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ABSTRACT 

Food and nutrition insecurities are regarded as one of the main challenges in the Sub-Saharan 

region. While substantial progress has been made to address food and nutrition challenges, this 

progress has varied across the region and over time in response to climate change hazards. 

Agriculture has been used as the main driver to improve food and nutrition security; however, 

productivity in these marginalised communities remains low. African leafy vegetables (ALVs) 

provide an unprecedented opportunity to ensure food security, lessen poverty and diversify 

farming systems while improving human health and increasing income. Crop modelling can 

generate information about the crop's growth, development, water, and nutritional needs. The 

primary objectives of this study were (i) to assess the growth and productivity of selected ALVs 

(amaranth (Amaranth spp), cowpea (Vigna unguiculata), sweet potato (Ipomoea batatas) and 

wild mustard (Sinapis arvensis)) under different management practices, and (ii) assess water 

productivity (WP) and nutritional water productivity (NWP) of the selected ALVs. Desktop-

based research was conducted to achieve the mentioned objectives. Here, information on the 

studied crops' agronomy secondary data was gathered through a careful literature search. This 

secondary information was then used to model growth and productivity and quantify nutritional 

water productivity at different management practices. The Agricultural Production systems 

SImulator (APSIM) was used to simulate growth and productivities under different 

management scenarios of planting date, plant density, fertiliser application and irrigation. We 

used the soil and climatic data from the University of KwaZulu-Natal's research farm (Ukulinga 

Research Farm) situated in Pietermaritzburg, South Africa (29°37′S; 30°16′E; 775 m a.s.l.), to 

calibrate the model. All data analysis was done using descriptive statistical analysis (R 

software). All mean values were subjected to a t-test set at p<0.05 significance. The results 

showed that depending on crop species. Different management practices can be relevant to 

achieve optimum growth and productivity for various purposes. The investigated ALVs were 

found to have high nutrient content. Compared to one another, amaranth was more nutrient-

dense and wild mustard the least dense crop. On the other hand, NWP was comparatively high 

on both amaranth and cowpea. 

Keywords: African leafy vegetables, ALVs, crop modelling, APSIM, food and nutrient 

security 
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CHAPTER 1 

1.1 Thesis outline  

The study's objective was addressed by assessing selected African leafy vegetables and 

modelling experiments for 15 years (2004 -2019). The study was then represented in a paper 

format that consists of interlinked chapters. 

Chapter 2 is a literature review that outlines the status of underutilized crops in South Africa. 

This chapter addresses the first objective by tackling agronomy issues through a literature 

search of relevant articles and modelling. Its revises the state, distribution, and agronomic 

production of selected underutilized crops in South Africa. APSIM model overview as a 

favourable crop simulation model (CSM) was also included in the thesis. 

The second objective addressed in Chapter 3, where the quantification of yield and water use 

of selected ALVs under different management options, was done through a series of modelling 

simulations. The assumption is that improved fertility will result in improved nutrition density, 

thus improved nutritional yield. Water use also plays a critical role in promoting the uptake of 

nutrients, thus contributing to improved yield.  

Chapter 4 addresses the third objective, whereby the range of nutrient content of selected 

ALVs was determined using secondary data. This exercise aims to quantify nutrients. To find 

out what nutrients these crops are rich in and in what density (quantity). The search was done 

using Web of Science and Scopus as key search engines, and the results on micro-and macro-

nutrients recorded in the form of a table. The measurement units were standardised to g/100 g 

for macronutrients and mg/ 100g for micro-grams for an accurate analysis. Units for energy 

and vitamin A was left as Kcal and mg RE/100 g, respectively.  

Chapter 5 addresses objective number 4, where nutritional water productivity of selected 

ALVs under different management practices is determined using modelling outputs and 

through a series of calculations where water-use and water use efficiency is determined. This 

chapter is directly connected to chapters two and three because both chapters will use chapter 

3 results to analyse and conclude the nutritional water productivity.   
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GENERAL INTRODUCTION AND OVERVIEW 

Unacceptable slow and uneven progress of reducing hunger and malnutrition remain despite 

the commitments made by many African governments to end food nutrition insecurity at the 

International Conference on Nutrition (ICN) in 1992 (Jan van Rensburg et al., 2009). No 

country in sub-Saharan Africa (SSA) has met a minimum feeding of 200 kg person -1 year-1 of 

vegetables and fruits (Nyathi et al., 2018c). South Africa is generally known as being food and 

nutrition secure at a national level. Still, about 30% of its population is considered food and 

nutrition insecure at a household level. About 4 million people residing in marginal 

communities suffer from malnutrition in over-nutrition and undernutrition (Govender et al., 

2017). A phenomenon is known as "hidden hunger" is a state of chronic lack of micronutrients 

such as Fe and Zn and vitamins, A and C, mainly on the increase in rural and urban areas 

(Pretorius, 2014). Agriculture can improve food and nutrition security in many marginalised 

communities; however, productivity in many marginalised communities remains low and 

unsustainable (Govender et al., 2017). Apart from socio-cultural and economic factors, 

literature has shown several biophysical factors affecting crop productivity (Shackleton and 

Shackleton, 2012).  

According to Snapp et al. (2010), marginal agricultural systems across SSA are characterised 

by low agro-biodiversity, making many cropping systems vulnerable to climate associated 

risks. The more significant proportion of agriculture (approximately 90%) is resource-

constrained, subsistence-based and done under rainfed conditions and are susceptible to climate 

variability and change (Chimonyo et al., 2016). Pearce (2011) noted that many cropping 

systems are modelled on green revolution type systems, making them unsustainable for a 

resource-poor farmer. Also, Padulosi et al. (2013) state that the promotion of these systems has 

resulted in food and nutrition insecurity increased vulnerability to climate risks such as drought. 

There is a need to transform the current cropping system to address the challenges mentioned 

above holistically. According to Baldermann et al. (2016) and Mabhaudhi et al. (2019), to 

improve resilience to climate risk while increasing food and nutritional security of farming 

systems, incorporating neglected and underutilised crops into marginalised systems can be 

useful.  

African leafy vegetables (ALVs) form a part of neglected and underutilised crop species 

(NUS). These are native to a given area in geological time (Raihana et al., 2015). They can also 

be crops introduced to that country and became naturalised overtime (NRC, 2006; DAFF, 
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2009). South Africa holds the highest diversity of underutilised crops (Senyolo et al., 2018). In 

general, ALVs are a vital source of genetic resources. They represent a significant part of 

agricultural biodiversity with a probability of subsidising climate change adaptation and food 

security (Chivenge et al., 2015). Research has shown that several ALVs are naturally adapted 

to low levels of water stress. They are drought-tolerant and can be cultivated in various climatic 

regions, including arid and semi-arid areas (Pretorius, 2014; Mabhaudhi et al., 2017a). DAFF 

(2009) also indicated that ALVs are also tolerant to common pests and diseases. These crop 

species are known to be nutrient-dense and have been recommended for use to improve food 

and nutrition security (Maseko et al., 2017). Although these crops have great potential, they 

are primarily under-exploited due to limited information regarding their agronomy, and the 

subsequent effect on nutritional value. As such, to improve their usage and utilization, there 

must be co-ordinated tactics on the local region to enhance the availability of information about 

their agronomy, and how it will affect nutritional value (Baldermann et al., 2016).  

With the current climate change and diet preferences, ALVs are becoming an even more 

important source for climate change adaptation and ensuring food and nutrition security 

(Mayes et al., 2012). The limited knowledge of indigenous crops' production, mostly water and 

nutrient requirements, has become a significant hold-up on their promotion as choice crops 

(Nyadanu and Lowor, 2014) for food and nutrition security in marginal communities. There is 

a need to generate information or data about growth, development, and agronomic 

requirements (Šimůnek and Hopmans, 2009; Nyathi et al., 2018c). Classical experimentation 

that involves field experiments is often time-consuming and costly and confounded by risk. 

Crop simulation models are used to generate large amounts of information in a short period 

(Keating et al., 2003). Crop simulation models are a simple representation of crop's growth and 

developmental processes that can help solve problems related to crops by generating valid 

recommendations (Chakrabarti, 2013). Models combine scientific knowledge from several 

disciplines such as plant breeding, soil science, and plant pathology (Whisler et al., 1986; 

Raymundo et al., 2014). They are used to increase agricultural research and management, 

assimilate knowledge gained from years of experiments and improve agronomic efficiency and 

environmental quality for ALVs. The data generated can help provide new insights into a 

resource used to make recommendations to improve the productivity of ALVs and increase 

their contributions to food and nutrition security in marginalized rural communities (FAO, 

2009; Pretorius, 2014).  
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Project objectives  

1. Assessing relevant literature on African leafy vegetables (ALVs), modelling and 

agronomy  

2. To quantify yield and water use of selected ALVs under different management options 

3. To determine the nutrient content of selected ALVs  

4. To quantify nutritional water productivity of selected ALVs under different 

management strategies 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The literature review outlines the status of underutilized leafy vegetables in South Africa. Their 

potential in contributing to food and nutrient security, especial in marginalized rural 

communities. The mechanism for water and nutrient uptake is revealed together with nutrient 

stress on plant growth and development. The distribution and agronomy of these crops are also 

briefly discussed. The main objective is to assess whether underutilized leafy vegetables have 

been modelled and, if so, to what extent. It is hypothesised that improving the information on 

the agronomy of ALVs can result in improved production, which will increase the availability 

of nutrient-dense crops for enhanced food and nutrition security. Crop modelling can be 

discussed briefly as a useful tool for generating information for underutilized leafy vegetables. 

This review focuses on amaranths (Amaranth spp), cowpea (Vigna unguiculata), sweet potato 

(Ipomoea batatas) and wild mustard (Brassica juncea L.) as some of the popular food plant 

crops for subsistence farmers in South Africa and the sub-Saharan African region. These crops' 

selection was credited to their short growth period, low growth input requirements, 

morphological structure, and similarities in their phenology. 

2.2 Methodology 

This chapter used a mixed-method approach that combines results from qualitative and 

quantitative research to review the literature on the current status of ALVs within South Africa. 

During the literature search, more focus was directed to South African articles. The literature 

was identified mainly from Scopus and Google Scholar, and peer-reviewed journal articles, 

reports were used as the main information sources. The key search words used were "crop 

modelling", "simulation", "APSIM", "water and nitrogen", "water", "nutrients", and "nitrogen", 

"indigenous leafy vegetables", "neglected underutilised crops", "traditional crops", "orphan 

crops". The literature search was limited to abstract, title, keywords, and key terms were used. 

We also used grey literature, such as web pages, thesis, magazine articles, reports, and briefs, 

deemed relevant. This was a benefit since it extended the search afar from the literature that is 

often not available to an audience outside research.  
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2.3 Results  

2.3.1 State of indigenous leafy vegetable in South Africa 

There are more than 100 different leafy vegetable plants known in South Africa (Rose, 1983). 

These include C. olitorius (jute mallow), Amaranthus cruentus (pigweed), Citrullus lanatus 

(bitter melon), Vigna unguiculata (cowpea), Cleome gynandra (spider plant), and Cucurbita 

spp. (pumpkin). Terms such as imifino (isiZulu, isiXhosa) and morogo (Sesotho, isiPedi) are 

common names used to describe these leafy vegetables. Already by these terms, one can tell 

that these are underutilized crops. African Leafy Vegetables (ALVs) used as leafy vegetables 

vary widely in their origin in this region. Verily their role in food consumption patterns of 

South African households is highly variable and may depend on factors such as time of the 

year, the status of poverty, distance availability of markets selling fresh produce, household 

income and level of urbanisation (Jansen Van Rensburg et al., 2007; Mabhaudhi et al., 2017a). 

Most of these leafy vegetables are grown and harvested by farmers in summer; therefore, 

seasonal change is another major constrains on the availability of these vegetables.  

The consumption of ALVs has decreased while exotic vegetables have increased Njume et al., 

2014. The utilization of ALVs is mainly in smallholder communities where local people collect 

them from the wild or cultivated them in farms' marginal fields. In very few cases, the seeds of 

selected species are broadcasted and cultivated in main fields (Maseko et al., 2018). Most 

popular leafy vegetables such as amaranth and spider flower grow naturally in the cultivated 

land. They are considered weeds by commercial farmers, where else they are an alternative 

source of food by smallholder farmers (Maseko et al., 2018; Njume et al., 2014). In smallholder 

cropping systems, women usually do most of the gathering, cultivation and harvesting. When 

these crops are emerging from cultivated fields, women seem to separate them from other non-

edible weeds according to their usefulness.  

In South Africa, ALVs in even more challenging because ALVs are mostly sold as dried 

products. Their selling is based on street vendors, and even though they have a well-recognized 

quality, they are not easily found in South African supermarkets. Their unavailability is due to 

a lack of sound postharvest storage systems for these crops. This, in turn, contributes to their 

low consumption, mostly in urban areas, as most fresh products become perishable (Jan van 

Rensburg et al., 2009; Maseko et al., 2018). Different amaranth species are reportedly sold in 

the Midlands areas of KwaZulu-Natal after being weeds from gardens and fields. However, 

this crop species' leading marketing was insignificant as it was mostly sold for petty cash. 
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Although fresh leaves produce was available at the Pietermaritzburg municipal, they were 

strictly sold to the public by selected greengrocers of this city (Jan van Rensburg et al., 2009). 

Researchers have shown an increasing interest in indigenous leafy vegetables over the years in 

South Africa. For the longest time, policymakers have ignored the research of indigenous green 

leafy vegetables; however, this is slowly changing over the years. The Vegetables and 

Ornamental Plants (VOPI) and The Agricultural Research Council (ARC) are key role players 

in the research and training of wild vegetables in South Africa (Maseko et al., 2018). The 

growing interest in leafy vegetable crops, even at the policy level, has been shown to contradict 

their negative reputation and image, especially among young consumers in the urbanized areas 

of South Africa. This challenge is due to the association of their utilization with poverty and 

low class. There is low utilization of these crops also amongst the youth of South Africa. They 

do not have enough knowledge about indigenous vegetables' collection as they tend to mix 

them with poisonous species (Jansen Van Rensburg et al., 2007; Maseko et al., 2018). 

Research on ALVs has existed in the country since the early 1990s. Since then, presentations, 

publications, conferences, posters, and workshops have continually created awareness in the 

scientific community. Many efforts are on the promotion of these crops are made continuously; 

for example, ARC-VOPI is currently working on the rise of different African leafy vegetables. 

South African universities continue to study these crops', consequently contributing to the 

increased capacity and knowledge of indigenous vegetables in the country (Maseko et al., 

2018). However, the current funding that supports these studies is not enough to profoundly 

impact as the government and private sectors primarily drive the long-term partnership. 

Moreover, these sectors are suspected to be more favourable on major crops than these minor 

crop of South Africa (Maseko et al., 2018).  

Having the population of South Africa likely to increase by 65.5 million in the year 2050, the 

proportion of people suffering from hunger and malnutrition is expected to increase. An 

increase of more than 50% in food production is required to alleviate this challenge. Focusing 

agriculture on neglected, underutilized species may be a possible solution to improve 

production (Mabhaudhi et al., 2017b, 2018). Because ALVs are underutilized, they create an 

excellent opportunity to develop new value chains supporting food security and rural 

agricultural development. According to Mabhaudhi et al. (2017b), the development of a new 

value chain may require more research, including crop improvement, plant breeding, agro-

processing, production and marketing. For contribution to closing gaps within the research 
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value chain of these crops, these must be implemented. Also, indigenous leafy vegetables could 

be fully recognized and enhanced by analysing both the upstream and downstream information 

along the value chain. Value chains are identified as undeveloped and unsustainable in the 

context of rural agricultural development. It is also imperative to identify actors and significant 

role players to translate indigenous crops to commodity crops successfully. 

2.3.2 Contribution of indigenous vegetables to the human diet 

The attention given to the sustainability of food and diets systems has highlighted the need for 

special attention to the role of biodiversity. Previous research has shown gradually increasing 

evidence that small changes in food cultivated on a larger scale can significantly impact dietary 

choices (Powell et al., 2015). According to Chadwick et al. (2013) and Powell et al. (2015), it 

is essential to realise that knowledge alone is not enough for the human diet. However, eating 

behaviour is the product of rational decision-making and conscious process and many 

nutritional interventions designed to improve the quality of the diet depend on education 

(Powell et al., 2015). Therefore, the rising promotion of ALVs will help people shift their 

attention towards a healthier way of living, thus improving their diets. Food choices and diet 

can have a massive impact on greenhouse gas emissions and the associated energy required to 

provide human nutrition. The shifting of peoples food choices to plant-based diets can reduce 

greenhouse gas emissions (Shekhawat et al., 2009). 

African leafy vegetables are a good source of micronutrients such as vitamins, iron and other 

nutrients (Lewu and Mavengahama, 2010; Table 2.1:). Some indigenous crops, such as cowpea 

and sweet potato, produce nutrient-dense leaves (Suarta, 2018). However, since their intrinsic 

and nutritional value is often not acknowledged by development experts and researchers, the 

decline in their diversity of grown vegetables, production and use continue. Because most 

households in Africa's low regions depend mainly on these ALV, this trend can cause a 

negative impact on mainstreaming these crops into current diets.  The small-scale farmers will 

also be affected as their income decreases due to decreased production.  
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Table 2.1: Nutritional value (based on raw 100 g) of selected neglected underutilized vegetable crops (Mabhaudhi et al., 2019).  

Crop name Species 

name 

Energy 

(kcal) 

Protein 

(g) 

Fat 

(g) 

Fibre 

(g) 

CHO 

(g) 

Ca 

(mg) 

P 

(mg) 

Na 

(mg) 

Mg 

(mg) 

Cu 

(mg) 

Zn 

(mg) 

Fe 

(mg) 

Amaranthus  Amaranthus 

spp 

49.00 4.00 0.20 2.87 7.86 1686.00 487.00 347.00 82.00 3.00 56.0 25.00 

Nightshade  (Solanaceae 

spp) 

55.00 3.00 0.60 2.42 9.03 2067.00 478.00 431.00 3.00 6.00 23.00 85.00 

Blackjack  (Bidens 

pilosa) 

39.00 5.00 0.60 2.92 3.72 1354.00 504.00 290.00 21.00 10.00 22.00 17.00 

Mallow  (Corchorus 

olitorius) 

392.00 20.90 5.20 45.61 55.50 1760.00 490.00 801.20 15.50 11.30 12.40 53.30 

Wild 

mustard  

(Sinapis 

arvensis) 

26.00 2.70 0.20 1.10 4.90 0 0 0 0 0 0 0 

Bottle gourd  (Lagenaria 

siceraria) 

14.00 0.62 0.02 0.50 3.39 26.00 13.00 2.00 0.09 0.03 0.70 0.20 

Chinese 

Cabbage  

(Brassica 

rapa subsp. 

Pekinensis) 

21.00 9.00 1.00 1.00 22.00 152.00 32.00 29.00 42.00 0.07 0.30 1.40 

Sun–berry  (Solanum 

retroflexum) 

38.00 5.80 0.80 1.40 5.00 442.00 75.00 0 0 0 0 4.20 

Wild 

watermelon  

(Citrullus 

Lanatus L.) 

296.00 3.50 0.40 3.80 13.10 212.00 119.00 9.00 59.00 0.20 0.74 6.40 
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2.3.3 Distribution and agronomic production of underutilized crops 

Indigenous leafy vegetable crops are a readily available local food source for poverty 

mitigation for people in rural areas. They originated in Africa or have remained in the continent 

for so long that they have become indigenized. Indigenous crops are one of the two subsets of 

crops describing traditional African vegetable crops classified based on their derivation (Jansen 

Van Rensburg et al., 2007). Whether they originate or introduced to the continent. However, 

very few leafy vegetables are utilized; thus, only ecology, distribution and local names of these 

major ones are documented. In South Africa, there is a high diversity of leafy vegetable species, 

most of which are impartially localized (Padulosi et al., 1997; Ebert, 2014). The main focus of 

the review looked at four ALVs, namely, amaranth, cowpea, sweet potato, and wild mustard, 

for this review. Research has been developed around ALVs, and through various support 

activities, they have been targeted for commercialization. Amaranth and wild mustard are 

common ALVs, while cowpea is less common and used mainly for grain and livestock forage, 

and sweet potato is primarily produced for the tuber. Leaves for both cowpea and sweet potato 

are edible and can be used as a leafy vegetable. 

2.3.3.1 Amaranth (Amaranthus spp) 

Amaranthus is from a widespread family of diverse ALV's, Amarabhaceae. Amaranthus spp 

comprises about sixty species, most of which are weeds (Njume et al., 2014). Meaning that out 

of the 100 identified ALVs species, 60% of them comes from this family. The cultivated 

amaranth species include amaranth lividus, Amaranth viridis, Amaranth gracilis, Amaranth 

tricolour and Amaranth gangeticus (Andini et al., 2013). Different amaranth species are used 

as forage, leafy vegetables, food grain, and ornamentals. They are C4 crops and grows 

optimally under warm conditions, and they appear as erect plants. They are short-lived 

perennials and can grow up to 2 m in height. Matured amaranth crop produces tiny, gleamy 

seeds that are dark brown. The habit of amaranth rages from spreading herbaceous plant to 

erect. On the leaves of some species of amaranth, there is are unique markings. The flowers 

may be auxiliary or terminal. 

The name "amaranth' is taken from Greek and means everlasting or non-wilting, consistent at 

surviving in harsh environmental conditions (Njume et al., 2014).  This crop can be cultivated 

in semi-arid and arid regions and is considered a promising crop in marginal areas as the world 

faces an ever-growing climate crisis (Andini et al., 2013). However, a continued dry spell will 

lead to flowering and reduce crop yield (Bello, 2013). Water requirement for amaranth will 
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differ depending on soil type, the growth stage of a crop, and weather condition. Approximately 

1.54 litres of water is required (Ogunlela and Isiaka, 2017).In the past few years, Amaranthus 

has been used as an alternative crop and served as a derivation of stabilization of ecosystems, 

livelihoods, and new markets without replacing mainstream crops.  

The leaves of this crop are very high in vitamins, proteins and other minerals, which places 

Amaranthus as a potential crop grown as a source of these nutrients under vulnerable 

communities of sub-Saharan Africa. Amaranth leaves are very rich in vitamins, minerals and 

proteins. Amaranth is also a rich source of unsaturated fatty acids, dietary fibre, lipids, and 

several other minerals. To add, the protein content on amaranth weedy is equivalent to World 

Health Organisation standards.   

2.3.3.2 Cowpea (Vigna unguiculata) 

Cowpea originates from the leguminous family, Fabaceae, which represents the most 

significant family of cultivated following the grass family (Poaceae) from the economic 

perspective. In approximates, its accounts for 27% of the world's crop production (Ntatsi et al., 

2018). Cowpea is an annual, herbaceous and pulse crop and can be planted during warm 

seasons, having a growth type of either climbing, trailing or erect (Ntatsi et al., 2018). Cowpea 

has tri-foliate leaves (Ntatsi et al., 2018). There are different kinds of varieties of cowpea that 

are either determinate or indeterminate (Ntatsi et al., 2018). The prostrate and spreading types 

are the ones that are mostly used as leafy vegetables(Ntatsi et al., 2018). The seeds are kidney-

shaped to oblong and may differ in colour from black, dark red to white, and the seed often has 

a black colour, "the eye" at the hilum.  

Cowpea performs best in arid and semi-arid conditions and may produce in areas with an 

optimum rainfall of 400 to 700 mm per year (Jan van Rensburg et al., 2009). Cowpea plants 

are drought tolerant and heat-loving. This is due to their long taproot that can reach a maximum 

rooting depth of approximately 2.4 m during eight weeks after planting. This character attests 

beneficial in the occurrence of nutrient mining and water stress (Chivenge et al., 2015). Seeds 

of cowpea are very nutritious, with a high protein and carbohydrates content, 24.8% and 63.6%, 

respectively. Other nutrients such as fat and fibre are reasonably high in cowpea seeds as well. 

Besides this valuable contribution of cowpea grains, leaves are also a significant source of 

nutrients for human consumption (Kabas et al., 2007). Six tonnes of fresh leaf cowpea can feed 

up to 800 children of 4-y years of age, providing them with 7.75 mg of iron each week for one 

year.  Like most other legumes, cowpea has low glycemic index nutrients, which helps prevent 
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coronary heart disease and contributes to the reduction of diabetes and inflammation. 

Therefore, nutrient-rich cowpea leaves can strengthen immunity and enrich the blood of human 

consuming it by contributing to offsetting protein-calorie deficiencies (Enyiukwu et al., 2018).  

Both cowpea leaves and the seeds can be consumed in cases where utilising both grain legume 

and as a leafy vegetable can help address hunger in rural areas, especially during the periods 

before the next harvest. Therefore, this way can significantly help reduce food and nutrition 

security by providing proteins (grains), minerals and vitamins (leaves) (Sebetha et al., 2016). 

In Africa, cowpea is a common crop used for human consumption and animal feed (Ntatsi et 

al., 2018). In the past, studies have shown that the leaves of cowpea contain a high 

concentration of carbohydrates and proteins, which is more abundant in older leaves compared 

to the seeds (Sebetha et al., 2016).   

2.3.3.3 Sweet potato (Ipomoea batatas) 

Sweet potato is a tuber crop amongst the earliest crops domesticated by humans after the 

introduction of cereal crops, and it originated in East African, Central and South America. This 

crop remains one of the underutilized vegetables in South Africa. Together with the yams, 

cassava and aroids, sweet potatoes are essential crops in developing countries (Chivenge et al., 

2015). These tuberous vegetable plants are believed to have been introduced by the early 

Portuguese explores to Africa in the 16th century and then distributed to the entire continent. It 

is famously known as a "poor man's crop", which may be one reason for its current status as an 

underutilized vegetable crop (Motsa et al., 2015). Sweet potato is grown mainly for its tuberous 

roots in colour ranging from white, purple, light brown, and light orange. Sweet potato is a 

perennial crop but primarily grown as an annual crop. The tubers produced by this plant may 

be extended and starchy and vary in size depending on the variety. It has adventitious roots 

located within the top 25 cm of the soil. The stems are thin creeping veins, approximately 4 m 

long. Leaves may be purple or green, heart-shaped, palmately veined and borne on elongated 

stalks. Flowers are pale violet or white, tubular-shaped, and withdrawn from the plant. One to 

four seeded pods form from the rounded fruits. 

Sweet potato is adapted to sizeable environmental plasticity and low input systems, which 

allows it to be grown at any time of the year, especially in areas where they experience short 

or no frost (Chivenge et al., 2015). In the developing countries of Sub-Saharan regions, there 

has been an increase in the cultivation and production of sweet potato during the last decade 

(Raymundo et al., 2014). In South Africa, sweet potato is cultivated throughout the tropical 
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regions, including KwaZulu-Natal, and its consumption is continuously increasing regardless 

of its low production. In this region, sweet potato is regarded as the most important root crop 

due to its flexibility (i.e. can be planted and harvested during any season of the year, mostly in 

frost-free areas (Oke and Workeneh, 2013). 

It is assumed that the most significant contribution of sweet potato to nutrient security is 

derived from the potato varieties' orange flesh. These contain substantial amounts of β-

carotene, a precursor for vitamin A, thus contributing to food security's nutritional dimensions 

(Raymundo et al., 2014). All parts of the sweet potato can be consumed, and the storage roots 

are eaten roasted, boiled, or baked. Some people may even prefer to eat them raw. Sweet potato 

leaves can also be consumed as a green leafy vegetable. Previous reports from china have 

regarded this crop as a highly nutritive crop. The roots of the crop provide almost a balanced 

diet for an average human body. Compared to other starchy crops such as maize and rice, sweet 

potato contains a significant amount of carbohydrates (Motsa et al., 2015). Although it might 

have a slightly lower protein content than potatoes, it contains almost all the micro and 

macronutrients such as vitamins. According to the food security perspective, the crop is an 

excellent crop due to its ability to triumph, where the common staple crops fail (Zhang et al., 

2018).  

2.3.3.4 Wild Mustard (Sinapis arvensis) 

Wild mustard is an annual plant from the Brassicaceae (Mustard) family (Franzke et al., 2011). 

Different wild mustard types can be distinctly differentiated by the patch or reddish ring at the 

stems' junction. The upper branch consists of a cluster of flowers at the upper limb terminate, 

which vary from pale yellow to yellow and are similar to canola flowers. These flowers are 

like other flowers of plants in the mustard family, except that they are somewhat larger. They 

bloom from late spring, for 1-2 months, to winter. The petals fall as the flowers mature, and so 

showing a narrow seedpod. Seedpods are erect but do not drop downwards.  Seeds are usually 

brown or dark brown. The plant can be spread by reseeding itself and has a taproot system. 

The wild mustard seedling has cordate cotyledons, which may be with or without hairs 

depending on the type of mustard (yellow or brown) (Government of Saskatchewan, 2017). 

Adult leaves differ from light to dark green and deeply lobed. Brown mustard has the upper 

narrow upper leaves. The leaves of this type terminate higher up on the petiole and do not cling 

to the stem. While the leaves of the yellow mustard also close higher up but on the leaf stalk. 

The seeds produced by the brown mustard plant are smooth and hairless; they are contained in 
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a long and conical beaked pod. They are reddish-brown to dark brown and are spherical with a 

diameter of about 2 mm. On the other hand, Yellow mustard type produces light creamy yellow 

to yellow seeds spherical with a diameter of 2 mm to 3 mm (Berglund, 2007; Government of 

Saskatchewan, 2017). 

This plant may grow under mesic fertile loam or clay-soils under full sun or warm conditions, 

and it can tolerate other conditions different from this due to its adaptable characteristics as it 

is considered weedy. Wild mustard can be cultivated under diverse environmental regions. 

Wild mustard establishes very quickly, and this is a good growth characteristic that helps it 

avoid water stress, especially in water-scarce environments. This plant is rich in many essential 

elements such as iron, calcium, and other nutrients necessary for good health (Chivenge et al., 

2015). Nonetheless, just like any other underutilized African leafy vegetable, information on 

the crop's husbandry is limited as it is locked up in the IK systems. 

 

 

Figure 2.1: Selected underutilized leafy vegetables in South Africa (a. Amaranth (Amaranthus 

spp.), b. Cowpea (Vigna unguiculata), c. Sweet potato (Ipomoea batatas), and d. Wild mustard 

(Sinapis arvensis).
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2.3.4 Mechanism for water and nutrients uptake in plants 

2.3.4.1 Effect of water stress on crop growth and production 

South Africa is considered a dry country (Donnenfeld et al., 2018).. Out of 193 countries and 

is ranked as the 29th driest country (Donnenfeld et al., 2018). It is expected to worsen as the 

country's population increases, and there is a continued increase in the number of industries. 

There is currently overexploitation of more than 60% of water resources in this country, and 

only one-third of the country's main rivers being in good condition (Donnenfeld et al., 2018). 

This has a negative impact because the amount of available freshwater decreased due to the 

industries' water pollution and increased water consumption. There is already a high demand 

for water than supply in many catchments (Africa, 2019).  Water use efficiency (the proportion 

of water used for the plant's metabolism to water used by the plant through the atmosphere, 

transpiration) is vital in agriculture, especially since this is the largest single water user sector 

(Doorenbos and Pruitt, 1977).  

Crop water requirement is defined as the amount of water needed to meet water lost through 

evapotranspiration (ET) of a disease-free crop growing under favourable environmental 

conditions. This is usually affected by crop characteristics, climate, and the effect of local 

conditions and practices in agriculture (Doorenbos and Pruitt, 1977). Associated with crop 

requirement or crop water use are the interaction, the root's ability to absorb water from the 

soil, and the leaves' capability to release the absorbed water to the atmosphere. The uptake of 

water from the ground depends mostly on the rooting depth distribution, soil moisture and 

rooting density distribution (Chimonyo et al., 2015). However, since water is the main 

challenge in South African agricultural production systems, there is a need to look at other 

efficient ways to produce food for the growing nation. This, in turn, forces farmers to shift and 

use marginal land for their production. For optimal growth and high yield production, irrigation 

is required. However, due to poor management, water wastage often occurs due to over-

irrigation (Cooper et al., 2008). 

2.3.4.2 Water as a limiting resource and effects 

Plants are regularly exposed to a few biotic and abiotic stresses. Water stress or drought is one 

of the significant adverse types of stress as it can trigger a lot of other plant responses such as 

changes in growth rates, cellular metabolism, and yield. To understand plant-resistant 

mechanisms used by plants in water-limiting conditions, molecular and biochemical responses 

must be first understood (Ahmad et al., 2016).   
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Germination and stand establishment are the first processes affected during the growth stage 

when there is a water deficit. It has been proved in many studies that the reduction in 

photosynthetic activity under water limiting conditions is due to both stomatal and non-

stomatal mechanisms. Stomata is an entry and exit point for exchanging gases, which includes 

water vapor and CO2. As the first step, plants will respond to water stress by closing the stomata, 

which reduces transpiration and photosynthesis. By closing the stomata, plants prevent the 

absorbability of CO2. This decreases carbon assimilation in support of photorespiration. It is 

also well understood that there is a good correlation between stomatal conductance and leaf 

water potential under water stress conditions (Ahmad et al., 2016). The root-to leaf signalling 

occurs due to water stress and is promoted by soil drying via the transpiration stream, 

provoking stomatal closure. On the other hand, the non-stomatal mechanism may include 

changes in the production of chlorophyll, structural and functional changes in the chloroplast 

and distraction in the processes of accumulation, transportation, and dispersal of assimilates 

(Aroca et al., 2012). As a result, the lack of water leads to a decline in yield and total biomass.  

Plants may also share some physiological and biochemical responses signalling water stress 

condition. Crop water stress will occur due to imbalances between leaf transpiration and root 

water uptake. Depending on specific plant types and genotypes, some will undergo a 

modification of decrease in leaf expansion, root water uptake, premature leaf senescence, 

change in pigment structures, impaired photosynthesis, and other gas exchange parameters. 

Several studies have shown that stomatal or non-stomatal mechanisms mainly cause a 

disturbance in photosynthesis. Gas exchanges and water evaporates through the stomata. Thus, 

the first response to water stress and results in a decreased rate of photosynthesis. Other 

physiological responses such as reduced chlorophyll content, accumulation of osmolytes, rate 

of transpiration, and stomatal resistance can also be affected during this stage. (Aroca et al., 

2012; Ahmad et al., 2016).  

To manage water stress, farmers have been encouraged to adopt management practices that 

minimised competition for the resource. It is important to optimize planting dates and plant 

populations 

2.3.4.3 Effect of soil nutrient stress on plant growth and productivity 

Apart from the previous section's challenge, low soil fertility is also significant restrictions on 

plant growth, development, and yield in many warm regions. Enhancement of soil fertility by 

using fertilisers is usually the solution (Bengough, 2012). Sustainability of the soil can be 
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possible if the removed nutrients are replaced by adding some more nutrients to the ground, for 

example, by using fertilisers. Moreover, efficient crop production is required to avoid losses, 

and it is attained through the optimal use of plant nutrients, nu and 

The amount of nutrients needed to meet a specific yield target is known as nutrients 

requirement. Nitrogen is one of the essential elements needed for the plant (Jan van Rensburg 

et al., 2009). There are several ways in which plants use to acquire nitrogen. These approaches 

include nitrogen fixation, carnivory, mycorrhizal association or through roots. During 

unfavourable conditions, the mentioned approaches are disturbed, or they fail. In the field, 

different environmental conditions exist (Suarta, 2018). Factors such as run-off, erosion, 

leaching, and volatilization exist, and they result in the nitrogen concentration being varied and 

decreased dramatically. Therefore, plants must develop survival strategies during this limiting 

time (Kant et al., 2011).  

To reduce nitrogen losses at this stage, a plant may slow down new leaves, which requires even 

more nitrogen. During the vegetative stage of development, leaves are the sink for nitrogen, 

meaning they depend on other parts of the plant, such as roots as their source. In hot, dry 

conditions, plants may undergo regulatory mechanisms to regulate Nitrogen (Jan van Rensburg 

et al., 2009; Kant et al., 2011). This remobilization of nitrogen may occur during senescence 

as well, and it allows plants to derive up to 80% of grain nitrogen from the leaves. Plants can 

use this nitrogen as an additive to the newly formed leaves. Even more efficient mechanisms 

have been developed by the plants where tied-up nitrogen bodies are released from source 

tissues via proteas activities. The plate goes through senescence during water limiting 

conditions. About 80% of leaf nitrogen is stored in the chloroplast, mostly in the form of 

protein. This nitrogen pool is significant for remobilisation and can be acquired through protein 

degradation.  

Nitrogen remobilization and storage are vital for plants. Remobilization is mostly essential for 

seed nitrogen content, seed production and completion of the plant lifecycle. The content of 

nitrogen in the seed can be further used to predict germination efficiency and young seedlings 

survival. The stored nitrogen in trunks during water limiting conditions can be remobilized and 

used during more favourable times where there is sufficient water for crop growth (Kant et al., 

2011; Ntatsi et al., 2018).  
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2.3.5 Nutritional Water Productivity (NWP) 

The linking of crop production, water use in agriculture, and nutrient concentration results in 

an index known as Nutritional water productivity, NWP (Chibarabada et al., 2017; Mabhaudhi 

et al., 2016). An evolving concept which closely relates plants water productivity to human 

nutrition. Where crop production is concerned, water requirement, water use, water 

productivity, water use and water use efficiency are all concepts that refer to economic yield 

per unit of water depleted. In other words, it is the ratio of crop yield to water used. This can 

be represented as kg crop m3 water (Perry et al., 2009).  According to Renault and Wallender 

(2000) and Wenhold (2009), NWP quantifies nutrition per volume of water used (nutritional 

units per m-3).  

One of the significant challenges faced by sub-Saharan Africa includes water scarcity which if 

a complex issue that is often associated with climate change and variability. The population 

pressure also adds to this issue in terms of malnutrition and food insecurity. Resource-poor 

households in rural areas are most affected in South Africa, lacking micronutrients (iron and 

zinc and vitamin A (Nyathi et al., 2018a). Part of the research efforts to contribute to assessing 

this challenge, traditional leafy vegetable has been deemed as having the potential to reduce 

both food and nutrition security in the resource-poor households (Nyathi et al., 2018c; Nyathi, 

2019). 

 As previously noted by Chibarabada (2017), Mabhaudhi (2016a) and Nyathi (2019), most 

water and nutrients agronomic research often produce higher yields with minimum irrigation 

as much as possible. However, crop production, nutritional and water requirements are three 

interlinking aspects in agriculture that cannot be assessed separately. Therefore, to successfully 

study food and nutrition security, an index known as nutritional water productivity (NWP) has 

been developed by Renault and Wallender (2000). This index accounts for water use, crop 

production, food access and human nutrition and can be represented in an equation as [NWP = 

(Yield or biomass/actual evapotranspiration) × nutritional content of a product)]. NWP = 

[(above ground edible biomass/ET)] × NC (Nyathi, 2019). NWP data may provide useful 

information regarding crop productivity, crop water use, nutritional productivity, and human 

nutritional requirement of ALVs. There is still a challenge in the availability of information 

(Maseko et al., 2018).  

Most studies only focus on one part of the crop (either above-ground biomass or storage) when 

evaluating NWP. Nonetheless, this might not be beneficial in crops such as sweet potato and 
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cowpea, where both parts of the crop are consumed and since the above-ground biomass can 

be divided into both plant parts (Nyathi, 2019). Nyathi (2019) was the first to have studied the 

NWP in ten selected ALVs, and it was interesting to note that these vegetable crops were more 

productive than alien crops in some of the lacking nutrients in South Africa, namely,  Fe-NWP 

and Zn-NWP. However, to back up these claims, more research needs to be conducted as most 

recent studies still opt for subjective information to back up their conclusion (Chivenge et al., 

2015; Maseko et al., 2018; Mangham et al., 2013). 
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Table 2.2:The potential yield for amaranth (Amaranthus spp.), cowpea (Vigna unguiculata), sweet potato (Ipomoea batatas) and Wild mustard 

(Sinapis arvensis) at optimum environmental conditions.  

 Temperature 

range (°C) 

Plant 

density 

(Plants/m2) 

Fertiliser 

Requirements (kg/ha) 

Rainfall 

requirement 

(mm) 

 

Potential yield 

(t/ha) 

References 

N P K 

Amaranth 18 - 34 - 45 - 100 22 – 34 26 1000 40 t/ha leaves 

1 t/ha grain 

(DAFF, 2013), (Love, 

2014), (Ojo et al., 2014), 

(Sullivan and Specialist, 

2003) 

Cowpea 20 -35 7 - 30 10 - 40 40 4 300 – 2000 1 t/ha of seed 

and 

4 t/ha of hay 

DAFF (2013), Farmers 

weekly (2016), (Gomez 

Carlos, 2004), (Ngalamu, 

2015) Smith, (2017),  

Sweet potato 20 - 29 0.4 – 3.33 100 

 

90 200 450 - 2340 

 

 

- Brodie, (2018), (DAFF, 

2011), (Gupta, 2011), 

Famers weekly, (2010) 

Wild 

mustard 

29 11 - 43 56 – 90 30 -40 - - 112 t/ha (Berglund, 2007), 

(Government of 

Saskatchewan, 2017), 

(Wysocki and Corp, 

2002), 
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2.3.6 Brief overview of crop modelling 

A model is a simplified representation of a process or system (Chakrabarti, 2013). Modelling 

assumes that any given system can be represented using a mathematical formula or statements 

(Keating et al., 2003). In agriculture, crop models are used as a simple representation of a crop 

to incorporate data from field experiments. They provide a structure that promotes the 

integration of different disciplines, uses system analysis to solve problems, and offers dynamic, 

quantitative tools that help analyse the complexity of cropping systems (IPGRI, 2002).  

Different types of crop models having a certain degree of sophistication in simulating the real 

world exists. These can either be explanatory or predictive models explaining the changes in 

the yield of a chosen crop (Chakrabarti, 2013; Gaydon et al., 2017).  

These categories vary from superficial experimental relationships to complex mechanistic 

models (Whisler et al., 1986). Examples may include Agricultural Production Systems 

sIMulator (APSIM), AquaCrop, Modelling European Agriculture with Climate Change for 

Food Security (MACSUR), Decision Support System for Agrotechnology Transfer (DSSAT), 

etc. Many models such as APSIM, AquaCrop and DSSAT have been used and has allowed 

neglected underutilized crops but not necessarily ALVs to be calibrated for specific cultivars 

under different environments (Mayes et al., 2012; Bello and Walker, 2017; Gaydon et al., 

2017). However, among these models, APSIM has not been a popular choice. APSIM can 

integrate many different models derived in fragmented research efforts. Therefore, promoting 

APSIM as the model of choice for underutilised crops' parameterisation is ideal (Holzworth et 

al., 2014).   In this paper, the focus was directed to APSIM as the model of choice. 

Due to a vast range of differences in the environment, field experiments on crops of interest 

under different climatic, soil and water availability conditions are time-consuming and tough, 

but it is very costly. For this reason, the development of crop models has become a very handful 

and an acceptable way of carrying out research based on the data collected in many different 

experiments carried out in that same area (Grove and Monaghan, 2018). Over the years to the 

present time, research has shown that the current food systems are becoming a massive threat 

to biodiversity, water resources availability and land use due to climate change. Previous 

research has proven that global warming leading to climate change alters the rainfall and 

temperature patterns, increasing the occurrence and gravity of extreme weather events (Erdem 

et al., 2010). The re-introduction and promotion of underutilized leafy vegetable crops have 

come across as one of the best solutions to provide nutritious foods while resulting in stable 
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food systems in these significantly changing weather conditions. The most convenient, less 

costly, and quick approach to this is the use of crop models. These can be used as critical tools 

for generating data that will help contribute to the decision support, knowledge exchange and 

better understanding of crops interaction with the environment (Nyathi, 2019). 

Several crop models have been established over the past few years, including the Agricultural 

Production System Simulator model (APSIM, the Australian crop model developed by various 

organisations. As much as these crop models have been testes for multiple crops such as rice, 

maize and wheat and growing conditions, underutilized leafy vegetables are mostly excluded. 

Only a few cases of these crops have been simulated. These crops play a crucial role in 

providing essential nutrients such as vitamins and micronutrients; thus, this gap in the research 

space can be concluded as lacking. Raymundo et al. (2014) showed that only two models 

(MADHURAM and SPOTCOMS) had been developed for sweet potato. Although there has 

been some modelling work done on the selected leafy vegetables, amaranth, cowpea, sweet 

potato and wild mustard, as mentioned before. This work usually includes other crops 

(intercropping) and other aspects. According to these findings, no work has focused on the 

management practices of these crops. 

Underutilized leafy vegetables must be added to the model database to achieve sustainable-

food systems that produce healthy foods (Nyathi et al., 2018c). In this study, the APSIM model 

was chosen to simulate nutrients and water to improve the management practice of selected 

underutilized leafy vegetable. This model was selected among many other models because of 

its ability to "Plug in" to specify any logical or required modules and "plug out" to define any 

modules that are no longer needed (Holzworth et al., 2014). To add, APSIM can be used to 

simulate more than 20 crops and forests, and the outputs can be linked with geographical 

information systems (GIS) and used for spatial studies. APSIM also regarded as a dynamic 

daily time-step model that can simulate soil water, nitrogen, carbon and phosphorus 

interactions and dynamics within management systems driven by climatic data, maximum and 

minimum soil temperature rainfall, and solar radiation (Gaydon et al., 2017).  This is a huge 

advantage to use this model for the simulation of ALV since different factors affecting growth, 

such as water and nutrients, can be modelled, and outputs can be linked to make sense of plant 

growth.  
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Table 2.3: Simulations on amaranth (Amaranhus spp.), cowpea (Vigna unguiculata), sweet potato (Ipomoea batatas) and wild mustard (Sinapis 

arvensis). 

Crop  Model Tittle/description  Location Year  References  

Amaranthus AquaCrop model Characterization and modelling of water use by 

amaranthus and pearl millet 

South Africa – 

north-west 

2013 (Bello, 2013) 

AquaCrop model Assessment of nutritional water productivity 

and improvement strategies for traditional 

vegetables in South Africa 

South Africa 2019 (Nyathi, 2019) 

AquaCrop model Evaluating the AquaCrop model for simulating 

the production of amaranthus 

(Amaranthus cruentus) a leafy vegetable, 

under irrigation and rainfed conditions 

South Africa 2017 (Bello and Walker, 2017) 

AquaCrop model Calibration and validation of the AquaCrop 

model for repeatedly harvested leafy 

vegetables grown under different irrigation 

regimes 

South Africa 2018 (Nyathi et al., 2018c) 

Cowpea APSIM Modelling the potential impact of climate 

change on sorghum and cowpea production in 

semi-arid areas of Kenya using the agricultural 

production systems simulator (APSIM) 

Kenya  2010 (Onwonga, R.N., Mbuvi, 

J.P., Kironchi, G. & 

Githinji, 2010) 
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CROPGRO Simulation of growth and development of 

irrigated cowpea in Piauí State by CROPGRO 

model 

Brazil 2002  

INTERCOM A simulation study of the competitive ability of 

erect, semi‐erect and prostrate cowpea (Vigna 

unguiculata) genotypes 

California 2007 (Wang et al., 2007) 

MACROS.CSM Cowpea Production in Rice-Based Cropping 

Systems of 

the Philippines Extrapolation by Simulation 

The 

Philippines and 

Southeast Asia 

1993 (Timsina and Garrity, 

1993) 

GROWIT Simulation of Yield Distributions in Millet-

Cowpea Intercropping  

 1991 (Lowenberg-DeBoer et 

al., 1991) 

APSIM Simulating yield and water use of sorghum–

cowpea intercrop using APSIM 

South Africa 2016 (Chimonyo et al., 2016a) 

APSIM Assessment of sorghum–cowpea intercrop 

system under water-limited conditions using a 

decision support tool 

South Africa 2016 (Chimonyo et al., 2016b) 

Sweet 

potato 

MADHURAM Madhuram: A Simulation Model for Sweet 

Potato Growth 

India 2008  
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SPOTCOMS A Model to Simulate Sweet Potato Growth India  2008  

AquaCrop model Parameterizing the FAO AquaCrop Model for 

Rainfed and Irrigated Field-Grown Sweet 

Potato 

South Africa  2015 (Rankine et al., 2015) 

SPOTCOMS Evaluation of a crop growth model for sweet 

potato over a set of agro-climatic conditions in 

India 

India 2019 (Sunitha et al., 2019) 

AquaCrop model Simulating the yield response of orange-

fleshed sweet potato 'isondlo' to water stress 

using the FAO Aquacrop model 

South Africa  2013 (Beletse et al., 2013) 

MP-MAS Simulating soil fertility and poverty dynamics 

in Uganda: A bio-economic multi-agent 

systems approach 

Uganda 2007 (Schreinemachers et al., 

2007) 

Plastochron model 

(PLASTO) and the Wang 

and Wengel (WE) model 

Estimating cardinal temperatures and 

modelling the vegetative development of sweet 

potato 

Brazil  2013 (Erpen et al., 2013) 

Wild 

mustard  

MATLAB model Modelling population dynamics of Sinapis 

arvensis in organically grown spring wheat 

production systems 

USA 2013 (Kolb and Gallandt, 

2013) 
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APSIM (Agricultural Production Systems sIMulator) is an agricultural modelling framework 

that can combine different models obtained in fractured research efforts. In this way, research 

from various fields can be conveyed to other areas' satisfaction or discipline. APSIM can also 

be used to compare different models or sub-models at a common platform, and this is a "plug-

in-pull-out" approach (Le Gal et al., 2010). The user configures the model by choosing a set of 

sub-models from a soil, crop, and utility modules suite. The environment of APSIM is a useful 

tool for analysing all the farm systems, such as crop rotation, pasture sequence, and tactical 

planning. Using APSIM, users can improve their understanding of the impact of soil types, 

climate change and management of crop production (Keating et al., 2003). This is a powerful 

tool for investigating agronomic adaptations such as cultivar types, fertiliser/ irrigation 

management and changes in planting dates. Daily climatic data, soil properties, cultivar 

characteristics, and agronomic management are key inputs required to run the model. Advances 

in knowledge of soil properties and plant growth are needed for ease of use by trained 

agronomists.  

APSIM is a more suitable and efficient tool for predicting growth and yield under diverse 

climatic scenarios. Therefore, it can mitigate future problems related to extreme climatic 

change (Ahmed and Fayyaz-Ul-Hassana, 2011). The adjusting of the model's parameters, 

calibration, and validation of its application for building the reliability of analytical models is 

very important. Therefore, it is essential to ensure that the model is calibrated and validated for 

the given crop. 

2.3.7 Parameterizing and calibration of the APSIM model 

Parameterization is a three-step process where local inputs parameters are added to the model. 

APSIM model requires several inputs to simulate the crop within the system: i) daily weather 

information (Tmax, Tmin, rainfall, and solar radiation), ii) soil information (soil type, water 

and nutrient status), iii) crop and genotype-specific coefficient (Gaydon et al., 2017). Soil 

parameters in the APSIM model are used to adequately account for and reflect all the 

differences among locations (Ma et al., 2011). At first, the dominant soil series can be 

acknowledged for each site, and data can be obtained from the literature. For each soil series, 

actual soil data such as texture, pH and organic carbon can be obtained from suitable soil survey 

sites on the internet (Ojeda et al., 2017). Some parameters may not be directly measured due 

to the high value of uncertainty that they may poses. Included in these parameters are some soil 

parameters, crop varietal coefficients. In this process of adjustment or 'calibration', the duration 
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in which one wants to run data and treatments can be chosen by the user (Gaydon et al., 2017). 

This process is known as calibration.  

2.3.8 Validation of APSIM model 

Model validation is known as the real test of evaluating the accuracy of the model. Here, the 

calibrated parameters against independent factors and treatments. It is a method done to check 

the validity of the model following parameterization and calibration (Micheni et al., 2004). 

Some complex models often have issues of running unvalidated data, leading to the model 

generating the right answers for the wrong reasons (Gaydon et al., 2012). Therefore, resulting 

in misleading predictions during successive model usage. The APSIM model's testing is done 

using experimental data from similar studies (Micheni et al., 2004). 

As mentioned before, a wide range of crop models with different levels of difficulty are 

currently available, and some have been used to model neglected underutilised crops. An 

overview of 70 models has been provided by (Di Paola et al., 2016) with a note that this list is 

not complete, meaning the number of available crop models is very high and still growing. For 

APSIM, simulation is configured by requiring different modules to be used in the simulation 

and data needed for that module. Typically, these are soil, crop, meteorological modules, and 

management module can be specified by using simple language rules to define calculations, 

sets of rules and messages to modules used at the simulation time. 

There is very little evidence showing the application and uptake of models developed for 

underutilized crops in general. Although AQUACROP has seemingly been the model of 

choice, there is no follow-up research on model calibration for underutilized crops (Amisigo et 

al., 2015). The unavailability of ALVs data under its default crop folder can further testify to 

this. Let alone APSIM, which has never been used to model neglected underutilized vegetable 

crops. It is encouraged that there must be an extended focus on underutilized crops for future 

purposes when it comes to modelling. They have a huge potential to improve food and nutrient 

security (Nyathi et al., 2018c). 

2.3.9 APSIM testing  

General model testing involves a comparison of simulations with observed data. Many APSIM 

users have done this under different conditions. In the following table are some of the crucial 

reports that APSIM model test results. 
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2.2 Conclusion  

There is a wide variety of indigenous leafy vegetable crops found in South Africa.  These are 

most popular in poor- rural communities and can be grown for health benefits as well. The 

remarkable potential in contributing to food security is why more attention in crop production 

must shift towards developing and popularising these crops, especially in these significantly 

changing environmental conditions. It was observed through literature that only a countable 

number of studies had been done in terms of modelling. There are very few models that are 

designed to model some of these indigenous vegetables. This is yet another gap that still needs 

to be addressed in crop production for improved development and production in these crops.



 

29 

 

CHAPTER 3 

Agronomic management of selected African leafy vegetables for improved Yield, 

Water Use and Water productivity 

3.1 Introduction 

Food and nutrient security remain a challenge in South Africa. At a national level, the country 

is regarded as food secure, but people still experience some constraints to safe, sufficient, and 

nutritious food at the household level. Contributing to this challenge of food and nutrient 

insecurities is the lack of land and resources to produce food. Often, the people that have less 

to access to food come from a poor community, and as much as they may have access to land 

for farming, they still lack resources such as water and fertilizer (Van Jaarsveld et al., 2014). 

On the other hand, some of those who have access to food might still fail to access nutritious 

foods. 

South Africa is known as one of the world's driest countries (Water, 2011; Donnenfeld et al., 

2018). More than 80 % (98 million ha) of South African land surface is defined as arid or semi-

arid, and out of that 80  %, only 17% (16.8 million ha) is arable (Hardy et al., 2011). Out of the 

22 % of land classified as having high potential for cultivation, less than 10% is irrigated, and 

the rest is rain-fed. Only 2.5 million ha of the arable land is rain-fed agriculture; the rest of the 

land is abandoned (Hardy et al., 2011). The limited amount of arable land and variable rainfall 

contributes largely to low crop production, thus failing to meet millions of households' food 

requirements. Therefore, it is crucial to implement a sustainable agricultural system given these 

unfavourable and water limiting conditions. One of the coping strategies for this is using 

African leafy vegetables (ALVs) (Hardy et al., 2011).  

African leafy vegetables are best known for their high nutrition potential. Their management 

requires low water and fertiliser inputs (Senyolo et al., 2018).  They can thrive under limiting 

conditions and are regarded as potential crops to contribute to food and nutrient security 

(Mavengahama et al., 2013). However, just like any other crop, they eventually give in to 

unfavourable conditions such as water stress (Mabhaudhi et al., 2018). To encourage their 

growth, one would have to understand what best management practices these ALVs require. 

However, based on the available literature on the agronomy of these ALVs, it is difficult to 

draw conclusions and recommend best management practices for enhanced yields, water use, 

and water productivity of ALVs. As part of the solution, besides long field experiments, crop 

modelling provides an accurate, easy, and less time-consuming solution to assess the full 
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potential of ALVS for their best agronomic management practices for better growth and 

productivity. In this chapter, APSIM was used to determine best management practices for 

improved yields, water use, and water productivity of selected ALVs (amaranth, cowpea, sweet 

potato, and wild mustard). This model singled out because of its ability of "Plug in" to specify 

any logical or required modules and "Plug out" to define any modules that are no longer needed. 

This was very advantageous for the studied ALVs as they have never been calibrated for 

specific cultivar and under different environments. 

3.2 Materials and methods 

The Agricultural Production Systems Simulator (APSIM) model was calibrated using data 

from Ukulinga Research Farm is the University of KwaZulu-Natal’s research farm situated in 

Pietermaritzburg, South Africa (29°37′S; 30°16′E; 775 m a.s.l.). Ukulinga research farm has a 

mean annual rainfall of about 790 mm, received between October to April. During the summer, 

the average temperature goes up to 26.5 °C (Chimonyo et al., 2016a). According to the profile 

pit description, the Research Farm soils are dominantly clay-loam textures having 0.6 adequate 

rooting depth. Using the FAO soil classification system, Ukulinga soils can be further 

categorised as chromic luvisols. These are shallow brown acidic soils having low to moderate 

fertility.  

The soil water movement and availability are affected by the soil physical properties 

(Chimonyo et al., 2016b; c). The initial C: N ratio calculated from the results of the soil 

chemical properties. On these results, carbon (%) for the top 0.2 m layer was 2.3%, while N 

was 0.3%. Four African Leafy Vegetables were simulated for growth and productivity. These 

included amaranth, cowpea, sweet potato, and wild mustard. Each crop had 15 samples for 

each treatment modelled for each growing season in a year (from 2014 – 2019). Yield (fresh 

biomass) and evapotranspiration observed as variables from the outputs of the simulation were 

then used to calculate water productivity for each crop. The growth of crops was also studied 

for different planting date, planting density, fertiliser application and irrigation scenarios. 

3.2.1 Brief description of APSIM model 

 The Agricultural Production SIMulator (APSIM) is a point scale and daily time-step model 

that allows modules (sub-models) to be associated with simulating agricultural systems over a 

single homogenous field over a certain period (Ahmed and Fayyaz-Ul-Hassana, 2011; 

Chimonyo et al., 2016a). Numerous modules grouped as soil, plant, environment, and 
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management are included in the APSIM. This model mimics the mechanistic growth of the 

crops, a series of management options with regards to cropping systems (e.g. mono-cropping, 

intercropping, and rotation), and soil processes (additions, losses, transformations (changes), 

and translocation or movement (Ahmed and Fayyaz-Ul-Hassana, 2011). The APSIM model 

simulates the growth and development of crops in a daily time-step on an area basis, per square 

meter, not a single plant (Robertson and Lilley, 2016). The inputs required by the APSIM 

module include weather, soil, crop data and management options (Ojeda et al., 2017). 

The growth and development of this module respond to soil water supply, soil nitrogen, and 

climate. It then returns the information on the uptake of nitrogen and soil water to its SoilN and 

SoilWat modules each day for these systems' reset (Keating et al., 2003). Evaporation and 

runoff rate were calculated using the information on the soil cover provided to the SoilWat 

module (Ahmed and Fayyaz-Ul-Hassana, 2011). The plant modules simulate a crops' vital 

physiological processes with a diverse range of produce from early to focus crops such as 

sorghum to various crop modules available for plants such as canola, cowpea, peanut, etc. The 

crop species on the APSIM module currently uses the same physiological principles to capture 

and use growth and development resources. The main difference is the shapes and thresholds 

of their response functions. The SoilWater is a daily time-step cascading water balance module 

derived from CERES and PERFECT and is a module. The dynamics of both carbon and 

nitrogen in the soil are described in the SoilN module (Gaydon et al., 2017). APSIM Met 

provides daily weather information to all modules within the APSIM simulation (Keating et 

al., 2003).  

3.2.2 Simulation  

Model calibration included creating simulation files (soil, weather, crop, and manager folder) 

which was achieved using the “plug-in and plug-out” method. The simulated results validated 

using secondary data from different sources (Table 2.1). 

3.2.2.1 Soil file 

The APSIM model soil modules are classified based on the international and African format, 

and they include generic soil profiles for Africa. The soil properties required in this module 

have texture, bulk density (BD), total porosity, the drained upper limit (DUL), saturation 

(SAT), plant available water capacity (PAWC), pH, and crop lower limit (LL), Table 3.1,  for 
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the simulation of soil water-related processes and yields. The following table describes the 

shallow layers of the farm according to their physical characteristics.  

 

Table 3.1: Soil physical characteristics (Chimonyo et al., 2016a). 

Depth 

(cm) 

Texture  BD1 

(g/cm3) 

Airdry2 

(mm/m

m) 

LL153 

(mm/m

m) 

DUL4 

(mm/m

m) 

SAT5 

(mm/m

m) 

KS6 

(mm/da

y) 

0 - 10 Clay 

loam  

1.20 0.20 0.21 0.39 0.44 20.90 

10 - 30 clay 

loam 

1.20 0.23 0.23 0.41 0.467 18.18 

30 - 60 clay 1.20 0.26 0.26 0.43 0.467 13.92 

1BD - Bulk density; 2Airdry – Hydroscopic water content; 3LL15 – Permanent wilting point; 

4DUL – Field capacity; 5SAT – Saturation; 6KS – Hydraulic conductivity 

Table 3.2: The soil water module description. 

Parameter Value 

Summer Cona 3.5 

Summer U 5 

Summer date 1 Nov 

Winter Cona 2 

Winter U 2 

Winter date 1 April 

Diffusivity constant 40 

Diffusivity slope 16 

Soil albedo 0.12  

Bare soil runoff curve number 73  

 

The maximum reduction curve number due to cover for the current study cover for maximum 

curve reduction, slope, discharge width, catchment area, and the maximum pond will be left on 

default. Each soil depth, soil water condition (SWCON) was given as a fraction at planting. 

The portion of water that moves to the next layer (above DUL) was set as 0.3 

  



 

33 

 

 

3.2.2.1.1 Soil organic matter 

The soil chemical and physical parameters were obtained from the Ukulinga soil results 

published by (Chimonyo et al., 2016a). After analysing the soil, Soil organic matter was 

inputted into the model as a percentage of carbon, C and nitrogen, N, which was then used to 

calculate the C: N ratio.  The root C: N ratio was set to 40, root mass as 1000 kg/ha and the soil 

C: N ratio as 12. The initial nitrogen was measured as 56 kg/ha for both NO3 and NH4 before 

planting. The initial water was also measured and set before the beginning of the simulation. 

Where absent, it was interpolated by running the model for two seasons before the actual 

planting date.  

3.2.2.2 MET file (appendix) 

The daily weather data to create the Met file was obtained from the Automatic Weather Station 

(AWS) situated less than 1 km within Ukulinga Research Farm. The AWS is a division of the 

Agricultural Research Council − Institute for Soil, Climate and Water (ARC–ISCW) network 

of automatic weather stations. For the MET file, daily weather data comprising maximum 

(Tmax),  minimum (Tmin) air temperature (◦C), solar radiation (Rad, MJ m−2), rainfall (mm) 

was used. The same data was used by Chimonyo et al. (2016a) was extracted from the period 

between 27 January 2004 and appended to 20 October 2019. It was then converted to XML 

format. The values of average ambient temperature (TAV) and the annual amplitude in monthly 

temperature (AMP) were calculated and input into the MET files via “tav amp. 

3.2.2.3 Crop file  

The crop files found in APSIM do not include leafy vegetable crops except cowpea. Therefore, 

The APSIM model was adapted for canola, cowpea, and potato varieties. For amaranth and 

wild mustard, the canola file was used. The potato was adjusted for sweet potato, and the brown 

mix variety of cowpea was used since it is the most drought-tolerant variety. To achieve this 

step, describing the growth phenology of these crops using growth degree days (GDD °C) and 

time of growth (days) is essential (Table 3.3 - Table 3.6).
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Table 3.3: The phenological growth stages of amaranth (Amaranthus spp).  

APSIM stage name 

(code) - Canola 

Amaranth 

Phenological 

growth stages   

Days GDD °C  

Sowing (1) - - - 

Germination (2) Germination1,3 3 – 41,3 13 – 162,3 

Emergence (3) Germination1,3 

End_of_juveline (4) Opening of 

cotyledons1,3  

4 – 51,3 16 – 202,3 

End_of_juveline (4) True leaves (2 

leaves) 3 

8 -101,3 26 – 243 

- 5 -6 Leaves3 21 – 321,3 63 – 1153 

Floral_initiation (5) Apical 

inflorescence3 

40 – 571,3 130 – 2183 

Flowering (6) Anthesis and axillary 

inflorescence1,3 

69-791,3 299-3773 

Start_grain_fill (7) Seed development 

and ripening1,3 

85-1131-3 410 – 6442,3 

End_grain_fill (8) - - - 

Maturity (9) Ripening1,3 120 -1531,3 709 – 7313 

Harvest_ripe (10) Ripening – 

Senescence1,3 

- - 

End_crop (11) - - - 

1Bello (2013),  2VeggieHarvest. (2019), 3Martínez-Núñez et al. (2019) 
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Table 3.4: The phenological growth stages of cowpea (Vigna unguiculata).  

APSIM stage name 

(code) - Canola 

Cowpea 

phenological 

Growth stages   

Days GDD °C 

Sowing (1) - - - 

Germination (2) - - - 

Emergence (3) Emergence2,3 161,2,4 2423,4 

End_of_juveline (4) End of the juvenile 

stage2,3 

331,4 5143,4 

Floral_initiation (5) Floral initiation2,3 521,2,4 7873,4 

Flowering (6) Flowering2,3 641,2,4 9333,4 

Start_grain_fill (7) Start of grain 

filling2,3 

831,2,4 11903,4 

End_grain_fill (8) End of grain filling2,3 1071,2,4 14533,4 

Maturity (9) Maturity2,3 1251,2,4 16603,4 

Harvest_ripe (10) Harvest2,3 1251,2,4 16603,4 

End_crop (11) Senescence2,3  - - 

1Shiringani (2007), 2Ntombela (2012), 3International Insitute of Tropical Agriculture (2012), 

4Schwartz (2010) 

Table 3.5: The phenological growth stages of sweet potato (Ipomoea batatas).    

APSIM stage name (code) - Potato Sweet potato phenological growth 

stages  

Days 

Sowing (1) - - 

Germination (2) Initial phase1,3 282,3 

Emergence (3) Initial phase1,3 

Floral (4) Intermediate phase1,3 492,3 

Tuberin (5) Intermediate phase1,3 - 

Flowering (6) Final phase1,3 - 

Fullsenescence (7) Final phase1,3 

Maturity (8) Final phase1,3 

1van de Fliert, E. and Braun (1999), 2Francesco (2005), 3Kharzhevska (2019)  
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Table 3.6: The Phenological growth stages of wild mustard (Brassica juncea L.).   

APSIM stage name 

(code) - Canola 

Wild mustard phenological Growth 

stages  

Days  GDD °C 

Sowing (1) - - - 

Germination (2) Germination1,2  0 – 

352 

3 – 42 

Emergence (3) Emergence1,2 108 – 1362 

End_of_juveline (4) Leaf stages - two leaf unfolded1,2 30 – 

902 

214 – 2512 

Four leaves unfolded1,2 320 – 3652 

Floral_initiation (5) Flowering – at least one open floret on 

50% or more plants1,2 

90 – 

1002 

506 – 5672  

Flowering (6) Flowering- flowering 50% complete1,2 95 -

1252 

679 – 7472 

Start_grain_fill (7) Seed fill – seed filling begins. 10% of seed 

have reached a final size1,2   

120 -

1502 

886 – 9622  

End_grain_fill (8) Maturity - Seeds begins to mature. 10p% 

of the seeds has changed the colour1,2 

1232 – 13222  

Maturity (9) Maturity -70% of the seeds on the main 

stem has changed the colour12  

145 -

1502 

1440 – 15382 

Harvest_ripe (10) Maturity complete - 90% of seeds has 

changed colour (ripe) 1,2 

1509 - 16102 

End_crop (11) Senescence1,2 

1Kullabas (2019), 2Canola Council of Canada (2017) 
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3.2.2.4 Manager Folder  

The APSIM manager module is used to request any action available to any other module. Here 

this module was used for the following steps: the resetting of individual modules, sowing, 

application of fertilisers, irrigation or tilling of the soil, harvesting, or killing off crops, 

calculating of additional variables, to track the system state, and for the reporting of the system 

in response to events. The sowing variable rules were adjusted as shown in (Table 3.7).  

3.2.3 Scenario analysis  

The major factors affecting plant growth, planting date, plant density, fertilizer application rate 

and irrigation were used to develop scenarios for modelling the best management practice of 

the studied ALVs. These growth factors were chosen because of the vital role they play in the 

growth and productivity. since they are major growth factors in APSIM 

3.2.3.1 Planting dates 

The selected African leafy vegetables (amaranth, cowpea, sweet potato, and wild mustard) are 

known as warm-season crops. Therefore, the selection of planting date began in spring until 

the end of summer. That is from 1-Septemeber, 1-October, 1-November, 1-December, 1-

January, 1-February, 1-March (Table 3.8). 

3.2.3.2 Plant density 

Simulations were performed at less or more than 50% of the recommended plant population to 

determine the optimum plant density (or plant population) for each leafy vegetable crop. For 

amaranth, an optimum plant density of 17.4 plants m2 was used. For cowpea, 17.4 plants m2, 

for sweet potato five plants m2, and wild mustard, 27 plants m2. Simulations were done by 

maintaining the recommended plant population of one component and changing the other, 

resulting in 8 simulations (Table 3.8). 

3.2.3.3 Fertiliser application rate  

Amaranth requires a minimum of 100 kg ha-1 N to produce 40 tons ha-1 of leaves and 1 ton ha-

1 of grain (Sullivan and Specialist, 2003). Cowpea requires 40 kg ha1 N to make 1 ton ha-1 of 

seed and ton ha-1 of hay (DAFF, 2013). Sweet potato 100 kg ha-1 N (Gupta, 2011), and wild 

mustards requires 90 kg ha-1 N to produce 112 tons ha-1 (Government of Saskatchewan, 2017) 

(Table 3.8). Accurate fertiliser recommendations can help farmers correctly apply fertilisers 
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for better yields that meet or exceed food demands. Therefore, improving yields by addressing 

fertiliser application as one of the limiting factors is desirable.  

To model this scenario analysis based on the recommendations made by Sullivan and Specialist 

(2003),  DAFF (2013), Gupta (2011) and  Government of Saskatchewan (2017) for amaranth, 

cowpea, sweet potato and wild mustard, respectively, were used with fertiliser representatives 

of 0%, 25%, and 50% of the recommended rates (Table 3.8). This range represents a scenario 

whereby the farmer does not have access to fertiliser (0%), somewhat have access (25%) and 

(50%) only have access to half the fertiliser of the recommended rate (Table 3.8). 

3.2.3.4 Irrigation  

Depending on texture and structure, different soils may differ in water-holding capacity. As 

one of the management options to improve growth and yield gaps, irrigation can be introduced 

to growing plants. Irrigation is defined as applying controlled amounts of water to plants at set 

intervals (Hirota and Satoh, 1988; Zotarelli et al., 2010). However, to be more precise about 

irrigation and intervals, farmers often develop a schedule using the irrigation calendar based 

on the crop's previous seasons’ water requirements. This is irrigation scheduling, which is 

merely applying water at the right time and at the correct time (Zotarelli et al., 2010). Irrigation 

is affected by numerous factors such as root distribution, and soil characteristics and 

evaporative plant demand. Thus, to establish proper irrigation, these are essential factors to 

look into. In the present experiment, a drip irrigation method was used to simulate the growth 

and yields of amaranth, cowpea, sweet potato, and wild mustard at three different Field 

Capacity (FC) water levels (Table 3.8). Here, the idea is to use the irrigation scheduling with 

crop water requirement by considering the most critical growth stages where the plant requires 

water and use guidelines for irrigation. 
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Table 3.7: Sowing using the variable rule. 

Description Value  

Crop properties  
 

   

Name of crop Canola  Cowpea Potato  Canola  

Enter cultivar Mustard  banjo Sweet potato Wild mustard  

Method of cropping Sole  Sole  Sole  Sole  

Exclude from rotation sequence no no no no 

Sowing criteria     

Enter sowing window START date (dd-mm) 1 – Sep  1-Sep 1 – Sep  1-Sep 

Enter sowing window END (dd-mm) 1-Apr 1-Apr 1-Apr 1-Apr 

Must sow Yes  Yes  Yes  Yes  

Enter amount of cumulative rainfall (mm) 20 20 20 20 

Enter number of days to acumulate rainfall (days) 5  5 5  5 

Enter amount of soil water (mm) 100 100 200 100 

Enter opportunity number to sow on 2 2 2 2 

Enter upper limit of soil water in top layer (0-2) 

(mm esw/mm soil) 

2 2 2 2 

Enter upper limit of soil water in top layer (0-2) 

(mm esw/mm soil) 

0 0 0 0 

Sowing parameter      

Enter name of crop to sow canola  cowpea potato canola 

Enter sowing density (plant/m2) 174 25 1.87 27 

Enter sowing depth (mm) 20 20 300 15 

Enter cultivar Amaranth  banjo russet Wild_mustard  

Enter crop growth class Plant  plant plant  plant  

Enter row spacing (mm) 300 300 900 100 



 

40 

 

Harvesting rule      

Harvesting rule     

Enter the name of crop ti harvest when ripe  canola cowpea potato canola 

Fertiliser at sowing     

Amount of starter fertiliser at sowing (kg/ha) 72.5  44 100 101 

Sowing fertiliser type  urea_N urea_N  urea_N urea_N  

Fertiliser on days after sowing – top-up     

Aount of N required in top 3 layers (kg/ha) 200 100 0 200 

Fertiliser application details      

The module used to apply fertiliser  Fertiliser  Fertiliser  Fertiliser  Fertiliser  

Fertiliser type  NO3_N NO3_N broadcast_p urea_N 
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The manager folder was modified for each leafy vegetable, and the sowing variable was set. 

The above table does not show variables where default settings were used. 

Table 3.8: A scenario analysis of selected African leafy vegetables. 

Scenarios  Amaranth Cowpea  Sweet 

potato 

Wild 

mustard 

1. Nitrogen fertiliser 

application (kg/ha) 

(0, 50, 100% of 

recommended)  

72.50  44.00 100.00 73.00 

2. Irrigation (mm) 

0, 45, 90 of PAW 

1000.00 1150.00 1395.00 1000.00 

3. Planting dates (trigger 

season climate method, 

modelling and fixed date 

approaches) 

For all crops, the planting dates for the sowing of crops 

began from 1-Septemeber, 1-October, 1-November, 1-

December, 1-January, 1-February, 1-March, 1-April 

4. Planting density 

(plants/m2) high (-50%) 

or low (+50%) of the 

recommended  

17.40 18.50 1.85 27.00 

 

3.2.5 Data analysis and visualisation 

The simulation output obtained on growth and productivity were subjected to descriptive 

statistics, t-test analysis and generalized linear mixed analysis (GLMM) on R statistical 

software (version 1.3.959). The generalized linear mixed and t-test analysis was used at a 

confidence interval level of 95%. For the output analysis, descriptive values such as means, 

standard deviations, box and whiskers plots, and graphs were used. The box and whiskers plot 

were used to show the general trend and steadiness of data. In contrast, the t-test was used to 

determine any difference among the means of leaf number, leaf mass, leaf area index and water 

productivity. 
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3.3 Results  

3.3.1 Amaranth  

3.3.1.1 Planting date 

Different planting date resulted in different responses to leaf number, leaf mass, leaf area index 

(LAI) and water productivity (WP) (Figure 3.1). Early planting 01-September (1) favoured a 

high number of leaves (123). Contrary to this, late plantings (01-March) resulted in a low leaf 

number (89). Results for leaf mass, LAI and WP showed an inverse relationship with leaf mass. 

The general observation was that late planting date gave the highest leaf mass, LAI and WP 

compared to early planting dates. Planting date 01-March (7) and 01-December (4) gave the 

highest (1 324 g plant-1) and lowest (1 089 g plant-1) leaf mass, respectively. Planting in March 

resulted in the highest LAI (2.53) and WP (0.41 g m-3) and while November planting had the 

lowest simulated values (1.90, 0.21 g m-3, respectively).  

 

 

Figure 3.1: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area index 

and water productivity (g m-3) on growth and development of amaranth. Planting date 1 through 

7 correspond to the 1st of September (1), October (2), November (3), December (4), January 

(5), February (6) and March (7) respectively. 
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3.3.1.2 Plant density 

There was a significant difference (P<0.05) in leaf number and LAI of the amaranth plants 

(Figure 3.2). However, plant density did not affect leaf mass and WP. Overall, the leaf mass, 

LAI and WP were all optimum under medium plant density, 17.4 plants m2. On the other hand, 

leaf number decreased with an increase in plant density. The leaf number results were highly 

distributed along with the mean, mostly where density was low, suggesting less competition 

for growth resources under low plant densities. Leaf mass was the highest (1193 kg ha-1) at 

medium plant density (17.4 plants m2) and the lowest (1165 g plant-1) at low (8.7 plants m2) 

plant density. At plant density, 26.1 plants m2, the mean leaf mass was 1173 g plant-1.  The leaf 

area index was 2.32, 2.21, and 1.87 at 26.1, 17.4 and 8.7 plants m2. There were no significant 

differences for WP across the simulated plant density. There was no significant difference in 

WP across the different plant densities. Overall, WP was 0.29 g m-3 with a standard deviation 

of 0.13. There were more outliers for the simulated WP under high plant density than under 

low plant density (Figure 3.2). 
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Figure 3.2: The effect of plant density (plants m2) on leaf number, leaf mass (g plant-1), leaf 

area index and water productivity (g m-3) on growth and development of amaranth. 

3.3.1.3 Fertiliser application  

In terms of leaf number and leaf mass, the simulated results at different fertiliser application 

showed no significant differences. The simulated leaf number was the same (106) at different 

fertiliser rates, respectively. An average leaf mass of 1188, 1173 and 1170 g plant-1 was 

obtained at 71, 35.5, and 0 kg ha-1 of fertiliser application. The plants simulated with 71 kg ha-

1 fertiliser had the highest (2.17) LAI, and the ones simulated with 0 and 35.5 kg ha-1 gave the 

lowest (2.14). Water productivity also showed a similar trend with LAI. The highest WP means 

value (0.29 g m-3) was at 71 kg ha-1 and 0 and 35.5 kg ha-1 fertiliser application giving the 

lowest (0.28 g m-3). Several outliers were observed across the measure variables, and this could 

have been attributed to different climatic conditions observed.  

 

Figure 3.3: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (g plant-1), leaf area 

index and water productivity (g m-3) on growth and development of amaranth. 
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3.3.1.4 Irrigation  

The different irrigation levels resulted in significant differences (P<0.05) in leaf number, leaf 

mass, LAI, and WP. Increasing water availability through irrigation increased simulated leaf 

mass. There were no irrigation, leaf number, leaf mass, LAI, and WP values. Adding 40 mm 

of water resulted in an increase in leaf number, leaf mass, LAI, and WP by 4.8, 119.2, 89.3, 

and 85.0%, respectively. 

 

Figure 3.4: The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), leaf area 

index and water productivity (g m-3) on growth and development of amaranth. 

3.3.1.5 Management Practice Combinations 

The best management combination for high leaf number (130) was no fertiliser, 17.4 plants m2, 

40 mm mm-1, planting date 1 (01-September). Leaf mass was the highest (2130 g plant-1) at the 

combination 71 kg ha-1, 17.4 plants m2, 40 mm mm-1, 01-October. The planting date 01-March 

(7), high irrigation (40 mm) and fertilization (71 kg ha-1), and plant density (26.1 plants m2) 

resulted in a high leaf area (3.84). Lastly, WP was the highest at the combination of high 

fertilization (71 kg ha-1) and irrigation (40 mm), plant density (17.4 plants m2) and when 
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amaranth was sown in March (7). Different management strategies can be applied to promote 

growth and productivity depending on the overall production objective,  

3.3.2 Cowpea 

3.3.2.1 Planting date  

The effect of planting dates on leaf number, leaf mass, LAI and WP were observed to be 

pronouncedly different (P<0.05) for each planting date scenario (Figure 3.5). They were 

planting early increased in leaf number, leaf mass, and LAI, while late planting resulted in a 

decrease in these variables. To add, simulated growth and productivity decreased on plants 

simulated in 01-March. 01-October (2) had the highest (53) and 01-March (7) the lowest (24) 

leaf number. The leaf mass also differed according to planting dates. Observed simulated 

results showed that plants sown on 01-October (2) had the highest leaf mass (2309 g plant-1), 

compared to those planted on 01-March (7), which had the lowest mean leaf mass of 998.32 

kg ha-1.  The LAI was the highest (6.05), and the lowest (2.91) for the planting dates 01-October 

and 01-March. There was a slight increase in WP from early to late planting. Plants simulated 

in 01-March, which had the lowest (0.52 g m-3) WP while 01-February (2) had the highest (0.64 

g m-3) mean WP (Figure 3.5).  

Figure 3.5: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area index 
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and water productivity (g m-3) on growth and development of cowpea. Planting date 1 through 

to 7 correspond to the 1st of September (1), October (2), November (3), December (4), January 

(5), February (6) and March (7), respectively. 

3.3.2.2 Plant density  

Different plant densities resulted in significantly different (P<0.05 leaf number, leaf mass, LAI 

and WP. While other growth parameters increased with an increase in plant density, leaf 

number decreased (Figure 3.6), which may have been due to the high competition of resources 

such as sunlight and nutrients that resulted from the in-between spaces being too small. The 

mean number was 62 at low plant density (8.7 plants m2), 40, and 31 at 17.4 plants m2, the 

mean number of leaves was 40, and it was lowest (31) at 26.1 plants m2. Leaf mass, LIA, and 

WP increased with an increase in plant density.  These were the highest at 26.1 plants m2, (2163 

g plant-1, 5.75, and 0.66 g m-3), moderate at medium plant density, 17.4 plants m2, (1993 g 

plant-1, 5.32, and 0.62 g m-3) and lower at low plant density, 8.7 plants m2 (1673 g plant-1, 4.47, 

and 0.54 g m-3) respectively. Moreover, the plant leaf mass data was fairy legally distributed 

away around the mean (Figure 3.6). 
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Figure 3.6: The effect of planting density (plants m2) on leaf mass (g plant-1), leaf area index 

and water productivity (g m-3) on growth, development, and productivity of cowpea. 

 

3.3.2.3 Fertiliser application  

There was a significant difference (P<0.05) in leaf number across different fertiliser application 

rates. However, the simulated results showed no change in the cowpea plant's growth and 

productivity (Figure 3.7). The mean leaf number was 44 across different fertiliser applications 

(0, 30, 60 kg ha-1). Leaf mass, LAI and WP were also the same across all fertiliser application 

rates (0, 30, and 60 kg ha-1). These were 1948 g plant-1, 5.19, and 0.61 g m3, respectively (Figure 

3.7). These findings were not expected as fertiliser is generally known to affect the growth and 

development, thus productivity of plants. The cause of cowpea not responding to the applied 

fertiliser maybe that cowpea can fix its nitrogen and supply it to the soil, thus leaving the 

inputted fertiliser with no role to play as the soils were already sufficient in nitrogen for the 

growth of the cowpea plants. The type of fertiliser used on these plants and the time of 

application may also cause these similarities. 

 

Figure 3.7: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (g plant1), leaf area index 

and water productivity (g m3) on growth, development, and productivity of cowpea.  
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3.3.2.4. Irrigation  

There was no significant difference in leaf number upon different irrigation levels results. (0, 

20 and 40 mm) (Figure 3.8). Across all water application levels, the leaf number was 44. Leaf 

mass was higher (1963, g plant-1) where no there was no irrigation (0 mm) and lower (1922 g 

plant-1) at 20 mm. At high water application (40 mm), leaf mass was moderate (1960 g plant-

1). LAI was higher (5.23) at no water application and lower (5.13) at 20 mm. High irrigation 

40 mm resulted in a moderate (5.22) leaf area index. On the other hand, WP was (0.61 g m-3) 

at both 0- and 40-mm and lower (0.60 g m-3) at medium irrigation 20 mm mm-1 (Figure 3.8). 

 

Figure 3.8: The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), leaf area 

index and water productivity (g m-3) on growth and development of cowpea. 

3.3.2.5 Management Practice Combinations  

The interaction of plant density and planting date was significantly different (P<0.05) in leaf 

number. Leaf number was the highest (74) for plants sown on the 1st of October (2) at 8.7 plants 

m2 for all fertiliser levels (0, 30, 60 kg ha-1) with high (40 mm) or no (0 mm mm-1) water 

application. The combination (0 mm, 26.1 plant m-2 across all fertiliser application levels and 

planting date 2 (01-October) resulted in high leaf mass, 2587 g plant-1. These results were the 
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same for LAI, which was 6.78. A high mean WP of 0.69 g m-3 was observed when there was 

no water applied on cowpea plants, at a plant density of 26.1 plant m-2, in all fertiliser 

application rates (0, 30, and 60 kg ha-1) on plants simulated on planting date 5 (01-January). 

 

3.3.3 Sweet potato 

3.3.3.1 Planting date 

Different planting date resulted in varied responses to leaf number, leaf mass, LAI, and WP for 

sweet potato. The LAI, leaf mass and WP were significantly (P<0.05) affected by planting date. 

Simulated leaf number differed slightly across different planting dates. Overall, the leaf number 

was 43 regardless of the planting date. The planting date 01-November (3) and 01-March (7) 

had the highest (931 g plant-1) and lowest (767 g plant-1) leaf mass, respectively. There was a 

general increase in LAI and WP with later planting. Interestingly, planting February (6) and 

December (4) gave the highest (0.04) and the lowest (0.03) LAI. Growing in March (7) gave 

the highest (0.35 g m-3), and planting in October (2) gave the lowest (0.21 g m-3) WP, 

respectively, Figure 3.9. Results suggest that late planting gives optimum results in leaf 

number, leaf mass, LAI, and WP.  
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Figure 3.9: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area index 

and water productivity (g m-3) of sweet potato. Planting date 1 through to 7 correspond to the 

1st of September (1), October (2), November (3), December (4), January (5), February (6) and 

March (7), respectively. 

3.3.3.2 Plant density 

There was no change in leaf number of sweet potato plants observed across different plant 

density.  However, a significant (P<0.05) increases in leaf mass, LAI, and WP, with an increase 

in plant density (Figure 3.10). At high plant density (2.5 plants m2), leaf mass was 491 g plant-

1, at 5.0 plants m2, 907g plant-1, and at a high planting date of 7.5 plants m2, leaf mass was the 

highest (1234 g plant-1). LAI and WP were high (0.04 and 0.36 g m-3) at high plant density (7.5 

plants m2), medium plant density (0.32 and 0.28 g m-3) and at low plant density (2.5 plants m2) 

was (0.20 and 0.17 g m-3), respectively. The simulated LAI results showed a wider distribution 

around the mean for sweet potato planted at higher plant density. The reasoning behind this 

might be that LAI is less stable under tall plant density owing to increased competition for 

resources such as light and other growth factors.  

 

Figure 3.10: The effect of plant density (plants m2) on leaf number, leaf mass (g plant-1), leaf 

area index and water productivity (g m-3) on growth and development of sweet potato. 
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3.3.3.3 Fertiliser application  

Fertiliser application rate did not affect leaf number. However, a pronounced effect on leaf 

mass, LAI and WP was observed. There was a significant increase (P<0.05) in leaf mass, LAI, 

and WP, increasing fertiliser rates. At high fertiliser application, 60 kg ha-1, the average leaf 

mass was 933 g plant-1 and medium fertiliser application (30 kg ha-1), 901 g plant-1 at no 

fertiliser application, 797 g plant-1.  The LAI was 0.04, 0.03, and 0.02 at high, medium and no 

fertiliser application, respectively. Lastly, at high fertiliser application, the average WP was 

0.27 g m-3 (Figure 3.11). Generally, adding fertiliser improves growth. However, as observed 

from the simulated results, this was not the case for leaf number. To add, although these results 

varied (outliers), fertiliser application at a higher (60 kg ha-1) rate resulted in optimum growth 

and development of sweet potato.  

 

Figure 3.11: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (kg ha-1), leaf area index 

and water productivity (g m-3) on growth and development of sweet potato. 

3.3.3.4 Irrigation  

There was no significant difference (P>0.05) across different leaf number, leaf mass, LAI and 

WP simulated mean results. No change in leaf number observed upon changing the amount of 
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water applied to the sweet potato plants (Figure 3.12). However, a slight change was observed 

for leaf mass, LAI, and WP. Leaf mass was 875 g plant-1 at no water application, 882 g plant-1 

at 40 mm, and 874 g plant-1 and 60 mm of irrigation. Overall, the mean LAI was 0.03, and WP 

was 0.27 g m-3 regardless of water applied. It was interesting to note that the simulated results 

varied widely across the mean. There were outliers in the results for water productivity (Figure 

3.12). 

 

 

Figure 3.12:  The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), leaf area 

index and water productivity (g m-3) on growth and development of sweet potato. 

3.3.3.5 Management Practice Combinations 

The interaction of plant density, fertiliser and planting date was found to be significantly 

different on leaf mass. The WP results were also significantly different (P<0.05) under plant 

density and fertiliser interaction. The interaction of fertiliser and planting date was also 

considerably different in terms of leaf mass. A significant difference was observed on LAI 

where plant density, fertiliser and planting date interacted. In terms of leaf number, there was 

no significant difference. All combinations of management practices resulted in an average of 

43 leaves. 
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 The planting date 4 (01-December) was found to ideal for different plant densities, fertiliser 

application and irrigation levels. Across all different management practice combinations, leaf 

number was the same, 43. On the other hand, leaf mass, LAI and WP showed a substantial 

difference when subjected to different managerial practices changes. The best management 

practice for leaf mass (1458 g plant-1) was at planting date 4 (01- December), high plant density 

(7.5 plants m2), 60 kg ha-1 of fertiliser and 20 mm water application. Planting in March, at high 

density, 30 kg ha-1 fertiliser application and high irrigation of 40 mm were the best management 

practice combination to give a high LAI of 0.06. Lastly, WP was the highest (0.47) in plants 

sown on 01-March, at 7.5 plants m2, 30 kg ha-1 fertiliser application and irrigation of 40 mm.  

 

3.3.4 Wild mustard  

3.3.4.1 Planting date 

Different planting dates gave varied results in leaf number, leaf mass, LAI, and WP, and these 

simulated results were significantly different (P<0.05). A general decrease in leaf number, leaf 

mass, and LAI was observed to progress from early to late planting (Figure 3.13). However, 

planting in 01-November (3) gave more leaves (39) per plant. The mean leaf number was lower 

(23) on plants sown 01-March (3). Leaf mass, on the other hand, was high (1491 g plant-1) and 

low (903 g plant-1) on wild mustard sown on (01-October) and 7 (01-March). Interestingly, 

LAI was higher, 3.84 and more down, 2.35, on plants sown in 01-October (2) and 01-March 

(7), respectively. Early planting (01-September) resulted in high (0.33 g m-3) WP and low WP 

(0.29 g m-3) on wild mustard sown in 01-March (7) (Figure 3.13). Given the results, they were 

planting early resulted in higher yields compared to planting late.  
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Figure 3.13: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area index 

and water productivity (g m-3) on growth and development of wild mustard. Planting date 1 

through to 7 correspond to the 1st of September (1), October (2), November (3), December (4), 

January (5), February (6) and March (7), respectively. 

3.3.4.2 Plant density 

Different planting densities did not affect leaf number. Leaf mass, LAI and WP increased with 

an increase in plant, P<0.05 (Figure 3.14). At high plant density (30.5 plants m2) leaf mass, 

LAI and WP were (1443 g plant-1, 3.67, 0.34 g m-3), at medium plant density (27 plants m2) it 

was (1395 g plant-1, 3.58, and 0.33 g m-3) and at low planting (13.5 plants m2) density it was 

(1056 g plant-1, 2.72, 0,25 g m-3), respectively. It suggested that planting in high densities is 

ideal for the growth and development of wild mustard. However, as observed from the 

simulated results (Figure 3.14), the growth parameters' responses were highly distributed and 

had outliers. This could mean that plants' growth was not even, and resources are more likely 

to be received by some plants and not others. 
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Figure 3.14: The effect of plant density (plants m2) on leaf mass (g plant-1), leaf area index and 

water productivity (g m-3) on growth and development of wild mustard.  

3.3.4.3 Fertiliser application  

Different fertiliser applications did not affect leaf number. The leaf mass results, LAI and WP, 

were significantly different (P<0.05) (Figure 3.15). Across all fertiliser application rates (0, 

35.5, 71 kg ha-1), the mean number of leaves was 33. The leaf mass and LAI were higher 1319 

g plant-1 and 3.38 at medium fertiliser application (35.5 kg ha-1) and lower (1287 g plant-1 and 

3.27) at 71 kg ha-1 fertiliser application.  At no fertiliser application, leaf mass was 1288 g 

plant-1, and LAI was 3.32, respectively. On the other, WP did not follow this trend. It increased 

with an increase in fertiliser application. The crops were more productive (0.33 g m-3) where 

there 0.30g m-3, respectively (Figure 3.15).  
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Figure 3.15: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (g plant-1), leaf area 

index and water productivity (g m3) on growth and development of wild mustard.  

3.3.4.4 Irrigation 

The simulates results on leaf number, leaf mass, LAI and WP were significantly different 

(P<0.05) across different irrigation treatments. However, there was no change in leaf number 

across different irrigation levels 0,40,60 mm, (Figure 3.16). The mean number of leaves was 

33. On the other hand, leaf mass, LAI and WP had varied results upon increasing water 

application to crops. At different irrigation levels 0, 40,60 mm, leaf mass and LAI was 1263, 

1299 and 1331g plant-1, and  3.21, 3.33, and 3.34, respectively. Water productivity was 0.30 g 

m-3 at 0 mm, and for both levels 40, 60 mm, it was 0.31 g m-3 which was a small difference 

between different irrigation levels (Figure 3.16). The simulated growth and productivity 

response values were observed to be fairly distributed around the mean and LAI, and WP had 

outliers.  
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Figure 3.16: The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), leaf area 

index and water productivity (g m-1) on growth and development of wild mustard. 

3.3.5 Management Practice Combinations  

Planting date 3 (01-November) at all fertiliser applications, irrigation, and plant density 

combinations for high leaf number (39) was the best management practice. A high mean leaf 

mass of 1724 g plant-1 was obtained under best management practice combinations of 35.5 kg 

ha-1 of fertiliser, irrigation at 40 mm, increased plant density (30.5 plants m2), and plants' sown 

planting date (01-October). This was the same for the LAI, which was 4.51. However, for high 

WP (0.39 g m-3), the ideal management combinations were no fertiliser application, plant 

density at 30.5 plants m2, 40 mm mm-1 of water and at planting date 01-January (5). 

 

3.4 Discussion  

3.4.1 Planting date effect on growth and productivity of ALVs 

The optimum planting date gives the highest yields and shows less variation over time 

(Kucharik, 2008). Overall, and across all the studied crop species, planting late (December to 

February) results in high leaf mass, LAI, and water productivity. Except for cowpea, planting 
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late resulted in an improvement in growth and productivity for simulated crops. The simulated 

trend could be because, during February and March, it is assumed that soil has increased water 

content that supports the early establishment of crops. Also, air temperatures are high, creating 

a conducive environment for successful establishment. The simulated crops are sub-tropical 

and thrive in warm-cool climates (Chivenge et al., 2015). With late planting, the vegetative 

pick period occurs during colder months. Less water was lost through evaporation, meaning 

more was available for crop uptake and use.  

The low temperatures experienced during the vegetative phase also allows for the slow 

accumulation of heat units, extending the growth duration and time spent accumulating 

assimilates (Evans and Sadler, 2008). Simulations at the beginning of the summer season may 

have resulted in less low leaf mass, resulting in low LAI and WP because plants grow more 

rapidly due to higher temperatures. This also corresponds to higher evaporative demand and 

overall evapotranspiration resulting in lower WP. Water productivity can be defined as the 

obtained yield per given water unit (Morison et al., 2008). Therefore, any strategy aimed at 

improving yield while using the same amount of water or decreasing the amount of water with 

the same or increasing yield will improve water productivity (Molden et al., 2010).  

3.4.2 Plant density effect on growth and productivity of ALVs 

Overall, the increase in plant density resulted in leaf number reduction for all simulated crops. 

However, simulated results showed that increasing plant density resulted in a general rise in 

leaf mass, LAI, and WP for the crops under investigation. These results are contrary to many 

studies that have observed a decrease in plant growth and productivity, increasing plant density. 

For instance, Walp et al. (2010) observed that increasing plant density decreased LAI in 

cowpea plants. When plant density increases, resource competition among plants arises, 

resulting in uneven growth or death of some plants (Maseko et al., 2015). With each additional 

plant, a reduction in individual plants' mass was offset by an increase in plant density.   

Another reason may be the development of fewer branches per plant at a high density, leading 

to high leaf mass (Maseko et al., 2015). To add, an increase in LAI resulted in a reduction in 

evaporation, which improved water availability, leading to increased transpiration, thus 

increasing leaf mass. Overall, this was the same amount of water received by the system, but 

there was an increase in leaf mass, increasing water productivity. A note must be taken that 

increasing plant density above a certain threshold can result in yield penalties. It was observed 

on these results that more plants per square metre can still be sown above-recommended 
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planting density, and this may be at the expense of other growth parameters. Different growth 

variables favoured by different plant densities across all crops. For optimal leaf number, plants 

must be sown under low plant density and at high plant density for ideal leaf area index. Leaf 

mass and water productivity differed depending on a crop species type, and these were higher 

under high or medium plant densities. Therefore, no matter what plant density is used, one or 

more growth aspects may be compromised.  

3.4.3 Fertiliser application effect on growth and productivity of ALVs  

Crop growth nutrients are essential for crops as it improves the photosynthetic capacity of crops 

by enhancing carbon dioxide assimilation and improving enzymic function (Deng et al., 2006). 

Depending on a crop species, increasing fertiliser application either showed some or no effect 

on growth and productivity for selected ALVs. Amaranth and cowpea did not respond to the 

application of fertiliser at different levels. Also, cowpea can fix nitrogen, producing nitrogen 

that can be useful for its growth and development, suggesting no need for fertiliser addition 

(DAFF, 2013). Results also suggest that the Ukulinga farm soils are sufficiently fertile to 

provide optimum growth for these crops. However, sweet potato followed a different trend as 

the increase in fertiliser application resulted in an improved leaf canopy, thus leaf area index 

(LAI) and consequently water productivity. These results suggest that sweet potato is a heavy 

N feeder and requires relatively high N fertiliser amounts. According to Kuzhivilayil et al. 

(2016), tuber crops that grow under warm to hot summers and cool to mild winters are high 

nutrient demanding, and proper integrated management helps achieve yield potential. Leaf 

mass, LAI, and WP decreased with more fertiliser application. Under different fertiliser 

application rates, no change in leaf number was observed across all crop species.  

3.4.4 Irrigation effect on growth and productivity of ALVs 

Increasing water application increased the WP of these selected leafy vegetables. Irrigation had 

no effect on leaf number across all plants. The Ukulinga soils are clay-loam and therefore are 

suitable for irrigation since they can retain water for more extended periods, attributed to their 

excellent water-holding, aeration and drainage properties (Chimonyo et al., 2016a). Generally, 

under semi-arid conditions, irrigation often improves crops' growth by enhancing water 

availability for transpiration. Depending on the crop's growth stage, one of these processes is 

more vital than the other. For example, in the early stages of growth, evaporation is more 

important than transpiration (Brouwer and Heibloem1986). Therefore, it is imperative that 

irrigation increases during critical growth stages and where water is limited to improve WP. 
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Water productivity increment is achieved where most transpiration result in yield gain 

(Rockström and Barron, 2007). However, for all crops expect amaranth, there was no change 

in leaf mass upon increasing irrigation. This might have been because the soil in the system 

already had water from the rainfall, which was above a certain threshold where irrigation could 

not be initiated.  

3.4.5 Effect of factor/treatment combinations on growth and productivity of ALVs  

The different treatment combinations resulting in optimum yields for each leafy vegetable was 

evidence that these crops can be grown under other conditions on different management 

strategies. It was also evident that multiple planting can is possible when these optimal 

management practices are observed. The growth in terms of leaf number being not affected for 

some crops such as amaranth may have been since conditions were already favourable. Thus, 

changing any managerial practice could not be effective. This was not expected as it disagrees 

with Kanda et al. (2020), who found irrigation to significantly affect the cowpea plant's growth 

and development. Different crops species with different architecture require different 

management practices. Therefore, they utilize and share resources differently.   

3.5 Conclusion  

ALVs are generally grown under dry environments where they experience water stress, so 

correct management of these crops may improve productivity. The studied leafy vegetables 

establish in a short period (4 – 5 weeks) and are mostly favoured by early planting. Nonetheless, 

this may compromise their water productivity. As noticed, plant density plays a vital role in 

the growth and productivity of ALVs; increasing it to a certain threshold may result in growth, 

yield and productivity are compromised. The unresponsiveness of fertiliser to leaf number was 

not expected as fertiliser application is thought to improve vegetative growth. In this study, 

irrigation was shown to have disagreed with some of the previous studies. Therefore, it might 

be of interest that future studies revisit these sections for validation and correction.
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CHAPTER 4 

Nutrition composition of African leafy vegetables 

 

4.1 Introduction 

A big challenge is faced by South African communities where at a household level, people 

experience food insecurities and nutrient deficiencies such as iron, zinc, and vitamins (Maseko 

et al., 2017). More than 70% of the people living in semi-arid/ arid rural areas are heavily 

dependent on growing crops for their livelihoods. Here, crop production is dominated by 

starchy crops (Graeub et al., 2016; Chibarabada et al., 2017a). Although this may ensure 

enough calories, the need for diet diversity is indirectly neglected (Chibarabada et al., 2017a). 

Some of the contributors to this challenge include water scarcity and population growth. 

Therefore, there is a need to introduce and improve nutrients food for human health benefit 

(Maseko et al., 2017). Vegetables are a substantial part of the diet, especially for individuals 

that do not have access to rich protein sources (Ebert, 2014). Their nutrient composition may 

vary mainly depending on the part of the plant used. African leafy vegetables (ALVs) are 

primarily known for their dense nutrient content (Li et al., 2009). Compared to other 

vegetables, they provide magnificent amounts of minerals, vitamins and b-carotene and are a 

good source of antioxidants and dietary fibre (Kala and Prakash, 2007a). Essential minerals 

such as proteins are in high contents in some ALVs ranging between 1 and 7 g/100g more of 

edibles than exotic leaf vegetables (Nangula et al., 2010). Information regarding nutritional 

composition is not always readily available and, if it is known, defers depending on the source. 

There is a need to improve understanding of the nutritional value of ALV. This will help in 

mainstreaming these crops into existing cropping systems and diets. 

Nonetheless, as much as ALVs are significant in contributing to food and nutrition security, 

profiling them for nutrient content is still challenging. In food production, nutrition or nutrient 

composition in crops grown for utilization is very important. According to their contribution 

to a balanced diet, a nutrient analysis that includes nutrient profiling must take place (Azaı¨s-

Braesco et al., 2006). Although some work has been done on profiling some of the ALVs 

(Almazan et al., 1997; Ahenkora et al., 1998; Shukla, 2013; Sun et al., 2014; Van Jaarsveld et 

al., 2014; Obidiegwu et al., 2015), it is not enough to draw coherent profiling on nutrient 

composition of these crops. Preferably, a nutrient-dense crop is ideal as it can act as a 
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superfood, thus providing an array of nutrients in small quantities. Nutrient density is the 

concentration of nutrients per 100 g (Drewnowski et al., 2019). 

The nutritional content of raw leafy vegetables is very diverse and may differ from one cultivar 

to another. It also depends on the climate or geological site of production, storage, part of the 

cultivar consumed, and harvesting and post-harvest handling conditions. Therefore comparing 

the nutrient content from leaves is challenging (Pennington and Fisher, 2010).  According to 

Kala and Prakash (2007b), minerals or macronutrients are not lost when using different cooking 

methods.  In this chapter, secondary data on mineral, macronutrient, vitamin composition of 

amaranth, cowpea, sweet potato, and wild mustard analysed from different source types (i.e. 

fresh, dried, cooked, blanched etc.) will be used. The main aim was to determine the nutrient 

content of the former mentioned ALVs based on secondary data to make recommendations on 

which vegetable is nutritious. This will be more beneficial to the people living in rural areas of 

arid to semi-arid regions dependent on agriculture. 

4.2 Materials and methods 

4.2.1 Literature search 

In this study, a mixed-methods approach was applied where qualitative and quantitative data 

was used. The literature search focused on the nutritional value of amaranth, cowpea, sweet 

potato, and wild mustard as leafy vegetables. The leading search engines used were Scopus 

and Web of Science. The following key terms were used, nutrient composition, nutrient 

density, nutritional value, nutrient content, proximate analysis, and leaves. And the following 

words were used for crops Amaranthus, amaranth, pigweed, cowpea, black-eyed pea, southern 

pea, sweet potato, wild mustard, mustard (Table 4.1). To add, other sources of information such 

as the U.S Department of Agriculture (https://ndb.nal. usda.gov/ndb/) and the Food and 

Agricultural Composition/In Foods (http://www.fao.org/infoods/infoods/tables-and-databases/ 

faoinfoods-databases/en/) were also used. The literature search was not sorted according to 

article type. However, it was limited to language, English. The number of total hits obtained 

for all crops was 6288. For each search, the articles were arranged according to relevance. 

Scopus achieve this by first finding papers related to the topic and then sort them by date from 

most recent to old. Whereas, in Web of Science, sorting by relevance considers the fields, title, 

abstract, and keywords. The results record was sorted in a descending order based on a 

recording system that considers how many of the search terms are found in each history. 

Records with the highest-ranking appeared first and vice versa. The first 100 articles were 
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selected and then combined to develop a database on each search results. Duplicates were 

removed, and the papers were further sorted by screening their abstract, where the relevance of 

the article was obtained using the keywords.  

Each crop's findings were then separated according to the author, source, location, sample type, 

digestion type, and treatments. The total number of articles found after screaming each crop 

were 23, 5, 15, and 3 for amaranth, cowpea, sweet potato, and wild mustard, respectively. The 

obtained results were then used to create proximate and nutrient composition tables for the 

mentioned selected leafy vegetables. The focus was directed to essential nutrients and minerals, 

some of which are regarded as interest in public health. These were Fe, Zn, Ca, total fibre, fats, 

proteins, carotenoids, ash, carbohydrates, ascorbic acid, vitamin A, and E.  The nutrient content 

of these crops reported in %, and values were expressed as x102.
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Table 4.1: Scopus and Web of Science literature search record on African leafy vegetables. 

Crop Species Search engine  

SCOPUS Number 

of hits 

WOS Number 

of hits 

Articles 

used  

Amaranth  

(Amaranthus 

spp.) 

ALL ((“nutrient composition” OR 

“nutrient density” OR “nutritional value” 

OR "nutrient content" OR "proximate 

analysis") AND " amaranth" OR 

“amaranthus” OR “pigweed” leaves) 

139 ALL ((“nutrient composition” OR 

“nutrient density” OR “nutritional value” 

OR "nutrient content" OR "proximate 

analysis") AND ""amaranth” OR 

“amaranthus” OR “pigweed” leaves) 

6  23 

Cowpea (Vigna 

unguiculate) 

ALL ((“nutrient compos*" OR "nutrient 

density" OR "nutrit* value" OR "nutrient 

content" OR "proximate analysis”) AND 

"cowpea" OR "black-eyed pea" OR 

"southern pea" leaves)  

2055 (ALL= ((“nutrient compos*" OR 

"nutrient density" OR "nutrit* value" OR 

"nutrient content" OR "proximate 

analysis”) AND "cowpea" OR "black-

eyed pea" OR "southern pea" leaves)) 

221  5 

Sweet potato 

(Ipomoea 

batatas) 

ALL ((“nutrient compos*" OR "nutrient 

density" OR "nutrit* value" OR "nutrient 

content" OR "proximate analysis”) AND 

"sweet potato leaves”)  

112 ((ALL= ((“nutrient composition" OR 

"nutrient density" OR "nutritional value" 

OR "nutrient content" OR "proximate 

analysis”) AND "sweet potato leaves" ))) 

4 13 

Wild mustard 

(Brassica 

juncea L.) 

ALL ((“nutrient compos*” OR “nutrient 

density” OR “nutrit* value" OR "nutrient 

content" OR "proximate analysis") AND 

"wild mustard" OR "mustard" leaves) 

2049 ((ALL= ((“nutrient composition" OR 

"nutrient density" OR "nutritional value" 

OR "nutrient content" OR "proximate 

analysis”) AND "wild mustard" OR 

"mustard" leaves ))) 

1702 3 
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Figure 4.1: PRISMA flow chart for screening process of eligible articles included in the 

nutritional database. 
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4.2.3 Data visualisation and Statistical analyses 

The secondary data on the nutritional composition was subjected to descriptive statistics, t-test 

analysis and generalized linear mixed analysis (GLMM) on R statistical software (version 

1.3.959). The generalized linear mixed and t-test analysis was used at a confidence interval 

level of 95%. Results considered significant where p<0.05. Here, the minimum, maximum and 

maximum values in these crops' nutritional content were identified to investigate the density or 

quantity of nutrients and find out which one of these crops has a high or low content of 

nutrients.  

4.3 Results 

4.3.1 Literature review results 

There were 23 articles from 14 different locations in countries: Niger, Nigeria, Taiwan, India, 

Argentina, Tuskegee, Kenya, South Mali, South Africa, Czech Republic, Turkey, and Nairobi. 

The source (or environment) where the study was done ranged from the field, market and 

undefined. 47% of these studies were done on the field, and the rest 26. 5% each were 

conducted under undefined locations and markets. Sample type on these studies was mostly 

(30- 42 %) fresh or dry material, 5% boiled, and the rest was undefined. Treatments of these 

studies were mainly processed and ranged from ground, oven-dried, blanched, fresh, cooking, 

sun-dried, shade dried, drained, refrigerated) Only 26% was agronomic (cultivar type, fertiliser 

(nitrogen) application level, age at harvest, and storage type). Most of the digestion processes 

on these were not defined; however, only two authors described the digestion method they 

used. This was the method described by Speek et al. (1986) in Vitro digestion/Caco-2 cell 

model. 

The database on cowpea's nutrient composition had only five publications, and the studies were 

done in countries Ghana, East Africa, Tuskegee, and South Africa. Fifty per cent (50%) of the 

studies were mostly conducted under field conditions using fresh material (61 %), only 7% was 

boiled, and the rest of the sample type was undefined. The sample material was either used 

raw(fresh) or dry. Duodu et al. (2010) used the method described by (Speek et al., 1986) for 

digestion and treatment type ranged from agronomic to processed. Processed treatments types 

were about 75% ranging from fresh and dry mass (raw), blanched, cooked, dried, and 

fermented.  



 

68 

 

On the other hand, the sweet potato database was obtained from 13 articles conducted from 

countries such as Ghana, Los Angeles, Taiwan, Japan, Tanzania, Tuskegee, Kwara State, 

George Washington, Sri Lanka, China, India. This was a good representation; however, some 

of the authors did not mention their studies' location. About 77% of these were conducted under 

field conditions, 15% not defined, and the rest was done under controlled environments 

(greenhouse). In terms of the digestions method, there was quite a range, from in vitro 

digestion/Caco-2 cell model, HPLC analysis, AOAC analysis and Automatic Absorption 

Spectrometer, the technique described by Speek et al. (1986), Atomic Absorption 

Spectrometer, Tecator block digestor, and α-amylase, amyloglucosidase, and protease. Only 

two authors did not describe their method, and in one study conducted by Essack et al. (2017), 

they used different digestion procedures. Treatment types range from agronomic to processing. 

Under agronomic, the main factors used included cultivar, the season of planting. Under 

processing, the crops were either blanched, cooked, dried, or raw.  

Compared to all the other three mentioned crops, wild mustard was less studied in terms of 

nutrition, as only three articles were obtained. The studies were conducted from three different 

Brazil, China, and Taiwan, and the experiments were conducted under the field, green-house, 

and undefined locations, respectively. The sample preparation was variable since all the three 

studies had their samples dry, fresh, and boiled. However, only Kant et al. (2011) from China 

described their digestion method as HNO3–HClO4, and treatment, which were only separated 

using numbers.  
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4.3.2 Nutritional content of selected ALVs 

These selected ALVs have a very dense content of vitamins, carotenoids and total polyphenols, 

Error! Reference source not found.,  and Table 4.3, and Table 4.4. Although in the literature, 

some nutrients were not assessed for some crops. This was pointed out as a gap for future 

research.  

4.3.2.1 Proximate analysis 

Proximate composition accounts for moisture, crude protein, crude fibre, ash, lipids, 

carbohydrates, and other nitrogen-free extracts expressed in terms of percentage (%) as content 

in the sample (Table 4.2). Wild mustard had the highest moisture content (91.0%), and sweet 

potato had the lowest (89.0%). The total fibre was the highest (53.1%) for amaranth and the 

lowest (3.2%) for wild mustard. Lipids/fats were high (12.9%) in cowpea and low (0.9%) in 

wild mustard. Cowpea had the highest (42%) total protein content than the other three crops, 

and wild mustard had the lowest (1.9%). Amaranth and wild mustard had the highest (22.8%) 

and the lowest (0.9%) ash content. Sweet potato, on the other hand, had the highest total 

carbohydrates (68.8%), followed by amaranth (67.7%), while wild mustard had the lowest 

(2.8%). In terms of energy, raw sweet potato leaves had the highest (438.5), followed by 

amaranth (406.3) and cowpea (390.2) and wild mustard leaves (26.5 Kcal 100 g-1), which was 

substantially lower. 

4.3.2.2 Mineral content 

The nutritional composition of these crops also includes a wide range of elements, most of 

which are regarded as the primary dietary source. These are significant elements such as 

calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), manganese 

(Mn), nitrogen (N), chlorine (Cl), and trace minerals such as iron (Fe), copper (Cu),  and 

selenium (Se). Amaranth had the highest Ca and K content, while both these minerals were the 

lowest in wild mustard. Calcium (Ca) content was the highest (2.3%) and the lowest (0.1%). 

Sweet potato had the highest Mg, P, and Fe content while wild mustard had the lowest range 

of these minerals. Amaranth had the highest (0.08%) content of Mn, and wild mustard had the 

lowest (<0.01%). Copper (Cu) content was <0.01%, and zinc (Zn) content was the highest (0.32 

%) and the in sweet potato and wild mustard, respectively. Cowpea also had the lowest Cu 

content together with wild mustard. Na content was the highest (2.22%) for cowpea, and for 
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wild mustard, it was less than 0.01%. There were trace amounts (<0.001%) of selenium in wild 

mustard, and cowpea had the highest (0.028%) of selenium. 

4.3.2.3 Vitamin content 

The data on vitamin content, total carotenoids, and polyphenols were found to have some gaps 

for most crops (amaranth, cowpea, and wild mustard). Nonetheless, amaranth showed to have 

the highest content (0.66%) of vitamin A, and in sweet potato, it was lower than 0.02%, 

respectively. This was true for the ascorbic acid, which was the highest (0.63%) for amaranth 

and the lowest (0.121%) for sweet potato. Again, amaranth had the highest total carotenoids 

(131.00 %), while wild mustard showed the lowest (0.003%). The total carotenoids content 

was the highest in amaranth (13.1%) and the lowest (0.003%) in wild mustard. For the rest of 

the vitamins and polyphenols, characterisation was not done. And this was taken as a gap for 

future studies. 
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Table 4.2: Proximate composition (%) of edible raw leaves in selected African leafy vegetables (Values are expressed as ×102). 

 Amaranth Cowpea  Sweet potato Wild 

mustard  

Moisture/water 

content  

7850.0 - 9100.0 (8542.0)1-7 0.0 – 9060.0 (43.613)15-17 3515.0 – 8900.0 (8593.0)4,21-25 9168.030 

Total fibre  100.0 - 5381.0 (1167.1)5-13 0.0 – 2948.0 (1533.6)16-18 149.0 – 1167.0 (822.6)4,22-27 320.030 

Lipids/ fats 200.0 – 1100.0 (346.2)1,2,4,7,12-17 0.3 - 1291.0 (418.8)16-18 20.0 – 650.0 (352.4)4,22-28 085.030 

Total protein  2.4 – 3230.0 (1517.4)2-4,7,14,16,14 320. – 4200.0 (2175.0)12-17 142.0 – 3108.0 (2194.0)4,21-29 197.030 

Ash 181.0 – 2280.0 (1319.0)3-

7,8,9,12,13,14,17 

480.0 – 1480.0 (1162.0)16-19 149.0 – 1167.0 (822.6)23,24,27-29 098.030 

Total carbohydrates 430.0 – 6778.0 (3212.0)4,5,7,8,11,14 178.0 – 3911.0 (814.5)18-23 100.0 – 6860.0 (5453.0)4,22,25-29 275.030 

Energy (Kcal) 326.7 – 40631.0 (18935.8)4,7,10,12 109.0 – 39026.0 

(5117.6)16,18,20 

3500.0 – 43850.0 

(40420.0)4,21,25,27,29 

2657.030 

1Awoyinka et al., (1995), 2Mziray et al., (2001), 3Onyango et al., (2008), 4Vishwakarma and Dubey, (2011), 5Escudero et al., (1999), 6Kala and 

Prakash, (2004), 7Odhav et al., (2007), 8Mziray et al., (2001), 9Aletor et al., (2002), 10 Mithra and Somasundaram, (2008), 11Devi et al., (2007), 

12Pisarikova et al., (2006), 13SekeroÅlu et al., (2006), 14Nordeide et al., (1996), 15Ahenkora et al., (1998) 16 Owade et al., (2019), 17Imungi and 

Potter, (1983), 18Chikwendu et al., (2014), 19 Enyiukwu et al., (2018), 20Madodé et al., (2012), 21Amagloh et al., (2017), 22Mohanraj and Sivasankar, 

(2014), 23Paranama et al (2015), 24Suárez et al., (2020), 25Sun et al., (2014), 26Olayiwola et al., (2009), 27Mosha and Gaga, (1999), 28Almazan et 

al., (1997), 29Pace et al., (1988), 30Filho et al., (2018) 
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Table 4.3: Mineral content (%) of edible raw leaves in selected African Leafy vegetables. (Values are expressed as ×102). 

 Amaranth Cowpea Sweet potato Wild mustard  

K 
0.0 – 650.0 (3 12.5)1,2,4,8-10,13 120.0 – 1344.5 (531.6)15,19,20 24.2 – 428.0 (162.2)22,23,26,28-30 0.0 – 43.6 (4.0)31-32 

Ca 
0.0 – 741.0 (2.286)1,6-11,13 0.1 – 175.0 (87.0)17-21 2.0 – 195.8 (82.0)24,26-30 0.0 – 12.3 (1.2)31-32 

Mg 
0.0 - 147.0 (0.842)1-4,8,10,13 26.4 – 165.9 (69.4)19,20 3.2 – 91.1 (41.1)26,28-29 0.0 – 2.7 (0.2)31-32 

P 
0.0 - 70.0 (29.8)2-5,8-11,13 0.9 – 81.8 (25.6)16,18-20 10.0 – 264.0 (114.7)23,28-29 <0.131 

Fe 
0.1 - 14.0 (5.5)1,3-14 0.0 – 1717.0 (684.4)17-21 0.1 - 3.5 (1.0)124,2,24,26-30 0.6 – 1.5 (1.1)31-32 

Mn 
0.3 – 8.2 (1.1)4,8,12-13 0.0 – 5.5 (3.1)19 0.2 - 1.1 (0.4)28-29   0.0 – 0.3 (0.2)31-32 

Cu  
0.1 -0.3 (0.2)4,8,10 ,12-13 0.119 0.1 – 0.5 (0.1)28-30 0.0 – 0.1 (0.1)31-32 

Zn 
0.0 – 5.6 (1.1)4,6-10,12-13 0.0 - 14.5 (4.1)17-21 0.0 – 31.5 (5.5)22,24,26-30   0.0 – 0.7 (0.5)31-32 

Na 
0.0 – 5.2 (3.5)1, 2,4,8-10,13 0.9 – 222.0 (56.3)19,20 0.3 – 83.2 (15.7)23,25-26,28-29 0.332  

Se 
0.1 - 0.2 (0.1)8,13    0.4 – 2.8 (1.3)19 0.8 - 0.9 (0.9)28  <0.132 

Pb 
0.1 - 0.2 (0.1)7 0.119,20 <0.128 N/A 

1Devi et al., (2007), 2Fadupi et al., (2017) 3Kala and Prakash, (2007a), 4Odhav et al., (2007), 5Mziray et al., (2001), 6Nordeide et al., (1996), 7Singh 

et al., (2001), 8Freiberger et al., (1998), 9Escudero et al., (1999), 10Taylor, B.L.Fetuga, (1982), 11Awoyinka et al., (1995), 12SekeroÅlu et al., (2006), 

13Sena et al., (1998), 14Vishwakarma and Dubey, (2011), 15Mduma et al., (2012),16Ahenkora et al., (1998) 17Owade et al., (2020), 18Chikwendu et 

al., (2014), 19Imungi and Potter, (1983), 20Enyiukwu et al., (2018), 21Madodé et al., (2012), 22Pace et al., (1988), 23Paranamana and Bulugahapitiya, 

(2014), 24Amagloh et al., (2017), 25Kurata et al., (2017), 26Mosha and Gaga, (1999), 27Olayiwola et al., (2009), 28Suárez et al., (2020), 29Sun et al., 

(2014), 30Ranathunga et al., (2019) 31Jiao et al., (2012) 
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Table 4.4: Vitamin content (%) of edible raw leaves in selected African leafy vegetables (Values are expressed as ×102). 

 Amaranth Cowpea  Sweet potato  Wild mustard 

Vitamin A 0.0 – 54.8 (5.2)1,5 0.0 - 0.6 (0.3)1 0.0 – 0.2 (0.1)1 0.321 

Vitamin B1 <0.113  N/A 0.0 – 0.1 (0.1)19 0.321 

Vitamin B2 N/A 318.0 – 1480.0 (469.5)12,14-15 0.4 – 0.6(0.6)19 N/A 

Vitamin B3  N/A 3039.0 – 3111.0 (3075.0)12,14 0.519 N/A 

Vitamin C 0.8 - 9.9 (5.4)2,8,11 0.1 – 20.3 (8.2)12  2.2 – 10.4 (6.0)19 N/A 

Vitamin E N/A N/A 0.3 – 0.6 (0.4)19 <0.121 

Vitamin K N/A N/A <0.19 <0.19 

Ascorbic acid  0.8 – 62.9 (32.2)3,4,6 0.9 – 41.0 (6.6)10,13 0.0 – 12.1 (3.3)16-18,20 N/A 

Total carotenoids  0.6 – 13100.0 (898.0)1,2,5,7   4.2 - 4.5 (4.3)1 0.7 – 2.7 (2.5)18 0.321 

Carotene N/A 0.2 – 9.1 (5.3)12,13 0.4 – 1.0 (0.8)16 N/A 

Total polyphenols  N/A 1.0 – 3.3 (2.1)12 23.1 – 164.7 (61.6)16 N/A 
1Mosha et al., (1997), 2Devi et al., (2007), 3Kala and Prakash, (2007b), 4 Mziray et al., (2001), 5 Nordeide et al., (1996), 6 Yadav and Sehgal, (1995)7 

Sena et al., (1998), 8 SekeroÅlu et al., (2006), 9Paula et al., (2013), 10Ahenkora et al., (1998), 11 Owade et al., (2019), 12 Chikwendu et al., (2014), 

13Mziray et al., (2001), 14Enyiukwu et al., (2018), 15Madodé et al., (2012), 16Amagloh et al., (2017), 17Barrera and Picha, (2014), 18Suárez et al., 

(2020), 20Ranathunga et al., (2019), 21Paula et al., (2013) 
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4.4 Discussion 

The nutrient composition of selected African leafy vegetables (ALVs) showed to be high 

depending on the crop species. Comparing these vegetables to other commercialized crops such 

as spinach, cabbage, and dry beans remain superior in their nutrient density (Shukla, 2013; 

Grain SA, 2020; Van Jaarsveld et al.). Information is rarely available. The high moisture 

content of ≥89.0 × 10% shows that these ALVs may be prone to deterioration and need proper 

preservation and storage post-harvest. It is also a good indication that these crops are easily 

digestible when eaten raw, which is a health benefit since less energy would be used by the 

body for digestion, thus improving the speed at which the nutrients will be assimilated (Lussier, 

2010). The differences in values recorded for total fibre, lipids/fats, total proteins, ash, total 

carbohydrates, and energy may have been attributed to the difference in analytical sample 

preparation and digestion method. However, wild mustard had the lowest percentage 

composition across all minerals. The results from different studies suggest that sweet potato 

can be a good source of energy and carbohydrates.  

A wide variety in mineral content of ALVs is due to differences in sample preparation, variety 

or cultivar of the crop species used, climate, production site (i.e. field, green-house or 

hydroponic), harvest-handling materials, post-harvest handling, method of digestion. The 

general trend observed in the mineral content was that cowpea was more nutrient-dense than 

the other three ALVs. According to the health organisation of South Africa, Cowpea has a high 

range of some of the essential micro-nutrients (K, Mg, Fe, Cu, Na and Se). Therefore, this crop 

is an excellent source of nutrients and can is ideal for human health benefits. Given the obtained 

results (Table 4.2, Table 4.3, and Table 4.4), cowpea, together with amaranth, have the 

potential to become superfoods due to their noticeably high nutrient content across most 

nutrients. The unexpectedly low nutrient content in wild mustard might have been influenced 

by the number of published articles on this crop's nutrient composition. However, wild mustard 

can still be an excellent crop for intercrop with crops such as amaranth. Because both these 

crops have similar physiology, growing them as an intercrop might benefit yield and 

productivity. 

Vitamins, carotenoids, and polyphenols content of ALVs showed missing data; in other words, 

few studies have been conducted to evaluate them. This can be, therefore, regarded as gaps for 

future studies. Table 4.4 showed that sweet potato is the only vegetable among the studied to 

have been analysed for vitamins, carotenoids, and polyphenols. Although this might not be 
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good for comparison, it is still a great sign that at least there are some efforts to understand the 

nutritional value of some of ALVs. 

4.5 Conclusion  

African leafy vegetables (ALVs) are nutritious and versatile (can be consumed in different 

ways); they also have many potentials in the marginal communities since they can contribute 

to their food and nutrition security. Thus, they can contribute extensively to the improvement 

of human health. However, data unavailability creates a considerable gap in understanding 

African leafy vegetables' nutritional characteristics or content (ALVs). The former studied 

ALVs are underutilized crops, and the information on their agronomy is limited. Given this 

challenge of insubstantial data on the nutrient composition of these selected African leafy 

vegetables (amaranth, cowpea, sweet potato, and wild mustard), the main aim of this chapter 

of determining the nutrient content of former mentioned ALVs based on secondary data could 

not be fully achieved for all nutrients. Nonetheless, for all essential nutrients and minerals such 

as carbohydrates, moisture content, zinc (Zn), iron (Fe), vitamin A. The main aim was fully 

achieved. Therefore, upscaling nutrient profiling of these crops by adding more nutrients and 

doing more research on the ones characterized would be essential for the understanding and 

development of these crops. 

This chapter also confirmed a few nutrients found in the studied crops and the density at which 

they are found. The studied crops, amaranth, cowpea, sweet potato, and wild mustard, contain 

all essential nutrients necessary for growth and development in humans, and these nutrients are 

found in relatively high amounts. Therefore, it is suggested that for a proper understanding of 

these crops’ contribution, nutritionally, more characterization or in-depth analysis of “essential 

nutrients” must be conducted in future for a coherent conclusion. It is for the currently studied 

crops and other African vegetables, which may be regarded as underutilized. 
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CHAPTER 5 

Nutrition water productivity of selected African leafy vegetables (ALVs) 

5.1 Introduction 

To date, water scarcity remains a challenge in this country and many other parts of the world 

(Mabhaudhi et al., 2016). Metrics such as water productivity have been assessed for increased 

sustainable food production under water-scarce environments (Gaydon et al., 2012). 

Meanwhile, different foodstuffs have been quantified for their nutritional content to 

recommend healthy diets for an improved human nutritional status (Renault and Wallender, 

2000). Chibarabada et al. (2017b) suggested merging these similar efforts to produce adequate 

nutritious foods under water scarcity. South Africa falls under semi-arid to arid tropics, where 

water shortages are a big challenge, especially in the agricultural sector (Bello and Walker, 

2017). An increase in water productivity would be an essential strategy to contribute to coping 

strategies with additional food and nutrients requirement under water scarcity in the coming 

era. This might also introduce a much-needed turn from yield per unit of land to nutritional 

yield per unit of water, nutritional water productivity (Renault and Wallender, 2000). 

Nutritional water productivity (NWP) is a measure of nutrition yield outcome given the water 

consumed unit (Morison et al., 2016). It associates the information about crop productivity 

with their dietary requirements and water use, resulting in a valuable index used to assess food 

and nutrient security, especially under water limiting conditions (Molden et al., 2010). The 

linkage between water use, crop production, food and nutrient security plays a vital role in 

agriculture. Especially in water limiting areas, it can introduce a simple way of understanding 

the complexities in agriculture  (Nyathi, 2019) 

As stated in previous chapters, food and nutritional security continue to be a concern in South 

Africa. Consuming foods that lack proteins and essential minerals (i.e. iron, zinc, vitamins, 

carotenoids etc.) but rich in carbohydrates is one of the contributors to this challenge. Statistics 

have shown that in South Africa, given two households, one suffers from some deficiencies in 

micro-nutrients, and only a fifth of the population is food-secure (Schönfeldt and Pretorius, 

2011). Often, the people living in marginal resource-poor areas are most affected. This might 

be because most people from these areas already have limited access to nutritious foods; their 

livelihood depends on small-scale farming. However, with an additional challenge of accessing 

water, food production remains low. Therefore, it is vital to integrate strategies that will allow 

producing low-cost nutritious foods, and ALVs come as promising crops for the future to 
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contribute to food and nutrient security. In this chapter, the aim was to quantify the NWP of 

selected leafy vegetables under different management strategies to improve production and for 

better diet recommendations for human health benefit. 

5.2 Materials and methods 

The modelling output on biomass and transpiration from Chapter 3 and nutritional data from 

Chapter 4 were used to calculate nutrient content for the harvested yield (nutritional yield), 

then nutritional water productivity (NWP), and for quantifying nutrients present in these crops 

as well as their density. Data was analysed using a statistical analysis known as R statistical 

software (version 1.3.959), and the t-test analysis was used at a confidence interval level of 

95%. The formula used for nutrient content of harvested yield and NWP were as follows: 

NY = 
𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 (𝑔 100𝑔)

ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑦𝑖𝑒𝑙𝑑 (𝑘𝑔 ℎ𝑎−1)
× 100,  and NWP= 

𝑁𝑌 (𝑘𝑔)

𝑊𝑎𝑡𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑔 𝑚3)
 

here only the averages were used to understand further the NWP of selected leafy vegetables 

(amaranth, cowpea, sweet potato, and wild mustard) 

5.3 Results 

5.3.1 Nutritional water productivity in response to changing planting dates. 

Nutritional Water Productivity (NWP) of all nutrient components (total fibre, lipids/fats, total 

carbohydrates, total proteins, energy, calcium (Ca), potassium (K), iron (Fe), zinc (Zn), vitamin 

A, and total carotenoids) varied for all crops across different planting dates. To add, amaranth 

had the highest NWP content for all nutrient’s components compared to other crops, and wild 

mustard had to have the lowest. For amaranth, planting date 2 (1st of October) resulted in the 

highest NWP for all nutrients (total fibre, lipids/fats, total carbohydrates, total proteins, K, Ca, 

Fe, Zn, vitamin A, total carotenoids and energy), which was 60.87, 18.05, 167.51, 79.14, 16.30, 

11.92, 0.297, 0.06, 0.27,46.83 kg m-3 and 987.53 kcal/100g, respectively. Nutritional water 

productivity across all nutrients for cowpea, sweet potato and wild mustard was the highest at 

planting date 7 (01-March), 3 (01-November), and 1 (01-September), respectively. Although 

amaranth had the highest average NWP in most nutrients, cowpea had to have the highest water 

productivity for Ca, Fe, and Zn. The specific NWP averages for nutrients Ca, Fe, and Zn) was 

(2.82, and 22.15, and 0.13). Wild mustard had the lowest NWP compared to all other ALVs 

(Table 5.1). It is also essential to note that although amaranth had the highest nutrient content, 

sweet potato had the highest range of total energy (Table 5.1). This might have been caused by 
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the initial low or high harvested nutritional yield, high content of profiled nutrient or the 

combination of both. 
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Table 5.1: Average nutritional water productivity average of total fibre, lipids/fats, total carbohydrates, total proteins, energy, potassium (K), 

calcium (Ca), iron (Fe), zinc (Zn), vitamin A, and total carotenoids of selected ALVs (amaranth, cowpea, sweet potato and wild mustard) under 

different planting dates (1-7). 

Row 

Labels 

Total 

fibre (kg 

m-3) 

Total 

Protein 

(kg m-3) 

Total 

carbohyd

rates (kg 

m-3) 

Lipids/Fa

ts (kg m3) 

Energy 

(Kcal 100 

g-1) 

K (kg m3) Ca (kg m-

3) 

 Fe (kg m-

3) 

Zn (kg m-

3) 

Vitamin 

A (kg m-3) 

Total 

carotenoi

ds (kg m3) 

Amaranth 47.73 62.05 131.35 14.16 774.32 12.78 9.36 0.23 0.05 0.21 36.72 

1 52.80 68.69 145.40 15.67 857.19 14.15 10.35 0.25 0.05 0.24 40.65 

2 60.87 79.14 167.51 18.06 987.53 16.30 11.92 0.29 0.06 0.27 46.83 

3 54.64 71.04 150.37 16.21 886.48 14.63 10.70 0.26 0.05 0.24 42.04 

4 50.34 65.45 138.53 14.93 816.70 13.48 9.86 0.24 0.05 0.22 38.73 

5 42.84 55.70 117.90 12.71 695.08 11.47 8.39 0.20 0.04 0.19 32.96 

6 39.04 50.76 107.45 11.58 633.46 10.45 7.65 0.187 0.04 0.17 30.04 

7 34.95 45.44 96.18 10.37 567.03 9.36 6.85 0.15 0.033 0.16 26.89 

Cowpea 48.60 68.92 25.81 13.27 162.17 16.85 2.76 21.69 0.13 0.01 0.14 

1 47.94 67.99 25.46 13.09 159.97 16.62 2.72 21.39 0.13 0.01 0.13 

2 47.76 67.73 25.37 13.04 159.37 16.56 2.71 21.31 0.13 0.01 0.13 

3 48.66 69.02 25.85 13.29 162.39 16.87 2.76 21.72 0.13 0.01 0.14 

4 48.42 68.68 25.72 13.22 161.59 16.79 2.75 21.61 0.13 0.01 0.134 

5 48.82 69.24 25.93 13.33 162.91 16.92 2.77 21.79 0.13 0.01 0.14 

6 48.90 69.35 25.97 13.35 163.18 16.95 2.77 21.82 0.13 0.01 0.14 

7 49.63 70.39 26.36 13.55 165.61 17.20 2.82 22.15 0.13 0.01 0.14 

Sweet 

potato 
26.71 71.23 177.04 11.44 1312.28 5.27 2.64 0.03 0.18 <0.01 0.09 

1 26.88 71.68 178.16 11.51 1320.59 5.30 2.68 0.03 0.18 <0.01 0.09 

2 26.88 71.70 178.20 11.52 1320.91 5.30 2.68 0.03 0.18 <0.01 0.09 

3 27.45 73.20 181.93 11.76 1348.57 5.41 2.76 0.03 0.18 <0.01 0.09 
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4 25.71 68.55 170.37 11.01 1262.88 5.07 2.56 0.03 0.17 <0.01 0.08 

5 26.753 71.34 177.32 11.46 1314.33 5.27 2.67 0.03 0.13 <0.01 0.09 

6 26.68 71.15 176.83 11.43 1310.74 5.26 2.66 0.03 0.18 <0.01 0.09 

7 26.63 71.02 176.50 11.41 1308.32 5.25 2.65 0.03 0.18 <0.01 0.09 

Wild 

mustard 

13.33 8.20 11.45 3.54 110.64 0.16 0.05 0.05 0.02 0.01 0.01 

1 13.46 8.27 11.54 3.57 111.48 0.17 0.05 0.05 0.02 0.01 0.01 

2 13.42 8.26 11.53 3.56 111.39 0.17 0.05 0.05 0.02 0.01 0.01 

3 13.39 8.24 11.51 3.56 111.16 0.17 0.05 0.05 0.02 0.01 0.01 

4 13.25 8.16 11.39 3.52 110.01 0.17 0.05 0.05 0.02 0.01 0.01 

5 13.29 8.18 11.42 3.53 110.33 0.17 0.05 0.05 0.02 0.01 0.01 

6 13.24 8.15 11.38 3.52 109.91 0.17 0.05 0.05 0.02 0.01 0.01 

7 13.29 8.18 11.42 3.53 110.31 0.17 0.05 0.05 0.02 0.01 0.01 

Grand 

Total 
33.99 52.49 86.84 10.58 592.87 8.71 3.71 5.38 0.09 0.06 9.30 
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5.3.2 Nutritional water productivity in response to changing plant density 

Generally, nutrient water productivity (NWP) results varied across different plant densities for 

each crop. The general trend observed was that crops had the highest NWP for all nutrients at 

high plant density. However, wild mustard was the exception as the highest NWP was noted 

under low plant density across all nutrients. Changing plant density in wild mustard did not 

always result in an increase in leaf mass. The general trend observed was that high plant density 

resulted in high NWP for both amaranth and cowpea. Overall, amaranth had higher average 

NWPenergy, 758.86 Kcal/100g. Cowepa had the highest NWP value for K and Fe (16.54 and 

21.34 kg m-3, respectively) but had the lowest NWP for Vitamins low in (0.02). Vitamin A and 

total carotenoids content were the highest (0.23 and 36.51 kg m-3) in amaranth, and sweet potato 

had the lowest (<0.01 and 0.09 kg m-3), respectively. Comparing these ALVs, the NWP of 

selected nutrients varied largely. However, between different plant density, the difference in 

NWP was not as much for each crop.
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Table 5.2: Average nutritional water productivity (NWP) of total fibre, lipids/fats, total carbohydrates, total proteins, energy, potassium (K), 

calcium (Ca), iron (Fe), zinc (Zn), vitamin A, and total carotenoids of selected ALVs (amaranth, cowpea, sweet potato and wild mustard) under 

different plant densities (plant m-2). 

Row 

Labels 

Total 

fibre (kg 

m-3) 

Total 

Protein 

(kg m-3) 

Total 

carbohyd

rates (kg 

m-3) 

Lipids/Fa

ts (kg m3) 

Energy 

(Kcal/100 

g) 

K (kg m-3) Ca (kg m-

3) 

 Fe (kg m-

3) 

Zn (kg m-

3) 

Vitamin 

A (kg m-3) 

Total 

carotenoi

ds (kg m-

3) 

Amaranth 46.77 13.87 60.81 128.72 758.86 12.52 9.16 0.22 0.04 0.21 35.98 

8.7 47.35 14.45 61.56 130.31 768.23 12.68 9.24 0.22 0.05 0.21 36.43 

17.4 45.52 13.50 59.18 125.27 738.51 12.19 8.92 0.22 0.04 0.20 35.02 

26.1 47.45 14.08 61.70 130.57 769.85 12.71 9.29 0.22 0.05 0.23 36.51 

Cowpea 48.30 13.19 68.50 25.65 161.18 16.74 2.74 21.56 0.13 0.01 0.14 

8.7 48.64 13.28 68.99 25.84 162.33 16.86 2.76 21.71 0.13 0.01 0.14 

17.4 47.57 12.99 67.47 25.26 158.74 16.49 2.70 21.23 0.13 0.01 0.13 

26.1 48.67 13.30 69.05 25.86 162.46 16.88 2.76 21.73 0.13 0.01 0.14 

Sweet 

potato 
26.70 11.48 71.22 176.99 1311.98 5.27 2.66 0.03 0.18 <0.01 0.09 

2.5 26.70 11.44 71.21 176.99 1311.89 5.26 2.66 0.03 0.18 <0.01 0.09 

5 26.70 11.44 71.21 176.99 1311.90 5.26 2.66 0.03 0.18 <0.01 0.09 

7.5 26.70 11.44 71.22 177.02 1312.16 5.27 2.66 0.03 0.18 <0.01 0.09 

Wild 

mustard 

13.29 3.53 8.18 11.42 110.36 0.17 0.05 0.05 0.02 0.012 0.01 

13.5 13.29 3.53 8.18 11.42 110.37 0.17 0.05 0.05 0.02 0.01 0.01 

27 13.29 3.53 8.18 11.42 110.37 0.17 0.05 0.05 0.02 0.01 0.01 
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30.5 13.29 3.53 8.18 11.42 110.34 0.17 0.050 0.05 0.02 0.01 0.01 

Grand 

Total 
33.77 10.51 52.18 85.70 585.60 8.67 3.65 5.46 0.09 0.06 9.06 



 

84 

 

5.3.3 Nutritional water productivity in response to changing fertiliser  

The average total protein, lipid/fats, energy, Ca, vitamin A, and total carotenoids water 

productivity was the highest in amaranth, while total fibre, total carbohydrates, K, Fe and Zn 

water productivity was the highest in cowpea (Table 5. 3). The highest nutritious yield was 

produced for both amaranth and cowpea at different fertilizer applications upon each addition 

of water unit. However, wild mustard had significantly lower NWP across all fertilizer 

applications compared to the other studied ALVs. The NWP in energy was considerably higher 

than that of cowpea, sweet potato, and wild mustard. 
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Table 5. 3: Average nutritional water productivity (NWP) of average total fibre, lipids/fats, total carbohydrates, total proteins, energy, potassium 

(K), calcium (Ca), iron (Fe), zinc (Zn), vitamin A, and total carotenoids of selected ALVs (amaranth, cowpea, sweet potato and wild mustard) 

under different fertiliser application rates (kg ha-1).  

Row 

Labels 

Total 

fibre (kg 

m3) 

Total 

Protein 

(kg m3) 

Total 

carbohyd

rates (kg 

m3) 

Lipids/Fa

ts (kg m3) 

Energy 

(Kcal/100 

g) 

K (kg m3) Ca (kg 

m3) 

 Fe (kg 

m3) 

Zn (kg 

m3) 

Vitamin 

A (kg m3) 

Total 

carotenoi

ds (kg m3) 

Amaranth 47.45 14.07 61.69 130.58 769.79 12.70 9.29 0.22 0.05 0.21 36.52 

0 47.46 14.08 61.71 130.62 770.07 12.71 9.30 0.22 0.05 0.21 36.52 

35.5 47.45 14.07 61.69 130.57 769.77 12.70 9.29 0.22 0.05 0.21 36.51 

71 47.43 14.07 61.67 130.53 769.53 12.70 9.29 0.22 0.05 0.21 36.50 

Cowpea 48.72 13.30 69.09 25.87 162.56 16.89 2.76 21.74 0.13 0.01 0.14 

0 48.712 13.30 69.09 25.87 162.56 16.89 2.76 21.74 0.13 0.01 0.14 

30 48.72 13.30 69.09 25.87 162.56 16.89 2.76 21.74 0.13 0.01 0.14 

60 48.72 13.30 69.09 25.87 162.56 16.89 2.76 21.74 0.13 0.01 0.14 

Sweet 

potato 
26.64 11.41 71.04 176.57 1308.83 5.25 2.66 0.03 0.18 <0.01 0.09 

0 25.99 11.14 69.33 172.31 1277.2 5.13 2.59 0.03 0.17 <0.01 0.09 

30 26.79 11.48 71.45 177.58 1316.28 5.28 2.67 0.03 0.18 <0.01 0.09 

60 27.13 11.62 72.36 179.83 1332.99 5.35 2.70 0.03 0.18 <0.01 0.09 

Wild 

mustard 

13.28 3.53 8.173 11.41 110.23 0.17 0.05 0.05 0.02 0.01 0.01 

0 13.08 3.48 8.05 11.24 108.62 0.16 0.05 0.05 0.02 0.01 0.01 

35.5 13.36 3.54 8.22 11.48 110.89 0.17 0.05 0.05 0.02 0.01 0.01 
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71 13.39 3.56 8.24 11.51 111.17 0.17 0.05 0.05 0.02 0.01 0.01 

Grand 

Total 
34.02 10.58 52.50 86.11 587.85 8.75 3.69 5.51 0.09 0.06 9.19 
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5.3.4 Nutritional water productivity in response to irrigation 

There was a small/ no difference observed in the nutritional water productivity of nutrients 

(NWP) across all crops, which meant that subjecting crops to different water treatments did not 

affect the NWP of the crops. Nonetheless, amaranth and cowpea had the highest average NWP 

across all nutrients, and wild mustard had the lowest. Sweet potato had the highest energy with 

a mean average of 1313.961 kcal/100 g, and wild mustard the lowest (110.316 Kcal/100 g). 
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Table 5. 4: Nutritional water productivity of total fibre, lipids/fats, total carbohydrates, total proteins, energy, potassium (K), calcium (Ca), iron 

(Fe), zinc (Zn), vitamin A, and total carotenoids of selected ALVs (amaranth, cowpea, sweet potato and wild mustard) under different irrigation 

(mm mm-1) levels. 

Row 

Labels 

Total 

fibre 

(kg m3) 

Total 

Protein (kg 

m3) 

Total 

carbohydrates 

(kg m3) 

Lipids/Fats 

(kg m3) 

Energy 

(Kcal/100 

g) 

K (kg 

m3) 

Ca (kg 

m3) 

Fe (kg 

m3) 

Zn (kg 

m3) 

Vitamin 

A (kg 

m3) 

Total 

carotenoids 

(kg m3) 

Amaranth 47.45 14.07 61.69 130.58 769.78 12.70 9.29 0.22 0.05 0.21 36.51 

0 47.55 14.10 61.80 130.82 771.24 12.73 9.31 0.22 0.05 0.21 36.58 

20 47.43 14.07 61.67 130.54 769.60 12.70 9.29 0.22 0.05 0.21 36.50 

40 47.37 14.05 61.58 130.36 768.51 12.68 9.28 0.22 0.05 0.21 36.45 

Cowpea 48.70 13.30 69.07 25.87 162.52 16.88 2.76 21.74 0.13 0.01 0.14 

0 48.73 13.31 69.11 25.88 162.61 16.89 2.76 21.75 0.13 0.01 0.14 

20 48.66 13.29 69.02 25.85 162.39 16.87 2.76 21.79 0.13 0.01 0.14 

40 48.72 13.30 69.09 25.87 162.57 16.89 2.76 21.74 0.13 0.01 0.14 

Sweet 

potato 

26.74 11.46 71.32 177.23 1313.96 5.27 2.67 0.03 0.18 <0.01 0.09 

0 26.56 11.38 70.83 176.03 1304.83 5.24 2.65 0.03 0.18 <0.01 0.09 

20 26.78 11.47 71.42 177.50 1315.70 5.28 2.67 0.03 0.18 <0.01 0.09 

40 26.89 11.52 71.72 178.26 1321.35 5.30 2.68 0.03 0.18 <0.01 0.09 

Wild 

mustard 

13.29 3.53 8.18 11.42 110.32 0.17 0.05 0.05 0.02 0.01 0.01 

0 13.12 3.49 8.08 11.27 108.92 0.16 0.05 0.05 0.02 0.01 0.01 

20 13.27 3.53 8.17 11.41 110.21 0.17 0.05 0.05 0.02 0.01 0.01 

40 13.47 3.58 8.29 11.57 111.82 0.17 0.05 0.05 0.02 0.01 0.01 

Grand 

Total 

34.04 10.59 52.57 86.28 589.15 8.76 3.69 5.509 0.09 0.06 9.19 
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5.4 Discussion   

This section's objective was to quantify the nutritional water productivity of selected ALVs 

(amaranth, cowpea, sweet potato, and wild mustard) under different management strategies 

(planting date, plant density, fertiliser application and irrigation). Crops differed in their 

nutritional content, which resulted in a varied NWP. Overall, cowpea was more nutrient-dense 

compared to the other three crops. Different planting date resulting in high NWP for different 

crop species meant that these ALVs could be planted either early or late during the season. 

Table 5.1 shows that amaranth had high NWP across all nutrients, contrary to nutrient 

composition findings. Since cowpea had to be more nutrient-dense than other crops in the 

previous chapter, one might expect it to have high NWP, which was not the case. Amaranth’s 

was favoured by early planting, while cowpea does better when planted late, and this was 

attributed to nutrient content and water availability. Because planting date 2 (01-September) is 

the beginning of rainfall season at Ukulinga farm and yield production starts to increase slowly. 

The NWP ratio was increased for all crops.  

Low to medium plant density resulted in high NWP across ALVs. However, Cowpea did not 

follow this trend as its NWP showed an increase under high plant density. An increase in plant 

density promotes vertical growth. Resource competition under this condition results in plants 

developing small leaves and weak stems to speed up growth and development. However, this 

may mean less nitrogen content which reduces total protein. Table 5.2 shows that cowpea 

demonstrated a copying strategy where there was a trade-off among different nutrients given 

different plant density. An increase in total carbohydrates, energy, and total fibre compensated 

for the decrease in protein. These results agreed with the results obtained by (Kanda et al., 

2020)  

This novel concept, nutrient concentration, water use, and production can be linked together to 

understand better crops growth and productivity (Nyathi et al., 2018b). The similarities 

observed under NWP response to fertiliser application and irrigation may have been due to a 

carried over error from the modelling chapter (chapter 3). Here a similar issue was observed in 

a modelling output and carried over when estimating harvestable nutritional yield. However, 

according to Chibarabada et al. (2017) and Nyathi et al. (2018b), different water regimes had 

an accountable effect on the NWP of crops, including one of the studied vegetable amaranth. 

Another challenge that may have resulted in the results showing no treatment effects under 

mentioned management practices may be the number of published papers on the nutrient 



 

90 

 

content of ALVs. The number of published articles available for each crop's nutrient 

composition might have potentially caused bias and gave the wrong impression on crops' 

nutrient concentration. For example, wild mustard was the least nutrient-dense leafy vegetable 

amongst the other three. This limited availability of published information might have truly 

cased biases in the results obtained. Nonetheless, we cannot fully conclude that there is little 

literature on this crop's nutrient composition than other crops.  

5.5. Conclusions  

This section presented new insight that there is still room for improvement when speaking of 

African leafy vegetables (ALVs). To improve our understanding of ALVs, it is essential to 

design more research or projects that will focus on the growth and production of these crops. 

It is also of equal essence to understand agronomy and publish more papers on that aspect so 

that it is easier to calibrate and model these ALVs. According to what we have, it might be safe 

to conclude that these selected ALVs (amaranth, cowpea, sweet potato, and wild mustard) have 

higher NWP for most nutrients than famous vegetable cabbage. However, more work still 

needs to be done to give evidence or support that statement strongly.
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CHAPTER 6 

GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

6.1 General discussion 

The present study assessed the impact of different agronomic management (planting date, plant 

density, fertiliser application, and irrigation) on nutrient composition and nutritional water 

productivity (NWP) of African leafy vegetable (ALVs). Each chapter served as fulfilment for 

each objective mentioned above. Key findings were that the leaves of amaranth, cowpea, sweet 

potato, and wild mustard are very nutrient-dense. However, their nutritional concentration or 

density may vary with change in agronomic practices. The combination of agronomic 

management practices also differs from one crop to another, and this was important to note to 

understand best management practices for each crop. The major challenge was the availability 

of published papers on the agronomy and nutrient composition of ALVs, which might have 

resulted. 

6.1.1 Agronomic management of selected African leafy vegetables for improved Yield, 

Water Use and Water productivity  

There was a significant effect on growth and productivity observed in ALVs (amaranth, 

cowpea, sweet potato, and wild mustard) upon changing agronomic management practices, 

with irrigation as the exception. The reason might have been that during modelling, the soil 

was field into capacity, so adding any amount of water resulted in no change in terms of growth 

and development of these ALV. For future research, it is ideal that this aspect must is looked 

at again. 

6.1.2 Nutrition composition of African leafy vegetables 

The results revealed that the leaves of amaranth, cowpea, sweet potato and wild mustard have 

good nutritional attributes. They agree with the study done by Enyiukwu et al. (2018), who 

suggested that consumption of such vegetables may account for a good source of nutrients that 

could be beneficial, health-wise, to both children and adults. The superior nutrient attribute of 

amaranth as a vegetable crop is to be commanded and may serve as a reasonable explanation 

of why this is a slowly emerging food choice in many feeding schemes, especially during warm 

seasons. The non-uniformity in published papers for nutrient composition of ALVs off-limits 

accurate and fair conclusions on nutrient concentration.  
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6.1.3 Nutrition water productivity of selected African leafy vegetables (ALVs) 

Nutritional water productivity varied among the crops. Nutritional yield (harvested) had a 

considerable impact on the nutritional water productivity of different nutrients across all crops. 

The nutritional yield was not affected by water application, resulting in different water 

treatments not affect NWP. Chibarabada et al. (2017) made a similar observation on cowpea 

and other legume crops where there was no significant difference in NWP across various water 

regimes. These findings raise some question as there is still no proof if this occurrence is caused 

by cowpea being drought tolerant of an undefined error. 

6.2 Conclusions 

More research must focus on modelling indigenous crops. And to achieve this, researchers 

must develop a better understanding of these crops' agronomy is required for future modelling 

studies. Future research still needs to do more nutrient profiling studies of many ALVs and 

other indigenous crops, more especial to assess the NWP of crops. It is also important to 

consider conducting tasks that will investigate NWP under different management practices for 

a different location, including more rural communities where substantial farming is still 

relevant.  

6.3 Recommendations 

It is necessary to study factors affecting the growth and productivity of ALVs to provide new 

bases for modelling. Analysing these factors will also help in understanding the concentration 

of nutrients in different environments. For example, protein content tends to decrease where 

there is less water available for growth due to less nitrogen in dry leaves—in this way, 

minimizing challenges faced when modelling NWP. Lastly, Nutrient concentration and 

nutritional water productivity must be assessed under various sample treatments (cooked, raw, 

blanched, etc.), requiring efforts from different disciplines
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