of NPs.37  In the aggregated state, the individual NPs are able to 

interact with each other to give rise to oscillations that are the combination of oscillations of the 

individual NPs causing a red shift in the band upon aggregation.  These unique optical features 

make GNPs attractive probes for biosensing, molecular imaging and allow for use in many 

photothermal therapy applications.40 
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2.5. CHARACTERIZATION OF GNPS 

Many techniques are currently available for the characterization of GNPs.  These techniques include 

transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunnelling 

microscopy (STM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance 

(NMR), and ultraviolet-visible spectroscopy (UV-vis).  The core of the GNP can be viewed via 

TEM and information such as the size of the core, the disparity of the NP population, and the shape 

of the NPs formed can be obtained.  AFM and STM can be used to elucidate the size of the NPs 

formed and unlike TEM the dimensions generally include the molecules in the ligand shell.  FTIR, 

NMR and UV-vis are used to verify the structure of the ligand shell as well as qualitatively measure 

purity since the peaks of free alkanethiols are narrower than those on the NP itself.   

2.6. BIOLOGICAL APPLICATIONS OF GNPS 

NPs are comparable in size to many common biomolecules and are therefore natural companions in 

hybrid systems.41  This proposal of merging biological and non-biological application systems at 

the nanoscale level has proven useful for research in cell and molecular biology.  NPs and 

biological molecules have been combined to exploit the many attributes of the NPs and the specific 

molecular recognition capabilities of the biological molecules in biotechnological 

applications.16,38,42-44   

 

To be viable for the use in disease diagnostics and therapy, it is essential that the NP systems are 

functionalised for the following reasons: 

 Recognition of specific target sites in the body after systematic administration, 

 to impart good biocompatibility, 

 to ensure enhanced solubility.45,46,42   

This surface functionalisation of GNPs is of utmost importance in biomedical applications as it 

facilitates a selective and effective means of controlled intracellular release.45  The gold core 

imparts the necessary stability to the manufactured assembly while the surrounding thin monolayer 

allows tuning of surface properties such as charge, optical properties, and hydrophobicity.  The 

monolayer is largely associated with chemical behaviour of the GNPs such as solubility, molecular 

recognition and organization.  In a typical assembly, hydrophobic groups are located in the interior 

part of the macromolecule to provide a tightly packed protective shield to the NPs, while charged 

and hydrophilic molecules are exposed to the solution, ensuring solubility in water.34,46,47   
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GNPs can be attached to biomolecules such as proteins, peptides, viruses, carbohydrates, 

antibodies, lipids and nucleic acids.48  There has been substantial interest in the interaction between 

peptides and GNPs to utilise the improved bio-specificity of the resulting GNPs in order to expand 

applications of these systems in biological and medical sciences.49   

These peptide-derivatised NPs are becoming increasingly popular due to their ease of synthesis and 

ability to alter the properties of the macromolecule.  They make use of cysteine as an anchor group 

to stabilise the GNPs:  Cysteine-terminated peptides are covalently coupled directly to the gold 

particles surface through a sulfur-gold bond.50  The choice of peptide sequence and length 

determines the solubility of the macromolecule as well as cell permeability of the resulting GNP 

composite.  The functionalisation of GNPs with hydrophillic amino acid residues such as lysine and 

arginine induces a positive charge on the NP that favours interaction with the membrane (charged 

negatively) and consequently enhances penetration into the cell.  There are several examples in the 

literature describing the addition of lysine or arginine for transfecting molecules into cells.11   

Peptides were coupled to GNPs in this study due to the myriad of advantages they afford to the 

GNP composites.  The chemistry of peptides is discussed in Chapter 3. 
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3. CHAPTER 3:  PEPTIDE CHEMISTRY 

Peptides are essential in the design strategy of this project and are hence discussed in detail in this 

section.  

3.1. A GENERAL INTRODUCTION 

Amino acids are the building blocks for the assembly of peptides and proteins.  Every living 

organism on earth uses mainly the same 20 amino acid residues (Table 1) and therefore amino acids 

are referred to as the building blocks of life.51  They are characterised by two main functional 

groups, namely a carboxylic acid group and an amino group.  Both groups are bonded to the same 

carbon atom which is referred to as the α-carbon or Cα which is a chiral centre, except for 

glycine.52  The Cα atom is substituted with a hydrogen atom and a side-chain group (R), except in 

the case of glycine for which R = H.53   

Side-chain groups are distinctive for each amino acid.  The side chains determine the properties of 

peptides and contribute to the structure as well as the function of these biomacromolecules.52  

Amino acids are connected to each other in a linear sequence to form peptides/proteins.52  

Molecules consisting of 100 or more amino acid residues are regarded as proteins and those 

consisting of less than 100 residues are referred to as peptides.  Molecules made up of 10-100 

amino acid residues are called polypeptides.54  The covalent bond formed between two amino acids 

is known as an amide or peptide bond and is a result of condensation of the α-carboxyl group of one 

amino acid with the α-amino group of another (Figure 15).55-57 
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Figure 15:  Reaction depicting peptide bond formation.54   
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Table 1:  Standard amino acids with their codes:  The three-letter code is the abbreviated form of 

the full amino acid name and the one-letter code is a single letter representation of the full amino 

acid name.  The one-letter code is used to donate peptide sequences.58 

Amino acid Three-letter code One-letter code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid  Asp D 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Typtophan Trp W 

Tyrosine Tyr Y 

Valine Val V 

The free amino group and free carboxyl group on opposite sides of the peptide chain are referred to 

as N-terminus and C-terminus respectively.  Amino acid residues in a peptide chain are 

conventionally written from the N-terminus to the C-terminus.59,54 
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3.2. PEPTIDE SYNTHESIS 

Two techniques can be used for the synthesis of peptides:  Solution- and solid-phase synthesis, the 

latter is abbreviated as SPPS.54  The former technique is the classical approach to peptide synthesis 

but is nowadays seldom used whereas the latter is used by most laboratories worldwide and has 

several advantages over the former.  The advantages of SPPS are: 

 Ease of purification between steps,  

 possibility of full automation,  

 synthetic intermediates do not have to be isolated,  

 excess reagents can be used in order to drive difficult reactions to completion,  

 overall a quicker method of peptide synthesis.59-61   

3.2.1. Solid phase peptide synthesis 

SPPS was pioneered by Merrifield in 1963 and was initially based on the use of tert-butoxycarbonyl 

(Boc) α-amino protecting group.  The original Merrifield method often suffers from two limitations: 

 The Boc protecting group is often removed by treatment of the resin with trifluoroacetic 

acid (TFA), thus only acid stable protecting groups can be used for side chain protection,  

 hydrogen fluoride (HF) treatment is required for cleavage of the peptide from the resin and 

is often the cause of unwanted by-products.61   

Due to the disadvantages of the Merrifield method, Carpino and Han (1972), introduced the use of 

the base labile α-amino protecting agent, namely the N-fluorenylmethyloxycarbonyl (Fmoc) 

group.62,63  The main advantage of the Fmoc strategy, over the formerly used Boc method, is due to 

the requirements of mild chemical conditions:  The Fmoc group is readily removed in weak basic 

conditions such as 20% v/v piperidine in DMF.  Most side chain protecting groups are unaffected 

under such conditions.54  The conditions are also weak enough to prevent racemisation of the 

stereogenic centre (α-carbon).54  Due to the obvious advantages of Fmoc chemistry, it will be 

discussed in detail in the following sub-sections. 
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3.2.1.1. Solid support and linkers 

The peptide chains are built on small resin beads which are insoluble in solution yet remain 

porous.60  The resin is a polymeric backbone to which the substrate is anchored.54  The resin used 

for SPPS is a copolymer that has unique physical and chemical properties and is vital in the success 

of the SPPS method.  It is essential that the resin beads swell in organic solvents to allow access to 

groups within the pores of the resin by chemical reagents during cycles of deprotection, coupling 

and washing steps.64 

3.2.1.2. Side chain protecting strategies 

Many of the amino acids used in the assembly of peptide chains have side chains that contain 

reactive functional groups.44  It is necessary to protect these reactive functionalities which are not 

directly involved in peptide bond formation.63,52,53  Certain groups are temporarily protected 

whereas others are kept permanently protected until the end of the synthesis.  The removal of 

permanent protecting groups generally occurs with the release of the peptide chain from the solid 

support.  The following considerations are essential when selecting the correct temporary side chain 

protecting groups: 

 Side chain protecting groups must be stable during coupling and deprotection steps 

(orthogonal chemistry), 

 side chain protecting groups must be easy to remove, preferably during the cleavage 

step,  

 the temporary protected groups must be readily removed under conditions that will not 

affect the permanent protecting groups , 

 removal of side chain protecting groups must not affect the newly synthesised peptide 

bond.63,52   

A list of all the amino acids and their commonly used protecting groups are listed in Table 2.   
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Table 2:  The most common side-chain protecting groups for amino acids.58 

Amino Acid Protecting group Functionality Protected 

Alanine None  

Arginine Pbf, Mtr, Pmc Guanidino N 

Asparagine Trt, Mbh, Tmob Amide 

Aspartic acid otBu, OAll Carboxyl 

Cysteine Trt, Acm, tBu, StBu Sulfhydryl 

Glutamine  Trt, Mbh, Tmob Amide 

Glutamic acid  otBu, OAll Carboxyl 

Glycine n.a  

Histidine Trt, Boc Imidazole 

Isoleucine  None  

Leucine  None  

Lysine  Boc, Aloc, Fmoc Amino 

Methionine  None  

Phenylalanine  None  

Proline  None  

Serine  tBu Hydroxyl 

Theonine  tBu Hydroxyl 

Tryptophan  Boc Indole 

Tyrosine  tBu Phenol 

Valine None  

3.2.1.3. Fmoc deprotection 

The initial step in the removal of the N-Fmoc group is the deprotection of the fluorine ring to yield 

the aromatic cyclopentadiene type intermediate that rapidly rearranges to form dibenzofulvene.  The 

latter is then scavenged by excess piperidine to afford the fulvene adduct (Figure 16).   
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Figure 16:  Mechanism of Fmoc cleavage redrawn from Sewald and Jakubke.54  

Once deprotection of the N-Fmoc group is complete it is necessary to form a new peptide bond.  

This step requires the activation of the α-carboxyl group of an amino acid so as to react with the 

free α-amino group of another amino acid, already attached to the peptide resin. 
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3.2.1.4. Activating strategies 

To facilitate the formation of the amine bond between the amine group of the growing peptide and 

the carboxylic group of the incoming Fmoc-protected amino acid, activating groups (also known as 

coupling reagents) are used to activate the carboxylic group (Figure 17).55,63,52,54 
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Figure 17: Mechanism of peptide bond activation redrawn from Bodansky.65 

Numerous coupling reagents are currently available including carbodiimides, acyl hydrides, 

anhydrides, acyl halides, active esters and uranium and aminium reagents.54   

Carbodiimides were the first coupling reagents to be produced and were developed in 1955 by 

Sheehan and Hess.66  The most popular of the carbodiimide-type coupling reagents in use today are 

dicyclohexylcarbodiimide (DCC) and diisopropylcarbodiimide (DIC).  The carbodiimides play a 

dual role in the peptide coupling reaction, namely they serve to form an activated ester with the 

incoming amino acid, and react with the water released during the “condensation” reaction to form 

the corresponding urea.  DCC is less suitable for SPPS since the corresponding urea that is formed 

is insoluble in most organic solvents.  DIC forms a soluble urea which is washed away with ease 

during SPPS.  Some of the advantages of the carbodiimides are that they are inexpensive and can 

allow for rapid coupling.52,53  The main problem associated with the use of carbodiimides is their 

high reactivity that can lead to racemisation of the amino acid.  The problem of racemisation can be 
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suppressed by the addition of aromatic oximes such as 1-hydroxy-benzotriazole (HOBT), proposed 

by Konig and Geiger in 1970.65,62   

More recently uranium complexes such as 2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyl 

uronium hexafluorophosphate methanaminium (HATU) and O-Benzotriazole-N,N,N‟,N‟-

tetramethyl-uronium-hexafluoro-phosphate (HBTU) were developed.  These coupling reagents are 

far superior to both the carbodiimides and aromatic oximes and have thus gained wide use in 

effecting peptide bond formation, particularly in SPPS.59,60 

3.2.2. Final cleavage 

In the final step of the synthesis, the peptide is cleaved from the resin together with side chain 

protecting groups.  An extremely delicate balance is necessary between conditions that are 

sufficiently vigorous to remove the peptide from the resin and at the same time, are sufficiently 

mild to ensure the survival of sensitive structural features of the peptide.67   

Concentrated TFA is commonly used for the simultaneous cleavage of the peptide from the resin 

and removal of side-chain protecting groups.68  During such cleavage conditions, the side-chain 

protecting groups produce stabilised carbocations which easily react with electron rich side-chain of 

some amino acids (cysteine, methionine, tyrosine, threonine, serine, tryptophan) resulting in the 

formation of unwanted by-products.  This phenomenon is minimised by the addition of scavengers 

to the cleavage cocktail to effectively neutralize the carbocations.69  A wide variety of cleavage 

cocktails have been developed with the intention of optimising the conditions for particular peptide 

sequences.70   

3.2.3. Automation and microwave synthesis 

A significant disadvantage of manual peptide synthesis is the amount of time and effort required in 

the attachment of individual molecules.58  As a consequence, emphasis has been placed on the use 

of automation to allow for fast, economical and reliable production of a large number of peptides.  

SPPS is highly amenable to automation due to the repetitive nature of the key steps and the 

reliability of the chemistry.58  Further rate enhancement of the time consuming SPPS technique has 

been reported by the application of microwave irradiation:  Microwave enhanced peptide synthesis 

is reported to be 10-20 times faster than conventional SPPS, produces cleaner peptides with higher 

yields and lessens the possibility of chain aggregation.69  It is due to the plethora of advantages that 
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manual SPPS has been widely replaced with automated sequential high-speed microwave 

chemistry.69  A graphical representation of the SPPS protocol is shown in Figure 18.  
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Figure 18:  Principle of SPPS redrawn from Sigma-Aldrich:  Custom peptide synthesis.71 
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In this study, it was necessary to combine the properties of peptides and GNPs (section 2.6., page 

22) in order to achieve the envisaged prodrug system.  The optimisation of the peptide and GNP 

moieties required to obtain the ideal peptide-GNP system will be discussed in Chapter 4 and will 

also reveal the results of the peptide and GNP syntheses. 
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4. CHAPTER 4:  ASSEMBLING OF PEPTIDES TO GNPS 

As mentioned in section 2.6. (page 22), GNPs and biological molecules have been combined to take 

advantage of their many favourable properties.  In these systems it is essential that characteristics of 

both moieties are optimised for use in the desired application.   

4.1. DESIGN CONSIDERATIONS 

Currently, the ability to control and modify the properties of GNPs to better suit their integration 

within biological systems (such as controlling their size and modifying their surface layer for 

enhanced aqueous solubility, biocompatibility and biorecognition) is well established.38  Certain 

considerations are essential to facilitate the use of GNPs in the required applications and are 

discussed in this section. 

4.1.1. GNP size considerations 

The circulation of particles in vivo has been shown to be size dependent as discussed by Tracy et al. 

(2007)72,73 and it is therefore essential to strictly control the size of the particles.  The following 

considerations should be taken into account in selection of the ideal NP size: 

 Particles less than two nm in diameter do not show the characteristic plasmon resonance 

band and cannot be observed by light microscopy, 

 only particles less than 30 nm in diameter are able to traverse pores,   

 access to tumour tissue from the vasculature is limited to particles less than 70 nm in 

diameter,   

 to allow for efficient cell uptake the NPs should not exceed 200 nm in diameter.72,74 

It can thus be concluded that particles with a diameter size of 10-30 nm are desirable.  Size-control 

can be achieved by varying the Au:thiol ratio, with smaller particles being formed when a greater 

amount of thiol is used.  
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4.1.2. GNP synthesis considerations 

As discussed in section 2.3. (page 16), there are three common methods used for the synthesis of 

GNPs, namely the sodium citrate or Turkevitch method, the Brust method and the NaBH4 

reduction.  The only viable methods for use in this particular project are either the sodium citrate or 

the NaBH4 method as GNPs can be synthesised in aqueous media.  The method of choice for the 

synthesis of GNPs in this study was the sodium citrate reduction due to the following two reasons: 

 GNPs synthesised using the sodium citrate method are generally 15 nm in size, an 

appropriate size for this study,   

 the sodium citrate method generates GNP solutions that can remain stable for several 

months due to the strong electrostatic repulsion generated by the negative sodium citrate 

ions, the stability of which can be significantly enhanced by the covalent attachment of 

thiolated ligands.25   

4.1.3. Monolayer considerations 

It is necessary to tailor the GNPs to specifically suit the final biomedical application.  As a result, a 

great deal of consideration must be given to the selection of the groups attached to the GNP surface.  

Peptides are ideal molecules for attachment to GNPs as they facilitate the stabilization of the GNPs 

and can easily be modified to be suitable in biological systems.  Both peptide sequence and length 

must be carefully selected to ensure that the desirable properties of the macromolecule are obtained.   

4.1.3.1. The sequence and length of peptide attached to GNPs 

As mentioned previously (section 2.6., page 22), a successful GNP assembly consists of 

hydrophobic spacer groups on the interior and hydrophilic molecules on the exterior part of the 

macromolecule, ensuring the solubility and stability of the molecule.  PolyAlanine (polyA), a 

hydrophobic peptide sequence, can be directly attached to the GNP surface with a cysteine residue.  

The exterior section of the macromolecule can consist of the more hydrophilic sequence K-D-

AFKRK where the tripeptide D-AKF is the tumour-specific sequence that is selectively recognised 

by the tumour-associated protease, plasmin.5   

As discussed in section 1.3. (page 5), fluorescence was utilised as a tool to prove the experimental 

concept and was provided by the fluorophore, Coumarin-3-carboxylic acid.  It is well known that 

fluorophores in close proximity to GNPs fluoresce weakly due to a phenomenon known as 

fluorescence resonance energy transfer (FRET) (refer to section 5.1., page 65, for details).  The 
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length of the peptide sequence should be sufficiently long in order to avoid the occurrence of FRET 

between Coumarin-3-carboxylic acid and the gold centre.  According to Aslan et al. (2007),75 a 

strong quenching of fluorescence emission and a dramatic reduction of the lifetimes of the excited 

states is observed when the separation distance between fluorophores and metallic surfaces is less 

than 5 nm.  Distances in the range of 10-20 nm can result in enhanced fluorescence emission due to 

local concentration of the incident excitation field by the metallic NPs.75  Cys-Ala35 is 

approximately 10 nm in length and should be sufficiently long to prevent FRET from occurring 

(refer to section 4.2.2., page 37, for results).   

The peptide sequence and length also becomes crucial when the issue of stability of the peptide-

GNP composite is examined:  Storhoff et al.76 noticed an enhancement of GNP stability with an 

increase in oligonucleotide length.  As a result, the stability of the peptide-GNP composites as a 

function of peptide length will be investigated (section 4.3.9., page 60).   

4.2. RESULTS AND DISCUSSION OF PEPTIDE SYNTHESIS 

The synthesis of peptides and ligands attached to GNPs is described in the following section.  

Peptide sequences are identified using single letter notation for the constituent amino acids (refer to 

Table 2 for amino acid notation). 

4.2.1. Synthetic difficulties encountered with cysteine containing peptides 

Cysteine is unstable, highly reactive in solution and readily undergoes oxidation of its thiol group 

with intra- or inter-chain disulfide bridge formation to form the dimer, cystine.  The formation of 

the dimer is undesirable as it would hinder the covalent attachment of the thiol group to the gold 

surface.  This can be prevented by the protection of the highly reactive thiol group of the terminal 

cysteine throughout the peptide synthesis steps (until the peptide is cleaved from the resin).  

Tertiary butyl (tBu) is the ideal protecting group for this purpose as it is stable to TFA (used in the 

cleavage mixture).  The tBu group can then be removed prior to lyophilisation of the peptide.   

The tBu protecting group, however, requires additional procedures for deprotection after cleavage 

of the peptide from the resin.  This can be achieved as this group is labile towards mercury(II) 

salts.54,77,78  The deprotection procedure [as described by Applied Biosystems (2008)79 and 

McCurdy et al. (1989)78] was attempted several times on the CKAFKRK peptide (section 4.2.4., 
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page 39) with little success.  Despite sources mentioning the use of this procedure, there are other 

reports that dispute the effectiveness of the deprotection step.80   

According to a personal communication with Professor Fernando Albericiog, the free sulfhydryl 

group should not pose a severe problem, provided that the peptide does not remain in solution for 

long periods of time and the solution is not heated to temperatures above 50oC.  As a result, it was 

decided to use the Cys(trityl) (Trt) protecting group that is easily removed upon TFA deprotection.  

The constraints mentioned by Professor Fernando Albericio were followed and the peptide was 

successfully synthesised without the formation of any unwanted dimers.  The products were 

lyophilised and stored as powders in order to prevent oxidation or degradation of the peptides.  

4.2.2. Cysteine-(alanine)35 

It is a well known fact in the peptide community that it is extremely difficult to achieve adequate 

yields of very hydrophobic peptides. These peptide sequences are difficult to synthesise and pose 

numerous difficulties during cleavage and purification processes.  In most of the established 

hydrophibicity scales, alanine is considered moderately apolar and thus falls into the category of a 

„difficult peptide sequence‟.  The hydrophobicity of polyA leads to severe aggregation that is 

primarily the result of the self-association of polymer-bound peptide sequences by intermolecular 

hydrogen bonding as depicted in Figure 19.81  This phenomenon is caused by the formation of 

intermolecular β–sheet aggregates that are responsible for lowering coupling efficiencies.58  

  

                                                 

g The University of KwaZulu-Natal, Westville campus chemistry department has a research collaboration with 
Professor Fernado Albericio‟s research group in Barcelona, Spain. 
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Figure 19:  Scenario depicting the solvation or aggregation state of polymer-bound polyA 

sequence.  The peptide chains are inter-molecularly aggregated whilst the polymer is solvated 

effectively increasing the overall level of cross-linking in the matrix.  Redrawn from Chan et al. 

(2000).58 

Despite these synthetic difficulties, Bechinger (2001)82 managed to synthesise polyA peptides with 

relatively high purity.  Due to Bechinger‟s successes in the synthesis of polyA peptides, the 

synthesis of cysteine-(alanine)35 (CA35) was attempted.  Subsequent analysis of the resultant  

peptide indicated that the crude peptide was impure.  The gel-like nature of the peptide made 

solubility impossible, rendering purification unfeasible.  Since the aggregation of polyA was too 

severe, it was decided to synthesise a sequence containing fewer alanine residues.   

4.2.3. Cysteine-(alanine)4-(glycine)5 

Glycine, the simplest amino acid present in proteins, lacks the presence of a side chain and is thus 

able to destabilise β-sheets.83  Chan et al. (2000)58 reported that the minimum length at which 

polyA exhibits self-aggregation is five alanine residues.  It was thus decided to incorporate glycine 

residues into the polyA sequence in order to reduce the aggregation potential of the peptide and thus 

cysteine-(alanine)4-(glycine)5 (CA4G5) sequence was decided upon.  Surprisingly, the purity of the 

crude peptide was very low and the peptide was as insoluble in most solvents.  A rationale was 

obtained for this result from the work of Warrass et al. (2000):84  The incorporation of glycine 

residues leads to the same aggregation potential as a peptide containing only alanine residues. 
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4.2.4. Cysteine (lysine- D-alanine-phenylalanine-lysine-arginine-lysine)n 

Warrass et al. (2000)84 mention that D-Alanine acts as a β-sheet breaker and therefore the 

incorporation of D-Ala residues into an all-alanine sequence significantly reduces the aggregation 

potential of the sequence.  The synthetic difficulties encountered were taken into account in the 

selection of the ideal peptide sequence for covalent attachment to the GNPs.  Consequently the 

peptide sequence contained: 

 Alternating D-AFK segments,  

o as the incorporation of D-Alanine prevents the formation of β-sheet structures,  

o D-AFK is a tumour specific sequence, 

 hydrophilic residues, such as lysine and arginine,  

o to ensure solubility,   

o the functionalisation of GNPs with hydrophillic amino acid residues, such as lysine 

and arginine, induces a positive charge on the NP that favours interaction with the 

membrane (charged negatively) and consequently enhances penetration into the cell.  

There are several examples in the literature describing the addition of lysine or 

arginine for transfecting molecules into cells,11   

 hydrophobic D-Alanine and phenylalanine.  These residues were expected to impart the 

necessary stability to the GNP macromolecule, thereby preventing aggregation.   

The structures of the amino acids selected for peptide synthesis are shown in Table 3.  Refer to 

Appendix 1 (page 138) for mass spectral characterization of the peptides and Table 4 for 

information about the synthesised peptides.   

The overall sequence decided upon was Cysteine (lysine- D-alanine-phenylalanine-lysine-arginine-

lysine)n [C(K-D-AFKRK)n].  It was deemed necessary to gain „hands on‟ experience in the field of 

SPPS, thus manual synthesis of a peptide sequence was attempted.  Due to the synthetic difficulties 

encountered with cysteine containing sequences, it was decided to synthesise a sequence with a 

terminal glycine as opposed to a terminal cysteine.  The tumour specific sequence D-AFK is an 

essential component of the peptides utilized in this project and thus the sequence G- D-AFK was 

synthesized via manual peptide synthesis (refer to appendix 1, page 139, for mass spectral 

characterization).   

CK-D-AFKRK, CK-D-AFKRKCoum and C(K-D-AFKRK)3, C(K-D-AFKRK)3Coum were then 

synthesised using automated SPPS.  CK-D-AFKRK and CK-D-AFKRKCoum were successfully 
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synthesised in high yield (94% and 95%) and purity (95% and 97%) and the observed mass 

corresponded with the expected masses of 880 and 1051 m/z.  Refer to appendix 1 (page 140 and 

141) for mass spectral characterization.  This was not the case for the sequence Cysteine (lysine-D-

alanine-phenylalanine-lysine-arginine-lysine)3 [C(KAFKRK)3].  The experimentally observed mass 

for C(KAFKRK)3 was 2526 m/z, a mass of 128 m/z greater than the expected mass of 2398 m/z.  

This indicates that an additional lysine residue of mass 128 m/z was coupled to the sequence.  As 

the length and the ability to be cleaved are the main requirements of the peptide sequence, both of 

which remain unaltered by the addition of a lysine, this sequence was considered suitable for use in 

the required application.  C(KAFKRK)3 was successfully synthesised in high yield (87%) and 

purity (96%).  Refer to appendix 1 (page 142) for mass spectral characterization.  

C(KAFKRK)3Coum was successfully synthesised in high yield (84%) and purity (95%) and the 

observed mass corresponded with the expected mass of 2571 m/z.  Refer to appendix 1 (page 142) 

for mass spectral characterization. 

  



41 

Table 3:  Structures of the amino acids selected for peptide synthesis. 

Amino acid Structure 

Alanine CH3 OH

O

NH2  

Cysteine 
NH2 OH

O

SH  

Phenylalanine OH

O

NH2
 

Glycine NH2 OH

O

 

Lysine NH2 OH

O

NH2  

Arginine NH2 NH OH

O

NH2

NH

 

4.2.5. Cysteine-glycine-D-alanine-phenylalanine-lysine-glycine-glycine-Coumarin  

The lysine and arginine residues in the sequence CK-D-AFKRKCoum were substituted with glycine 

residues in order to determine the effect of less hydrophilic residues on the ease of synthesis of the 

peptide as well as the effect on stability and solubility of the functionalised GNPs.  The peptide was 

successfully synthesised with relatively good yield (85%) and purity (96%).  Refer to Appendix 1 
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for mass spectral characterization of the peptide and to Table 4 for information about the 

synthesised peptides and Appendix 1 (page 143) for mass spectral characterization. 

4.2.6. Cysteine-lysine-Coumarin 

The sequence cysteine-lysine-Coumarin (CKCoum) was synthesised in order to establish the effect 

of the peptide length on the solubility and stability of the GNPs.  The peptide was successfully 

synthesised with high purity (98%) and yield (90%).  Refer to Appendix 1 (page 144) for mass 

spectral characterization of the peptide and Table 4 for information about the synthesised peptides.   

Table 4:  The masses, yields and percentage purity of the successfully synthesised peptides.   

Peptide Expected 
Mass (g.mol-1) 

Observed 
Mass (g.mol-1) Yield (%) Purity (%) 

G-D-AFK 419 420 93 97 

CK-D-AFKRK 880 880 94 95 

C(K-D-AFKRK)3 2398 2526 87 96 

CK-D-AFKRKCoum 1051 1052 95 97 

C(K-D-AFKRK)3Coum 2571 2571.3 84 95 

CG-D-AFKGGCoum 810 810 85 96 

CKCoum 421 420.8 90 98 

4.2.7. Cysteine methyl ester Coumarin 

According to Shang et al. (2007)85 the addition of a single cysteine residue to the surface of GNPs 

significantly diminishes the effect of FRET.  It was decided to test the validity of this observation.  

The ligand cysteine methyl ester Coumarin (CMECoum) was synthesised with the intention of 

capping the GNPs solely with CMECoum.  Spectrofluorometric tests should indicate whether the 

fluorescence emission intensity of the Coumarin is diminished due to FRET.   

  



43 

4.3. RESULTS AND DISCUSSION OF GNP SYNTHESIS 

Two techniques were attempted for the synthesis of GNPs, namely the sodium citrate and the 

NaBH4 method.   

4.3.1. Sodium citrate  

The formation of the GNPs was confirmed by a colour change of the initial dispersion from pale 

yellow to wine red.  This indicated the presence of spherical, monodispersed particles.  The 

particles were characterised by TEM and UV-vis absorption spectroscopy.  TEM images showed 

spherical and monodispersed particles and a mean diameter of 15 nm was calculated on the basis of 

the measurement of at least 200 particles (Figure 20) (refer to section 5.5., page 73, for details on 

TEM).   

 

Figure 20: TEM image of citrate capped gold NPs in distilled water. 

The formation of GNPs were verified by UV-vis absorption spectroscopy, wherein the 

characteristic plasmon bands are observed (Figure 21). 

  



44 

 

Figure 21:  Absorbance spectrum of sodium citrate stabilised GNPs. 

The concentration of the particles was calculated as described by Lui et al. (2007)40 to be 5.5 nM 

based on the premise of spherical shaped particles having a uniform face-centered cubic (fcc) 

structure (refer to section 7.2.1., page 114, for calculation).   

The coupling between GNPs and peptides was not successful.  On addition of the peptide to the 

GNP solution, the originally red GNP solution turned a very light blue with the formation of a black 

precipitate, which is the result of extreme and irreversible aggregation.29  An explanation was 

provided by Tullman et al. (2007):86 At pHs above the pI, the peptides remain bound to the 

particles.  It is likely that the pH of the solution was below the required pI, leading to insufficient 

binding of the peptide to GNPs, resulting in their aggregation.   

Before this hypothesis could be tested, it was observed that the previously prepared citrate stabilised 

GNPs began to precipitate.  The stabilisation afforded by the citrate ions is insufficient to ensure 

long term suspension, leading to aggregation.  An alternate method of GNP preparation was thus 

attempted, namely the NaBH4 reduction method.   
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4.3.2. Attachment of peptides to GNPs using the NaBH4 method  

The GNPs were successfully prepared using NaBH4 reduction.  The GNP solutions prepared were:  

 Au-CKCoum,  

 Au-CMECoum,  

 Au-CGAFKGGCoum,  

 Au-CKAFKRKCoum,  

 Au-C(KAFKRK)3 

 Au-C(KAFKRK)3Coum, 

 Au-10% CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3.   

A variety of peptide sequences were attached to the GNPs and many different outcomes were 

observed as each peptide affected the morphology of the GNPs in a different manner (Table 7).  As 

discussed in section 2.5. (page 22) many techniques are currently available for the characterization 

of GNPs.  Characterization was performed by means of infrared (IR) spectroscopy, NMR, UV-vis 

and TEM on all the GNP solutions.   

IR and NMR spectroscopy were merely used as a tool to confirm the attachment of ligands and 

peptides to GNPs.  UV-vis was performed to establish the level of dispersity of the GNP solutions.  

TEM was used to ascertain the size and shape of the GNPs and the disparity of the solution.   

4.3.3. Interpretation of the colour of GNP solutions  

The solutions containing gold salt and peptide were yellow and on addition of NaBH4 rapidly 

turned dark blue or red, depending on the functionality attached.  As described in section 2.2.1. 

(page 11), a perfectly manufactured colloidal gold solution is wine red in colour, indicating good 

monodispersity, whereas a poorly manufactured gold solution is blue indicating a polydispersedh 

solution.  The colour of a GNP solution is thus an indication of aggregation and stability.   

GNP solutions capped with CMECoum and CKCoum were blue, which signifies aggregated and 

polydispersed systems that were not colloidally stable and would inevitably settle over time.  The 

purple colour of the Au-CGAFKGGCoum indicated a polydispersed GNP solution that was 

aggregated and lacked colloidal stability.  The colour of Au-C(KAFRK)3Coum, Au-C(KAFKRK)3 

                                                 

h A solution is regarded as polydispersed when the particles have a broad range of size and shape. 
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and Au-10% CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3 were wine red, indicating the 

presence of well formed, monodispersed and colloidally stable GNP solutions while the colour of 

Au-CKAFKRKCoum was purple, indicating less monodispersed particles. 

4.3.4. Interpretation of the infrared spectra of the ligand capped GNPs and the free ligands 

IR spectroscopy is a useful tool to confirm the attachment of ligands to GNPs.  IR allows for the 

verification of the structure of the ligand shell attached to the GNPs.  This can be done by a simple 

comparison of the free ligand IR spectrum with that of the GNP capped with the ligand.  The 

method of attachment of a ligand to GNPs can also be determined by examination of their spectra.  

Ligands attached to GNPs through a thiol group lack the –SH functionality present in the spectra of 

the neat capping ligands.   

The FTIR spectra for the GNP samples were compared with those of the corresponding neat 

capping peptides to confirm their attachment to GNPs (Appendix 2, page 145-150). 

In the case of CMECoum and Au-CMECoum [Figure 22 and Figure 23 (page 47) respectively] both 

the free peptide and peptide capped GNPs showed bands at ~1700 cm-1 from the C=O stretching 

band of the amide I band region.  The peaks appearing at 1547 cm-1 can be assigned to the N-H 

bending and C-N stretching in the amide II band region.  The bands due to C-NH2 stretching 

appeared near 1400 cm-1 as well as various weaker bands relate to C-N, C-O vibration and amino 

acid residues (under 1350 cm-1).  It was observed that the –SH stretching frequency (2550-2600 cm-

1) of the bound surfactants disappeared in the MPC.  This suggests that the bonding of the 

CMECoum to the Au surface had taken place through the –SH end.   

The same trend was observed for all the functionalised GNPs (the ligands attached to GNPs consist 

of the same functional groups and thus yield similar IR spectra) as evident in the spectra (Appendix 

2, page 145-150).  The presence of similar peaks in the IR spectra of the neat ligands as in the 

ligand capped GNPs confirm the covalent binding of the ligands to the GNPs.   
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Figure 22:  ATR-FTIR spectrum of CMECoum. 

 

Figure 23:  ATR-FTIR spectrum of Au-CMECoum.   
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4.3.5. Interpretation of the NMR spectra of the ligand capped GNPs and the free ligands 

A prerequisite for assigning the proton NMR spectrum of a polypeptide is to be familiar with the 

chemical structure of the side chains of the amino acid residues present in the sequence, as well as 

with the chemical shifts expected for every chemically different proton in the molecule.87  The side 

chains of amino acids present in the peptide sequence are shown in Table 5 (glycine does not have a 

side chain and thus is not included in the table).  The usual chemical shifts observed for each 

different type of proton are summarized in Table 6.  

Table 5:  Side chains of the amino acid present in the peptide sequence CKAFKRK.  For each 

residue the full amino acid name is shown.87   

Amino Acid One letter code Side Chain 

Alanine A CH3 

Arginine R CH2-CH2-CH2-NH-C-(NH2)2 

Cysteine C CH2-SH 

Lysine K CH2-CH2-CH2-CH2-NH2 

Phenylalanine F Ph-CH2-CH(NH2)-COOH 
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Table 6:  Summary of usual chemical shift ranges for protons in the side chains of the amino acid 

residues CKAFKRK.87 

δ (ppm) Type of proton 

0.9-1.4 CH3 of alanine and cysteine methyl ester 

1.1-1.9 CH proton of Coumarin 

1.2-2.3 

CH2 and CH with no neighbouring 

electronegative or aromatic groups (βCH2 of 

lysine and arginine; γCH2 of lysine and 

arginine; δCH2 of lysine) 

2.3-3.7 

CH2 with neighbouring aromatic or carbonyl 

groups or nitrogen or sulfur atoms (βCH2 of 

cysteine and phenylalanine; δCH2 of 

arginine; εCH2 of lysine) 

3.9-4.8 αCH and αCH2 

6.6-7.6 NH in side chains of lysine and arginine  

6.8-7.7 
Aromatic CH protons of phenylalanine and 

Coumarin 

7.9-8.8 Backbone NH 

Proton NMR measurements were performed on the neat peptides, and on the peptide functionalised 

GNPs in D2O and in CD3OD for CMECoum and Au-CMECoum (refer to Appendix 2, page 151-

155, for spectra).  

CMECoum  

The peaks in the region of 0.9-1.4 ppm correspond to the CH3 of methyl ester.  The peaks in the 

region of 1.1-1.9 ppm correspond to the CH proton of the Coumarin moiety.  The peaks in the 

region of 2.3 ppm correspond to the βCH2 of cysteine.  The peaks in the region of 3.5-4.3 ppm 

correspond to the αCH and αCH2.  The peaks at 3.3 and 4.7 ppm are the solvent peaks of CD3OD.  

The peaks in the region of 7.0-7.8 ppm correspond to the aromatic CH protons of Coumarin.  The 

peaks in the region of 8.7 ppm correspond to the backbone NH protons.87  Refer to page 151 for the 

NMR specrum. 
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Au-CMECoum 

A variety of deuterated solvents (CDCl3, CD3OD, D2O) were used in an attempt to solubilise the 

CMECoum capped GNPs.  In each solvent the capped GNPs showed little sign of dissolution and 

settled to the bottom of the NMR tube.  Due to the poor solubility of the ligand capped GNPs in 

appropriate solvents, thorough NMR studies were not feasible.  Refer to page 151 for the NMR 

spectrum. 

CKCoum 

The peaks in the region of 1.1-1.9 ppm correspond to the βCH2 protons of lysine, the γCH2 protons 

of lysine and the CH proton of the Coumarin moiety.  The peaks in the region of 2.7-2.9 ppm 

correspond to the βCH2 of cysteine and the εCH2 of lysine.  The peaks in the region of 3.9-4.6 ppm 

correspond to the αCH and αCH2.  The peak at 4.7 ppm is the solvent peak D2O.  The peaks in the 

region of 7.0-7.8 ppm correspond to the aromatic CH protons of Coumarin.  The peaks in the region 

of 8.2-8.7 ppm correspond to the NH protons involved in hydrogen bonding.87  The NH resonances 

of peptides dissolved in D2O are expected to exchange in the presence of the solvent.  This is not 

always the case, however, as the high affinity of peptides to water prevents the removal of all traces 

of water from the sample, thereby resulting in the presence of NH resonances in the NMR 

spectrum.  Refer to page 152 for the NMR spectrum. 

Au-CKCoum 

As with Au-CMECoum, a variety of deuterated solvents were used in an attempt to solubilise the 

CKCoum capped GNPs.  In each solvent the capped GNPs little no sign of dissolution and 

completely settled to the bottom of the NMR tube.  Due to the poor solubility of the ligand capped 

GNPs in appropriate solvents, thorough NMR studies were not feasible.  Refer to page 152 for the 

NMR spectrum. 

CGAFKGGCoum, CKAFKRKCoum, Au-C(KAFKRK)3 and C(KAFKRK)3Coum  

It was anticipated that the peptides CKAFKRKCoum, C(KAFKRK)3 and C(KAFKRK)3Coum 

would have similar proton NMR spectra, as the peptide sequences consist of the same amino acids.  

The peptide CGAFKGGCoum differs slightly from the other two peptides by the presence of a 

glycine and lack of an arginine residue.  These differences should have limited effect on the 

resultant proton NMR spectrum as glycine does not have a side chain and the lysine residue would 
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resonate in the same region as arginine.  As a result, all three peptide sequences are expected to 

have very similar proton NMR spectra.   

The following elucidation applies for all three peptides.  The peaks at ~1.1 ppm correspond to the 

CH3 protons of alanine.  The peaks in the region of 1.1-1.9 ppm correspond to the CH proton of the 

Coumarin moiety.  The peaks at 1.2-1.9 ppm can be assigned to the βCH2 protons of lysine and 

arginine and the γCH2 protons of lysine and arginine and the δCH2 of lysine. The peaks in the 

region of 2.7-3.4 ppm correspond to the βCH2 of cysteine and phenylalanine and the δCH2 of 

arginine and the εCH2 of lysine.  The peaks in the region of 3.9-4.6 ppm correspond to the αCH and 

αCH2.  The peak at 4.7 ppm is the solvent peak D2O.  The peaks in the region of 7.0-7.5 ppm 

correspond to the aromatic CH protons of phenylalanine and Coumarin.  The peaks in the region of 

7.9-8.3 ppm correspond to the backbone NH protons.87  As mentioned previously, the NH 

resonances of peptides dissolved in D2O are expected to exchange in the presence of the solvent.  

This is not always the case, however, as the high affinity of peptides to water prevents the removal 

of all traces of water from the sample, thereby resulting in the presence of NH resonances in the 

NMR spectrum.  Refer to Spectrum 1 (page 52) for 1H NMR spectrum of CKAFKRKCoum in D2O 

and Appendix 2, page 153-155 for the remainder NMR spectra. 

Au-CGAFKGGCoum, Au-CKAFKRKCoum, Au-C(KAFKRK)3, Au-C(KAFKRK)3Coum and 

Au-10% CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3 

As with Au-CMECoum, a variety of deuterated solvents were used in attempts to solubilise the 

CGAFKGGCoum capped GNPs.  In each solvent the capped GNPs showed no sign of dissolution 

and settled to the bottom of the NMR tube.  Due to the poor solubility of the ligand capped GNPs in 

appropriate solvents, thorough NMR studies were not feasible.   

A comparison of the 1H NMR spectra recorded for the CKAFKRKCoum, C(KAFKRK)3 and 

C(KAFKRK)3Coum peptides and the GNP composites Au-CKAFKRKCoum, Au-C(KAFKRK)3, 

Au-C(KAFKRK)3Coum and Au-10% CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3 show 

remarkable similarity.  NMR spectra of the peptide-derivatised GNPs are consistent with the 

peptide sequences being bound to the colloidal gold surface, providing a clear indication of the 

attachment of peptide to GNP.  Refer to Spectrum 2 (page 52) for 1H NMR spectrum of Au-

CKAFKRKCoum in D2O and Appendix 2, page 153-155 for the remainder NMR spectra. 
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Spectrum 1:  1H NMR spectrum of CKAFKRKCoum in D2O. 

 

Spectrum 2:  1H NMR spectrum of Au-CKAFKRKCoum in D2O. 
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Peak broadening and splitting is usually noted in the 1H NMR spectra of peptide capped gold 

composites.88  Comparison of the 1H NMR spectra of peptide capped GNPs and the respective free 

peptide indicates that the peaks appear to have collapsed to a single broad peak in the peptide 

capped GNPs, as opposed to the sharp peaks evident in the spectra of the free peptides.  Peak 

splitting is due to the formation of hydrogen bonding between the surfaces of bound amino acid 

molecules of neighbouring amino acid capped GNPs.  No peak splitting was evident in the 1H NMR 

spectra, indicating the lack of hydrogen bonding between adjacent amino acids.    

4.3.6. Interpretation of the UV-vis spectra of the ligand capped GNPs 

Au-CMECoum, Au-CKCoum and Au-CGAFKGGCoum samples were studied by UV-vis 

spectroscopy [Figure 24, Figure 25 and Figure 26 (page 54) respectively].  For the Au-CMECoum 

sample, the plasmon band was shifted to ~570 nm.  For the Au-CKCoum sample, a broad and less 

prominent plasmon band was observed in the region of 550-800 nm.  For the Au-CGAFKGGCoum 

sample the absorption band was broadened and red shifted to 600 nm.   

Perfectly monodispersed GNPs show a plasmon resonance band at 520 nm.  The shifted and 

broadened bands are the result of aggregation/polydispersity present in the samples.  “The 

aggregation of the particles in the samples results in an increased overlap of surface plasmon 

resonance from neighbouring GNPs that results in a spectral change of the band” (Storhoff, 

199876).   

Au-C(KAFKRK)3Coum, Au-C(KAFKRK)3, Au-CKAFKRKCoum and Au-10% 

CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3 samples were studied by UV-vis 

spectroscopy [Figure 27, - Figure 29 (page 55) respectively].  As anticipated, the spectra of Au-

C(KAFKRK)3Coum and Au-C(KAFKRK)3 were identical thus only Au-C(KAFKRK)3Coum is 

displayed.  All three spectra showed a strong and prominent absorption band at 520 nm, indicating 

that red-shifting and broadening did not occur.  It can be deduced that the particles did not coalesce 

to any extent. 
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Figure 24: Absorbance spectrum of Au-CME. 

 

Figure 25: Absorbance spectrum of Au-CKCoum. 

 

Figure 26: Absorbance spectrum of Au-CGAFKGGCoum. 
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Figure 27: Absorbance spectrum of Au-C(KAFKRK)3Coum. 

 

Figure 28: Absorbance spectrum of Au-CKAFKRKCoum. 

 

Figure 29:  Absorbance spectrum of Au-10% CKAFKRKCoum:40% CKAFKRK:50% 

C(KAFKRK)3. 
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TEM was applied to characterise the morphology and size of the GNPs and is discussed in detail. 

4.3.7. Interpretation of the TEM images of the ligand capped GNPs 

TEM images indicated that the extent of aggregation in both CME and CKCoum was severe (Figure 

30 A and Figure 30 B respectively).  The coalescence complicated the accurate determination of 

shape and size of the NPs.  The few free spherical particles were measured and found to be 

approximately 9.6 nm for the Au-CKCoum and 13.2 nm for the Au-CMECoum.   

 

Figure 30:  TEM images of Au-CME (A) and Au-CKCoum (B) NP dispersions in distilled water. 

The Au-CGAFKGGCoum sample was studied with TEM and again the extent of aggregation was 

found to be severe.  A few free particles were spherical in shape and about 14.7 nm in size (Figure 

31). 

 

Figure 31: TEM image of Au-CGAFKGGCoum. 

The Au-CKAFKRKCoum, Au-C(KAFKRK)3Coum and Au-10% CKAFKRKCoum:40% 

CKAFKRK:50% C(KAFKRK)3 samples were observed under TEM.  (As anticipated, the TEM 

A B 
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images of Au-C(KAFKRK)3Coum and Au-C(KAFKRK)3 were identical thus only Au-

C(KAFKRK)3Coum is displayed).  As shown in Figure 32 A-B, the NPs are generally spherical and 

well separated from each other demonstrating good monodispersity.  The average core diameters 

were calculated for each sample by measuring the core diameters of 200 particles from multiple 

micrographs to ensure statistical relevance.  The core diameters of Au-CKAFKRKCoum, Au-

C(KAFKRK)3Coum and Au-10% CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3 samples 

were 11.9 nm, 12.6 nm and 15.2 nm respectively.  It is noted that the Au-CKAFKRKCoum is less 

monodispersed than Au-C(KAFKRK)3Coum with the presence of larger as well as smaller 

particles.  

 

Figure 32:  TEM images of Au-C(KAFKRK)3Coum (A) and Au-CKAFKRKCoum (B) in distilled 

water.   

 

Figure 33:  TEM image of Au-10% CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3 

capped in distilled water. 

 

A B 
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4.3.8. Size of GNPs 

As mentioned in section 4.1.1. (page 34) the size of the GNPs should be strictly controlled.  GNP 

sizes can be altered by adjusting the Au:thiol and the Au:NaBH4 ratios.  The amount of reducing 

agent required is well established and most mention the use of ten times the molar equivalent of 

HAuCl4.  The ratio of Au:thiol is not standardised as it is highly dependent on the thiol of choice.  

Various Au:CKAFKRKCoum ratios were attempted to determine the resultant GNP sizes (Table 8).   

Table 8:  The effect of the Au:thiol ratio on the average size of gold NPs. 

Au:Thiol ratio (mol:mol) Size (nm) 

6:1 20 

4:1 17 

2:1 15 

1:1 12 

0.5:1 12 

A calibration curve was constructed in order to illustrate the relationship between the Au:thiol ratio 

(x azis) and the average size of the GNPs (y axis). 
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Figure 34:  NP size analysis of GNPs prepared with varying Au:thiol molar ratios in the synthesis 

mixture, highlighting an increase in mean NP core diameter with increasing Au:thiol molar ratio.  

Each data point is representative of an average of three experimental assays.  

As mentioned in section 4.1.1. (page 34) the Au:thiol ratio is incrementally proportional to the GNP 

particle size.  As expected, the increase in Au:thiol ratio resulted in larger particle sizes (direct 

relationship shown in Figure 34).  It was also noted that at ratio values lower than 2:1, the particle 

size stabilised.  This is most likely due to the steric repulsion of the thiol chains at low Au:thiol 

ratios.  The Au:thiol ratio decided upon for this study was 1:1 as it produced GNPs of the desirable 

size of 15 nm.   

The stability of the peptide capped GNPs is an important factor in the selection of the ideal GNP 

composite for use in subsequent biological studies.  The peptides coupled to the GNPs have an 

integral effect on the stability of the resultant GNPs as discussed in the following section. 

4.3.9. Colloidal stability determinations for the peptide capped GNPs 

The synthesis of colloidally stable GNPs is vital to circumvent the possibility of irreversible 

agglomeration of the particles.  Peptides are particularly useful as they effectively alter the 

properties of NPs to yield stable macromolecules.  The sequence and length of the peptides attached 

to the GNPs are a contributing factor to the stability of the resultant GNP composites.89,90  As a 

result, the effect of the peptide length and sequence on the stability of the GNP composites was 

examined.   
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The aggregation observed in Au-CKCoum, Au-CMECoum and Au-CGAFKGGCoum was not 

evident in Au-CKAFKRKCoum and Au-C(KAFKRK)3Coum.  For Au-CKCoum and Au-

CMECoum the length of the thiols was the obvious drawback that led to aggregation, as they appear 

not to provide sufficient separating distance between the particles.30  In the case of the Au-

CGAFKGGCoum, the glycine residue in the second position is believed to be the main cause of the 

colloidal instability:  Glycine prevents the formation of a dense peptide layer as it hinders the 

formation of β-sheet structures hence leading to poor stabilization.83,91   

The composites Au-CKAFKRKCoum and Au-C(KAFKRK)3Coum were further investigated due to 

their colloidal stability.  To test the extent of dispersity of the colloids in water, the absorbance of 

various concentrations of the GNP solutions was measured.  It was found that for both GNP 

solutions the absorbance increases linearly with increasing concentration and the absorption 

maximum (λmax) does not change with concentration (see Figure 35 and Figure 36).  This spectral 

feature suggests that Au-CKAFKRKCoum and Au-C(KAFKRK)3Coum are well dispersed in water. 

 

Figure 35:  Plot of absorbance of Au-CKAFKRKCoum at 520 nm as a function of concentration.  

Each data point is representative of a total of three assays.   
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Figure 36:  Plot of absorbance of Au-C(KAFKRK)3Coum at 520 nm as a function of concentration.  

Each data point is representative of a total of three assays. 

Another useful test for the colloidal stability of the particles is the calculation of the critical 

coagulation concentration (CCC).  The CCC is described as the point at which rapid coagulation of 

the particles occurs.  It is determined by the concentration of electrolyte (sodium chloride - NaCl) 

needed to shield the particles‟ respulsive influence from each other to the extent that there remains 

no repulsive effect between the particles, thereby maximising the attractive forces.92   

Aggregation was assessed by monitoring changes in the characteristic GNP plasmon frequency.  

NaCl was added to the solution until the plasmon band was significantly diminished.  For Au-

C(KAFKRK)3Coum (1.7 x 10-10 M; 5 mL), no visible aggregation was observed and the plasmon 

band did not shift to a longer wavelength (see Figure 38) indicating that the particles were stable up 

to a 7 mL addition of a 1.7 M NaCl solution.  For Au-CKAFKRKCoum (1.7 x 10-10 M; 5 mL), 

aggregation was observed after the addition of 4 mL NaCl solution as can be seen from the decrease 

of the absorbance band at 520 nm and the increase in absorption at longer wavelengths (see Figure 

37).  

The results obtained illustrate the effect of the length of the peptide sequences on the stability of the 

GNPs.  It is evident that the CKAFKRKCoum peptide does not provide the required colloidal 

stability to the GNP composite necessary to prevent aggregation of the particles and is thus 

impractical for use in biological systems.  The longer version C(KAFKRK)3 must be attached to the 

GNPs to provide stability.  Stability tests were also carried out on Au-10% CKAFKRKCoum:40% 

CKAFKRK:50% C(KAFKRK)3 (1.7 x 10-10 M; 5 mL) and no visible aggregation was observed and 
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the plasmon band did not shift to longer wavelengths upon addition of NaCl (Figure 39) thus 

indicating the particles were stable up to a 7 mL addition of a 1.7 M NaCl solution.  

 

Figure 37:  Stability of Au-CKAFKRKCoum (1.7 x 10-10 M; 5 mL) assessed by measuring the 

critical coaguation concentration using 1.7 M NaCl solution. 

 

Figure 38:  Stability of Au-C(KAFKRK)3Coum (1.7 x 10-10 M; 5 mL) assessed by measuring the 

critical coagulation concentration using 1.7 M NaCl solution.   
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Figure 39:  Stability of Au-10% CKAFKRKCoum:40% CKAFKRK:50% C(KAFKRK)3 (1.7 x 10-

10 M; 5 mL) assessed by measuring the critical coagulation concentration using 1.7 M NaCl 

solution. 

Once the synthetic methodology of the functionalised GNPs was established, various techniques 

were necessary to optimise and test the functionalised GNPs (described in detail in Chapter 5:  

Testing and optimisation of peptide capped  
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5. CHAPTER 5:  TESTING AND OPTIMISATION OF 

PEPTIDE CAPPED GNPS 

Various techniques such as fluorescence spectroscopy, trypsin digestion, mass spectrometry, cell 

viability testing, transmission electron microscopy, and confocal microscopy were utilised in an 

attempt to optimize and test the GNPs for proof of concept.  The techniques used are described 

briefly in section 5.1. to 5.5. (pages 65 to 71). 

5.1. FLUORESCENCE SPECTROSCOPY 

Fluorescence spectroscopy is a type of electromagnetic spectroscopy which analyses fluorescence 

from a sample.  It is a well-established analytical method that is widely used in the fields of 

biochemistry and molecular biology as a minimally invasive method.  The technique has grown 

popular because of its acute sensitivity to changes in the structural and dynamic properties of 

biomolecules and biomolecular complexes.93   

5.1.1. The process of fluorescence 

Fluorescence is a photon emission process that occurs during molecular relaxation from electronic 

excited states.94  When a molecule is excited from the ground state (S0) by absorbing 

electromagnetic radiation (a photon) of some unique energy supplied by an external source 

(incandescent lamp or laser) an excited electronic singlet state (S1) is reached.95,96  The molecule 

will eventually attempt to lower this higher than normal energy state.  There are several 

mechanisms by which the molecule can relax to its original ground state.  These relaxation 

processes may be radiative or luminescent in nature or may occur through radiationless processes.97  

Radiationless processes include vibrational relaxation, external conversion, internal conversion and 

intersystem crossing.96  Luminescent processes include phosphorescence and fluorescence.  There 

are two fundamental differences between phosphorescence and fluorescence:  The former occurs 

when the excited state is of a different electronic spin state than the ground state whereas the latter 

occurs when the excited state is of the same electronic spin state as the ground state.96  The 

Jablonski diagram (Figure 40) offers a convenient representation of the excited state structure and 

the relevant transitions.  
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Where:  A = Photon absorption 

F = Fluorescence 

P = Phosphorescence 

S = Singlet state 

T = Triplet state 

IC = Internal conversion 

ISC = Intersystem crossing 

Figure 40:  Jablonski diagram.  Redrawn from Thomas Chasteen (1996).98  

An interesting phenomenon of fluorescence that may occur between two fluorophores in close 

proximity is referred to as fluorescence resonance energy transfer and is explained further in the 

following section.   
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5.1.2. Fluorescence resonance energy transfer 

When the separation distance between two fluorescent chromophoresi is decreased a phenomenon 

known as fluorescence resonance energy transfer (FRET) occurs.95,99,100  FRET is defined as a 

distance-dependent interaction between the electronic excited states of two fluorophores involving 

the radiationless transfer of energy from the donor fluorophore to the acceptor fluorophore.100  The 

primary conditions for FRET are listed below: 

 Donor and acceptor molecule must be in close proximity (1-10 nm), 

 the absorption spectrum of the acceptor must overlap the fluorescence emission spectrum of 

the donor (Figure 40), 

 donor and acceptor transition dipole orientations must be approximately parallel.100 

 

Figure 41: Schematic representation of the FRET spectral overlap integral.100 

Fluorophores in close proximity to GNPs fluoresce weakly due to the occurrence of FRET between 

the fluorophore and GNP.  Of all the metal NPs, GNPs in particular are known to be efficient 

quenchers for most fluorophores due to their high molar absorbtivities in the visible region.37  For 

experimental purposes it was essential that the fluorescence of Coumarin-3-carboxylic acid not be 

                                                 

i A chemical group capable of selective light absorption resulting in the colouration of certain organic compounds.   
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quenched by the gold.  Fluorescence analyses were carried out to ensure that FRET was not active 

between gold and Coumarin (refer to section 5.6.1., page 75 and section 5.6.3., page 77, for results).   

As mentioned in section 1.3. (page 5) it was anticipated that digestion of the „forest of long 

peptides‟ should ideally expose the shorter peptide, thereby exposing greater fluorescence intensity.  

This hypothesis was tested by trypsin digestion of the peptide capped GNPs to assess the affect of 

cleavage on the fluorescence intensity (section 5.6.6., page 84).  

5.2. TRYPSIN DIGESTION OF PEPTIDE CAPPPED GNPS 

Trypsin is a serine protease found in the digestive system of many vertebrates where it hydrolyses 

(breaks down) proteins into their constituent amino acids.  The protease digests proteins 

(polypeptides) by cleaving the peptide chain at specific sites.  Trypsin cleaves the peptide chain 

after lysine or arginine residues.  Generally, tryptic digestion leaves behind the protein as peptide 

fragments consisting of none or one lysine or arginine residue.101  This property of trypsin is widely 

used to study the primary structure and identification of proteins by analysing the resultant peptides 

using mass spectrometry (MS) (section 5.3., page 69). 

A number of references concerning the cleavage of the groups attached to the surface of GNPs (on 

exposure to proteases) are recorded in the literature.  Guarise et al.102 developed a colourimetric 

assay that allows for the detection of a protease, based on the cleavage of thiol groups attached to 

the surface of GNPs.  Lee et al.103 developed a near IR fluorescence assay based on the cleavage of 

a substrate attached to GNPs and Zhen et al.104 made use of the ability of thrombin to cleave a 

peptide attached to GNPs.   

It was hypothesized that the length of the peptide attached to the GNP surface would affect the ease 

of digestion by the protease:  A 100% C(KAFKRK)3 functionalised GNP solution is likely to 

produce greater hindrance of the process of digestion than a 50:50% C(KAFKRK)3:CKAFKRK 

functionalised GNP solution.  Such an investigation has not previously been reported, hence a 

preliminary study was conducted to investigate this.  The peptide C(KAFKRK)3 was digested first 

to determine the peptide fragments resulting from cleavage.  The fragments were analysed by mass 

spectrometry (MS) and the mass and retention time of the fragments were determined.  The peptide 

capped GNPs were then digested and the cleavage products tested by MS (section 5.6.3., page 77). 
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5.3. MASS SPECTROMETRY 

Mass spectrometry (MS) is a powerful analytical technique used for identifying unknown 

compounds, to quantify known materials, and to elucidate the structure and chemical properties of 

molecules.12  The MS principle consists of ionising chemical compounds to generate electrically 

charged molecules or ions.105  The motion of the ion in an electric/ magnetic field allows for the 

determination of the mass to charge ratio (m/z) of the ion.105,106  In a typical MS procedure: 

 The sample is loaded onto the MS instrument,  

 the components of the sample are ionised resulting in the formation of charged particles, 

 the ions are directed into a magnetic/electric field,   

 the m/z ratio of the particles is elucidated by the motion of the ions as they transit through 

electromagnetic fields, 

 detection of the ions.105 

The MS instrument consists of three main modules:  An ion source, which can convert gas phase 

molecules into charged fragments, a mass analyzer that sorts the ions by their masses by the 

application of electromagnetic fields, and a detector, which calculates the abundance of each ion 

present (Figure 42).105,107   

Figure 42:  Processes involved in mass spectrometry.105 

There are different methods of ionisation and the choice depends on the nature of the sample and 

the type of information required from the analysis (Table 8).107  Mass analysers sort the ions based 
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on their m/z ratio and various types can be used depending on the resolution required for the 

analysis.   

Table 9:  Different types of ionization methods used in mass spectrometry.107 

Ionisation 

method 
Typical analytes 

Sample 

introduction 
Mass range 

Method 

highlights 

Electron 

impact (EI). 

Relatively small, 

volatile. 

GC or liquid/solid 

probe. 

To 1000 

Daltons. 

Hard method, 

versatile, provides 

structural info. 

Chemical 

ionisation 

(CI). 

Relatively small, 

volatile. 

GC or liquid/solid 

probe. 

To 1000 

Daltons. 

Soft method, 

molecular ion peak 

[M+H+]. 

Electrospray 

ionisation 

(ESI). 

Peptides, proteins, 

non-volatile. 

Liquid 

chromatography or 

syringe. 

To 200000 

Daltons. 

Soft method, ions 

often multiply 

charged. 

Fast atom 

bombardment 

(FAB). 

Carbohydrates, 

organometallics, 

peptides, non-volatile 

Sample mixed in 

viscous matrix. 

To 6000 

Daltons. 

Soft method but 

harder than ESI or 

MALDI. 

Matrix 

assisted laser 

desorption 

(MALDI). 

Peptides, proteins, 

nucleotides. 

Sample mixed in 

solid matrix. 

To 500000 

Daltons. 

Soft method, very 

high mass. 

Mass spectrometric analysis of peptides 

The structural characterization of peptides is an integral aspect of biotechnology/pharmaceutical 

research in the development of novel therapeutic agents.108  With the advent of new and advanced 

desorption techniques in MS, peptide molecules can now be easily ionised in the MS instrument 

without prior derivitisation.  The three most common MS methods used today for protein molecular 

weight determinations are ESI-MS, MALDI MS and plasma desorption MS.109  As ESI-MS has on-

line liquid chromatography (LC) MS capabilities, and was the technique of choice for the analysis 

of the various synthetic peptides in this project.109 
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Mass spectrometric analysis of functionalised GNPs 

GNPs have been widely used as inorganic matrices for MALDI-Time of flight (TOF) MS detection 

of biomeolecules, peptides, amino acids and low molecular weight polymers.110-112  Despite this, 

there are very few references in the literature on the mass spectral analysis of the surface chemistry 

of GNPs.  Of these references MALDI-TOF MS is primarily used, due to the lack of solubility of 

the functionalised GNPs in most solvents.113,114  Soluble GNPs allow for the use of alternate MS 

techniques, such as ESI-MS:  Gies et al. (2007)115 employed ESI-MS for the investigation of 

tiopronin monolayer protected GNPs.   

Since the final GNPs synthesised in this project were completely water soluble, ESI-MS was the 

method of choice for the analysis of the peptide capped GNPs as well as the fragments that resulted 

from trypsin digestion (refer to section 5.6.3., page 77, for results).   

5.4. CYTOTOXICTY TESTING 

Cytotoxicty testing is a technique that enables one to establish whether a chemical agent is able to 

adversely affect the metabolism of a cell resulting in the inhibition of cell growth.  This test is 

widely used in the field of drug development as it provides a crucial means of ranking compounds 

for consideration in drug discovery.116-118 

A number of cytotoxic test systems have been developed with the intention of producing results 

interrelated with in vivo efficacy studies.119  The tests differ in parameters associated with cell death 

to give a clear indication of the toxicity of any sample.  The most convenient modern assays have 

been optimised for use of microtitre plates (96-well format), allowing samples to be analyzed 

rapidly and simultaneously with simple colourimetric and luminescence based detection systems.120  

The four most commonly methods used are  

 The lactate dehydrogenase (LDH)j assay,  

 the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay,  

 the natural red (3-amino-m-dimethylamino-2-methylphenazinehydrochloride) assay,  

 the adenosine triphosphate (ATP)k assay.119  

                                                 

j LDH is an enzyme which catalyses the conversion of pyrate in the absence of oxygen and thus yields energy for 
cellular processes. 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Since a number of methods have been developed to study cell viability and proliferation in cell 

culture [Cook and Mitchell, (1989)],121 it was difficult to decide on an appropriate assay.120  
Research indicates that the most common method used for the study of toxicity of GNPs to cells is 

the MTT assay and it was thus the method of choice for this project.   

The MTT assay is a colourimetric technique that focuses on the metabolic activity of viable cell 

mitochondria as an indication of toxicity.  Only metabolically active cells are able to reduce MTT, a 

water soluble tetrazolium salt, to an insoluble blue-violet formazan crystal by cleavage of the 

tetrazolium ring by succinate dehydrogenase within the mitochondria.  The formazan product is 

impermeable to the cell membranes and therefore accumulates in healthy cells (see Figure 43) 

[Mosmann, (1983)].120,119 
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Figure 43:  Mechanism of MTT reduction to produce formazan crystals.  Redrawn from Rode et al. 

(2007).122  

The human lung epithelium cell line (A549)l and the Madin Darby bovine kidney epithelium 

(MDBK)m cells are widely used in MTT assays involving GNP research and were thus used for 

cytotoxicity testing in this project.  The A549 and MDBK cell line was donated by colleagues in the 

school of Biochemistry at the University of KwaZulu-Natal.  Both A549 and MDBK are adherentn 

and were suitable for the MTT assay in 96-well plates (refer to section 5.6.9., page 89, for the MTT 

results).  

                                                                                                                                                                  

k ATP is a chemical compound present in living organisms that releases energy for use in cellular processes. 
l A549 cells are cancerous epithelial cells and were isolated from human lung tissue. 
m The MDBK cell line is a non-cancerous epithelial cell line that was isolated from the kidney of a cow.   
n Adherent cells grow by attaching to the surface of the culture vessel and are not washed off during washing or media 
change. 
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5.5. MICROSCOPY 

Microscopy is the scientific discipline which involves magnifying objects to the extent that features 

which cannot be seen with the naked eye become visible.  The three well-known branches of 

microscopy are optical, electron and scanning probe microscopy.123  The first two methods will be 

discussed further since they were utilised in this project.  

5.5.1. Optical microscopy 

Optical microscopy was the first form of microscopy to be introduced and involves passing visible 

light transmitted through or reflected from the sample through single or multiple lenses to allow a 

magnified view of the sample.123,124  Fluorescence microscopy is a type of optical technique that is 

widely used.125  In fluorescence microscopy, light of a particular wavelength is passed through a 

specialised microscope condenser which focuses the light into a narrow beam.125  This light strikes 

the specimen and molecules are excited, resulting in the emission of light at a lower frequency.125   

In a conventional wide-field fluorescence microscope, the entire spectrum is flooded with light from 

the light source.125  All parts of the sample in the optical path are illuminated by the excitation light 

and thus the entire sample fluoresces simultaneously.123,95  Despite the highest intensity of 

excitation light being at a focal point of the lens, the other areas of the sample are illuminated, 

creating a background haze in the resulting image.125  In 1957, Marvin Minsky overcame the 

problem of conventional wide-field fluorescence microscopy by employing point illumination and a 

pinhole in front of the detector to eliminate out-of-focus information, a technique presently known 

as confocal fluorescence laser scanning microscopy (CFLSM).123,126   
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CFLSM offers several advantages over wide-field fluorescence microscopy, such as the: 

 Ability to control depth of field,  

 elimination or reduction of background information away from the focal plane, 

 capability to collect serial optical sections from thick specimens.123   

This technique is therefore extremely suitable for the detection of fluorescent molecules inside 

living cells.  Due to these advantages of CFLSM it was considered a vital analytical tool in this 

project (refer to section 5.6.10., page 101). 

5.5.2. Electron microscopy 

The electron microscope utilises a beam of highly energetic electrons to examine objects on a very 

small scale.  The technique acquires information about the topography (surface features), 

morphology (shape and size), composition (chemical identity) and crystallography of the sample in 

question.127,36  Electron microscopes achieve resolutions down to 0.2 nm and can obtain 

magnification of up to 300 000 times.128  There are two main types of electron microscopes, namely 

the scanning electron microscope (SEM) and the transmission electron microscope (TEM).128  
Since the latter technique was used in this project it will be discussed further.   

In TEM, a beam of electrons is transmitted through ultrathin specimens, interacting with the 

specimen as it passes through.129  After passing through the specimen, the electrons strike a 

fluorescent screen thereby producing an image.129  Sample preparation in TEM can be a complex 

procedure.  TEM specimens are required to be very thin (at most hundreds of nanometres thick) 

small (no more than 50 mm2) and electron dense.129,128  GNPs are easily visualised under the TEM 

due to their small size and electron density and thus TEM was the method of choice to determine 

the diameter and shape of the GNPs synthesised in this project (refer to section 5.6.7., page 86, for 

the TEM results).   
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5.6. RESULTS OF TESTING AND OPTIMISATION OF PEPTIDE CAPPED 

GNPS  

A variety of tests were performed to create the ideal peptide-GNP composite for the purposes of this 

project.  The final composite prepared was then tested with a selection of assays and discussed in 

this section.  

5.6.1. Peptide length investigations  

Aslan et al. (2007)75 reported that the ideal separation distance between fluorophores and GNP is 

greater than 10 nm to prevent FRET from occurring.  To test this hypothesis, an 18 amino acid 

[C(KAFKRK)3Coum with an approximate length of 6.36 nm]o and a six amino acid 

(CKAFKRKCoum with an approximate length of 2.18 nm) peptide sequence was synthesised, and 

attached to GNPs.  Fluorescence spectroscopy analyses indicated that both distances were sufficient 

to prevent FRET from occurring as there was a significant amount of fluorescence from both GNP 

composites.  This result is in contrast to the required distance between GNP surface and fluorophore 

of 10 nm stated by Aslan et al.75  

On further review, Shang et al. (2007)126 reported an increase in fluorescence in conjugated 

polymer-stabilised GNPs upon addition of cysteine to the surface of the GNPs.85  Shang theorised 

that cysteine can modulate the energy transfer between the fluorophore and the gold atoms.  To 

validate this observation, CMECoum was attached to GNPs and the fluorescence measured.  The 

emission intensity of this composite was significant, confirming the hypothesis of Shang.   

As expected, the fluorescence intensity of the capped GNPs was directly proportional to the 

separation distance between the fluorophore and Au surface (Figure 44).  The peptide length 

decided upon for further use in the project was CKAKFKRCoum, as the fluorescence emission 

intensity was sufficient for the purposes of this project. 

                                                 

o The HyperChem software was used to measure the length of the peptide sequences. 
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Figure 44: Fluorescence spectra illustrating the difference in emission intensity of various peptide 

capped GNPs.    

5.6.2. Peptide percentage investigations 

As mentioned previously, the Coumarin moiety will ultimately be exchanged with a radioactive 

atom at a later stage in the project, the radiation of which should not be too great to cause any toxic 

effects in patients.  Therefore, the percentage of CKAFKRKCoum attached to GNPs should be 

significantly less than the C(KAFKRK)3 peptide.   

Fluorescence tests were done to determine the smallest percentage of CKAKFKRKCoum that could 

be attached to GNPs and show significant emission intensity.  Ratios of 0.1:99.9, 1:99 and 10:90 of 

CKAFKRKCoum:C(KAFKRK)3, respectively, were attached to GNPs.  Fluorescence intensity was 

the lowest in the case of the 0.1% and the highest in the case of 10% coverage of the gold surface 

(Figure 45).  It was decided to use the 10% CKAFKRKCoum as it showed adequate emission 

intensity.    
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Figure 45: Fluorescence spectra illustrating the difference in emission intensity of various 

concentrations of CKAFKRKCoum. 

5.6.3. Trypsin digestion of the peptide capped GNPs 

This assay was integral in the determination of the accessibility of the protease to the peptide.  

Various percentages of C(KAFKRK)3 and CKAFKRK were attached to GNPs, subjected to trypsin 

digestion and the cleavage products monitored by mass spectral analysis.     

A 24 hour test was conducted prior to GNP digestion in order to determine the main cleavage 

products of the peptide C(KAFKRK)3.  Briefly, the experiment was carried out as follows:  The 

peptide was dissolved in water and the appropriate volume of trypsin/versene solution added.  The 

mixture was mixed and left to incubate at 37oC for 24 hours, after which the solution was analysed 

using LC-MS connected to an ESI Q-TOF apparatus.   

Interpretation of the spectrum indicated that the main peak at 493 m/z could be ascribed to the 

fragment KAFK.  Figure 46 and Figure 47 show the mass spectra of the peptide before and after 

cleavage respectively.   
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Figure 46:  Mass spectrum of C(KAFKRK)3 in phosphate buffered saline (PBS) prior to enzymatic 

degradation.  

 

Figure 47:  Mass spectrum of C(KAFKRK)3 in PBS after enzymatic degradation.   
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Tryspin digestion was then carried out on the peptide capped GNP composites with the following 

peptide ratios:  100% C(KAFKRK)3 and 50% C(KAFKRK)3:50% CKAFKRK.  The 

trypsin/versene solution was added to the GNP solutions of the same concentrations, mixed, 

incubated at 37oC and analysed after 24 hours.  Refer to Appendix 3, Spectrum 29 to Spectrum 32, 

page 156 for all spectra. 

The Au-50% C(KAFKRK)3:50% CKAFKRK solution underwent a noticeable colour change from 

the initial pink to a colourless solution with the presence of a precipitate.  This observation can be 

explained by a decrease in colloidal stability of the GNPs upon cleavage of the long peptide, 

resulting in aggregation of the GNPs.  The Au-100% C(KAFKRK)3 solution did not change colour 

and remained pink.  This indicated that the C(KAFKRK)3 peptide was not cleaved by the protease 

as the capped GNPs were still in solution.   

To remove the precipitate, the solutions were centrifuged and the supernatant analysed via LC-MS 

connected to an ESI Q-TOF.  The mass spectra of the peptides attached to the GNPs were recorded 

before and after cleavage.  The spectrum of the 100% C(KAFKRK)3 did not appear to change after 

the experiment, indicating that cleavage did not occur.  The MS of the 50% C(KAFKRK)3:50% 

CKAFKRK showed significant cleavage of the peptide, with 493 m/z being the most prominent 

fragment peak.  These results indicated that the ratio of 50:50 [CKAFKRKCoum:C(KAFKRK)3] 

was more effective in allowing for peptide cleavage.   

5.6.4. Selection of the final GNP composite 

Taking into consideration the findings of section 5.6.2 (page 76):  The percentage of 

CKAFKRKCoum should be 10%) and section 5.6.3., page 77:  The ratio of 50:50 

CKAFKRKCoum:C(KAFKRK)3 was more effective in allowing for peptide cleavage,  it was 

evident that a spacer group (40%) is required to facilitate trypsin digestion.   

The CME ligand was attached to GNPs as a spacer group along with C(KAFKRK)3 and 

CKAFKRKCoum in a ratio of 40:50:10 respectively.  This sequence unfortunately produced 

extremely aggregated GNPs that were completely insoluble.  It was already established that 50% 

C(KAFKRK)3:50% CKAFKRK was water soluble, thus the next spacer decided upon was 

CKAFKRK to ensure water solubility of the GNP composite.  The ratio attempted was 40% 

CKAFKRK:50% C(KAFKRK)3:10% CKAFKRKCoum.  Digestion was performed and proved 

successful on the Au-40% CKAFKRK:50% C(KAFKRK)3:10% CKAFKRKCoum system.  
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5.6.5. Evaluating the effect of peptide ratio on protease digestion 

A simple but logical enquiry became the subject of a sideline investigation:  What effect would 

varying the loading of the cleavable peptide [C(KAFKRK)3] have on the rate of protease activity?  

This was further investigated by preparing four different GNP solutions as illustrated in Table 10: 

Table 10:  GNP solutions prepared with varying percentages of C(KAFKRK)3, CKAFKRKCoum 

and CKAFKRK and respective names. 

Name GNP composite 

90% 90% C(KAFKRK)3:10% CKAFKRKCoum 

70% 70% C(KAFKRK)3:10% CKAFKRKCoum:20%CKAFKRK 

50% 50% C(KAFKRK)3:10% CKAFKRKCoum:40% CKAFKRK 

30% 30% C(KAFKRK)3:10% CKAFKRKCoum:60% CKAFKRK 

Each composite was subjected to protease digestion to evaluate the differences the extent of loading 

had on the digestion of the cleavable peptide.  

Digestion was conducted on a range of concentrations of the C(KAFKRK)3 peptide for a period of 

24 hours, after which the fragment at 493 m/z was analysed by LC-MS connected to an ESI Q-TOF 

to ascertain the area of the fragment for each concentration.  The areas were then plotted as a 

function of KAFK concentration and the calibration curve is shown in Figure 48. 
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Figure 48: Calibration curve of C(KAFKRK)3 peptide indicating the relationship between the 

concentration and the area of the peptide.  Each data point represents a total of three assays. 

Trypsin/versene solution of the same concentrations were added to each GNP solution (90-30%) of 

the same concentrations, vortexed, incubated at 37oC and analysed after 3, 6, 9 and 24 hours.  The 

solutions underwent a noticeable colour change from the initial bright red to a colourless solution 

with the presence of a precipitate.  This theory concurs with the experimental observations:  The 

30% GNP solution changed colour at a faster rate than the 90% GNP solution [the 90% consists of 

more C(KAFKRK)3 peptide and thus remained stable for longer than the 30% covered GNPs].  To 

remove the precipitate, the solutions were centrifuged and the supernatant was analysed with LC-

MS connected to an ESI Q-TOF.  The concentration of the 493 m/z mass fragment at three hour 

intervals was determined using the equation generated by the calibration curve (Figure 48) of y = 

8x107x – 28917.  The results obtained are shown in Table 11 and plotted in a bar graph format for 

purposes of comparison (Figure 49). 
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Table 11:  The concentration of the mass fragment 493 m/z obtained at three hour intervals for 

different GNP solutions.   

GNP ratio Time (hours) Mean Area Concentration (M) 

90% 

3 

6 

9 

24 

9001 

97683 

2728 

3263 

4.74 x 10-4 

1.58 x 10-3 

3.96 x 10-4 

4.02 x 10-4 

70% 

3 

6 

9 

24 

7850 

8236 

4910 

1762 

4.60 x 10-4 

4.64 x 10-4 

4.23 x 10-4 

3.83 x 10-4 

50% 

3 

6 

9 

24 

- 

10244 

9950 

9079 

- 

4.90 x 10-4 

4.86 x 10-4 

4.75 x 10-4 

30% 

3 

6 

9 

24 

- 

- 

4837 

9230 

- 

- 

4.22 x 10-4 

4.77 x 10-4 
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Figure 49:  Bar graph illustrating the comparison of the concentrations obtained for the peak at 493 

m/z after 3-24 hours of exposure to trypsin.  The 493 m/z peak correlates to the peptide fragment 

resulting from the cleavage of the peptide C(KAFKRK)3 and can be ascribed to the fragment 

KAFK.  The area of the 493 m/z peak was measured for each GNP solution at each time interval.  

The area was converted to concentration by using the calibration graph in Figure 48.  The 

concentrations for each GNP solution were plotted as a function of time.   

The rate of cleavage appears to be directly proportional to the extent of aggregation.  The cleavable 

peptide C(KAFKRK)3 attached to the GNPs with a loading of 90% was cleaved significantly after 

six hours with a concentration of 15.8 x 10-4 M.  This can be attributed to the larger surface area of 

the exposed target peptide due to significantly greater dispersion of the NPs (Figure 50).  The 

decrease in the amount of the initial cleavage product corresponded to an increase in another peak 

(389 m/z) corresponding to the peptide fragment AFK.  The aggregation in the lower percentages of 

C(KAFKRK)3, such as the 30% and 50%, appears to delay and hinder the protease from cleaving 

the peptide.  In the case of the higher percentages of the cleavable peptide (70% and 90%) the 

product is detectable from as early as three hours, but was only detectable at six and nine hours for 

the 50% and 30%, respectively.   
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Figure 50:  TEM images of GNPs in distilled water. A) 30%, B) 50%, C) 70%, D) 90%. 

The results shown in sections 5.6.3. (page 77) and 5.6.4. (page 80) differ.  In the former, it was 

observed that the peptide in a 100% C(KAFKRK)3 functionalised GNP solution did not cleave on 

exposure to trypsin for 24 hours.  In the latter, however, it is evident that the peptide on a 90% 

C(KAFKRK)3 functionalised GNP solution did cleave, which indicates that a spacer is essential as a 

100% C(KAFKRK)3 functionalised GNP solution is perhaps too sterically crowded.   

5.6.6. Effect of peptide encapsulation on fluorescence intensity of Coumarin 

Emission spectroscopy was performed before and after a 24 hour digestion period to ascertain the 

effect of the longer peptides on the fluorescence intensity and on the shift of λmax.  The composite 

Au-40% CKAFKRK:50% C(KAFKRK)3:10% CKAFKRKCoum was digested with trypsin and 

fluorescence was measured before and after cleavage.  It can be seen from Figure 51 that the 

emission was enhanced after cleavage, indicating that the long peptide in fact “shielded” the 

fluorescence intensity of the fluorophore to some extent.  In addition to an increase in intensity, a 

red shift of the λmax after cleavage was also observed.   

These two observations could be explained either by:  
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 A change in the local environment of the fluorophore:   

o prior to degradation, the fluorophore is surrounded by the „long‟ peptide 

C(KAFKRK)3 and is not affected by the surrounding water molecules.  After 

cleavage of the „long‟ peptide, the water molecules become more accessible to the 

fluorophore.  This change in environment causes a red shift of the fluorescence 

maximum of the fluorophore as well as an increase in the emission intensity.  This 

phenomenon is expected as Coumarin molecules are known to exhibit a high degree 

of sensitivity to their local environment, including polarity and viscosity.130  An 

increase in the solvent polarity results in emission at longer wavelengths, thereby 

validating the observed red shift of the fluorescence maximum,37   

 FRET occurring between the aromatic groups of phenylalanine and Coumarin:   

o prior to cleavage of the „long‟ peptide, FRET occurs between the Coumarin-3-

carboxylic acid (donor) and the phenylalanine (acceptor) thereby diminishing the 

fluorescence emission intensity of the fluorophore.  The cleavage of the „long‟ 

peptide (and subsequent removal of phenylalanine groups) effectively prevents the 

occurrence of FRET, resulting in an enhanced fluorescence emission intensity and 

red shift of the λmax of the Coumarin moiety.   

Further studies are necessary to confirm the mechanism that caused the increased fluorescence 

emission intensity and the shifting of the λmax. 

 

Figure 51:  Fluorescence spectra illustrating the difference in emission intensity of peptide capped 

GNPs before and after cleavage with trypsin.    
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5.6.7. Transmission electron microscopy 

It is essential to know the fate of the GNPs after treatment with whole cells:  Do the cells internalize 

the GNPs or do the GNPs remain bound to the cell membrane?  TEM was used to verify the cellular 

uptake of GNPs in A549 and MDBK cell lines.  Figure 52 and Figure 53 shows typical images of 

A549 cells and MDBK cells, respectively, exposed to GNPs at a concentration of 2.09 x 10-11 M for 

24 hours at 37oC.  GNPs were found at the cell periphery (Figure 52 A) although evidence for 

accumulation of large quantities of GNPs inside the cell was clearly visible by TEM (Figure 52 A-

C).  As shown in Figure 52 B and Figure 53 A, GNPs appeared to be trapped in the vesicles (most 

likely due to endosomal entrapment) in the cytoplasm which is in agreement with results by other 

groups.131,132,43,133,134  The higher magnification TEM images (Figure 52 B, C Figure 53 A) show 

that these GNPs were aggregated in the vesicles in the cytoplasm, rather than attached to the 

membrane only.  It is likely that some GNPs escaped from the vesicles as NP escape depends on the 

surface functionalities as is evident by the presence of individual GNPs in Figure 52 C and Figure 

53 B.134 
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Figure 52: Cross-section TEM images of A549 cells incubated with GNPs for 24 hours.  A) GNPs 

were seen at the cell periphery.  B) Magnification of the aggregate GNPs in the cytoplasm 

indicating the uptake of GNPs in cellular vesicles.  C) Free GNPs (white circle) indicating the 

possibility that some GNPs escaped from the vesicles.    
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Figure 53:  Cross-section TEM images of MDBK cells incubated with GNPs for 24 hours.  A) 

Magnification of the aggregated GNPs in the cytoplasm indicating the uptake of GNPs in cellular 

vesicles.  B) Free GNPs (white circles) indicating the possibility of GNPs escape from the vesicles.    

5.6.8. Mechanism of cellular uptake of peptide capped GNPs 

To date, several reports have discussed the internalization of GNPs into the cells by an endocytic 

pathway and this is generally accepted as the most likely method of transport of GNPs into 

cells.131,132  Endocytosis is a conserved process in eukaryotes where extracellular substances are 

taken up into cells usually by the invagination of plasma membrane, forming vesicles.135  

Generally, endocytosis occurs by multiple mechanisms that fall into two broad categories, namely 

„phagocytosis‟ (the uptake of large particles), and „pinocytosis‟ (the uptake of fluid and solutes).128  
Upon binding to cell surface receptors, NP-based drug delivery systems are internalized by 

phagocytosis, otherwise known as receptor-mediated endocytosis.35,128  As the GNPs adhere to the 

cell membrane, it is stimulated to form a small pocket locally around NPs, thereby gradually 

enclosing the GNPs.  In this process the NP complex is able to enter the cell in vesicles known as 

early endosomes.  When the NPs are eventually internalized they are then aggregated in a closed 

pocket (vesicle/endosome).132  Due to the evidence of aggregation of the GNPs in the cells (Figure 

52 and Figure 53, pages 87 and 88) it is most likely that the GNPs are taken up by the cells through 

phagocytosis.132   
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5.6.9. Cytotoxicity studies of the peptide capped GNPs 

The purpose of this assay was simply to measure the toxic effect of the functionalised GNPs on the 

A549 and MDBK cell lines.  Optimisation of the MTT assay was previously performed by a 

master‟s student in our group.136  The optimal number of cells used in the testing as well as the 

optimal time required for solubilisation of the formazan crystals was previously established.  The 

use of 6 x 104 cells per well produced the least standard deviation and a solubilisation of two hours 

had the lowest standard deviation between samples.  Thus, all tests were performed by plating cells 

at a density of 6 x 104 cells per well and absorbance readings were obtained after a solubilisation of 

two hours.   

To ensure that the testing technique was not flawed, the sensitivity of the A549 and the MDBK 

cells to cadmium was assessed using various concentrations of the control.  Cadmium was chosen 

as it is a widely used control in other MTT-based assays and has been found to be cytotoxic to both 

cell lines.137  As seen in Figure 54, a concentration as low as 4.5 x 10-3 M cadmium was sufficient 

to produce a significant kill in the MDBK cell line, whereas a concentration of greater than 5.3 x 10-

2 M cadmium was required to produce a significant kill of the A549 cells (Figure 55).  It is evident 

by these results that the MDBK cell line is much more sensitive to cadmium than the A549 cells.   
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Figure 54:  Graph showing the cytotoxic effect of different cadmium concentrations on MDBK 

cells (5 x 104 cells per well after 42 hours incubation with cadmiun).  Error bars show the SD 

between five replicates.  

 

Figure 55:  Graph showing the cytotoxic effect of different cadmium concentrations on A549 cells 

(5 x 104 cells per well after 42 hours incubation with cadmiun).  Error bars show the SD between 

five replicates.  
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The peptide capped GNPs were then analysed for cytotoxic effects using the MTT assay.  Cadmium 

was used as the control in each assay to ensure the methodology was correct.   

A range of concentrations of the peptide capped GNPs were tested to determine their toxicity to the 

cells.  The lowest concentration used was the same concentration of peptide capped GNPs used in 

TEM and confocal microscopy testing (2.09 x 10-11 M) and the highest was the concentration that 

did not produce significant colouration of the solution that would affect the assay (9.2 x 10-11 M).  It 

was found that the peptide capped GNPs were not cytotoxic to either the MDBK (Figure 56) or the 

A549 (Figure 57) cell line. 

 

Figure 56:  Graph showing cytotoxicity of various peptide capped GNP concentrations on MDBK 

cells (5 x 104 cells per well after 42 hours incubation with GNPs).  Error bars show the SD between 

three replicates. 
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Figure 57:  Graph showing cytotoxicity of various peptide capped GNP concentrations on A549 

cells (5 x 104 cells per well after 42 hours incubation with GNPs).  Error bars show the SD between 

three replicates.  

5.6.10. Confocal microscopy results of peptide capped GNPs in whole cells 

The experimental procedure followed for the confocal microscopy analyses was done as 

consistently as possible to ensure reproducibility.  For each assay, three replicates were done (three 

coverslips were used).  The cells were subjected to peptide capped GNP solutions of the same 

concentration (2.09 x 10-11 M) for differing time periods (with exception of the controls that were 

not subjected to peptide capped GNPs).  Approximately five images were captured per coverslip to 

ensure a representative image was obtained.  Different areas of the coverslip were captured to 

prevent the occurrence of bleaching of the fluorophore.  This particular experimental protocol was 

followed to prevent the introduction of spurious results that could be caused by excessive handling.  

An oil immersion was used for the objective lens to increase the resolution of the microscope.  All 

parameters, such as pinhole and brightness, were maintained at a constant value throughout the 

testing (refer to section 7.6.2., page 126 for the complete experimental details).  

5.6.10.1. Verification of cellular uptake of peptide capped GNPs 

To validate the internalization and intracellular distribution of GNPs, MDBK and A549 cells were 

incubated with the GNPs for various time intervals and the intracellular fluorescence signal was 
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imaged using a CFLSM.  Prior to analysis the cells were washed with PBS in triplicate to ensure 

that only fluorescence due to uptake into cells is studied.  The emission of the labelled 

CKAFKRKCoum GNPs produced blue fluorescence and the position and intensity represented the 

location.  Control cells (Figure 58 A-B) and cells treated with non-functionalised GNPs alone 

(Figure 58 C-D) displayed faint fluorescence.  In contrast, bright fluorescence was observed 

throughout the cells incubated with Au-40% CKAFKRK:50% C(KAFKRK)3:10% 

CKAFKRKCoum, clearly indicating that a substantial amount of functionalised GNPs had entered 

the cells, with most of the internalized GNPs localizing in the cytoplasm compartment.  The 

complete internalization of GNPs, as opposed to simple surface attachment, was validated using the 

optical slicing function (Z-stack) of the confocal microscope to produce comprehensive 3-D images 

of the cells.  Optical-section images at different depths were obtained by changing the focal plane of 

the confocal microscope.  Compound images of the fluorescence of the MDBK and A549 cells at 

different depths are shown in Figure 60 and Figure 61 respectively.  These optical-section images 

indicate that the GNPs were uniformly distributed within the cytoplasm.   

5.6.10.2. Time taken for complete cellular uptake of peptide capped GNPs and 

verification of mechanism of internalization 

Figure 58 E-F illustrates the cell lines MDBK and A549, respectively, after treatment with 

functionalised GNPs for one minute.  As previously reported, internalization of GNPs by 

endocytosis occurs very rapidly (usually within a few minutes) as clearly demonstrated by the rapid 

uptake of the GNPs in a mere minute.  This further confirms the mechanism of internalization being 

endocytosis.45   

5.6.10.3. Proof of experimental concept 

Figure 59 G-H present CFLSM images of the cell lines MDBK and A549 after treatment with 

functionalised GNPs for three hours.  The fluorescence intensity of the MDBK cell line appeared to 

decrease whereas the intensity of the A549 remained the same.  This phenomena also occurred at 

four (Figure 59 I-J) and 24 hours (Figure 59 K-L).   

The initial hypothesis was that the tumour cell line (A549) would cleave the peptide attached to the 

GNPs at an accelerated rate (due to the over-proliferation of proteases), thereby exposing the 

fluorophore, resulting in an enhanced fluorescence intensity.  The healthy cell line (MDBK) on the 

other hand was expected to cleave the peptide at a considerably slower rate than the tumour cell line 

(healthy cell lines have considerably less proteases than cancer cell lines).  As a result the MDBK 
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cell line would be much slower in exposing enhanced emission, hence resulting in a fairly constant 

level of fluorescence.   

According to the experimental observations the fluorescence intensity of the cancer cell line A549 

appeared constant and the healthy MDBK cell line appeared to gradually decrease with increasing 

exposure time to the GNPs.  This can possibly be explained by the aggregation observed in the 

TEM images of the GNPs in the MDBK and A549 cell lines (Figure 52 and Figure 53). 

It has been reported that aggregation of GNPs quenches the emission intensity of a fluorophore 

(most likely due to the effect of shielding of the fluorophore by surrounding peptide capped GNPs).  

This phenomenon was utilised by Huang et al. (2007)81 for the sensing of HgII ions based on 

fluorescence quenching through HgII-induced aggregation of GNPs.  Kim et al. (2009)138 utilised 

the fluorescence quenching effect that CdS quantum dots exhibit upon aggregation to develop a 

fluorescence-based detection of point mutation in DNA sequences and Chen et al. (2009)139 

developed a new fluorescence sensor for the detection of Cu2+ ions based on the aggregation 

induced fluorescence quenching of glutathione capped GNPs.  It is quite evident by examination of 

the TEM images (Figure 52 and Figure 53) that the aggregation of the GNPs in both cell lines 

occurred to the same extent, thus the fluorescence intensity of the GNPs in both cell lines should be 

diminished to the same extent.  The TEM results, however, were obtained after exposure to the cells 

for 24 hours.  As was seen in the trypsin digestion experiment, considerable cleavage of the 

peptides occurs by the enzymatic process.  The protease enzymes in the two types of living cells 

cannot be directly compared with the trypsin studies, but it is possible that the aggregation in the 

cancer cells could be the result of reduced solubility of the GNPs due to cleavage of the long 

peptide chains.  It is expected that the fluorescence of the peptide capped GNPs in the A549 cell 

should increase, but due to the apparent aggregation over time, the fluorescence intensity appeared 

to remain constant.  The same can be said for the MDBK cell line:  It is expected that the 

fluorescence intensity of the peptide capped GNPs in the MDBK cell line should remain constant 

but due to the aggregation of the GNPs, the emission intensity of the fluorophore appeared to 

decrease with time.   

The correct mechanism causing the change in fluorescence emission intensity is yet to be 

elucidated.  As previously hypothesised in section 5.6.6., page 84, the change could likely be due to 

either a change in the local environment of the fluorophore or the occurrence of FRET between the 

aromatic groups present in the peptide and the Coumarin.  Further research is required to confirm 

either argument.  
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Figure 58:  Confocal microscope images of MDBK (left) and A549 (right) cells.  A-B)  Control 

cells.  C-D)  Cells treated with non-functionalised GNPs.  E-F)  Cells treated with peptide 

functionalised GNPs for 1 minute.   
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Figure 59:  G-H)  Cells treated with peptide functionalised GNPs for three hours.  I-J)  Cells treated 

with peptide functionalised GNPs for four hours.  K-L)  Cells treated with peptide functionalised GNPs 

for 24 hours. 
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Figure 60:  Optical-section images of the peptide cappped GNPs in MDBK cell line after 24 hours. 

 

Figure 61: Optical-section images of the peptide cappped GNPs in A549 cell line after 24 hours. 
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6. CHAPTER 6:  CONCLUSION 

This project presented a novel prodrug system that was activated by the proteases expressed in the 

region of cancer cells and remained intact in the region of the healthy cells.  This was demonstrated 

by the functionalisation of GNPs with two peptides of different lengths, the shorter peptide 

consisting of a terminal fluorophore.  Exposure of a cancer cell line to the peptide capped GNPs 

represented an increased rate of peptide cleavage due to the over-expression of proteases present in 

the cells, which consecutively lead to an enhanced level of fluorescence emission.  In the healthy 

cells however, the rate of cleavage was insignificant due to the lower levels of proteases, which 

consequently resulted in considerably lower levels of fluorescence. 

This system has the potential to improve the efficacy of current chemotherapy drugs by selective 

tumour cell activation and facilitate the ability to visualize the difference between tumour and 

normal cells.  This design concept could be useful for therapeutic and diagnostic studies.   
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7. CHAPTER 7:  EXPERIMENTAL 
7.1. PEPTIDE SYNTHESIS 

All reagents and solvents were purchased commercially and, unless otherwise stated used without 

further purification.  Rink amide resin (0.61 mmol.g-1) and protected amino acids were purchased 

from Iris Biotech GmbH (Marktredwitz, Germany) and GL Biochem (Shangai) Ltd.  Solvents for 

peptide synthesis were from Sigma-Aldrich and Merck.  Coumarin-3-carboxylic acid was from 

Aldrich.   

Manual SPPS was performed using a fritted-filter sintered glass reaction vessel attached to a 

vacuum pump to remove excess solvents and a nitrogen line to agitate the solution and mix the 

reagents.  The absorbance of 20% piperidine was determined using a Perkin Elmer 35 Lambda UV-

vis spectrophotometer.  The peptides were also synthesised by SPPS on a CEM Liberty automated 

peptide synthesiser using Fmoc chemistry.  A Stuart Scientific Orbital shaker 501 was used during 

the cleavage of the peptide from the resin.  A Vacuubrand GmbH high vacuum pump was used to 

remove cleavage mixtures.  The final pure products were lyophilised using a VirTis BenchtopK 

freeze dryer.   

Reversed-phase liquid chromatography was carried out using a Younglin Acme high pressure liquid 

chromatograph (HPLC).  Preparative HPLC was done using a C18 column (150 x 21.2 mm) with 

acetonitrile (AcN) - water (both containing 0.1% TFA) as mobile phase.  The wavelength was set at 

215 nm.  Relatively pure peptides were purified using Supelco Discovery DSC-18 solid phase 

extraction (SPE) syringes.  

LC-MS was performed on all crude and purified peptides to confirm the purity and mass of the 

synthesised peptides.  For smaller peptides (<2200) the instrument used was an Agilent 1100 series 

MS and the column used was a Phenomenex Gemini C18 (150 x 3mm) column.  The spectrometer 

was set at positive mode.  For larger peptides (>2200), a Bruker Q-Tof, MicroTof-QII fitted with an 

electrospray source was used.  Peptides were analysed in positive mode.  1H NMR analysis was 

done using a Bruker Avance III 400 MHZ NMR.  Infrared spectra were obtained on a Perkin Elmer 

spectrum 100 instrument with an attenuated total reflectance (ATR) attachment. 

Peptides were synthesised manually or with the CEM Liberty automated peptide synthesiser.  Table 

12 indicates which peptides were synthesised manually and with the CEM Liberty automated 

peptide synthesiser.   
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Table 12:  Peptides sequences synthesised. 

Peptide sequence Manual synthesis Automated synthesis 

C-(D-Ala)35  X 

C-D-A4G5  X 

G-D-AFK X  

CK-D-AFKRKCoum  X 

C(K-D-AFKRK)3Coum  X 

CK-D-AFKRK  X 

C(K-D-AFKRK)3  X 

CG-D-AKFRGG  X 

CKCoum  X 

7.1.1. Manual peptide synthesis 

The peptide G-D-AFK was synthesised manually at room temperature using the standard Fmoc-

SPPS procedures.  Chlorotrityl resin was used to allow conjugation of the peptide to a longer 

sequence.   

Preparation of chlorotrityl resin 

Chlorotrityl resin (1.05 g) was placed in a 50 mL round bottom flask and suspended in 

approximately 20 mL of dry DCM.  Thionyl chloride (1.2 eq, 139 µL) and piperidine (2.4 eq, 309 

µL) was added to the flask.  The mixture was refluxed for two to four hours under nitrogen, after 

which the DCM was removed and the resin was washed six times with dry DCM (5 mL).   

Attachment of first amino acid 

The resin was transferred to the fritted-filter sintered glass reaction vessel and washed six times 

with dry DCM (5 mL).  Dry DCM (10 mL), DIEA (3 eq, 4.8 mmol, 834 µL) and Fmoc-L-Cys(Trt)-

OH (3 eq, 4.8 mmol, 1.9 g) was added to the funnel and the mixture was bubbled under nitrogen for 

two hours.  After attachment of the amino acid, the resin was washed three times with DMF (10 

mL.g-1 of resin) to remove any unreacted amino acid.  
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Deprotection of the attached Fmoc-amino acid 

For the removal of the Fmoc protecting group from the attached amino acids, a 20% (v/v) 

piperidine in DMF solution was used and bubbled under a stream of nitrogen for 15 minutes.  After 

deprotection, the resin was washed five times with DMF (10 mL.g-1 of resin) to remove remaining 

piperidine.  

Determination of resin loading 

The removal of the Fmoc protecting group leads to the production of a benzofulvene derivative that 

is easily characterised by an intense absorbance.  A mass of 1.2 mg of the resin was weighed out 

and deprotected using 3 mL 20% piperidine (v/v) in DMF for two to three minutes.  The solution of 

20% piperidine was used as a blank.  The absorbance was measured at 290 nm and the loading was 

determined using Equation 1. 

𝐀𝐛𝐬𝐒𝐚𝐦𝐩𝐥𝐞 − 𝐀𝐛𝐬𝐁𝐥𝐚𝐧𝐤

𝟏. 𝟔𝟓 𝐱 𝐦𝐠 𝐨𝐟 𝐫𝐞𝐬𝐢𝐧
 

Equation 1 

Where Aabssample is the absorbance of the sample, mg is the weight of the resin, Absblank is the 20% 

piperidine solution in DMF.  

The ninhydrin test140 

This test was used to determine the completion of the acylation reaction during the coupling of an 

amino acid and to monitor the deprotection of the Fmoc protecting group.  Three solutions are used 

in this test and were prepared as described. 

Preparation of solutions: 

 KCN (16.5 g) was dissolved in 25 mL distilled water.  From the 25 mL KCN solution, 1 mL 

was removed and diluted with 49 mL pyridine,     

 Ninhydrin (1 g) was dissolved in 20 mL n-butanol, 

 Phenol (40 g) was dissolved in 20 mL n-butanol.   

The ninhydrin test was carried out after each coupling and deprotection step.  Approximately 10-15 

resin beads were removed from the funnel after deprotection or coupling step.  Three drops of each 

solution was added to the resin beads and heated for five minutes to 85oC in a water bath.  No 



111 

colour change was observed, the solution remained a faint yellow and resin beads remained clear, in 

the absence of free amino groups indicating complete coupling of amino acid to resin.  After 

deprotection, free amino acid groups were present and this was indicated by a dark blue colour.  

The test thus yielded a negative result in the case of complete coupling and a positive result after 

complete deprotection.   

Attachment of consecutive amino acids 

The resin was washed six times with DMF after deprotection (5 mL).  To 10 mL DMF the amino 

acid (4 eq), HBTU (3.6 eq), DIEA (3 eq) were added and the solution was bubbled under nitrogen 

for two hours.  After attachment of the amino acid the resin was washed three times with DMF (10 

mL.g-1 of resin) to remove any unreacted amino acid. 

Cleavage of the peptide from the resin 

Prior to cleavage, the DMF was drained and the resin washed thoroughly with dry DCM (20 mL.g-1 

of resin).  The peptide was cleaved from the resin using a solution of 5% TFA (v/v), 92.5% DCM 

(v/v) and 2.5% TIS (v/v) for two hours.  The cleavage solution containing the peptide was collected 

and the resin washed with methanol (20 mL.g-1 of resin).  The solvents of the combined filtrates 

were removed under reduced pressure.   

Peptide purification 

Analytical amounts of the peptide was dissolved in AcN:water and analyzed with LC-MS to 

identify the product peaks.  The peptide was purified using a semi-preparative reverse phase high 

pressure liquid chromatography (RP-HPLC).  The solvent gradient developed to allow for optimal 

separation of the crude peptide was 5-75% AcN in 20 minutes.   

Analysis of the purified peptide 

LC-MS was used to characterise the purified peptide.  The spectrum is presented in Appendix 1 

(page 139).   
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7.1.2. Automated peptide synthesis 

The remainder of the peptides synthesised (Table 12) were executed with the CEM Liberty-

Automated microwave peptide synthesiser and the following conditions: 

 Scale:  0.1 mmol, 

 resin:  Rink amide, 0.61 mmol.g-1, 

 deprotection:  20% piperidine/DMF, 

 coupling:  HBTU:DIEA (0.5:1), 

 coupling times:  All amino acids (except arginine) - 15 minutes no microwave followed by 

15 minutes microwave coupling.  Arginine amino acid residues - 45 minutes no microwave 

followed by 15 minutes microwave coupling. 

Cleavage of the peptides from the resin 

All peptides were synthesised on rink amide resin.  The peptides were cleaved from the resin using 

a solution of 95% TFA (v/v), 5% thioanisole (v/v), 5% phenol (v/v), 5% distilled water and 2.5% 

ethanedithiol (v/v) for two hours.  The cleavage solution containing the peptide was collected and 

the resin washed with TFA (20 mL.g-1 of resin).  The solvents of the combined filtrates were 

removed on a rotary evaporator to yield a thick, syrup-like substance, followed by the addition of 5 

mL TFA and cold diethyl ether to precipitate the peptide.  The white precipitate was then removed 

from the diethyl ether and TFA with a centrifuge (6000 RPM, 5 minutes), the supernatant discarded 

and the pellet redissolved in water and AcN.   

Deprotection of Cys(tBu) protecting group using mercury (II) acetate79 

An amount of 0.1 mmol of peptide was dissolved in 10 mL HPLC grade deoxygenated water.  The 

pH was adjusted to 4.0 with one drop dilute acetic acid.  The solution was blanketed with nitrogen.  

A mass of 0.1 g of mercury acetate was dissolved in 10 mL HPLC grade deoxygenated water and 

blanketed with nitrogen.  The peptide and the mercury acetate solutions were mixed together and 

reacted at room temperature for 90 minutes.  A volume of 0.5 mL of β-mercaptoethanol was added 

to the reaction mixture and heated at 45-50oC for 60 minutes. The reaction was allowed to continue 

for a further 60 minutes to ensure completion.  The mixture was vacuum filtered through a medium-

porosity sintered glass funnel containing celite® rinsed with deoxygenated water.  The filtrate was 

evaporated. The residue was suspended in HPLC-grade water and evaporation was repeated three 

times to ensure the complete removal of β-mercaptoethanol.  The product was analysed by LC-MS.  
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Peptide purification 

Analytical amounts of the peptides were dissolved in AcN:water and analyzed with LC-MS to 

determine the peptide purity.  For the successful peptides (Table 12), the purity was quite high due 

to the use of extended coupling time (15 minutes no microwave, 15 minutes microwave coupling).  

As a result, it was not necessary to purify the peptides using semi-preparative RP-HPLC.  Solid 

phase extraction (SPE) was carried out on the peptides to ensure the complete removal of the thiol 

present in the cleavage mixture as the thiol would interfere with the coupling of the peptides to the 

gold surface.  For SPE, a LC-18 cartridge was conditioned with 4 mL AcN and equilibrated with 3 

mL water prior to use.  Peptide stock solution (0.5 mL) was loaded and the flow-through collected 

and combined with a wash fraction of water (1 mL x 4).  The fractions containing the peptide were 

lyophilised and stored as the dry powder.   

Peptide characterization 

The purified peptides were characterised by high resolution mass spectrometry, in which a LC was 

connected to a Bruker Q-Tof, MicroTof-QII, fitted with an electrospray source.  The peptides were 

analysed with 1H NMR and IR spectrometry. 

7.1.3. Synthesis of cysteine methyl ester Coumarin 

Coumarin-3-carboxylic acid (0.00263 mol, 0.5 g) and oxalyl chloride (0.0263 mol, 2.23 mL) were 

added to a 100 mL round bottom flask in 10 mL DCM and stirred.  Since Coumarin-3-carboxylic 

acid is not soluble in DCM, a few drops of DMF were added to ensure complete solubilisation of 

the fluorophore.  The mixture was allowed to react for 24 hours under a stream of nitrogen.  After 

this time, CME (0.00789 mol, 1.35 g) and thriethylamine (0.013 mol, 1832.5 µL) were added to the 

solution and it was left to stir under nitrogen for 1 hour, after which, the solvent was removed using 

a high pressure vacuum pump.  The contents of the flask were dissolved in ethyl acetate and 

extracted with 10% HCl.  The product was then washed several times with brine and the ethyl 

acetate was removed under pressure.  The final product was purified using flash silica 

chromatography and characterised using 1H NMR.   
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7.2. GNP SYNTHESIS 

All reagents and solvents were purchased commercially and used unless otherwise stated without 

further purification.  HAuCl4 was sponsored by Rand Refinery South Africa.  Sodium citrate and 

NaBH4 were purchased from Merck.   

Unbound peptides were removed by ultrafiltration, using VivaSciences Vivaspin tubes (MWCO 

10,000) on a 1000 RPM Eppendorf Centrifuge 5415C and purification was performed three times 

against water.  UV-vis absorption spectra were recorded on a Perkin Elmer Lambda 35 UV-vis 

spectrophotometer.  Infrared spectra were obtained on a Perkin Elmer spectrum 100 instrument with 

an ATR attachment.  1H NMR spectra of samples were obtained in D2O using a Bruker Avance III 

400 MHZ NMR.  TEM measurements were made on a Joel CX100 transmission electron 

microscope at a voltage of 100 V.  The samples for TEM were prepared by placing a drop of the 

colloidal solution onto carbon-coated (300 Å) formvar films on copper grids.  Samples were dried 

at room temperature before images were obtained.  An Eppendorf Centrifuge 5415C was used prior 

to LC-MS analysis to remove traces of NPs after trypsin digestion.  The Agilent series 1100 LC-MS 

was used to determine breakdown products after trypsin digestion.    

7.2.1. Synthesis of citrate coated GNPs 

All glassware used in the following preparations was washed thoroughly in a bath of freshly 

prepared aqua regia (HNO3:HCl = 3:1), rinsed with distilled water several times and placed in the 

oven overnight prior to use.  A volume of 100 mL of a 1 mM aqueous solution of HAuCl4 was 

brought to a vigorous boil with constant stirring in a round bottom flask fitted with a reflux 

condenser.  At the time of boiling, a 10 mL of a 38.8 mM aqueous solution of sodium citrate was 

rapidly added to the vortex of the solution.  The previously yellow solution changed to wine red in a 

few seconds.  Boiling was continued for a further 10 minutes after which the heating mantle was 

removed and the solution was stirred for a further 30 minutes.  Once the solution had cooled to 

room temperature it was stored in a dark glass bottle in a refrigerator.  The size of the GNPs were 

verified by TEM analysis with an average size of 15 nm (average of about 300 particles).  The 

surface plasmon resonance band of the NP solution at ~520 nm (depending on extent of 

aggregation) was determined with UV-vis spectrophotometry.  The particle concentration was 5.5 x 

10-7 M according to Beers law using a molar absorbtivity of 2.7 x 108 M-1cm-1 at 520 nm (Equation 

2).141 
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𝐀 = ∑𝐜𝐋 

𝐜 =
𝐀

∑𝐋
 

Where A=1.48 

∑ = 𝟐. 𝟕𝒙𝟏𝟎𝟖 M-1cm-1 

L = 1 cm 

𝐜 =
𝟏. 𝟒𝟖

𝟐. 𝟕𝐱𝟏𝟎𝟖 𝐌−𝟏𝐜𝐦−𝟏𝐱 𝟏 𝐜𝐦
 

𝐜 = 𝟓. 𝟓𝐱𝟏𝟎−𝟗 M 

Equation 2 

7.2.1.1. Attachment of peptides to sodium citrate stabilised GNPs 

Under vigorous stirring, 10 µL of 10 mM aqueous peptide solution was added to 10 mL of a 5 nM 

aqueous GNPs solution.  On addition of the peptide to the original red NP solution, the solution 

turned light blue with a visible black precipitate.  The stirring was continued for 24 hours.  Excess 

sodium citrate and unreacted peptide were removed from solution by repeated cycles of high-speed 

centrifugation and redispersion was attempted in water.  Attachment of the following peptide 

sequences was attempted in various ratios:  CKCoum, CMECoum, CGAFKGGCoum, 

CKAFKRKCoum C(KAFKRK)3 and C(KAFKRK)3Coum.  The products were characterised using 

UV-vis spectrophotometry, fluorescence spectrophotomery, ATR-FTIR spectrometry and 1H NMR. 

7.2.2. Synthesis of NPs using the sodium borohydride reduction method 

All glassware used in the following preparations was washed thoroughly in a bath of freshly 

prepared aqua regia (HNO3:HCl = 3:1), rinsed several times with distilled water and placed in the 

oven overnight prior to use.  To 3 mL of a 0.02 mmol aqueous solution of HAuCl4, 1 mL of a 0.02-

0.12 mmolp aqueous solution of peptide (various peptides were attached to the GNPs as shown in 

                                                 

p The amount of thiol was varied in order to determine the amount of thiol that yielded the desired GNP size as shown 
in Section 4.3.8.  The number of moles selected was 0.02 mmol. 
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Table 13, page 117) was added and the yellow solution stirred for 20 minutes.  The reduction of 

gold was carried out by the dropwise addition of 0.5 mL of 0.2 mmol aqueous solution of ice-

chilled NaBH4.  The original yellow solution rapidly turned red/purple/black (depending on the 

peptide used, refer to Table 7 (page 58).  The mixture was left for 24 hours, after which the solution 

was loaded into Vivaspin centrifuge tubes, centrifuged for an hour and washed in triplicate with 

water to ensure the complete removal of unreacted peptides.  The peptide capped GNPs were then 

redissolved in double distilled water, lyophilised and stored as the dry powder. 
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7.2.2.1. Characterization of sodium borohydride reduced GNPs 

The functionalised GNPs were characterised with 1H NMR, IR and UV-vis spectroscopy.  TEM 

images of the GNPs were taken to determine the shape and size of the particles.  The concentration 

of the functionalised GNPs was calculated using Equation 3 to Equation 5.40   

𝐍 =  
𝛑

𝟔

𝛒𝐃𝟑

𝐌
= 𝟑𝟎. 𝟖𝟗𝟔𝐃𝟑 

Equation 3 

Where:   D  =  The average core diameters of the particles in nm, 

 N         =  The average number of gold atoms for each type of nanosphere, 

 ρ          =  The density for fcc gold (19.3 g.cm-1), 

 M  =  Atomic weight of gold (197 g.mol-1). 

𝐂 =
𝐍𝐓𝐨𝐭𝐚𝐥

𝐍𝐕𝐍𝐀
 

Equation 4 

Where: Ntotal  =  Total number of gold atoms, equivalent to the initial amount of gold salt added to 

the reaction solution. 

 N =  Average number of gold atoms per nanosphere, 

 V =  Volume of reaction solution in L, 

 Na =  Avagadro‟s number. 

𝐀 =  𝛆𝐂𝐥 

Equation 5 

Where: ε =  Molar absorbtivity, 

 C =  Concentration, 

 l =  Length of the cuvette. 
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7.2.2.2. Determination of critical coagulation concentrations 

To determine the CCC of CKAFKRKCoum, C(KAFKRK)3Coum and 50% C(KAFKRK)3:40% 

CKAFRKR:10% CKAFKRKCoum passivated gold particles, a series of tubes containing 500 µL of 

GNP solutions of the following concentrations were prepared: 

 0.23 nM of CKAFKRKCoum,  

 0.4 nM of C(KAFKRK)3Coum, 

 0.24 pM of 50% C(KAFKRK)3:40% CKAFRKR:10% CKAFKRKCoum.  

Increasing volumes of a 1.7 M NaCl stock solution were added to each sample.  Aggregation was 

assessed by monitoring changes in the characteristic GNP plasmon frequency (in the wavelength 

region of 400-700 nm).  NaCl aliquots were added until the plasmon band was no longer detectable.  

At that point, further aggregation was no longer visible and the plasmon band did not shift to further 

wavelengths.  The analyses were performed in triplicate for each GNP solution.  The analysis for 

each GNP composite was done twice.  

7.3. FLUORESCENCE STUDIES 

All reagents and solvents were purchased commercially and unless otherwise stated, used without 

further purification.  PBS buffer was from Lonza.  The emission spectra were recorded using a 

Perkin Elmer Precisely LS 55 spectrometer between 390-550 nm upon excitation using 7.5 nm/7.5 

nm (excitation/emission) slit widths.  Disposable poly(methyl methacrylate) cuvettes, obtained from 

PlastiBrand, were used instead of the conventional fluorescence quartz cuvettes, in order to prevent 

memory effects from previous analyses.   
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The solutions prepared for the fluorescence studies were freshly prepared in 1 x PBS buffer (pH 7).  

GNPs solutions were prepared by weighing out ~1 mg of the solid peptide capped GNP and 

dissolving the solid in 10 mL of 1 x PBS buffer.  The absorbance of the solution was measured and 

adjusted to the same value for a particular set of analyses.  The concentrations of the solutions were 

determined based on the absorbance.  Three GNPs solutions were analysed, namely Au-CKCoum, 

Au-CKAFKRKCoum and Au-C(KAFKRK)3Coum.  Three separate tests were performed:  

 A comparison of the fluorescence intensity of CKCoum, Au-CKAFKRKCoum and Au-

C(KAFKRK)3Coum to evaluate the effect the length of the peptide has on the fluorescence 

intensity, 

 a comparison of the fluorescence intensity of 0.1%, 1% and 10%, 

 a comparison of the fluorescence intensity of 10% CKAFKRKCoum:50% 

C(KAFKRK)3:40% CKAFKRK before and after trypsin/versene exposure.   

Prior to fluorescence studies the absorbance of each GNP composite was analysed and adjusted to a 

known value, thereby ensuring a constant concentration for each test.   

7.4. TRYPSIN/VERSENE DIGESTION 

All reagents and solvents were purchased commercially and used unless otherwise stated without 

further purification.  Trypsin/versene mixture (0.25% w/v trypsin) was from Lonza. 

Trypsin digests were carried out on the peptides and peptide capped GNPs.  The peptide 

C(KAFKRK)3 was analysed to establish the main fragment of cleavage.  A 500 mg.L-1 peptide 

solution was prepared in PBS solution.  A sterile Eppendorf tube was used for digestion, into which 

1.5 mL of the 500 mg.L-1 solution and 15 µL trypsin/versene was added, the solution was vortexed 

thoroughly, to ensure proper mixing, and placed in an incubator at 37oC overnight.  A blank 

solution containing only 1.5 mL of the peptide solution was also incubated in a separate Eppendorf 

tube and incubated under the same conditions.  After incubation, the mixtures were centrifuged 

(1000 RPM, five minutes), the supernatant removed and analysed using LC column 

chromatography connected to a Bruker Q-Tof, MicroTof-QII, fitted with an electrospray source.  

After the main cleavage peak was established, the functionalised GNP solutions were analysed to 

determine whether cleavage of the peptides attached to GNPs was possible.  The procedure was 

followed for the digestion of the GNPs as with the C(KAFKRK)3 peptide.  The concentration of the 

GNPs was calculated from the absorbance value at 520 nm (Equation 3, Equation 4 and Equation 5) 
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and it was ensured that all the concentrations be the same for comparison purposes.  Each digestion 

was done in triplicate.  

The Au-peptide composites analysed were: 

 100% Au-CKAFKRKCoum,  

 100% Au-C(KAFKRK)3Coum, 

 Au-[50% CKAFKRKCoum:50% C(KAFKRK)3], 

 Au-[50% C(KAFKRK)3:40% CKAFKRK:10% CKAFKRKCoum].   

 

The same generalised protocol was followed for all subsequent trypsin digestion experiments.   

7.4.1. Loading experiment 

As shown in section 5.6.4. (page 80) four functionalised GNP solutions were synthesised for 

loading experiments: 90%, 70%, 50% and 30%.  The GNP powders were dissolved in 5 mL PBS in 

a sterile centrifuge tube.  The concentrations were determined by measurement of absorbance at 520 

nm (Equation 3 to Equation 5) and were ensured to all be the same value.  Trypsin/versene was 

added to the GNP solutions (50 µL) and the solutions thoroughly vortexed.  as a control GNP 

solutions of the same concentrations were prepared without the addition of trypsin/versene.  The 

solutions were incubated for 3, 6, 9 and 24 hours.  After each time point, the solutions were 

analysed using LC connected to a Bruker Q-Tof, MicroTof-QII, fitted with an electrospray source 

to determine the cleavage products.  Triplicate analyses were carried out on each GNP solution. 

7.5. CELL CULLTURE 

7.5.1. Growth and maintenance of cell lines 

Cryopreserved A549 and MDBK cells were received from the Department of Biochemistry, 

University of KwaZulu-Natal (Westville campus).  The laminar flow cabinet comprised of a 

VividAir laminar hood.  All reagents and solvents were purchased commercially and unless 

otherwise stated used without further purification.  Heat-inactivated foetal calf serum (FCS) was 

from Invitrogen.  Dulbecco‟s minimal essential medium (DMEM) with 4.5 g.L-1 glucose and L-

glutamine, RPMI 1640 with 25 mM 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid 

(HEPES) and L-glutamine, penicillin/streptomycin (pen strep) mixture, trypsin/versene mixture 

(0.25% w/v trypsin) and PBS were purchased from Lonza.  Tissue culture apparatus was supplied 

by Griener Bio-one.  A CellTiter 96 non-radioactive cell proliferation kit was supplied by Promega.  



122 

Cryopreservation of cells was performed using Nalgene Cryo 1oC freezing container.  A Brightline 

haemocytometer from Hausser Scientific and a Nikon TMS inverted microscope was used for cell 

counting and analysis.  Absorbance readings for the MTT assay were performed using an 

Automated Microplate Reader (ELx800) from Bio-Tek Instruments. 

Aseptic techniquesq were used consistently when working with all cell types.  Prior to any cell 

culture work, the laminar flow was sterilized by UV radiation for an hour, followed by thorough 

ethanol swabbing.  FCS, DMEM, trypsin/versene, pen strep and PBS were removed from the 

refrigerator and placed in a sterilized water bath adjusted to 37oC.   

Reconstituted DMEM was prepared by supplementing DMEM with 2.5 M HEPES, to give a final 

concentration of 25 nM and pen strep mixture to give a final concentration of 0.1 mg.mL-1.  DMEM 

was also supplemented with 10% and 5% (v/v) heat-inactivated FCS for maintenance of the A549 

and MDBK cell lines respectively.   

Vials containing cells for reconstitution were removed from storage in liquid nitrogen and thawed 

by rapid agitation in a 37oC water bath for approximately five minutes.  Immediately upon thawing, 

vials were sterilised with 70% (v/v) ethanol, opened aseptically and the contents transferred to a 10 

mL corning centrifuge tube.  Cells were pelleted by low speed centrifugation and resuspended in 10 

mL fully constituted DMEM supplemented with either 5% or 10% FCS (depending on the cell 

type).  The cell suspension was equally distributed between the surface of two 75 cm2 flasks 

containing 10 mL fully constituted DMEM [supplemented with either 5% or 10% FCS (depending 

on the cell type)] to yield a 1:2 subculture or split.  Flasks were placed in a sterile incubator at a 

constant temperature of 37oC and allowed to reach confluencyr. 

Subsequent subculturing was carried out on cells near confluence.  Growth medium was decanted 

and cell monolayers were washed with 10 mL of PBS.  After removal of the washing solution, 1.5 

mL trypsin/versene solution was added to the monolayer until cells were observed (using an 

inverted microscope) to round up.  The trypsin/versene solution was immediately removed, the 

culture vessel tapped with the palm of the hand, and 10 mL fully constituted DMEM supplemented 

                                                 

q Aseptic or sterile techniques is the execution of tissue culture protocols without introducing microorganism 
contamination from the environment.  Such special precautions includes working in a laminar flow hood near a flame, 
swabbing all equipment with ethanol and using only autoclaved consumables.   
r Confluence refers to the extent to which cells cover the tissue culture flask.  100% confluency means that the entire 
surface of the tissue culture flask is completely occupied by cells (no more space for cells to grow). 
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with either 5% or 10% FCS (depending on the cell type) was added to the dislodged cells.  The cells 

were evenly dispersed by repeated aspiration (up to 15 times) into a sterile 5 mL disposable plastic 

pipette.  The cell suspension was again evenly distributed between two new 75 cm2 culture flasks 

containing fully constituted DMEM (supplemented with either 5% or 10% FCS depending on the 

cell type) to give a 1:2 dilution.  Flasks were placed in a sterile incubator at a constant temperature 

of 37oC and allowed to reach confluency. 

Cells of 80% confluency were cryopreserved.  Cultures were washed with PBS, trypsiniseds and 

removed from the flask surface (as described above).  The dislodged cells were evenly distributed in 

2 mL fully constituted DMEM supplemented with either 5% or 10% FCS (depending on the cell 

type) and transferred to a 2 mL corning cryogenic vial.  The cryoprotectant dimethylsulfoxide 

(DMSO) was added (10% v/v) and the cryogenic vials immediately subjected to cooling at a steady 

state of 1oC per minute to approximately -70oC.  Once completely frozen, vials were transferred to 

liquid nitrogen at -196oC.   

7.5.2. MTT assay 

Fully constituted RPMI 1640 was prepared by supplementing RPMI 1640 with 2.5 M HEPES, to 

give a final concentration of 25 nM, and pen strep mixture to give a final concentration of 0.1 

mg.mL-1.  Fully constituted RPMI 1640 supplemented with 10% FCS was used for the MTT assay 

and will be referred to as RPMI 1640 in the remainder of the dissertation.  

Cells were trypsinised as described in section 7.5.1. (page 121) and resuspended in RPMI 1640.  

Cell counts were carried out such that each 100 µL of cell solution contains 5 x 104 cells.  After 

counting, cells were plated into 96-well tissue culture plates and incubated at 37oC for six hours to 

ensure complete attachment of the cells to the tissue culture wells.   

The sensitivity of the cells to cadmium was elucidated to ensure the validity of the test protocol and 

technique.  Cadmium chloride samples (40 µL) at various concentrations (0.0017-0.044 M) were 

prepared in sterile water and RPMI 1640 media.  After six hours, the culture media was removed 

from each well of the culture plate and 40 µL of cadmium sample and 60 µL of fresh RPMI 1640 

added to each well.  The plates were sealed and incubated at 37oC for 42 hours.   

                                                 

s Trypsinization is the process whereby cells adhering to the surface of a tissue culture flask are lifted from the surface 
of the culture vessel using a trypsin/versene solution.   
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After the incubation period, cell viability was assessed as per the manufacturer‟s instructions, using 

the CellTiter 96 non-radioactive cell proliferation assay.  In short, 15 µL of the dye solution was 

added to each well and the plate incubated at 37oC for three hours, after which solubilisation 

solution (100 µL) was added to each well and the plate incubated for an hour at 37oC with gentle 

agitation.  The plate was then taken to the plate reader to measure absorbance. 

The absorbance maximum for formazan is at 570 nm and a wavelength of 690 nm was selected to 

reduce any background absorbance that could be the result of cell debris or fingerprints.  The plate 

reader was programmed to give a final reading derived by subtraction of an optical density (OD) 

reading at 570 nm from the reading at 690 nm, at various intervals, to determine the optimal time 

that is required for solubilisation of the formazan crystals.   

Cytotoxicity was calculated as follows: 

𝐌𝐓𝐓 𝐫𝐞𝐝𝐮𝐜𝐭𝐢𝐨𝐧 (% 𝐨𝐟 𝐜𝐨𝐧𝐭𝐫𝐨𝐥) =
𝐎𝐃 𝐨𝐟 𝐬𝐚𝐦𝐩𝐥𝐞

𝐎𝐃 𝐨𝐟 𝐜𝐨𝐧𝐭𝐫𝐨𝐥 
 𝐱 𝟏𝟎𝟎% 

𝐏𝐞𝐫𝐜𝐞𝐧𝐭 𝐂𝐲𝐭𝐨𝐭𝐨𝐱𝐢𝐜𝐢𝐭𝐲 = 𝟏𝟎𝟎 −𝐌𝐓𝐓 𝐫𝐞𝐝𝐮𝐜𝐭𝐢𝐨𝐧 

A total of four control assays were performed in order to ascertain an acceptable level of 

reproducibility between assays.   

To determine the sensitivity of the cells to GNPs, cells were prepared and plated at a cell density of 

5 x 104 cells per well.  Various concentrations of the GNPs (2.09 x 10-11 to 9.2 x 10-11 M) were 

prepared in water and RPMI 1640 and added to the respective wells to determine the cytotoxic 

effect on the MDBK and A549 cell lines.  The cell preparation and test protocol were as described 

previously.  The GNP assays were performed in triplicate. 
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7.6. TEM AND CONFOCAL MICROSCOPY 

TEM measurements were made on a Joel CX100 transmission electron microscope at a voltage of 

100 kV.  The sample for TEM was prepared by placing a drop of the colloidal solution onto carbon-

coated (300 Å) formvar films on copper grids.  Samples were dried at room temperature before 

images were obtained.  The microscope used was a Zeiss 710 (Germany) CFSM (excitation at 

wavelength 366 nm and emission at wavelength 460 nm).  24-well tissue culture plates used for 

TEM and confocal microscopy were from Nunc.  Circular thermanox cover slips for TEM use were 

obtained from Nunc and circular glass coverslips for confocal microscopy were from Lasec.   

7.6.1. TEM 

The plating protocol for TEM is similar to that described in section 7.5.2. (page 123), although, due 

to the difference in dimension of the 24-well tissue culture plate well and the 96-well tissue culture 

plate, 1.75 x 105 cells per 100 µL were used for the 24-well plate as opposed to the 5 x 104 cells per 

100 µL used in the 96-well plates.  A volume of 500 µL of cell solution was added to each well and 

was allowed to incubate at 37oC for 30 minutes to ensure attachment of cells to coverslip, after 

which 1 mL of RPMI 1640 media was added and allowed to incubate for a further six hours.  After 

incubation and media removal, 600 µL of fresh RPMI 1640 media was added along with 400 µL of 

GNP compound prepared in water and media (2.09 x 10-11 M) (as described in section 7.5.2., page 

123).  The plates were sealed and incubated for 42 hours at 37oC.  After the incubation period the 

media was removed from all the wells.  Sufficient gluteraldehyde was added to cover the entire cell 

surface and left for half an hour (primary fixation).  Phosphate buffer was used to wash the cells (3 

x 5 minutes), after which 0.5% osmium tetroxide was added and left to stand for one hour (postfix).  

The cells were washed with phosphate buffer (3 x 5 minutes) and the cells were dehydrated with 

increasing percentages of acetone:   

 2 x 5 minutes 30% acetone,  

 2 x 5 minutes 50% acetone,  

 2 x 5 minutes 70% acetone,  

 2 x 10 minutes 100% acetone. 

The next phase carried out was infiltration, whereby cells were covered by equal parts of resin and 

acetone and allowed to stand for four hours.  After four hours, the acetone:resin mixture was 

removed and the cells covered with whole resin and placed on a turn-table overnight.  The resin was 

polymerized - the specimen was orientated in a mould, covered with whole resin and placed in an 

oven for eight hours at 70oC.  Samples were then removed from the mould and sliced using a 
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Microtome to the appropriate sizes for subsequent TEM analyses.  The assay was carried out on 

three separate occasions to ensure complete reproducibility (three different 24-well plates were 

prepared).  On each occasion, three wells were embedded with resin and two images were captured 

per coverslip.   

7.6.2. Confocal microscopy 

The plating protocol for confocal analyses is similar to that described in section 7.5.2. (page 123) 

although, due to the difference in dimension of the 24-well tissue culture plate well and the 96-well 

tissue culture plate, 1.75 x 105 cells per 100 µL were used for the 24-well plate as opposed to the 5 

x 104 cells per 100 µL used in the 96-well plates.  A volume of 500 µL of cell solution was added to 

each well and was allowed to incubate at 37oC for 30 minutes to ensure attachment of cells to 

coverslip, after which 1 mL of RPMI 1640 media was added and allowed to incubate for a further 

six hours.  After incubation and media removal, 1000 µL of fresh RPMI 1640 media was added.  

The plates were then sealed and incubated for 42 hours at 37oC to ensure complete confluency of 

the cells.  

The following coverslips were prepared: 

 Three wells containing cells only (control one), 

 three wells containing cells and unfunctionalised GNPs (control two), 

 twelve wells containing cells and functionalised GNPs (2.09 x 10-11 M). 

Prior to analyses of the control slides the cells were washed three times with PBS.  The coverslip 

was mounted (cell side down) onto a clean glass microscope slide, covered with a thin glass slip 

and sealed with nail polish.  The sample slide was placed on the stage with the sample side down.   

Three wells containing functionalised GNPs were incubated for one minute, three hours, four hours, 

and 24 hours.  After the respective time periods, the cells were washed three times with PBS to 

ensure complete removal of free GNPs.  The coverslip was mounted (cell side down) onto a clean 

glass microscope slide, covered with a thin glass slip and sealed with nail polish.  The sample slide 

was placed on the stage with the sample side down.   

For each assay, three replicates were done (three coverslips were used).  Approximately five images 

were captured per coverslip to ensure a representative image was obtained.  Different areas of the 

coverslip were imaged to prevent the occurrence of bleaching of the fluorophore.  This prevented 

the introduction spurious artefacts that could be the result of handling.  An oil immersion was used 
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for the objective lens to increase the resolution of the microscope.  All parameters, such as pinhole 

and brightness, were held at a constant value throughout the testing.    
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APPENDIX 1:  CHARACTERIZATION OF PEPTIDES 

Basic MS was carried out on the peptides not involved in the final application (proof of concept). 

 GAFK 

 CGAFKGGCoum 

 CKCoum 

 CMECoum 

High-resolution MS was performed on all the peptides that were necessary for the use in the proof 

of concept. 

 CKAFKRK 

 CKAFKRKCoum 

 C(KAFKRK)3 

 C(KAFKRK)3Coum 
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Chromatograph 1:  LC-MS chromatograph of the peptide GAFK. 

 

Spectrum 3: Mass spectrum of GAFK peptide.  
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Chromatograph 2:  LC-MS chromatograph of the peptide CKAFKRK. 

 

Spectrum 4:  Mass spectrum of CKAFKRK peptide. 
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Spectrum 5:  High resolution mass spectrum of peptide CKAFKRK. 

 

Spectrum 6:  High resolution mass spectrum of peptide CKAFKRKCoum. 
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Spectrum 7:  Mass spectrum of C(KAFKRK)3Coum peptide. 

 

Spectrum 8:  High resolution mass spectrum of C(KAFKRK)3 peptide. 
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Chromatograph 3:  LC-MS chromatograph of the peptide CGAFKGGCoum. 

 

Spectrum 9:  Mass spectrum of the peptide CGAFKGGCoum. 
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Chromatograph 4:  LC-MS chromatograph of the peptide CKCoum. 

 

Spectrum 10:  Mass spectrum of CKCoum peptide. 
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9. APPENDIX 2:  CHARACTERIZATION OF GNPS 

IR and NMR spectroscopy were purely used as tool to verify the attachment of the ligands to the 

GNPs.  IR and NMR characterization of the neat capping ligands and peptides was thus performed 

to compare to the spectra of the capped GNPs.  The ligand/peptide capped GNP spectra are thus 

presented alongside their corresponding free ligand/peptide for ease of comparison. 
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Spectrum 11:  ATR-FTIR spectrum of CKCoum. 

 

Spectrum 12:  ATR-FTIR spectrum of Au-CKCoum. 
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Spectrum 13:  ATR-FTIR spectrum of CGAFKGGCoum. 

 

Spectrum 14:  ATR-FTIR spectrum of Au-CGAFKGGCoum. 
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Spectrum 15:  ATR-FTIR spectrum of C(KAFKRK)3Coum. 

 

Spectrum 16:  ATR-FTIR spectrum of Au-C(KAFKRK)3Coum. 
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Spectrum 17:  ATR-FTIR spectrum of CKAFKRKCoum. 

 

Spectrum 18:  ATR-FTIR spectrum of Au-CKAFKRKCoum. 
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Spectrum 19:  ATR-FTIR spectrum of Au-10% CKAFKRKCoum:40% CKAFKRK:50% 

C(KAFKRK)3. 
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Spectrum 20:  1H NMR spectrum of CMECoum in CD3OD.  

 

Spectrum 21:  1H NMR spectrum of Au-CMECoum in CD3OD. 



152 

 

Spectrum 22:  1H NMR spectrum of CKCoum in D2O. 

 

Spectrum 23:  1H NMR spectrum of Au-CKCoum in D2O. 
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Spectrum 24:  1H NMR spectrum of CGAFKGGCoum in D2O. 

 

Spectrum 25:  1H NMR spectrum of in Au-CGAFKGGCoum in D2O. 
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Spectrum 26: 1H NMR spectrum of C(KAFKRK)3Coum in D2O. 

 

Spectrum 27:  1H NMR spectrum of Au-C(KAFKRK)3Coum in D2O. 
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Spectrum 28:  1H NMR spectrum of Au-50% C(KAFKRK)3:40% CKAFKRK:10% 

CKAFKRKCoum in D2O. 
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10. APPENDIX 3:  ENZYMATIC DEGRADATION 
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Spectrum 29:  Mass spectrum of Au-C(KAFKRK)3 in PBS prior to enzymatic degradation.   

 

Spectrum 30:  Mass spectrum of Au-C(KAFKRK)3 in PBS after enzymatic degradation.   
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Spectrum 31: Mass spectrum of Au-CKAFKRKCoum:C(KAFKRK)3 (50:50) in PBS prior to 

enzymatic degradation.   

 

Spectrum 32:  Mass spectrum of Au-CKAFKRKCoum:C(KAFKRK)3 (50:50) in PBS after 

enzymatic degradation.   
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11. SUPPLEMENTARY MATERIAL 

A CD accompanying this dissertation contains the following:  

Text of Chapters 1-6 and Appendix 1.   


