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Abstract

In this dissertation we consider spherically symmetric gravitational fields that arise
in relativistic astrophysics and cosmology. We first present a general review of static
spherically symmetric spacetimes, and highlight a particular class of exact solutions of
the Einstein-Maxwell system for charged spheres. In the case of shear-free spacetimes
with heat flow, the integration of the system is reduced to solving the condition of
pressure isotropy. This condition is a second order linear differential equation with
variable coefficients. By choosing particular forms for the gravitational potentials, sev-
eral classes of new solutions are generated. We regain known solutions corresponding
to conformal flatness when tidal forces are absent. We also consider expanding, accel-
erating and shearing models when the heat flux is not present. A new general class of
models is found. This new class of shearing solutions contains the model of Maharaj
et al (1993) when a parameter is set to zero. Our new solution does not contain a
singularity at the stellar centre, and it is therefore useful in modelling the interior of
stars. Finally, we demonstrate that the shearing models obtained by Marklund and

Bradley (1999) do not satisfy the Einstein field equations.
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Chapter 1

Introduction

The theory of general relativity, developed by Einstein, thus far has been the most
successful model in describing the phenomenon of gravity especially for strong gravi-
tational fields. For a long time, the gravitational interaction between heavenly bodies
was described by the classical Newtonian theory of gravity but there were some as-
tronomical observations that Newtonian gravity failed to explain. It was due to this
fact that Einstein developed a new theory of gravity which would not only explain
the observations, but also redefine our understanding of the concept of gravity and
the important role it plays in shaping our universe. Not only does general relativity
describe the interaction between objects but it also defines the interaction due to the
gravitational field of the various interacting bodies. Gravity is not just defined as a
simple force but rather as being part of a more powerful and richer structure, the four-
dimensional spacetime manifold. It is the understanding of this gravitational field that
enables us to study the gravitational nature and behaviour of various astrophysical
and cosmological objects. In order to analyse the evolution of celestial objects, such
as stars and galaxies, and the impact they have on the evolving universe, we first need
to understand the behaviour of their gravitational fields. Models that are generated
in the context of general relativity are important as they enable us to interpret ob-

servations made on the scale of the universe and, also, for strong local gravitational



fields. For a comprehensive guide on the basic principles of general relativity and its
role in astrophysics and cosmology the reader is referred to Gron and Hervik (2007)

and Narlikar (2002).

We aim to find exact solutions to the Einstein field equations in spherically symmet-
ric manifolds which form the basis of a relativistic model in astrophysics and cosmology.
Even though there exist many classes of exact solutions, only a few classes are physi-
cally acceptable. Certain solutions that are found may be mathematically interesting
but may not be appropriate for describing the physics of the problem. However, any
exact model helps to provide a deeper insight into the behaviour of the gravitational
field; they may provide qualitative features which are present in more complex models
in physical scenarios. Exact solutions should be used in conjunction with other fun-
damental theories of physics, such as thermodynamics and electromagnetism, to make
specific predictions and to study the physical features of the model. Hence finding
exact solutions is a crucial starting point in the modelling process. Exact solutions to
the Einstein field equations may be generated using a number of different techniques
and assumptions: ad hoc choices for some of the matter and gravitational variables;
imposing an equation of state; utilizing symmetries on the spacetime manifold, e.g.
conformal transformations; using the Lie analysis of differential equations; applying
generation techniques such as harmonic maps; and transforming nonlinear equations
into familiar forms using Backlund transformations, etc. A comprehensive review of
the methods and procedures utilized in generating solutions is provided by Stephani et

al (2003).

Static spherically symmetric gravitational fields form the basis of the description
for models of highly dense objects in astrophysics. Normally the matter distribution is
considered to be a static perfect fluid which may be either neutral or charged. The most

familiar exact solutions which are of physical importance are the Schwarzschild exte-



rior and interior solutions (Schwarzschild 1916a, 1916b) and the Reissner-Nordstrom
solution (Nordstrom 1918, Reissner 1916). The exterior Schwarzschild solution, which
was the first solution of the Einstein field equations to be found, describes the grav-
itational field in the exterior spacetime of a body; the interior Schwarzschild solution
models the gravitational field in the interior spacetime with constant density. The
Reissner-Nordstrom solution is charged and describes the exterior spacetime. There
are many interior stellar solutions which are known; some recent new interior solutions
are the charged models obtained by Hansraj and Maharaj (2006), the solutions for
charged superdense stars obtained by Komathiraj and Maharaj (2007) and the result
for charged compact spheres found by Thirukkanesh and Maharaj (2006, 2008). These
solutions contain the well known models obtained by Durgapal and Bannerji (1983),
Finch and Skea (1989) and Tikekar (1990). There are also particular solutions of the
Einstein field equations which are known for shear-free spacetimes. The earliest model
is due to Kustaanheimo and Qvist (1948). Shear-free models may also include heat
flow in the form of a nonvanishing heat flux across the boundary for a radiating star.
Some recent results with nonvanishing heat flux were obtained by Deng and Mannheim
(1990, 1991), in cosmology, and Naidu et al (2006), in astrophysics. Conformally flat
radiating solutions were found by Banerjee et al (1989). These solutions were applied
to radiating relativistic stars by Herrera et al (2004, 2006), Maharaj and Govender
(2005), and Misthry et al (2008). The most general case involves spacetimes which
have nonzero shear, acceleration and expansion. In these models the Einstein field
equations are highly nonlinear, and only two classes of solutions have been reported
in the literature. The first solution is by Maharaj et al (1993) and the other is by
Marklund and Bradley (1999). These results are applicable in cosmological processes
in the absence of heat flux. The shearing models may be easily adapted to include heat

flux for particular physical applications.

This dissertation is organised as follows:



e Chapter 1: Introduction.

e Chapter 2: In this chapter we present a review and background on the funda-
mental concepts of differential geometry which are essential for constructing the
relativistic models to be studied. A number of key definitions and formalisms are

highlighted. The Einstein-Maxwell system of field equations are presented.

e Chapter 3: We set up the model for static spherically symmetric spacetimes, and
derive the Einstein field equations for both neutral and charged matter distri-
butions. We review the two classes of exact solutions, of the Einstein-Maxwell
system, in the form of elementary functions obtained by Thirukkanesh and Ma-
haraj (2008). We regain previous other solutions for both charged and uncharged

stars obtained by various other researchers.

e Chapter 4: This chapter forms a substantial part of this study. We generate
the field equations for the shear-free model with heat flow. We make use of
the condition of pressure isotropy to generate a linear differential equation with
variable coefficients which we solve by choosing various forms for the gravitational
potentials. A number of new solutions to the pressure isotropy condition are
found in terms of elementary functions. It is interesting to note that the special

case of conformal flatness is contained in our models.

e Chapter 5: We construct the model for a spacetime with nonzero expansion,
acceleration and shear. The Einstein field equations that are generated are highly
nonlinear. The shearing solutions obtained by Maharaj et al (1993) are discussed
in detail, and we present a new solution which does not contain the singularity
at the stellar centre that is present in their results. We also demonstrate an
inconsistency in the shearing solutions obtained by Marklund and Bradley (1999),

and indicate the flaw in their reasoning.

e Chapter 6: Conclusion



Chapter 2

Basic theory

2.1 Introduction

Einstein’s theory of general relativity is successful in describing spherically symmetric
matter distributions in strong gravitational fields. A review of the physics of compact
objects, black holes and relativistic stellar processes is provided by Shapiro and Teukol-
sky (1983). For a recent treatment of cosmological models see Gron and Hervik (2007).
In this chapter, we present the background theory that enables us to generate a model
of a relativistic star or a cosmological system. We present a brief outline of the relevant
differential geometry, the Einstein-Maxwell system of equations for charged matter dis-
tributions and the essential physical criteria for a stellar model. For more extensive
details on differential manifolds and tensor analysis, and related topics, the reader is
referred to Bishop and Goldberg (1968), Misner et al (1973) and Wald (1984). In §2.2,
the essential components of differential geometry such as the Riemann tensor, the Ricci
tensor, the Ricci scalar and the Einstein tensor are introduced. These components are
required to generate the Finstein field equations which are the primary area of investi-
gation in this dissertation. We introduce the energy momentum tensor and the special
case of a perfect fluid, for modelling astrophysical and cosmological situations, in §2.3.

Then we present a covariant formulation of Maxwell’s laws of electromagnetism. This



allows us to formulate the Einstein-Maxwell system of equations in which the electro-
magnetic and matter fields are coupled. In §2.4, the physical conditions necessary for

interior solutions for relativistic stellar systems are considered.

2.2 Spacetime geometry

In general relativity, we assume that the spacetime M is a four-dimensional differen-
tiable manifiold endowed with a symmetric, nonsingular metric tensor field g. In local
regions the manifold has the structure of Euclidean space which implies that it may be
covered by overlapping coordinate patches so that special relativity is regained in the
relevant limit. The manifold of general relativity, with an indefinite metric tensor field,
is called a pseudo-Riemannian manifold. The tensor field g represents the gravitational
field and it has signature (— + ++). Individual points in the manifold are labelled by

0

the real coordinates (z%) = (2% 2!, 22, 23), where 2° = ct (c is the speed of light in

3 are spacelike coordinates. In this dis-

vacuum) is the timelike coordinate and z', z°, x
sertation, we use the convention that the speed of light ¢ = 1. For more comprehensive
treatments of spacetime geometry, the reader is referred to the standard text books in

differential geometry such as Bishop and Goldberg (1968), de Felice and Clark (1990),

Hawking and Ellis (1973), Misner et al (1973) and Wald (1984).

The invariant distance between neighbouring points in M is defined by the line

element
ds?® = ggpdz®da® (2.2.1)
The metric connection I' is defined in terms of the metric tensor and its derivatives by

1
% = §gad(gcd,b + Gab,e — Gbe,d) (2.2.2)



where commas denote partial differentiation. There exists a unique symmetric connec-
tion T' that preserves inner products under parallel transport (do Carmo 1992). The

Riemannian (curvature or Riemann-Christoffel) tensor R is given by
Rlpe = T —Tpe + 1% — DI, (2.2.3)
On contraction of (2.2.3) we obtain the Ricci tensor
Ry = R
= e — Db+ Tl % — Tal %, (2.2.4)

which is symmetric. On contracting the Ricci tensor (2.2.4) we obtain

= ¢“Ra (2.2.5)

which is the Ricci (or curvature) scalar.

With these definitions it is now possible to construct the Einstein tensor G, in

terms of the Ricci tensor (2.2.4) and the Ricci scalar (2.2.5), as follows

1
G = R™ — §Rg“b (2.2.6)



Clearly the Einstein tensor G is symmetric. The Einstein tensor has zero divergence
so that

G%, =0 (2.2.7)

)

which follows from the definition of the Einstein tensor (2.2.6). This property is some-
times called the Bianchi identity, and it is a necessary condition to generate the con-

servation of energy momentum via the Finstein field equations.

2.3 Fluids and electromagnetic fields

For applications in astrophysics and cosmology the matter distribution is described by
a relativistic fluid. The energy momentum tensor for uncharged matter is described by

the symmetric tensor T where

Tab — (p+p)uaub _|_pgab + qaub + qbu(z _|_,n_ab (231)

where p is the energy density, p is the isotropic (kinetic) pressure, ¢ is the heat flux
vector (q%u,) = 0 and 7 is the anisotropic pressure (stress) tensor (7%u, = 0 = 7%,).
These quantities are measured relative to a comoving fluid four-velocity « which is unit
and timelike (u%u, = —1). In perfect fluids there are no heat conduction and stress
terms (¢% = 0, 7% = 0). For a perfect fluid the energy momentum tensor, equation

(2.3.1) becomes

T = (p+ p)u'v’ + pg™ (2.3.2)



For many applications we require that the matter distribution satisfies a barotropic

equation of state

p = p(p) (2.3.3)

on physical grounds. Sometimes the particular equation of state

p=(—-1p

where 0 < v < 1, is assumed in cosmology to describe matter distributions. This is
called the linear 7 equation of state. The case v = 1 corresponds to dust; v = 2 gives
a stiff equation of state in which the speed of sound is equal to the speed of light ;

v = 4/3 corresponds to radiation. Often the particular equation of state

where k£ and n are constants, is assumed in relativistic astrophysics. This is called a

polytropic equation of state.

The Einstein field equations

G =1 (2.3.4)

governs the interaction between curvature and the matter content in the absence of
charge. We have set the coupling constant to be unity in (2.3.4). From (2.2.7) and

(2.3.4) we obtain



T%, =0 (2.3.5)

which is the conservation of matter.

We define the electromagnetic field tensor F' in terms of the four-potential A by

Fab = Ab;a - Aa'b

)

which is skew-symmetric. The electromagnetic field tensor can be written in terms of

the electric field E = (E', E?, E®) and the magnetic field B = (B!, B2, B?) as follows

0 E'  E? EB

-E' 0 B -B?
Fob = (2.3.6)
-E? -B3 0 B

—-E* B* -B' 0

The electromagnetic contribution E to the total energy momentum is given by the

result

1
Eqg, = FachC - ZgachdFCd (237)

To consider the effect of E on the gravitational field it is necessary to express the
fundamental equations of electromagnetism, namely Maxwell’s laws, in covariant form.

The governing equations are given by

10



Fab;c + Fbc;a + Fca;b = 0 (238a>

Foby, = g0 (2.3.8b)

)

where J is the four-current density defined by

J* = ou’ (2.3.9)

and o is the proper charge density. For further information on Maxwell’s field equations
(2.3.8) see Misner et al (1973) and Narlikar (2002). Note that the Maxwell equations
(2.3.8) are the basic equations that govern the behaviour of the electromagnetic field

in a curved background.

We point out that the total energy momentum tensor is the sum of T and E. We are
now in a position to introduce the Einstein-Maxwell system of equations for a charged
fluid in a gravitational field. The interaction between T, F and g is governed by the

Einstein-Maxwell system of equations

G?P = T4 pe (2.3.10a)
Fab;c _|_ Fbc;a + Fca;b - 0 (2310b)
Pty = Je (2.3.10c)

The system (2.3.10) is a highly nonlinear system of coupled, partial differential equa-

11



tions governing the behaviour of gravitating systems in the presence of an electromag-
netic field. In (2.3.10a), we use units in which the coupling constant in the Einstein
equations is unity. We need to solve the system (2.3.10) to generate an exact solution;
one approach is to specify a particular form for the matter distribution and electro-
magnetic field on physical grounds and then integrate the partial differential equations
to find the metric tensor field g. For uncharged matter, the only equation that has to
be satisfied is the Einstein field equation (2.3.10a) with E = 0. Note that from (2.2.7)

and (2.3.10a) we obtain

(T + B, = 0 (2.3.11)

which is the total conservation of matter and charge which generalises (2.3.5).

2.4 Physical conditions

We briefly consider the physical conditions applicable to a relativistic stellar model.
For physical viability, any solution applicable to the interior of the stellar body should
match smoothly to the appropriate exterior spacetime. The gravitational field outside

a static spherically symmetric body, in the absence of charge, is given by

2 om\ "
ds® = — <1 - _m) dt? + (1 — _m) dr® +r?(d6? + sin® 0dp?) (2.4.1)
r T

which is the exterior Schwarzschild solution. Here the quantity m is the mass of the
stellar body as measured by an observer at infinity. The exterior gravitational field to

a static spherically symmetric body, in the presence of charge, has the form

12



9 2 9 2\ —1
g — (1 _2m q_2> i+ (1 _2m ‘-’_2> dr? + r2(d0? + sin? 0d6?) (2.4.2)
T T

r r

In the above ¢ is the constant related to the total charge of the sphere. The line element

(2.4.2) is the exterior Reissner-Nordstrom solution. The radial electric field is

and, consequently, the proper charge density is ¢ = 0. Consequently, the four current
density J = 0 which is consistent with an exterior spacetime with no barotropic matter.

When ¢ = 0, (2.4.2) reduces to the exterior Schwarzschild line element (2.4.1).
Physical conditions will restrict the solutions of the Einstein-Maxwell system (2.3.10)
for a realistic star. It is often assumed by researchers that realistic stellar models for

isotropic matter should satisfy the following conditions:

(a) The energy density p and the pressure p should be positive and finite throughout

the interior of the star. The radial pressure should vanish at the boundary r = b:

0<p<oo, 0<p<oo, pb)=0

(b) The energy density p and the pressure p should be monotonic decreasing functions

from the centre to the boundary:
dp dp
7. <0, <0

13



(c) Causality should be satisfied. The speed of sound should remain less than the speed

of light throughout the interior of the star which leads to the condition:

0<% <1

(d) The metric functions € and e** and the electric field intensity E should be positive

and nonsingular throughout the interior of the star.

(e) At the boundary the interior gravitational potentials should match smoothly to the
exterior line elements (2.4.1) and (2.4.2) for neutral and charged matter, respectively.

This generates the following conditions on the gravitational potentials:

) =20 =1 2 (F =)

2v(b) —

e 6*2)‘(”):1—277”4-%, (E #0)

b

(f) The electric field intensity E should be continuous across the boundary for the case

of charged models:

B(b) = &

o

(g) The models should be stable with respect to radial perturbations.

It should be observed that not all relativistic stellar models satisfy the full set of the
conditions listed above throughout the stellar interior; particular solutions may be valid
only in some regions of spacetime. For example, the Schwarzschild interior solution
becomes singular at the centre. Such solutions need to be treated as an envelope of
the star and should be matched to another solution valid for the core. An example of
a core-envelope model is provided by Thomas et al (2005). Some of the conditions (a)-

(g) may be very restrictive. For example, observational evidence suggests that in some

14



stars the energy density p may be not a strictly decreasing function. However, many
researchers, for example Delgaty and Lake (1998), require that an exact solution satisfy
these conditions. In addition, it is interesting to study the behaviour of anisotropic
matter distributions with radial pressures different from tangential pressures. Such
cases were studied by Chaisi and Maharaj (2005), and Dev and Gleiser (2002, 2003)
in the case of neutral spheres; Herrera and Ponce de Leon (1985) analysed tangential
pressures in the presence of charge. Anisotropic matter and charge distributions may
be relevant in the description of quark stars as pointed out by Sharma and Maharaj
(2007) and Komathiraj and Maharaj (2007), respectively. Exact solutions to the field
equations which do not satisfy all of the conditions (a)-(g) are still of value because
they provide useful information which assist in the qualitative analysis of relativistic

stars.

15



Chapter 3

Spherically symmetric static models

3.1 Introduction

Static spherically symmetric spacetimes are used to model the behaviour of compact
relativistic spheres. This model caters for both neutral as well as charged matter distri-
butions; the charged case reduces to the neutral case when the electromagnetic field is
absent. There exist particular classes of physically reasonable exact solutions that are
known for both charged and uncharged matter. These exact solutions for the interior of
charged spheres are required to match the Reissner-Nordstrom metric at the boundary,
and satisfy the conditions listed in §2.4. The Reissner-Nordstrom metric describes the
exterior spacetime for a spherically symmetric, charged matter distribution. Charged
relativistic spheres may be used to model core-envelope stellar configurations as shown
by Paul and Tikekar (2005), Thomas et al (2005), and Tikekar and Thomas (1998).
Here the core is an isotropic fluid and the surrounding envelope is taken to be an
anisotropic fluid. The role of the electromagnetic field in describing the gravitational
behaviour of the quark stars (with a linear equation of state) has been recently investi-
gated by Komathiraj and Maharaj (2007), and Mak and Harko (2004). An interesting
fact about the presence of charge is that it may prevent the gravitational collapse of

a spherically symmetric matter distribution to a point singularity. Here the inwardly

16



directed gravitational attraction is counterbalanced by the repulsive Coulombic force
in addition to the effect of the pressure gradient. In §3.2, we discuss the spacetime
geometry for static spherically symmetric gravitational fields. We generate the relevant
quantities associated with the curvature. The Einstein field equations are found for
neutral fluids in §3.3. This is extended to include the electromagnetic field. Then the
Einstein-Maxwell system is transformed to an equivalent form using a transformation
of Durgapal and Bannerji (1983). A general class of exact solutions to the Einstein-
Maxwell coupled equations is presented in §3.4. Particular solutions found previously
for charged and neutral spheres are shown to be contained in this class of solutions.
The results of this chapter serve as a basis for the research undertaken in chapters 4

and 5.

3.2 Spacetime geometry

In this section, we describe the spacetime geometry corresponding to static spherically

symmetric manifolds. The line element can be written in the form

ds* = -V d? + M dr? 4 r?(d6? + sin® 0d¢?) (3.2.1)

in standard coordinates (z%) = (¢,7,6, ¢). The quantities v(r) and A(r) are associated

with the gravitational potentials.

The nonvanishing connection coefficients (2.2.2) are given by

FOOI —— PlOO — VI€2(1/7/\)

Flll = /\, FIQQ = —7"6_2>\

17



Il = —re 2 sin? 6 I, =1

I35 = —sinfcosf I35 =1

F323 = cot 6

for the metric (3.2.1). Primes denote differentiation with respect to the radial coor-
dinate r. Substituting the above connection coefficients into the definition (2.2.4) we

obtain the nonvanishing Ricci tensor components

Ry = |:l/” +/ =N+ 271/] =N (3.2.2a)
R, = — [v" +” =N — QTX] (3.2.2b)
Ry = 1—[147rW —N)]e ™ (3.2.2¢)
Rsz = sin?fRy (3.2.2d)

Using (3.2.2) and the definition for the Ricci scalar (2.2.5) we obtain the result

1 : 200 2\ 1
R=2 {— — <V" NN 5 U R —) 62)‘:| (3.2.3)

r2 r T r2

The Ricei tensor components (3.2.2), together with the Ricci scalar (3.2.3), may be
used to generate the nonvanishing Einstein tensor components (2.2.6). These are given

by

18



G = e [r(1- 6—2/\)]’ (3.2.4a)
r
!
G = P [—% (1—e )+ 2—'/6”] (3.2.4b)
r T
1 2 |V ’
G”? = e (1/" w1 v i) (3.2.4¢)
T T T
1
G*® = —G* (3.2.4d)
sin” 6

for the line element (3.2.1).

3.3 Field equations

As the fluid four-velocity is comoving we have u® = e~ ¥§§ for the metric (3.2.1). Then

the perfect fluid energy momentum tensor (2.3.2) has the nonvanishing components

T = e p (3.3.1a)
T = e*p (3.3.1b)
7?2 = 1 3.3.1
T3 = 1 3.3.1d

N r2sin29p (3.3.1d)

On equating the components of the Einstein tensor (3.2.4) to the components of the

19



energy momentum tensor (3.3.1), we obtain the Einstein field equations (2.3.4) in the

form

1
p = S[r(1- e’”‘)}l (3.3.2a)
,
1 2 2V 9y
p= 3 (1—eY + —e (3.3.2b)
! )\I
p = e <1/" F2 D YN — —> (3.3.2¢)
r r

— =—(p+p) — (3.3.3)

Note that (3.3.3) can also be obtained directly from the field equations (3.3.2); it may
be used to replace one of the field equations in the integration process. The system
of Einstein field equations (3.3.2) determines the evolution of the static spherically

symmetric star which we have modelled as a perfect fluid.

The Einstein equations given above may be generalized to include nonzero electric
charge. For the perfect fluid energy momentum tensor (2.3.2), together with the elec-
tromagnetic contribution (2.3.7), the Einstein-Maxwell system (2.3.10) can be written

as
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2N, 1

(3.3.4a)

(3.3.4b)

(3.3.4c)

(3.3.4d)

It is possible to transform (3.3.4) to a simpler form. Durgapal and Bannerji (1983)

introduced the following transformation

r=0Cr? Z(x)= e A1), A%y () = e2/(r)

The metric (3.2.1) now has the equivalent form

1
—da? + Z(d6? + sin® 0de?)

d2 — —A2 2dt2
g R TerY c

The corresponding Einstein-Maxwell system may be written as
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P 2% = o350 (3.3.6a)

425% + Z; L % - % (3.3.6b)

4Zx2% + 22—5352% <z—fx —Z+1- %) y = 0 (3.3.6¢)
%2 = % G:% + E>(23.3.6d)

which follows from (3.3.4) and (3.3.5). Equation (3.3.6¢) is the condition of pressure
isotropy generalised to include the electromagnetic field. It is the master equation that

must be integrated to provide a solution to the system (3.3.6).

3.4 Exact solutions

There exist many exact solutions to the systems (3.3.2) and (3.3.4) for neutral and
charged matter, respectively. However, only a few of the known solutions are physi-
cally reasonable. For comprehensive reviews of the known solutions and their physical
properties the reader is referred to Delgaty and Lake (1998), Finch and Skea (1989) and
Ivanov (2002). In recent treatments there have been attempts to find general classes
of exact solutions which unify particular cases found previously. Examples of these
treatments are provided by Komathiraj and Maharaj (2007), Maharaj and Komathi-
raj (2007), Maharaj and Thirukkanesh (2006) and Thirukkanesh and Maharaj (2006,
2008). These treatments provide new generalised classes of Einstein-Maxwell solutions
in closed form which are physically acceptable. For example, the speed of sound is less

than the speed of light in these models.
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A general class of models is the charged perfect fluid solution found by Thirukkanesh
and Maharaj (2008) to the Einstein-Maxwell system (3.3.6). The gravitational poten-

tial Z was chosen to be of the particular form

1+ax
1+ bx

where a and b are constants. The electric field was chosen to be

Cbx
=
(1+ bz)?

where « is a constant. These choices result in the following differential equation

41+ az)(1+ bz)% +2(a — b)j—i +[b(b—a)—ably=0 (3.4.1)

which is the condition of pressure isotropy (3.3.6¢).
Equation (3.4.1) can be integrated and it was found that the general solution to the

above system comprises two classes of elementary functions. The first class of solutions

may be written as follows

dl(l_f_am)% [1—(n+1)§:< 4a )Z (2@—1)(n+i)!'(1+bx)i

20)(n—i+1)!

3
2

(1 +bx) (n+1) (n—i)1(2i + 3)!
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where a — b+ a = a(2n + 3)(2n + 1). The second class of solutions has the form

3
2

di(1 + az)2 (1 + ba)

3 X/ 4a \' (2i+2)(n+d) Z.
n(n—l)g(b—a) (22’+3)!(n—i—2)!(1+bx)

+dy

“ a \' (2i —1)(n+i—2)! :
L=n(n—1) ;(b—a> (22))'((714;2)' )(l—i—bx)’

where a — b+ a = 4an(n — 1) and d; and dy are constants. The restriction on n arises
because it is this value that ensures elementary functions (rather than infinite series)

are admissible as solutions.

The classes of solutions found by Thirukkanesh and Maharaj (2008) are physically
reasonable: the matter variables and metric functions are continuous and regular in
the stellar interior; the interior line elements match to the Schwarzschild or Reissner-
Nordstrom exterior line elements; the speed of sound is less than the speed of light;
densities and pressures are consistent with observational results. Known solutions
which are physically acceptable are contained in their general class. The Hansraj and
Maharaj (2006) and Komathiraj and Maharaj (2007) solutions, which model charged
relativistic spheres, are regained as special cases. The Durgapal and Bannerji (1983),
Finch and Skea (1989) and Tikekar (1990) solutions, which model neutral relativistic

spheres, are also special cases.

For completeness we present the explicit solutions mentioned above.
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3.4.1 Case 1: Hansraj and Maharaj charged stars

Ifweseta=0,b=1and 0 < a <1 we get

y = [dl /(I - )1 +x)] cos /(1 — @) (1 + )

+ |do + /(T = ) (1 + )] sin /(T = ) (1 + ) (3.4.2)

from the above class of solutions. The class of charged solutions (3.4.2) is the first

category of models found by Hansraj and Maharaj (2006). If @ = 1 then

(SIS

y = di+do(1+ 1) (3.4.3)

This is the second category of the Hansraj-Maharaj (2006) charged solutions. When

« > 1 then we obtain

y = |:d2+d1\/(04— 1)(1+x)} sinh /(o — 1)(1 + )

+ [dl — dy/(a —1)(1 + x)} cosh /(o — 1)(1 + ) (3.4.4)

This is the third category of charged solutions found by Hansraj and Maharaj (2006).
The exact solutions (3.4.2)-(3.4.4) model a charged relativistic sphere and satisfy the

conditions for physical acceptability listed in §2.4.
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3.4.2 Case 2: Maharaj and Komathiraj charged stars

For the case a — 1 + a = a(2n 4+ 1)(2n + 3) we obtain

y:

¢a+aﬂéb-mn+U§5< %,Y(%—&Mn+®%1+@i

Z\1—a) @)n—i+1)

3 i( 4a )"(2@'+2)(n+z‘+1)!

(n+1)=\1-a (n —)!(20 + 3)!

3
2

+da(1+2)2 |1+ (1+2)"| (3.4.5)

In the case a — 1 4+ a = 4an(n — 1) we find

y:

L3 i( 4a )Z( (2i + 2)(n + 9)! o)

1—a) (2i+3)(n—i—2)

1_n(n_1)z< 4a )Z(zi—l)(n—l—i—z)!(l_'_w)i

(20)!(n — i)! (3.4.6)

The two categories of solutions (3.4.5) and (3.4.6) given above correspond to the Ma-
haraj and Komathiraj (2007) model for a compact sphere in electric fields. The Maharaj
and Komathiraj (2007) model for charged stars has a simple form written in terms of
elementary functions. They are physically reasonable and contain the Durgapal and
Bannerji (1983) model and other exact models corresponding to neutron stars as spe-

cial cases.
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3.4.3 Case 3: Finch and Skea neutron stars

When a =0, a =0 and b = 1 we obtain

y = |di —doV/1+ 2| cosV1+x+ |:d2+d1\/1+l’} sinv1+x (3.4.7)

from the general solution. (Equivalently, we can set « = 0 in (3.4.2).) Thus, we regain
the Finch and Skea (1989) model for a neutron star when the electromagnetic field
is absent. The Finch and Skea (1989) neutron star model has been proven to satisfy
all the physical criteria for an isolated spherically symmetric stellar neutral matter
distribution. This model has therefore been used in many investigations to study the

interior of neutron stars in the context of general relativity.

3.4.4 Case 4: Durgapal and Bannerji neutron stars

If we take a = 0 and n = 0 then we get

M

y=di(2—2)(5+22) + dp(1 + 2)’ (3.4.8)

Here we have regained the neutron star model of Durgapal and Bannerji (1983). This
model satisfies all criteria for being physically acceptable and has been used by many

researchers to study neutral neutron stars.
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3.4.5 Case 5: Tikekar superdense stars

If we take @ = 0 and n = 2 then we find

‘ 19 4} (3.4.9)

— [N 2
y = dyz(l gaz) +d2{1 5% T 5%

Now we have regained the Tikekar (1990) model for superdense neutron stars. This
model plays an important role in describing highly dense matter distributions, cold
compact matter and core-envelope models for relativistic stars. It is interesting to note
that the Tikekar (1990), superdense stars may be extended to include electric fields as

demonstrated by Komathiraj and Maharaj (2007a).
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Chapter 4

Shear-free models with heat flux

4.1 Introduction

In addition to radiating cosmological models, shear-free spacetimes are widely used to
model relativistic stars which dissipate null radiation in the form of a radial heat flow.
The heat flows from the hotter central regions to the stellar boundary. Various models
involving gravitational collapse with radiative processes have been studied in the past.
Deng and Mannheim (1990, 1991), Glass (1990), Santos et al (1985) and Stephani et
al (2003) have discussed the physical features of shear-free solutions with heat flux. A
necessary requirement for these models is that the interior spacetime must be matched
at the boundary, where the radial pressure is nonzero, to the exterior Vaidya radiating
spacetime. Studies of relativistic radiating stars are also useful in the investigation
of the cosmic censorship hypothesis and radiative collapse with vanishing tidal forces
(Herrera et al (2004), Maharaj and Govender (2005), Misthry et al (2008)). Wagh
et al (2000) presented solutions to the Einstein field equations for a shear-free spher-
ically symmetric spacetime, with radial heat flux, by choosing a barotropic equation
of state. Herrera et al (2006) found analytical solutions to the field equations, for
radiating collapsing spheres in the diffusion approximation. They demonstrated that

the thermal evolution of the collapsing sphere can be modelled in causal thermody-
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namics. In this chapter we construct the model for shear-free spacetimes exhibiting
heat flow. In §4.2, we discuss the spacetime geometry of shear-free spacetimes, and
generate the Einstein field equations with heat flow in §4.3. From the field equations
we deduce the condition of pressure isotropy which is written as a second order dif-
ferential equation with variable coefficients. Some known solutions corresponding to
the case of conformal flatness are reviewed in §4.4. We generate a number of new so-

lutions in §4.5 by choosing a variety of particular forms for the gravitational potentials.

4.2 Spacetime geometry

Shear-free fluids are important in modelling inhomogeneous cosmological processes and
radiating stellar models. Spherically symmetric spacetimes which are shear-free can be

written as

ds® = —A*dt* + B*[dr® + r*(df” + sin® 0d¢?)] (4.2.1)

in comoving coordinates (x*) = (¢,7,0,¢). The metric functions A and B depend on

both the timelike coordinate ¢ and the radial coordinate r.

The nonvanishing connection coefficients (2.2.2) are given by

0o _ A 0o _ A
Moo =45 Mo =5
0 _ BB 0 _ ,.2BB
Fll—Az [Tog =7 12
0. _ »2n2pnBB 1 AA
[P33 = r“sin” 053 oo = %2
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F133 = —7"2 Sin2 0 (% + %) FlOl = %
[y = g [Pg3 = %
F212:%+% F313:%—|—%
233 = —sinf cosf I35 = cotd

for the metric (4.2.1). In the above, dots and primes denote differentiation with respect
to t and r, respectively. Using the above connection coefficients and the definition for

the Ricci tensor (2.2.4) we can write the nonvanishing Ricci tensor components as
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AA" B B AB 2AA

- AA’— — -4z 4.2.2
R()() B2 + 3 + BAB - B2 ( a)
BB B AB
Ry, = 2 ( = -t AB) (4.2.2b)
B2 AB 2B A AT
- 9 4+ 7 _pp
o A2 AB rB A3 A

cUED ) (4.2.2¢)

BB, pA LB LAB A
RQQ = 7"?— BBE’FQTE—TZE—TZ
BI BII
R33 = Sin2 0R22 (4226)

Using the Ricci tensor components (4.2.2), and the definition (2.2.5), we obtain the

Riccei scalar

R gl A 41A’+GB2 8B B
N B2A rB2A A’2B?2 B3 B

A B B A B B
9 T 4 6 16

A B3 B3 A3 B BA? (42:3)

for the metric (4.2.1). Now using the Ricci tensor components (4.2.2), and the Ricci

scalar (4.2.3), we obtain the nonvanishing Einstein tensor components in the form
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GOl

G22

for the spacetime (4.2.1).

!
—— <BB’ — B'B — BB%)

1 . A
— (—2BB - B4+ QBB—> +

A2 A
1 2 VA G2 A ,
[ <B +QBBA+BTA+BBT
BB A B2
2 2 P)
—2r F"’z?" BBE—T E‘f‘

Al B/ 21411 2B12 2B/l
TZ_‘_TE—i_T I—T ﬁ"‘T §

sin2 9G22

4.3 Field equations

2

)

(4.2.4a)

(4.2.4b)

(4.2.4¢)

(4.2.4d)

(4.2.4¢)

For this particular model the nonvanishing components of the energy momentum tensor

are written as

33



Too = pA? (4.3.1a)

T = —AB% (4.3.1b)
T, = pB? (4.3.1c)
Ty, = pB*? (4.3.1d)
Tss = pB*r?sin®f (4.3.1e)

Using (4.2.4) and the energy momentum tensor components (4.3.1) we obtain the

Einstein field equations for this model

382 1 /2B" B? 4B
p = ( > (4.3.2a)

e B\ B B’ B

1 (2B BQ+2AB
b= B B2 ' AB

+— +

1 (B? 24'B 24" 2B
BQ<BQ+ 5t TB) (4.3.2b)

—2B+2AB B2 N A’
BA2 ' BA3  A2B2 ' rARB2

BI AII B12 BII
_l’_

B TAp BT m

(4.3.2c)

- 2 B,+BIB+A,B (4.3.2d)
= "ap\ "B "B "4B e
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The field equations above are a system of coupled partial differential equations and
they model the evolution of the interior of a spherically symmetric radiating star or a

radiating cosmological model.

Equations (4.3.2b) and (4.3.2c) yield the consistency condition

AII 1 BII AI BI BIQ 1 1 AI BI
— = 0 (4.3.3)

A B> B A B3 B* B>r\A B
which is the condition of pressure isotropy. This equation governs the gravitational
behaviour of the radiating model and must be solved to yield an exact solution to the
system (4.3.2). In the present form it is difficult to solve, and we need to rewrite it in

simpler form to make progress. We observe that (4.3.3) can be rewritten as

ATT+BTT _ 2B7"+1 AT+BT (434)
A B \"'B r A B -
Then we introduce the new variable
r =7’

(3).-46),

where subscripts represent differentiation with respect to the new variable x. We
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present exact solutions to the governing equation (4.3.5) in the remainder of this chap-

ter.

4.4 Known solutions

A number of solutions to (4.3.5), in closed form are known. Particular cases were
considered by Bergmann (1981), Maiti (1982) and Modak (1984). These solutions
are conformally flat which correspond to a vanishing Weyl tensor. The most general
conformally flat solution with heat flux was found by Banerjee et al (1989). We can

express the conformally flat solution in the form

= 1+4+Cy(t)r? (4.4.1a)

o]

1
B = SR OIEETeND) (4.4.1b)

where C(t), Co(t) and C3(t) are functions of integration. The form of solution (4.4.1),
was used by Di Prisco et al (2007), Herrera et al (2004), Maharaj and Govender
(2005) and Misthry et al (2008) to study radiating relativistic spheres, and to gener-
ate temperature profiles in the causal theory of thermodynamics. Triginer and Pavon

(1995) studied dissipative processes in inhomogeneous spacetimes for a particular case

of (4.4.1).

Other particular solutions of (4.3.5) are known and these are listed by Krasinski
(1997). It is interesting to note that a method of generating solutions to (4.3.5), was
found by Deng and Mannheim (1990, 1991) which generates an infinite sequence of

solutions.
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4.5 New solutions

As pointed out in §4.4, particular solutions to (4.3.5), have been found previously.
However these solutions are conformally flat or have a complicated form. We require
solutions in simple form, preferably expressible in terms of elementary functions or spe-
cial functions, to study the physical features of the model. In this section we demon-
strate that it is possible to generate simple exact solutions. We first write (4.3.5), in

the modified form

(i) oG, - e

Observe that (4.5.1), is linear in the function A if % is specified; it is linear in terms of
the function % if A is a given quantity. We utilise this feature of (4.5.1), to generate
several classes of new solutions. Observe that (4.5.1), is a partial differential equation.
However, we can treat it as an ordinary differential equation in the integration process,

because the variable ¢ does not appear explicitly.

4.5.1 Solution I: B~! = (a + bz)"

It is possible to generate an Cauchy-Euler equation for a suitable choice of %. We

assume the following functional form

L_ (os by (152

where a and b are functions of time and k is a real parameter. Then the condition

(4.5.1) becomes

(a4 bx)?Agy + 20k(a + br) Ay — *k(k —1)A =0 (4.5.3)
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We can simplify (4.5.3), by introducing the new dependent variable

z—=a-+bx

Then (4.5.3) reduces to the Cauchy-Euler differential equation

2VPA,, + 2%k A, — Ph(k—1)A =0 (4.5.4)

where A = A(z,t). The characteristic equation corresponding to (4.5.4), is

m? 4+ 2k —)m — (k* = k) = 0

The roots of the characteristic equation are

(1—2k)+V8k?—8k+1
2

(1 —2k) — /8k2 — 8k + 1
2

Three cases arise depending on the value of 8%% — 8k + 1 which could be positive,

negative or zero.

(i) Repeated roots

Itk = % (1 + \/Li) ork = % (1 - \/Li) then the roots are repeated and m; = my = %—k.
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Then the solution of (4.5.4), is given by
A=[c+dlnz] )/
In terms of the variable x we have
A(z,t) = [c + dIn(a + bx)] (a + ba)1=2)/2 (4.5.5)

where ¢(t) and d(t) are functions of integration.

(7i) Real distinct roots
If % (1 — \%) < k< % (1 + \%) then the roots m; and ms are real and distinct and

the solution of (4.5.4) is

A= Cz[f(2k71)+\/8k278k:+1]/2 4 dz[f(%fl)f\/8k278k+1]/2 (4.5.6)

where ¢(t) and d(t) result from integration. The closed form solution in terms of x is

given by
Az, t) = cla + bx)[(1—2k)+\/m]/2

+d(a + ba) -2 —VER8EF1] /2 (4.5.7)

for this case.
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(1ii) Complex roots
If % (1 + \%) < k< % (1 — \%) then the roots m; and msy are complex and the solu-

tion of (4.5.4) is

A = 1-20)(-a)/2

x | ccos V2 — 8k + 1 (Z > “) + dsin V8E? — 8k + 1 ('Z . “ﬂ (4.5.8)

where ¢ and d are functions of integration. Then the closed form solution in terms of

the original variable z is given by
Az, 1) = e1-202/2 [c cos V8k2 — 8k + 1o + dsin VK2 — 8k + 13:} (4.5.9)

for complex roots.

Hence we have generated a new class of solutions in terms of elementary functions,
to the condition of pressure isotropy (4.5.1). We can present the solution in the com-

pact form

e+ din(a+ b)) (a+ba) 02, k=1 (1+ L) or 3 (1- L)

c(a + ba) [(1—2k)+VBRT=8k+1] /2

A={ td(a+ bw)[(1—2k)—¢8k2_‘8k+1]/2, % (1 _ \/Lﬁ) < k< % (1 + \/LE) (4.5.10)

e1=2K)2/2 [ ¢ cos /8k? — 8k + 1z
+dsin /82 — 8k + 11] , s(1+d) <k<

N | =
N
—_
|
El

N
N
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= (a + bx)*

&~

for the gravitational potentials A and B.

In the special case when £ = 1, the roots are real and distinct.

solution yields the particular case

A = c+
a—+ bx
_ (ca+d) +chx
- a+ bx
1
5 = ¢ + bz
If we make the identification
ca+d = 1
ch = Cl
b — CQ
a = 03

Then the above

(4.5.11a)

(4.5.11b)

then we observe that (4.5.11), is equivalent to the conformally flat solution (4.4.1).

It is clear that the solutions found in this section reduce to the conformally flat case

41



in the relevant limit. Hence we have found a new class of exact radiating models for
shear-free fluids in terms of elementary functions which generalise the conformally flat
case. These solutions will help in the construction of models where tidal effects are

important, eg. in galaxy formation.

4.5.2 Solution II: A = (a + bz)*

In an attempt to find other classes of solutions we observe that it is possible to choose
power law forms for the potential A. This will generate solutions that differ from those

found in §4.5.1. We now let
A= (a+bx)k (4.5.12)
so that (4.5.1) reduces to
(a+ ba)? (l> — %kb(a+ br) (l) — Pk(k— 1) (l> — 0 (15.13)
B).. B). B

In a similar manner to the treatment above we obtain the second order Cauchy-FEuler

differential equation
220" — 2kzt" — k(k—1)5 =0 (4.5.14)

where v = 1/B and © = ©(z,t). The characteristic equation for this differential equa-

tion may be written as

m? —m(2k+1)—k(k—1)=0 (4.5.15)
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For this case the roots of the characteristic equation work out to be

2k +1+v8k2+1
2

m, =

2k +1—+/8k2+1

2

It is immediately clear that 842 + 1 > 0. Consequently the roots of the characteristic
equation are always real and distinct. Therefore the above choice for the potential A
admits only one class of solutions corresponding to 8k? + 1 > 0. The general closed

form solution to (4.5.14), may be written as

= cz[

(o3

2+1HVERTHL]/2 | g [2k4+1—VBRPHT] 2 (4.5.17)

Hence the general closed form solution to (4.5.13) is given by

(%) (,1) = c(a + ba)PFH1+VERFI]/2

+d(a + br)2EHI-VERFL/ (4.5.18)

for the metric function %.

The exact models for this category of solution is given by (4.5.12) and (4.5.18).
Note that the form of the potential A does not allow us to regain the conformally flat

radiating limit. For this class of radiating models tidal forces are always present.
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4.5.3 Solution III: B~ = e¢tt=

Also, we observe that if an exponential form for the potential % is chosen then we can

find a new solution. In (4.5.1) we set

= eothe (4.5.19)

S|~

so that we get

A"+ 264 —PA=0 (4.5.20)

which is a second order ordinary differential equation with constant coefficients. The

characteristic equation of (4.5.20) is

m2+2bm—5b> = 0

The roots are

which are real and distinct. This yields the general solution

Az, 1) = ce®CIHVDT L b1V (4.5.22)
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Consequently we have generated another new exact solution given by (4.5.19) and
(4.5.22) for a shear-free fluid with heat flux. This form of the solution is particularly
suited to the asymptotic behaviour of the model because of the exponential dependence

in the potentials.

4.5.4 Solution IV: A = ¢2th®

Conversely we can now choose the exponential form for the potential A and set

A = evthe (4.5.23)

In this case (4.5.1) reduces to
V=26V — bV =0 (4.5.24)
where V = %. This is a second order ordinary differential equation with constant

coefficients. The corresponding characteristic equation is

m2—2bm—0> = 0

for which the roots are

my = b(1—+2)

45



which are real and distinct. This admits the general solution

1
<§> (z,1) = ce?1TVD 4 geb1-V2e (4.5.26)

where once again ¢(¢) and d(t) are functions of integration. In this section we have

generated another exact solution which is given by (4.5.23) and (4.5.26).

4.5.5 Solution V: B~ = A~

It is possible that we may express one of the potentials as a power of the second poten-
tial when choosing a particular form to generate an exact solution. With this in mind

we made the particular choice

40 (4.5.27)

sy

for the potential %. Then (4.5.1) reduces to

(1—a)AAy + (Ba—a®)A,”> = 0 (4.5.28)

in the potential A.

Two cases arise corresponding to & = 1 and « # 1. With a = 1 we get from (4.5.28)

that



so that A = A(¢). Consequently B = B(t) and the radial dependence of the model is

lost. We therefore take o # 1.

With « # 1, (4.5.28) can be written as

- ez djaa (4.5.29)

We observe that this equation is easily integrable as it is separable. Upon integrating

(4.5.29), we generate the first order differential equation
— = cA 1= (4.5.30)

Equation (4.5.30), is integrable and yields the general solution

a—1

Alnt) = {(M> (c:z:—l—d)] (4.5.31)

a—1

where ¢ and d are constants of integration. Consequently (4.5.27) and (4.5.31) consti-

tute another new exact solution to the Einstein field equations with heat flux.

4.5.6 Solution VI: B~! = A*+ 3

In attempting to obtain a more general class of exact solutions to (4.5.1), we make

another choice for 1/B which is more general, and which contains the choice of §4.5.5.

47



We make the assumption that

— = A"+ (4.5.32)

where f3 is independent of 2. Then (4.5.1) becomes

[A+ A" —ad] Ayy + 20 —a(a—1)] 4> = 0 (4.5.33)

This can be reduced to the differential equation

dA;2 20— 3)A!
A g1 - a)de +1

dA (4.5.34)

Equation (4.5.34), can be integrated to generate the following differential equation

c@[%ﬂ—aM@+q (4.5.35)

dA
de

where ¢(t) is a function of integration. We cannot integrate (4.5.35), in closed form
for arbitrary « and 3. However it is possible to plot the behaviour of A using software
packages such as Mathematica. To regain the case considered in §4.5.5 we need to set

3 =0in (4.5.33).
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Chapter 5

Shearing spacetimes

5.1 Introduction

In Chapter 4 we considered shear-free spacetimes. However it is important to include
the effects of shear for many physical applications in cosmology and astrophysics. We
observe that very few exact solutions are known with nonzero expansion, acceleration
and shear as pointed out by Stephani et al (2003). The inclusion of nonvanishing shear
leads to highly nonlinear equations with few new solutions although there have been
a number of studies carried out by researchers. Naidu et al (2006) investigated the
thermal evolution of a radiating anisotropic star with shear. They obtained rather
simple, yet important solutions, to the field equations for which their model contains a
Friedmann-like limit with vanishing heat flux. Maharaj and Misthry (2008), Misthry
et al (2008) and Rajah and Maharaj (2008) also studied a collapsing star with non-
vanishing shear and successfully found new classes of solutions in terms of elementary
functions. They demonstrated that their solutions were regular at the stellar centre and
that the solutions obtained by Naidu et al (2006) could be regained as a special case.
In terms of cosmological models, Knutsen (1995) studied the properties of solutions
obtained in noncomoving coordinates and which had shear, acceleration and expansion

present. Kitamura (1994) obtained a class of exact solutions with shear corresponding
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to spherically symmetric perfect fluids; this class of models admit conformal transfor-
mations as demonstrated by Kitamura (1995). In this chapter we are concerned with
spherically symmetric gravitational fields with 4% £ 0, © # 0 and o # 0. In §5.2, we
study the spacetime geometry for the most general spherically symmetric metric. The
quantities associated with the curvature are determined. The Einstein field equations,
for a perfect fluid, are formulated in §5.3. In §5.4, we find a new class of expanding,
accelerating and shearing spacetimes which are regular at the stellar centre. In §5.5,
we demonstrate that a well known class of metrics do not satisfy the Einstein field

equations.

5.2 Spacetime geometry

The most general spherically symmetric spacetime has nonvanishing acceleration, ex-
pansion and shear. These spacetimes are important in modelling astrophysical and
cosmological processes. The line element for spherically symmetric spacetimes can be

written as

ds® = =N dt? + 2 dr? 1 Y2 (¢, 7) [d6? + sin® 0dg?] (5.2.1)

where the functions v, A and YV are the gravitational potentials. We have utilised co-
moving coordinates (x*) = (¢,7,0, ¢) related to the fluid four-velocity u® = e *4j. For

the spherically symmetric metric (5.2.1), the kinematical quantities are given by
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wab:O

relative to the four-velocity u, where dots and primes denote partial differentiation
with respect to £ and r respectively. In the above w,, is the vorticity tensor, u“ is
the acceleration vector, © is the expansion scalar (or rate of expansion) and o is the
magnitude of the shear (or rate of shear). The vorticity vanishes since the spacetime is
spherically symmetric. The acceleration, expansion and shear are nonzero in general.
Since the work of this chapter is concerned with nonzero shear our solutions have to
satisfy the condition

Y

- A#0

If the shear vanishes (0 = 0), then, after a suitable coordinate transformation, (5.2.1)

assumes the form

ds? = _2(tr)gy2 _|_625\(t,r)[dr2 +r2(d92 + sin? 9d¢2)]

It is only in the case of vanishing shear that we can find coordinates which are simul-
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taneously comoving and isotropic.

For the line element (5.2.1), the of nonvanishing connection coefficients are given

below

ljOoo =v Fom =

I‘OH — 62(>\—u)/'\ F022 — 6—2VYY

[, = sin®fe 2YY [l = 2Ny

[lor = A [y =N

[y = —e 2YY! Iys = —sin? Pe YY"’
I =+ [%, = %’

[?35 = —sinf cosf [P =+

3,5 = YVI 3, = coth

Then utilizing the above nonzero connection coefficients, and the definition for the

Ricci tensor (2.2.4), we obtain the nonzero Ricci tensor components in the form
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ROO

ROl

R22

A= NN+ 2w— 2=

Y Y
> v
422 (;/’ + VN + 21/7) (5.2.2a)
Y'Y !
5 (A? Vs ?> (5.2.2b)
) ! "
I/ o )\/ ! 2/\’_ ) B—
V=V + AV + v %
I S
+e A+ N =0+ 2/\? (5.2.2¢)
. Y Y
e YY ()\ — v+t f)
Y v
Yl YII
+e VY <X —V -5 7) +1 (5.2.2d)
Sin 29 .4.4€

The Ricci tensor components (5.2.2), may be used to generate the following expression

for the Ricei scalar

Y Yy Y2 Y

. X % Vv vy v
R = 26—2”(A+A2—Az'/+2A——2p—+—+2—>—

Yy y? Y y?

Y/ YI 12 YII 2
2e 2 <y” + 2 — VN — 2)\'7 + 20—+ — + 2—) + 5 (5.2.3)

For the line element (5.2.1), the corresponding Einstein tensor components are given
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as

. Y YQ Yy’ Y/2 y" 2v
2\ + = — Y (—2X— + 5+ 2—) + o

Y Y2 Y Y2 Y Y2
Y Yy Y’
N— + 2= — 2

)\Y+ VY v

Yov® (LYY YY) e
e [(x L Ap) Y2 4 (AY Y+ y) Y]

_|_€—2)\ [(l/” + V’2 _ ll’)\l) V2 4 (Vlyl —NY' + Y//) Y]

SiIl2 9G22

which follow from (5.2.2) and (5.2.3).
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5.3 The field equations

For the line element (5.2.1), the energy momentum tensor has the following nonzero

components
Too = pe* (5.3.1a)
T, = pe* (5.3.1b)
Ty, = pY? (5.3.1¢)
Tss = psin?0Y? (5.3.1d)

for a perfect fluid with vanishing heat flux.

Equating (5.2.4) and (5.3.1) leads to the Einstein field equations

y"” 2 T &
P= 35 ?e*” (Y” —NY' + W) + ?6*2” (AY + ﬁ) (5.3.2a)
p = L + z6_2)‘ (V’Y’ + 1;—;) - 36_2” (Y — Y + §> (5.3.2b)
p = e [1/" +° VN + % Y = NY'+ Y”)]
e [A FAZhi+ % (AY oY+ Y)] (5.3.2¢)

0 = Y -y/-Y'A (5.3.2d)

which are highly nonlinear. From the conservation of energy momentum (2.3.5), we
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generate the differential equations

o= —(p+pV (5.3.3a)

p = —(p+p) <;\+ 2;) (5.3.3b)

which are conservation equations. The result (5.3.3), may be obtained directly from the
field equations (5.3.2). The conservation equations are sometimes used in conjunction
with the field equations to obtain a solution. The system (5.3.2), comprises four equa-
tions in the five unknowns p, p,v, A and Y. Actually there are only three independent
equations; (5.3.2b) and (5.3.2c) generate the condition of pressure isotropy. To obtain
a solution it is necessary to impose additional restrictions. There are few solutions, in
comoving coordinates, to the system (5.3.2) which are known with nonzero expansion,
acceleration and shear as pointed out by Stephani et al (2003). In fact, only the two
general classes of Marklund and Bradley (1999) and Maharaj et al (1993) in comoving

coordinates have been published in the literature.

5.4 New shearing solutions

In this section we present a new class of exact solutions, in terms of elementary func-
tions, which are expanding, accelerating and shearing. As a starting point we choose

the simple form

ds? = —edt? + 2O dr? 4+ (1 + )2T?(t)(d6? + sin? §dp?) (5.4.1)

for the line element where « is a real constant. This is the simplest form that allows

for 4* # 0,0 # 0 and o # 0. Particular models associated with (5.4.1) have been
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studied by Hajj-Boutros (1985), Maharaj et al (1993) and Wesson (1978), and other

models as given in Stephani et al (2003).

The field equations (5.3.2) simplify, because of the reduced metric (5.4.1), and we

obtain

p = 1 4 2 672>\ !
(r+a)?T?  (r+a) 2(

P w%zﬂ[_vj@T+T@”+

—2(r + a) (T + g) 62V]

o i

wiaﬂeﬂA

1 T
p = 6—2)\ |:(I/” + 1/12 N Z/I)\’) + (T - a) (l/I . /):| o ?e—QV
0 = 1—(r+a)/
Equation (5.4.2d) can be integrated to give
e = a*(r+a)?

where a is a constant of integration.
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Equating (5.4.2b) and (5.4.2¢) leads to

1 (r+a)? T+T2
T2 e |T ' T2
(T+&) ]‘ ! ! Iy\/ 12 "
6% T+a+l/+)\+(r+a)(l/)\—y — ") (5.4.4)

which is the condition of pressure isotropy. We can eliminate €2 from (5.4.4), with the

help of (5.4.3), to get

1 1
e

i T
T 17

_2rto) ( L +X> (5.4.5)

e2A r+ «

Observe that in (5.4.5) the left hand side is a function of the coordinate ¢ and the right

hand side is a function of the coordinate r. This implies that

1 1 |T 1772
ﬁ + g T -+ ’]TQ = 2]€ (546&)
(r+ «) 1 ,
A = k 5.4.6b
e2A r+ o + ( )

where k is an arbitrary constant. We can write (5.4.6a) in the form

(T?)" — 4a*kT? 4 2a* = 0 (5.4.7)

which is linear in 72. Three classes of solutions are possible depending on the roots of
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the characteristic equation, and we obtain

)
—a?t? +ct + d, E=0
% = csin(2ant) + dcos(2ant) — 55, k= -n? <0 (5.4.8)
\ CeQant + d€72ant + #7 k= n2 >0

Therefore the general solution of (5.4.6a) is known. If we let €** = y then (5.4.6b) is

transformed to

2 k
! 2
- __O
y+<r >y (r >?/

This is a Riccati equation which is integrable. The general solution of (5.4.6b) can

then be written as

1
L — 5.4.9
¢ k+b(r+ a)? ( )

where b is a constant.

The solutions to (5.4.6) may be given for the three cases &k = 0,k < 0 and k > 0.

For these cases, the metric (5.4.1) may be written as

ds® = —a*(r + «)?dt* + ( 2) dr? + (r + a)?

1
b(r + o)
x (—a*t* + ct + d)(df? + sin® 0dp?) (5.4.10)
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k=—-n?<0:

ds® = —a*(r + «)?dt* + ( ) dr® + (r + a)?

—n? + b(r + a)?

1
X (c sin(2ant) + d cos(2ant) — —) (dO* + sin® 0d¢p?) (5.4.11)

2n2

kE=n%>0:

1
n? +b(r + «)?

ds* = —a*(r + «)*dt* + ( ) dr® + (r + a)?

1
X <cem + de™2%m 4 ﬁ> (dO* + sin® 0d¢p?) (5.4.12)
n

where ¢ and d are constants of integration. By (5.4.2), using (5.4.3), (5.4.8) and (5.4.9),

the energy density and pressure may be written as

k 1T
_ _ L 41
P b (r+a)? o(r+a)?T (5.4-13a)
ki 1T
— 3 _ — 4.13b
P Sb+ (r+a)? a(r+a)2T (5 )

respectively. Combining (5.4.13b) and (5.4.13b), we obtain the following equation of

state

p=p+6b (5.4.14)

which is of the barotropic form p = p(p). This equation of state is the same as obtained

by Maharaj et al (1993) although in the results above it was obtained from a different
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nonsingular metric solution. This is a linear equation of state which generalises the

stiff equation of state (p = p).

When a = 0, our results (5.4.10)-(5.4.12) reduce to the result of Maharaj et al
(1993). Observe that at the point corresponding to r = 0, the Maharaj et al (1993)
result is singular and cannot be used to model the stellar centre. This is an undesir-
able feature in a relativistic stellar model. In our models (5.4.10)-(5.4.12), the point
corresponding to r = 0 does not produce a singularity in the line element (5.4.1) since
a # 0 in general. Hence, the class of new solutions (5.4.10)-(5.4.12) are physically
reasonable and may be used to model stellar centres. They also have the advantage
of being given in terms of elementary functions which facilitates the investigation of
the gravitational behaviour. We emphasize that the class of solutions presented in this
section are expanding, accelerating and shearing. It is interesting to observe that the

solutions (5.4.10)-(5.4.12) admit a conformal Killing vector of the form

which is orthogonal to the spacelike hypersurfaces. This was first observed by Maharaj
and Maharaj (1994). The influence of the electromagnetic field on the metric (5.4.1)

was considered by Moodley et al (2003).

5.5 Correction: Marklund and Bradley solution

The second class of expanding, accelerating and shearing solutions that has been re-
ported is due to Marklund and Bradley (1999). The line element in this class has the

form

61



T2

ds*> = — dt*
° 462 (ct? — t + a)? prpy

t
dr* + —(d6” + sin® 0d¢?®)  (5.5.1)

)
We deduce from this line element that the metric functions must be

2

621/ _ T
C 42(ct? —t + a)?
1
22
e =
a — br?
t
2 _
L

If we substitute these functional forms in (5.3.2d) then we obtain

1
r2¢1/2

= 0 (5.5.2)

which is an inconsistency. Hence the Marklund and Bradley (1999) result is not a

solution of the Einstein field equations. This is contrary to the claims in the literature.

We can demonstrate in principle why the Marklund and Bradley (1999) result does

not work. Note that the Marklund and Bradley (1999) “solution” is of the form

d82 — _621/1(t)621/2(7“)dt2_|_62)\(7“)dr2+}/'12(t)1/'22(r)(d02_|_sin2 9d¢2) (553)

With the form (5.5.3) we find that (5.3.2d) becomes

62



V(Yo' = Yorn') = 0

So that when Y; # 0 we must have

Hence we have the relationship

e”? x Yy (5.5.4)

Consequently, we have established that for metrics of the form (5.5.3), as chosen by
Marklund and Bradley (1999), the condition (5.5.4) must hold. This means that the
radial dependence of ”(*") and Y (¢,7) must be the same. This is clearly not the case in
the Marklund and Bradley (1999) model. Our argument given here indicates why the
solution of Marklund and Bradley (1999) fails. Note that the condition (5.5.4) neces-

sarily follows because the metric coefficients v(¢,7) and Y (¢,7) are separable functions.
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Chapter 6

Conclusion

The main objective of this dissertation was to study the spherically symmetric space-
times, and associated relativistic models used to describe stars and cosmological pro-
cesses. It was our aim to find new exact solutions to the Einstein field equations for
relativistic stars which are static and nonstatic models with vanishing shear in the
presence of heat flux. Nonstatic models with nonvanishing shear in the absence of
heat flux were also considered. Solutions to the highly nonlinear system of coupled
differential field equations were sought by solving the condition of pressure isotropy.
Our assumptions effectively reduced the pressure isotropy condition to a simple second
order differential equation with variable coefficients. We solved this master equation
by choosing particular forms for the gravitational potentials, and obtained several new
classes of exact solutions in terms of elementary functions. A new solution which is
appropriate in describing the centre of a star was also presented for the shearing model.
This solution contains the result obtained by Maharaj et al (1993) as a special case.
We also made a number of general remarks on the shearing solution found by Marklund

and Bradley (1999) and showed that it is inconsistent.

We now provide an overview of the main results obtained during the course of our

investigations:
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e In Chapter 2, we introduced the relevant definitions and formalisms of differential
geometry that were necessary for later chapters. We generated the Einstein field
equations for a neutral fluid matter distribution, and also the Einstein-Maxwell

system of equations for charged matter.

e In Chapter 3, we constructed the basic model for static spherically symmetric
spacetimes containing neutral as well as charged perfect fluids. For the case of
the charged perfect fluid model we showed that the Einstein-Maxwell system can
be rewritten as a simpler system by using the transformation of Durgapal and
Bannerji (1983). A number of exact solutions are known to the field equations
which could model the interior of a dense static star. The two general classes of
exact solutions for charged relativistic stars, obtained by Thirukkanesh and Ma-
haraj (2008), were presented. We demonstrated that this general class contains
well known solutions for neutral and charged static stars. The explicit solutions,
found previously, that model charged compact spheres and neutral neutron stars

were explicitly regained.

e Chapter 4 formed a major part of this study. We constructed the model for a
shear-free spacetime with nonvanishing radial heat flow. It is well known that
such a model is effective in describing radiative processes in both astrophysics
and cosmology. We produced a second order differential equation with variable
coefficients representing the condition of pressure isotropy. It was our main pur-
pose to solve this master equation to generate new exact solutions. The pressure
isotropy equation contains two dependant variables, namely the gravitational po-

tentials A and B, and can be written as

1 1 1
(E) Ao 24 (E);A<E>M =Y
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The known solutions for this equation, corresponding to conformal flatness, were
presented. We generated several new classes of exact solutions corresponding to

the following choices

— (a) 5 = (a+ ba)*

~ (b) A= (a+bo)t

Q) L= vt
(d) A= ot
— () 5 =4A°
() g=A" 0

for the potentials. In each case we were able to solve the condition of pressure
isotropy and present exact solutions in terms of elementary functions. These
solutions are new and have not been published previously. It is remarkable that
our simple ansatz allows for such a wide variety of simple models. It is important

to note that the conformally flat solution

= 1+Ci(t)r”

| b

Cz (t)?"Q + Cg (t)
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is contained in our general class of solutions in the relevant limit.

e In Chapter 5, we considered the model for a spacetime with nonzero shear, ac-
celeration and expansion. We presented three new classes of solutions to the
field equations which are generalizations of those found by Maharaj et al (1993).

These new solutions have the barotropic equation of state

p=p—+60

which is a generalization of the stiff equation of state p = p. Note that this new
class of shearing models is appropriate for describing the centre of relativistic
stars as the metric functions remain regular unlike the models of Maharaj et
al (1993). Also, we showed that the Marklund and Bradley (1999) model is

inconsistent and does not satisfy the Einstein field equations.

In the above we have highlighted only those items of particular interest to spherically
symmetric gravitational fields. The primary aim of this dissertation was to study the
appropriate models for relativistic stars and cosmological processes, as well as to find
new exact solutions if possible. We have produced a number of new solutions in terms of
simple elementary functions which generalise earlier treatments. We have not carried
out any qualitative analysis of the behaviour of our new solutions or used them to
predict the overall evolution of the systems which we have studied. This is outside
the scope of this dissertation. In future work we aim to find other physically relevant
solutions and use them, in conjunction with other physical theories, to predict the

behaviour of the gravitating systems.
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