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Abstract 

Multiple-input multiple-output (MIMO) systems utilize multiple transmit and receive antennas in 

order to achieve a high spectral efficiency and improved reliability for wireless links. However, 

MIMO systems suffer from high system complexity and costs, due to inter-channel interference 

(ICI) at the receiver, the requirement of transmit-antenna synchronization (TAS), and the need 

for multiple radio frequency (RF) chains.  

Spatial modulation (SM) is a MIMO system which maintains a high spectral efficiency without 

suffering from ICI or TAS, while utilizing a single RF chain. However, the SM receiver requires 

full knowledge of the channel state information (CSI) to achieve optimal error performance, 

thereby increasing the receiver detection complexity.  

To overcome this, differential SM (DSM) has been developed which does not require CSI to 

perform detection. However, the maximum-likelihood (ML) detection for DSM results in 

excessive computational complexity when the number of transmit antennas is large, and suffers 

from a 3 dB signal-to-noise ratio (SNR) penalty compared to coherent SM.  

This dissertation aims to reduce the computational complexity of DSM, and mitigate the 3 dB 

SNR penalty. A generalized differential scheme based on SM (GD-SM) is proposed, which 

employs optimal power allocation to reduce the 3 dB SNR penalty. GD-SM divides a frame into 

a reference part and normal part. The reference part is transmitted at a higher power than the 

normal part, and is used to encode and decode the information in the normal part. Optimal power 

allocation is applied to the system, and the results demonstrate that at a bit error rate (BER) 

of 10−5 and for a frame length of 400, GD-SM is only 0.5 dB behind coherent SM. 

The frame structure of GD-SM and optimal power allocation is extended to conventional DSM 

(C-DSM). At a BER of 10−5, a 2.5 dB gain is achieved over C-DSM for a frame length of 400. 

Furthermore, the frame structure allows for easy implementation of quadrature amplitude 

modulation (QAM), which yields an additional gain in error performance. The use of QAM 

constellations is not possible in C-DSM. 

A simple, near-ML, low-complexity detector (L-CD) is proposed for DSM. The L-CD exploits 

the features of the phase shift keying, and amplitude phase shift keying constellations to achieve 

near-ML error performance, and at least a 98% reduction in computational complexity. The 

proposed detector is independent of the constellation size, and demonstrates a significantly lower 

complexity than that of current L-CDs.   
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1. Introduction 

Wireless communications is the preferred method with which we communicate [1], and continues 

to experience rapid growth, making it the fastest growing segment in the communications 

industry [2-3]. This is due to the exponential growth in mobile cellular systems, which has led to 

an increase in voice traffic [2], as well as an increase in the use of data services, such as broadband 

internet, multimedia streaming, video teleconferencing, and file transfer [2].   

Thus, there is an increased demand for higher data rates and improved quality of service (QoS), 

which has directly led to the need for wireless systems with improved spectral efficiency and 

reliability [3]. However, in order to meet these requirements, designers need to overcome various 

challenges, namely, limited spectrum availability and complex fading environments [3].  

The use of multiple receive antennas is one method employed to reduce the effects of noise and 

fading, thereby improving the reliability of the wireless system without affecting the bandwidth 

of the transmitted signal [4]. Moreover, the use of multiple transmit antennas allows the wireless 

system to achieve higher data rates through the transmission of multiple data streams [4]. 

Consequently, there is considerable research carried out on multiple-input multiple-output 

(MIMO) wireless communication systems. 

In the subsequent subsections, a brief description is provided of the technology used in some form 

within this dissertation.   

1.1. Multiple-Input Multiple-Output Systems 

MIMO systems are regarded as one of the most significant breakthroughs in the communications 

industry, as it provides a solution to the bottleneck of traffic capacity experienced in wireless 

communication systems [5]. MIMO, unlike single-input single-output (SISO) systems, makes use 

of multiple transmit and receive antennas, which permits transmission and reception of multiple 

data streams concurrently.  Improved error performance and throughput may be achieved over a 

SISO system via spatial multiplexing, spatial diversity, or a combination of both [6-7].  

The diagonal-Bell Laboratories layered space-time (D-BLAST) and vertical-BLAST (V-BLAST) 

architectures in [8-9], respectively, exploit spatial multiplexing in MIMO systems to realize 

spectral efficiencies of up to 20-40 bits/s/Hz. However, the use of spatial multiplexing requires 

that the transmit antennas be synchronized during transmission [6-7], since the detector assumes 

that transmission from the antennas occurs simultaneously [6]. Furthermore, spatial multiplexing 

results in inter-channel interference (ICI) at the receiver, which degrades the error performance 

of the wireless link. However, ICI may be reduced by providing sufficient spacing among the 

transmit and receive antennas [10].  
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Spatial diversity is utilized to improve the reliability of wireless links [6]. However, schemes 

incorporating spatial diversity still require inter-antenna synchronization (IAS), and may suffer 

from ICI at the receiver. In [11], an Alamouti scheme based on a MIMO system with two transmit 

antennas is presented, which achieves spatial diversity at the transmitter. The proposed system 

improves the reliability of the wireless link, albeit at a lower data rate, since transmission and 

demodulation of two symbols occurs over a period of two time slots.  

MIMO systems also require multiple radio frequency (RF) chains, usually one for each transmit 

antenna. This, coupled with ICI and IAS, leads to increased complexity and costs, as well as 

lower energy efficiency. However, since the advantages of MIMO are substantial, research is 

conducted into MIMO systems which have reduced complexity and costs, while maintaining the 

advantages of MIMO. 

1.2. Spatial Modulation 

Spatial modulation (SM) [12-15] is a newly developed, spectrally efficient, transmission 

technique based on MIMO. SM, unlike conventional MIMO systems, only activates a single 

transmit antenna in a given time slot, in order to convey information. The remaining transmit 

antennas, transmit zero power [12-13]. The advantage of this, is that SM requires no IAS at the 

transmitter, and is capable of completely avoiding ICI at the receiver. Furthermore, since SM 

only activates a single antenna in each time instant, only a single RF chain is required for the 

system [14]. As a result, SM incurs reduced costs and overall complexity relative to existing 

MIMO systems, and is capable of outperforming MIMO systems such as V-BLAST [12, 15].  

SM maintains a relatively high spectral efficiency compared to conventional MIMO schemes. 

For an SM system with 𝑁𝑡 transmit antennas and 𝑁𝑟 receive antennas, as shown in Figure 1, the 

high spectral efficiency is achieved by mapping the information bits to an amplitude and/or phase 

modulated (APM) symbol in the signal domain, and a specific transmit antenna index, which 

determines the activated transmit antenna in the spatial domain. It is noted that the information 

mapped to the spatial domain is not transmitted explicitly, but rather via the index of the activated 

transmit antenna [7]. Furthermore, the APM symbol may be drawn from an 𝑀-ary quadrature 

amplitude modulation (𝑀-QAM) or 𝑀-ary phase shift keying (𝑀-PSK) constellation.    
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Figure 1: System Model of SM [14]. 

 

Similarly to conventional MIMO schemes, SM performs coherent detection, which therefore, 

requires that the receiver has full knowledge of the channel state information (CSI). In [16], it is 

concluded that the error performance of SM is more robust than V-BLAST when in the presence 

of channel estimation errors. However, channel estimation errors in SM are still inevitable, thus 

error performance penalties are expected [16-17]. This is evident in high mobility conditions, 

wherein the fading environment rapidly changes [17-18]. Obtaining the precise CSI in such 

conditions results in performance limitations imposed by high processing complexity, and 

considerable pilot overhead and channel estimation errors [17-18].  

1.3. Differential Spatial Modulation 

Differential spatial modulation (DSM) [18-21] is a MIMO system which utilizes a similar 

architecture to that of SM, wherein at any time instant, only a single transmit antenna is activated 

to convey information. As a result, DSM is able to maintain the merits of SM over conventional 

MIMO systems. 

In DSM, APM symbols are first differentially encoded, then transmitted via a space-time block. 

The information bits are mapped to 𝑁𝑡 APM symbols, and one antenna matrix (AM), out of a 

total of 𝑄 AMs. The AM is utilized to govern the order in which the 𝑁𝑡 transmit antennas are 

activated over 𝑁𝑡 time slots. Thereafter, based on the selected AM, the 𝑁𝑡 transmit antennas 

convey 𝑁𝑡 APM symbols within the 𝑁𝑡 time slots. The APM symbols are differentially encoded 

based on the symbols transmitted in the previous space-time block, and are drawn from an 𝑀-

PSK or 𝑀-𝑀 amplitude phase shift keying (APSK) constellation, the latter of which allows for 

improved spectral efficiency [21]. The DSM schemes in [18-21] do not permit the use of QAM 

modulation, as it is not compatible with the differential process.  



5 

 

By nature, the DSM detection process is non-coherent, thus, knowledge of the CSI is not required 

for the maximum likelihood (ML) detector to achieve optimal error performance. This reduces 

the processing complexity of DSM, and furthermore, there are no performance penalties incurred 

as a result of pilot overheads and channel estimation errors. However, due to the non-coherent 

detection process, DSM does suffer from a 3 dB error performance penalty compared to coherent 

SM. Additionally, the computational complexity, which is the number of real-valued 

multiplications in an algorithm [22], of the DSM ML detector grows exponentially with an 

increase in 𝑁𝑡.  

This excessive computational complexity has prompted research into low-complexity detection 

schemes for DSM. In [22-23], low-complexity detectors have been proposed for DSM with 𝑀-

PSK modulation, which achieve significant computational complexity reductions over the ML 

detector. However, the detector in [22] sacrifices error performance for lower computational 

complexity or vice versa, when 𝑁𝑡 is large; while the detector in [23] offers suboptimal error 

performance, and whose computational complexity is dependent upon the size of the 𝑀-PSK 

constellation. Furthermore, the algorithms in [22-23] are complicated to execute.  

In [24], a multiple-symbol differential detection (MSDD) scheme is proposed for spatial 

modulation. The MSDD scheme observes multiple received space-time blocks, to determine the 

information contained in a single space-time block. The scheme achieves a considerable gain in 

error performance over conventional DSM, however, this comes at the cost of exorbitant 

computational complexity.  

1.4. Generalized Differential Modulation  

Generalized differential modulation (GDM) has been introduced in [25-26] for differential 

schemes using space-time block codes (STBC) and amplify-and-forward (AF) relay networks, 

respectively. The proposed GDM schemes are capable of reducing the error performance penalty 

incurred through non-coherent detection.  

In both schemes, the transmitted frame begins with reference block which conveys no 

information, and is succeeded by normal, information conveying blocks, which fill the remainder 

of the frame. The reference block and normal blocks are differentially encoded based on the 

previous and current reference block, respectively. Additionally, the receiver utilizes the 

reference signal to retrieve the information contained within the following normal blocks. 

Based on this frame structure, the schemes allocate more of the transmit power to the reference 

block as compared to the subsequent normal blocks. As a result, the received reference signal 

provides the receiver with an improved estimation of the combined channel matrix [25-26]. 
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Therefore, the estimation-detection carried out via the ML detector achieves improved error 

performance, as compared to conventional differential modulation with equal power allocated 

among all blocks [25-26].   

2. Motivation and Research Objective 

DSM [18-21] is an attractive MIMO-based alternative to coherent SM, as its detector does not 

require the CSI to perform detection. Additionally, DSM achieves a relatively high spectral 

efficiency compared to SM, and does not suffer from the performance limiting factors such as 

IAS and ICI [19-20]. Therefore, DSM is a promising transmission scheme which may be 

employed in future mobile and fixed wireless communication systems.  

The ML detector utilized in DSM, however, does experience exponential growth in 

computational complexity when the number of transmit antennas increase [23]. This is due to the 

fact that the ML detector performs an exhaustive search through all possible combinations of the 

𝑄 AMs and 𝑁𝑡 APM symbols.  

Furthermore, the non-coherent detection results in a 3 dB error performance penalty compared to 

coherent SM [18]. Also, unlike coherent SM, DSM is unable to make use of the power and 

spectrally efficient QAM constellation. 

Low-complexity detectors have been proposed for DSM in [22] and [23], each of which has its 

own advantages and disadvantages. The existing low-complexity detectors either sacrifice error 

performance for lower computational complexity or vice versa, or are suboptimal in their error 

performance and still realize high computational complexity due to dependence upon the system 

configuration. Furthermore, the algorithms are complicated to execute.  

Additionally, the MSDD scheme developed for DSM to alleviate the 3 dB error performance in 

[24], suffers from exorbitant computational complexity.  

Motivated by the above, this dissertation aims to provide a low-complexity detector, whose error 

performance is the same as that of the ML detector; and whose computational complexity is 

considerably lower than the ML and current low-complexity detectors in [22-23], while being 

independent of the system configuration.  

The second objective is to develop an easily implementable DSM system, capable of mitigating 

the 3 dB error performance gap relative to SM, without incurring additional computational 

complexity. Additionally, the theoretical error performance of the DSM system must be derived 

to validate the improvement achieved in error performance.  

The outcomes of the research conducted are presented in Papers A and B, which follow.    
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3. Contributions of Included Papers 

3.1. Paper A 

K. Kadathlal, H. Xu, and N. Pillay, “A Generalized Differential Scheme for Spatial Modulation 

Systems,” IET Commun., [prepared for second review], Dec. 2016. 

 

In Paper A, the system models of SM and DSM are first presented. Thereafter, a generalized 

differential scheme for SM (GD-SM) is introduced, together with the optimal ML detector. The 

frame structure and optimal power allocation employed in GD-SM is then given in detail. 

Furthermore, the frame structure and power allocation concept used in GD-SM is extended to 

conventional DSM, thus a generalized DSM (G-DSM) scheme is formulated. An upper bound on 

the average bit error probability is provided for both proposed schemes. The complexity of the 

ML detectors for the various schemes, are analyzed and discussed. Finally, simulation and 

theoretical results are presented for GD-SM and G-DSM, with 𝑀-PSK and 𝑀-QAM modulation, 

and varying constellation sizes and antenna configurations. The results demonstrate a 

considerable improvement in error performance over the respective differential system without 

optimal power allocation. Additionally, the derived theoretical upper bound on the average bit 

error probability closely matches the simulation results at high signal-to-noise ratios (SNRs).  

 

3.2. Paper B 

H. Xu, K. Kadathlal, and N. Pillay, “A Simple Low-Complexity Near-ML Detection Scheme for 

Differential Spatial Modulation,” SAIEE Africa Research Journal, [under review], Dec. 2016. 

 

Paper B aims to reduce the computational complexity incurred by the DSM ML detector, for PSK 

and APSK modulation. Firstly, the DSM systems for PSK and APSK modulation are presented 

together with expressions for the respective optimal ML detector. Thereafter, the current low-

complexity detectors, identified in the literature, are discussed. A simple low-complexity detector 

is then presented for DSM with 𝑀-PSK modulation, and the proposed algorithm is modified and 

applied to DSM with 𝑀-𝑀 APSK modulation. A complexity analysis demonstrates that the 

proposed detectors achieve a considerable reduction in computational complexity over their 

respective ML detector and existing low-complexity detectors. Finally, simulation results are 

presented for 𝑀-PSK and 𝑀-𝑀 APSK modulation, with various transmit and receive antenna 

configurations. It is shown that the proposed detector achieves optimal ML error performance 

throughout the SNR range, with a significantly reduced computational complexity.  
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4. Future Work 

The upper bound on the ABEP derived in Paper A for GD-SM and G-DSM does not closely 

match the simulated error performance results at low SNRs. Therefore, there is a need for a 

simple, closed form theoretical solution, which provides an exact match to the simulated error 

performance of the proposed systems, throughout the SNR range. Additionally, this solution 

should provide an exact match irrespective of the system configuration.  
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Abstract 

Spatial modulation (SM) is an efficient transmission scheme based on multiple-input multiple-

output systems. SM, by nature, requires coherent detection to achieve optimal error performance. 

This requires that the receiver has full knowledge of the channel state information (CSI), 

however, determining the CSI results in an increase in the detection complexity at the receiver. 

Differential modulation systems are capable of performing detection without knowledge of the 

CSI at the receiver, however, they suffer a 3 dB error performance penalty as compared to their 

coherent counterparts. In this paper, we present a generalized differential scheme for spatial 

modulation (GD-SM) based on generalized differential modulation, which is capable of reducing 

the performance penalty incurred through optimal power allocation. Furthermore, we extend the 

architecture of GD-SM and optimal power allocation to conventional differential spatial 

modulation. The architecture of the proposed systems, advantageously permits the use of either 

𝑀-ary quadrature amplitude modulation or 𝑀-ary phase shift keying constellations. Simulation 

and theoretical results demonstrate that GD-SM incurs only about 0.5 dB performance loss as 

compared to coherent SM when the frame length is 400. 

 

  



14 

 

1. Introduction 

Spatial Modulation (SM) is a high-rate, spectrally efficient multiple-input multiple-output 

(MIMO) transmission scheme, which utilizes the transmit antenna index in addition to a standard 

modulated symbol to convey information [1]. SM when compared to conventional MIMO 

systems requires no transmit antenna synchronization and is capable of eliminating inter-channel 

interference (ICI) at the receiver, since only one transmit antenna is active at any time instant [1-

2]. However, for optimal error performance, the receiver in an SM system requires full knowledge 

of the channel state information (CSI) to perform coherent detection. This increases detection 

complexity at the receiver as well as limitations imposed by pilot overhead and channel 

estimation errors [3].  

Differential spatial modulation (DSM) [3-5] is an attractive alternative to coherent spatial 

modulation, since it does not require CSI to perform detection, while maintaining the advantages 

of SM over conventional MIMO systems. However, due to the differential encoding process at 

the transmitter and non-coherent detection at the receiver, DSM suffers an approximate 3 dB 

error performance penalty as compared to an SM system of equal spectral efficiency [4-5].  

In [6-7], generalized differential modulation (GDM) schemes are proposed, which are capable of 

reducing the error performance penalty incurred through non-coherent detection. Liangbin et al. 

[6] provide a GDM scheme for space-time block code (STBC) systems, wherein the transmitted 

frames are divided into a reference block and normal blocks, both of which are differentially 

encoded based on the previous and current reference block, respectively. It is noted that the 

reference and normal blocks are both used to convey information from the source to destination. 

The improvement in error performance is achieved by allocating more transmit power to the 

reference block as compared to the normal blocks, resulting in an improved estimation of the 

combined channel matrix during demodulation [6]. In [7], Fang et al. apply a similar GDM frame 

architecture to [6] in order to bridge the gap between coherent and non-coherent modulation for 

amplify-and-forward (AF) relay networks.  

The concept of power allocation between the reference and normal blocks is studied in [6-7], in 

order to maximize the average output signal-to-noise ratio (SNR) of the respective systems. On 

this note, an optimization problem is formulated in both [6] and [7], to which optimal solutions 

are derived using Lagrange multipliers. The optimal power allocation presented in [7] is similar 

to that of [6], however unlike [6], it is dependent upon the statistics of the differential modulation 

scheme. In [6-7], it is observed that the error performance may also be improved by increasing 

the frame length, since the power allocated to the reference block is increased. This holds true, 

provided that the channel remains unchanged for the duration of the frame.   
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Motivated by the GDM works in [6-7], we propose a generalized differential scheme for SM 

(GD-SM) based on the concept of power allocation. Each frame in the proposed scheme consists 

of a reference block and normal blocks, of which only the normal blocks convey information. 

The normal blocks are differentially encoded based on the reference block, however, unlike in 

[6-7], the reference block is not differentially-encoded based on the previous reference block, and 

rather it remains constant throughout transmission. This property provides an option for the 

information carrying symbols in the normal-block to be drawn from either an 𝑀-ary phase shift 

keying (𝑀-PSK) or M-ary quadrature amplitude modulation (𝑀-QAM) constellation, the latter 

of which requires no complicated encoding algorithms to achieve a suitable constellation for use 

in differential modulation. This is advantageous as 𝑀-QAM is more spectrally and power 

efficient than 𝑀-PSK [8].  

Furthermore, we extend the structure and power allocation concept used in GD-SM to 

conventional DSM, and thus, we present a generalized scheme for differential spatial modulation 

(G-DSM).  

The optimal power allocation between the reference block and normal blocks studied and derived 

in [6], is implemented in the proposed GD-SM and G-DSM systems. The simulation results 

demonstrate that both GD-SM and G-DSM with optimal power allocation yield improved error 

performance as compared to the respective system, with equal power allocated to the reference 

and normal blocks. The error performance is also shown to approach that of the coherent SM 

detector of equal spectral efficiency, as the length of the transmitted frame increases.  

The remainder of this paper is organized as follows. In Section II, we present the system models 

for coherent SM and DSM from [1] and [4-5], respectively. In Section III, we introduce the GD-

SM scheme and present the optimal power allocation given by [6]. In Section IV, we extend the 

structure of GD-SM and optimal power allocation to G-DSM. The theoretical performance 

analysis and complexity analysis are presented in Section V and Section VI, respectively. Section 

VII presents the numerical results obtained from Monte-Carlo simulations, and Section VIII 

concludes the paper. 

Notation: Bold lowercase and uppercase letters denote vectors and matrices, respectively. (·)𝑇 

and ‖∙‖𝐹 are the transpose and the Frobenius norm of a vector or matrix. ⌊⋅⌋, (⋅)! and (⋅)‼ are the 

floor operator, the factorial of an argument and the double factorial of an argument, respectively. 

𝑰𝑁 is the 𝑁 × 𝑁 identity matrix, 𝑑𝑖𝑎𝑔(𝒙) is a square diagonal matrix with elements of the 

vector 𝒙, and 𝐸[⋅] is the expected value of an argument. 
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2.  System Model 

2.1. Spatial Modulation [1] 

Consider an SM system with 𝑁𝑡 transmit antennas and 𝑁𝑟 receive antennas. Information is 

transmitted via the antenna index as well as a modulated symbol. In each transmitted codeword, 

𝒙 ∈ ℂ𝑁𝑡 × 1, only a single antenna is activated, while the remaining antennas transmit zero power. 

For each frame, 𝑏𝑆𝑀1 = log2(𝑁𝑡) bits determine the index, 𝑖 (𝑖 ∈ [1:𝑁𝑡]), of the activated 

transmit antenna, and 𝑏𝑆𝑀2 = log2(𝑀) bits determine the symbol, 𝑠, to be transmitted, which is 

drawn from the 𝑀-QAM or 𝑀-PSK constellation, 𝝌, of normalized power, i.e. 𝐸[|𝑠|2] = 1. 

Therefore, the spectral efficiency of SM is 𝑏𝑆𝑀1 + 𝑏𝑆𝑀2 bits/s/Hz.  

The transmitted codeword is now 𝒙 = [0,… , 0, 𝑠, 0, … ,0]𝑇, where the 𝑖𝑡ℎ element is the only non-

zero entry in 𝒙. The received signal, 𝒚 ∈ ℂ 𝑁𝑟 × 1, is then: 

 

𝒚 = 𝑯𝒙 + 𝒏, (A.1) 

 

where 𝑯 ∈ ℂ 𝑁𝑟 × 𝑁𝑡 and 𝒏 ∈ ℂ 𝑁𝑟 × 1 denote the frequency flat Rayleigh fading channel matrix 

and the additive white Gaussian noise (AWGN) vector, respectively. The entries of 𝑯 and 𝒏 are 

independent and identically distributed (i.i.d.) complex random variables with Gaussian 

distributions 𝒞𝒩(0,1) and 𝒞𝒩(0, 𝜎𝑆𝑀
2 ), respectively. Therefore, the average SNR of the SM 

system is 𝛾̅𝑆𝑀 =
1

𝜎𝑆𝑀
2 . 

At the receiver, the joint detection rule based on the maximum likelihood (ML) principle may be 

employed to estimate the antenna index and transmitted symbol as [4]: 

 

[𝑖̂, 𝑠̂] = argmin 
∀ 𝑖̂
∀ 𝑠̂

‖𝒚 − 𝑯𝒙̂‖𝐹
2  . 

(A.2) 

 

The ML detector utilizes the CSI to perform an exhaustive search over all antenna indices and 𝑀 

symbols to achieve optimal error performance.  
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2.2. Differential Spatial Modulation [4-5] 

In DSM, communication is carried out block-wise, where one of 𝑄 antenna matrices (AMs) is 

selected to transmit 𝑁𝑡 symbols, via 𝑁𝑡 transmit antennas over 𝑁𝑡 time slots. DSM maintains the 

property of SM whereby in each time slot only a single transmit antenna is activated, which is 

determined by the selected AM, while the remaining antennas transmit zero power.  

There are a total of 𝑄 = 2⌊log2(𝑁𝑡!)⌋ unique AMs available for use, where each AM, 𝑨𝑴𝑞 (𝑞 ∈

[1: 𝑄]), is an 𝑁𝑡 × 𝑁𝑡 matrix containing a single non-zero entry in each column (time slot). For 

example, given 𝑁𝑡 = 2, 𝑄 = 2, and the set of AMs is given by 𝑨𝑴𝑞 = [
1 0
0 1

  ,
0 1
1 0

], of 

which 𝑨𝑴2 = [
0 1
1 0

].  

For the 𝑡𝑡ℎ transmitted space-time block, 𝑏𝐷𝑆𝑀1 = log2(𝑄) bits determine the index, 𝑞, of the 

AM to be used, and 𝑏𝐷𝑆𝑀2 = 𝑁𝑡 log2(𝑀) bits determine the modulated symbols, 𝑠𝑙 (𝑙 ∈ [1:𝑁𝑡]), 

which are drawn from the normalized 𝑀-PSK constellation, 𝝍. The spectral efficiency of DSM 

therefore is 
1

𝑁𝑡
(𝑏𝐷𝑆𝑀1 + 𝑏𝐷𝑆𝑀2) bits/s/Hz [5]. The 𝑁𝑡 modulated symbols constitute the symbol 

vector, 𝒔(𝑡) = [𝑠1, … , 𝑠𝑁𝑡].  

Then, for the 𝑡𝑡ℎ space-time block, the information matrix, 𝑺(𝑡) ∈ ℂ𝑁𝑡 × 𝑁𝑡, is given by:  

 

𝑺(𝑡) = 𝑨𝑴𝑞𝑑𝑖𝑎𝑔(𝒔
(𝑡)). (A.3) 

 

The differential transmission matrix, 𝑿(𝑡) ∈ ℂ𝑁𝑡 × 𝑁𝑡, is then expressed as: 

 

𝑿(𝑡) = 𝑿(𝑡−1)𝑺(𝑡), (A.4) 

 

where 𝑿(0) = 𝑰𝑁𝑡. Note that for DSM, information is differentially encoded using the differential 

transmission matrix of the preceding space-time block. The received signal, 𝒀(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡, is 

calculated as follows: 

 

𝒀(𝑡) = 𝑯(𝑡)𝑿(𝑡) +𝑵(𝑡), (A.5) 
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where 𝑵(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡, is the AWGN matrix whose entries are i.i.d. random variables with 

Gaussian distribution 𝒞𝒩(0, 𝜎𝐷𝑆𝑀
2 ). The average SNR for the DSM system is therefore 𝛾̅𝐷𝑆𝑀 =

1

𝜎𝐷𝑆𝑀
2 .  

Assuming quasi-static fading, we have 𝑯(𝑡) = 𝑯(𝑡−1), and using (A.4), the received signal 𝒀(𝑡) 

may be rewritten as: 

 

𝒀(𝑡) = 𝒀(𝑡−1)𝑺(𝑡) + 𝑵̃(𝑡), (A.6) 

 

where 𝒀(𝑡−1) = 𝑯(𝑡−1)𝑿(𝑡−1) +𝑵(𝑡−1) and 𝑵̃(𝑡) = 𝑵(𝑡) −𝑵(𝑡−1)𝑺(𝑡).  

The ML detector may then be defined as [4]: 

 

[𝑞̂, 𝒔̂(𝑡)] = argmin
∀ 𝑞̂ 

{ 𝑠̂𝑙 ∈ 𝝍}𝑙=1
𝑁𝑡

‖𝒀(𝑡) − 𝒀(𝑡−1)𝑺̂(𝑡)‖
𝐹

2
. 

(A.7) 

 

From (A.7), we note that estimation-detection is employed at the detector, since 𝒀(𝑡−1) is used as 

an estimation of the channel in order to retrieve the information in 𝒀(𝑡) [6]. Also, the current and 

preceding received signals are both transmitted at an average SNR of 𝛾̅𝐷𝑆𝑀. 

3. A Generalized Differential Scheme for Spatial Modulation (GD-SM) with 

Optimal Power Allocation 

In this section, we introduce a GD-SM system based on SM [1-2], wherein, similar to GDM [6-

7], transmission power is allocated at different levels to the reference and normal codewords in 

order to improve the system error performance.  

3.1. Proposed GD-SM Scheme 

In GD-SM, each transmitted frame consists of 𝐾 = 𝑁𝑡 + 𝐿 codewords, of which the first 𝑁𝑡 serve 

as reference codewords and convey no information, while the remaining 𝐿 normal codewords 

transmit information. Each codeword transmits a single modulated symbol via one of the 𝑁𝑡 

transmit antennas, therefore the code rate for GD-SM is derived as 𝑅 =
𝐿

𝐾
.  
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The reference codewords are transmitted over a duration of 𝑁𝑡 time slots. Each transmit antenna 

is activated once and only once over the successive 𝑁𝑡 reference time slots. As a result, we obtain 

a reference signal at the receiver from each of the 𝑁𝑡 transmit antennas, which provides an 

estimate of the channel between the individual transmit antenna and the receive antennas. Thus, 

we may retrieve the information contained in the subsequent normal codewords using the 

reference signals.  

Firstly, the differential reference codeword, 𝑥𝑟 = 1, is transmitted via each transmit antenna over 

the first 𝑁𝑡 time slots. Then the received reference signal during the 𝑙𝑡ℎ (𝑙 ∈ [1: 𝑁𝑡]) reference 

time slot, 𝒚𝑟𝑙 ∈ ℂ
𝑁𝑟 × 1, is calculated as: 

 

𝒚𝑟𝑙 = 𝒉𝑟𝑙𝑥𝑟 +  𝒏𝑟𝑙, (A.8) 

 

where 𝒉𝑟𝑙 ∈ ℂ
𝑁𝑟 × 1 and 𝒏𝑟𝑙 ∈ ℂ

𝑁𝑟 × 1 are the 𝑙𝑡ℎ column vectors of the channel fading 

matrix, 𝑯𝑟 ∈  ℂ
 𝑁𝑟 × 𝑁𝑡, and the AWGN matrix, 𝑵𝑟 ∈  ℂ

 𝑁𝑟 × 𝑁𝑡, respectively. The entries of 𝑯𝑟 

and 𝑵𝑟 are i.i.d. complex random variables with Gaussian distributions 𝒞𝒩(0,1) and 𝒞𝒩(0, 𝜎𝑟
2), 

respectively. Therefore, the average SNR at which the reference codewords are transmitted 

is 𝛾̅𝑟 =
1

𝜎𝑟
2. 

Information is then transmitted via the remaining 𝐿 normal codewords. For the 𝑡𝑡ℎ time slot 

(𝑡 ∈ [1: 𝐿]), log2(𝑁𝑡) bits determine the index, 𝑗, of the antenna to be activated, and log2(𝑀) 

bits determine the modulated symbol, 𝑠, which is drawn from either an 𝑀-PSK or 𝑀-QAM 

constellation, 𝛀, of normalized power, i.e. 𝐸[|𝑠|2] = 1. We note that GD-SM achieves the same 

spectral efficiency as that of coherent SM. The codeword, 𝒔(𝑡) ∈ ℂ𝑁𝑡 × 1, transmitted in the 𝑡𝑡ℎ 

time slot is 𝒔(𝑡) = [0,… , 𝑠, … ,0]𝑇, where the 𝑗𝑡ℎ element is the only non-zero entry in 𝒔(𝑡). 

With this, the differentially encoded vector for the normal codewords is given by 

 

𝒙𝑛
(𝑡) = 𝑥𝑟𝒔

(𝑡). (A.9) 

 

From (A.9), it is obvious that 𝒙𝑛
(𝑡) = 𝒔(𝑡), since 𝑥𝑟 = 1. This is advantageous as it permits the use 

of either an 𝑀-PSK or 𝑀-QAM normalized constellation in the system. Thus the error 

performance may be improved for large 𝑀 by simply using the power-efficient QAM 

constellation [8]. 
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The received signal, 𝒚(𝑡) ∈ ℂ𝑁𝑟 × 1, is then calculated as: 

 

𝒚(𝑡) = 𝑯(𝑡)𝒙𝑛
(𝑡)
+ 𝒏(𝑡), (A.10) 

 

where 𝑯(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡 is the channel fading matrix and 𝒏(𝑡) ∈ ℂ𝑁𝑟 × 1 is the AWGN vector, whose 

entries are i.i.d. complex random variables with Gaussian distributions 𝒞𝒩(0,1) and 𝒞𝒩(0, 𝜎𝑛
2), 

respectively. The average SNR for the normal codewords is therefore 𝛾̅𝑛 =
1

𝜎𝑛
2.  

Given that the 𝑗𝑡ℎ transmit antenna is activated, the received signal may be also represented as: 

 

𝒚(𝑡) = 𝒉𝑗
(𝑡)
𝑥𝑛
(𝑡)
+ 𝒏(𝑡), (A.11) 

 

where 𝒉𝑗
(𝑡)
∈ ℂ𝑁𝑟 × 1 is the 𝑗𝑡ℎcolumn vector of 𝑯(𝑡) and 𝑥𝑛

(𝑡)
= 𝑥𝑟𝑠, respectively. 

Assuming quasi-static fading, where the channel fading matrix remains constant for the duration 

of the frame, i.e. 𝑯𝑟 = 𝑯
(𝑡); we may rewrite the received signal in (A.11) as: 

 

𝒚(𝑡) = 𝒚𝑟𝑗𝑠 + 𝒏
(𝑡) −  𝒏𝑟𝑗𝑠. (A.12) 

 

The ML detector is then employed for GD-SM and is derived similar to (A.7) as: 

 

[𝑗̂, 𝑠̂] = argmin 
∀ 𝑗̂
∀ 𝑠̂

‖𝒚(𝑡) − 𝒚𝑟𝑗̂𝑠̂‖𝐹
2

. 
(A.13) 

 

From (A.13), it is clear that estimation-detection [6] is used, whereby the reference 

signals, 𝒚𝑟𝑙  (𝑙 ∈ [1:𝑁𝑡]), provide an estimate of the channel between the 𝑙𝑡ℎ transmit antenna 

and the 𝑁𝑟 receive antennas, which is utilized to recover the information contained in 𝒚(𝑡). 

Therefore, by determining which received reference signal and modulated symbol combination 

minimizes the metric in (A.13), we may estimate the activated transmit antenna and modulated 

symbol transmitted in the 𝑡𝑡ℎ time slot. The ML detector performs an exhaustive search over 𝑀𝑁𝑡 

unique combinations during each time slot.  
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3.2. Optimal Power Allocation for the Proposed GD-SM Scheme 

The objective of optimal power allocation is to transmit the reference codeword with a higher 

power than the normal codewords (𝛾̅𝑟 > 𝛾̅𝑛) and to maximize the average output SNR.  

In [6-7], the GDM schemes allocate more transmit power to the reference blocks than the normal 

blocks allowing for improved performance through estimation-detection at the receiver. Both 

schemes assume that a transmitted frame of length 𝑃 blocks comprises of one reference block 

and (𝑃 − 1) normal blocks. An optimization problem to constrain the average transmit power, 𝛾̅, 

is then formulated as [6-7]: 

 

𝛾̅𝑟 + (𝑃 − 1)𝛾̅𝑛 = 𝑃𝛾̅. (A.14) 

 

The optimal solutions to (A.14) are obtained by using the Lagrange multiplier method, however 

unlike [6], the solution given in [7] to maximize the output SNR is dependent upon the statistics 

of the system. Therefore, we employ the optimal power allocation from [6] in GD-SM.   

From [6], the optimal power allocation between the reference and normal blocks is given by: 

 

𝛾̅𝑟 =
𝑃𝛾̅

1 + √𝑃 − 1
 , (A.15) 

𝛾̅𝑛 =
𝑃𝛾̅

√𝑃 − 1 + 𝑃 − 1
, (A.16) 

 

respectively. Note that the power allocation is independent of the number of transmit and receive 

antennas [6]. 

From (A.12), it is obvious that the received signal in the 𝑡𝑡ℎ time slot consists of two noise 

components, each with a different variance. Furthermore, the optimization problem in (A.14) 

constrains the average SNR of the system using transmit power for the reference and normal 

blocks. As such, we define the equivalent coherent noise variance of the system as: 

 

𝜎𝑒𝑞
2 =

𝜎𝑟
2 + 𝜎𝑛

2

2
 , (A.17) 
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where 𝜎𝑟
2 =

1+√𝑃−1

𝑃𝛾̅ 
 and 𝜎𝑛

2 =
√𝑃−1+𝑃−1

𝑃𝛾̅ 
 are derived from (A.15) and (A.16), respectively.  

Following (A.17), the equivalent coherent SNR of the system, 𝛾̅𝑒𝑞 =
1

𝜎𝑒𝑞
2 , is then given by: 

 

𝛾̅𝑒𝑞 = [
2𝑃

2√𝑃 − 1 + 𝑃
] 𝛾̅ . (A.18) 

 

From (A.18), we note that when 𝑃 = 2, the system performs as a conventional differential 

modulation system, i.e. equal power is allocated to all blocks within the frame.   

In GD-SM, a frame of length 𝐾 codewords consists of 𝑁𝑡 reference codewords and 𝐿 = 𝐾 − 𝑁𝑡 

normal codewords. In order to apply the power allocation given in [6] (which comprises of one 

reference block and (𝑃 − 1) normal blocks) to GD-SM, we let 𝑁𝑡 codewords constitute a single 

block. Therefore, each frame now comprises of 
𝐾

𝑁𝑡
 blocks, of which the first block is the reference 

block and the remaining 
𝐿

𝑁𝑡
=

𝐾

𝑁𝑡
− 1 blocks are the normal blocks. With this, the average SNR 

for the reference and normal codewords, and the equivalent coherent SNR for GD-SM are given 

by (A.15), (A.16) and (A.18), respectively, with 𝑃 =
𝐾

𝑁𝑡
. 

4. Extension of Optimal Power Allocation to Generalized DSM (G-DSM) 

In this section, we extend the frame structure and power allocation concept used in GD-SM to 

the current DSM [4-5] architecture (Section 2.2). In generalized differential spatial modulation 

(G-DSM), each frame comprises of 𝐾 = 1 + 𝐿 space-time blocks, of which the first block is the 

reference block (containing no information) and is transmitted at a higher power than the 

subsequent 𝐿 normal blocks. As in DSM, each space-time block selects one of 𝑄 AMs to transmit 

𝑁𝑡 symbols over 𝑁𝑡 time slots. Therefore, the code rate for G-DSM is derived as 𝑅 =
𝐿

𝐾
. 

In the reference block, the differentially encoded reference matrix is given by 𝑿𝑟 = 𝑰𝑁𝑡. The 

received signal in the reference (first) block is then given by: 

 

𝒀𝑟 = 𝑯𝑟𝑿𝑟 +𝑵𝑟, (A.19) 
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where 𝑯𝑟 ∈ ℂ
𝑁𝑟 × 𝑁𝑡 and 𝑵𝑟 ∈ ℂ

𝑁𝑟 × 𝑁𝑡 are the channel fading matrix and AWGN matrix in the 

reference block whose entries are i.i.d. complex random variables with Gaussian distributions 

𝒞𝒩(0,1) and 𝒞𝒩(0, 𝜎𝑟
2), respectively. The average SNR at which the reference block is 

transmitted is therefore 𝛾̅𝑟 =
1

𝜎𝑟
2. 

The remaining 𝐿 normal blocks in the frame convey information; log2(𝑄) bits determine the 

index, 𝑞, of the AM and 𝑁𝑡log2(𝑀) bits determine the symbols, 𝑠𝑙 ∈ 𝛀 (𝑙 ∈ [1:𝑁𝑡]),  which 

constitute the symbol vector, 𝒔𝑛. For the 𝑡𝑡ℎ  (𝑡 ∈ [1: 𝐿]) space-time block, the information matrix 

given by 𝑺(𝑡) = 𝑨𝑴𝑞𝑑𝑖𝑎𝑔(𝒔𝑛) is differentially encoded using 𝑿𝑟 as: 

 

𝑿𝑛
(𝑡)
= 𝑿𝑟𝑺

(𝑡). (A.20) 

 

Again, we note that since 𝑿𝑟 is the identity matrix, 𝑿𝑛
(𝑡)
= 𝑺(𝑡) and as such, the symbols 

constituting 𝒔𝑛 may be drawn from a PSK or power-efficient QAM constellation, which is not 

possible in [3-5]. 

The received signal in the 𝑡𝑡ℎ normal block is then expressed as: 

 

𝒀(𝑡) = 𝑯(𝑡)𝑿𝑛
(𝑡)
+𝑵(𝑡), (A.21) 

 

where 𝑵(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡 is the normal block AWGN matrix whose entries are i.i.d. complex random 

variables with Gaussian distribution 𝒞𝒩(0, 𝜎𝑛
2). The average SNR for the 𝑡𝑡ℎ normal block may 

be written as 𝛾̅𝑛 =
1

𝜎𝑛
2.  

Assuming quasi-static fading where 𝑯𝑟 = 𝑯
(𝑡), 𝒀(𝑡) may be rewritten as: 

 

𝒀(𝑡) = 𝒀𝑟𝑺
(𝑡) +𝑵(𝑡) −𝑵𝑟𝑺

(𝑡). (A.22) 

 

The ML detector may then be defined as:  
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[𝑞̂, 𝒔̂𝑛] = argmin
∀ 𝑞̂ 

{ 𝑠̂𝑙 ∈ 𝛀}𝑙=1
𝑁𝑡

‖𝒀(𝑡) − 𝒀𝑟𝑺̂
(𝑡)‖

𝐹

2
. 

(A.23) 

 

Once more, the reference signal, 𝒀𝑟, is used to estimate the channel and recover the information 

in 𝒀(𝑡). The ML detector performs an exhaustive search through 𝑄𝑀𝑁𝑡 combinations for each 

normal block.  

For G-DSM, given 𝑃 = 𝐾, the transmit power is allocated between the reference and normal 

blocks according to (A.15) and (A.16), and the maximized equivalent coherent SNR of the system 

given by (A.18). 

5. Asymptotic Performance Analysis 

An asymptotic upper bound on the average bit error probability (ABEP) for GD-SM and G-DSM 

is derived for PSK and QAM modulation, based on the derivation given for high-rate amplitude-

PSK (APSK) DSM in [9].  

The ABEP for GD-SM is union bounded by [9-10]: 

 

𝑃𝐴𝐵𝐸𝑃 ≤ ∑  ∑
𝑁(𝒔(𝑡), 𝒔̂(𝑡)) 𝑃(𝒔(𝑡) → 𝒔́(𝑡))

𝑏2𝑏
𝒔̂(𝑡)∈ 𝚯𝒔(𝑡)∈ 𝚯 

 , (A.24) 

 

where 𝑏 is the total number of bits conveyed in a single codeword, 𝑃(𝒔(𝑡) → 𝒔́(𝑡)) is the pairwise 

error probability (PEP) of choosing codeword 𝒔́(𝑡) given that codeword 𝒔(𝑡) was transmitted, 

𝑁(𝒔(𝑡), 𝒔́(𝑡)) is the total number of bits in error between codewords 𝒔(𝑡) and 𝒔́(𝑡), and 𝚯 is the set 

of all legitimate codewords. Note that the codeword 𝒔(𝑡) ∈ ℂ𝑁𝑡 × 1 is given (from Section 3.1.) as 

𝒔(𝑡) = [0,… , 𝑠, … ,0]𝑇, where 𝑠 is drawn from either an 𝑀-PSK or an 𝑀-QAM constellation of 

normalized power, and whose position in 𝒔(𝑡) represents the index of the active transmit antenna.  

From [9], we have, 𝚫 = 𝒔(𝑡) − 𝒔́(𝑡) = [𝚼1, … , 𝚼𝑁𝑡]
𝑇
, where 𝚼𝑖 (𝑖 ∈ [1: 𝑁𝑡]) denotes the 𝑖𝑡ℎ row 

of 𝚫. The number of non-zero rows in 𝚫 is then denoted by 𝜅, and the corresponding indices of 

the non-zero rows is {𝑣𝑖}𝑖=1
𝜅 . Then, using the maximized equivalent coherent SNR for GD-SM 

given by (A.18) with 𝑃 =
𝐾

𝑁𝑡
, the PEP is bounded by [9]:  
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𝑃(𝒔(𝑡) → 𝒔́(𝑡)) ≤ (
1

𝛾̅𝑒𝑞
)

𝜅𝑁𝑟 8𝜅𝑁𝑟(2𝜅𝑁𝑟 − 1)‼

2 (‖𝚼𝑣𝑖‖𝐹
2
⋯‖𝚼𝑣𝜅‖𝐹

2
)
𝑁𝑟
(2𝜅𝑁𝑟)‼ 

 . (A.25) 

 

The asymptotic upper bound of the ABEP for G-DSM is also given by (A.24) and (A.25), with 

the only exceptions being  𝚫 = 𝑺(𝑡) − 𝑺́(𝑡) = [𝚼1, … , 𝚼𝑁𝑡]
𝑇
 given that the information matrix 𝑺(𝑡) 

was transmitted and 𝑺́(𝑡) was estimated at the receiver, 𝚯 is the set of all legitimate information 

matrices, and the maximized 𝛾̅𝑒𝑞 is given by (A.18) with 𝑃 = 𝐾. Note that for G-DSM, the 

information matrix 𝑺(𝑡) is given (from Section 4.) as 𝑺(𝑡) = 𝑨𝑴𝑞𝑑𝑖𝑎𝑔(𝒔𝑛), where 𝒔𝑛 is the 

symbol vector comprising of 𝑁𝑡 symbols, which are drawn from either an 𝑀-PSK or an 𝑀-QAM 

constellation of normalized power. 

Note, when 𝛾̅𝑒𝑞 = 𝛾̅, i.e. 𝑃 is set to 2 in (A.18), the upper bound given by (A.24) is for the specific 

system with equal power allocated between the reference and normal codewords/blocks. 

6. Complexity Analysis 

In this section, we analyze and present the computational complexity of the ML detectors for SM, 

DSM, GD-SM and G-DSM, for a complete frame. We use the concept of computational 

complexity from [11], which indicates the total number of real-valued multiplications incurred in 

an algorithm. Note, multiplication of 2 complex arguments results in a total of 4 real-valued 

multiplications. 

6.1. SM 

In SM, we assume that a frame consists of a single codeword. Then: 

1. In each frame, the ML detector first computes 𝑯𝒙̂, where 𝒙̂ is a column vector containing 

a single non-zero entry. This computation results in a total of 4𝑁𝑟 real-valued 

multiplications.  

2. The subtraction operation in 𝒚 − 𝑯𝒙̂ requires no real-valued multiplications. 

3. Computing the Frobenius norm requires a further 2𝑁𝑟 real-valued multiplications.  

The ML detector searches through a total of 𝑀𝑁𝑡 different combinations for SM, therefore the 

total computational complexity for each frame in SM is 𝐶𝑆𝑀 = 6𝑁𝑟𝑁𝑡𝑀 real-valued 

multiplications.  
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6.2. DSM 

We assume that the frame length in DSM is 𝐿 space-time blocks. The computational complexity 

incurred during a single space-time block for DSM is given in [11]. Using this, the total 

computational complexity for the DSM ML detector for the duration of a frame is 𝐶𝐷𝑆𝑀 =

6𝑁𝑟𝑁𝑡𝑄𝑀
𝑁𝑡𝐿 real-valued multiplications.  

6.3. GD-SM 

Assuming a search space of 𝑁𝑡𝑀 and 𝐿 normal (information conveying) codewords, we have the 

following. 

1. Firstly, computing 𝒚𝑟𝑗̂𝑠̂, for a single symbol and received reference signal, requires 4𝑁𝑟 

real-valued multiplications. Since 𝒚𝑟𝑗̂ does not change for the duration of the frame, this 

computation need only take place once for the entire frame and may be stored for later 

use. Therefore, this computation will require a total of 4𝑁𝑟𝑁𝑡𝑀 real-valued 

multiplications for the entire frame. 

2. The Frobenius norm requires 2 real-valued multiplications for each entry in the column 

vector obtained after the subtraction operation. Therefore, a total of 2𝑁𝑟𝑁𝑡𝑀𝐿 real-

valued multiplications is incurred for the duration of the frame. 

The total computational complexity for the GD-SM ML detector is therefore, 𝐶𝐺𝐷−𝑆𝑀 =

4𝑁𝑟𝑁𝑡𝑀 + 2𝑁𝑟𝑁𝑡𝑀𝐿 real-valued multiplications. 

6.4. G-DSM 

Given a search space of 𝑄𝑀𝑁𝑡 and 𝐿 normal (information conveying) blocks, we have: 

1. Computing 𝒀𝑟𝑺̂ for all  𝑞̂ and  𝑠̂𝑙 in a single space-time block requires 4𝑁𝑟𝑁𝑡𝑄𝑀
𝑁𝑡  real-

valued multiplications. However, since 𝒀𝑟 remains constant for the duration of the frame, 

this computation need only be executed once and may be stored for use in the remaining 

blocks of the frame.  

2. The Frobenius norm requires a further 2𝑁𝑟𝑁𝑡𝑄𝑀
𝑁𝑡𝐿 real-valued multiplications in each 

frame.  

Thus the total computational complexity for the G-DSM ML detector is 𝐶𝐺−𝐷𝑆𝑀 =

4𝑁𝑟𝑁𝑡𝑄𝑀
𝑁𝑡 + 2𝑁𝑟𝑁𝑡𝑄𝑀

𝑁𝑡𝐿 real-valued multiplications.  



27 

 

Assuming a DSM frame length of 𝐿 blocks and a G-DSM frame consisting of 𝐿 normal blocks, 

we note that the computational complexity of the G-DSM ML detector is lower than that of the 

conventional DSM ML detector. The percentage reduction may be expressed as: 

 

% 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛  =
100(𝐶𝐷𝑆𝑀 − 𝐶𝐺−𝐷𝑆𝑀)

𝐶𝐷𝑆𝑀
=
400𝐿 − 400

6𝐿
 . (A.26) 

 

As 𝐿 → ∞, the percentage reduction approaches a maximum of 66.67%. Nonetheless, for a frame 

length of only 𝐿 = 100, a substantial computational complexity reduction of 66% is achieved 

over the DSM ML detector.  Note that the achieved reduction is independent of 𝑀, 𝑄, 𝑁𝑟 and 𝑁𝑡. 

7. Numerical Results 

In this section, Monte-Carlo simulation results for GD-SM and coherent SM, using PSK and 

QAM constellations, are compared. Furthermore, we demonstrate the error performance 

improvement achieved by G-DSM relative to conventional DSM and coherent SM, with systems 

of equivalent spectral efficiency, using PSK and QAM constellations. We simulate the results for 

frame lengths of 𝐾 = 100 and 𝐾 = 400, and since 𝑁𝑟 has no effect on the power allocation for 

the system, we choose 𝑁𝑟 = 2. The simulated BER and the theoretical upper bound given by 

(A.24), as discussed in detail in Section 5, is plotted against the average SNR  𝛾̅ (dB) for the 

schemes.  

It is clear from Figure A.1 and Figure A.2 that the conventional GD-SM scheme (where  𝛾̅𝑟 =

𝛾̅𝑛 = 𝛾̅) suffers from an approximate 3 dB performance penalty when compared to the coherent 

detection of SM. In Figure A.1, the proposed GD-SM scheme with optimal power allocation and 

𝐾 = 100 achieves a gain of 1.6 dB over the conventional GD-SM scheme, while using a frame 

length of 400 achieves an additional gain of 0.7 dB, bringing it within 0.6 dB of coherent SM. 

We note in Figure A.2 that increasing 𝑁𝑡 has a minimal effect on the error performance, as GD-

SM with 𝐾 = 400 is within 0.5 dB of SM down to a bit error rate (BER) of 10−5. We also note 

that the theoretical upper bound is tight for both frame lengths in Figure A.1 and Figure A.2, 

down to a BER of 10−5. 

Figure A.3 demonstrates that GD-SM with 64-QAM modulation and a frame length of 400 attains 

a gain of approximately 2.6 dB over the conventional GD-SM scheme, and achieves near 

coherent error performance for majority of the SNR range (within 0.4 dB of SM).  

 



28 

 

 

Figure A.1: 16-PSK BER Performance comparison with 𝑁𝑡 = 2. 

 

Figure A.2: 16-PSK BER Performance comparison with 𝑁𝑡 = 4. 
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Figure A.3: 64-QAM BER Performance comparison with 𝑁𝑡 = 2. 

 

In Figure A.4, we observe that for a 16-PSK and 5 bits/s/Hz transmission, G-DSM considerably 

outperforms conventional DSM and achieves near coherent performance for both frame lengths. 

This is achieved despite the fact that G-DSM requires 4 transmit antenna as opposed to 2 for SM 

in order to achieve the same spectral efficiency. For a frame length of 400, G-DSM is within 0.3 

dB of the error performance of the coherent detector at high SNR, while G-DSM with 𝐾 = 100 

is a further 0.4 dB away and demonstrates a gain of 2 dB when compared to conventional DSM. 

In Figure A.5, it is demonstrated that G-DSM with PSK modulation achieves a gain of 2.5 dB 

over conventional DSM. Furthermore, the structure of G-DSM, advantageously, allows the use 

of QAM modulation to improve error performance, and it is shown to achieve a gain of 

approximately 5.5 dB over conventional DSM, which is limited to only PSK constellations.  

The results obtained demonstrate theoretically and via simulations that the error performance is 

improved as the frame length increases. However, although a large frame length is ideal to 

mitigate the 3 dB error performance loss experienced due to differential modulation, it is 

important to be mindful when selecting the length of the frame, as this will in turn affect the peak 

power required for the reference block [6]. 
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Figure A.4: 16-PSK BER Performance comparison for the case of 5 bits/s/Hz transmission. 

 

 

Figure A.5: G-DSM BER Performance comparison with 𝐾 = 400, and 𝑁𝑡 = 2. 
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8. Conclusion 

In this paper, we proposed a GD-SM system, which employs optimal power allocation to improve 

error performance. Furthermore, the structure of GD-SM and the power allocation scheme is 

extended to conventional DSM in order to reduce the error performance penalty incurred 

compared to coherent SM. Both GD-SM and G-DSM use a frame structure comprising of a 

reference block against which numerous normal blocks are differentially encoded and decoded. 

By allocating more power to the reference block than the normal blocks, the received reference 

signal provides an enhanced estimation of the channel. These reference signals are utilized to 

recover the information in the normal blocks via estimation-detection. As a result, the error 

performance for a given average system SNR is improved. Simulation and theoretical results for 

GD-SM and G-DSM confirm that the error performance may approach that of the coherent 

detector when a large frame length is used. Furthermore, unlike conventional DSM, the 

architecture of GD-SM and G-DSM permit the use of 𝑀-QAM constellations to provide a marked 

improvement in error performance when 𝑀 is large.  
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Abstract 

Spatial modulation (SM) is an emerging transmission scheme which employs active transmit 

antenna indices and modulated signals to convey information. By nature, its detection is coherent, 

thereby requiring the channel state information (CSI) at the receiver in order to achieve optimal 

error performance. Compared to SM, differential spatial modulation (DSM) does not require the 

CSI at the receiver. However, the optimal maximum likelihood (ML) detection of DSM induces 

excessive computational complexity when the number of transmit antennas is large. In this paper, 

a simple low-complexity near-ML detection scheme is proposed for DSM, using 𝑀-ary phase 

shift keying (𝑀-PSK) and 𝑀-𝑀 amplitude phase shift keying (𝑀-𝑀 APSK) modulation. The 

proposed simple detection is based on the features of the PSK constellation and is shown to be 

independent of the constellation size, for DSM with either 𝑀-PSK or 𝑀-𝑀 APSK modulation. 

Simulation results demonstrate that for 𝑀-PSK and 𝑀-𝑀 APSK modulation, the proposed simple 

detection scheme achieves the same error performance as ML detection down to a bit error rate 

of 10−5, with at least 98% reduction in computational complexity. 
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1. Introduction 

Spatial modulation (SM) is an efficient transmission technique utilizing multiple-input multiple-

output (MIMO) technology [1-3]. The difference between SM and conventional MIMO systems 

is that at any time instant, only one transmit antenna is activated to convey information, while the 

remaining antennas transmit zero power [1-3]. As a result, unlike conventional MIMO systems, 

SM requires no inter-antenna synchronization (IAS) at the transmitter and completely avoids 

inter-channel interference (ICI) at the receiver, while achieving a relatively high spectral 

efficiency, through use of only a single radio frequency chain [2-3]. The improved spectral 

efficiency is achieved by mapping the information bits to a constellation point (signal domain) 

and a specific transmit antenna index (spatial domain), which determine the amplitude and/or 

phase modulated (APM) symbol and the active transmit antenna, respectively. In order to achieve 

optimal error performance, SM performs coherent detection, which requires that the receiver has 

full knowledge of the channel state information (CSI). The result is increased complexity at the 

receiver as well as limitations imposed by pilot overhead and channel estimation errors [4]. To 

overcome these issues, various non-coherent, differentially encoded SM schemes have been 

developed [4-7]. 

Differential spatial modulation (DSM) [5-7] is a promising alternative to SM as its receiver does 

not require the CSI to perform detection. DSM maintains the merits of the SM system over 

conventional MIMO systems. However, it suffers from a 3 dB error performance penalty 

compared to SM, which is attributed to the non-coherent detection process [5, 7]. In DSM, 

communication is carried out block-wise; given 𝑁𝑡 transmit antennas, one out of a maximum of 

𝑄 antenna matrices (AMs) is selected, which determines the activation order of the 𝑁𝑡 transmit 

antennas over 𝑁𝑡 time slots. Thereafter, based on the selected AM, the 𝑁𝑡 transmit antennas 

convey 𝑁𝑡 APM symbols within the 𝑁𝑡 time slots. Thus, similarly to SM, information bits are 

mapped to the 𝑁𝑡 APM symbols and a specific AM. 

The DSM schemes given in [5-7], draw the APM symbols from a 𝑀-ary phase shift keying (𝑀-

PSK) constellation. In [8], Martin extends the DSM scheme in [5] to a 𝑀-𝑀 amplitude phase shift 

keying (𝑀-𝑀 APSK) constellation, which comprises of two 𝑀-PSK constellations with different 

amplitude levels. The proposed DSM system in [8] offers an improved spectral efficiency over 

DSM using 𝑀-PSK modulation. This is achieved by either transmitting the 𝑁𝑡 symbols at a 

constant amplitude level, or by changing the amplitude level for each of the 𝑁𝑡 symbols, during 

each transmission. 

In order to achieve optimal error performance, the DSM receiver employs maximum likelihood 

(ML) detection, which is performed on a block-by-block basis. In each space-time block, the ML 

detector jointly estimates the AM index and the 𝑁𝑡 APM symbols conveyed during transmission. 
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Therefore, the ML detector performs an exhaustive search over all possible combinations of AMs 

and APM symbols conveyed from each transmit antenna. Consequently, the complexity of the 

ML detection grows exponentially with an increase in the number of transmit antennas and 𝑀. In 

order to reduce this effect, low-complexity detection schemes have been proposed in [9] and [10], 

whose computational complexities are lower than that of ML detection. 

The low-complexity detection scheme proposed in [9] operates on a symbol-by-symbol basis and 

uses the hard-limiter based ML (HL-ML) detection [11] to estimate the antenna index (AI) and 

the modulated PSK symbol in each time slot of each space-time block. If the estimated antenna 

indices form a legitimate AM, then the estimated AM and 𝑁𝑡 PSK symbols are taken as the final 

output; otherwise the 𝑃 most probable AMs are chosen for further search [9]. The complexity of 

the detection is shown to be independent of 𝑀, however, in order to achieve optimal error 

performance at a low signal-to-noise ratio (SNR), the detector is required to search through all, 

𝑄, AMs. This results in a complexity increase, as 𝑁𝑡 increases. 

Furthermore, in [10], a suboptimal low-complexity detector based on the ML criterion, is 

proposed for DSM. The symmetric property of the PSK constellation is exploited in the detection 

scheme and as a result approximately one-eighth of the signals are used to estimate the modulated 

symbols. Once completed, AM estimation is carried out, which takes into account more than 𝑄 

AMs so as to facilitate low-complexity detection via the use of a Viterbi-like algorithm [10], 

when 𝑁𝑡 is large. This, however, induces a minimal error performance penalty with respect to the 

ML detector, since the detector may estimate an AM which is not included in the legitimate 𝑄 

AMs permitted for use during transmission [10]. Furthermore, the complexity of the detection is 

shown to be dependent upon 𝑀. 

Motivated by the above, we propose another low-complexity near-ML detection scheme for 

DSM, whose complexity is independent of 𝑀 and 𝑄. The proposed detection scheme is simple 

and the complexity is even lower compared to those in [9] and [10]. The detector operates by first 

estimating the transmitted symbols, which are drawn from a PSK constellation (either 𝑀-PSK or 

𝑀-𝑀 APSK), for the space-time block. This is accomplished by exploiting the fact that each 

received signal is a complex argument, each with an associated magnitude and phase. Thus, the 

proposed detection scheme focuses on the phase of the received signal and uses this information 

to estimate the symbol, from the employed PSK constellation, whose phase is nearest to that of 

the received signal. This significantly reduces the complexity of the detector, since an exhaustive 

search through the 𝑀 constellation points is not required to estimate the transmitted symbols. 

Thereafter, the estimated symbols are utilized to determine the antenna activation order, which is 

determined in a similar manner to [10]. However, unlike [10], only 𝑄 AMs are involved in the 

calculation, since the proposed detection scheme does not make use of a Viterbi-like algorithm. 
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Thus, the estimated AM will always be one of the permitted 𝑄 AMs, and as such, the proposed 

detector will not suffer from a similar error performance penalty incurred in [10], relative to the 

ML detector.    

The remainder of this paper is organized as follows. Section 2 gives the system model of DSM 

with 𝑀-PSK and 𝑀-𝑀 APSK constellations. Section 3 presents the current low-complexity 

detectors designed for DSM. In Section 4, we propose a near-ML low-complexity detector for 

DSM using an 𝑀-PSK constellation. Furthermore, we extend the detection algorithm to DSM 

using an 𝑀-𝑀 APSK constellation. The complexity of the proposed detectors are analyzed and 

compared to the ML detector and current low-complexity detectors, in Section 5. In Section 6, 

we discuss the simulation results of the detectors for different system configurations. Finally, 

Section 7 concludes the paper. 

Notation: Bold lowercase and uppercase letters denote vectors and matrices, respectively. The 

(𝑖, 𝑗)𝑡ℎ entry of matrix 𝑿 is denoted by 𝑋(𝑖, 𝑗). (·)∗, (·)𝐻, | · | and ‖⋅‖𝐹 represent the complex 

conjugate, Hermitian, Euclidean and Frobenius norm operations, respectively. ℜ(𝑗), ℑ(𝑗), (·)!, 

⌊⋅⌋, 𝑟𝑜𝑢𝑛𝑑(·) and 𝑚𝑜𝑑(·,·) are the real part of complex number 𝑗, imaginary part of complex 

number 𝑗, the factorial, the floor operator, round towards the nearest integer and the modulus 

operator, respectively. 𝐼𝑁 is the 𝑁 × 𝑁 identity matrix, 𝑠𝑖𝑔𝑛(·) returns the sign of the argument, 

and 𝑑𝑖𝑎𝑔(𝒙) is a square diagonal matrix with elements of the vector 𝒙. 𝑇𝑟𝑎𝑐𝑒(𝑿) returns the 

sum of the diagonals of 𝑿. 𝑎𝑟𝑔𝑚𝑖𝑛𝜔(⋅) returns the minimum of an argument with respect to 𝜔, 

and 𝑎𝑟𝑔𝑚𝑎𝑥𝜔(⋅) returns the maximum of an argument with respect to 𝜔. 

2. System Model of DSM 

2.1. DSM-PSK 

Consider a DSM system with 𝑁𝑡 transmit antennas, 𝑁𝑟 receive antennas, and an 𝑀-PSK 

constellation, 𝜒, of normalized power. There are a total of 𝑁𝑡! AMs, of which only 𝑄 =

2⌊log2(𝑁𝑡!)⌋ may be used to transmit information bits. Each antenna matrix 𝑨𝑴𝑞 (𝑞 ∈  [1: 𝑄]), is 

an 𝑁𝑡 ×𝑁𝑡 matrix which contains a single non-zero element in each column. For each AM there 

is an AI vector 𝒍𝑞  =  [𝑙𝑞
1  , 𝑙𝑞

2 , … , 𝑙𝑞
𝑁𝑡  ] where 𝑙𝑞

𝑛, 𝑛 ∈  [1:𝑁𝑡], is the AI of the active transmit 

antenna in the 𝑛𝑡ℎ column of 𝑨𝑴𝑞. For example, the set 𝑨𝑴𝑞 is given by 𝑨𝑴1 = [
1 0
0 1

] 

and 𝑨𝑴2 = [
0 1
1 0

], for 𝑁𝑡 = 2 and 𝑄 = 2, and the AI vector for 𝑨𝑴2 is 𝒍2 = [2, 1].  

Each transmitted block conveys a total of 𝐵 = log2(𝑄) + 𝑁𝑡 log2(𝑀) bits, of which 𝑏1 =

log2(𝑄) bits are used to map a single AM, 𝑨𝑴𝑞, and 𝑏2 = 𝑁𝑡 log2(𝑀) bits are used to determine 
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𝑁𝑡 modulated symbols, 𝑠𝑙 (𝑙 ∈ [1:𝑁𝑡]), which are drawn from 𝜒. The spectral efficiency is 

therefore 𝜂𝐷𝑆𝑀−𝑃𝑆𝐾 = (⌊log2(𝑁𝑡!)⌋ + 𝑁𝑡 log2(𝑀))
1

𝑁𝑡
 bits/s/Hz.  

With this, the 𝑡𝑡ℎ space-time 𝑁𝑡 × 𝑁𝑡 information matrix may be expressed as:  

 

𝑺(𝑡) = 𝑨𝑴𝑞𝑑𝑖𝑎𝑔(𝒔
(𝑡)), (B.1) 

 

where the symbol vector , 𝒔(𝑡) = [𝑠1, … , 𝑠𝑁𝑡]. 

Then the 𝑁𝑡 × 𝑁𝑡  differential transmission matrix is defined by: 

 

𝑿(𝑡) = 𝑿(𝑡−1)𝑺(𝑡), (B.2) 

 

where 𝑿(0) = 𝑰𝑁𝑡.  

The received signal 𝒀(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡 over time slots (𝑡 − 1)𝑁𝑡 + 1 to 𝑡𝑁𝑡 is given by: 

 

𝒀(𝑡) = 𝑯(𝑡)𝑿(𝑡) +𝑵(𝑡), (B.3) 

 

where 𝑯(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡 and 𝑵(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡 denote the frequency-flat Rayleigh fading channel, and 

the noise matrix, respectively. The entries of 𝑯(𝑡) and 𝑵(𝑡) are independent and identically 

distributed (i.i.d) random variables with complex Gaussian distributions 𝒞𝒩(0,1) and 

𝒞𝒩(0, 𝜎2), respectively.  

Assuming quasi-static fading, in which case 𝑯(𝑡−1) = 𝑯(𝑡), and using (B.2), the received signal 

𝒀(𝑡) can be represented as: 

 

𝒀(𝑡) = 𝒀(𝑡−1)𝑺(𝑡) + 𝑵̂(𝑡), (B.4) 

 

where 𝒀(𝑡−1) = 𝑯(𝑡−1)𝑿(𝑡−1) +𝑵(𝑡−1) and 𝑵̂(𝑡) = 𝑵(𝑡) −𝑵(𝑡−1)𝑺(𝑡). 
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The optimal ML detector is then given by: 

 

{𝑞̂, 𝒔̂(𝑡)} = argmin
∀𝑞̂

{𝑠̂𝑙∈𝜒}𝑙=1
𝑁𝑡

‖𝒀(𝑡) − 𝒀(𝑡−1)𝑺̂(𝑡)‖
𝐹

2
, 

(B.5) 

 

and is further derived as [7]: 

 

{𝑞̂, 𝒔̂(𝑡)} =  argmax𝑇𝑟𝑎𝑐𝑒
∀𝑞̂

{𝑠̂𝑙 ∈𝜒}𝑙=1
𝑁𝑡

{ℜ {(𝒀(𝑡))
𝐻
 𝒀(𝑡−1)𝑺̂(𝑡)}}. 

(B.6) 

 

The ML detector performs an exhaustive search of all AMs and 𝑀-PSK symbols, with the search 

size spanning a total of 𝑄𝑀𝑁𝑡 different combinations. 

2.2. DSM-APSK 

We now introduce the system model for DSM with APSK modulation, given in [8, Method 1]. 

The 𝑀-𝑀 APSK constellation comprises of two 𝑀-PSK constellations of different amplitude. 

The amplitude of the smaller and larger constellation, is set to 𝑟𝐿 = 0.632 and 𝑟𝐻 = 1.265, 

respectively, which satisfy the ratio criterion, 
𝑟𝐻

𝑟𝐿
= 2 [8].  

DSM-APSK transmits a total of 𝐵 + 1 bits in each space-time block, of which 𝐵 bits determine 

the AM and the symbols to be transmitted, and the extra bit, defined as 𝑏3 ∈ [0, 1], selects the 

amplitude level. Therefore, the spectral efficiency of DSM-APSK is 𝜂𝐷𝑆𝑀−𝐴𝑃𝑆𝐾 =

(⌊log2(𝑁𝑡!)⌋ + 𝑁𝑡 log2(𝑀) + 1)
1

𝑁𝑡
 bits/s/Hz [8]. 

With this, the differential transmission matrix given by (B.2), for the 𝑡𝑡ℎ space-time block, is 

rewritten as [8]: 

 

𝑿(𝑡) = 𝛼(𝑡)𝑿(𝑡−1)𝑺(𝑡), (B.7) 

 

where  
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𝛼(𝑡) =

{
 

 
1,   if 𝑏3 = 0

𝑟𝐻

𝑟𝐿
,   if 𝑏3 = 1 and 𝛼(𝑡−1) = 𝑟𝐿

𝑟𝐿

𝑟𝐻
,   if 𝑏3 = 1 and 𝛼(𝑡−1) = 𝑟𝐻

, (B.8) 

 

and 𝛼(0) = 𝑟𝐿. 

The received signal, 𝒀(𝑡) ∈ ℂ𝑁𝑟 × 𝑁𝑡, is then calculated similarly to (B.3), and may be rewritten in 

terms of the received signal in the (𝑡 − 1)𝑡ℎ block, as: 

 

𝒀(𝑡) = 𝛼(𝑡)𝒀(𝑡−1)𝑺(𝑡) + 𝑵̂(𝑡), (B.9) 

 

where 𝒀(𝑡−1) = 𝑯(𝑡−1)𝑿(𝑡−1) +𝑵(𝑡−1) and 𝑵̂(𝑡) = 𝑵(𝑡) − 𝛼(𝑡)𝑵(𝑡−1)𝑺(𝑡). 

Based on (B.9), the ML detector is derived similarly to (B.5) as: 

 

{𝑞̂, 𝒔̂(𝑡), 𝛼̂(𝑡)} = argmin
∀𝑞̂

{𝑠̂𝑙∈𝜒}𝑙=1
𝑁𝑡

∀𝛼̂

‖𝒀(𝑡) − 𝛼̂(𝑡)𝒀(𝑡−1)𝑺̂(𝑡)‖
𝐹

2
. 

(B.10) 

 

Since the initial value of 𝛼(0) is known, the ML detector need only search through two possible 

values of  𝛼̂ which is dependent on  𝛼̂(𝑡−1) [8]. These are either  𝛼̂ ∈ [1,
𝑟𝐿

𝑟𝐻
] or 𝛼̂ ∈ [1,

𝑟𝐻

𝑟𝐿
] [8]. 

Therefore, the ML detector performs an exhaustive search over 2𝑄𝑀𝑁𝑡 combinations.  

3. Existing Low-Complexity DSM-PSK Detection Schemes 

3.1. Conditionally Optimal Low-Complexity Detection Scheme for DSM [9] 

The low-complexity detection scheme proposed in [9] first estimates the 𝑁𝑡 AIs which form an 

AI vector 𝒍̂(𝑡), and then the corresponding symbol vector, 𝒔̂(𝑡), for each space-time block. In (B.3), 

the 𝑖𝑡ℎ column of the received signal, 𝒀𝑖
(𝑡)

 (𝑖 ∈ [1:𝑁𝑡]), can be expressed as [9]: 

 

𝒀𝑖
(𝑡)
= 𝒀(𝑡−1)𝑺𝑖

(𝑡)
+ 𝑵̂𝑖

(𝑡)
. (B.11) 
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Since 𝑺𝑖
(𝑡)

 contains a single non-zero element, the active antenna index and symbol can be 

estimated using the HL-ML detection as [9]:  

 

{𝑙𝑖, 𝑠̂𝑖} =   argmin
𝑙𝑖∈[1,…,𝑁𝑡]

(|𝑦𝑙𝑖
(𝑡) − 𝑠̂𝑖|

2
− |𝑦𝑙𝑖

(𝑡)
|
2
)‖𝒀𝑙𝑖

(𝑡−1)
‖
𝐹

2
, (B.12) 

 

where 

 

𝑦𝑙𝑖
(𝑡)
=

(𝒀𝑙𝑖
(𝑡−1)

)
𝐻
𝒀𝑖
(𝑡)

(𝒀𝑙𝑖
(𝑡−1)

)
𝐻
𝒀𝑙𝑖
(𝑡−1)

, 𝑠̂𝑖 = ℚ(𝑦𝑙𝑖
(𝑡)
) , (B.13) 

 

where ℚ denotes the digital demodulation function [9].  

Once 𝑁𝑡 AIs are estimated, the AI vector 𝒍̂(𝒕) can be composed. The number of identical elements 

between  𝒍̂(𝒕) and 𝒍𝑞 can then be given as [9]: 

 

𝒏 = [𝑛1,⋯ , 𝑛𝑄]. (B.14) 

 

The elements of 𝒏 are then sorted into descending order as 𝒏̂ = [𝑛̂1, … , 𝑛̂𝑄] and the corresponding 

index order is [9]:  

 

𝒎 = [𝑚1,⋯ ,𝑚𝑄], (B.15) 

 

where 𝑚𝑗 (𝑗 ∈ [1: 𝑄]) denotes the index of 𝑛̂𝑗, respectively.  

If 𝑛̂1 = 𝑁𝑡, then the obtained  𝒍̂(𝒕) is a legitimate solution, therefore, the final result is (𝑚1, 𝒔̂
(𝑡)). 

If 𝑛̂1 < 𝑁𝑡, then 𝒍̂(𝒕) is considered an illegitimate solution.  𝑃𝑀 is then given as the number of the 

largest elements in 𝒏 [9]. The first 𝑃 (𝑃 ≥ 𝑃𝑀) AMs in (B.15) are then chosen for detection using 

the ML detector, and is given by [9]: 
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𝑞̂ =  argmin
𝑞̃ ∈[𝑚1,…,𝑚𝑃]

‖𝒀(𝑡) − 𝒀(𝑡−1)𝑨𝑴𝑞̃𝑑𝑖𝑎𝑔(𝒔̂𝑞̃)‖𝐹
2

, (B.16) 

 

where the corresponding 𝒔̂𝑞 is obtained using (B.13). 

3.2. A Suboptimal Low-Complexity DSM Detector [10] 

In [10], a low-complexity near-ML DSM detector is proposed. The first step involves the initial 

detection of the modulated symbols. Let 𝑾(𝑡) = 𝒀(𝑡)
𝐻
 𝒀(𝑡−1), 𝑾(𝑡) ∈ ℂ𝑁𝑡×𝑁𝑡. For brevity, we 

will now omit the 𝑡 notation. The modulated symbols transmitted in the different time slots are 

independent of one another and as a result (B.6) can be written as [10]: 

 

𝐺(𝑖, 𝑗) =   argmax
𝑠̂ ∈𝜒

 {ℜ{𝑊(𝑖, 𝑗)𝑠̂}} 

                                                      =   argmax 
𝑠̂ ∈𝜒

{ℜ{𝑊(𝑖, 𝑗)}ℜ{𝑠̂} − ℑ{𝑊(𝑖, 𝑗)}ℑ{𝑠̂}}. 
(B.17) 

 

The detection scheme exploits the symmetric nature of the PSK constellation, and searches for 

symbol 𝑠̂ in the first quadrant, which satisfies [10]: 

 

𝐷̂(𝑖, 𝑗) =  |ℜ{𝑊(𝑖, 𝑗)}|ℜ{𝑠̂} + |ℑ{𝑊(𝑖, 𝑗)}|ℑ{𝑠̂}. (B.18) 

 

The complexity can be reduced since the real and imaginary parts of the symbols are symmetric. 

In [10], this is shown by first defining Δ(𝑖, 𝑗) = 0 if |ℜ{𝑊(𝑖, 𝑗)}| >  |ℑ{𝑊(𝑖, 𝑗)}|, 

otherwise Δ(𝑖, 𝑗) = 1. Let 𝑠̂ =  𝑒𝑗
2𝜋

𝑀
(𝐾′(𝑖,𝑗)+ 

𝑀

8
Δ(𝑖,𝑗))

 and 𝐺(𝑖, 𝑗) =  𝑒𝑗
2𝜋

𝑀
𝐾(𝑖,𝑗)

 [10]. It is clear that 𝑠̂ 

and 𝐺(𝑖, 𝑗) may be determined by calculating 𝐾′(𝑖, 𝑗) and 𝐾(𝑖, 𝑗), respectively, which are given 

by [10]: 

 

𝐾′(𝑖, 𝑗) = argmax
𝑘 ∈[0,…,

𝑀

8
]

 {|ℜ{𝑊(𝑖, 𝑗)}| cos(𝑎) + |ℑ{𝑊(𝑖, 𝑗)}| sin(𝑎)}, 
(B.19) 

𝐾(𝑖, 𝑗) =
𝑀

4
(2 + 𝑠𝑖𝑔𝑛{ℑ{𝑊(𝑖, 𝑗)}} + 𝑏) − 𝑏 (𝐾′(𝑖, 𝑗) +

𝑀

8
Δ(𝑖, 𝑗)), (B.20) 
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where 𝑎 =
2𝜋

𝑀
𝑘 +

𝜋

4
Δ(𝑖, 𝑗) and 𝑏 =

𝑠𝑖𝑔𝑛{ℜ{𝑊(𝑖,𝑗)}}

𝑠𝑖𝑔𝑛{ℑ{𝑊(𝑖,𝑗)}}
. 

Once 𝑮̂ is computed using (B.20), the metric matrix 𝑫̂ can be obtained via (B.18). 

The second step involves estimation of the AM index 𝑞̂ via [10]: 

 

𝑞̂ = argmax
𝑞̃∈[1,…,(𝑁𝑡−1)(𝑁𝑡−1)!]

{∑ 𝐷̂ (𝑖, 𝒍𝑞̃(𝑖))
𝑁𝑡
𝑖=1 }. (B.21) 

 

Given 𝑞̂, the signal domain detection is then simply given by 𝑠̂𝑛 = 𝐺 (𝑛, 𝒍𝑞̃(𝑛)) , 𝑛 ∈ [1:𝑁𝑡]. For 

large 𝑁𝑡, (𝑁𝑡 ≥ 3), the AM index estimation is carried out in a manner similar to the Viterbi 

decoder [10]. The algorithm is omitted as it does not contribute to the computational complexity 

of the detector.  

4. Proposed Low-Complexity Near-ML Detector 

In this section, we propose a simple low-complexity near-ML detector for DSM with an 𝑀-PSK 

or 𝑀-𝑀 APSK constellation. The proposed detector is highly dependent on the structure of the 

𝑀-PSK constellation, therefore, we first discuss the important properties of the constellation and 

its relation to the 𝑀-𝑀 APSK constellation.  

4.1. PSK Constellation 

In Figure B.1.a, as is well-known, the 𝑀-PSK symbols have a fixed amplitude, generally equal 

to 1. Due to the constant amplitude, information is encoded in the phase of the symbols [13]. The 

𝑛𝑡ℎ 𝑀-PSK symbol can be expressed as [12-13]: 

 

𝑠𝑛 = 𝐴𝑒
𝑗𝜙𝑛  ,  𝑛 ∈ [1:𝑀], (B.22) 

 

where 𝐴 = 1 is the amplitude of the constellation points, and 𝜙𝑛 = (𝑛 − 1)
2𝜋

𝑀
 is the phase of the 

𝑛𝑡ℎ 𝑀-PSK symbol, respectively. We can then define the look-up table 𝐿𝑈𝑇 = [𝑠1, … , 𝑠𝑀]. 
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          Figure B.1.a: 8-PSK constellation [12]          Figure B.1.b: 8-8 APSK constellation [8] 

 

Detection of the 𝑛th 𝑀-PSK symbol 𝑠𝑛 is equivalent to detection of 𝜙𝑛. Each symbol in the 

constellation has a detection region 𝜑𝑛. The detection region 𝜑𝑛 for the 𝑛th 𝑀-PSK symbol is 

bounded as [𝜙𝑛 −
𝜋

𝑀
, 𝜙𝑛 +

𝜋

𝑀
] [13]. If the phase of a received signal lies within the detection 

region 𝜑𝑛, then the receiver estimates the transmitted symbol as the 𝑛th 𝑀-PSK symbol. 

The 𝑀-𝑀 APSK constellation in Figure B.1.b, may be thought of as two identical 𝑀-PSK 

constellations, initially with 𝐴 = 1, which are then scaled by a factor of 𝐴 = 𝑟𝐿 and 𝐴 = 𝑟𝐻, 

respectively. Therefore, it is obvious that although the 𝑛𝑡ℎ symbol in the two constellations have 

different amplitudes, their phase is the same. As a result, the detection region concept may be 

applied to the 𝑀-𝑀 APSK constellation, to reduce the signal domain search space to the two 

symbols, whose phase is closest to that of the received signal. 

4.2. A Simple Low-Complexity Near-ML Detection Algorithm for DSM-PSK 

For convenience we denote 𝑊(𝑖, 𝑗) and 𝑠̂(𝑖, 𝑗) in (B.17) as 𝑊(𝑖, 𝑗) = 𝑟𝑒𝑗𝜃 and  𝑠̂(𝑖, 𝑗) = 𝑒𝑗𝜙 in 

polar form, then (B.17) becomes: 

 

𝐺(𝑖, 𝑗) =  argmax
𝜙 ∈ Ψ

{ℜ{𝑟𝑒𝑗(𝜃+𝜙)}} 

           =  argmax
𝜙 ∈ Ψ

{cos(𝜃 + 𝜙)}, 
(B.23) 

 

where Ψ = {𝜙𝑛}𝑛=1
𝑀 . 
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In order to maximize (B.23), we have 𝜃 + 𝜙 = 0, and therefore 𝜙 = − 𝜃, i.e. the smaller the 

angle between (𝑊(𝑖, 𝑗))∗ and 𝑠̂(𝑖, 𝑗), the larger cos(𝜃 + 𝜙) is [12]. This property is exploited in 

the proposed detection scheme to significantly reduce the complexity of the detector, since only 

a specific symbol is required to maximize (B.17), thus eliminating the need for an exhaustive 

search of the constellation set. 

Let 𝐿𝜙̂ = 
−𝜃

2𝜋 𝑀⁄
 [12], then the index of the detected 𝑀-PSK symbol can be estimated using a 

modified version of [12, (10)]:  

 

𝑛̂ = 1 +𝑚𝑜𝑑(𝑟𝑜𝑢𝑛𝑑(𝐿𝜙̂),𝑀). (B.24) 

 

Using the result from (B.24), the corresponding symbol 𝑠̂(𝑖, 𝑗), may be simply obtained 

from 𝐿𝑈𝑇, and is used to compose the estimated symbol matrix 𝑺𝑴̂ ∈ ℂ𝑁𝑡×𝑁𝑡. 

Once the transmitted symbols are estimated, it is straightforward to obtain the matrix 𝑮̂ from 

(B.17). Then the AM index used during transmission is estimated, similarly to (B.21), using the 

following expression: 

 

𝑞̂ =  argmax
𝑞 ∈ 𝑄

 {∑ 𝑮̂(𝑖, 𝒍𝑞(𝑖))
𝑁𝑡

𝑖=1
} . (B.25) 

 

Finally, the estimated symbol transmitted from each antenna is simply 𝑠̂𝑖 =

 𝑆𝑀̂{𝑖, 𝒍𝑞̂(𝑖)}, where 𝑖 ∈ [1:𝑁𝑡]. 

4.3. A Simple Low-Complexity Near-ML Detection Algorithm for DSM-APSK 

The proposed low-complexity near-ML detector for DSM-APSK, uses a similar algorithm to that 

proposed for DSM-PSK. 

Initially, we assume that the APSK constellation consists of a single 𝑀-PSK constellation with 

𝐴 = 1. This simplifies the estimation of the transmitted symbol indices and the AM index, via 

the use of (B.24) and (B.25), respectively. Thereafter, using the estimated symbols for the 𝑀-

PSK constellation, 𝑠̂𝑖 (𝑖 ∈ [1:𝑁𝑡]), we compose the estimated symbol vector 𝒔̂(𝑡). It is then 

possible to obtain the estimated information matrix, 𝑺̂(𝑡), using (B.1). With this, a modified ML 

detector is derived from (B.10), to estimate 𝛼̂(𝑡). The modified ML detector is given by: 
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{𝛼̂(𝑡)} = argmin
∀𝛼̂

‖𝒀(𝑡) − 𝛼̂(𝑡)𝒀(𝑡−1)𝑺̂(𝑡)‖
𝐹

2
. (B.26) 

 

Since 𝛼(0) is known, the ML detector need only search through two possible values of 𝛼̂, as 

mentioned in Section 2.2. 

5. Complexity Analysis 

In this section, we analyze the complexity of the proposed detection scheme for PSK and APSK 

modulation. We then compare the complexity of the proposed low-complexity DSM-PSK 

detector, to that of the conventional ML detector and the existing low-complexity detection 

schemes for PSK. Additionally, the complexity of the proposed detector for APSK is compared 

to its respective ML detector. 

The complexity of the proposed detectors are derived using the concept of computational 

complexity as in [9], which is defined as the total number of real-valued multiplications in a given 

algorithm. Note that multiplication of two complex numbers requires a total of 4 real-valued 

multiplications. 

5.1. Proposed Low-Complexity Detector for DSM-PSK 

For a single space-time block, the computational complexity of the proposed low-complexity 

detector for DSM-PSK, is derived as follows. 

1. To compute 𝑾(𝑡) = 𝒀(𝑡)
𝐻
 𝒀(𝑡−1), we first reduce the entries in 𝒀(𝑡)

𝐻
 and 𝒀(𝑡−1) to polar 

form. This requires 2𝑁𝑟𝑁𝑡 real-valued multiplications to determine the magnitude of 

each complex entry, in each of the matrices. The phase may be obtained via a look-up 

table without adding to the overall complexity. Computing the matrix 

multiplication, 𝒀(𝑡)
𝐻
 𝒀(𝑡−1), then requires a further 3𝑁𝑟𝑁𝑡

2 real-valued multiplications. 

Thereafter, only the phase of each entry in  𝑾(𝑡) is required. The total computational 

complexity incurred in computing 𝑾(𝑡) is, 4𝑁𝑟𝑁𝑡 + 3𝑁𝑟𝑁𝑡
2 real-valued multiplications. 

2. Each computation of 𝐿𝜙̂ requires 1 real-valued multiplication, since 
−1

2𝜋 𝑀⁄
  is regarded as 

a constant. Therefore, computing 𝐿𝜙̂ for the entirety of 𝑾(𝑡) results in a total 

computational complexity of 𝑁𝑡
2 real-valued multiplications. 
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3. For each calculation of 𝑛̂ in (B.24), the 𝑚𝑜𝑑(⋅,⋅) operation requires 2 real-valued 

multiplications. Therefore, calculating calculate 𝑛̂ for the entirety of 𝑾(𝑡) requires 2𝑁𝑡
2 

real-valued multiplications.  

4. Finally from (B.17), the calculation of 𝑮̂ requires 2𝑁𝑡
2 real-valued multiplications.  

Therefore, the overall computational complexity of the proposed low-complexity DSM-PSK 

detector, is 𝐶𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝑃𝑆𝐾 = 4𝑁𝑟𝑁𝑡 + 3𝑁𝑟𝑁𝑡
2 + 5𝑁𝑡

2 real-valued multiplications. 

5.2. Proposed Low-Complexity Detector for DSM-APSK 

Since the proposed detector for DSM-APSK utilizes the same algorithm as the proposed DSM-

PSK detector, the computational complexity incurred when estimating the symbols and AM 

index, is 4𝑁𝑟𝑁𝑡 + 3𝑁𝑟𝑁𝑡
2 + 5𝑁𝑡

2 real-valued multiplications. The additional complexity 

incurred when estimating  𝛼̂(𝑡) via the modified ML detector in (B.26), is detailed as follows. 

1. Computing 𝑺̂(𝑡) via (B.1), requires 4 real-valued multiplications. 

2. Thereafter, computing the matrix multiplication, 𝒀(𝑡−1)𝑺̂(𝑡), incurs a total of 4𝑁𝑟𝑁𝑡 real-

valued multiplications.  

3. The resulting matrix is then multiplied by 𝛼̂, which incurs a further 2𝑁𝑟𝑁𝑡, real-valued 

multiplications.  

4. Finally, the Frobenius norm requires 2 real-valued to compute a single entry in the 

matrix. Therefore, for the entirety of the resultant matrix, a total of 2𝑁𝑟𝑁𝑡 real-valued 

multiplications are required.  

The ML detector searches through two possible values of 𝛼̂ in each space-time block. However, 

the result of 𝒀(𝑡−1)𝑺̂(𝑡) does not change during a block, therefore, it is only required to be 

calculated once. With this, the total computational complexity of the ML detector is 12𝑁𝑟𝑁𝑡 + 4 

real-valued multiplications.  

Therefore, the total computational complexity of the proposed detector for DSM-APSK is 

𝐶𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝐴𝑃𝑆𝐾 = 16𝑁𝑟𝑁𝑡 + 3𝑁𝑟𝑁𝑡
2 + 5𝑁𝑡

2 + 4. 

5.3. Discussion on Computational Complexity of the Presented Detectors 

In Table B.1, we provide the computational complexity of the existing detection schemes for 

DSM. The proposed detection scheme, unlike the detection schemes in [9] and [10], is 

independent of 𝑀 and 𝑄, for PSK and APSK modulation. Note that for the low-complexity 
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detection scheme in [9], 𝛾1 and 𝛾2, (𝛾1 + 𝛾2 = 1), denote the percentages of legitimate and 

illegitimate 𝒍̂(𝑡), respectively. 

Assuming a high SNR, in which case 𝛾1 = 100%,  we observe in Table B.2 that the proposed 

low-complexity detection scheme for DSM-PSK achieves at least 98% reduction in 

computational complexity over the ML detector, and a considerable reduction over the detection 

schemes in [9] and [10]; for example, a 35% reduction is realized over both detectors for 𝑁𝑟 =

2, 𝑁𝑡 = 4 and 8-PSK modulation. It can be deduced from Table B.1, that at lower SNRs, where 

𝛾1 ≠ 100%, and with 𝑃 = 𝑄, the proposed detection scheme would yield a greater percentage 

reduction in computational complexity over [9], than that given in Table B.2, while achieving 

optimal ML error performance. 

 

Table B.1: Comparison of the Existing Detection Schemes Conceived for DSM 

Detection 

Scheme 

ML 

Optimality 

Computational 

Complexity 

DSM-PSK ML 

Detector 
Optimal 𝐶𝑀𝐿 = (4𝑁𝑟𝑁𝑡 + 2𝑁𝑟𝑁𝑡)𝑄𝑀

𝑁𝑡 

DSM-APSK ML 

Detector 
Optimal 𝐶𝑀𝐿 = (4𝑁𝑟𝑁𝑡 + 2𝑁𝑟𝑁𝑡)2𝑄𝑀

𝑁𝑡 

PSK Detector 

in [9] 

Conditionally 

Optimal 

(𝑃 = 𝑄) 

𝐶[9] = 𝛾1(2𝑁𝑟𝑁𝑡 + 4𝑁𝑟𝑁𝑡
2 + 11𝑁𝑡

2) + 

𝛾2 (
2𝑁𝑟𝑁𝑡 + 4𝑁𝑟𝑁𝑡

2 + 11𝑁𝑡
2 +

(2𝑁𝑟𝑁𝑡 + 4𝑁𝑟𝑁𝑡
2)𝑃

) 

PSK Detector 

in [10] 
Sub-optimal 𝐶[10] = 4𝑁𝑟𝑁𝑡

2 + 2(
𝑀

8
+ 1)𝑁𝑡

2 + 8𝑁𝑡
2 

Proposed DSM-

PSK Detector 
Optimal 𝐶𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝑃𝑆𝐾 = 3𝑁𝑟𝑁𝑡

2 + 4𝑁𝑟𝑁𝑡 + 5𝑁𝑡
2 

Proposed DSM-

APSK Detector 
Optimal 𝐶𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝐴𝑃𝑆𝐾 = 3𝑁𝑟𝑁𝑡

2 + 16𝑁𝑟𝑁𝑡 + 5𝑁𝑡
2 + 4 

 

 

Furthermore, in Table B.3, the proposed low-complexity detector for DSM-APSK is shown to 

achieve a significant reduction in complexity, compared to the ML detector. At least a 98% 

reduction in computational complexity is realized. 
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Table B.2: Percentage Reduction in Computational Complexity of Proposed DSM-PSK Detector Relative 

to Existing Detection Schemes 

System Configuration Percentage Reduction (%) 

𝑁𝑟 𝑁𝑡 𝑀 ML [9] [10] 

2 2 16 99 29 32 

2 2 8 98 29 25 

2 4 8 99.9 35 35 

2 8 8 99.9 38 40 

4 8 8 99.9 32 32 

 

 

Table B.3: Comparison between Proposed Low-complexity Detector and the ML Detector for DSM-

APSK 

System Configuration Computational Complexity % 

Reduction 𝑁𝑟 𝑁𝑡 𝑀 ML Proposed 

2 2 16 24,576 112 99.5 

2 2 8 6,144 112 98.2 

2 4 8 6.29 × 106 308 99.9 

2 8 8 1.05 × 1014 964 99.9 

4 8 8 2.11 × 1014 1,604 99.9 

 

 

6. Simulation Results 

In this section, Monte-Carlo simulations are carried out to determine the error performance of the 

proposed DSM-PSK and DSM-APSK detection schemes. These are compared with the current 

low-complexity DSM-PSK detectors in [9] and [10], and the ML detector for DSM-APSK, 

respectively. Different system configurations are simulated to obtain a clear understanding of the 

error performance, of the various detectors. 

It is clear from Figure B.2 and Figure B.3 that the proposed low-complexity detector, for DSM-

PSK, yields near-ML performance throughout the SNR range for the various configurations. The 

proposed detector yields marginally better performance at low SNRs as compared to the detector 

in [10], which may be due to the detector in [10] using more than 𝑄 AMs to estimate the AM 
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index and as a result the estimated index may not be included in 𝑄. It is also noted that the 

proposed detector yields better performance than the detector in [9] at lower SNRs for larger 𝑁𝑡, 

since at low SNRs, there are inaccurate AIs in 𝒍̂(𝑡) [9]. As a result, the detector in [9] experiences 

an error performance loss and an increase in computational complexity, since the accurate AM 

may not lie within the selected 𝑃𝑀 AMs and 𝛾1 ≠ 100%, respectively. 

In Figure B.4 and Figure B.5, it is demonstrated that the proposed low-complexity detector, for 

DSM-APSK, achieves near-ML error performance, down to a bit error rate (BER) of 10−5, for 

the various system configurations. 

From the results, we can conclude, that the proposed detectors offer a significant reduction in 

computational complexity as compared to the ML detector, and existing low-complexity 

detectors, while achieving near-ML error performance throughout the SNR range. 

 

 

 

Figure B.2: DSM 𝑀-PSK BER performance with 𝑁𝑟 = 2, 𝑁𝑡 = 2. 
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Figure B.3: DSM 8-PSK BER performance for various antenna configurations. 

 

 

Figure B.4: DSM 𝑀-𝑀 APSK BER performance with 𝑁𝑟 = 2, 𝑁𝑡 = 2. 
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Figure B.5: DSM 8-8 APSK BER performance for various antenna configurations. 

 

7. Conclusion 

A simple, low-complexity detection scheme is proposed for DSM with 𝑀-PSK modulation, 

which manipulates the phase of the received signals in order to demodulate and estimate the 

transmitted symbols and the index of the antenna matrix. Additionally, we modify and apply the 

proposed detection algorithm to DSM with 𝑀-𝑀 APSK modulation. Simulation results 

demonstrate that the detectors are capable of achieving near-ML performance with significantly 

lower computational complexity than that of the respective ML detection schemes, and current 

low-complexity detectors. 
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Conclusion 

This dissertation consists of two papers, which focus on improving the error performance of 

DSM, as well as providing an alternative, low-complexity detection algorithm, to the 

computationally intensive DSM ML detector.  

In Paper A, the GD-SM and G-DSM schemes were presented, which are based on SM and DSM 

systems, respectively, with an arbitrary number of transmit and receive antennas. Both schemes 

employed optimal power allocation and a split frame structure, wherein the first block of a frame 

(reference block) was transmitted at a higher power than the remaining blocks (normal blocks) 

of the frame. As a result, the received reference signal provided an enhanced estimation of the 

channel, which in turn, improved the estimation of the differentially encoded information in the 

normal blocks. Moreover, the architecture of the frame permitted the use of QAM modulation in 

the proposed differential schemes, without the need for complex algorithms. The use of QAM 

modulation is not possible in conventional DSM.  

A complexity analysis revealed that the ML detector for G-DSM may achieve up to a 67% 

reduction in computational complexity compared to the ML detector for conventional DSM. 

Additionally, a theoretical upper bound on the ABEP was derived for the proposed schemes, and 

has been shown to closely match the simulation results at high SNRs. A summary of the SNR 

performance gains for GD-SM and G-DSM over their respective conventional schemes (in which 

optimal power allocation is not applied), has been presented in Table 1 and Table 2, respectively.  

Paper B proposed a simple low-complexity detector for DSM, with PSK and APSK modulation. 

The detector exploited the property of the PSK constellation, wherein the amplitude of the 

constellation remains constant, thus, information is encoded only in the phase of the constellation 

points. The proposed detector manipulated the phase of the received signals to determine the 

transmitted symbol in each time slot. This was achieved without performing an exhaustive search 

through all the constellation points. Thereafter, the transmitted AM was determined based on the 

estimated symbols.  

The proposed algorithm was also extended to DSM with APSK modulation. The transmitted 

symbols and AM were estimated as in the proposed detector for DSM-PSK, however, estimation 

of the amplitude level required the use of the ML detector, whose search space was reduced to 

only two possible values.  

A complexity analysis validated that the proposed detectors are independent of the constellation 

size and the number of usable AMs. Furthermore, it was demonstrated that the proposed detector 

for DSM-PSK achieved at least a 98% reduction in computational complexity over the ML 

detector, and a considerable reduction over the existing low-complexity detectors. A minimum 



57 

 

reduction of 98% was also realized for DSM-APSK, over the ML detector. Simulation results 

revealed that both proposed detectors achieved near-ML performance down to a BER of 10−5, 

throughout the SNR range. This was validated for various antenna configurations and 

constellation sizes. Therefore, it was concluded, that the detectors achieve significant reductions 

in computational complexity, while maintaining optimal error performance. 

Thus, Papers A and B have presented easily implementable DSM systems, which have satisfied 

the research objectives.  

 

Table 1: SNR Gain of GD-SM over Conventional GD-SM, at a BER of 10−4 

System Configuration Conventional 

GD-SM SNR 

GD-SM SNR 

𝑲 = 𝟒𝟎𝟎 

SNR 

Gain 𝑵𝒕 𝑵𝒓 Constellation 

2 2 16-PSK ~31.7 dB ~29.4 dB ~2.3 dB 

4 2 16-PSK ~31.5 dB ~29.2 dB ~2.3 dB 

2 2 64-QAM ~34.6 dB ~32 dB ~2.6 dB 

 

 

Table 2: SNR Gain of G-DSM over Conventional DSM, at a BER of 10−4 

System Configuration Conventional 

DSM SNR 

G-DSM SNR 

𝑲 = 𝟒𝟎𝟎 

SNR 

Gain 𝑵𝒕 𝑵𝒓 Constellation 

4 2 16-PSK ~31.4 dB ~29.0 dB ~2.4 dB 

2 2 16-PSK ~31.7 dB ~29.2 dB ~2.5 dB 

2 2 16-QAM ~31.7 dB 

(16-PSK) 

~26.2 dB ~5.5 dB 

 

 


