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ABSTRACT 

Objective: 

To determine the role of candidate gene polymorphisms in patients who 

sustained myocardial infarction at a young age and examine their relationship, 

if any, to risk factors. Since angiotensin IT is known to play a 

pathophysiological role at the myocardial and vascular level, the genes to be 

studied are those regulating the renin angiotensin system and tissue 

metabolism. 

Design: 

The risk factors and genetic profile is described in 117 young Indians with 

myocardial infarction recruited over a period of thirty months (Dec 1997 -Jun 

1999). Controls comprised 80 normal subjects with no clinical evidence of 

coronary heart disease (CHD) and with a normal effort response. 

The key features of this study are the selection of young subjects with 

myocardial infarction, (mean age 43 ± 6.8 years) in whom the possibility of a 

genetic basis for the disease was felt to be more likely since the confounding 

effect of age as a risk factor was reduced. 
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Setting: 

Patients recruited 3 -12 months after myocardial infarction from Addington 

Hospital, Durban. This hospital subserves the Indian community in the north 

of Durban. The majority of patients were from the Phoenix settlement area. 

Results: 

1 The clinical profile of the young Indian with myocardial infarction is a young 

man, slightly overweight with a high prevalence of risk factors, particularly 

smoking and diabetes, coupled with sedentary behaviour and risk-prone 

dietary patterns characterised by high red meat intake and low fruit and 

vegetable consumption, resulting in increased BMI and W IH ratios. 

2 There were no differences in the patterns of gene polymorphism in the renin­

angiotensin system between the study and control groups. This fmding 

extended across all candidate gene loci studied i.e. those involving 

aldosterone, G-protein, TGF-~ and homocysteine metabolism. Serum 

triglycerides, haemoglobin Al C and urine microalbumin levels were elevated 

in the probands together with low HDL-C levels (p = 0.001). 

3 A striking fmding of this study was the substantial proportion of patients found 

to have diabetes mellitus, totalling 47% of the proband group. Of the 53 

diabetic patients, (45 males and 8 females) four (3 males, 1 female) had 

impaired glucose tolerance. Cigarette smoking, a positive family history of 

hypertension/diabetes and a family history for premature CHD emerged as 
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important risk predictors for MI. 

Conclusion: 

This study, the ftrst to report candidate gene polymorphisms in young Indians 

with coronary heart disease, has shown no obvious association between the 

genetic loci studied and acute myocardial infarction. Instead a high prevalence 

of risk factors, particularly smoking and diabetes mellitus, coupled with 

coronary-prone behavioural patterns was observed. 

In the light of these fmdings, genome-wide screening of unaffected siblings of 

subjects with early onset CHD cannot be recommended in this population until 

common polymorphisms can be clearly identified as risk factors. Indeed this 

study again supports the dire need for early, school level, education in 

behavioural lifestyle patterns and disease predisposition. The Indian 

community is a very high-risk group who should be targeted, not for 

secondary, but for primordial disease prevention measures. 

The study does not rule out the role of other candidate gene polymorphisms in 

the pathogenesis of CHD in these subjects. The high prevalence of diabetes 

and insulin resistance suggests that studies of genes regulating glucose and 

lipid metabolism should be pursued. Such candidate genes should include 

genes for lipoprotein lipase and Paraoxonase polymorphisms which may 

explain the dyslipidaemia patterns in this group. 
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A) INTRODUCTION: 

CHAPTER I 

BACKGROUND 

1. Pathogenesis of Coronary Artery Disease: 

In recent years great strides have been made in elucidating the pathogenesis of 

coronary heart disease (CHD). Although the role of cardiovascular risk factors has 

emerged as central to the development of CHD (Kannel et aI, 1976) it is now 

known that atherosclerosis is a disease of multiple aetiology resulting from a 

complex series of molecular and cellular changes that begin in the intima of the 

arterial wall. Furthermore, it is now recognised that the function and activity of 

cellular components within the plaque are a more important determinant of acute 

events (unstable angina, myocardial infarction) than the degree of stenosis of the . 
arterial lesion (St Clair, 1997). Thus, while risk factors undoubtedly contribute to 

disease development, other trigger factors at a cellular level, precipitate acute 

coronary events in patients with atherosclerotic coronary disease. 

Furthermore, differences in the prevalence of the established atherogenic 

cardiovascular risk factors such as hypertension, smoking and 

hypercholesterolaemia do not fully account for the variations in geographical 

prevalence, the severity of CHD, the age at presentation or ethnic predisposition to 

disease development (Whitty et ai, 1999, HelIer et ai, 1984). 

2. Epidemiology in South Asians 

Of all ethnic groups people of Indian origin have been shown to have one of the 

highest mortality rates for CHD (Balarajan, 1991). CHD has now become a major 
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public health problem in South African Indians (Seedat et aI, 1990, 1993). Local 

studies show that there is an alarming increase in the younger age group (20-39 

years), affecting men more than women (Sewdarsen et aI, 1990, 1991). 

Risk factors for CHD have been well documented in the South African Indian 

(Seedat et aI, 1990, Sewdarsen et aI, 1991). Smoking, diabetes and a family 

history have been identified as important risk factors in this community (Seedat et 

aI, 1990). A prevalence rate of 15,3% for CHD has been linked to the presence of 

at least one major risk factor in half the number of patients. In addition, 

hypertension was present in 19% of a house-to-house survey of 1000 Indians and 

in another study almost half of 620 male survivors of myocardial infarction had 

abnormal cholesterol levels > 6.5 mmolll (Sewdarsen et aI, 1991). Smoking was 

the commonest risk factor (79%) in young males. 

The rate of premature CHD has been documented to be up to 3 times higher in 

Indians when compared with subjects of similar age in the Western world (Lowry 

et ai, 1991). Epidemiological observations suggest that environmental factors play 

a significant role in the pathogenesis of premature CHD in Indians (Rajadurai et 

ai, 1992). Urbanisation as well as the westward migration of Indians appear to be 

associated with increased prevalence of CHD in Indians (Klatsky et aI, 1993, Enas 

et ai, 1992). A variety of environmental factors in the Western world might play a 

potential role in increasing the risk of CHD among the migrant Indians. It has 

been demonstrated that Indians living in the Western world have an increased 

incidence of obesity, diabetes, hypertension and emotional stress (McKeigue et ai, 

1991). Although the precise reasons for these metabolic abnormalities are not 

entirely clear it has been suggested that dietary habits (generally rich in 

calories/carbohydrates) in association with a lack of physical activity might be 

responsible for some of these findings. 

Recent studies have demonstrated that serum HDL cholesterol levels are generally 

low and serum triglyceride levels are high among Indians with premature CHD 
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(Krishnaswami et aI, 1989). There is evidence that these patients have insulin 

resistance which is manifest by the presence of hyperinsulinaemia (Seedat et aI, 

1993, Mckeigue et aI, 1993, Bhatnager et aI, 1995) glucose intolerance, and 

truncal obesity. In addition, some studies have suggested that increased levels of 

lipoprotein (a) [Lp(a)] might also play a role in premature CHD (Scanu, 1992, 

Lowry et aI, 1991). A direct link between the metabolic abnormalities, the lipid 

levels and the increased risk of premature CHD in Indians, has not been 

established; and whether these abnormalities are genetically modulated has also 

not been shown. 

3. Pathogenesis of Premature Coronary Atherosclerosis: 

The hypothesis that atherosclerosis is a 'response to injury' is now generally 

accepted and can be summarised as follows: 

a) Many factors damage and activate the endothelium of the vessel wall. These 

are the major risk factors for atherogenesis i.e. hyperlipidaemia, hypertension, 

diabetes, smoking and ischaemia. 

b) Endothelial dysfunction leads to increased permeability so that lipids (low 

density lipoprotein particles) and circulating cells (monocytes and 

lymphocytes) enter the subendothelial space and form the initial characteristic 

lesion of atherosclerosis, the fatty streak. 

c) As cell numbers increase together with lipid accumulation there is increased 

endothelial disruption leading to thrombogenic surfaces to which platelets 

adhere. 

d) The cellular elements within the plaque can themselves release growth 

modulatory factors leading to proliferation of smooth muscle cells and 
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fibroblasts (fibrous plaque) and finally to the complex advanced lesion - the 

atherosclerotic plaque. Ross (1993) has described atherosclerosis as an 

'inflammatory fibroproliferative process'. It is thought that lesions with large 

amounts of lipid are particularly unstable and liable to rupture leading to 

thrombosis and vessel occlusion, causing ischaemia and manifesting as a 

clinical event, the acute coronary syndrome (ACS) (Fuster et al, 1999). 

These syndromes (ACS) include unstable angina, non-q wave myocardial 

infarction, ST-segment elevation, myocardial infarction and sudden death. 

Unstable angina and non-q wave MI generally result from rupture of 

atherosclerotic plaque in the coronary arteries. The term, acute coronary 

syndrome, is therefore a misnomer, when one considers that the process is a 

chronic syndrome with exacerbations leading to the formation of occlusive 

thrombus on minor as well as on critically stenotic lesions. Such episodes are 

temporary or clinically silent but incorporation of thrombus contributes to the 

development of a complex plaque. In q wave myocardial infarction larger 

plaque fissures result in the formation of a persistent thrombus. Abrupt 

cessation of blood flow for more than an hour results in transmural recrosis 

(Fuster et al, 1999). Myocardial infarction therefore usually results from 

thrombotic events triggered by rupture of advanced atherosclerotic lesions. 

The composition of a plaque influences the likelihood of rupture, as fatty 

lesions are more likely to rupture than more fibrous lesions. Rupture 

frequently occurs at edges of these lesion, which are fatty in nature and contain 

foam cells, suggesting that some of the same factors that contribute to early 

atherosclerosis may also promote rupture (Fuster et al, 1990). Thus, both local 

and systematic thrombogenic factors may influence the degree and duration of 

thrombus. In addition to the degree of plaque disruption and the severity of 

stenosis at the site of injury, smoking, level of cholesterol, Lp( a), fibrinogen, 

PAl-I, factors VII and von Willebrand factor contribute to vasoconstriction and 
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thrombotic complications (Koenig, 1998). 

Although the process of atherosclerosis is the same, little is known about the 

pathogenesis in patients who develop atherosclerosis and premature CHD at a 

young age (less than 55 years). Evaluation of major coronary risk factors in 

Indian patients undergoing coronary arteriography has shown that more than 

one third of patients with CHD have few or no major risk factors (Kaul et aI, 

1986). There is a relatively low prevalence of traditional coronary risk factors 

such as high cholesterol levels, cigarette smoking and hypertension in patients 

with premature CHD (Krishnaswami et aI, 1989, Enas et aI, 1992, Klatsky et 

aI, 1993, Stampfer et aI, 1991). A review of the family history in South 

Africans with CHD has indeed suggested that there may be a strong genetic 

element in risk predisposition (Seedat et aI, 1996). In contrast, HLA typing 

has shown no evidence of genetic susceptibility in this ethnic group 

(Sewdarsen et aI, 1987). Whether factors other than environmental and/or 

metabolic abnormalities predispose to early onset of atherosclerosis and to 

what extent genetic factors interact with these stimuli are not known. 

Among genes likely to influence the composition of atherosclerotic plaques are 

those involved in matrix production, lipid metabolism, as well as the 

coagulation and fibrinolytic pathways. Lesion stability may also be influenced 

by haemorrhage from small vessels that grow into the lesions from the media 

and factors contributing to coagulation influence thrombus formation. 

Variations of haemostatic factors, such as fibrinogen, PAI-I and factors XIII 

have been associated with CHD (Koenig, 1998). In the past few years, 

evidence has emerged that angiotensin 11 plays a significant role in 

atherogenesis and interacts with these pathways at various levels in the 

pathological process ranging from the influence of risk factors to 

haemodynamic changes and alterations in tissue metabolism and endothelial 

function (Fig 1). (see 1.2) Early onset of disease with such a multifactorial 
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aetiology is suggestive of a strong genetic component that may become 

unmasked in the presence of appropriate environmental stimuli. Thus, the 

documented high incidence of early CHD in the migrant Indian population 

might indicate a greater degree of genetic predisposition among them as 

compared to Europeans. The genetic distance between these two ethnic groups 

makes the presence of differential disease-allele frequencies plausible, 

supporting the postulate that genetic differences contribute to the observed 

differences in disease patterns among Indians and Europeans. 
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B) EPIDEMIOLOGICAL EVIDENCE OF HERITABILITY OF 

CARDIOV ASCULAR DISEASE 

1. The Framingham Heart Study: 

In the Framingham Heart Study, death due to CHD in parents was associated 

with a 30% increase in the risk of coronary artery disease in the offspring 

(Myers et aI, 1990). This effect was stronger for early onset of coronary artery 

disease with age adjusted relative risks of 1.5 for early (occurring at under 60 

years of age) and 1.2 for late (in patients older than 60 years) coronary artery 

disease. No evidence was found for a significant interaction between any of 

the known risk factors and family history of CHD. In examining persons with 

a low risk for coronary artery disease as suggested by their risk factor profile 

(normotensive, non-smoking, non-obese individuals), more than two-thirds of 

those who experienced coronary artery disease were found to have a positive 

family history. These findings suggest that primary genetic factors may play a 

significant role in the pathogenesis of CHD. 

2. Segregation studies: 

The observation of a familial aggregation of a number of cardiovascular 

diseases, such as CHD (Schildkraut et aI, 1989), hypertension (de Faire et aI, 

1975) and left ventricular hypertrophy (Beilen et aI, 1990) lends support to the 

role of primary genetic factors in the pathogenesis of cardiovascular disease. 

A "positive family history" may be the result of shared genes: studies among 

monozygotic and dizygotic twins and adaptation studies comparing incidence 

among natural versus adopted siblings of parent-child pairs have consistently 

shown a greater degree of disease concordance among more closely genetically 

related individuals, thus distinguishing the effects of genetic and 
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environmental variables, and supporting the role of hereditary factors (de Faire 

et aI, 1975, Feinleib et ai, 1977). In addition, a number of segregation studies 

in a large number of families have yielded additional evidence for the 

importance of genetic predisposition in the occurrence of cardiovascular 

disease. 

C) GENETIC STUDIES OF HERITABILITY 

Coronary heart disease shows strong family aggregation, especially when it 

presents at an early age and when many relatives are affected. Several 

cardiovascular sequelae including left ventricular hypertrophy, are potentially 

shared by family members of affected individuals (Schunkert et ai, 1994). 

Because familial clustering of risk factors is insufficient to explain the high 

risk of disease in a sibling of an affected parent, genetic factors are strongly 

suspected to play a significant role in susceptibility to premature CHD. 

1.1 Monogenic Disorders: 

As important as the established risk factors are for predicting disease, only a 

fraction of those subjects who have one or more of these risk factors will 

actually develop a cardiovascular event; even some with no known factors will 

experience an event. Epidemiological studies suggest that CHD may have an 

environmental as well as a genetic basis, which in the latter instance does not 

follow simple Mendelian patterns of inheritance. Very little is known thus far 

about the actual genes, or their allelic variants that contribute to the pathogenesis 

of CHD. In only a small proportion of cases do rare monogenic disorders 

account for the expression of disease, e.g. familial hypercholesterolaemia 

(Brown et aI, 1986). 

Although the dyslipidaemias form a well known risk factor for CHD, only a 

small percentage of CHD patients have recognised mutations in lipoproteins or 
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their related genes. In the South African Afrikaner, familial 

hypercholesterolaemia (FH) is highly prevalent and has been diagnosed to be 

due largely to the LDL receptor gene defect (Kotze et ai, 1991, Rubinsztein, 

1994). Mutations in the LDL-C receptor gene produce familial 

hypercholesterolaemia; an autosomal codominant disorder characterised by 

raised plasma LDL cholesterol (LDL-C), tendon xanthomas and premature 

CHD. 

CpG hotspot mutations at the LDL receptor locus have been described in South 

African Indians (Kotze et ai, 1997) but the majority of premature CHD sufferers 

do not have this clinical picture, suggesting some other mode of a genetically 

determined predisposition to atherosclerosis, probably acting at a cellular level 

in the intima of the vessel wall. 

1.2 Renin-Angiotensin System: 

1.2.1 Role of the Renin-angiotensin System (RAS) III the Pathogenesis of 

Atherosclerosis: 

Since hypertension is a major risk factor for CHD, (Kannel et aI, 1976) 

attention has been focussed on the RAS and its major component angiotensin 

n, a potent vasoconstrictor and mediator of vascular events, in the 

pathogenesis of CHD. The activity of the RAS depends on the availability of 

angiotensin, renin, angiotensin converting enzyme (ACE), and Ang 11 receptor 

activity. Angiotensin converting enzyme generates the vasoactive Ang 11 and 

inactivates bradykinin. It is widely distributed in endothelial and epithelial 

cells. Each of these components of the RAS may play a contributory role in 

disease pathogenesis. 

Alderman et al (1991) followed up 1717 subjects with mild-moderate 

hypertension for 8,3 years and provided the best epidemiological evidence for 

the link between the RAS and the risk of subsequent myocardial infarction. 
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They showed that the risk of Ml was increased over 5 fold among subjects 

with high- compared to those with low-renin profiles, and this effect was 

independent of other cardiovascular risk factors. This relationship between 

plasma renin and risk for myocardial infarction has not been shown in 

normotensive subjects (Meade et al, 1993). 

The RAS may contribute to the process of atherogenesis VIa several 

mechanisms. Angiotensin II, an octapeptide, represents the biologically active 

product of the RAS. It is generated by precursors, which are cleared by 

enzymes. Besides its involvement in blood pressure regulation, Ang 11 acts as 

a growth factor and contributes to vascular remodelling in most vascular 

organs, including the heart itself. There is experimental evidence that local 

Ang 11 formation is increased in atherosclerotic lesions, and that chymase is 

primarily responsible for this increase (Ihara et al, 1999). Angiotensin has also 

been shown to play an important role in regulating the production of 

plasminogen activator inhibitor-l (PAl-I) (Vaughan et al, 1995, van Leeuwen 

et al, 1994). This biological role of angiotensin suggests that regulatory 

changes in the RAS may also influence the development of thrombosis in 

subjects with coronary atherosclerosis. 

There is also increased expression of ACE in atherosclerotic lesions, leading to 

local production of Ang II and ultimately stimulation of vascular superoxide 

production (Diet et al, 1996). These findings suggest a pathogenetic role for 

the RAS in the early stages of atherosclerosis. This hypothesis is supported by 

the fact that ACE inhibition has been shown to promote regression and even 

prevention of atherosclerosis (Becker et al, 1991). Recently, Mancini et al 

(1996) showed that patients with coronary artery disease treated with an ACE 

inhibitor developed markedly improved coronary vasomotor function. This 

study, the Trial on Reversing Endothelial Dysfunction (TREND) demonstrated 

that quinapril 40mgldaily given for six months improved acetylcholine _ 

provoked vasoconstriction in patients with CHD. There is now substantial data 
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from experimental and clinical trials to support the role for ACE inhibition 

retarding atherosclerosis at a tissue level (Naidoo, 1996). There is also 

evidence of a link between the RAS and lipid levels in vascular biology. 

Hypercholesterolaemia is associated with AT/ receptor upregulation and 

increased vascular production of superoxide, secondary to activation of 

vascular NADH oxidase. This results in attenuation of endothelium-dependent 

coronary vasodilatation which is demonstrable early in the atherosclerotic 

process (Zeiher et aI, 1994). AT] receptor blockade has been shown to 

normalise the activity of NADH oxidase, reduce plaque area and macrophage 

infiltration and in parallel improve endothelial function (Warnholtz et aI, 

1999). 

These data suggest that: the RAS may be playing an important role in both the 

initiation and acceleration of the atherosclerotic process. 

1.2.2 Gene Polymorphism and the RAS: 

1.2.2.1 

Allelic association studies have suggested that polymorphism in genes 

involved in lipid metabolism, coagulative and fibrinolytic pathways, as well as 

the renin-angiotensin system may be associated with coronary atherosclerosis. 

The role of polymorphisms in genes that regulate the RAS in the pathogenesis 

of CHD has recently come under scrutiny (Tiret et al 1995, Beohar et aI, 1995, 

Arbustini et al 1995, Ohishi et aI, 1993). Although the genetic basis of CHD is 

still unfolding, many studies have suggested several putative genes (Table 1). 

A widely studied example is the angiotensin converting enzyme (ACE) gene on 

chromosome 17. 

A CE Gene Polymorphism: 

Recently an insertion/deletion polymorphism has been described which is 

based on the presence (insertion: I) or absence (deletion: D) of a 287-base pair 
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alu-repeat DNA domain, resulting in three genotypes: homozygous (DD) 

heterozygous (ID) and homozygous (II). This polymorphism is co dominantly 

associated with the plasma ACE activity, with the DD genotype having about 

double the value of the II genotypes (Rigat et aI, 1990). Both circulating 

(Rigat et aI, 1990) and local cardiac (Danser et aI, 1995) activity of ACE are 

higher in the presence of the deletion polymorphism, which might increase the 

conversion of Ang I to the highly active Ang II. Local ACE activity could thus 

promote the development and progression of atherosclerotic plaque in the 

vessel wall. ACE could be involved in the pathogenesis of atherosclerosis by 

several biological mechanisms. In addition to activating Ang I (resulting in 

decreased tissue perfusion), Ang 11 is involved in vascular smooth muscle cell 

growth (Daemen et ai, 1991) and the stimulation of plasmogen-activator 

inhibitor type I (Ridker et ai, 1993). 

Since Rigat et al (1992) identified an insertion/deletion (liD) polymorphism 

within intron 16 of the A CE gene, several studies have reported an association 

between the D allele and an increased risk for coronary artery disease, 

myocardial infarction, (Cambien et aI, 1992) restenosis after angioplasty 

(Kaski, 1994 Ramon et ai, 1998), ischaemic and dilated cardiomyopathy 

(Raynolds et ai, 1993) as well as left ventricular hypertrophy (Iwai, 1994, 

Schunkert et ai, 1994). 

Cambien et al (1992) was the first to report the association of the D allele for 

an increased risk of MI, especially in a low risk group defined by body mass 

index and serum apo B levels. It is possible that the effect of the A CE DD 

genotype is strongest when no other causative factors are present. In a large 

case-controlled study Etude Cas-Temoins sur L'lnfarctus du Myocarde 

(ECTIM) an increased risk of MI and an increased frequency of parental MI 

was demonstrated in subjects carrying the D allele. In this study the 

relationship between the ACE DD genotype and MI was much stronger in 

patients at low risk of MI than high risk subjects (Tiret et aI, 1995). (refer to 
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l3 

4.2.2). 

ACE Gene Polymorphism and Premature Atherosclerosis: 

Variations in the ACE gene have also been associated with early changes of 

carotid atherosclerosis (Kauma et ai, 1996). The gene effect, however, may be 

masked by stronger effects of environmental factors such as smoking. The D 

allele has been shown to be a risk factor for MI (Cambien et ai, 1992, Mattu et 

ai, 1995), even in patients with non-insulin dependent diabetes mellitus (Ruiz 

et ai, 1994). Angiotensin converting enzyme gene polymorphism has also 

been shown to be associated with a parental history of MI (Tiret et ai, 1993, 

Badenhop et ai, 1995) and may explain the premature development of CHD 

and MI in low risk patients (Gardemann et ai, 1995, Evans et ai, 1994, Ludwig 

et ai, 1995, Takahashi et ai, 1995). The underlying mechanism maybe related 

to impaired endothelial function since increased coronary vasomotor tone has 

been demonstrated in patients with CHD who possess the D allele (Prasad et 

ai, 2000). 

1.2.3 Angiotensinogen (Agt) Gene: 

1.2.3.1 Agt M235T Polymorphism: 

Recent studies suggest that the M235T variant of the Agt gene is associated 

with the development of hypertension in Caucasians. This mutation consists of 

a nucleotide transition in exon 2 leading to an exchange of methioine for 

threonine in the M235 position, and is linked to a family history and an early 

onset of hypertension (Winkelmann et ai, 1996). It was found to be more 

frequent in hypertensive patients in studies in Utah and in Paris, (Jeunemaitre 

et ai, 1992) and correlated with arterial wall thickness (Castellano et ai, 1995) 

measurements. It has been estimated that mutations at the Agt locus might be a 
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predisposing factor in 3-6% of hypertensive individuals younger than 60 years 

of age (Jeunemaitre et aI, 1992). Although a large European study has not 

shown any evidence of linkage in 630 affected sibpairs, we decided to evaluate 

polymorphisms at the Agt locus because frequency of the Agt T235 allele 

varies strongly according to ethnic groups. It is more frequent in the Asian 

population (about 0.75) than in the White population (about 0.40) (Niu et aI, 

1998) and is associated with early onset of familial hypertension (Schimidt et 

aI, 1995). Furthermore, Shunkert et aI, (1997) found that the T235 allele was 

associated with higher systolic and diastolic blood pressure. In a meta-anlysis 

involving 5493 patients Kunz et aI, (1997) showed that the Agt T235 allele was 

significantly associated with hypertension, mainly in studies with a positive 

family history of hypertension and that the contribution of the T235 allele may 

also be dependent on interacting risk factors such as gender, BMI, and 

menopause. The Agt M235T polymorphism has also been shown to be 

associated with CHD, both independently (Katsuya et aI, 1995) and also 

synergistically with the ACE insertion-deletion (I/D) polymorphism (Kamitani 

et aI, 1995). 

1.2.4 Core Promoter Element of Agt Gene: 

In 1997, Inoue et al identified a common variant in the proximal promoter of 

the Agt gene: the presence of adenine, instead of guanine (G-6A) 6 bp upstream 

from the initiation site of transcription. The G-+A substitution located at 

position -6 base region upstream of the initial transcription site is of the same 

frequency and in almost complete linkage disequilibrium with the T235 allele 

(Jeunemaitre et aI, 1997). After an extensive investigation Jeunemaitre et al 

(1997) concluded that, with the exception of G-6A, no other known biallelic 

polymorphism is associated with hypertension. Also, he showed that the G and 

A alleles are synonymous with the M235T M and T alleles respectively. 
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Since tests of promoter activity showed that G-6A nucleotide substitution 

affects the basal transcription rate of the gene and is in very tight linkage 

disequilibrium with M235T, it marks the original form (in evolutionary terms) 

of the gene. Both polymorphisms (M235T and the G-6A) are associated with 

an increased plasma angiotensinogen level, (Jeunemaitre et aI, 1992) which 

could result in an increased formation rate of Ang II, especially in tissues 

where these proteins are rate limiting for Ang II generation. Since variants in 

the Agt gene have been associated with an increased risk of CHD (Katsuya et 

aI, 1995, Ishigami et ai, 1995, Kamitani et ai, 1995) we investigated the G-6A 

polymorphism in the core promoter region of the Agt gene in patients with 

premature MI. 

1.2.5 Angiotensin II Type I Receptor (AT]R) Polymorphism: 

Angiotensin II is the biological active peptide of the RAS that produces 

vasoconstriction, release of aldosterone and catecholamines as well as the 

development of cardiac hypertrophy. Most of the actions of Ang II are 

mediated through the angiotensin II subtype I receptors (AT]) (Goodfriend et 

ai, 1996). 

This receptor is the mam effector of the RAS and mediates the growth­

promoting effect of Ang 11 in humans (Goodfriend et ai, 1996). 

It is now known that several pathways exist for the production of Ang 11 in 

addition to the effects of ACE on Ang 1. Since the main effector of the RAS is 

the AT] receptor, which also mediates the growth promoting effect of Ang II in 

humans, variations in the gene for the AT] receptor may account for a variable 

response to Ang 11 stimulation and its possible interaction with risk factors. 

Little is known about the effect of major risk factors such as 

hypercholesterolaemia on RAS gene expression. The interaction between 
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lipoproteins and the RAS does have some pathogenetic significance and may 

explain why ACE inhibitors attenuate hypercholesterolaemia - induced 

atherosclerosis in animal models (Chobanian et al, 1990). This may have a 

genetic basis since hypercholesterolaemia has been shown to enhance AT] 

receptor gene expression and in this way it accentuates the vasoconstrictive 

effect of Ang 11 (Nickenig et al, 1997). More recently macrophages trapped in 

the vessel wall have been shown to upregulate AT] receptors and contribute to 

increased production of reactive oxygen radicals (Yanagitani et al, 1999). The 

resultant effect of Ang 11 will therefore be instability of the atherosclerotic 

plaque leading to plaque rupture. 

The gene for the human AT] receptor has recently been cloned and sequenced 

(Furuta et al, 1992). Several biallelic polymorphisms have been detected in 

the coding and 3' untranslated regions of this gene (Bonnardeaux et al, 1994). 

Of these, the Al166C gene polymorphism has been shown to be associated 

with resistant essential hypertension and synergistically increases the effect of 

ACE genotype on the risk of MI (Szombathy et al, 1998). A lower frequency 

of the C allele has been reported in patients with CHD and hypertension (Saku 

et ai, 1998). 

It is possible that AT] receptor polymorphism may cause alterations in the 

activity of this receptor and in this way contribute to a more pronounced 

potentiation of the effects Ang 11, explaining the strong cardiovascular risk 

associated with hypertension (Graves et ai, 1992). There is also evidence that 

the AT] receptor is a risk marker for arterial stiffness and could modulate the 

effects of hypertension, aging, and lipids on large arteries (Benetos et ai, 

1995). It has also been associated with decreased aortic wall compliance and 

could modulate the effect of lipids on large arteries (Benetos et al, 1995, 

Kauma et al, 1996). Blockade of this receptor has been shown to correct the 

endothelial dysfunction of peripheral resistance arteries from hypertensive 
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patients (Schiffrin et aI, 1999). 

We therefore investigated the role of a common polymorphism (A1166C) of 

the AT} receptor gene (A-+C transition at position 1166) in our patients. 

Although this polymorphism is not functional it might be in linkage 

disequilibrium with an unidentified variant and may reflect a relationship 

between this 'variant and the risk of premature MI. 

1.2.6 Aldosterone Synthase: 

The trophic effects of neurohormones modulate cardiac growth and function. 

Angiotensin II contributes to an increase in L V mass by promoting myocyte 

growth as well as by stimulating vascular smooth muscle cell growth and 

proliferation. In addition, increase in myocardial collagen may occur via 

aldosterone activation (Weber et aI, 1991). Thus, the combined effect of the 

renin-angiotensin-aldosterone system is to increase LV mass through several 

mechanisms. Angiotensin 11 is a potent fibrogenic factor (Brilla et aI, 1993). 

Besides its well-known effect of stimulating aldosterone production from the 

adrenal cortex, a reciprocal interaction between the hormones has been 

reported. F or instance, an increase in Ang II receptor density has been 

observed in the heart of aldosterone salt-treated rats. (Sun et aI, 1998) There 

is also experimental evidence that aldosterone - salt induces cardiac fibrosis 

through Ang 11 acting on the AT} receptor (Roberts et aI, 1988). 

In addition to regulating renal sodium reabsorption and thus intravascular 

volume, aldosterone may have direct effects on the cardiovascular system. It 

has been shown to stimulate the growth of cardiac myocytes and accumulation 

of extracellular matrix proteins (Weber et aI, 1991). Angiotensin 11 is also an 

important regulator of noradrenaline release from sympathetic nerve endings 

and may modulate cardiac sympathetic activity and ischaemic events 
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(Zimmerman et ai, 1995). This may explain the salutary effects of the ACE 

inhibitors as well as aldosterone antagonists in reducing event rates in heart 

failure studies (Lonn et ai, 1994). These data support a role for all components 

of the renin-angiotensin system in the pathogenesis of CHD and as trigger 

factors for cardiovascular complications and event rates. 

The genes encoding aldosterone synthase (CYP 11 B2) and 11 P-hydroxylase are 

very similar at the nucleotide level, sharing 95% homology (Fisher et ai, 

1998). Altered activity of these enzymes may be important in the pathogenesis 

of hypertension and atherosclerosis. Genetic variations within or near the 

aldosterone synthase gene are associated with aldosterone and 11-

deoxycortisol production in males. This may modulate the activity of the RAS 

and thereby contribute to blood pressure regUlation. Two biallelic 

polymorphisms, one in the promoter (C344T) and the other in the second 

intron have been identified in the gene encoding aldosterone synthase, the 

enzyme catalyzing the steps of aldosterone biosynthesis (White et ai, 1995). 

Preliminary data suggests that genetic variations in CYP 11 B2 are associated 

with variation in baroreflex sensitivity. The TT genotype was strongly 

associated with baroreflex sensitivity as measured by the Valsalva manouevre 

(yitalo et ai, 1998). Amongst the genetic loci studied we therefore included 

polymorphism in the promoter region of the aldosterone synthase gene which 

is known to affect the binding of the steroidogenic factor-transcription factor 

and so influence gene expression. This pathway may not only explain the 

direct effects of aldosterone on the cardiovascular system, but also support the 

association between renin levels and MI (Alderman et ai, 1991). 

Aberrations in these genes can lead to changes in arterial pressure and are 

responsible for a monogenically inherited form of hypertension (Fisher et ai, 

1998). There is evidence that a polymorphism (C344T) in the promoter of the 

CYP 11 B2 gene is strongly associated with left ventricular size and decreased 
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baroreceptor sensitivity in healthy individuals (White et aI, 1998). This 

polymorphism may be associated with an increased risk of MI in dyslipidaemic 

patients (White et aI, 1998). As altered activity of CYP 11 B2 has been 

proposed as an intermediate phenotype in essential hypertension, we also 

evaluated gene polymorphism in this gene in our subjects. 

1.2.7 11~-Hydroxysteroid Dehydrogenase 2 Polymorphism: 

1.2.7.1 

Aldosterone exerts its effects through the binding and activation of the 

mineralocorticiod receptor (White, 1998). Since cortisol binds to this receptor 

with the same affinity as aldosterone the enzymatic conversion of cortisol to 

cortisone by l1~-hydroxysteroid dehydrogenase 2 (llBHSD2) ensures that 

aldosterone gains access to this receptor. 

The gene encoding this enzyme is located on chromosome 16q22. Mutations 

in the 11BHSD2 gene results in loss of the activity of the encoded enzyme, 

causing severe hypertension due to mineralocorticoid excess (Stewart et aI, 

1996). Therefore, anomalies in either of the genes encoding the enzymes 

11 BHSD2 and CYP 11 B2 can lead to important changes in arterial pressure and 

are responsible for several monogenically inherited forms of hypertension 

(Ulick et aI, 1979, Mune et aI, 1995) but these are rare. 

A single such polymorphism has been identified in exon 3 of the 11 ~HSD2 

gene characterised by the GAG to GAA transition at codon 178 (Smolenicka et 

aI, 1998, Brand et aI, 1998). Since common polymorphisms in these genes or 

their regulatory regions could contribute to genetic variation in the 

susceptibility to hypertension and its cardiovascular sequelae, we investigated 

this polymorphism in patients with premature myocardial infarction. 

Other candidate genes: 
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The interplay between gene polymorphism and newly identified risk factors for 

CHD such as hyperinsulinaemia (Despres et ai, 1996) and abnormalities in 

apolipoprotein metabolism may also contribute to premature coronary 

atherosclerosis (Tas et ai, 1994, van Bockxmeer et ai, 1992). Therefore, 

extending the genetic analyses to other candidate genes may explain how 

insulin and fibrinogen contribute to a procoagulant state, (Robins on et ai, 

1994, Akimova et ai, 1994) impaired fibrinolysis and altered levels of growth 

factors and in this way predispose to early onset CHD. Among the candidate 

genes that have been investigated to date, gene polymorphisms in 

homocysteine metabolism, G-protein and TGF-fJ may provide supportive 

evidence for a genetic basis to transcriptional changes predisposing to 

atherosclerosis (Cambien et ai, 1996). 

1.2.8 Homocysteine and CHD: 

The sulphur-containing ammo acid homocysteine is formed during the 

metabolism of methionine. Methylenetetrahydrofolate Reductase (MTHFR) 

catalyses the reduction of 5,l0-methylenetetrahydrofolate to 5, 

methylenetetrahydrofolate. This is the predominant circulating form of folate 

and is a methyl donor for the remethylation of homocysteine to methionine. 

Reductase activity of MTHFR or defects in the MTHFR gene itself may lead to 

raised homocysteine levels. 

Homocysteine concentration IS elevated in up to 30% of patients with 

atherosclerosis (Clarke et ai, 1991). Hyperhomocysteinaemia is known to be 

an independent risk factor for the development of CHD, (Clarke et ai, 1991, 

Murphy-Chutorian et ai, 1994, Amesen et ai, 1995, Robinson, 1994) MI, 

(Stampfer et ai, 1992) particularly in young women (Schwartz et ai, 1997), 

cerebrovascular disease and venous thrombosis. The serum homocysteine 
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level is influenced by environmental as well as genetic factors. A high plasma 

concentration of homocysteine may predispose to atherosclerosis by injuring 

the vascular endothelium. In a meta-analysis Blom et al (1991) estimated that 

the risk associated with a 5 IJ,mollL elevation in total plasma homocysteine was 

equivalent to a 0.5 mmollL rise in the serum cholesterol. Levels only 12% 

above the upper limits of normal (15 IJ,mollL - mild hyperhomocysteinaemia) 

are associated with a three-fold increase in MI (Nygard et aI, 1997). 

The exact mechanisms by which raised homocysteine levels promote 

atherosclerosis are not clear but postulates include endothelial damage (Woo et 

aI, 1997), platelet dysfunction, (Lentz et aI, 1991) and LDL-C oxidation 

(Reinhardt et aI, 1998). Acute elevation in homocysteine concentration, 

similar to levels found in MI, is associated with endothelial dysfunction 

(Chambers et aI, 1999), and can be prevented by pre-treatment with vitamin C 

suggesting that the effects are mediated via oxidative stress. 

A further report (Tsai et aI, 1996) has shown that homocysteine inhibits 

endothelial cell proliferation and stimulates vascular smooth muscle cell 

proliferation. In addition homocysteine enhances endothelial cell-associated 

factor V activity (Rodger et aI, 1986) and inhibits thrombomodulin surface 

expression (Lentz et ai, 1991), protein C activation (Rodger et aI, 1990) and 

tissue plasminogen activator binding (Hajjar, 1993). These findings suggest 

that homocysteine may be involved in the thrombotic and atherosclerotic 

process by promoting prothrombotic activities as well as modulating vascular 

cell proliferation in the vessel wall. 

Homocysteine concentrations are determined to some extent by genetic factors. 

Genetic aberration in the gene coding for 5,10-methylenetethydrofolate 

reductase (MTHFR) may account for reduced enzyme activity and elevated 

plasma homocysteine level. (Kang et aI, 1991). Reduced activity of MTHFR 

and elevated plasma homocysteine levels may be seen in individuals with a 
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thermolabile variant of MTHFR. This phenotype results from a C to T 

mutation at nucleotide position 677 in the cDNA (Goyette et ai, 1995). It 

predicts the replacement of 222 Ala by Val and reduces the basal activity of the 

enzyme by 50%, leading to decreased thermostability in homozygote 

individuals (Frosst et ai, 1995). This mutation is frequent: about 12% of 

Caucasians are mutant homozygotes. They have lower mean serum folate 

levels and 25% higher plasma homocysteine concentrations than normal CC 

homozygotes. Up to 17% of patients with CHD are reported to express the 

thermolabile phenotype. 

Since the effects of high plasma homocysteine levels have not been shown to 

be mediated by the known coronary risk factors (Tonstad, 1997), we 

hypothesized that the MTHFR mutation might be a candidate gene for coronary 

heart disease, particularly in younger patients with few risk factors. 

1.2.9 Transforming Growth Factor Beta (FGF-jJ): 

Excessive proliferation and migration of several vascular cell types (e.g. 

vascular smooth muscle cells, endothelial cells, myofibroblasts) are important 

components of the vascular remodelling and the atherosclerotic processes 

(Ross, 1993, Schwarz et ai, 1997). In the normal artery cell growth and 

migration are closely regulated processes: there is a balance of paracrine 

growth factors, vasoactive factors and circulating hormones that control tissue 

homeostasis. For instance, endothelial cells produce nitric oxide and other 

factors that reduce smooth muscle cell proliferation. When the endothelium is 

damaged, the expression of these factors is altered resulting in enhanced 

proliferation and/or migration of vascular smooth muscle cells which 

contribute to neointimal proliferation and the atherosclerotic process. 

Transforming growth factor-13 is a member of a larger family of growth factors 
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and cytokines and has a wide spectrum of biological activities (Wahl, 1994) 

which include regulation of cell growth, differentiation and matrix production 

(Roberts et at, 1988). It is secreted by peripheral blood monocytes, endothelial 

cells and vascular muscle cells, and induces fibrosis in the kidney, heart and 

blood vessels (Border et at, 1994). 

In animal models angiotensin 11 has been shown to act by the induction of 

proto-oncogenes efos, c-myc and c-jun, and induces expression of several 

growth factor genes, (Campbell et ai, 1997, Lonn et ai, 1994) including the 

genes encoding for PDGF and TGF-fJ. Early activation of these proto­

oncogenes followed by sequential activation of growth factor genes ultimately 

result in vascular smooth muscle cell growth. In addition to these trophic 

effects Ang 11 has been shown to release an endothelial neutrophil 

chemoattractant, leading to neutrophil accumulation. All these mechanisms 

probably contribute to the genesis and progression of the atherosclerotic plaque 

as well as endothelial function (Bell et at, 1990). 

At a cellular level the trophic effects of the Ang 11 on smooth muscle cells of 

blood vessels are therefore determined by the expression of TGF-f3] (Gibbon et 

at, 1992, Campbell et at, 1997). Elevated plasma levels of TGF-f3f have been 

described in diseases that involve modification of extracellular matrix 

particularly Type 11 diabetes mellitus (Pfeiffer et at, 1996). Furthermore, 

several G-protein coupled receptor agonists including Ang 11 and a-thrombin 

are potent mitogens that induce extracellular matrix formation (Weber et ai, 

1994). Data also exists that TGF-f3] and Ang 11 regulate the expression of each 

other (Border et at, 1989). Overproduction of TGF-f3] mediated in part by Ang 

11, has been linked to L VH and vascular remodelling in hypertension (Villareal 

et ai, 1992, Sarzani et ai, 1989). Recent evidence suggests that TGF-fJ] is a 

key inhibitor of atherogenesis and increased plasma levels of TGF-fJf are seen 

in early atherosclerosis but levels are severely depressed in the advanced stages 

of the disease (Blann et ai, 1996). 
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Transforming growth factor-~ is therefore a multi-functional cytokine which 

regulates cell proliferation and is a potent inducer of extracellular matrix 

production and fibrogenesis. There is experimental evidence that proteoglycan 

accumulation in atherosclerotic lesions depends on the proximity of platelet 

derived growth factor (PDGF) and TGF-fJ (Evanko et ai, 1998). Its exact role 

in human atherosclerosis is unknown but elevated plasma levels have been 

found in type II diabetes mellitus, correlating with retinopathy, neuropathy and 

HbA1C levels. Three mutually compatible hypotheses have been put forward 

to explain the development of atherosclerotic lesions. The 'response to 

retention' hypothesis emphasizes the importance of atherogenic lipoprotein 

accumulation in the sub-endothelial region (Williams et ai, 1995), whereas the 

oxidation hypothesis (Witztum, 1994) emphasises the role of the oxidative 

process in the recruitment of macrophages. The 'response to injury' 

hypothesis proposes vascular smooth muscle cell proliferation as the key event 

in the formation and progression of the atherosclerotic lesion (Ross, 1993). 

Transforming growth factor-~l could be the missing link that promotes lipid 

accumulation through increases in proteoglycan synthesis and deposition in the 

fatty intima. In the human aorta TGF-fJ participates predominantly in the 

pathogenesis of the lipid-rich atherosclerotic lesion and contributes to specific 

stages of lesion progression. Studies of human aorta atherosclerotic plaque 

and restenotic lesions after angioplasty have documented TGF-fJl expression 

by vascular cells within the lesions. Similarly, TGF-J31 expression within the 

vasculature is upregulated in the context of diabetes and hypertension in 

animal models of vascular disease (Han et ai, 1995). Transforming growth 

factor-~l in the arterial wall promotes vascular cell differentiation, vascular 

wall remodelling, arterial lesion growth and regression through apoptotic 

mechanisms (Schulick et ai, 1998). It is postulated that vascular structure and 

lesion formation is determined in part by a balance between cell proliferation 
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and cell death and by apoptosis (Isner et aI, 1995, Geng et aI, 1995, Han et aI, 

1995). Transforming growth factor-~ is an inducer of endothelial cell death 

and it also prevents vascular smooth muscle cell death. All evidence points to 

it being a proatherogenic cytokine (Bobik et aI, 1999). 

Furthermore f3eta ig-h3 a TGF-Prinducible gene, is over-expressed in ig-h3 

restenotic human vascular lesions (O'Brien et aI, 1996). Recent evidence 

suggests that genetic factors may play a role in TGF-pj expression, the gene 

for which is located on chromosome 19q3 and comprises seven exons, of 

which exon 5, 6 and 7 encode the active TGF-pj. Since five polymorphisms 

have been identified in the TGF-~l gene we hypothesized that gene 

polymorphism might regulate the expression of TGF-pj and therefore studied 

Thr 263 Ile polymorphism in patients with premature MI. This gene mutation, 

a C to T transition at position 76 in exon 5 results in a change from threonine 

to isoleucine in position 263 (Thr 263 lIe) of the propeptide. 

1.2.10 G-Protein Polymorphism: 

In addition to the regulatory effect of RAS genes in blood pressure homeostasis 

and vascular remodelling, genes encoding the components of the transport 

system that regulate salt and water homeostasis are also potential candidates 

for influencing blood pressure. 

The pH-regUlating ion transport system (Na+1I-t exchanger [NHE]) which 

swaps extracellular Na + for intracellular H+ is one such system. Of the five 

isoforms have been isolated in human tissues one has been associated with 

hypertension but variations in its transcripts have not been detected (Diez et aI, 

1995). 

Since cell lines that display enhanced NHE-l activity have also shown 
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increased activity of pertussis toxin-sensitive G-proteins, Siffert et aI, (1998) 

have located a C ~ T polymorphism at position 825 of cDNA that encodes the 

P3 subunit of the pertussis-toxin-sensitive G-protein (GNfJ3). There is 

preliminary data to suggest that the response to UT adrenergic stimulation in the 

coronary arteries is genetically determined: patients with GNf33 T825 allele had 

augmented flow reduction compared to CC homozygotes (Baumgart et aI, 

1998). The 825T allele was significantly associated with hypertension. Since 

hypertension is a major risk factor for CHD we extended our genetic analysis 

to include GNf33 subunit as a candidate gene related to NHE activity and salt 

and water homeostasis on the basis that enhanced intracellular signal 

transduction may contribute to premature CHD. 
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Fig I: Putative Mechanisms for Angiotensin 11 in Relation to Risk Factors in 
Atherogenesis 

In response to angiotensin II monocytes release cytokines and growth factors which 
cause inflammation of the vessel wall, leading to further release of angiotensin II, as 
well as a direct effect on vascular smooth muscle cells. 
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1.3 Arterial Stiffness and Pulse Wave Velocity: 

As one ages the arteries become progressively stiffer. This is due to 

degeneration in the elastic fibres in the media and as a result stress is 

transferred to the collagenous element in the arterial wall. A further 

consequence of arterial stiffening is a higher systolic and lower diastolic blood 

pressure, thereby causing increased afterload and altering coronary perfusion. 

The principal outcomes of these changes are left ventricular hypertrophy, 

aggravation of coronary ischaemia and increased fatigue of arterial wall tissues 

(cyclical stress). Higher systolic blood pressure, pulse pressure and lower 

diastolic blood pressure and left ventricular blood pressure have been 

identified as independent risk factors for cardiovascular mortality (Dame et aI, 

1989, Levy et aI, 1990). Increased stiffness of the central arteries not only 

reflects the presence of hypertension but also risk factors (diabetes, obesity and 

hyperlipidaemia) that are associated with coronary artery disease and may 

prove to be a composite measure of risk. 

CHD is thought to be associated with a generalised process that begins in the 

large arteries. Since coronary artery perfusion occurs mainly in diastole, the 

elastic recoil of the aorta is necessary to produce the energy for the retrograde 

flow through the coronary arteries. Furthermore, reduced arterial distensibility 

is responsible for a disproportionate increase in systolic BP, which is an 

important component of left ventricular stress leading to the development of 

hypertrophy (Bouthier et aI, 1985). 

A consequence of arterial stiffness IS early return of the pressure wave 

reflection from the periphery leading to summation of the reflected wave with 

the systolic pressure, generating a higher and later systolic peak. Elevated 

systolic blood pressure has been shown to correlate with the development of 

atherosclerosis (Witteman et aI, 1994). Whether enhanced arterial stiffness is a 

risk factor contributing to the development of cardiovascular disease has been 
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debatable (Blacher et aI, 1999) but several markers do suggest this. As a 

determinant of pressure load, aortic stiffness correlates with left ventricular 

mass and wall thickness to radius in essential hypertension (Boutyrie et aI, 

1995). Increasing arterial stiffness occurs with ageing and correlates with the 

prevalence of atherosclerosis (Wada et at, 1994) and end-stage renal disease 

(London et at, 1992). In addition, there is evidence that morphological and 

structural changes in the aorta may be influenced not only by environmental 

but also by genetic factors such as AT 1 receptor gene expression (Benetos et 

aI, 1995). Therefore, in the absence of risk factors, assessment of arterial 

compliance in subjects with early onset atherosclerosis may reflect arterial 

stiffness due to a genetic predisposition in these subjects (refer to 1.2.5). 

Several methods have been used to measure compliance/distensibility of large 

blood vessels (change in vessel volume per mmHg change in pressure) but 

simultaneous measurements of volume and pressure at a point in the vessel are 

technically difficult. In recent years it has become increasingly possible to 

measure arterial stiffness easily and accurately, through determination of pulse 

wave velocity (PWV). An increase in arterial stiffness increases the speed of 

aortic pulse travel along the walls of the aorta and the major arteries (increased 

arterial pulse wave velocity). According to the Moens-Korteweg equation, 

PWV, which is related to the square-root of the elastic modulus, rises in stiffer 

arteries. Since the elastic properties of the aorta and central arteries are 

important determinants of cardiovascular coupling, PWV is clinically relevant 

to cardiovascular risk. 

PWV measurement offers a simple, reproducible, indirect and non-invasive 

evaluation of regional arterial stiffness. PWV determined from foot-to-foot 

transit time in the aorta eliminates the influence of arterial wave reflections and 

closely approximates PWV measurements determined from phase velocity 

studies (Nichols et aI, 1998). Correlation of PWV measurements with left 

ventricular mass have not been studied previously and may indicate early 
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arterial changes outside the coronary vasculature. 

In addition to age and high BP, local hormonal factors may play a role in the 

modification of the arterial wall, mainly by modifying cell growth. Among 

these factors Ang 11 plays a critical role, since it induces hypertrophy of 

vascular smooth muscle cells and increases collagen production by fibroblasts. 

Most of the actions of Ang 11 are mediated by its effects on the AT] receptor. 

Furthermore, the interaction between lipoprotein and the RAS may explain why 

ACE inhibitors attenuate hypercholesterolaemia-induced atherosclerosis in 

animal models. The identification of polymorphic DNA markers on the AT] 

receptor gene offers a good opportunity to study the interaction of this gene 

with lipoproteins and its effects on arterial rigidity as measured by PWV. The 

genetic background may influence large artery function in many ways. The 

association of genetic and environmental factors may contribute to the 

development of hypertension, dyslipidaemia, salt-sensitivity and type 11 

diabetes. In addition the genetic make-up of an individual may determine the 

response of the arterial wall to risk factors such as hypertension, aging, 

cholesterol and smoking. Identification of such genetic markers may have 

clinical implications in the detection of high-risk subjects. Polymorphisms of 

genes coding proteins implicated in cardiovascular regulation are therefore the 

logical candidates for study. 

Thus, in summary, clinical risk factors account only in part for the high 

propensity to eHD in the Indian population. On their own these risk factors 

are insufficient to explain the seemingly high prevalence in younger patients, 

particularly men. Since family history studies suggest that there may be a 

strong genetic element in risk predisposition and since HLA typing has not 

shown any evidence of HLA predisposition in these patients, a study of 

candidate gene polymorphism seems warranted. To date there have been no 

published studies of gene polymorphisms in Durban Indians, as have recently 
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been described in the Caucasian population. The Indian population in Natal is 

an inbred population with a high prevalence of coronary disease. This 

constitutes a suitable group for analysis of candidate genes by restriction 

fragment length polymorphism (RFLP). 

Patients with CHD comprise a heterogeneous group, ranging from subclinical 

silent ischaemia to chronic severe, often advanced, yet stable, triple vessel 

disease. The transition from subclinical cardiovascular disease to overt clinical 

disease is often precipitated by acute coronary events such as unstable angina 

or MI. Of all patients with acute coronary syndromes, those with MI form a 

well-defined, relatively homogeneous group suitable for study. Furthermore 

the pathogenesis of this condition is now well described, involving thrombotic 

factors against a background of changing metabolic milieu leading to altered 

lipid dynamics within unstable atherosclerotic plaques. Since the diagnosis of 

CHD is clearly established without the need for invasive procedures such as 

coronary angiography in patients with proven MI and given the high 

prevalence of CHD in relatively young Indian subjects, we prospectively 

evaluated a well-defined homogeneous cohort of Indians with early onset MI 

to determine whether candidate genes regulating the renin-angiotensin system 

were associated with premature CHD as manifested by MI. 

The initial report which implicated the angiotensin converting enzyme gene, 

was made by Cambien et aI, (1992) and confirmation of this finding was 

replicated in many but not all subsequent studies. Therefore, we also focussed 

on other candidate genes involved in cardiovascular homeostasis as described 

below (Table I). 
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D) OBJECTIVES: 

The primary objective of this study is to prospectively evaluate the genetic 

polymorphisms that might be responsible for premature atherosclerosis in 

Indians who sustained MI at a young age. The focus of this study is on the 

candidate genes that are components of mediator systems involved in the 

regulations of vascular tone, cell growth and proliferation (Table I). 

The aims can be summarised as follows:-

i) To ascertain the role of candidate gene polymorphisms pertaining to the 

angiotensin pathway. These include the A CE gene, Agt gene and the AT] 

receptor gene. 

ii) To ascertain the role of candidate gene polymorphisms pertaining to 

aldosterone metabolism. These are genes for aldosterone synthase (CYP llB2) 

and IIp-hydroxysteroid dehydrogenase 2 (l1f3-HSD2). 

iii) To ascertain the role of gene polymorphisms of the MTHFR gene and correlate 

these with homocysteine levels. 

iv) To ascertain the role of polymorph isms in the G-protein and TGF-f3] genes. 

v) To establish a correlation, if any, between genetic polymorphisms, risk factors, 

PWV, microalbumin and left ventricular mass. 
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TABLE I: CANDIDATE GENE POLYMORPHISMS STUDIED 

PUTATIVE GENE CHROMOSOME LOCUS DESIGNATION 

Angiotensin Converting 17q Intron 16 I/D 
Enzyme (ACE) 

Aldosterone Synthase 8q22 Promoter C344T 
(CYP11/32) 

1q Core promoter G6-)A 
Angiotensinogen (5' region, Exon 1) 

(Agt) 

Ang 11 Type 1 Receptor 3q (5' end of 3' C1166T 
(AT1) untranslated region) 

11 P-hydroxysteroid 16q 22 Exon 3 G534A 
dehyd rogenase (Glu 178/Glu) 

(11j3-HSD) 

Transforming Growth Factor 19q 13 Position 76 Exon 5 C263T 
(TGF-/3) (Thr263 lie) 

G-Protein CDNA Nucleotide position C825T 
(GN/33) 825 (P3 Subunit) 

Methylenetetrahydrofolate CDNA Nucleotide gosition G677T 
Reductase 677 (Ala2 

2Nal) 

(MTHFR) 
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Informed consent was obtained from all subjects (see Appendix J). A detailed 

clinical questionnaire including family history, patient's history, risk factors, 

current medical and a physical examination were obtained for each patient. 

The data were validated with reference to hospital records and dialogued with 

family members. From all participants, data on medical history, medication 

and smoking or drinking behavior were obtained by interviews, which 

included a family history and three-day dietary recall. 

The study population was selected from Addington Hospital, Durban. This 

hospital provides a feeder service to districts north of Durban and most 

probands came from Phoenix area, which is almost exclusively an Indian 

littoral district. This popUlation is extremely homogeneous with respect to 

ethnicity, dietary habits, lifestyles and environmental factors. Only unrelated 

probands and controls were utilised in the present study. Screening of 

probands occurred at least 3 months after the index MI. 

The diagnosis of MI was confirmed from hospital records on the basis of at 

least two out of three criteria: typical chest pain, electrocardiographic features 

showing ST elevation and/or raised cardiac enzymes greater than two times the 

upper limit of normal. 

2.1.1 Controls Subjects: 

~ The study included 80 unrelated subjects without clinical evidence of CHD. 

Normalcy was determined by clinical history, examination, electrocardiogram 

Methods 



35 

and a normal effort test. It was originally planned to use the spouse as a 

control subject. However, since the majority of the probands were male and 

since the spouse was therefore a much younger female subject, it was decided 

to select older male subjects as controls. They were randomly selected from 

Indian volunteers who met the matching criteria of sex, age (± 5yrs.) and time 

from selection of probands. 

Sub-clinical atheroma was not excluded in these subjects since the tests 

employed i.e. history of angina, abnormal q-waves on the electrocardiogram 

and a negative stress test, do not exclude sub-clinical atherosclerosis. In order 

to be absolutely certain that control subjects had no sub-clinical disease, 

coronary angiography would need to be performed, raising an ethical 

consideration in performing an invasive procedure in a normal subject. 

Subjects referred for coronary angiography and shown to have a normal study 

were not selected because microvascular angina could not be excluded in these 

patients. Therefore, control subjects who were older (+ 5 years) were selected 

in order to be more certain of the absence of symptomatic premature coronary 

heart disease in this group. 

Samples from cases and controls were stored for the same duration and were 

handled together, identically. 

The presence of hypertension, diabetes mellitus, hypercholesterolaemia or 

smoking was determined by history taking, previous medical records, (if any) 

current medication and by the results of blood tests and examination. 

2.2 Procedures: 

This included taking an updated medical history and obtaining informed 

consent. After sampling of fasting venous blood for biochemistry, blood 

pressure determination, anthropometric measurements, resting 

electrocardiogram (ECG) and combined echo-doppler ultrasound examination 
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of the heart were performed, followed by pulse wave velocity determination. 

Resting blood pressure (BP) was measured before echocardiography in the 

right arm with the subject supine for at least 10 minutes and was recorded with 

a validated automated device (Dinamap) using a cuff of suitable size. The first 

reading was discarded and the mean of two subsequent readings taken. 

Hypertension was defined as BP values equal to or above systolic 160mmHg 

and/or diastolic 95mmHg, or as being present in subjects chronically taking 

antihypertensive medication. 

2.3 Examination and Anthropometric Measurements: 

After clinical examination body height was measured in cm with a statometer. 

Subject's body height and weight were measured in light clothing and without 

wearing shoes, and the body mass index (BMI) was computed as weight in 

kilograms divided by height in metres squared (kg/m2). As body weight 

measures not only fat, but other components of the body, and BMI is a 

measure of muscloskeletal mass as well as of body fat, waist and hip 

measurements were obtained by standard criteria in order to estimate intra­

abdominal fat. Obesity was defined as BMI ~ 26 kg/m2. Waist and hip 

measurements were taken in cm at the level of the umbilicus and at the level of 

the anterior superior iliac spine respectively. The data are presented for waist 

circumference as well since this may provide a better measurement of visceral 

adiposity (Pouliot et ai, 1994). 

2.4 Venous Blood Sampling: 

Informed consent was obtained from probands and controls prior to screening. 

Subjects were instructed to fast for 12-14 hours and compliance of fasting was 

determined by interview on the morning of examination. All participants were 
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examined in the morning and underwent the same procedure. 

After a period of 10 minutes of supine rest approximately 20ml antecubital 

venous blood was 'collected in serum separator tubes, citrate and EDTA tubes 

and immediately kept on wet ice. Further processing began within 30 minutes. 

The plasma was separated by centrifugation at 2500 rpm for 20 minutes and 

stored at -70° for special biochemistry. Serum for lipid analyses was stored at-

40C and assayed within 24 hours. A Sml sample ofEDTA was lyzed, (sucrose 

lysis technique - Appendix II); the white cells were then separated and stored 

as a pellet at -70°C for subsequent DNA extraction. 

Each individual provided a random urine sample for determination of 

microalbumin level. After the initial blood sample subjects underwent a 

modified 2-hour glucose tolerance test, with blood samples taken at 1 and 2 

hours. Known diabetic patients did not participate in this part of the screening. 

2.5 Evaluation of Risk Factors: 

2.5.1 Biochemistry: 

We evaluated risk factors that were considered standard in the Framingham 

Study. (Kannel et ai, 1976). We measured serum cholesterol levels with the 

use of standard enzymatic methods to determine total and HDL-C cholesterol 

levels after precipitation of apo-p containing lipoproteins (LDL-C and VLDL) 

by phosphotungstic acid and magnesium chloride. Subjects with diseases 

causing secondary hypercholesterolaemia were excluded from the study. We 

evaluated lipid levels 3-9 months after a MI since total cholesterol and HDL-C 

levels fall with a rise in triglycerides in the first 24 hours and return to baseline 

after 10 days (Pfohl et ai, 1999). Fibrinogen was measured in freshly collected 

citrated plasma. 
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Fasting glucose (intra-assay co-efficient of variation 1.9% at 6.7mmollL), 

cholesterol, triglyceride and HDL-C were carried out by enzyme tests using 

the Beckman CX7 autoanalyser. LDL-C was calculated by the Friedwald 

equation provided total triglycerides did not exceed 4.0 mmollL (Friedewald et 

aI, 1972). Apolipoprotein (a) was quantified by radio-immuno assay using 

antisera from Mercodia (Uppsala, Sweden) .. HbA1C was estimated by ion 

exchange chromatography. 

2.5.2 Glucose Tolerance Test: 

The criteria of the Wodd Health Organisation, based on fasting levels and 

plasma glucose values measured two hours after a standard oral 75-g glucose 

load (2-h plasma glucose) were used to diagnose diabetes. Diabetes mellitus 

was considered to be insulin dependent type I (IDDM) if it was diagnosed 

before the age of 30 years and treatment with insulin began within one year 

and continued thereafter. On this basis, no subject in this study was classified 

as insulin dependent (Type I) diabetes. 

2.5.3 Insulin Estimation: 

Fasting insulin was used as a measure of insulin resistance based on the 

observation that fasting insulin level is a good marker of insulin resistance in 

population studies (Olefsky et ai, 1973, Laakso et ai, 1998). In subjects who 

underwent a glucose tolerance test (GTT) the 2 hour insulin was also 

measured. 

A commercial radio-immunoassay kit was used for measuring plasma 

immuno-reactive insulin level (Phadeseph - Pharmacia & Upjohn). This assay 

has 41 % cross-reactivity within pro insulin, which is disproportionately low in 

non-diabetic patients, and less than 0.1 % cross-reactivity with C peptide. The 

detection limit of insulin was 2.5 /-lU/ml. The intra and inter-assay coefficients 
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of variation for this test are 5.3 and 7.6%. 

2.5.4 Homocysteine Estimation: 

Fasting blood samples were drawn and separated within 1 hour. Plasma total 

homocysteine was measured by high performance liquid chromatography 

using the modified method of Ubbink et al (1996). 

2.6 DNA Extraction and Genotyping: 

Genomic DNA was extracted from the white cell pellet by the standard 

method of phenol and chloroform extraction and this was followed by 

isopropanol precipitation of the DNA (Appendix 11). 

For each candidate gene an appropriate set of primers, designed to encompass 

the polymorphic region was used. In each analysis the PCR reaction contained 

100 ng DNA template, 0,1 IlM of each primer, 1,25 IlM of 4DNTPs, 0.5 units 

of Taq DNA polymerase, and 1,5 mM MgCh. DNA was amplified for 35 

cycles, each cycle comprising denaturation at 94° C for 3 minutes, annealing at 

60°C for 40 seconds, extension at 72°C for 2 minutes. The PCR products were 

digested where necessary with the appropriate restriction endonuclease and 

then separated by electrophoresis on 2% agarose gels containing ethidium 

bromide. After the gels were run and photographed, genotyping was 

performed by a trained laboratory technologist who was blinded to the 

subjects' clinical data (Appendix Ill). 

In the case of the ACE gene, 4-5% of samples with the ID genotype were 

misclassified as DD when only the flanking primer pair was used. To prevent 

mistyping of ID as DD genotype a second PCR, with an insertion-specific 

primer, was performed in all samples classified as homozygous DD in the first 

PCR (Lindpaintner et aI, 1995) with 67°C as the annealing temperature. 
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2.7 Echocardiographic Measurements: 

Two dimensional-guided M-mode echocardiograms were obtained from each 

subject with a Toshiba SSH 270HG (Toshiba Corporation, Tokyo, Japan) 

phased-array scanner connected to a 2.5 MHz transducer. Left ventricular 

internal dimensions were measured at end-diastole and end-systole according 

to the Penn convention just below the tip of the mitral valve as recommended 

by the American Society of Echocardiography. (Sahn et ai, 1978) Only 

tracings that demonstrated optimal visualisation of the left ventricular 

interfaces were accepted for analysis. Each recording was also saved on 

video-tape for subsequent review. Left ventricular mass (LVM) was 

calculated according to the formula of Devereux et al (1977). 

LVM (grams) = (1.04 [EDD + SWT + pWT]3 - EDD3) -13.6 

where EDD = internal end-diastolic diameter, SWT + PWT = septal 

and posterior wall thickness, respectively. 

Partition values for the diagnosis of L VH were taken from the 

Framingham study, with 125 glm2 used as the cut-off for both men and 

women as suggested by Casale et ai, (1985). 

Immediately after M-mode recordings, pulsed Dopper echocardiography was 

performed. Transmitral flow velocity waveforms were obtained form the 

apical view in the four-chamber projection with the sample volume placed at 

the level of the mitral annulus and at the tip of the mitral valve leaflets. The 

angle between the Doppler beam and the assumed direction of the transmitral 

flow was less than 10° in all subj ects. The peaks of the early diastolic velocity 

wave (E) and late diastolic wave (A) were measured in metres/second and the 

E/ A ratio determined. The whole scanning procedure was recorded on 
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videotape and a hard copy print of the tracing taken. Imaging was performed 

blinded to the result of the genetic analysis. To assess reproducibility of the 

LV mass determination imaging was repeated 7-14 days later in ± 10 subjects. 

The intra-observer variation was < 10%. 

2.8 Pulse Wave Velocity (PWV): 

After 15 minutes of rest in the supine position aortic PWV was evaluated 

transcutaneously with the use of two pressure probes (Ty 306, Fukuda, Tokyo, 

Japan). This method has been extensively analysed previously (Asmar et aI, 

1995). Briefly, two pressure waves were recorded simultaneously at two sites 

(at the base of the neck for the common carotid artery and over the right 

femoral artery). Pulse transit time was determined as the average of 30 

consecutive beats in order to cover 5 respiratory cycles. The distance travelled 

by the pulse wave was measured over the body surface as the distance between 

the two recording sites. Aortic PWV was calculated as the ratio of distance to 

transit time. The reproducibility of the measurement for aortic PWV 

(expressed as percent variation of the mean value) has been found 5,3 ± 3,6% 

(Asmar et aI, 1995). The variation coefficient of two consecutive 

measurements of PWV by the same examiner was previously found to range 

from 8-9,7%. 

2.9 Statistical Analysis: 

For all statistical analysis we used the computer software SPSS package for 

Windows '95 software (Version 9.0). Comparison between groups was done 

with student's unpaired t-test for continuous variables. Univariate regression 

analysis was performed according to Pearson. For some parameters log 

transformation was necessary to obtain a Gaussian distribution which is 
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necessary for the parametric tests. Multiple regression analysis was performed 

stepwise on all indicated parameters. 

The results for categorical data are expressed as percentages and continuous 

variables as means ± standard deviation if the distribution was symmetric. 

Plasma triglycerides, apolipoprotein (aJ, fibrinogen and urinary protein values 

were also log-transformed for statistical analysis because of their skewed 

distribution. Since microalbumin levels were below detection limits in a 

considerable number of subjects, this parameter had to be analysed by U-test 

and Spearman's test. Categorical data were analysed by chi-square tests. A p 

value < 0.05 was considered statistically significant. 

The relationship between genotypes and classical risk factors for CHD was 

assessed by one-way analysis of variance (ANOVA). Statistical significance 

was again taken at the 5% level. Analysis of covariance (ANCOV A) was used 

to examine the relationship between genotype, blood pressure (systolic and 

diastolic) and L VMI. Again, to account for the non-normal distribution of 

L VMI, the analysis was done using log transformed data. 

Alle1es and genotype frequencies in cases and control subjects were compared 

by chi-square (X2) tests and by stepwise logistic regression analysis using the 

SPSS program. Since the genotypes constituted a biallelic marker, 

comparisons of genotype distributions and allelic frequencies were assessed by 

t-test with two and one degrees of freedom respectively. Deviation from the 

Hardy-Weinberg equilibrium was tested by X2 test with one degree of freedom. 

The analysis was also carried out by means of an explorative bivariate logistic 

regression analysis to assess the independent role of the different factors using 

MI as the dependent variable and homocysteine, apolipoprotein (aJ, smoking, 

BP, lipids, diabetes, family history and genotype as independent variables. 

Analysis of genetic polymorphisms are sensitive to the allelic frequencies of 

the gene in the population studied. To date very few studies have been 

performed in Asian Indian subjects so that allelic frequencies in these groups 
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are not known. Furthermore, the few studies to date in Asian Indians have 

included subjects with a tremendous degree of heterogeneity in the study 

sample i.e. age range, angina vs MI, geographical area and gender mix (Saha 

et aI, 1996, Ramasawmy et aI, 1996). The number of probands in these 

studies did not exceed 85 and controls, 108. Furthermore, in the original study 

reported by Cambien et al (1992) the Toulouse sample was not in Hardy­

Weinberg equilibrium. This law is relatively robust and deviations from it 

could be explained by the size of the study sample. 

It was therefore decided to include a homogeneous study sample i.e. young 

age, myocardial infarction, cadastral district, time from index event of at least 

50 probands and controls. The number of probands was increased to 100 

when the results of glucose tolerance tests revealed a high prevalence of 

diabetes in this group. Both proband and control groups satisfied Hardy­

Weinberg statistical requirements. 
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There were 117 probands and 80 controls. In keeping with selection criteria the 

mean age in the proband group was under 50 years (43,1 ± 6.8). The majority 

of pro bands were males (105 males and 12 females). In the control group there 

were 64 males and 16 females. By selection subjects in the control group were 

slightly older (46.4 vs 43.1 years). None of the subjects exhibited clinical 

characteristics of familial hyperlipidaemia i.e. premature arcus, xanthelasma or 

tendon xanthomas. 

The infarct territory in the probands was anterior in 59 (50%), inferior in 48 

(41 %) and two patients had a lateral and posterior (1) infarct. The remaining 

eight patients had anterior infarction with inferior extension. Most patients 

received thrombolytic therapy and during follow up were on aspirin and statin 

therapy. Three had a very low ejection fraction and were receiving in addition 

diuretic therapy. A substantial number of patients received ACE inhibitors (n = 

33 (28%), P-blockers n = 44 (38%) and twenty-four (20%) were referred for 

interventional therapy. 

Details of the patients and control groups are summarised in Table 11. Since 

gender did not play an important role in our study objectives and because there 

were so few females data were combined for males and females in further 

statistical analysis. 

3.1.2 Patient Morphometry: 
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The allometric data revealed significant differences in waist and waist-hip 

measurements as well as body mass index in the two groups. Probands had 

higher waist-hip ratios (0.98 vs 0.94) and wider waists (92.2cm vs 87.8cm) than 

controls (p < 0.05). 

Table IT 

DEMOGRAPHIC DATA AND ANTHROPOMETRY 

PROBANDS CONTROLS 
n=117 n=80 p 

Age 43.l±6.8 46.4±8.5 .006 

GenderMIF 105/12 64/16 

BMI,Kglm2 26.4±4.0 25.1±4.0 .015 

Waist, cm 92.2±10.8 87.8±9.l .002 

WaistlHip 0.98 (0.78-1.12) 0.94 (0.78-1.08) .001 

Values are mean ± SD except for waist/hip (median + range) 

3.1.3 Blood Pressure: 

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were similar 

in both groups. Many probands had nonnal blood pressure but all were taking 

therapy (cardioprotective ACE inhibitors ± P-blockers) which would have 

lowered the blood pressure. Measurements were made after an overnight fast 

so that unifonnly trough levels were recorded in all subjects. Subjects were 

diagnosed as hypertensive if their blood pressure was elevated (> 

160/95mmHg) or they had a diagnosis of hypertension and were taking 

antihypertensive therapy. On this basis 31% of the probands were deemed 

hypertensive (cf.: controls 5%). 
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3.1.4 Behavioural Risk Factors (Table 11): 

3.1.4.1 Smoking: 

Table III shows the percentages of subjects in each group who smoked and 

consumed alcohol. Among the probands only 21 subjects (18%) had never 

smoked and almost half had not taken alcohol. There was a higher percentage 

of current smokers among probands, among whom only 10% made attempts to 

quit the habit completely. 

3.1.4.2 Type A Personality: 

3.1.4.3 

3.1.4.4 

Measurements of lifestyle were assessed by simple questions regarding drive, 

motivation and social interaction and revealed that 54% of probands had Type 

A personality as compared to 16% in the control group (p < 0.05). 

Employment/Education: 

Eighty-five probands (73%) had a low level employment and educational level 

(under standard 9) compared to 50 controls (63%) (p = ns). 

Exercise: 

The level of physical activity in all subjects was assessed by questioning them 

about regular exercise of any sort. Only 26% of probands performed a regular 

exercise routine i.e. 20 minutes at least twice a week. However, almost half the 

probands had a sedentary work pattern. 
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Table III 

RISK FACTOR CATEGORIES 

PRO BANDS CONTROLS P 

% % 

Total Cholesterol> 6.2 mmol/l 26 25 0.919 ns 

Diabetes 47 21 

Impaired Glucose Tolerance 5 7 

Cigarette Smoking 82 26 

Blood Pressure 31 5 

Family History CHD 80 24 

Family History Premature CHD 48 8 

Family History of Diabetes 44 6 

Family History of Hypertension 41 3 

Overweight, > 25 kg/m2 62 49 

Waist> 96 cm 36 14 

Waist /Hip> 1.0 30 16 

Type A Behaviour 54 16 

t Serum Triglycerides > 2.3 mmolll 42 15 

J,. Serum HDL-C < 1.0 mmolll 53 30 

HDLITC<20% 56 34 

t Alcohol Intake 57 30 

Sedentary Lifestyle 74 54 

Microalbumin > 2.8 mg/mmol creatinine 40 19 

3.1.4.5 Diet: 

Of the 117 probands, only 3 patients were vegetarians (cf.: control 5 p = ns). 

The rest ate meat to a varying degree. The majority changed their eating habits 

Results 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.058 

0.001 

0.026 

0.000 

0.000 

0.001 

0.002 

0.000 

0.005 

0.001 



48 

shortly after the index event (myocardial infarct), only to revert to their former 

dietary patterns. After a short while many found it difficult to make the 

lifestyle adjustment required because this meant a change in dietary patterns for 

the whole family. Only those in the higher income bracket managed to 

maintain lifestyle changes. Across the group, and except for the vegetarians, 

diet consisted mainly of curry dishes cooked in sunflower oil. The average 

meat consumption was similar, approximately three times per week, with only a 

low intake of fruit and vegetables. Half of the probands and a third of the 

controls ate fruit and vegetables only once a week. 

3.1.5 Metabolic Risk Factors: 

3.1.5.1 Diabetes Mellitus: 

The proband group had a significantly higher prevalence of diabetes (47%), 

glucose intolerance (4%: WHO definition) and family history of diabetes 

(44%). When this became apparent early in the recruitment phase, the number 

of probands was increased from 50 to 100. All probands had type 11 diabetes 

and most were on oral hypoglycaemic agents except for two who were taking 

insulin. Thirty-two probands and six controls were known diabetics. Diabetes 

was diagnosed for the first time in 33 subjects (21 probands, 12 controls). 

3.1.6 Lipid Profile: 

The lipid profile for the two groups showed important differences. Whereas 

total cholesterol and LDL-C levels, were similar in both groups, significantly 

elevated triglyceride levels and lower HDL-C levels were present in the 

probands (p < 0.05) (Table IV). The likely explanation was that almost all 

probands were receiving lipid-lowering therapy in the form of statins. There 

was however, failure of concomitant attempts at diet-modifying behavioural 
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changes. In order to assess lipid levels independent of treatment effects it was 

decided to assay Lp(a) on a stored sample (at -70°C) of plasma. Lp(a) 

measured as apolipoprotein (a) is essentially unaffected by therapy and 

correlates well with a genetic predisposition to early onset CHD. This assay 

did not reveal any striking changes between probands and controls (p = 0.102). 

However, there was a correlation between the apolipoprotein (a) level and a 

family history of premature coronary heart disease. 
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Table IV 

DESCRIPTIVE STATISTICS: BIOCHEMISTRY 

PROBANDS CONTROLS p (m-w) 

Total Cholesterol 5.4 ± 0.12 5.5 ± 0.13 0.384 

LDL-C 3.2 ± 0.10 3.46 ± 0.11 0.074 

HDL-C 1.1 1.3 0.000 

HDL/TC 0.21 0.24 0.005 

Triglycerides 2.8 ± 0.26 1.77 ± 0.18 0.000 

Plasma Glucose (0 hr) 7.44 ± 0.33 5.81 ± 0.25 0.000 

Plasma Glucose (2 hr) 9.10 ± 0.59 7.5 ± 0.52 0.09 

Serum Insulin (0 hr) u/l 19.4 ± 1.85 14.6 ± 1.8 0.799 

Serum Insulin (2 hr) u/l 54.9 ± 5.5 52.3 ± 8.7 0.271 

Ins/glucose (0 hr) 2.38 ± 0.3 2.4 ± 0.3 0.27 

Ins/glucose (2 hr) 8.7 ±2.2 8.7 ± 2.2 0.93 

Haemoglobin AIC (%) 7.08 ± 0.2 6.21 ± 0.2 0.021 

Plasma Fibrinogen (gll) 3.4 3.2 0.106 

Plasma Homocysteine J.lmmolll 18.9 ± 1.0 17.53 ± 0.89 0.511 

Apolipoprotein (a) J.l/l 354.9 ± 25.8 279.0 ± 26.8 0.102 

Microalbuminuria mglmmol creat 7.47 ± 0.97 3.55 ± 0.81 0.000 

Values are Mean ± SE 

3.1.7 Summary of Risk Factors: 

The distribution of the common risk factors in probands and controls are shown 

in Table III and reflects common differences in the risk profile of the two 

groups. Total cholesterol levels were similar in probands and in controls, 

probably reflecting the higher frequency of lipid-lowering drugs in the former. 

None of the risk factors shown in Table III differed according to ACE genotype 
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data. (Refer to 3.2) 

When the probands were divided according to the presence/absence of diabetes 

and other risk factors it emerged that almost of all young Indians (113/117) 

with MI had at least one major risk factor, and that in almost half of them 

diabetes was a major contributor to risk. When a positive family history was 

used as an indicator of heritability, 48% of the probands and 8% of the controls 

had a family history of premature coronary heart disease. A regression analysis 

was performed with family history of cardiovascular disease (hypertension, 

diabetes, CHD, stroke). A family history of premature CHD, hypertension and 

smoking emerged as strong predictors of risk of MI. 

3.2 Angiotensin Converting Enzyme Gene Polymorphism: 

(Fig 2-7 Appendix) 

The ACE genotype distributions in probands (l = 0.03) and controls (X2 = 

0.69) were in the Hardy-Weinberg equilibrium. The relative allelic frequencies 

of the A CE genotypes in controls did not differ from frequencies in the whole 

proband group (l = 1.81), as well as when the probands were subdivided into 

diabetic and non-diabetic groups (X2 
= 0.03; P = 0.532) (Tables V & VI). 
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Table V 

GENOTYPE FREQUENCIES IN PROBANDS (n = 117) & CONTROLS (n = 80) 

HOMO 0/0 HETERO 0/0 HOMO m % 

ACE Gene p 44 38 55 48 16 14 

C 25 33 34 45 17 22 

Agt Core Promoter p 44 39 50 45 18 16 

C 32 43 32 43 11 14 

AT 1 Receptor p 100 86 16 14 0 0 

C 65 81 15 19 0 0 

Aldosterone Synthase P 48 41 54 46 15 12 

C 29 36 44 55 7 9 

I1J3-HSD2 P 115 98 1 1 1 1 

C 76 97 1 1.5 1 1.5 

MTHFR P 94 80 21 18 2 2 

C 64 81 14 18 1 1 

TGF-J3 P 114 98 1 1 1 1 

C 78 98 1 1 1 1 

G-Protein P 61 52 47 40 9 8 
'" 

C 42 53 32 40 6 7 

See Appendix for Hardy-Weinberg Determination and Allelic Frequencies 

P = proband 
C = control 
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Table VI 

GENOTYPE FREQUENCIES IN NON-DIABETICS 

HOMO 0/0 HETERO 0/0 HOMO m 

ACE Gene p 17 27 34 56 10 

C 21 36 24 41 13 

Agt Core Promoter P 22 36 30 49 9 

C 23 40 25 44 9 

AT 1 Receptor P 54 86 9 14 0 

C 50 83 10 17 0 

Aldosterone Synthase P 26 42 30 50 5 

C 23 37 35 56 4 

1113-HSD2 P 60 98 1 2 0 

C 57 98 1 2 0 

MTHFR P 50 82 11 18 0 

C 49 80 11 19 1 

TGF-13 P 61 0 0 0 0 

C 78 0 0 0 0 

G-Protein P 6 10 26 43 29 

C 4 7 27 45 29 

PRO BANDS VS CONTROLS: Monte Carlo Sig. (2-sided) p = ns 
P = Probands 
C = Controls 

Further analysis to identify a group at low risk of CHD was not performed 

since almost all subjects had risk factors . None of the recognised risk factors 

differed according to ACE genotype data. Thus, in this Indian cohort of 

premature MI the ACE genotype was not associated with a significantly 

increased risk of MI. This finding persisted across subgroups without diabetes, 

as well as in groups with putative genetic risk factors i.e. elevated 

homocysteine, apolipoprotein (aJ, strong family history of CHD. When the 
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clinical and laboratory variables were compared among genotypes ill the 

control group, no significant differences were noted with regard to 

biochemistry variables. 

3.3 Angiotensinogen Core Promoter Polymorphism: 

(Fig 8-10 Appendix) 

The genotype frequencies in both probands (X2 = 0.35) and controls (i = 0.41) 

were compatible with Hardy-Weinberg equilibrium. There was no differences 

in the genotype frequencies between controls and probands (i = 0.22 : p = ns). 

The allelic frequencies were similar in both groups (X2 = 0.22; P = 0.72). The 

mutant homozygote was present in 18/112 (16%) probands and 11175 (15%) 

controls. There were no differences in the risk factor profile of the two groups. 

The study showed no association between the Agt G-6A polymorphism and 

premature MI in this cohort of patients. 

3.4 Angiotensinogen II Type I Receptor Polymorphism: 

(Fig 11-13) 

The genotype distribution in the proband (i = 0.27) and control group (X
2 = 

0.06) was compatible with the Hardy-Weinberg equilibrium. There were no 

differences allelic distribution (X2 = 0.80; p = 0.48) between the two groups. 

The mutant homozygote (1166C) was not seen in probands or controls in this 

study. The frequency of the A allele was 93% in probands and 91 % in controls. 

3.5 Aldosterone Synthase Polymorphism: 

(Fig 14-16 Appendix) 
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The genotype distribution in both case-patients ("l = 0.02) and controls (X
2 

= 

4.91) were in Hardy-Weinberg equilibrium. The genotype was TT in 15 cases 

vs 7 controls, CT in 54 vs 42 and CC in 48 vs 31 (X
2 = 1.16). The allelic 

frequencies were similar in both groups (X
2 

= 0.03; P = 0.97). 

3.6 IIp-Hydroxysteroid Dehydrogenase 2 Polymorphism: 

(Fig 18-20 Appendix) 

The polymorphism did not exhibit significant deviation from Hardy-Weinberg 

equilibrium in the proband (X2 = 1.31) or control (l = 1.29) groups. No 

significant differences in the allelic frequencies (Fisher's exact; p = 0.69) was 

found between cases and controls. There was only a sample each of the 

mutated genotype in cases and controls, and one each of the heterozygote 

genotype. 

3.7 Transforming Growth Factor-p Polymorphism: 

(Fig 20-22 Appendix) 

The genotypes were similar in both groups (X2 
= 0.14). The polymorphism did 

not exhibit deviation from the Hardy-Weinberg equilibrium in cases (X2 
= 1.31) 

and in controls (X2 = 1.30). The allelic frequencies were almost identical in 

both groups (Fisher's exact; p = 0,69). No individuals homozygous for the rare 

allele (TT) were identified, nor were there any heterozygotes in this sample. 

These results were confirmed with known heterozygotes identified previously 

and used as positive controls. 
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3.8 Methylentetrahydrofolate Reductase Polymorphism: 

(Fig 22-26 Appendix) 

3.8.1 MTHFR Genotype Distribution: 
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The distribution of the genotypes in both probands (l = 0.02) and controls (X
2 

= 1.26) was compatible with the Hardy-Weinberg equilibrium. There were no 

differences in the genotype (X2 = 0.85) or allelic (l = 0.18) frequencies in the 

two groups. The allelic frequencies were almost identical: C allele 90% vs 

89%, T allele 10% vs 11 % in probands and controls respectively (X
2 = 0.18; p = 

0.83). 

Homozygosity for the MTHFR polymorphism Val/val (TT) genotype was found 

in one proband (1%) and 2 controls (2.5%). There was therefore no significant 

difference between patients and controls in the prevalence of the TT genotype 

(p = ns). The prevalence of the T allele in the small number of patients with a 

strong family history of CHD was higher than in controls but this difference 

was not significant. 

3.8.2 Homocysteine Concentrations: 

No substantial differences existed in the homocysteine level among the 

genotypes. Patients with the TT genotype did not have elevated homocysteine 

levels. The results of this study do not confirm that MTHFR genotype is an 

important determinant of plasma homocysteine levels in this cohort: TT 

genotype carriers have significantly higher levels than carriers of the other 

genotypes, but this mutation was not common. If homocysteine were indeed a 

cardiovascular risk factor, especially for premature MI, then one would expect 

a higher prevalence of the TT genotype which would predispose carriers to 
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accelerated atherosclerosis. 

3.9 G- Protein Polymorphism: 

(Fig 26-28 Appendix) 
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The genotype frequencies were in Hardy-Weinberg equilibrium in both 

probands (X2 = 0.00) and controls (X2 = 0.00). The distribution of the allele (X
2 

= 0.00: p = 0.09) and genotype (X2 = 0.00) frequencies did not differ 

significantly between probands and controls. 

The 825 T allele frequencies were 0.93 in probands and 0.91 in controls. The 

results of this study suggest that it is unlikely that the GNp3 C825T 

polymorphism contributes to the risk for premature MI in this cohort. 

3.10 Pulse Wave Velocity: 

The average PWV was 10.7 ± 0.17 m/sec in probands and 12.2 ± 1.33 mlsec in 

controls. PWV was higher in the controls but the differences was not 

significant (p = 0.393). There was a significant correlation between PWV and 

age (p = 0.001), pulse pressure (p = 0.000), WIH ratio (p = 0.006), and a 

weaker correlation with triglycerides (p = 0.05) and HbAl C (p = 0.045). 

Amongst the controls only age, W IH ratio and systolic blood pressure showed 

correlation with PWV (Table VII). There were significant differences in the 

echocardiographic parameters in the two groups. In keeping with the previous 

infarct, ejection fraction was lower and LV diameter bigger amongst the 

probands (Table VIII). Although this study observed that significant 

correlation existed between PWV and risk factors particularly BP, diabetic 

status and waist measurement indices. No significant correlation was shown 

between PWV and genotype patterns. 
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Table VII 

SPEARMAN'S CORRELATION BETWEEN PULSE WAVE 
VELOCITY & OTHER RISK FACTORS 

PRO BANDS P CONTROLS P 
Diabetes .298 .001 .232 .038 

Age .569 .000 .054 .634 ns 

Blood Pressure .186 .045 .009 .939 ns 

Haemoglobin AIC .251 .006 .276 .013 

WaistlHip Ratio .228 .013 .232 .038 

Systolic BP .379 .000 .061 .589 ns 

Diastolic BP .536 .000 .020 .858 ns 

Pulse Pressure .290 .002 -0.114 .314 ns 

Triglycerides -0.182 .049 -0.851 .542 ns 

Microalbuminuria 0.141 0.132 ns .327 .003 
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Table VIII 

PULSE WAVE VELOCITY AND ECHODOPPLER MEASUREMENTS 

PRO BANDS CONTROLS 
x±SE x±SE P 

PWV, m/sec 10.7 ±..O.17 12.2±1.33 .393 

Systolic Blood Pressure 123 ± 2.5 126 ± 2.0 .661 

Diastolic Blood Pressure 77 ± 1.2 76 ± 1.2 .421 

Pulse Pressure, mmHg 49 ± 1.4 50 ± 1.3 .270 

Septum, mm 10.4 ± 0.35 9.0 ± 0.33 .033 

LVIDD,mm 53.8 ± 0.65 45.0 ± 1.2 .000 

Posterior Wall, mm 6.98 ± 0.48 6.28 ± 0.18 .286 

Ejection Fraction 55.0 ±,,1.22 64.4 ±..1.08 .000 

LV Mass, gm 188±5.83 132±5.9 .000 

L V Mass Index, gm/m2 103±3.23 75±3.7 .000 

Doppler E/A 1.42 1.30 .603 
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4.1 Assessment of Risk Factors: 
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Strong familial aggregation of CHD has long been recognised. Statistical 

regression studies suggest that only 30-50% of the observed increment in 

familial risk can be attributed to the classical risk factors: raised cholesterol, 

smoking, hypertension and diabetes, which explain only part of the 

epidemiological features of atherosclerotic coronary heart disease. Other 

factors that increase the risk of myocardial infarction alone or in combination 

with the classical risk factors must therefore be operative. These may involve 

lipid dynamics within the plaque, antioxidative defences, endothelial factors as 

well as hereditary determinants that influence atherogenesis. Recent data 

suggest that these factors may accelerate atherosclerosis in the patient with 

risk factors, giving rise to premature coronary events. 

Evidence for genetically determined predisposition for coronary heart disease 

is derived in particular from migration studies. A marked susceptibility is 

observed in regions such as Great Britain, Singapore and South Africa, 

suggesting that the effect of a changing environment is to unmask the genetic 

factors. More recently the results of the Bogalusa Heart Study have shown 

significant clustering of risk factors in both young parents and their offspring 

(Chen et aI, 1999). Therefore, the risk factor profile of young Indians with 

myocardial infarction was determined by interview and assessment of 

biochemical characteristics in order to define the background risk and compare 

this with their genetic patterns. 
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4.1.1 Premature Myocardial Infarction: 

Among Western series myocardial infarction in young patients <45 years is 

thought to be an unusual occurrence. It is quoted that 2-6% of MI occurs in 

young patients (Jalowiec et ai, 1989). At least 80% of young patients with MI 

have typical atherosclerotic coronary heart disease (Warren et ai, 1979), 

manifesting most often as non-obstructive or single vessel disease 

(Zimmerman et ai, 1995). Multivessel disease appears to be related to the 

number of risk factors (Wagner et ai, 1996), particularly diabetes (Hong et ai, 

1994). 

Myocardial infarction in the absence of atherosclerotic disease accounts for 

only 20% of cases in this age group (Choudhury et ai, 1999). The majority of 

our patients probably had atherosclerosis as the cause of their disease, for 

which underlying risk factors were present to a variable extent. None of the 

patients in our study had clinical evidence to suggest coronary embolism or a 

systemic vasculitis, nor did they have any overt signs of a hypercoagulable 

state or history of cocaine drug abuse. Coronary angiography was performed 

in only those patients who were referred for ongoing pain, so that the number 

who had rare coronary anomalies, if any, is not known. 

Risk factors that account for atherosclerosis in young patients include 

smoking, hypertension, diabetes, dyslipidaemia, a positive family history and 

obesity. In addition, hypercoagulable states associated with increased factor 

VIII activity and reduced fibrinolytic activity as a result of increased PAI-1 

levels, use of the oral contraceptive pill and elevated plasma homocysteine 

levels, have all been reported in patients who sustained MI under the age of 45 

years (Choudhury et ai, 1999). 

The baseline characteristics of our study group confirm that young Indian men 
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and women with MI have significant risk factors, even at a younger age. 

Among young Indian males with myocardial infarction Sewdarsen et al (1987) 

noted that 96% had at least one major risk factor for coronary heart disease. 

Smoking was the commonest and present in 79% of patients and serum 

cholesterol above 6,5 mmollL was found in 50% of patients. These risk factors 

were also present in our control group, albeit to a lesser degree. These 

findings are also in keeping with our survey of medical students which showed 

that young Indian medical students develop risk factors for CHD at an early 

age compared with young Black medical students (Morar et ai, 1998). 

This may explain recent trends which suggest an alarming increase in CHD in 

the South African Indian population (Walker et ai, 1993) (cf. Framingham 

data which indicate a decreasing incidence of M! in younger patients). 

On the Indian subcontinent the major risk factors (hypertension, diabetes and 

hypercholesterolaemia) do not play a significant role while insulin resistance 

appears to be an important risk factor. Abdominal obesity, raised triglycerides 

and low HDL-C were markers of insulin resistance in this group (Vardan et ai, 

1995, Singh et ai, 1995). Only 8.2% of patients with CHD had BMI > 

27kg/m2; CHD was present in subjects with BMI 15 kglm2 upward (Thomas, 

1995), and was related to abdominal obesity. 

4.1.2 Behavioural Patterns: 

4.1.2.l Smoking: 

Together with alcohol consumption smoking was predominant among the men 

in our study. It is the major risk factor among young Indians with myocardial 

infarction regardless of their geographical location (Tambyah et ai, 1996). 

Findings similar to our study have recently been reported in a case-control 

study of 200 Indian patients with myocardial infarction in India (Pais et ai, 

1996). The most important predictor of myocardial infarction was current 
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smoking. Fasting blood glucose and abdominal obesity were also strong 

predictors of risk but the lipid profile was not associated with myocardial 

infarction. Smoking contributes to risk via several mechanisms: Hughes et al 

(1998) studied 166 Asian smokers in Singapore and showed that smokers had 

lower HDL-C and higher triglyceride levels as well as higher plasma 

fibrinogen and PAl -1 levels contributing to atherosclerosis and thrombosis. 

Physical Activity and Risk of CHD: 

Mortality from CHD has been reported to be inversely related to the level of 

physical activity and to be reduced in subjects who exercise regularly 

(Paffenbarger et ai, 1993). Physical fitness is a determinant of insulin 

sensitivity (Endre et ai, 1994) and is a long-term predictor of mortality from 

cardiovascular disease in healthy middle-aged men (Sandvik et ai, 1993). A 

recent study in Japanese men has shown that those who engaged in regular 

physical activity (>3 days per week) had fewer risk factors than sedentary 

individuals (Hsieh et ai, 1998). In our study subjects were classified sedentary 

if they did not engage in physical activity at least once per week. There was 

no significant difference in age among the sedentary and physically active 

groups, but there was a high prevalence of physical inactivity in the proband 

group, and this was negatively correlated with the HDL-C level. 

4.1.3 Dyslipidaemia: 

This study confirms previous observations that Indian men and women with 

MI have significantly lower levels of HDL-C than controls with an 

approximate 20% difference in HDL-C levels. The expected inverse 

correlation of BMI and W IH ratio with HDL-C was observed in probands. 

None of the women were recelvmg oral contraceptives; so this does not 
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explain lower HDL-C levels in them. In contrast most men were ex-smokers 

and had taken alcohol so that part of the explanation for the lower HDL-C may 

be due to these factors. 

Serum levels of high-density lipoprotein or apolipoprotein A-I (apo A-I) are 

inversely correlated with the risk of CHD (Gordon et ai, 1977). Genetic, 

hormonal and environmental factors determine HDL-C and apo A-I levels 

within distinct populations. In addition, HDL-C levels differ considerably 

among different ethnic groups. Obesity and insulin resistance are associated 

with low HDL-C in many populations, (Reaven et ai, 1994, Despres et ai, 

1996) particularly in Indians in whom a high prevalence of diabetes exists 

(Stern, 1995). In addition to insulin sensitivity, the distribution of body fat is 

an important determinant of HDL-C levels. Intra-abdominal fat is considered 

to be a chief determinant of metabolic complications associated with 

cardiovascular risk and is reflected in measures of central obesity. Waist 

measurement is therefore considered to be a better predictor of CHD than BM! 

(Depres et ai, 1990, Larsson et ai, 1984). WaistlHip ratio showed a strong 

inverse correlation with HDL-C in our study (Table IX). The HDL/TC ratio 

also showed a strong inverse correlation with BMI, WIH ratio and HbAIC 

levels in both probands and controls. 
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Table IX 

SPEARMAN'S CORRELATION BETWEEN WAIST-HIP 
RATIO AND OTHER VARIABLES 

PROBANDS CONTROLS 
r p r p 

Diabetes .329 .000 .226 .044 

Microalbumin .281 .002 .092 .416 ns 

SBP .215 .020 .401 .000 

DBP .272 .003 .365 .001 

Pulse Pressure .196 .036 .159 .158 ns 

PWV .228 .013 .232 .038 

LV Mass .323 .000 .240 .032 

HDL-C -0.252 .006 .349 .002 

HDLITC Ratio -0.290 .002 -0.195 .085 ns 

4.1.4 Hyperinsulinaemia and CHD: 

Epidemiologic studies have reported an association between insulin levels and 

cardiovascular events (Haffner et ai, 1998). Although a recent meta-analysis 

has shown that hyperinsulinaemia is a weak indicator of cardiovascular risk 

the relationship appears to be stronger in middle-aged patients (Ruige et ai, 

1998). 

A large trial has shown that there is a negative association between insulin 

sensitivity and carotid intima-media thickness, an indicator of coronary 

atherosclerosis (Howard et aI, 1996). Few studies have examined the effect of 

insulin on arterial stiffness (Salomaa et ai, 1995, Emoto et ai, 1998). In the 

Atherosclerosis Risk in Communities Study (ARIC) the joint effect of 

hyperglycaemia, hyperinsulinaemia and hypertriglyceridaemia contributed 

synergistically to an increase in arterial stiffness. In our study we showed 
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significant correlations between insulin and obesity parameters but no 

correlation with microalbuminuria (Table X). 

Table X 

SPEARMAN'S CORRELATION BETWEEN INSULIN, 
MICROALBUMIN & OTHER VARIABLES 

PRO BANDS CONTROLS 
r p r p 

Insulin (1 hour) BMI .351 .000 .516 0.006 
W .349 .001 .405 0.036 

W/H .305 .003 .249 0.211 ns 
Pulse Pressure .274 .007 .146 0.466 ns 

Insulin (2 hour) BMI .342 .007 .405 0.076 
W 0309 .015 .072 0.763 ns 

W/H .280 .028 .025 0.918 ns 

Microalbumin W/H ratio .092 .416 ns .281 0.002 
Fibrinogen .237 .010 .028 0.807 ns 

Homocysteine .021 .82 ns .386 0.000 
Smoking .249 .007 .254 0.023 

4.1.5 Ethnicity, Diabetes and CHD: 

Type II diabetes carries a strongly increased risk of cardiovascular disease. 

Since hyperinsulinaemia precedes type II diabetes and is associated with an 

adverse cardiovascular risk profile, it is thought that insulin resistance might 

be operative in the pathogenesis of CHD and type II diabetes (Stem, 1996), 

and may be explained on the basis of endothelial dysfunction which is an early 

finding in these patients. Insulin resistance, hyperinsulinaemia and impaired 

glucose tolerance are key components of the metabolic syndrome. Ethnic 

background appears to be a strong determinant of the relationship between 

insulin and CHD (Ruige et at, 1998). This may explain ethnic differences in 

the prevalence of diabetes and the propensity to heart disease. South Asian 
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diabetics have a significantly higher risk of myocardial infarction and death 

from cardiovascular disease than white diabetics (Mather et ai, 1998). 

Hughes et al (1990) reported that the higher mortality for coronary heart 

disease could not be explained by smoking, blood pressure and serum 

cholesterol but he felt that low levels of HDL-C and higher rates of diabetes 

were part of the explanation. He showed that Asian patients with NIDDM had 

higher mean body mass index, waist/hip ratios and abdominal girth. They also 

had a higher prevalence of hypertension, lower HDL-C and higher PAI-l 

levels, components of the metabolic syndrome that increase the risk of 

atherosclerosis and thrombosis. However, he found no differences from 

controls for cigarette smoking and LDL-C, (Hughes et ai, 1998). These 

correlations are also borne out in our study (Table XI). 
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Table XI 

SPEARMAN'S CORRELATION BETWEEN DIABETES AND OTHER 
RISK FACTORS 

PROBANDS p CONTROLS l.!... 
BMI .433 .000 .254 .023 

Waist .426 .000 .355 .002 

W/H Ratio .329 .000 .072 .524 

BP .193 .037 .161 .153 

Pulse pressure .231 .013 .205 .069 

PWV .298 .001 .232 .038 

LV mass .038 .686 .231 .039 

EtA ratio -0.242 .008 .145 .204 

Triglycerides .235 .002 .160 .155 

Microalbuminuria .276 .003 .355 .001 

As a group Indians have a high genetic risk for diabetes. Adult offspring of 

diabetic parents exhibit hyperinsulinaemia and decreased insulin sensitivity 

long before the development of glucose intolerance (Ramachandran et aI, 

1998). Similarly, our study of risk factors in medical students revealed that 

Indian students exhibited metabolic changes including hyperinsulinaemia 

more frequently than their Black counterparts (Morar et aI, 1998). 

A field survey of South African Indians in Durban, (Seedat et aI, 1990) 

showed that at least two thirds of Indian subjects had a major risk factor for 

coronary heart disease with a high prevalence of insulin resistance. In Britain 

Mckeigue et al (1991) found that the high prevalence of insulin resistance in 

the South Asian popUlation was associated with coronary heart disease and 

obesity. Similar results have been shown for Asian Indians in the USA in 

whom resistance to insulin suppression of free fatty acid levels has been 

shown to be associated with metabolic risk factors (Laws et aI, 1994). In an 
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early report of coronary heart disease in 3 different racial groups in Durban 

diabetes was detected in 47% of Indians with coronary heart disease 

(Thandroyen et ai, 1980). Subsequently, Sewdarsen et at (1991) studied 131 

Indian type 2 diabetic patients 3-4 months after myocardial infarction. He 

found that the diabetic subjects were older and more likely to be hypertensive, 

whilst smoking and a family history of coronary heart disease was common in 

non-diabetic subjects. Amongst women with myocardial infarction he found 

that diabetes mellitus was the commonest risk factor, was present in 78% of 

patients and was associated with a family history of myocardial infarction in 

first-degree relatives (Sewdarsen et ai, 1988). 

4.1.6 Family History: 

A family history of premature CHD in a first degree relative is recognised as 

an independent risk factor for coronary disease (Myers et ai, 1990). 

Epidemiological studies suggest that first degree relatives of coronary patients 

have a 2.5 to 7 fold increase in risk of death from CHD compared to those 

without a family history of CHD (Slack et ai, 1966). In our study, the 

inherited basis of CHD is likely to be represented in the large group with a 

strong family history of premature CHD (48%), although the influence of 

factors such as raised homocysteine and Lp(a) levels cannot be excluded. 

Whilst clustering of risk factors within families suggests that this may be due 

to a genetic influence, particularly in those with diabetes, it is apparent from 

the dietary and behavioural habits that an environmental influence probably 

contributed to their cardiovascular disease. Most interesting in our study was 

the fact that there were hardly any subjects who had no identifiable risk factors 

(n = 4). In most subjects shared environmental influences are likely to have 

had an important effect. Whilst single gene abnormalities such as the LDL 

receptor mutation have been linked to CHD later in life, in most cases the 

development of atherosclerosis is likely to have had a polygenic basis against a 
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setting of environmental risk factors. 

Inherited vascular risk may be mediated by a number of mechanisms. Several 

major risk factors such as diabetes and hyperlipidaemia are known to be 

genetically influenced, including levels of newly identified risk factors such as 

homocysteine, Lp(a) and fibrinogen. In addition, endothelial dysfunction has 

been demonstrated in humans with clinical evidence of atherosclerosis (Vita et 

ai, 1990) as well as in young asymptomatic subjects who have established 

cardiovascular risk factors such as smoking (Celemajer et ai, 1993) and 

diabetes (Clarkson et ai, 1996). It is likely that a variety of genes interact to 

accelerate damage from these risk factors. 

Identification of unaffected siblings at risk therefore becomes an important 

target in the primary prevention of CHD in this high-risk population. A 

marker to select those young people with a strong family history of premature 

CHD who are at risk may lie in determination of genetic patterns, insulin and 

homocysteine levels, markers of endothelial dysfunction (microalbuminuria) 

and arterial stiffness (PWV). 

4.2 ACE Gene Polymorphism: 

The A CE genotype had no influence on the development of MI in this cohort 

of young Indians. Furthermore, no major impact of these polymorphisms on 

blood pressure, patient morphometry and biochemical parameters were 

detected. 

4.2.1 Studies in Asian Indians: 

There are three studies of A CE gene polymorphism in Indian patients with 

coronary heart disease. In Singapore Saha et ai (1996) studied 155 Chinese 

and 72 Indians with myocardial infarction and showed no significant 
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association of the A CE gene with CHD or MI in either race group. In addition 

he showed that the frequency of the D allele was significantly lower than that 

reported in Caucasians. 

In another study, Ramasawmy et al (1996) compared 85 young Mauritian male 

MI survivors with 108 control subjects and found no association between ACE 

liD polymorphism and susceptibility to early onset myocardial infarction. In 

this study the frequency of the D allele was 42% in probands and 43% in 

control subjects. Although Gardemann et ai, (1998) has shown that the D 

allele is associated with coronary heart disease in younger subjects « 61.7 

years) no clear association between A CE genotype and coronary heart disease 

has been demonstrated in the Indian population studies. 

4.2.2 Meta-analyses: 

A meta-analysis of 46 studies, totalling 32,715 subjects has shown that the D 

allele is associated with a 28% increase in plasma ACE activity, a 21% 

increase in the risk of MI and 16% increase in ischaemic heart disease for the 

DD genotype vs. ID and 11 genotypes. However, none of these risks were 

significantly increased when the largest studies were examined separately 

(odds ratio for MI: 0,9, for IHD: 1,09), suggesting that ACE gene 

polymorphism affects plasma ACE activity but not blood pressure and the risk 

of MI (Agerholm-Larsen, 2000). Given the confounding effects of ACE­

inhibitor therapy, which almost all probands received, we did not measure 

renin, aldosterone or ACE activity in our patients. 

In another meta-analysis of fifteen studies totalling 3394 myocardial infarction 

cases and 5479 control subjects Samani et al (1996) provided pooled estimates 

of the association between A CE liD polymorphism and the risk of myocardial 

infarction but the strength of the association was weak. Several important 

limitations have emerged from this meta-analysis that could explain the 
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heterogeneity of results among studies. The studies were carried out in highly 

select groups of cases with less than ideal control subjects. Often cases were 

collected some time after the MI raising the possibility of selection by 

survival. Thirdly, using a funnel plot of sample size vs. odds ratio Samani et 

al (1996) showed that a significant trend towards positive associations were 

reported in the smaller studies, resulting an over-estimation of the true effect 

of the D allele. This reflects the importance of the size of the study needed to 

prove an association. If the risk of MI with the DD genotype is 26% then 

1400 probands and a similar number of controls are required to have 80% 

power to detect a difference between DD and II/ID genotypes at a probability 

ofO,05. 

Subjects similar to ours have been reported in a Norwegian study by Bohn et 

al (1993) who showed that the differences could be due to chance, undetected 

selection bias, different gene-environment interactions, or to preferential loss 

of DD individuals in the high-risk cohort. 

4.2.3 Low Risk and DD Genotype: 

There were too few subjects defined to be at lower risk of MI (by low body 

mass index and low cigarette consumption) and therefore one cannot comment 

on the association of the DD genotypes with MI by this stratification. 

Although a few studies (Cambien et aI, 1992, Ludwig et ai, 1995, Keavney et 

ai, 1995, Gardemann et aI, 1995) have reported that the risk of MI associated 

with the DD genotype is increased in low risk subjects, a large well-designed 

study (Tiret et aI, 1993) did not show this. In another cohort analysis of 388 

Italian patients the D allele showed the strongest association for 

atherosclerosis but the distribution of the risk factors among the three 

genotypes was similar (Arbustini et aI, 1995). 

4.2.4 Mortality and DD Genotype: 
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Cambien et al (1992) reported that the DD genotype was slightly more 

prevalent in 610 patients who survived MI than in 733 controls (32% vs 27%), 

especially in individuals with below average lipids and body mass. In subjects 

at low risk of MI (apo B < I, 25 g/l and BMI < 26 kg / m
2

) the risk ratio of the 

DD vs. ID + II was 2,7 (p < 0,0005). In our study there was no difference in 

the frequencies of the genotypes between probands and controls, even when 

comparing 'low risk' probands to control subjects by this stratification. 

The biological role of angiotensin converting enzyme suggests that the ACE 

gene is a candidate for myocardial infarction. The D allele has a frequency of 

0,53 in Caucasians and is co dominantly associated with higher plasma and 

cellular angiotensin converting enzyme levels. It therefore appears that the 

increased risk associated with the DD genotype may be related to higher 

intracardiac production of Ang 11 leading to coronary vasoconstriction and 

hypertrophy. This may also explain the higher prevalence of restenosis after 

PTCA in subjects with the DD genotype (Ohishi et ai, 1993). In a large case­

control study (ECTIM) an increased risk of MI and an increased frequency of 

parental MI were demonstrated in subjects carrying the D allele (Tiret et ai, 

1993). This relationship was stronger in subjects at low risk of myocardial 

infarction. Further evidence that the D allele could increase the risk of death 

in patients with coronary heart disease comes from the Belfast Monica Project 

which showed an increase frequency of the D allele in autopsy cases of MI 

(Evans et ai, 1994). 

Perhaps the largest study to date with conflicting findings is the prospective 

study of US male physicians by Lindpaintner et al (1995). In this study 1250 

men with CHD were compared to 2340 control subjects according to age and 

smoking history. The presence of the D allele confirmed no appreciable 

increase in risk of coronary artery disease or 'myocardial infarctions' even 
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among low-risk subgroups. 

In a recent analysis Samani et al (1996) prospectively studied 684 patients 

with MI and followed them up to assess the impact of the genotype on 

prognosis. He found that the genotype distribution did not influence the short­

to- medium term prognosis after MI. 

4.2.5 Diabetes Mellitus and ACE Genotype: 

A field survey in Durban (Seedat et ai, 1990) has shown that at least two thirds 

of Indians subjects have a major risk factor for coronary heart disease. 

Diabetes mellitus was strongly associated with a positive history of coronary 

heart disease. This finding is interesting since PIMA Indians have a low 

incidence of coronary heart disease despite a high prevalence of diabetes (Nagi 

et ai, 1998)! It is thought that the lower frequency of the D allele among 

PIMA Indians may underlie their low risk of coronary heart disease. In 

contrast Ruiz et al (1994) found that the DD genotype is an independent risk 

factor for coronary heart disease in type 11 diabetes. The D allele has been 

found be a risk factor for MI in type 11 diabetes mellitus especially in those 

subjects judged to be low-risk. Keavney et al (1995) studied 173 newly 

diagnosed Caucasian type 11 diabetic patients who developed myocardial 

infarction and showed that the D allele was associated with MI in those with 

low plasma LDL-C or low triglyceride levels. We found no difference in the 

genotype frequencies in the diabetic subgroups in our study. In an extensive 

review Kennon et al (1999) performed a meta-analysis and showed that the 

A CE genotype had a significant impact on the progression of diabetic 

nephropathy. Significant odds ratios were shown in individuals with the DD 

genotype for coronary heart disease, myocardial infarction and both diabetic 

and non-diabetic renal disease in his study. 
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4.2.6 Limitations to Genotype Studies: 

4.2.6.1 

4.2.6.2 

Homogeneity of Sample: 

Studies of linkage disequilibrium are highly sensitive to selection of a 

genetically appropriate control sample (Samani et aI, 1996). Case-control 

studies from populations with a heterogeneous genetic background can be 

misleading. For example, in two areas of Finland the prevalence of the DD 

genotype was different in two population-based samples (Perola et ai, 1995). 

In the original study by Cambien et al (1992) the Toulouse sample was not in 

Hardy-Weinberg equilibrium. This law is relatively robust and deviations 

from it could be explained by selection or by the size of the sample. The 

number of subjects in our study is small but few studies have been carried out 

in homogeneous populations including so many subjects (Agerholm-Larsen et 

aI, 1997). Coronary heart disease is a multifactorial disease influenced by 

environmental and genetic factors. The effects of the genotype are determined 

by gene-gene as well as by gene-environmental interactions. Because of 

marked geographical differences in prevalence of risk factors gene 

polymorphisms must be evaluated in the homogeneous samples with the same 

coronary heart disease risk. 

The conflicting results of association studies may also be partially explained 

by the remarkable differences of the allele frequencies in the populations 

investigated. For instance, the frequency of the D allele and the DD genotype 

is significantly increased in the hypertensive African-American population 

(Dum et ai, 1994) compared with normotensives controls. 

D Allele Dropout: 
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Studies reporting an association of the I allele of ACE liD polymorphism could 

be biased by a deficit of the D allele in older subjects, as a consequence of the 

lethality of the D allele (Evans et ai, 1994). In the present study those patients 

who died before admission to hospital or within the first few hours after 

admission were not included. The mean age of our subjects was under 45 

years and we could find no evidence of a 'D allele-dropout' when we stratified 

subjects by age. In addition, there was no significant deviation from the 

Hardy-Weinberg equilibrium for any of the polymorphisms studied. We are 

confident that the genotyping data are accurate since an insertion-specific 

primer was used in the analysis and the gels were read independently by two 

trained observers. Thus these results cannot readily be explained by selective 

loss of DD homozygotes, a finding that has been described previously (Morris 

et ai, 1994). 

In our study the restriction of the inclusion criteria to young patients with 

coronary heart disease who had myocardial infarction could have introduced a 

selection bias. Young patients were chosen to eliminate the confounding 

effect of age as a risk factor, and also to possibly enrich the genetic 

determinant in the study group. Several other pathogenetic, including 

thrombotic, mechanisms could be operative in this group. 

Size of Sample: 

Significant difficulties in the assessment of genetic studies have been the small 

numbers of subjects studied, (resulting in low discriminating power) and the 

presence of mixed genders. In the ECTIM study, an odds ratio of 1.3 was 

observed for those having the V allele in the MTHFR polymorphism. 

Assuming a dominant model and an allele frequency of 0.35 in controls, this 

would imply an allele frequency of 0.37 in cases and to replicate the results of 

the ECTIM study with 80% power, 950 cases and 950 controls would be 

required. The fewer number of subjects investigated may explain the lack of 
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an association of MI with the gene polymorphisms studied. It is therefore 

possible that larger investigations are needed to draw final conclusions. 

Polymorphisms in genes related to cardiovascular homeostasis have often 

required multiple and large studies (ECTIM) to clearly define attributable 

genetic risk. The current study is therefore unable to answer this question and 

anticipates the pooling of data from different regions to achieve numbers 

affording adequate power. Successful application of this type of case-control 

study design, however, is dependent on the ability to identify a group of cases 

and control subjects from the same genetic pool. If allele frequencies of cases 

and control subjects differ for any reason that is not due to the disease process, 

such as population stratification, then false positive, or false negative results 

may occur. 

In order to minimise this problem, cases and control subjects were drawn from 

the same homogeneous popUlation in our study. 

4.3 Angiotensin Core Promoter Element: 

Previous reports suggest that variants of the angiotensinogen gene were 

associated with an increased risk of essential hypertension (Jeunemaitre et aI, 

1992, Brown et aI, 1994, Hegele et aI, 1994, Kamitani et aI, 1994, Caulfield et 

aI, 1994). Another potential mechanism by which angiotensinogen may 

influence susceptibility to CHD may be related to its abundant expression in 

human adipose tissue (Ailhaud, 1997). This may represent a potential link 

between blood pressure and insulin resistance, especially in obese subjects 

(Aubert et aI, 1990). 

4.3.1 MI, Hypertension and Agt Genotype: 

Several gene loci encoding components of the RAS have been implicated in 
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cardiovascular diseases. Whereas there is continuing controversy regarding 

the role of the ACE DD genotype, the angiotensinogen gene has been 

consistently linked to hypertension and also contributes to the risk of CHD 

(Katsuya et ai, 1995). 

Tiret et al (1995) studied two Agt polymorphisms: T174M and M235T in 630 

MI subjects. He found that the T174M and the M235T genotype distributions 

did not differ between MI survivors and controls, but subjects with BMI < 26 

Kg/m2 had a higher prevalence of hypertension if they carried the M174 allele. 

In a recent meta-analysis, Staessen et al (1999) analysed 69 studies totalling 

27,906 subjects and showed that the T allele was associated with an increased 

risk of hypertension in Caucasians, but not in Blacks or Asians. The T allele 

was associated with 7-11 % rise in circulating angiotensinogen levels but was 

not associated with atherosclerosis or microvascular complications. In 

contrast to these findings, Staessen's et al (1997) earlier meta-analysis of 145 

reports on 49,959 subjects showed that possession of the D allele of ACE gene 

polymorphism was associated with an increased risk of atherosclerotic and 

renal microvascular complications. In comparison with the 11 group the excess 

risk in DD homozygotes was 32% for CHD, 45% for MI, 94% for stroke and 

56% for diabetic nephropathy. The corresponding risk in ID heterozygotes 

amounted to 11 % for CHD and 13 % for MI. 

4.3.2 LV Size and Genotype: 

Experimental and clinical data show that the RAS may influence progressive 

ventricular dilatation, ventricular function and outcome after MI. In addition 

to a direct toxic effect on myocardial cells, Ang 11 may induce hypertrophy in 

non-infarcted areas, activate the sympathetic nervous system, stimulate 

fibroblast proliferation, increase ventricular afterload and impair diastolic 

relaxation (Riegger et ai, 1996). Modulating these mechanisms may explain 
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the beneficial effects of A CE inhibition, started early after MI and accounts for 

the reduction in morbidity and mortality for major cardiovascular events in 

clinical trials. 

4.4 ATl Receptor Polymorphism: 

The findings of the present study are at variance with previous reports. We 

have not shown any relation between the AT] receptor genotype and the risk of 

premature MI. This may be related to the low prevalence of severe 

hypertension in our patients. The AT] C allele has been shown to be more 

frequent in patients with severe hypertension and myocardial infarction (Tiret 

et aI, 1994). In an allelic interaction study Hingorani et aI, (1995) has shown 

that both SBP and DBP track with the I allele of the ACE gene and the 1166C 

allele of the AT] receptor gene. Although the AT] receptor genotype has been 

associated with hypertension, in cross-sectional studies this polymorphism has 

not been found to be associated with aortic stiffness. 

In a study of all three RAS candidate gene polymorphisms, (ACE liD, Agt 

M235T, T174M and AT]R Al166C), Riegger et al (1996) found that 

hypertensive patients reporting a parental history of MI before age 60 years 

had a higher prevalence of the ACE D allele. Similar results were obtained in 

patients reporting a parental history of stroke before age 65 years. The Agt 

T235 allele prevalence was higher in male hypertensives and the AT] C1166 

allele higher in females. 

Other studies of RAS gene polymorphisms have shown an interaction between 

the AT] receptor genotype and ACE DD genotype on the occurrence of MI. 

There is also recent evidence of synergism between the ACE DD genotype and 

the AT] 1166 CC genotype that further increases the risk of ischaemic events 

after MI (van Geel et aI, 1998). In addition the interaction between the AT] 
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genotype and the ratio of TC/HDL on aortic stiffness suggests that the AT] 

1166 C allele confers a combined genetic susceptibility to cardiovascular risk 

in association with clinical risk factors. This does not appear to be so in our 

patients and probably applies to Caucasians. 

4.5 Aldosterone Synthase Polymorphism: 

This study does not support a role for eyp IlB2 e344T polymorphism in this 

selected cohort of patients with premature myocardial infarction. The results 

are in keeping with a previous report which showed that genetic variation in 

the promoter of CYP 11 B2 may influence blood pressure regulation but its 

association with CHD is at best weak (Hautanen et ai, 1997). 

Recently, White et al (1998) showed that the -344 e allele eyp Il B2 

polymorphism is strongly associated with increase in L V size (White et ai, 

1998, Kupari et ai, 1998) and decreased baroreceptor sensitivity and could be 

associated with MI in susceptible individuals. Analysis of 2007 participants in 

the MONICA (Monitoring Trends and Determinants of Cardiovascular 

Disease Study), however, did not find any significant effects of this 

polymorphism on serum aldosterone, BP or cardiac size and function 

(Shunkert et ai, 1999). 

4.6 11 ~-Hydroxysteroid Dehydrogenase 2 Polymorphism: 

Decreased activity of IljJ-HSD2, the enzyme that converts cortisol to 

cortisone may be associated with salt sensitivity, hypertension and the 

metabolic syndrome (Sharma et ai, 2000). Although a recent study found an 

association of the 11BHSD2 G534A marker with end-stage renal disease 

(Smolenicka et ai, 1998). Brand et ai, (1998) studied a population of 347 

hypertensive sibling pairs and found no association with hypertension in 
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Caucasians. She concluded that this gene may be relevant in other 

populations. The frequency of the substitution has been reported to be about 

5% (Brand et ai, 1998). In this study we investigated the prevalence of 

llBHSD2 G534A gene polymorphism in premature MI and found no 

association since the genotype frequencies were similar in cases and controls. 

The association was also not significant when comparing subgroups including 

hypertensive pro bands. 

4.7 Transforming Growth Factor-~ Polymorphism: 

The analysis reveals that the !le 263 polymorphism is infrequent in the Indian 

population. To test the validity of our technique we used known positive 

mutant homozygotes as controls from Benjamin Franklin University and were 

able to reproduce the findings. Interestingly we identified no individuals 

homozygous for the rare allele of the gene variants, although this was expected 

with the fewer numbers included in the present study. Given the low 

frequency of the lie 263 variant it is not possible to make any inferences about 

the genetic control of serum levels of TGF-fJl in this cohort. Whether other 

polymorphisms in the promoter region account for this and so predispose to 

cardiovascular pathology is not clear. 

Although increased serum levels of TGF-fJ have been reported in diabetes 

(Pfeiffer et ai, 1996) and atherosclerotic disease (Blann et aI, 1996) studies of 

five polymorphisms in the TGF-fJl gene have not shown any association with 

CHD or hypertension (Syrris et aI, 1998). Further studies have reported not 

only elevated circulating levels of this cytokine in coronary artery disease 

(Wong et aI, 1997, Tashiro et aI, 1997) but also increased expression in heart 

muscle after MI (Sharma et aI, 1999, Fukumoto et aI, 1998, Sun et aI, 1998) 

and on restenotic vascular lesions (O'Brien et ai, 1996). Furthermore, there is 

evidence that many cytokines are upregulated in the intima and there is 

increased responsivity to PDGF and TGF-fJ in medial smooth muscle cells in 
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diabetic patients. These changes lead to proliferation and migration of smooth 

muscle cells into the intima and further accelerate the formation of the 

atherosclerotic lesion (Miyagawa et ai, 1999). 

Seven polymorphisms in the TGF-fJ] gene have been reported in the ECTIM 

study (Cambien et ai, 1996). One of these polymorphisms, the presence of the 

Arl5 allele, was associated with higher blood pressure and a family history of 

hypertension in the normotensive controls compared with individuals with the 

Pro25 allele. The Arl5 allele has also been associated with increased TGF-fJj, 

production and fibrosis. 

4.8 Methylenetetrahydrofolate Reductase Polymorphism: 

This is the first study to report homocysteine levels in relation to MTHFR 

genotype in young Indian MI survivors. An abstract by Kotze et al (1999) has 

shown that the MTHFR gene polymorphisms were more common in Caucasian 

than in Africans in South Africa but she did not report findings in Indians. 

Although raised homocysteine levels were common, our results could not 

confirm that the TT genotype in the MTHFR gene is a strong predictor of 

raised plasma homocysteine since the genotype was infrequent in this cohort. 

The positive results from retrospective studies may reflect a consistent bias 

resulting from measuring homocysteine after the acute vascular events. 

Although the association between homocysteine and atherothrombotic events 

appears to be independent and dose-related it remains to be established 

whether it is causal and modifiable. Due to the close coupling between folate 

metabolism and the methylation of homocysteine to methionine, the plasma 

level of homocysteine is strongly related to serum and red cell folate (Jacques 

et ai, 1996). Because blood levels of folate and B 12 are related inversely to 

homocysteine, nutritional deficiency leads to an increased risk of 

hyperhomocysteinaemia. Although we did not measure serum folate and B 12 
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levels in our patients their nutritional status appeared satisfactory and we did 

not suspect this as a cause of raised homocysteine levels in our patients. 

The mechanism by which homocysteine may cause vascular damage is 

unclear. There is experimental evidence that homocysteine promotes 

atherogenesis by facilitating oxidative arterial injury, so damaging the vascular 

matrix and enhancing vascular smooth muscle cell proliferation. It may also 

promote thromboembolic disease by causing oxidative damage to the 

endothelial lining leading to impaired vasomotion and procoagulant effects 

(Hankey et aI, 1999). 

4.8.1 Homocysteine and CHD: 

An elevated plasma homocysteine is reported to be a risk factor for accelerated 

CHD. As pointed out earlier, the effects of high plasma homocysteine levels 

has not been shown to be mediated by the known coronary risk factors 

(Tonstad, 1997). These findings are in contrast to a study in an Indian 

population with relatively low cholesterol levels in which raised fasting 

homocysteine was an independent risk factor for CHD (Chambers et aI, 1999). 

In our study there was no correlation between homocysteine levels and 

myocardial infarction. Our findings are in keeping with Chacko (1998) who 

studied 56 patients with CHD and found that plasma homocysteine was not a 

major risk factor in the Indian population. 

Recently, a large study of 2453 male Caucasians showed that there was indeed 

no association between MTHFR C677T gene polymorphism and the risk of 

CHD and myocardial infarction (Gardemann et aI, 1999). Carriers of the TT 

genotype with high-risk profiles, however, had higher CHD scores than 

individuals with one allele. 
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4.8.2 MTHFR and Premature CHD: 

Tsai et aI, (1996) studied a patient population of premature CHD, similar to 

our study and showed that 39% of their patients with CHD had elevated 

plasma homocysteine. However, although the TT genotype was more common 

(22.8%) in individuals with raised homocysteine (10.7%) the frequency of the 

TT genotype was not increased in patients with premature CHD (10.6%) as 

compared to controls (14.6%). This finding is agreement with recent 

publications (Ma et aI, 1996, van Bockxmeer et aI, 1997, Brugada et aI, 1997, 

Christens en et aI, 1997, Verhoef et aI, 1997, Gardemann et aI, 1998). Thus, 

data from several studies suggest that the TT genotype is not an important risk 

factor for CHD (Verhoef et aI, 1997). It appears that plasma homocysteine 

may be an innocent bystander or marker rather than be playing a causative role 

in the atherosclerotic process in the vessel wall. Alternatively, the TT 

genotype may be a marker of risk in individuals with low folate levels. 

4.8.3 Limitations to the Study: 

Whereas some investigators have identified the TT genotype as a risk factor 

for CHD others have failed to identify a link between this genotype and 

accelerated atherosclerosis. These discrepancies might be due to differences 

in the study design. This study failed to detect an association of MTHFR gene 

polymorphism with non-fatal myocardial infarction. It should be noted that 

probands constituted survivors of myocardial infarction and not patients with 

fatal outcome of this disease. This bias in selection could explain, in part, 

some of the discrepancy in the findings. It is also not known to what extent 

other gene variations, also postulated to be associated with CHD, might 

interfere with the link between the MTHFR 677T gene polymorphism and the 

risk of myocardial infarction. Potential candidates are polymorphisms of the 

RAS genes, as well as genes involved in lipid and glucose metabolism, since 
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diabetes mellitus was clearly a major contributor to CHD risk in this cohort. 

4.9 G-Protein Polymorphism: 

This study reveals no association between GNp3 (825T) polymorphism and 

premature MI. Although Siffert et aI, (1998) demonstrated a significant 

association of this polymorphism in hypertensive patients a large scale study 

in 681 hypertensive and 564 M! subjects failed to show any association with 

hypertension or M! (Brand et aI, 1999). In the present study the 825T allele 

frequencies were 0.73 in both probands and controls. Because increased 

NHE-l activity is associated with L VB and susceptibility to nephropathy in 

insulin-dependent diabetes, (Siffert et aI, 1996) we also analysed the diabetic 

subgroup separately but found no increase in the frequency of 825T allele 

here. 

There is also new evidence that the G-protein P3 subunit 825T allele is 

associated with high BM! in male Caucasians (Sharma et aI, 2000). Recently, 

Naber et aI, (1998) investigated GNf33 C825T polymorphism in 617 patients 

undergoing coronary angiography. The 825T allele was associated with a two­

fold increase in the risk of CHD and MI. 

4.10 Pulse Wave Velocity: 

Although close correlations have been shown between PWV and 

atherosclerosis in elderly subjects (van Popele et aI, 1998) no study has looked 

at PWV in younger patients « 5 5 yr), so removing the effects of ageing with 

established CHD. Nor has any study attempted to correlate PWV with risk 

factors and gene polymorphism. In this study PWV was measured in all 

fasting subjects (at trough level for all cardiovascular medications) and 

correlated with the risk factors, including echo cardiographic parameters and 
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genetic patterns. 

4.10.1 PWV and Gene Polymorphisms: 

In this study polymorphisms of the RAS genes were not related to the 

development of aortic stiffness. Benetos et al (1995) showed no influence of 

ACE gene polymorphism on aortic stiffness but Castellano et aI, (1995) 

showed that medial-intimal thickness of the carotid artery is associated with 

the presence of the D allele. Significant differences in aortic stiffness have 

been found among the AT} genotypes: the presence of the C allele of the 

A 1166-C polymorphism was associated with increased aortic stiffness in 

hypertensive but not normotensive patients. (Benetos et aI, 1995). In a study 

of other RAS genes Pojoga et al (1998) analysed two polymorphisms of the 

aldosterone synthase (CYP 11 B2) gene and found that the presence of the -

344C allele was associated with elevated levels of plasma aldosterone and 

PWV in patients with essential hypertension. 

4.l0.2 Pulse Wave Velocity and Risk Factors: 

In keeping with previous studies (Chanudet et ai, 1989), this study showed that 

age, blood pressure and diabetes were the main determinants of central PWV 

(as measured in the aorta). We also found significant correlations between 

PWV and WIH ratio in keeping with the effect of BMI (Toto-Moukouo et aI, 

1986) and anthropometric measurements (London et aI, 1995) on PWV. 

Surprisingly there was no correlation between PWV and smoking although 

both parameters were independently correlated with micro albuminuria. Active 

smoking deteriorates elastic properties of the human aorta (Nakamoto et aI, 

1989). Numerous studies show that smoking causes a significant increase in 

PWV in both medium-sized and large arteries (Failla et ai, 1997, Levenson et 
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aI, 1987). Our results could be related to the fact that although 80% of 

probands smoked, the smoking consumption was not quantified and PWV was 

not correlated with the degree of exposure to nicotine. 

4.10.3 PWV and Diabetes: 

Studies in Type II diabetes suggest that increased PWV results from an 

underlying diffuse atherosclerotic process, often not detectable clinically, 

(Lehmann et ai, 1992) and related to the duration of diabetes (Tanokuchi, 

1995). Significant alterations have been seen even in younger subjects and 

relate to glycaemic control (Paillole et ai, 1989, Asmar et aI, 1995). 

Significant correlations have also been shown between PWV and the presence 

of microalbuminuria or proteinuria in diabetic patients, suggesting that PWV 

may be a reliable index of vasculopathy in these patients (Takegoshi et aI, 

1991) PWV may be used to detect siblings of diabetic patients who are at high 

risk for CHD (Hopkins et ai, 1996). 

4.10.4 PWV and CHD: 

In the early stages of atheroma infiltration of LDL-C into the intima leads to 

an increase in aortic distensibility. In patients with FH, however, no 

significant correlation has been found between PWV and serum cholesterol 

(A volio et ai, 1985). With advancing age, the 'atherosis' develops a sclerotic 

component in the vessel wall leading to a decrease in aortic distensibility 

(Lehmann et ai, 1992,1995). 

Increased aortic PWV in patients with CHD was first demonstrated by 

Simonson et al (1960) when they showed a mean difference of 1.68 m/s 

between patients with and without CHD. It has been suggested that 

aortic/carotid distensibility might be used as an indicator to distinguish 

between patients with and without CHD (Dart et ai, 1991, Barenbrock et ai, 
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1995). In a study similar to ours, the relationship between arterial compliance 

and risk factors was examined in a group of newly diagnosed patients with 

CHD and controls matched for age, sex, smoking status and serum cholesterol 

levels. The beta stiffness index was significantly higher in the CHD group 

(Cameron et ai, 1995). They found that there was no significant correlation 

shown between compliance and lipid levels, but there was a correlation 

between PWV and microalbuminuria (p = 0.003). 

4.10.5 Limitations of the Study: 

This study showed strong correlations between PWV and major risk factors 

reflecting the vasculopathy associated with this parameter. Although PWV is 

strongly correlated with direct measurements of arterial distensibility and is an 

excellent surrogate evaluation of arterial stiffness, there are limitations in this 

technique: the critical factors are the precise measurements of pulse transit 

time and the length of the vascular segment. The surface vascular length is an 

approximation that might underestimate the true vascular length, particularly 

in the elderly with unfolded aortas. Our patients were young, so that this was 

not a problem and an on-line pulse wave recording by a validated method 

permitted precise measurement of transit time (Asmar et ai, 1995). However, 

our control subjects were slightly older and this may explain the absence of 

any difference between pro bands and controls since PWV increases with age. 

Furthermore, the effects of smoking on PWV need to be re-evaluated taking 

into account the degree of nicotine exposure. 

4.11 Allelic Association Studies: 

Until recently, no study has systematically evaluated genetic polymorphisms 

of all components of the RAS. Tiret et al (1994) was the first to report a 

synergistic effect of angiotensin converting enzyme and AT1 receptor gene 

Discussion 



89 

polymorphism on the risk of myocardial infarction. He found a significant 

interaction between these polymorphisms. The odds ratio for myocardial 

infarction associated with the angiotensin converting enzyme DD genotype 

was 1.05 without AT] receptor C allele, 1.52 in AC heterozygotes and 3.95 in 

CC homozygotes (test for trend p < 0.02). This interaction was even stronger 

in low risk (Apo B < 1.25 g!L and BMI < 26 kg.m
2

) subjects. 

Three different genotypes were analyzed in the CORGENE Study 

(Jeunemaitre et ai, 1997): ACE liD, Agt M235T and AT] receptor A 11 66C, but 

no significant association was observed between these polymorphisms and the 

MI (n = 156) and non-MI (n = 307) subjects. Only the Agt 235T allele was 

associated with the extent of the coronary lesions or angiographic score. 

Similarly Biggart et al (1998) analysed ACE, Apo E and TGF-fJ genes ill 

patients with early onset of CHD and found no association. 

More recently Gardemann et al (1998) re-evaluated the evidence for ACEIAT! 

receptor synergism by studying 2244 Caucasians with angiographically­

defined CHD. He found no association for a synergistic effect in patients with 

MI or coronary heart disease. In another case control study Ludwig et al 

(1997) searched for association between the A CE liD and angiotensinogen 

M235T polymorphisms in two different population samples. He found that 

within selected groups in the ARIC sample, ACE D and Agt 235T alleles were 

associated with CHD and MI and that there was a synergistic interaction 

between the two alleles. Comparable tests in the Framingham sample, 

however, failed to support an association of these markers with CHD. 

Another study which searched for interaction between the A CE liD and the 

AT! receptor locus was reported by Berge et ai, (1997) in 235 MI survivors. 

This study found no such interaction but a higher frequency of CC 

homozygotes was found in males in the low risk group. Thus, only few 

studies have examined the potential interaction at the RAS genetic loci and 

these have shown that the association is neither strong nor consistent, and 

probably involves a complex interaction among risk factors and genotypes. 
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CHAPTERS 

CONCLUSION 

5.1 Established Risk Factors and Premature MI: 

5.1.1 Obesity as a Risk Factor: 

Weight gain increases the risks of type 2 DM, premature atherosclerosis and 

hypertension. There is a linear association between weight gain and CHD 

risk: for every 10% increase in weight CHD mortality increases by 17% 

(Rosengren et aI, 1999). 

In this study we took the cut-off point for increased risk as BMI > 25 kg/m2 

which currently defines overweight in Caucasians. At a recent obesity 

symposium (Sharma et aI, 2000) it was pointed out that obesity-associated co­

morbidity may increase rapidly in non-Caucasians when BMI exceeds 18 

g/m2. The cut-off point in our Indian population should therefore be lower, 

probably around 22-23 kg/m2. Using this level at least 80% of our probands 

were classified overweight, as opposed to 66% of the control population (p < 

0.05). 

5.1.2 Dyslipidaemia as a Risk Factor: 

Hypercholesterolaemia is a major risk factor for the development of CHD. 

The interaction between lipoproteins and the RAS may explain why ACE 

inhibitors attenuate the hypercholesterolaemia-induced atherosclerosis in 

various animal models (Sugano et ai, 1996, Chobanian et aI, 1990). Since Ang 

11 exerts its vasoconstrictive and proliferative effects through activation of AT] 

receptors we looked for interaction between hypercholesterolaemia and AT] 

receptor gene polymorphism. 

Although there was no correlation between cholesterol levels (TC and LDL-C) 

and the risk of MI, (probably because patients received treatment), the 
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atherogenic lipoprotein phenotype was especially prominent in probands and 

was characterized by low HDL-C and high triglyceride levels. 

Epidemiologic data indicate a strong inverse correlation between plasma 

HDL-C and CHD (Gordon, 1977, Rhoads et aI, 1976). In fact the most 

frequent lipid abnormality in patients with CHD before the age of 60 years is a 

low HDL-C level. In experimental studies HDL-C administration inhibits the 

development of fatty streaks and induces regression of atherosclerotic lesions 

in cholesterol-fed rabbits (Badimon et aI, 1989,1990). Although the generally 

accepted mechanism for this effect is reversed cholesterol transport (Stein et 

aI, 1997) there is now evidence showing that HDL-C can reduce the 

atherogenicity of LDL-C by inhibiting oxidative modification (Mackness et aI, 

1995). Further evidence of a more direct anti-atherogenic effect ofHDL-C are 

its ability to improve endothelial dysfunction (Cockerill et aI, 1995) inhibit 

platelet aggression (Nofer et aI, 1998) and cholesterol accumulation in foam 

cells (Vifials et aI, 1997). 

5.1.3 Smoking as a Risk Factor: 

In a field survey smoking (> 10 cigarettes per day) was found to be a major 

risk factor for CHD in South African Indians (Seedat et aI, 1999). It was 

present in 40.8% males and 5,7% females. A substantially higher proportion 

of females (33%) smoked fewer cigarettes (> 1 a day). 

Taken together the analysis of major modifiable risk factors, i.e. smoking, 

hypercholesterolaemia, hypertension and diabetes, showed that 68% of the 

Indian population had at least one major risk factor for CHD. Hypertension 

and smoking were the most frequent combination in men, while in women 

hypertension and diabetes frequently occurred together. It is therefore not 

surprising that 82% of probands were smokers in our cohort of premature MI. 
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5.1.4 Insulin as the Intermediate Phenotype: 

In order to establish whether a candidate gene is truly associated with the 

disease the intermediate phenotype i.e. gene product must be shown to be 

related to the genotype. Identification of a key intermediate phenotype for 

diabetes, insulin levels, revealed an association with the metabolic syndrome. 

Better determination of the phenotype in future studies may help in clarifying 

the association of genotype with disease e.g. urinary aldosterone and cortisol 

levels in relation to aldosterone synthase and/or 11 {J-HSD, and plasma renin 

and A CE levels in relation to the RAS genes. This was not performed in this 

study because the majority of patients were receiving ACE inhibitor and beta­

blocker therapy. 

5.2 Molecular Genetics in the Understanding of CHD: 

5.2.1 Gene Polymorphisms in the Promoter Region: 

This study was unable to show that polymorphisms in the RAS genes were 

related to early onset MI in Indians. Since mutations in the coding regions of 

the candidate genes that we studied were uncommon, attention was turned to 

polymorphism in the regulatory (promoter) regions of these genes. Such DNA 

variation may alter gene transcription and is a potential basis for clinically 

important gene-environment interactions. 

Therefore, polymorphisms in the promoter region of the angiotensinogen gene 

and the aldosterone synthase genes were examined and again no genetic 

susceptibility to MI was found. Other newly discovered polymorphisms in the 

promoter regions include genes for the LDL-C receptor, lipoprotein lipase and 

PAl -1, all of which are associated with MI at a young age. These genetic 

components may contribute to the dysregulated extracellular matrix 

metabolism that is so characteristic of atherosclerosis and plaque rupture. 

Common polymorphisms occurring in the promoter region of these candidate 

Conclusion 



93 

genes could account for the substantial differences in the metabolism of 

triglyceride-rich lipoproteins and the ensuing risk of CHD. There is also 

evidence that fatty acids control triglyceride metabolism by modulating the 

transcription of the lipoprotein lipase and Apo C-111 genes through activation 

of peroxisome proliferator-activated receptor (PP AR) gamma (Hamsten, 

1996). 

5.2.2 Genetics and Obesity: 

Identification of genetic determinants of complex disorders such as obesity, 

hypertension and atherosclerosis is a daunting task. In this study we did not 

specifically examine obesity-related genes. However, it appears that the RAS 

is involved in the development of obesity-related hypertension since there is 

convincing evidence (Sharma et ai, 2000) that Ang 11 plays an important role 

in the development of adipose tissue by virtue of its ability to recruit adipose 

precursor cells. 

5.2.3 The Putative Gene for CHD: 

A clinical consequence of genotype-specific regulation of biological 

mechanisms would be that certain individuals are more prone to 

atherosclerosis when exposed to environmental risk factors. Thus, knowledge 

of an individual genotype might be predictive of future atherosclerotic risk. 

Although unidentified, genetic loci probably underlie the variable 

susceptibility to environmental risk factors for CHD in our subjects. 

Individuals identified by genotype may be monitored with special care and 

given specific advice on lifestyle changes geared to their genotype. 

Our study, however, does not show any influence of genotype patterns of the 

polymorphisms we studied on the risk of premature MI. Since gene pools, 

lifestyles and gene-environment interactions differ between populations one 
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cannot assume that a given genetic trait will have similar impact in risk in all 

populations. Recent reports of molecular genetic analyses using allelic 

association studies have suggested that genes involved in lipoprotein 

metabolism and fibrinolytic pathways are also associated with coronary 

atherosclerosis or MI. 

Mild to moderate hypertriglyceridaemia, generally accompanied by low levels 

of HDL-C was present in a substantial number of case-patients with premature 

MI. The molecular genetic pathology of this condition is still ill defined. 

Potential candidate genes include the Apo-A-l , C-III, A-IV cluster and 

lipoprotein lipase which need to be studied in this high risk group. In contrast 

Lp(a) might be a monogenic risk factor for CHD, accounting for a significant 

portion of the familial predisposition to CHD that cannot be explained by other 

established risk factors in low risk groups. 

The strong family history of MI and biochemical parameters suggests that the 

low levels of HDL-C and raised triglycerides may be occurring against a 

background of another major risk factor. This is likely to be a polymorphic 

gene that is directly involved in HDL-C metabolism. Examples of such 

biallelic genes include lipoprotein-lipase, hepatic lipase and cholesterol ester 

transfer protein, which need to be evaluated in future studies in this population 

(Nordestgaard et ai, 1997). 
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CHAPTER 6 

SUMMARY AND CLINICAL IMPLICATIONS 

6.1 Summary: 

When familial clustering of coronary heart disease was first recognised in the 

1950's it was noted to be especially prominent in families of patients with 

early-onset disease. In most cases the risk associated with a positive family 

history could not be attributed to familial aggregation of established risk 

factors. Until recently little was known of the genetic basis of underlying 

individual susceptibility to coronary heart disease. Since coronary heart 

disease and essential hypertension often overlap genes involved in blood 

pressure regulation became logical candidates for studying susceptibility to 

CHD. To delineate the genetics of this common and multifactorial disease is 

extremely difficult because a host of genes are likely to be contributory 

factors. Furthermore, it is likely that clinical disease results from interactions 

between heritable and environmental factors. 

6.1.1 Clinical Characteristics 

Established major risk factors for CHD could be identified in the present study 

sample. These included lipid parameters, diabetes mellitus, cigarette smoking 

and family history. In addition, coronary prone dietary and sedentary 

behavioural patterns as well as lower educational status were contributory 

factors. Our findings are consistent with those of Hughes et al (1990) who 

found that the higher mortality from CHD to be associated with lower HDL-C 

and higher rates ofDM in this group. 

Markers of insulin resistance: hyperinsulinaemia, increased waist, W IH ratio, 

atherogenic lipoprotein phenotype, diabetes and family history suggested that 
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some degree of heritability could have predisposed to CHD in the setting of 

risk factors; in this respect genetic variations may have played a significant 

role in pathogenesis. 

6.1.2 Genetic Analysis: 

Analysis of eight candidate gene polymorphisms for CHD showed no 

differences in genotype distribution or allele frequencies in case-patients and 

normal control subjects. Both case-patients and controls showed no deviation 

of genotype distribution from the Hardy-Weinberg equilibrium. The genotype 

frequencies for these eight polymorphisms are different from those described 

in Western series, emphasizing the importance of choosing samples from 

ethnically homogeneous populations in studies of common genetic variations 

(Hamsten, 1996). 

There are very few studies that have evaluated potential interaction of the 

angiotensin converting enzyme gene with other RAS gene polymorphisms on 

the risk of MI. There was also no significant interaction between these alleles 

and those at any of the other loci studied for the presence of CHD. There was 

no relationship of risk factors to the candidate genes studied, nor was there a 

significant association of any of the genetic markers with CHD. 

6.1.3 Newer risk factors: 

In this study Lp(a) and homocysteine levels were elevated in the case-patients 

but the differences were not significant. Larger cohorts are needed to show 

that these risk factors are markers of premature atherosclerosis in this 

population. 

6.2 Conclusion: 
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In conclusion the present study does not support the relevance of the candidate 

gene loci studied to myocardial infarction in young Indian MI survivors. It is 

likely that complex diseases such as CHD are usually not controlled by a 

single disease locus but often involve multiple genetic and/or environmental 

factors that are subject to specific gene environment and gene-gene 

interactions. 

To date, no study has assessed the cumulative effects of several candidate loci 

simultaneously. In the present study polymorphism of five candidate genes of 

the RAS was examined. There was no evidence of any statistically significant 

association between gene cluster polymorphism and MI. There was also no 

association between these polymorphic sites and lipid levels in this cohort of 

predominantly male, young adult survivors. 

The findings of this study therefore reinforce the major contribution of 

behavioural and environmental risk factors in the causation of CHD in this 

ethnic group. The findings do not exclude the role of predisposing genetic 

factors in this group. Indeed diabetes mellitus was a major, probably heritable, 

risk factor and therefore studies of adequate power, designed to investigate 

candidate genes regulating glucose, lipid and tissue metabolism are strongly 

indicated. Potential candidate genes are lipoprotein lipase, paraoxonase and 

PPARy. These gene variations may account for the dyslipidaemia associated 

with insulin resistance and the predisposition to the atherogenic lipoprotein 

phenotype so characteristic of this cohort (Aubo et aI, 2000). 

Summary and clinical implications 



Harmful Factors 

• Low activity 
• High energy intake 
• High fat intake 

Abdominal Obesity 

• Insulin Resistance: low HDL-C & 
raised triglycerides. 

• Diabetes mellitus. 

CHD 

• Low vegetable intake 
• Increased 

psychological stress 

• Smoking 

Protective Factors 

• High activity 
• Low energy intake 
• Low fat intake 
• High vegetable intake 

98 

Genetic 
Predisposition 

• Elevated Lp(a) 
• Elevated 

Homocysteine 
• Predisposition 

to glucose 
intolerance 

• Hypertension 

• Salt 
• Stress 

Fig 29: Role of Genetic Predisposition in Relation to Risk Factors in 
Atherosclerosis 

Summary and clinical implications 



99 

REFERENCES 

Agerholm-Larsen B, Nordestgaard BG, Stiffensen R, Sorensen TIA, Jensen G, 
Tybjaerg-Hansen A. Angiotensin converting enzyme gene polymorphism: ischaemic 
heart disease and longevity in 10,150 individuals. A case-referent and retrospective 
cohort study based on the Copenhagen City Heart Study. Circulation 1997; 95: 2358-
2367. 

Agerholm-Larsen B,Nordestgaard BG, Tybjaerg-Hansen A. ACE gene 
polymorphism in cardiovascular disease: meta-analysis of small and large studies in 
whites. Arterioscler Thromb Vase Bioi 2000; 20(2): 484-492. 

Ailhaud G. Molecular mechanisms of adipocyte differential. J Endocrinol 1997; 155: 
201-202. 

Akimova EV. Prostacylin and thromboxane A2 levels in children and adolescents 
with a predisposition to coronary artery disease. A family study of coronary artery 
disease 1994; 5(9): 761-765. 

Alderberth AM, Rosengren A, Wilhemsen L. Diabetes and long term risk of 
mortality from coronary and other disease in middle-aged Swedish men. A general 
population study. Diabetes Care 1998; 21: 539-545. 

Alderman MH, Madhavan SH, Ooi WL, Cohen H, Sealey JE, Laragh rn. 
Association of the renin-sodium profile with the risk of myocardial infarction in 
patients with hypertension. N Engl J Med 1991; 324(16): 1098-1104. 

Amar J, Chamontin B, Pelissier M, Garelli I, Salvador M. Influence of glucose 
metabolism on nycthemeral blood pressure variability in hypertensives with an 
elevated waist-hip ratio. A link with arterial distensibility. Am J Hypertens 1995; 8: 
426-428. 

Arbustini E, Grasso M, Fasani R, et al.. Angiotensin converting enzyme (ACE) gene 
deletion allele is independently and strongly associated with coronary atherosclerosis 
and myocardial infarction. Br Heart J 1995; 74(6): 584-591. 

Arnesen E, Refsum H, Bonaa KH, et al. Serum total homocysteine and coronary 
heart diseases. Int J Epidemiol 1995; 24: 704-709. 

Asmar R, Benetos A, Topouchian J, et al. Assessment of arterial distensibility by 
automatic pulse wave velocity measurement: validation and clinical application study. 
Hypertension 1995; 26: 485- 490. 

Aubert J, Darimont C, Safonova I, et al. Close correlation of intra-abdominal fat 



100 

accumulation to hypertension in obese women. Hypertension 1990; 16: 484-490. 

Aubo C, Senti M, Marrugat J, et al. Risk of myocardial infarction associated with 
GlaJArg 192 polymorphism in the human paraoxanase gene and diabetes mellitus: the 
Regicor Investigators. Eur Heart J 2000; 21: 33-38. 

Avolio A, O'Rourke M, Clyde K, Simmons L. Change of arterial distensibility with 
age in subjects with familial hypercholesterolaemia. Aust NZ J Med 1985; (ll): 56. 

Badenhop RP, Wang XI, Wiloken DE. Angiotensin converting enzymes genotype in 
children and coronary events in their grandparents. Circulation 1995; 92: 2796-2799. 

Badimon JJ, Badimon L, Galvez A, Dische R, Fuster V. High density lipoprotein 
plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab Invest 
1989; 60(3): 455-461. 

Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high 
density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest. 1990; 
85(4): 1234-41. 

Balarajan R. Ethnic differences in mortality from ischaemic heart disease and 
cerebrovascular disease in England and Wales. Br Med J 1991; 302: 560-564. 

Barenbrock M, Spieker C, Kerber S, et al. Different effects of hypertension, 
atherosclerosis and hyperlipidaemia in arterial distensibility. J Hypertens 1995; 13: 
1712-1717. 

Baumgart D, Naber C, Heusch G, Siffert W, Erbel R. Genetic determination of the 
response to Lradrenogenic stimulation in human coronary arteries. Eur Heart J 1998; 
19: 279 (abstr). 

Becker RHA, Weimer G, Linz W. Preservation of endothelial function by ramipril in 
rabbits on a long-term atherogenic diet. J Cardiovasc Pharmol 1991; 18(2): SllO _ 
S115. 

Beilen E, Fagard R, Amery A. Inheritance of heart structure and physical exercise 
capacity: a study of left ventricular structure and exercise capacity in 7-year old twins. 
EuroHeartJ 1990; 11: 7-16. 

Bell L, Madri JA. Influence of the angiotensin system on endothelial and smooth 
muscle cell migration. Am J Patho11990; 137: 7-12. 

Benetos A, Topouchian J, Ricard S, et al .. Influence of angiotensin II type I receptor 
polymorphism on aortic stiffness in never-treated hypertensive patients. 
Hypertension 1995; 26: 44-47. 



101 

Beohar N, Damaraju S, Prather A. Angiotensin I converting enzyme genotype DD is 
a risk factor for coronary artery disease. J Investigative Med 1995; 43(3): 275-280. 

Berge KE, Berg K. Cardiovascular risk factors in people with different genotypes in 
the insertion/deletion (lID) polymorphism at the locus for angiotensin converting 
enzymes. Clin Genetics 1997; 52(6): 422-426. 

Bhatnagar D, Anand IS, Durrington PN, et al. Coronary risk factors in people from 
the Indian subcontinent living in West London and their siblings in India. Lancet 
1995; 345: 405-409. 

Biggart S, Chin D, Fauchon M, et al. Association of gene polymorphisms in the early 
angiotensin converting enzymes, Apo E and transforming growth factor beta genes 
with early onset ischaemic heart disease. Clin Cardiol 1998; 21 (11): 831-836. 

Blacher J, Demuth K, Guerin AP, Safar ME, Moatti N, London GM. Influence of 
biochemical alterations on arterial stiffness in patients with end-stage renal disease. 
Arterioscl Thromb Vasc BioI 1998; 18: 535-541. 

Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME, London GM. Carotid 
arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage 
renal disease. Hypertension 1998; 32: 570-574. 

Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as 
a risk marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 
33(5): 1111-7. 

Blann AD, Wang JM, Wilson PB, Kumar S. Serum levels of transforming growth 
factor are increased in atherosclerosis. Atherosclerosis 1996; 120 (1-2): 221-226. 

Blom HJ, van der Molen EF. Pathobiochemical implications of hyper-
homocysteinaemia. Fibrinolysis 1991; 8 (2): 86-87. 

Bobik A, Agrotis A, Kanellakis P, et al. Distinct patterns of transforming growth 
factor-~eta isoform, and receptor expression in human atherosclerosis lesions. 
Circulation 1999; 99: 2883-2891. 

Bohn M, Berge KE, Bakken A, Erikssen J, Berg K. Insertion/deletion (lID) 
polymorphism at the locus for angiotensin I-converting enzyme and myocardial 
infarction. Clin Genet. 1993; 44(6): 292-7. 

Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin 11 type I receptor 
polymorphisms in human essential hypertension. Hypertension 1994; 24(1): 63-69. 



102 

Border WA, Noble NA. Interactions of transforming growth factor-~ and angiotensin 
II in renal fibrosis. Hypertension 1989; 3(2): 181-188. 

Border W A, Noble NA. Transforming growth factor-~ in tissue fibrosis. New Engl J 
Med 1994; 331: 1286-1292. 

Bostom AG, Cupples LA, Jenner JL, et al. Elevated plasma lipoprotein (a) and 
coronary heart disease in men aged 55 years and younger: a prospective study. Am J 
Med Assoc 1996; 276: 544-548. 

Bouthier JD, De Luca N, Safar ME, Simon AC. Cardiac hypertrophy and arterial 
distensibility in essential hypertension. Am Hear J 1985; 109: 1345-1352. 

Boutouyrie P, Laurent S, Girerd X, et al. Common carotid artery stiffness and 
patterns ofLVH in hypertensive patients. Hypertension 1995; 25: 651-659. 

Brand E, Chatelain N, Mulatero P, et al. Structural analysis and evaluation of the 
aldosterone synthase gene in hypertension. Hypertension 1998; 32(2): 198-204. 

Brand E, Herrmann SM, Nicaud V, et al. The 825 CfT polymorphism of the G­
protein subunit ~3 is not related to hypertension. Hypertension 1999; 33: 1175-1178. 

Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention 
of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell 
Cardio11993; 25: 563-575. 

Brown MJ, Clayton D. Linkage of the angiotensin gene to essential hypertension. N 
Engl J Med 1994; 331: 1096-1097. 

Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. 
Science 1986; 232: 34-47. 

Brugada R, Marian AJ. A common mutation in methylenetetrahydrofolate reductase 
gene is not a major risk of coronary artery disease or myocardial infarction. 
Atherosclerosis 1997; 128(1): 107-112. 

Cambien F, Poirer 0, Lecerf L, et al. Deletion polymorphism in the gene for 
angiotensin-converting enzyme is a potent risk factor for myocardial infarction. 
Nature 1992; 359: 641-644. 

Cambien F, Ricard S, Troesch A, et al. Polymorphisms of the transforming growth 
factor-~eta-1 gene in relation to myocardial infarction and blood pressure. The Etude 
Cas-Tenoim de l' Infarctus du Myocarde (ECTIM) study. Hypertension 1996; 28(5): 
881-887. 



103 

Cameron ID, Jennings GL, Dart AM. The relationship between arterial compliance, 
age, blood pressure and serum lipid levels. J Hypertens 1995; 13: 1718-1723. 

Campbell SE, Katwa Le. Angiotensin II stimulated expression of transforming 
growth factor-~eta-l in cardiac fibroblasts and myofibroblasts. J Molec Cell Cardiol 
1997; 29(7): 1947-1958. 

Casale PN, Devereux RB, Kligfield P, et al. Electrocardiographic detection of left 
ventricular hypertrophy: development and prospective validation of improved criteria. 
J Am ColI Cardioll985; 6: 572-580. 

Castellano M, Muiesan ML, Rizzoni D, et al. Angiotensin converting enzyme liD 
polymorphism and arterial wall thickness in a general population. The Vobamo 
Study Circulation 1995; 91: 2721-2724. 

Caulfield M, Lavender P, Farrall M, et al. Linkage of the angiotensinogen gene to 
essential hypertension. N Engl J Med. 1994 Jun 9; 330(23): 1629-33. 

Celermajer DS, Sorensen KE, Georgakopoulos D, et al. Cigarette smoking is 
associated with a dose-dependent and potentially reversible impairment of 
endothelium dependent dilation in young healthy adults. Circulation 1993; 88: 2149-
2155. 

Chacko KA. Plasma homocysteine levels in patients with coronary heart disease. 
Indian Heart J 1998; 50(3); 295-299. 

Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS. Demonstration of 
rapid onset vascular endothelial dysfunction after hyperhomocystinaemia. 
Circulation 1999; 99: 1156-1160. 

Chambers JC, Obeid OA, Refsum H, et al. Plasma homocysteine concentrations and 
risk of coronary heart disease in UK Indian Asian and European men. Lancet. 2000 
Feb 12; 355(9203): 523-7. 

Chanudet X, Bauduceau B, Girerd X, Clement R, Celton H, Larroque P. The 
influence of anthropometric factors, hemorheologic parameters and the level of 
arterial pressure on pulse wave velocity. J Mal Vasc. 1989; 14(1): 15-8. French. 

Chen W, Strinivasan SR, Elkasabany A, Berenson GS. The association of 
cardiovascular risk factor clustering related to insulin resistance syndrome (Syndrome 
X) between young parents and their offspring: the Bogalusa Heart StUdy. 
Atherosclerosis: 1999; 145(1): 197-205. 

Chobanian AV, Haudenschild CC, Nickerson C, Drago R Anti-atherogenic effect of 



104 

captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension 1990; 1: 

327-331. 

Choudhury L, Marsh JD. Myocardial infarction in young patients. Am J Med 1999; 
107: 254-261. (Review) 

Christensen B, Frosst P, Lussier-Cacan S, et al. Correlation of a common mutation in 
the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients 
with premature coronary artery disease. Arterioscler Thromb Vasc BioI 1997; 17: 
569-573. 

Clarke R, Dalby L, Robinson K, et al. Hyperhomocyteinaemia: an independent risk 
factor for vascular diseases. N Engl J Med 1991; 324: 1149-1155. 

Clarkson P, Celemajer DS, Donald AE, et al. Impaired vascular reactivity in insulin­
dependent diabetes mellitus is related to disease duration and low density lipoprotein 
cholesterol levels. J Am ColI Cardiol 1996; 28(3): 573-579. 

Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins 
inhibit cytokine-induced expression of endothelial cell adhesion molecules. 
Arterioscler Thromb Vasc BioI 1995; 15(11): 1987-1994. 

Coresh J, Kwiterovich PO, Smith HH, Bachovik PS. Association of plasma 
triglyceride concentration and low density lipoprotein particle diameter density and 
chemical composition with premature coronary artery disease in men and women. J 
Lipid Res. 1993; 34(10): 1687-1697. 

Couillard C, Lamarche B, Tchemof A, et al. Plasma high-density lipoprotein 
cholesterol but not apolipoprotein A-I is a good correlate of the visceral obesity­
insulin resistance dyslipidemic syndrome. Metabolism. 1996; 45(7): 882-888. 

Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM. Angiotensin 11 induces 
smooth muscle cell proliferation in the normal and irDured rat arterial wall. Circ Res 
1991; 68: 450-456. 

Danser AH, Schalekamp MA, Bax W A, et al. Angiotensin-converting enzyme in the 
human heart. Effect of the deletion/insertion polymorphism. Circulation 1995; 92(6): 
1387-1388. 

Dame B, Girerd X, Safar M, Cambien F, Guize L. Pulsatile versus steady component 
of blood pressure: a cross-sectional and prospective analysis on cardiovascular 
mortality. Hypertension 1989; 13: 392-400. 

Dart AM, Lacombe F, Yeoh JK, et al. Aortic distensibility in patients with isolated 



105 

hypercholesterolaemia, coronary artery disease, or cardiac transplant. Lancet 1991; 
338(8762): 270-3. 

de Faire U, Friberg L, Lundman T. Concordance for mortality with special reference 
to ischaemic heart disease and cerebrovascular disease. A study on the Swedish Twin 
Registry. Prev Med 1975; 4: 509-517. 

Despres JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional 
distribution of body fat, plasma lipoproteins and cardiovascular disease. 
Arteriosclerosis 1990; 10: 497-511. 

Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinaemia as an independent 
risk factor for ischaemic heart disease. N Engl J Med 1996; 334: 952-957. 

Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass 
in man. Anatomic validation of the method. Circulation 1977; 55: 613-618. 

Diet F, Pratte RE, Berry GT, Momose N, Gibbons GH, Dzau VJ. Increased 
accumulation of tissue ACE in human atherosclerotic coronary artery disease. 
Circulation 1996; 94: 2756-2757. 

Diez J, Alonso A, Garciandia A, et al. Association of increased erythrocyte Na+/H+ 
exchanger with renal Na+ retention in patients with essential hypertension. Am J 
Hypertens 1995; 8: 124-132. 

Duru K, Farrow S, Wang JM, Lockette W, Kurtz T. Frequency of a deletion 
polymorphism in the gene for angiotensin converting enzyme is increased in African­
Americans with hypertension. Am J Hypertens. 1994; 7(8): 759-62. 

Emoto M, Nishizawa Y, Kawagishi T, et al. Stiffness indexes beta of the common 
carotid and femoral arteries are associated with insulin resistance in NIDDM. 
Diabetes Care 1998; 21(7): 1178-82. 

Endre T, Mattiasson I, Hulthen UL, Lindgarde F, Berglund G. Insulin resistance is 
coupled to low physical fitness in normotensive men with a family history of 
hypertension. J Hyperten 1994; 12: 81-88. 

Enas EA, Yusuf S, Mehta JL. Prevalence of coronary artery disease in Asian Indians. 
Am J Cardiol. 1992 Oct 1;70(9):945-9. 

Evans AE, Poirier 0, Kee F, et al. Polymorphisms of the angiotensin converting 
enzyme gene in subjects who die from coronary artery disease. Q J Med 1994; 87: 
211-214. 



106 

Evanko SP, Raines EW, Ross R, Gold LI, Wight TN. Proteoglycan distribution in 
lesions of atherosclerosis depends on lesion severity, structural characteristics and 
proximity of platelet-derived growth factors and transforming growth factor-~eta. 
Am J Patho11998; 152: 533-546. 

Failla M, Grappiolo A, Carugo S, Calchera I, Giannattasio C, Mancia G. Effects of 
cigarette smoking on carotid and radial artery distensibility. J Hypertens 1997; 
15(12): 1659-1664. 

Feinleib M, Garrison RJ, Fabsitz R, et al. The National Heart, Lung and Blood 
Institute (NHLBI) twin study of cardiovascular disease risk factors: methodology and 
summary of results. Am J Epidem 1977; 106: 284-285. 

Fisher A, Davies E, Fraser R, Connell JM. Structure-function relationships of 
aldosterone synthase and 11 ~-hydroxylase enzymes: implications for human 
hypertension. Clin Exp Pharmacol Physiol Supp11998; 25: S42-S46. 

Fisher RM, Humphries SE, Talmud Pl Common variation in the lipoprotein lipase 
gene: effects on plasma lipids and risk of atherosclerosis. Atherosclerosis 1997; l35: 
145-159. 

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low­
density lipoprotein cholesterol in plasma without the use of the preparative 
ultracentrifuge. Clin Chem 1972; 18: 499-502. 

Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular 
disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 
1995; 10: 111-113. 

Fukumoto H, Naito Z, Asano G, Aramaki T, et al. Immunohistochemical and 
morphometric evaluations of coronary atherosclerotic plaques associated with 
myocardial infarction and diabetes mellitus. J Atherosclerosis Thromb 1998; 5(1): 
29-35. 

Furuta H, Guo DF, Inagami T. Molecular cloning and sequencing of the gene 
encoding human angiotensin II type I receptor. Biochem Biophys Res Commun 
1992; 183(1): 8-l3. 

Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JR. 
Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation. 1990; 
82(3 ): II47-II59 (Review). 

Fuster V, Badimon L, Badimonn JJ, Clesobro JH. The pathogenesis of coronary heart 
disease and the acute coronary syndromes. N Eng J Med 1992; 326: 242-250, 310-
318. 



107 

Fuster V. Mechanisms leading to myocardial infarction: insights from studies on 
vascular biology. Circulation 1994; 90: 2126-2146. 

Fuster V, Fayad ZA, Badimon JJ. Acute coronary syndrome: biology. Lancet 1999; 
353(II): 5-9. 

Gandi M. Clinical epidemiology of coronary artery disease in the UK. Br J Hosp 
Med 1997; 58: 23-27. 

Gardemann A, Weiss T, Schwartz 0 , et al. Gene polymorphism but not catalytic 
activity of angiotensin 1 converting enzyme is associated with coronary artery disease 
and myocardial infarction in low-risk patients. Circulation 1995; 92: 2796-2799. 

Gardemann A, Nguyen QD, Humme J, et al. Angiotensin II type I receptor A1166C 
gene polymorphism. Absence of an association with the risk of coronary artery 
disease and myocardial infarction and a synergistic effect with angiotensin converting 
enzymes gene polymorphism on the risk of these diseases. Euro Heart J 1998; 
19(11): 1657-1665. 

Gardemann A, Fink M, Sticker J, et al. Angiotensin converting enzymes liD gene 
polymorphism: presence of the angiotensin converting enzyme D allele increases the 
risk of coronary artery disease in younger individuals. Atherosclerosis 1998; 139(1): 
153-159. 

Gardemann A, Weidemann H, Philipp M, et al. The TT genotype of the 
methylenetetrahydrofolate reductase (C677 T gene) polymorphism is associated with 
the extent of coronary atherosclerosis in patients at high risk for coronary artery 
disease. Europ Heart J 1999; 20: 584-592. 

Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Co­
localization with interleukin-1 ~eta-converting enzyme. Am J Pathol 1995; 174: 251-
256. 

Gerstein HC, Pais P, Pogue J, Yusuf S. Relationship of glucose and insulin levels to 
the risk of myocardial infarction: a case-controlled study. J Am ColI Cardiol 1999; 
33(3): 612-619. 

Gibbons GH, Pratt RE, Dzau VJ. Vascular smooth muscle cell hypertrophy vs 
hyperplasia. Autocrine transforming growth factor-~ I expression determines growth 
response to angiotensin II. J Clin Invest 1992; 90: 456-461. 

Goodfriend TL, Elliot ME, Catt KJ. Angiotensin receptors and their antagonists. N 
Eng J Med 1996; 334(25): 1649-1654. 



108 

Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density 
lipoprotein as a protective factor against coronary heart disease. The Framingham 
Study. Am J Med 1977; 62(5): 707-714. 

Goyette P, Frosst P, Rosenblatt DS, Rozen R. Seven novel mutations in the 
methylenetetrahydrofolate reductase gene and genotype/phenotype correlation in 
severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet. 1995; 
56(5): 1052-1059. 

Graves SW, Moore TJ, Seely EW. Increased platelet angiotensin II receptor number 
in pregnancy-induced hypertension. Hypertension 1992; 20: 627-632. 

Gudnason V, Stansbie D, Scott J, Bowron A, Nicaud V, Humphries S. C677T 
(thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase 
(MTHFR): its frequency and impact on plasma homocysteine concentration IS 

different European populations. Atherosclerosis 1998; 136: 347-354. 

Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary 
heart disease in subjects with Type 2 diabetes and in non-diabetic subjects with and 
without prior myocardial infarction. New Engl J Med 1998; 339: 229-234. 

Hajjar KA. Homocysteine-induced modulation of tissue plasminogen activator 
binding to its endothelial cell membrane receptor. J Clin Invest 1993; 91: 2873-2879. 

Hamon M, Amant C, Bauters C, et al. Dual determination of angiotensin converting 
enzyme and angiotensin II type I receptor genotypes as predictors of restenosis after 
angioplasty. Am J Cardiol1998; 81(1): 79-81. 

Hamsten A. Molecular genetics as the route to understanding prevention and 
treatment. Lancet 1996; 348( 1): 17-19. 

Han DK, Haudenschild CC, Hong MK, Tinkle BT, Leon MB, Liau G. Evidence for 
apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 
1995; 147: 267-277. 

Hankey GJ, Eikelboom JW, et al. Homocysteine and vascular disease. Lancet 1999; 
354: 407-413. 

Hautanen A, Manttari M, Rosenfield S, et al. Aldosterone synthase gene 
polymorphism is associated with blood pressure, but only weakly with coronary heart 
disease. Europ Heart J 1997; 18: 112(abstr). 

Haynes FW, Ellis LB, Weiss S. Pulse wave velocity and arterial elasticity in arterial 
hypertension, arteriosclerosis and related conditions. Blood Pressure 1936; 11: 385-
401. 



109 

Hegele RA, Brunt JH, Connelly PW. A polymorphism of the angiotensinogen gene 
associated with variation in blood pressure in a genetic isolate. Circulation 1994; 90: 

2207-2212. 

Heinecke JW, Lusis AJ. Paraoxonase gene polymorphisms associated with coronary 
heart disease : support for the oxidative damage hypothesis. Am J Hum Genetics 
1998; 62: 20-24. 

Heller RF, Chinn S, Tunstall-Pedoe HG, Rose G. How well can we predict coronary 
heart disease. Br Med J 1984; 288: 410-411. 

Hingorani AD, Brown MJ. A simple molecular assay for the C 1166 variant of the 
angiotensin II type I receptor gene. Biochem Biophys Res Comm 1995; 213: 725-
729. 

Hokanson JE. Lipoprotein lipase gene variants and risk of coronary disease: a 
quantitative analysis of popu]ation-based studies. Int J Clin Lab Res 1997; 27: 24-34. 

Hong MK, Cho SY, Hong BK, et al. Acute myocardial infarction in young adults. 
Yonsei Med J 1994; 3S: 184-189. 

Hopkins KD, Lehmann ED, Jones RL, Turay RC, Gosling RG. A family history of 
NIDDM is associated with decreased aortic distensibility in normal healthy young 
adult subjects. Diabetes Care 1996; 19: SOl-S03. 

Hsieh SD, Yoshinaga H, Muto T, Sakurai Y. Regular physical activity and coronary 
risk factors in Japanese men. Circulation 1998; 97: 661-665. 

Hughes K, Choo M, Kuperan P, Ong CN, Aw TC. Cardiovascular risk factors in non­
insulin dependent diabetics compared to non-diabetic controls: a population-based 
survey among Asians in Singapore. Atherosclerosis 1998; 136(1): 2S-31. 

Hughes LO, Wojciechowski AP, Raftery EB. Relationship between plasma 
cholesterol and coronary artery disease in Asians. Atherosclerosis 1990; 83: lS-20. 

Ihara M, Urata H, Kinoshita A, et al. Increased chymase-dependent angiotensin 11 
formation in human atherosclerotic aorta. Hypertension 1999; 33: 1399-140S. 

Inoue I, Nakajima T, Williams CS, et al. A nucleotide substitution in the promoter of 
human angiotensinogen is associated with essential hypertension and affects basal 
transcription in vitro. J Clin Investig 1997; 99:1786-1797. 

Ishigami T, Umemura S, Iwamoto T, et al. Molecular variant of angiotensinogen 
gene is associated with coronary atherosclerosis. Circulation 1995; 91: 9S1-9S4. 



110 

Isner JM, Keamey M, Bortman S, Passeri 1. Apoptosis in human atherosclerosis and 
restenosis. Circulation 1995; 91: 2703-2711. 

Iwai N, Ohmichi N, Nakamura Y, Kinoshita M. DD genotype of the angiotensin 
converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 
1994; 90: 2622-2628. 

Jacques PF, Bostom AG, Williams RR, et al. Relationship between folate status, a 
common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine 
concentrations. Circulation 1996; 93: 7-9. 

Jalowiec DA, Hill JA. Myocardial infarction in the young and in women. Cardiovasc 
Clin 1989; 20(1): 197-206 (Review). 

Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human 
hypertension: role ofangiotensinogen. Cell 1992; 71: 169-180. 

Jeunemaitre X, Inoue I, Williams CS, et al. Haplotypes of angiotensinogen In 

essential hypertension. Am J Human Genet 1997; 60: 1448-1460. 

Jeunemaitre X, Ledru F, Battaglia S, et al. Genetic polymorphism of the renin 
angiotensin system and angiographic extent and severity of coronary artery disease : 
the CORGENE Study. Hum Genet 1997; 99: 66-73. 

Kamitani A, Rakugi H, Higaki J, et al. Association analysis ofa polymorphism of the 
angiotensinogen gene with essential hypertension in Japanese. J Hum Hypertens 
1994; 8: 521-524. 

Kamitani A, Rakugi H, Hijaki J, et al. Enhanced predictability of myocardial 
infarction in Japanese by combined genotype analysis. Hypertension 1995; 25: 950-
953. 

Kang SS, Wong PW, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile 
methlynenetetrahydrofolate reductase: an inherited risk factor for coronary artery 
disease. Am J Hum. Genet 1991; 48: 536-545. 

Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the 
Framingham study. Am J Cardiol1976; 38: 46-51. 

Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham 
study. JAMA 1979; 24: 2035-2038. 

Kaski Je. Are polymorphisms in the ACE gene a potent genetic risk factors for 
restenosis. Br Heart J 1994; 72(2): 101. 



111 

Katsuya T, Koike G, Yee TW, et al. Association of angiotensinogen gene T235 
variant with increased risk of coronary artery disease. Lancet 1995; 345: 1600-1603. 

Kaul D, Dogra B, Manchanda SC, Wasir HS, Rajani M, Bhatia ML. Myocardial 
infarction in young Indian patients: risk factors and arteriographic profile. Am Heart 
J 1986; 112(1): 71-75. 

Kauma H, Paivansalo M, Savolainen MJ, et al. Association between angiotensin 
converting enzyme gene polymorphism and carotid atherosclerosis. J Hypertension 
1996, 14(10): 1183-1187. 

Keavney BD, Dudley CR, Stratton IM, et al. DK prospective diabetes study 
(DKPDS) 14: association of angiotensin-converting enzyme insertion/deletion 
polymorphism with myocardial infarction in NIDDM. Diabetologia 1995; 38(8): 
948-952. 

Kennon B, Petrie JR, Small M, Connell JM. Angiotensin converting enzymes gene 
and diabetes mellitus. Diabet Med 1999; 16(6): 448-458. 

Klatsky AL, Tekawa I, Armstrong MA, Sidney S. Americans born in India and 
Pakistan are at high risk of coronary disease hospitalisation. Circulation 1993; 87(2): 
17. 

Klootwijk KP, Hamon CW. Acute coronary syndrome. Lancet 1999; 353(II): 10-15. 

Koenig W. Haemostatic factors for cardiovascular diseases. Eur Heart J 1998; 
19(C): 39-43. 

Kotze MJ, Langenhoven E, Warnich L, du Plessis L, Retief AE. The molecular basis 
and diagnosis of familial hypercholesterolaemia in South African Afrikaners. Ann 
Hum Genet 1991; 55: 115-121. 

Kotze MJ, Loubser 0, Thiart R, et al. CpG hotspot mutation at the LDL receptor 
locus are a frequent cause of familial hypercholesterolaemia among South African 
Indians. Clin Genet 1997; 51(6): 394-398. 

Kotze MJ, Scholtz CL, Hillermann R, Thiart R. MRC Cape Heart Group. 
Hetrogeneous distribution of two common MTHFR gene mutations in the diverse 
South African population correlates significantly with ethnic differences in 
cardiovascular disease risk. Atherosclerosis 1999; 144: Eas Congress pp 137 (abstr). 

Krishnaswami S, Prasad NK, Jose VI A study of lipid levels in Indian patients with 
coronary heart disease. Int J Cardiol1989; 24: 337-345. 

Kunz R, Kreutz R, Beige J, Distler A, Sharma AM. Association between the 



112 

angiotensinogen 235T-variant and essential hypertension in whites: a systematic 
review and methodological appraisal. Hypertension 1997; 30(6): 1331-1337 (Review). 

Kupari M, Hautanen A, Lankinen L, et al. Associations between human aldosterone 
synthase (CYP11B2) gene polymorphisms and left ventricular size, mass and 
function. Circulation 1998; 97: 569-575. 

Laakso M, Lehto S. Epidemiology of cardiovascular disease in diabetes and impaired 
glucose tolerance. Atherosclerosis 1998; 137: 565-573. 

Larsson B, Svardsudd K, Wilin L, Wilhelmsen L, Bjorntorp P, Tibblin G. Abdominal 
adipose tissue distribution, obesity and risk of cardiovascular disease and death: 13 
year follow-up participants in the study of men borm in 1913. Br Med J 1984; 288: 
1401-1404. 

Laws A, Jeppesen JL, Maheux PC, Schaaf P, Chen YD, Reaven GM. Resistance to 
insulin-stimulated glucose uptake and dyslipidaemia in Asian Indians. Arterioscler 
Thromb 1994; 14(6): 917-922. 

Lehmann ED, Gosling RG, Sonksen PH. Arterial wall compliance In diabetes. 
Diabetes 1992; 9: 114-119. 

Lehmann ED, Watts GF, Gosling RG. Aortic distensibility and 
hypercholesterolaemia. Lancet 1992; 340: 1171-1172. 

Lehmann ED, Gosling RG, Parker JR, de Silva T, Taylor MG. A blood pressure 
independent index of aortic distensibility. Br J Radiol 1993; 66; 126-131. 

Lehmann ED, Hopkins KD, Parker JR, Gosling RS. Hyperlipidaemia, hypertension 
and coronary heart disease. Lancet 1995; 345: 863. 

Lehmann ED, Hopkins KD, Rawesh A, et al. Relation between number of 
cardiovascular risk factors/event and noninvasive Doppler ultrasound assessments of 
aortic compliance. Hypertension 1998; 32: 565-569. 

Lentz SR, Sadler JE. Inhibition of thrombomodulin surface expression and protein C 
activation by the thrombogenic agent homocysteine. J Clin Invest 1991;88:1906-
1914. 

Levenson J, Simon AC, Cambien FA, Beretti C. Cigarette smoking and hypertension. 
Factors independendently associated with blood hyperviscosity and arterial rigidity. 
Arteriosclerosis 1987; 7(6): 572-577. 

Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications 
of echo cardiographically determined left ventricular mass in the Framingham study. 



113 

New Engl J Med 1990; 322: 1561-1566. 

Lindpaintner K, Pfeffer MA, Kreutz R, et al. A prospective evaluation of an 
angiotensin-converting enzyme gene polymorphism and the risk of ischaemic heart 
disease. NEnglMed 1995; 332: 706-711. 

London G, Guerin A, Pannier B, Marchais S, Benetos A, Safar M. Increased systolic 
pressure in chronic uremia. Role of arterial wave reflections. Hypertension 1992; 20: 
10-19. 

London GM, Guerin AP, Pannier B, Marchais SJ, Stimpel M. Influence of sex on 
arterial hemodynamics and blood pressure: role of body height. Hypertension 1995; 
26(3): 514-9. 

Lonn EM, Yusuf S, Jha P, et al. Emerging role of angiotensin converting enzymes 
inhibitors in cardiac and vascular protection. Circulation 1994; 90(4): 2056-2069. 

Lowry PJ, Lamb P, Watson RD, et al. Influence of racial origin on admission of 
patients with suspected myocardial infarction in Birmingham. Br Heart J 1991; 66: 
29-35. 

Ludwig E, Corneli PS, Anderson JL, Marshall HW, Lalouel JM, Ward RH. 
Angiotensin converting enzyme gene polymorphism is associated with myocardial 
infarction but not with the development of coronary stenosis. Circulation 1995; 
91(8): 21202124. 

Ludwig EH, Borecki IB, Ellison RC, et al. Association between candidate loci of 
angiotensin converting enzyme and angiotensinogen with coronary heart disease and 
myocardial infarction: the NHLBI Family Heart Study. Ann Epidemiol 1997; 7(1): 3-
12. 

Ma J, Stampfer MJ, Hennekens CH, et al. Methylenetetrahydrofolate reductase 
polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US 
Physicians. Circulation 1996; 94: 2410-2416. 

Mackness MI, Durrington PN. HDL, its enzymes and its potential to influence lipid 
peroxidation. Atherosclerosis 1995; 115: 243 -253. 

Mancini GB, Henry GC, Macaya C, et al. Angiotensin converting enzyme with 
quinapril improves endothelial vasomotor dysfunction in patients with coronary artery 
disease. The TREND study (Trial on Reversing Endothelial Dysfunction). 
Circulation 1996; 94: 258-265. 

Mather HM, Chaturvedi N, Fuller JH. Morbidity and mortality from diabetes and 
South Asians and Europeans, 11 year follow-up of the SouthaIl Diabetes Survery, 



114 

London UK Diabetes Med 1998; 15: 53-59. 

Mattu RK, Needham EW, Galton DJ, Frangos E, Clark AJ, Caulfield M. A DNA 
variant at the angiotensin converting enzyme gene locus associates with coronary 
artery disease in the Caerphilly heart study. Circulation 1995; 91: 270-274. 

McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin 
resistance with high diabetes prevalence and cardiovascular risk in South Asians. 
Lancet 1991; 337: 382-386. 

McKeigue PM, Ferrie JE, Pierpoint T, Marmot MG. Association of early onset 
coronary heart disease in South Asian men with glucose intolerance and 
hyperinsulinaemia. Circulation 1993; 87: 152-161. 

Meade TW, Cooper JA, Peart WS. Plasma renin activity and ischaemic heart disease. 
New Eng J Med 1993; 329: 616-619. 

Megnien JL, Simon A, Denarie N, Del-Pino M, Gariepy J, Segond P, Levenson J. 
Aortic stiffening does not predict coronary and extra-coronary atherosclerosis in 
asymptomatic men at risk for cardiovascular disease. Am J Hyperten 1998; 11: 293-
301. 

Miyagawa J, Hanafusa T. Mechanism of atherosclerosis in diabetes: altered cytokine 
network in the vascular wall. Nippon Rinsho 1999; 57(3): 601-606. 

Mohan V, Deepa R, Haranath SP, et al. Lipoprotein (a) is an independent risk factor 
for coronary artery disease in NIDDM patients in South India. Diabetes Care 1998; 
21: 1819-1823. 

Morar N, Seedat YK, Naidoo, DP, Desai DK. Ambulatory blood pressure and risk 
factors for coronary heart disease in black and Indian medical students. 
J Cardiovasc Risk. 1998; 5(5-6): 313-318. 

Morris BJ, Zee RY, Schrader AP. Different frequencies of angiotensin converting 
enzyme genotypes in older hypertensive individuals. J Clin Invest 1994; 94: 1085-
1089. 

Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension 
caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. 
Nat Genet 1995; 10(4): 394-399. 

Murphy-Chutorian D, Alderman EL. The case that hyperhomocysteinaemia is a risk 
factor for coronary heart disease. Am J Cardiol1994; 73: 705-707. 

Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent 



115 

risk factor for coronary artery disease: the Framingham Study. Am Heart J 1990; 
120: 963-969. 

Naber C, Bickeboeller H, Muller N, Erbel R. Association of a polymorphism in a 
gene encoding for a G-protein p-subunit with coronary artery disease and myocardial 
infarction. Europ Heart J 1998; 19: 33 (abstr). 

Nagi DK, Foy CA, Mohamed-Ali V, Yudkin JS, Grant PJ, Knowler WC. 
Angiotensin-l converting enzyme gene polymorphism, plasma angiotensin converting 
enzyme levels, and their association with the metabolic syndrome and 
electrocardiographic coronary artery disease in Pima Indians. Metabolism 1998; 
47(5): 622-626. 

Naidoo DP. Do angiotensin converting enzymes inhibitors have a role III 

atherosclerosis regression? Specialist Focus J 1996; 1 (7): 1-19. 

Nakamoto A, Kawanishi M, Hiraoka M, et at. The effect of smoking habit on aortic 
pulse wave velocity using a new method for data analysis. Nippon Ronen Igakkai 
Zasshi 1989; 26 (1): 26-30. 

Nichols WW, O'Rourke MF. Vascular impedance in: Macdonald's blood flow in 
arteries: Theroretical experimental and clinical principals. 4th Ed London UK. Ed E. 
Amold 1998: 54-97. 

Nickenig G, Jung 0, Strehlow K, et at. Hypercholesterolaemia is associated with 
enhanced angiotensin AT) receptor expression. Am J Physiol 1997; 272: H2701-
H2707. 

Nickenig G, Sachinidis A, Michaelsen F, Bohm N, Seewald S, Vetter H. 
Upregulation of vascular angiotensin 11 receptor gene expression by low density 
lipoprotein in vascular smooth muscle cells. Circulation 1997; 95(2): 473-478. 

Nielsen LB. Atherogenicity of Lp(a) and oxidized low density lipoprotein: insight 
from in vivo studies. Atheroslcerosis 1999; 143(2): 229-243. 

Niu T, Xu X, Rogus J, et at. Angiotensinogen gene and hypertension in Chinese. J 
ClinInvest 1998; 101: 188-194. 

Nofer JR, WaIter M, Kehrel B, et at. HDL3-mediated inhibition ofthrombin-induced 
platelet aggregation and fibrinogen binding occurs via decreased production of 
phosphoinositide-derived second messengers 1,2-diacylglycerol and inositol 1,4,5-
tris-phosphate. Arterioscler Thromb Vasc BioI. 1998; 18: 861-869. 

Nordestgaard BG, Abildgaard S, Wittrup HR, Steffensen R, Jensen G, Tybjaerg­
Hansen A. Heterozygous lipoprotein lipase deficiency: frequency in the general 



116 

population, effect on plasma lipid levels and risk of ischaemic heart disease. 
Circulation 1997; 96: 1737-1744. 

Nygard 0, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma 
homocysteine and mortality in patients with coronary artery disease. N Eng J Med 
1997; 337: 230-236. 

O'Brien ER, Bennett KL, Garvin MR, et al. Beta ig-H3, a transforming growth 
factor-beta-inducible gene, is overexpressed in atherosclerotic and restenotic human 
vascular lesions. Arterioscler Thromb Vase Biol1996; 16(4): 576-584. 

Ohishi M, Fujii K, Minamino T, et al.. A potent genetic risk factor for restenosis. 
Nat Genet 1993; 5(4): 324-325. 

Ohmichi N, Iwai N, Maeda K, et al. Genetic basis of ventricular remodelling after 
myocardial infarction. Int J Cardio11996; 53(3): 265-272. 

Olefsky J, Farquhar JW, Reaven G. Relationship between fasting insulin level and 
insulin resistance to insulin-mediated glucose uptake in normal and diabetic subjects. 
Diabetes 1973; 22: 507- 513. 

Paffenbarger RS Jr, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert JB. The 
association of changes in physical activity level and other life style characteristics 
with mortality among men. N Engl J Med 1993; 328: 538-545. 

Pais P, Pogue J, Gerstein H, et al. Risk factors for acute myocardial infarction in 
Indians: a case-control study. Lancet 1996; 348(9024): 358-363. 

Paillole C, Dahan M, J aeger P, Passa P, Gourgon R. Physical properties of the aorta 
in normotensive insulin-dependent diabetic subjects. Study using Doppler 
echocardiography. Arch Mal Coeur Vaiss. 1989; 82(7): 1185-9. 

Perola M, Sajantila A, Sarti C, et al. Angiotensin converting enzyme genotypes in the 
high and low risk area for coronary heart disease in Finland. Genet Epidemiol 1995; 
12: 391-399. 

Pfeiffer A, Middelberg-Bisping K, Drewes C, Schatz H. Elevated levels of 
tranforming growth factor-~l in NIDDM. Diabetes Care 1996; 19(10): 1113-1117. 

Pfohl M, Koch M, Prescod KK, Haring HU, Karsh KR. The insertion/deletion 
polymorphism of the angiotensin converting enzyme gene is not associated with 
coronary artery disease or myocardial infarction. Europ Ht J 1997; 18: 141 (abstr). 

Pfohl M, Schreiber I, Leibich HM, Haring HU, Hoffmeister HM. Upregulation of 
cholesterol synthesis after acute myocardial infarction - is cholesterol a positive acute 



117 

phase reactant? Atherosclerosis 1999; 142: 389-393. 

Pfohl M, Koch M, Enderle M, et al.. Paraoxonase 192 GlaJ Arg gene polymorphism, 
coronary artery disease and myocardial infarction in type II diabetes mellitus. 
Diabetes 1999; 48: 623-627. 

Pojoga L, Gautier S, Blanc H, et al. Genetic determination of plasma aldosterone 
levels in essential hypertension. Am J Hypertens 1998; 11: 856-860. 

Pouliot MC, Despres JP, Lemieux S, et al. Waist circumference and abdominal 
sagittal diameter: best sample anthroprometric indices of abdominal visceral adipose 
tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 
1994; 73: 460-468. 

Prasad A, Narayan S, Waclawin MA, Epstein N, Quyyumi AA. The insertion 
deletion polymorphism of the angiotensin converting enzyme gene determines 
coronary vascular tone and nistric oxide activity. J Am ColI Cardiol 2000; 36(5): 
1579-1586. 

Rajadurai J, Arokiasamy J, Pasamanickam K, Shatar A, Mei Lin O. Coronary artery 
disease in Asians. Aust and NZ J Med 1992; 22(4): 345-348. 

Ramachandran A, Snehalatha C, Satyavani K, Vijay V. Effects of genetic 
predisposition on pro-insulin responses in Asian Indians. Diabetes Res Clin Pract 
1998; 41(1): 71-77. 

Ramasawmy R, Manraj M, Kotea N, et al. Lack of association of angiotensin 1-
converting enzyme gene polymorphism and premature myocardial infarction in 
Mauritian Indians. Clin Genet 1996; 50(6): 551-554. 

Raynolds MV, Bristow MR, Bush EW, et al. Angiotensin converting enzyme DD 
genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 
1993; 342: 1073-1075. 

Reaven GM, Laws A. Insulin resistance, compensatory hyperinsulinaemia and 
coronary heart disease. Diabetologia 1994; 37: 948-952. 

Reinhardt D, Sigusch HR ,Vogt SF, Farker K, Muller S, Hoffmann A. Absence of 
association between a common mutation in methylenetetrahydrofolate reductase gene 
and the risk of coronary artery disease. Europ J Clin Inves 1998; 28: 20-23. 

Rhoads GG, Gulbrandsen CL, Kagan A. Serum lipoproteins and coronary heart 
disease in a population study of Hawaii Japanese men. N Engl J Med 1976; 294: 293-
298. 



118 

Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE. 
Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin n. 
Evidence of a potential interaction between the renin-angiotensin system and 
fibrinolytic function. Circulation 1993; 87: 1969-1973. 

Riegger GA. Role of the renin-angiotensin system as a risk factor for control of 
morbidity and mortality in coronary artery disease. Cardiovasc Drugs Ther. 1996 
Nov; 10(2): 613-5. Review. 

Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An 
insertion/deletion polymorphism in the angiotensin converting enzyme gene 
accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 
1343-1346. 

Rigat B, Hubert C, Corvol P and Soubrier F. PCR detection of the human angiotensin 
converting enzyme gene (DCP I) (dipeptidyl carboxypeptidase I). Nucleic Acid 
Research 1992; 20(6): 1433. 

Roberts AB, Sporn MB. Transforming growth factor-po Adv Cancer Res 1988; 51: 
107-145. 

Robinson K, Mayer E, Jacobsen DW. Homocysteine and coronary artery disease. 
Clev Clin J Med 1994; 61(6): 438-450. 

Rodgers GM, Kane WH. Activation of endogenous factor V by a homocysteine­
induced vascular endothelial cell activator J Clin Inves 1986; 77: 1909-1906. 

Rodger GM, Conn MT. Homocysteine, an atherogenic stimulus, reduces protein C 
activation by arterial and venous endothelial cells. Blood 1990; 75: 895-90l. 

Rosamond WD, Chambers LE, Folsoax AR, et al.. Trends in the incidence if 
myocardial infarction and in mortality die to coronary heart disease, 1987 to 1994. N 
Eng J Med 1998; 339: 861-867. 

Rosengren A, Wedel H, Wilhelmsen L. Body weight and weight gain during adult 
life in men in relation to coronary heart disease and mortality. Eur Heart J 1999; 20: 
269-277. 

Ross R. The pathogenesis of atherosclerosis: a perspective for the 90s. Nature 1993; 
362: 801-809. 

Rubinsztein DC. Monogenic primary hypercholesterolaemia in South Africa. Afr 
Med J 1994; 84(6): 339-344. 

Ruige JB, AssendelfWJ, Dekker JM, Kostense PJ, Heine RJ, Bouter LM. Insulin and 



119 

risk of cardiovascular disease: A meta-analysis. Circulation 1998; 97: 996-1001. 

Ruiz J, Blanche H, Cohen N, et al. Insertion/deletion polymorphism of the 
angiotensin converting gene is strongly associated with coronary artery disease in 
NIDDM Proc. Nat Acad Sci USA 1994; 91: 3662-3665. 

Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation 
in M-mode echocardiography. Results of a survey of echocardiographic 
measurements. Circulation 1978; 58: 1072-1083. 

Saku K, Zhang B, Bai H, Shirai K, Okabe M, Arakawa K. Influence of angiotensin II 
type I receptor AIC 1166 polymorphism in patients with and without coronary 
atherosclerosis. Am J Hyperten 1998; 114(2): 194 A (abstr). 

Salomaa V, Riley W, Kark JD, Nardo C, Folsom AR. Non-insulin-dependent 
diabetes mellitus and fasting glucose and insulin concentrations are associated with 
arterial stiffness indexes. The ARIC Study. Atherosclerosis Risk in Communities 
Study. Circulation. 1995 Mar 1;91(5):1432-43. 

Samani NJ, O'Toole L, Martin D, et al. Insertion/deletion polymorphism in the 
angiotensin converting enzymes gene and risk of and prognosis after myocardial 
infarction. J Am ColI Cardiol 1996; 28(2): 338-344. 

Sarzani R, Brecher P, Chobanian A V. Growth factor expression in the aorta of 
normotensive and hypertensive rats. J Clin Invest 1989; 83: 1404-1408. 

Sandvik L, Erikssen J, Thaulow, Erikssen G, Mundal R, Roolahl K. Physical fitness 
as a predictor of mortality among middle-aged Norwegian men. N Eng J Med 1993; 
328: 533-537. 

Scanu AM. Lipoprotein (a). A genetic factor for premature coronary heart disease. 
JAMA 1992; 267: 3326-3329. 

Schildkraut JM, Myers RH, Cupples A, Kiely DK, Kannel WB. Coronary risk 
associated with age and sex of parental heart disease in the Framingham study. Am J 
Cardioll989; 64: 555-559. 

Schiffrin EL, Park JB, Intengan HD, Touyz RM, et al. Correction of arterial structure 
and endothelial dysfunction in human essential hypertension by the angiotensin 
antagonist losartan. Circulation 1999, in press. 

Schmidt S, Sharma AM, Silch 0 , et al. Association of M235T variant of the 
angiotensinogen gene with familial hypertension of early onset. Nephrol Dial 
Transplant 1995; 10: 1145-1148. 



120 

Schmitz C, Lindpaintner K, VerhoefP, Gaziano JM, Buring J. Genetic 
polymorphism of methylenetetrahydrofolate reductase and myocardial infarction. A 
case-controlled study. Circulation 1996; 94: 1812-1814. 

Schulick AH , Taylor AJ, Zuo W, et al. Overexpression of transforming growth 
factor-~eta-l in arterial endothelium causes hyperplasia, apoptosis and cartilaginous 
metaplasia. Proc Natl Acad Sci. USA 1998; 95: 6983-6988. 

Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion 
polymorphism of the angiotensin converting enzyme gene and left ventricular 
hypertrophy. N Engl1994; 330: 1634-1638. 

Schunkert H, Hense HW, Gimenez-Roqueplo AP, et al. The angiotensinogen T235 
variant and the use of anti-hypertensive drugs in a population-based cohort. 
Hypertension 1997; 29: 628-633. 

Schunkert H, Hense HW, Holmer SR, et al. Lack of association between a 
polymorphism of the aldosterone synthase gene and left ventricular structure. 
Circulation 1999; 99(17): 2255-2260. 

Schwartz SM. Smooth muscle cell migration in atherosclerosis and restenosis. J Clin 
Investig 1997; 99: 2814-2816. 

Schwartz SM, Siscovick DS, Malinow MR, et al. Myocardial infarction in young 
women in relation to plasma total homocysteine, folate and a common variant in the 
methylenetetrahydrofolate reductase gene. Circulation 1997; 96: 412 - 417. 

Sewdarsen M, Hammond MG, Vythilingum S, Appadoo B. Histocompatilility 
antigens in Indians patients with myocardial infarction. Tissue Antigens 1987; 29(1): 
21 -25. 

Sewdarsen M, Vythilingum S, Jialal I, Moodley J, Mithas AS. Risk factors in young 
Indian males with myocardial infarction. A Afr Med J 1987; 71(4): 261-262. 

Sewdarsen M, Vythilingum S, Jialal I. Abnormal glucose tolerance is the dominant 
risk factor in South African Indian women with myocardial infarction. Cardiology 
1988; 75(5): 381-386. 

Sewdarsen M, Vythilingum S, Jialal I, Desai RK, Becker P. Abnormalities in sex 
hormones are a risk factor for premature manifestation of coronary artery disease in 
South African men. Atherosclerosis 1990; 83: 111-117. 

Sewdarsen M, Vythilingum S, Jailal I, Becker P. Lipid and lipoprotein abnormalities 
in South African Indian men with myocardial infarction. Cardiol 1991; 78(4): 348-
356. 



121 

Sewdarsen M, Desai RK, Vythilingum S, Shah N, Rajput MC. Serum lipoproteins 
and apolipoprotein in young normocholesterolaemia, non-diabetic Indian men with 
myocardial infarction. Postgrad Med J 1991; 67: 159-164. 

Seedat YK, Mayet FG, Khan S, Somers SR, Joubert G. Risk factors for coronary 
heart disease in the Indians of Durban. SA Med Journal 1990; 78: 447-454. 

Seedat YK, Mayet FG. Coronary heart disease in South African Indians: role of 
insulin resistance and hypertension. J Hum Hypertens 1993; 7: 525-527. 

Seedat YK, Mayet FG, Gouws E. Is hyperlipidaemia in the South African Indian 
population familial or acquired. SA Afr Med J 1996 ;86(9): 11 (abstr). 

Seedat YK, Mayet FGH. Risk factors of coronary heart disease in South Africa. 
Hypertension: SA Med Perspective 1998; pp32-36. 

Sharma M, Kambadur R, Matthews KG, et al. Myostatin, a transforming growth 
factor-beta superfamily member, is expressed in heart muscle and is upregulated in 
cardiac myocytes after infarct. J ColI Physiol1999; 180(1): 1-9. 

Sharma AM, Distler A, Hauner H. International Symposium on Obesity and 
Hypertension genetics and molecular mechanisms. Kidney Blood Press Res 2000; 
23(1): 49-72. 

Siffert W, RosskopfD, Moritz A, et al. Enhanced G-protein activation in 
immortalised lymphoblasts from patients with essential hypertension. J Clin Invest 
1995; 96: 759-766. 

Siffert W, Dusing R Na+/W exchange in hypertension and in diabetes mellitus: facts 
and hypothesis. Basic Res Cardiol1996; 91(3): 179-190. 

Siffert W, RosskopfD, Stiffert G, et al. Association of a human G-protein beta-3 
sub-unit variant with hypertension. Nat Genet 1998; 18: 45-48. 

Simonson E, Nakagawa K. Effect of age on pulse wave velocity and "aortic ejection 
time" in healthy men and in women with coronary artery disease. Circulation 1960; 
22: 126-129. 

Singh RB, Naiz MA, Agarwal P, Beegum R, Rastagi SS, Singh NK. Epidemiologic 
study of central obesity, insulin resistance and associated disturbance in the urban 
population of North India. Acta Cardiol1995; 5(3): 215-225. 

Slack J, Evans KA, et al. The increased risk of death in the first degree relatives of 
121 men and 96 women with ischaemic heart disease. J Med Genet 1966; 3: 239-257. 



122 

Smolenicka Z, Bach E, Schaer A, et al. A new polymorphic restriction site in the 
human 11 beta-hydroxysteroid dehydrogenase type 2 gene. J Clin Endocrinol Metab. 
1998; 83(5): 1814-1817. 

Staessen JA, Wang JG, Ginocchio G, et al. The deletion/insertion polymorphism of 
the angiotensin converting enzymes gene and cardiovascular-renal risk. J Hypertens 
1997; 15(12 pt 2): 1579-1592. 

Staessen JA, Kuznetsova T, Wang JG, Emelianov D, Vietinak R, Fagard R M235T 
angiotensinogen gene polymorphism and cardiovascular renal risk. J Hyperten 1999; 
17(1): 9-17. 

Stampfer MJ, Sacks FM, Salvini S, Willet WC, Hennekens CH. A prospective study 
of cholesterol, apoliproteins and the risk of myocardial infarction. N Engl J Med 
1991; 325: 373-38l. 

Stampfer MJ, Malinon MR, Willett WC, et al. A prospective study of plasma 
homocysteine and risk of myocardial infarction in US physicians. JAMA 1992; 
268(7): 877-88l. 

St Clair RW. Pathogenesis of atherosclerosis. Cardiology in review 1997; 5(1): 14-
24. 

Stein 0, Dabach Y, Hollander G, et at. Delayed loss of cholesterol from a localized 
lipoprotein depot in apolipoprotein A-I-deficient mice. Proc Natl Acad Sci USA 
1997; 94(4): 9820-9824. 

Stern MP. Diabetes and cardiovascular disease. The common soil hypothesis. 
Diabetes 1995; 44: 369-374. 

Stern MP. Do non-insulin dependent diabetes mellitus and cardiovascular disease 
share common antecedents? Am Intern Med 1996; 124: 110-116. 

Stewart PM, Krozowski ZS, Gupta A, et al. Hypertension in the syndrome of 
apparent mineralocorticoid excess due to mutation of the 11-beta hydroxysteroid 
dehydrogenase type II gene. Lancet 1996; 347(18994): 88-9l. 

Sugano M, Makino N, Yanaga T, et al. The effects of renin-angiotensin system 
inhibition on aortic cholesterol content in cholesterol-fed rabbits. Atherosclerosis 
1996; 127(1): 123-129. 

Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor 
PI and repair in the infarcted heart. J Mol Cell Cardiol1998; 30(8): 1559-1569. 

Syrris P, Carter ND, Metcalfe JC, et al. Tranforming growth factor-beta 1 gene 



123 

polymorphisms and coronary artery disease. Clin Sci (Colch) 1998; 95(6): 659-667. 

Szombathy T, Szalai C, Katalin B, Palicz T, Romics L, Csaszar A. Association of 
angiotensin II type I receptor polymorphism with resistant essential hypertension. 
Clin Chim Acta 1998; 269(1): 91-100. 

Takahashi K, Nakamura H, Kubota I, Takahashi N, Tomoike H. Association of 
angiotensin converting enzyme gene polymorphism with coronary artery disease in a 
northern area of Japan. Jpn Heart J 1995; 36(5): 557-564. 

Takegoshi T, Hirai J, Shimada T, Saga T, Kitoh C. The correlation between pulse 
wave velocity and diabetic angiopathy. Nippon Ronen Igakkai Zasshi 1991; 28(5): 
664-667. 

Tambyah PA, Lim YT, Choo MH. Premature myocardial infarction in Singapore­
risk factor analysis and clinical features. Singapore Med J 1996; 37(1): 31-3. 

Tanokuchi S, Okada S, Ota Z. Factors related to aortic pulse wave velocity in 
patients with non-insulin dependent diabetes mellitus. J Int Med Res 1995; 23(6): 
423-430. 

Tas S, Abdella NA. Blood pressure, coronary artery disease and glycaemic control in 
type II diabetes mellitus; relation to apolipoprotein metabolism: C 111 gene 
polymorphism. Lancet 1994; 343(8907): 1194-1195. 

Tashiro H, Shimokawa H, Yamamoto K, Momohara M, Tada H, Takeshita A. 
Altered plasma levels of cytokines in patients with ischaemic heart disease. Coronary 
Artery Dis 1997; 8(3-4): 143-147. 

Thandroyen FT, Asmal AC, Leary WP, Mitha AS. Comparative study of plasma 
lipids, carbohydrate tolerance and coronary angiography in three racial groups. S Afr 
Med J 1980; 57(14): 533-536. 

Thomas CS, Krishnaswami S. Distribution of body mass index in Indian patients 
with coronary artery disease. Indian Heart J 1995; 47(2): 134-137. 

Tiret L, Kee F, Poirier 0, et al. Deletion polymorphism in angiotensin-converting 
enzyme gene associated with parental history of myocardial infarction. Lancet 1993; 
341(8851): 991-992. 

Tiret L, Bonnardeaux A, Poirier 0, et al. Synergistic effects of angiotensin 
converting enzymes and angiotensin II type I receptor gene polymorphisms on risk of 
myocardial infarction. Lancet 1994; 344 (8927): 910-9l3. 

Tiret L, Ricard S, Poirier 0 , et al. Genetic variation of the angiotensin locus in 



124 

relation to high blood pressure and myocardial infarction: the ECTIM Study. 1 
Hypertens 1995;13(3): 311-317. 

Tiret L, Blanc H, Ruidavets JB, et al. Gene polymorphisms of the renin-angiotensin 
system in relation to hypertension and parental history of myocardial infarction and 
stroke: the PEGASE study. Project d'Etude des Genes de l'Hypertension Arterielle 
Severe a Moderee Essentielle. J Hypertens 1998; 16(1): 37-44. 

Tonstad S. Correlates of plasma total homocysteine in patients with hyperlipidaemia. 
Eur J Clin Investig. 1997; 27(12): 1025-1029. 

Toto-Moukouo 11, Achimastos A, Asmar RG, Hugues Cl, Safar ME. Pulse wave 
velocity in patients with obesity and hypertension. Am Heart J. 1986; 112(1): 136-40. 

Tsai JC, Wang H, Perrella MA, et al. Induction of cyclin A gene expression by 
homocysteine in vascular smooth cells. J Clin Investig 1996; 97(1): 146-153. 

Ubbink JB, Delport R, Vermaak WJ. Plasma homocysteine concentrations in a 
population with a low coronary heart disease prevalence. J Nutr 1996; 126( 4): 
1254S-1275S. 

Ulick S, Levine LS, Gunczler P, et al. A syndrome of apparent mineralocorticoid 
excess associated with defects in the peripheral metabolism of cortisol. 1 Clin 
Endocrinol Metab 1979; 49(5): 757-764. 

van Bockxmeer FM, Mamotte CD. Apolipoprotein episilon 4 homozygosity in young 
men with coronary heart disease. Lancet 1992; 340 (8824): 879-880. 

van Bockxmeer FM, Mamotte CD, Vasikaran SD, Taylor RR. 
Methylenetetrahydrofolate reductase gene and coronary artery disease. Circulation 
1997; 95(1): 21-23. 

van Geel PP, Pinto YM, Zimmerman AH, Henning RH. Synergistic effects of 
angiotensin coverting enzyme and angiotensin 11 type I receptor gene polymorphisms 
on ischaemic events. Europ Heart J 1998; 19: 33 (abstr). 

van Leeuwen RT, Kol A, Andreotti F, Kluft C, Maseri A, Sperti G. Angiotensin 11 
increases plasminogen activator inhibitor type I and tissue type plasminogen activator 
messenger RNA in cultured rat aortic smooth muscle cells. Circulation 1994; 90: 
362-368. 

van Popele NM, Grobbee DE, Bots ML, et al.. Association between arterial stiffness 
and atherosclerosis: the Rotterdam Study. Stroke. 2001; 32(2): 454-60. 



125 

Vardan S, Mookherjee S, Vardan S, Sinha AK. Special feature of coronary heart 
disease in people of the Indian subcontinent. Indian Heart J 1995; 47(4): 399-407. 

Vaughan DE, Lazos SA, Tong K. Angiotensin 11 regulates the expression of 
plasminogen activator inhibitor-l in cultured endothelial cells. A potential link 
between the renin-angiotensin system and thrombosis. J Clin Invest 1995; 95(3): 
995-1001. 

Verhoef P, Kok FJ, Kluijtmans LA, et al. The 677C~T mutation in the 
methylenetetrahydrofolate reductase gene: associations with plasma total 
homocysteine levels and risk of coronary atherosclerotic disease. Atherosclerosis 
1997; 132(1): 105-113. 

Villareal FJ, Dillmann WH, et al. Cardiac hypertrophy-induced changes in mRNA 
for transforming growth factor Beta-I, fibronectin and collagen. Am J Physiol 1992; 
262(6 pt 6): H1861-H1866. 

Vifials M, Martinez-Gonzalez J, Badimon JJ, Badimon L. HDL-induced prostacyclin 
release in smooth muscle cells is dependent on cyclooxygenase-2 (Cox-2). 
Arterioscler Thromb Vasc Bioi 1997; 17(12): 3481 -3488. 

Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to 
acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 
81(2): 491-7. 

Wada T, Kodaira K, FujishiroK, et al. Correlation of ultrasound measured common 
carotid artery stiffness with pathological findings. Arterioscler Thromb 1994; 14(3): 
479-482. 

Wagner J, Ennker J, Hetzer R. Characteristics of patients younger than 40 years of 
age operated for coronary artery disease. Herz 1996; 21(3): 183-191. 

Wahl SM. Transforming growth factor ~: the good, the bad and the ugly. J Exp Med 
1994; 180(5): 1587-1590. 

Walker ARP, Adam A, Kustner HGV. Changes in total death rate and in ischaemic 
heart disease in inter-ethnic South African popUlation, 1978-1989. S Afr Med J 1993; 
83: 602-605. 

Warnholtz A, Nickenig G, Schulz E, et al. Increased NADH - oxidase mediated 
superoxide production in the early stages of atherosclerosis. Circulation 1999; 
99(15): 2027-2033. 

Warren SE, Thompson SI, Vieweg WV. Historic and angiographic features of young 



126 

adults surviving myocardial infarction. Chest 1979; 75(6): 667-670. 

Weber H, Taylor DS, Molloy Cl Angiotensin II induces delayed mitogenesis and 
cellular proliferation in rat aortic smooth muscle cells: correlation with the expression 
of specific endogenous growth factors and reversed by suramin. J Clin Investig 1994; 
93(2): 788-798. 

Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis 
and renin-angiotensin-aldosterone system. Circulation 1991; 83(6): 1849-1865. 

White PC, Slutsker L. Haplotype anlysis of CYP11~2. Endocrinol Res 1995; 21: 
437-442. 

White PC, Hautanen A, Kupari M. Aldosterone synthase (CYP11B2) polymorphisms 
and cardiovascular function. Endoc Res 1998; 24(3-4): 797-804. 

Williams KJ, Tabas 1. The response-to-retention hypothesis of early atherogenesis. 
Arterioscler Thromb Vasc BioI 1995; 15(5): 551-56l. 

Winkelmann BR, Nauk M, Klein B, et al. Deletion polymorphism of the angiotensin­
I converting enzymes gene is associated with increase plasma angiotensin converting 
enzymes activity but not with increased risk for myocardial infarction and coronary 
artery disease. Annuals Intern Med 1996; 125(1): 19-25. 

Winkelmann BR, Russ P, Nauck M, et al. Angiotensinogen M235 T polymorphism 
is associated with plasma angiotensinogen and cardiovascular disease. Am Heart J 
1999; 137: 698-705. 

Wittekoek ME, Pimstone SN, Reymer PW, et al. A common mutation in the 
lipoprotein lipase gene (N291S) alters the lipoprotein lipase phenotype and risk for 
cardiovascular disease in patients with familial hypercholesterolaemia. Circulation 
1998; 87: 729-735. 

Witteman JC, Grobbee DE, Valkenburg HA, et al. J-shaped relation between change 
in diastolic pressure and progression of atherosclerosis. Lancet 1994; 343: 504-507. 

Wittrup RH, Tybjaerg-Hansen A, Abildgaard S, Steffensen R, Nordestgaard BG, 
Schnohr N A common substitution (Asn 291 Ser) in lipoprotein lipase is associated 
with increased risk of ischaemic heart disease. J Clin Invest 1997; 99: 1606-1613. 

Whitty C, Brunner EJ, Shipley MJ, Herminway H, Marmot MG. Differences in 
biological risk factors for cardiovascular disease between three ethnic groups in the 
Whitehall II study. Atherosclerosis 1999; 142: 279-286. 

Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994; 344: 793-



127 

795. 

Wong XL, Liu SX, Wilcken DE. Circulating transforming growth factor beta 1 and 
coronary artery disease. Cardiovasc Res 1997; 34(2): 404-410. 

Woo KS, Chook P, Lolin YI, et al. Hyperhomocystinaemia is a risk factor for arterial 
endothelial dysfunction in humans. Circulation 1997; 96: 2542-2544. 

Yanagitani Y, Rakugi H, Okamura A, et al. Angiotensin 11 type 1 receptor-mediated 
peroxide production in human macrophages. Hypertension 1999; 33(pt 2): 335-339. 

Yitalo A, Airaksinen KEJ, Hautaren A et al. Baroreflex sensitivity and variants of the 
renin-angiotensin system genes. Europ Heart J 1998; 19: 135 (abstr). 

Zieher AM, Schachlinger V, Hohnloser SH, Saurbier B, Just H. Coronary 
atherosclerotic wall thickening and vascular reactivity in humans. Elevated high­
density lipoprotein levels ameliorate abnormal vasoconstriction III early 
atherosclerosis. Circulation 1994; 89(6): 2525-2532. 

Zimmerman FH, Cameron A, Fisher LD, Ng G. Myocardial infarction in young 
adults: angiographic characterization, risk factors and prognosis (Coronary Artery 
Surgery Registry). JAm Coll Cardiol1995; 26: 654-661. 



APPENDIX I 

Please indicate what you will tell the subjects in simple language and addressed to 

them. The procedure or treatment which will be applied should be described and 

reference should be made to possible side effects, discomfort, complications and/or 

benefits. 
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It must be made clear to the patient that he/she is free to decline participate or to 

withdraw at any time without suffering any disadvantage or prejudice. 

Index case: You have heart disease due to blockage of blood vessels that supply 

blood to your heart muscle. It is not exactly known why you have this 

kind of heart disease at such a young age. We would like to ask you a 

few questions, study your heart and take a sample of blood from your 

vein to find a reason for this. 

You are free to decline and this will not affect your treatment in the 

future. 



APPENDIXII 

DNA Extraction Protocol: 

A) DNA Extraction Method/or Whole Blood (EDTA) 

5-10 ml aliq uot 

1. Add 35 ml reagent 1 to 5 ml EDTA anticoagulated blood. 

2. Rotary mix for 4 minutes, then spin at 3500 rpm for 4 minutes. 

3. Discard the supernatant. 

4. To the WBC pellet, add 2 ml reagent 2 and vortex to resuspend. 

5. Add 500 III reagent 3 and rotary mix for 15 minutes. 

6. Incubate at 65° C for 25 minutes, occasionally mixing by hand. 

7. Add 2 ml ice cold chloroform and rotary mix for 10 minutes. 

S. Spin at 3500 rpm for 5 minutes. 
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9. Aspirate the supernatant, place into a clean tube, add an equal volume of 

phenol: chloroform: isoamyl alcohol (pRS.O) and rotary mix for 5 minutes. 

10. Spin at 3500 rpm for 5 minutes and aspirate the upper phase to a clean tube. 

Repeat the P:C:IAA extraction until the interface is clear of protein deposit. 

11. Add 5 ml cold absolute ethanol to precipitate the DNA. 

12. Pellet the DNA: spin at 4000 rpm for 5 minutes. 

l3. Wash the pellet with 70% ethanol. 

14. Dry the pellet and dissolve in 1 ml 1 x TE buffer (pRS). 



(B) REAGENTS: 

Reagent 1: 

Magnesium chloride hexahydrate (MW 203,3) - 5mM 

Sucrose (MW 342.3) - 320mM 

Tris. HCI (MW 157.56) - 10mM 

Triton X- 100 

• Adjust the pH to 8.0 with 2 M NaOH (MW 40) - 8g in 100ml water. 

Reagent 2: 

Tris. HCI (MW 157.56) - 400mM 

Sodium Chloride (MW 58.44) - 150 mM 

EDTA (MW 372.24) - 60 mM 

lL: 

1.02 g 

109.54 g 

1.58 g 

100 ml 

0.5L: 

31.51 g 

4.38 g 

l1.17g 
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• 1 % SDS to be added after autoclaving the above solution - ie add 50 ml of a 10% 

SDS solution. To make 50 ML 10% SDS, add 5g SDS to 40 ml water, heat to 

68° C and when dissolved, add water to make up to 50 ml. 

• Adjust the pH to 8.0 using 2 M NaOH. 

Reagent 3: 

Sodium perchlorate (MW 140.46) - 5 M 

10 ml: 

7.023 g 
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APPENDIX Ill: PCR CONDITIONS: 

1. Angiotensinogen Core Promoter (Agt-CP) PCR: 

All PCR to detect the Agt-CP mutation were carried out with 100 ng of 

genomic DNA as a template, using a DNA thermal cycler (Perkin Elmer 

Version 2.01. Gene Amp 9600 PCR System 1991) and primers as reported by 

Jeunemaitre et al, (1992). The sense and antisense primers were as follows: 

sense: 

antisense: 

5' TCACT AAgACTTCCTggAAgA-3' 

5' AgACCAgAAggAgCTgAGG-3' 

Samples were amplified for 35 cycles consisting of denaturation at 94°C for 45 

sec, annealing at 56°C for 30 sec and extension at 72°C for 45 sec, followed by 

a final extension step at 72°C for 10 min. Because the nucleotide G-6A 

mutation created a restriction site for Eag I enzyme (New England Biolabs) the 

resulting amplification product (251 bp) after PCR was therefore digested with 

Eag I restriction endonuclease for four hours at 37°C. (New England Biolabs, 

SchwalbachlTs, Germany). Following digestion, restriction fragments (176 bp 

and 75 bp) were sized fractionated on 2% agarose gels. Genotype analysis was 

carried out by two independent investigators (AMS and KS) who were 

unaware of the clinical data. In cases of ambiguity the PCR reaction, Eag I 

digestion and scoring were repeated. 
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2. Angiotensin II Type I Receptor (ATl R) peR: 

All PCR to detect the AT 1 R mutation were carried out with 100 ng of genomic 

DNA as a template, using a DNA thermal cycler (Perkin Elmer Version 2.01 

Gene Amp 9600 PCR System 1991) and primers as reported by Hingorani et al 

(1995). The sense and antisense primers were as follows: 

sense: 

antisense: 

5' gT AAgCTCATCCACCAAgAAgg-3' 

5' gCAAgTgTAgCAgCAgTTgC-3' 

Samples were amplified for 35 cycles consisting of denaturation at 9SoC for 30 

sec, annealing at 60°C for 30 sec and extension at 72°C for 60 sec, followed by 

a final extension step at 72°C for 10 min. Because nucleotide AlC 1166 

mutation created a restriction site for Dde I (New England Biolabs), the 

resulting amplification product after PCR was therefore digested with Dde I 

restriction endonuclease for two hours at 37°C (New England Biolabs, 

SchwalbachlTs, Germany). Following digestion, restriction fragments were 

sized fractionated on 2% agarose gels. Genotype analysis was carried out by 

two independent investigators (AMS and KS) who were unaware of the 

clinical data. In cases of ambiguity the PCR reaction Dde I digestion and 

scoring were repeated. 
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3. Angiotensin Converting Enzyme (ACE) PCR: 

All PCR to detect the ACE gene mutation were carried out with 100 ng of 

genomic DNA as a template, using a DNA thermal cycler (Perkin Elmer 

Version 2.01 Gene Amp 9600 PCR System 1991) and primers as reported by 

Rigat et al (1992). The sense and antisense primers were as follows: 

sense: 

antisense: 

5' CTggAgACCACTCCCATCCTTTCT -3' 

5'gATgTggCCATCACATTCgTCAgAT-3' 

Samples were amplified for 35 cycles consisting of denaturation at 94°C for 45 

sec, annealing at 60°C for 45 sec and extension at 72°C for 60 sec, followed by 

a final extension step at 72°C for 10 min. The PCR product is a 190 bp 

fragment in the absence of the insertion (deletion) and a 490 bp fragment in the 

presence of the insertion. Following PCR, restriction fragments (190 bp and 

490 bp) were sized fractionated on 2% agarose gels. Genotype analysis was 

carried out by two independent investigators (AMS and KS) who were 

unaware of the clinical data. To increase the specificity of deletion 

homozygote (DD) genotyping, a second PCR with the annealing temperature 

at 6SoC and primer pair that recognizes the insertion-specific sequence, was 

performed in all samples classified as DD homozygotes in the first PCR. 

Sense: 5'TgggACCACgCCCgCCACTAC-3' 

Antisense: 5'TCgCCAgCCTCCCATgCCCATAA-3' 

Only the I allele produces a 355 bp amplicon. The reaction yields no products 

in samples of the DD genotype. In cases of ambiguity the PCR reaction­

specific PCR scoring were repeated. 
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4. Aldosterone Synthase Promoter (CYPll-~2) PCR: 

All PCR to detect the CYP II~2 mutation were carried out with 100 ng of 

genomic DNA as a template, using a DNA thermal cyder (Perkin Elmer 

Version 2.01 Gene Amp 9600 PCR System 1991) and primers as reported by 

White et al (1998). The sense and antisense primers were as follows: 

CYP 304 sense: CAgggCTgAgAggAgTAAAA 

CYP 171 antisense: CAgggggTACgTggACATTT 

Samples were amplified for 35 cycles consisting of denaturation at 94°C for 45 

sec, annealing at 52°C for 45 sec and extension at 72°C for 60 sec, followed by 

a final extension step at 72°C for 10 min. Because nucleotide C344T mutation 

created a restriction site for HaeIII enzyme (New England Biolabs), the 

resulting amplification product (231 bp) after PCR was therefore digested with 

HaeIII restriction endonuclease for two hours at 37°C (New England Biolabs, 

SchwalbachlTs, Germany). Following digestion, restriction fragments (140bp 

and 91bp), were sized fractionated on 2% agarose gels. Genotype analysis was 

carried out by two independent investigators (AMS and KS) who were 

unaware of the clinical data. In cases of ambiguity the PCR reaction HaeIII 

digestion and scoring were repeated. 
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5. peR for l1~-Hydroxysteroid Dehydrogenase 2 (l1~-HSD2): 

All PCR to detect the 11BHSD2 mutation were carried out with 100 ng of 

genomic DNA as a template, using a DNA thermal cycler (Perkin Elmer 

Version 2.01 Gene Amp 9600 PCR System 1991) and primers as reported by 

Smolenicka et al (1998). The sense and antisense primers were as follows: 

HSD 540 A sense: 

HSD 870 B antisense: 

5' ggAAgTTTgCTgCTgggCTgA-3' 

5' AgTggggCAgCTCAgCTTTgg-3' 

Samples were amplified for 35 cycles consisting of denaturation at 940e for 30 

sec, annealing at 630e for 30 sec and extension at 720e for 60 sec, followed by 

a final extension step at 720e for 10 min. Since the nucleotide G534A 

mutation created a restriction site for Alu I enzyme (New England Biolabs), 

the resulting amplification product after PCR was therefore digested with Alu I 

restriction endonuclease for four hours at 37°C (New England Biolabs, 

SchwalbachlTs, Germany). Following digestion, restriction fragments were 

sized fractionated on 2% agarose gels. Genotype analysis was carried out by 

two independent investigators (AMS and KS) who were unaware of the 

clinical data. In cases of ambiguity the peR reaction, Alu I digestion and 

scoring were repeated. 
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6. peR for Transforming Growth Factor-B: 

All PCR to detect the TGF-Bl mutation were carried out with 100 ng of 

genomic DNA as a template, using a DNA thermal cycler (Perkin Elmer 

Version 2.01 Gene Amp 9600 PCR System 1991) and primers as reported by 

Pociot et al (1998) for a mutagenically separated PCR (MC-PCR) assay. In 

this MS-PCR three primers were used in a single reaction mix: 

Sense (1): 

Sense (2): 

5' ACCgCCCCATTCTgCTTCTCATggCCCT -3' 

5'TggCCACCATTCATggCATgAgTCggCCTT­

TCCTgCTTCTCATggACAC-3 ' 

Antisense: 5'AAggCCTCCATC CAg gCT ACA Agg CTC AC-3' 

Samples were amplified for 35 cycles consisting of denaturation at 94°C for 45 

sec, annealing at 68°C for 45 sec and extension at 72°C for 60 sec, followed by 

a final extension step at 72°C for 10 min. The nucleotide Thr 263 !le 

polymorphism does not require a restriction endonuclease. In the presence of 

Thr 263 a PCR product of 150 bp was amplified, whereas a 129 bp fragment 

was amplified in the presence of the !le 263 variant. Following the PCR, the 

amplification products (150 bp and 129 bp) were sized fractionated on 2% 

agarose gels and repeated with Nutrasieve to improve separation of the bands. 

Genotype analysis was carried out by two independent investigators (AMS and 

KS) who were unaware of the clinical data. In cases of ambiguity the PCR 

reaction size fractionation on Nutrasieve gel and scoring were repeated. 
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7. peR for Methylenetetrahydrofolate Reductase Gene Polymorphism: 

All PCR to detect the MTHFR mutation were carried out with 100 ng of 

genomic DNA as a template, using a DNA thermal cycler (Perkin Elmer 

Version 2.01. Gene Amp 9600 PCR System 1991) and primers as reported by 

Frosst et ai, 1995. The sense and antisense primers were as follows: 

sense: 5 'TGAAGGAGAAGGTGTATGAGGGA-3 , 

antisense: 5'AGGACGGTGCGGTGAGAGTG-3' 

Samples were amplified for 35 cycles consisting of denaturation at 94 DC for 

15 sec, annealing at 58 DC for 45 sec, and extension at 72 DC for 45 sec, 

followed by a final extension step at 72DC for 10 min. Because the nucleotide 

C677T mutation creates a restriction site for Hinf I (New England Biolabs,) the 

resulting amplification product (246 bp) after PCR was therefore digested with 

Hinf I restriction endonuclease for 20 hours at 37DC (New England Bioloabs, 

SchwalbachlTs, Germany). Following digestion, restriction fragments (175 bp 

and 71 bp) were size fractionated on 2% agarose gels. Genotype analysis was 

carried out by two independent investigators (AMS + KS) who were unaware 

of the clinical data. In cases of ambiguity the PCR reaction, Hinf I digestion 

and scoring were repeated. 
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8. peR for G-Protein: 

All PCR to detect the G-Protein mutation were carried out with 100 ng of 

genomic DNA as a template, using a DNA thermal cycler (Perkin Elmer 

Version 2.01 Gene Amp 9600 PCR System 1991) and primers as reported by 

Siffert et al (1998). The sense and anti sense primers were as follows: 

sense: 

antisense: 

5'TgACCCACTTgCCACCCgTgC-3' 

5' gCAgCAgCCAgggCTggC-3' 

Samples were amplified for 35 cycles consisting of denaturation at 94°C for 45 

sec, annealing at 60°C for 45 sec and extension at 72°C for 60 sec, followed by 

a final extension step at 72°C for 10 min. Because nucleotide C~ T mutation 

created a restriction site for BSEDI (MBI Fermentas) the resulting 

amplification product (268 bp) after PCR was therefore digested with BSE DI 

restriction endonuclease for two hours at 60°C MBI Fermentas. Following 

digestion, restriction fragments (152 bp and 116 bp) were sized fractionated on 

2% agarose gels. Genotype analysis was carried out by two independent 

investigators (AMS and KS) who were unaware of the clinical data. In cases 

of ambiguity the PCR reaction, BSEDI digestion and scoring were repeated. 
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ACE-ID-PCR: 
DNA: PRO BANDS 

Mastermix: Dry Liquid Master: For 120 tubes 

Dry Liquid 

Buffer l.0 2 3 min 94° 

MgCI 0.75 90 l.5 45 sec 94°C 

DNTP 1.25M l.0 12T0 l.5 45 sec 60°C 

Taq 0.03 3:4.6 0.03 60 sec nOc 
ACE P 1 (2OIlM) O.l 0.1 10 min nOc 
ACE P 2 (2OIlM) O.l O.l 

DMSO 0.5 0.7 
H2O 6.52 4.07 
DNA-template 0.0 10 

TOTAL 10.0 20 

1 2 3 4 5 6 7 8 9 10 11 12 
A 2 lu IS 26 37 44 63 W 137 159 H2O ISO 

1 2 2 3 2 1 2 2 2 2 0 2 
B 3 11 lIT 27 38 46 65 lW 140 163 172 un 

1 3 2 1 2 1 2 1 2 1 0 1 
C 4 12 20 30 3Y 4Y 77 103 144 164 174 184 

1 1 1 2 1 2 2 2 2 1 1 2 
D H2U Jj 21 31 40 54 7'6 105 145 165 175 r&O 

0 2 2 1 2 2 3 2 1 1 2 1 
E 5 14 22 33 H2O 55 85 111 146 H2U 176 187 

3 1 1 2 0 2 1 2 1 0 2 2 
F 7 15 23 34 41 56 87 130 147 167 177 rgg-

2 2 1 2 2 1 2 2 2 2 2 3 
G ::; 16 L4 35 42 57 Y4 133 156 168 17'6 189 

1 3 1 2 2 1 3 1 2 1 0 2 
H 9 17 25 36 4J 6U 93 136 15'6 169 179 190 

2 2 1 1 2 2 2 1 3 1 1 1 

FIG 2: 

(See page 140) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



499 bp 
190 bp 

ACE-ID-PCR: 

FIG 2:ACE-ID-PCR: PROBANDS 

140 

x100 bp 

This peR yielded 2 products: a 190 bp fragment in the absence of the insertion and a 
490 bp fragment in the presence of a deletion. 
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ACE-ID-PCR: 
DNA: PROBANDS & REPEATS 

Mastermix: Dry Liquid Master: For 50 tubes 

Dry Liquid 

Buffer 1.0 2 ''" ~ 3 min 94° 

MgCI 0.75 J'6 1.5 7(tOl 45 sec 94°C 

DNTPl.25M 1.0 44 1.5 S6 45 sec 60°C 

Taq 0.03 1.32 0.03 1.§ 60 sec nOc 
ACE P 1 (20J.lM) 0.1 4.4 0.1 $ 10 min nOc 
ACE P 2 (20J.lM) 0.1 4~4, 0.1 !§ 

DMSO 0.5 0.7 
H2O 6.52 4.07 
DNA-template 0.0 10 

TOTAL 10.0 20 

A 

B 

C 

D 

E 

F 

G 

H 
1 1 2 1 

FIG 3: 

(See page 142) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-5). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 



x100 bp 

490 bp 

190 bp 

2 

FIG 3:ACE-ID-PCR: 

4 
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ACE-ID-PCR: 

3 5 

5 1 

PROBAND & REPEATS 

This peR yielded 2 products: a 190 bp fragment in the absence of the insertion and a 
490 bp fragment in the presence of a deletion. 



ACE-ID-PCR: 
DNA: CONTROLS 

Mastermix: Dry 
Dry 

Buffer 1.0 
MgCI 0.75 
DNTP 1.25M 1.0 
Taq 0.03 

ACE P 1 (20J.!M) 0.1 

ACE P 2 (20J.!M) 0.1 

DMSO 0.5 
H2O 6.52 
DNA-template 0.0 

TOTAL 10.0 

1 2 3 4 5 
A I 9 17 15 33 

1 2 2 3 3 
B 1 Iu lIS 26 H2O 

2 1 1 2 0 
C 3 11 I~ i.7 34 

2 1 2 1 2 
D 4 12 lU lIS 35 

0 1 2 1 1 
E 5 13 21 2l) 36 

1 1 3 3 0 
F 6 14 II jU 37 

2 2 2 2 2 
G 7 15 2J JI 38 

1 2 0 2 0 
H IS 10 14 Ji. J l) 

3 1 3 2 0 

FIG 4: 

6 
40 

0 
41 

1 
42 

1 
43 

2 
44 

2 
45 

2 
46 

2 
47 

3 

Liquid 

2 
1.5 
1.5 

0.03 
0.1 
0.1 
0.7 

4.07 
10 
20 

7 
4!l 

1 
49 

2 
50 

2 
H2O 

0 
A006 

1 
A004 

1 
A008 

1 
AU1U 

0 

8 
AOIl 

3 
AUU5 

2 

AOI9 

2 
AU24 

3 
B003 

2 
H004 

3 
tluu5 

1 
AU64 

2 

Master: 
Liquid 

6: 
,c ' c<', 
'§~J'9; 

11&;1:& 

1.~~ 
4<.4 
4'04 

9 
AulSu 

2 
Aun 

2 
AI04 

2 
AIU6 

2 
AIUIS 

2 
AlOl) 

3 
AIIO 

1 
H2O 

0 
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For 44 tubes 

3 min 94° 
45 sec 94°C 
45 sec 60°C 
60 sec nOc 
10 min nOc 

10 11 
AII~ AI6I 

1 2 
AIlU AI61 

3 2 
AI23 AI66 

3 2 
A14~ AUI 

3 1 
ADU Alu5 

3 0 
AI54 AI70 

3 3 
A15! AO!l6 

1 2 
Al6U A006 

1 ND 

(See page 144) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 



490 tlP 
190 bp 

• 
• 

1 

-----4 

-----
7 

R" .----
10 
• 

FIG 4:ACE-ID-PCR: 

144 

ACE-ID-PCR: 

f' 

- - - ... - .... ---- ---- - -- -~~ - -
5 6 ... 

-------- -- - - - ---
8 9 ,--',. 

!! ~ --- -.. x100 bp ------- --
11 • • ::; == 

CONTROLS 

This peR yielded 2 products: a 190 bp fragment in the absence of the insertion and a 
490 bp fragment in the presence of a deletion. 
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ACE-II-PCR: INSERTION SPECIFIC PRIMER 
DNA: PROBANDS 

Mastermix: Dry Liquid Master: For 210 tubes 

Dry Liquid 

Buffer 1 1.3 3 min 94° 

MgCI 0.75 0.9 45 sec 94°C 

DNTP 1.25M 1 1.3 y 45 sec 6SoC 

Taq 0.03 0.03 120 sec nOc 
II P 1 (20~M) 0.13 0.15 3ijl.ci 10 min nOc 
II P 2 (20~M) 0.13 27.3 0.15 311.$ 

H2O 6.96 k.<f~1l~' 3.96 
~ 

8~~1;,,6, 

DNA-template 0 3 
TOTAL 10 14 

1 2 3 4 5 6 7 8 9 10 11 12 
A 2 10 U$ 26 37 44 63 99 137 159 H2O U$U 

I I I 3 I I I I I I 0 I 

B J 11 19 27 38 46 65 102 140 163 172 HI! 

I 3 I I I I I I I I 0 I 
C 4 12 20 30 39 49 77 103 144 164 174 1114 

I I I I I I I I I I I I 
D H2O \3 21 3t 40 54 n 105 145 165 175 IlS6 

0 I I I I I 3 I I I I I 
E 5 14 22 33 H2O 55 85 III 146 H2O 176 187 

3 I I I 0 I I I I 0 I I 
F 7 15 23 34 41 56 87 -rJ!J 147 107 177 tlSlS 

-
I I I I I I I I I I I 3 

G IS 16 24 J) 42 57 94 133 156 168 in 189 

I 3 I I I I 3 I I I 0 I 
H 9 17 25 36 43 60 93 lJI) 15"8 169 179 I'JO 

I I I I I I I I 3 I I I 

FIG 5: 

(See page 146) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 
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ACE-II-PCR: 

355 bp 

x100 bp 

FIG 5: ACE-II-PCR: PROBANDS 

This peR used a primer pair that recognises the insertion-specific sequence and 
identifies ID genotypes that have been misclassified as DD when only the flanking 
primer pair was used. Only the I allele produces a 355 bp amplicon, while the 
reaction yields no products in samples of the DD genotype. 



ACE-II-PCR: 
DNA: 

Buffer 
MgCI 
DNTP1.25M 
Taq 
II P 1 (20).tM) 
II P 2 (20).tM) 

H20 
DNA-template 

TOTAL 

1 
A I 

I 
B 2 

I 
C 3 

I 
D 4 

I 
E ) 

I 
F 6 

I 
G 7 

I 
H Il 

3 

FIG 6: 

2 
':I 

I 
10 

I 
11 

I 
12 

I 
u 

I 
14 

I 
15 

I 
16 

I 

INSERTION SPECIFIC PRIMER 
CONTROLS 

Mastermix: 
Dry 

1 
0.75 

1 
0.03 
0.13 
0.l3 

6.96 
o 
10 

3 
1I 

I 
III 

I 
19 

I 
lU 

I 
21 

3 
n 

I 
23 

I 
L4 

3 

4 
25 

3 
16 

I 
27 

I 
2!S 

I 
29 

3 
JU 

I 
31 

I 
3L 

I 

Dry 

5 6 
33 40 

3 0 
H1U 41 

0 I 
34 42 

I I 
35 4J 

I I 
36 44 

I I 
37 4) 

I I 
38 46 

0 0 
3':1 47 

0 3 

Liquid 

1.3 
0.9 
1.3 

0.03 
0.l5 
0.15 

3.96 
3 
14 

7 
415 

I 
4':1 

I 
50 

I 
H1U 

0 
AOO6 

I 
AUU4 

I 
AOO8 

I 
AOIO 

I 

Master: 
Liquid 

8 9 
AOl2 AOIlO 

3 I 
AOO5 A098 

I I 
AUl':l A 104 

I I 
AUL4 AIU6 

3 I 
tlUUJ Alms 

I I 
I3U04 AIU9 

3 3 
tluu5 AllU 

I I 
A064 HLU 

I 0 
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For 210 tubes 

3 min 94° 
45 sec 94°C 
45 sec 68°C 
120 sec nOc 
10 min nOc 

10 11 
Al 1':1 AI61 

I I 
AI20 A l62 

3 I 
AID AI66 

3 I 
Al 4':1 Al71 

3 I 
Al5u ALu5 

3 I 
Al54 AI70 

3 3 
Al57 A086 

I I 
Al6U 6CO 

I I 

(See page 148) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 
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ACE-II-PCR: 

355 bp 

x100 bp 

FIG 6: ACE-IT-PCR: CONTROLS 

This peR used a primer pair that recognises the insertion-specific sequence and 
identifies ID genotypes that have been misclassified as DD when only the flanking 
primer pair was used. Only the I allele produces a 355 bp amplicon, while the 
reaction yields no products in samples of the DD genotype: 



ACE-II-PCR: 
DNA: 

INSERTION SPECIFIC PRIMER 
PROBANDS & REPEATS 

Buffer 
MgCI 
DNTP 1.25M 
Taq 
11 P 1 (20I-lM) 
11 P 2 (20I-lM) 

H20 
DNA-template 

TOTAL 

1 
A 

B 

C 

D 

E 

F 

G 

H 
I 

FIG 7: 

2 

Mastermix: 
Dry 

1 
0.75 

1 
0.03 
0.13 
0.13 

6.96 
o 
10 

3 

I I 

4 

Dry Liquid 

1.3 
0.9 
1.3 

0.03 
0.15 
0.15 

3.96 
3 
14 

Master: 
Liquid 
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For 210 tubes 

3 min 94° 
45 sec 94°C 
45 sec 68°C 
120 sec nOc 

'. 10 min nOc 

(See page 150) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-4). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 
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ACE-II-PCR: 

355 bp x100 bp 

FIG 7: ACE-II-PCR: PROBANDS & REPEATS 

This peR used a primer pair that recognises the insertion-specific sequence and 
identifies ID genotypes that have been misclassified as DD when only the flanking 
primer pair was used. Only the I allele produces a 355 bp amplicon, while the 
reaction yields no products in samples of the DD genotype. 
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AGT-CORE PROMOTER-PCR 
DNA:PROBANDS 

Mastermix: Dry Liquid Master: For 110 tubes 

Dry Liquid 

Buffer 1 2.3 3 min 94° 

MgCI 0.4 0.75 45 sec 94°C 

dNTP 1.25M 1 1 . 30 sec 56 

Taq 0.03 0.03 45 sec nOc 
AGT-HAP-1 (lOf.LM) 0.5 0.5 10 min nOc 
AGT-HAP-2 (lOf.LM) 0.5 0.5 

H2O 6.57 14.92 

DNA-template 0 3 

TOTAL 10.0 23 

NEB 3 Buffer 2 ,lira 1= 11.~ 
Eag 1 enzyme 0.1 J'11[.0 2= ~G 37°C forever 

H2O 7.9 869 3= G(j. 
DNA-template 10 

1 2 3 4 5 6 7 8 9 10 11 12 
A 2 10 18 26 37 44 63 YY TJ7 IN rI2D u;u 

1 1 2 2 1 1 3 1 3 2 0 2 
B 3 11 lY 27 3~ 46 65 roY 140 163 172 l~l 

1 2 2 2 1 0 1 2 2 3 0 2 

C 4 12 20 30 3Y 4Y -77 T!IT 144 TI4 T74 1~4 

2 2 2 1 1 3 1 1 1 0 2 2 
D H2U 13 21 31 40 54 78 105 145 165 175 1~6 

0 1 1 3 1 2 1 2 3 2 2 1 
E 5 14 22 jj H2U --s5 115 ill 146 H2O 176 l~/ 

3 1 1 2 0 2 3 2 2 0 2 3 
F 7 15 23 34 41 56 87 rJ(J 147 167 177 l~~ 

1 1 3 1 2 2 1 2 1 3 3 2 
G 11 16 24 35 42 57 Y4 133 156 168 178 lilY 

2 2 2 2 1 2 2 2 1 2 0 2 
H 

y 11 25 36 43 6U Y3 136 158 169 179 IYO 

3 1 1 1 2 1 3 2 1 1 2 0 

FIG 8: 

(See page 152) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



AGT -CORE PROMOTER PCR: 

251 bp 
176 bp 
75 bp 

- f\. 

FIG 8: AGT G6~A CORE PROMOTER PCR: 

x100 bp 

PRO BANDS 

152 

After the digestion with Eag 1 enzyme the peR yielded three products: 75, 176 and 
251 bp fragments corresponding to GG, AG and AA genotypes respectively. 
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AGT-CORE PROMOTER-PCR 
DNA: CONTROLS 

Mastermix: Dry Liquid Master: For 110 tubes 

Dry Liquid 

Buffer 1 2.3 3 min 94° 

MgCI 0.4 0.75 45 sec 94°C 

dNTP 1.25M 1 1 . 30 sec 56 

Taq 0.03 0.03 45 sec nOc 
AGT-HAP-l (lOf,lM) 0.5 0.5 10 min nOc 
AGT-HAP-2 (10f,lM) 0.5 0.5 

H2O 6.57 14.92 

DNA-template 0 3 
TOTAL 10.0 23 

NEB 3 Buffer 2 
Eag 1 enzyme 0.1 37°C forever 

H2O 7.9 
DNA-template 10 

1 2 3 4 5 6 7 8 9 10 11 
A I 9 17 25 33 4U 415 AUl2 AU15U Alll) Al61 

2 2 0 3 1 0 2 2 2 2 2 
B 2 lU 115 26 H2U 41 4l) AUU~ AUl)15 A I2U AI62 

2 2 1 2 0 1 3 2 1 1 0 
C 3 11 Il) 27 34 42 5U AUI9 AlU4 A I23 AI66 

1 2 1 3 2 2 3 1 2 1 0 
D 4 12 2U 215 35 43 H2U AU24 AlU6 AI49 AI71 

2 2 2 3 1 2 0 2 3 0 1 
E 5 13 21 2l) 36 44 AU06 B003 A IU15 AISU AlUS 

1 2 2 1 0 3 3 1 1 0 0 
F 6 14 LL 3U 37 45 AUU4 I:lUU4 AI09 AI54 A I7u 

0 1 3 2 3 2 2 1 1 2 1 
G 7 15 23 31 38 46 AUU15 tWUS AllU A l 57 A086 

1 1 0 2 0 1 1 3 2 2 1 
H 15 16 24 32 39 47 Aulu AUM H2U AI6U A006 

1 1 2 1 0 1 1 2 0 0 1 

FIG 9: 

(See page 154) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



251 bp 
176 bp 
75 bp 

AGT -CORE PROMOTER PCR: 

FIG 9: AGT G6~A CORE PROMOTER PCR: 
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x100 bp 

CONTROLS 

After the digestion with Eag 1 enzyme the peR yielded three products: 75, 176 and 
251 bp fragments corresponding to GG, AG and AA genotypes respectively. 



AGT-CORE PROMOTER-PCR 
DNA: PROBANDS & REPEATS 

Buffer 
MgCI 
dNTP 1.25M 
Taq 
AGT-HAP-l (lO~M) 
AGT-HAP-2 (10~) 
H20 
DNA-template 

TOTAL 

NEB 3 Buffer 
Eag 1 enzyme 
H20 
DNA-template 

A 

B 

C 

D 

E 

F 

G 

H 
3 

FIG 10: 

1 

Mastermix: 

3 

1 

Dry 

1 
0.4 
1 

0.03 
0.5 
0.5 

6.57 
o 

10.0 

2 
0.1 
7.9 
10 

4 

Dry Liquid 

2.3 
0.75 

1 
0.03 
0.5 
0.5 

14.92 
3 

23 

Master: 
Liquid 

~2,99 

1111.S 
iltJ:o 
3'9' 
~e 

16§ 

~ ~It(f' 
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For 110 tubes 

3 min 94° 
45 sec 94°C 
30 sec 56 
45 sec nOc 
10 min nOc 

(See page 156) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-4). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 
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AGT -CORE PROMOTER PCR: 

FIG 10: AGT G6~A CORE PROMOTER PCR: 
PROBANDS AND REPEATS 

After the digestion with Eag 1 enzyme the peR yielded three products: 75, 176 and 
251 bp fragments corresponding to GG, AG and AA genotypes respectively. 
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ATI-PCR 
DNA:PROBANDS 

Mastermix: Dry Liquid Master: For 110 tubes 

Dry Liquid 

Buffer 1 ~l;Ol" 1.3 14~ 3 min 94° 

MgCI 0.6 i6'(r 0.9 99 45 sec 94°C 

DNTP 1.25M 1 :[.10 1.3 ·!lr43 30 sec 60°C 

Tag 0.02 f~~<2 0.03 .$'t~ 60 sec nOc 
AT-l (25f!M) 0.1 \bl 0.13 14~~ 10 min nOc 
AT-2 (25f!M) 0.1 1r4 .. , 0.13 14~ 

H2O 7.18 lJJlSt 4.18 \,,¥~$J~~' 

DNA-template 0 3 

TOTAL 10 13 

Dde 1 ()lL) 0.2 0.2 

BufferNr.3 2 2.3 37°C forever 

H2O 7.8 7.8 

1 2 3 4 5 6 7 8 9 10 11 12 
A 2 10 us 26 37 44 63 99 137 159 H2O 180 

1 1 1 1 1 1 1 1 1 1 0 1 

B 3 11 19 27 38 46 65 102 140 163 T7L 181 

1 1 1 1 1 1 1 1 1 1 (0) 1 

C 4 12 20 30 39 49 77 103 144 164 174 T84 

1 1 1 1 2 1 1 1 1 1 1 1 
D H2O 13 21 31 40 54 78 105 145 165 175 186 

0 1 1 1 1 2 1 1 1 1 1 1 
E 5 14 22 33 H2O 55 85 1fT 140 -mrr 176 187 

1 1 1 1 0 1 1 2 1 0 1 1 
F 7 15 23 34 41 56 87 130 147 [67 T77 III 

1 1 1 1 1 2 1 1 1 (1) 1 1 
G 8 16 24 35 42 57 94 133 150 108 178 189 

1 1 1 1 1 1 1 2 1 (1) (0) 1 
H '} 17 25 36 43 60 93 136 1)8' 169 179 190 

1 1 1 2 1 1 2 1 (1) 1 1 1 

FIG 11: 

(See page 158) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 
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ATI-PCR: 

x100 bp 

FIGll:ATlPCR: PROBANDS 

After digestion with Dde I restriction endonuclease restriction the resulting fragments 
were size fractionated on 2% agarose gels yielding bands corresponding to AA, AC, 
and CC genotypes. 



ATI-PCR 
DNA: CONTROLS 

Buffer 
MgCI 
dNTP 1.25M 
Taq 
AT-l (25f..lM) 
AT-2 (25f..lM) 
H20 
DNA-template 

TOTAL 

Dde 1 (f..lL) 
BufferNr.3 
H20 

1 
A I 

2 
B 2 

2 
C 3 

1 
D 4 

1 
E 5 

1 
F 6 

(0) 
G 7 

1 
H Il 

1 

FIG 12: 

2 
'i 

1 
IU 

1 
11 

2 
l:l 

(0) 
13 

1 
14 

1 
15 

1 
16 

1 

Mastermix: 

3 
17 

1 
18 

1 
19 

2 
W 

1 
--zT 

1 
-n. 

1 
23 

(0) 
24 

1 

Dry 

1 
0.6 
1 

0.02 
0.1 
0.1 

7.18 
o 
10 

0.2 
2 

7.8 

4 
25 

1 
26 

1 
27 

1 
28 

2 
29 

1 
30 

1 
31 

2 
32 

1 

5 
33 

1 
H2U 

0 
34 

1 
35 

1 
36 

1 
37 

1 
38 

(0) 
39 

(0) 

Dry 

14 
.!lmf.~ .. 

6 
40 

(0) 
41 

1 
42 

1 
43 

2 
44 

1 
45 

1 
46 

1 
47 

1 

Liquid 

7 
.4[ 

1 
4'i 

1 
50 

1 
H2U 

0 
AU06 

2 
AUU4 

1 
A008 

2 
AOIO 

1 

1.3 
0.9 
1.3 

0.03 
0.13 
0.13 
4.18 

3 
13 

0.2 
2.3 
7.8 

8 
AOU 

1 
ADDS 

1 
AOlY 

(0) 
AU24 

2 
B003 

1 
B004 

1 
BOOS 

1 
A064 

1 

Master: 
Liquid 

~~' 

tS.2 
' S.2 

Sri.2 

9 10 
A080 All9 

1 1 
AOY8 Al20 

1 1 
Al04 AI23 

1 1 
Aro6 A149 

1 1 
Al08 Al50 

1 1 
AIOY AlS4 

1 2 
A110 AI57 

1 1 
H2O AI60 

0 1 
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For 140 tubes 

3 min 94° 
45 sec 94°C 
45 sec 60°C 
60 sec nOc 
10 min nOc 

11 12 
AI61 20-2 

1 2 
AI62 23-2 

(0) 2 
AI66 27-2 

2 3 
AI71 50-2 

1 3 
ALU5 62-2 

(0) 2 
A I7U 04=2-

1 3 
A086 ""'7T-'I 

2 3 
A006 74-2 

1 2 

(See page 160) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



AA 
AC 

ATI-PCR: 

FIG 12: ATl PCR: CONTROLS & BFU HETEROZYGOTES 
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x100 bp 

After digestion with Dde I restriction endonuclease restriction the resulting fragments 
were size fractionated on 2% agarose gels yielding bands corresponding to AA, AC, 
and CC genotypes. Row 12 shows positive controls for heterozygotes (AC) and the 
rare CC genotypes. 



ATI-PCR 
DNA:PROBANDS + REPEATS 

Buffer 
MgCI 
dNTP 1.25M 
Taq 
AT-l (25/-lM) 
AT-2 (25/-lM) 
H2O 
DNA-template 

TOTAL 

Dde 1 (/-lL) 
BufferNr.3 
H2O 

A 

B 

C 

D 

E 
1 

F 
2 

G 

H 
1 

FIG 13: 

Mastermix: 
Dry 

1 
0.6 
1 

0.02 
0.1 
0.1 
7.18 

0 
10 

0.2 
2 

7.8 

1 1 

o 2 

1 (2) 

2 1 

110 tubes 

'l2c 
2~6~ 

'tgli 

o o 

30 tubes 

() 

((O,e 
'2~4 

161 

3 min 94° 
45 sec 94°C 
45 sec 60°C 
60 sec nOc 
10 min n Oc 

(See page 162) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-4 above & 1-3 below). The molecular weight marker is a 100 bp 
ladder. Control samples are indicated as water (H20). 



AA 
AC 

ATI-PCR: 

FIG 13: ATI peR: PROBAND & REPEATS 
Probands (top) and Repeats (below) 

162 

x100 bp 

After digestion with Dde I restriction endonuclease restriction the resulting fragments 
were size fractionated on 2% agarose gels yielding bands corresponding to AA, AC, 
and CC genotypes. 
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CYPIIJ32-PCR 
DNA: PROBANDS 

Mastermix: Dry Liquid Master: For 210 tubes 

Dry Liquid 

Buffer 1 2.5 3 min 94° C 

MgCI 0.75 1.8 45 sec 94°C 

DNTP 1.25M 1 2.5 45 sec 52°C 

Taq 0.03 0.03 60 sec nOc 
Primer 171 (5Ol-,M) 0.2 0.5 

Primer 304 (50JlM) 0.2 0.5 10 min nOc 
H2O 6.82 12.17 

DNA-template 0 5 

TOTAL 10 25 

RESTRICTION: 
Neb2 2 t =If'~ 
HAE3 Enzyme 0.1 2= "PE 2 Hrs 37° C 

H2O 7.9 ':II6'S9 ,3=CC 

1 2 3 4 5 6 7 8 9 10 11 12 
A L 10 us L6 37 44 63 ':1':1 137 15':1 H2O 180 

1 1 3 2 2 2 1 1 2 2 0 2 
B 3 11 1':1 27 38 46 65 102 140 163 17L 181 

2 2 2 2 2 2 3 1 2 1 2 1 
C 4 12 LU 3U 39 49 77 1U3 144 164 114 llH 

1 1 2 2 3 2 1 1 1 1 1 3 
D H2O 13 21 31 40 54 7Il 105 145 165 115 186 

0 2 3 2 2 1 2 1 0 1 1 1 
E 5 14 22 33 H2O 55 85 III 146 liLU 116 Itn 

0 1 2 1 0 3 1 1 1 0 2 2 
F 7 15 23 34 41 56 S7 130 147 167 177 -T88 

3 1 2 0 2 1 1 1 2 1 3 3 
G S 16 24 35 42 57 94 Jj3 1)6 161S I llS 189 

2 2 1 2 2 2 2 2 2 2 2 2 
H ':I 11 L) 36 43 60 93 136 ISS Ib,:} 11':1 190 

1 2 2 1 3 3 2 1 1 1 1 1 

FIG 14: 

(See page 164) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 
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CYPll~2 PCR: 

FIG 14: CYPllJ}2 PCR for Aldosterone Synthase Polymorphism: PROBANDS 

After digestion with HAE 3 enzyme the reaction yielded three products: 231, 140 and 
91 bp fragments corresponding to the TT, CT and CC genotypes respectively. 



CYPIIB2-PCR 
DNA: CONTROLS 

Buffer 
MgCI 
DNTP 1.25M 
Taq 
Primer 171 (50JlM) 
Primer 304 (50JlM) 
H20 
DNA-template 

TOTAL 

RESTRICTION: 
Neb 2 

1 2 
A I '! 

1 1 
B 2 10 

1 1 
C J 11 

2 3 
D 4 12 

1 2 
E 5 U 

1 2 
F 6 14 

2 2 
G 7 15 

2 2 
H II 16 

2 2 

FIG 15: 

Mastermix: 

3 
17 

2 
III 

2 
I'! 

2 
1.U 

2 
1. 1 

2 
l.l. 

2 
D 

1 
24 

2 

Dry 

1 
0.75 

1 
0.03 
0.2 
0.2 
6.82 
o 
10 

2 
0.1 
7.9 

4 
2) 

1 
26 

1 
1.1 

1 
28 

1 
1.'! 

2 
JU 

2 
JI 

2 
32 

1 

Dry 

. 4J:O' 
, ", '!,!: 

"~9 

5 6 
JJ 4U 

2 1 
H2O 41 

0 2 
J4 41. 

3 1 
3 5 43 

2 2 
J6 44 

1 2 
J7 4) 

1 2 
3ll 46 

0 2 
3'! 4 7 

1 2 

Liquid 

2.5 
1.8 
2.5 
0.03 
0.5 
0.5 

12.17 
5 

25 

7 
411 

2 
4'! 

1 
5u 

1 
H2O 

0 
AUU6 

2 
AUU4 

2 
AOOll 

3 
AUIU 

1 

8 
AUIL 

2 
A005 

1 
AUI'! 

2 
A024 

1 
BUUJ 

1 
tlUU4 

1 
BOOS 

1 
AUM 

0 

Master: 
Liquid 

r ~-\Ifl'f 
, j,=,.~ 
3=.~t 

9 
AUIIU 

1 
AU'!ll 

2 
AIU4 

2 
AlU6 

2 
AiUll 

3 
AIO'! 

1 
AllU 

3 
H2O 

0 

,: 

10 
AI19 

2 
AI2U 

2 
AID 

2 
A14'! 

1 
A I5U 

2 
AIS4 

1 
AIS7 

2 
A lbU 

2 
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For 210 tubes 

3 min 94° C 
45 sec 94°C 
45 sec 52°C 
60 sec 72°C 

2 Hrs 37° C 

11 
A I61 

3 
AI62 

0 
AI66 

2 
A liI 

2 
AlUS 

1 
A I70 

1 
AUllb 

2 
6CO 

2 

(See page 166) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



CYPll~2 PCR: 

231 bp 
140 bp 
91 bp 

x100 bp 

166 

FIG 15: CYPll~2 PCR for Aldosterone Synthase Polymorphism: CONTROLS 

After digestion with HAE 3 enzyme the reaction yielded three products: 231 , 140 and 
91 bp fragments corresponding to the TT, CT and CC genotypes respectively. 



CYPll J32-PCR 
DNA: PROBANDS+REPEATS 

Buffer 
MgCI 
DNTPl.25M 
Taq 
Primer 171 (50f.!M) 
Primer 304 (50f.!M) 
H20 
DNA-template 

TOTAL 

RESTRICTION: 
Neb2 

A 

B 

C 

D 

E 

F 

G 

H 
2 2 

FIG 16: 

Mastermix: 

2 

Dry 

1 
0.75 

1 
0.03 
0.2 
0.2 

6.82 
o 
10 

2 
0.1 
7.9 

0 

Dry 

SO:' 
Mii 
50 

Liquid 

2.5 
1.8 
2.5 

0.03 
0.5 
0.5 

12.17 
5 

25 

Master: 
Liquid 

167 

For 50 tubes 

3 min 94° C 
45 sec 94°C 
45 sec 52°C 
60 sec nOc 

(See page 168) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-5). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 



231 bp 
140 bp 

91 bp 

FIG 16: 

CYPll~2 PCR: 

CYPll~2 peR FOR ALDOSTERONE SYNTHASE 
POLYMORPHISM: PROBANDS & REPEATS 

168 

After digestion with HAE 3 enzyme the reaction yielded three products: 231, 140 and 
91 bp fragments corresponding to the TT, CT and CC genotypes respectively. 
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11 p-HSD2 - peR 
DNA: PROBANDS 

Mastermix: Dry Liquid Master: For 210 tubes 

Dry Liquid 

Buffer 2 

MgCI 0.75 
DNTP 1.25M 1 
Taq 0.03 '~'Ia ' 
DMSO 1 ·no 
Primer HSD 540A (5J.!M) 0.4 8'4 

2.5 3 min 94° C 

0.75 , 30 sec 94°C 
1 2'10 30 sec 63°C 

0.03 '6.3 30 sec nOc 
1 210 
4 840 10 min nOc 

Primer HSD 870B (5J.!M) 0.4 4 

H2O 14.42 6.n 
~ 

DNA-template 0 5 

TOTAL 20 25 

RESTRICTION: 
ALu 1 Enzyme 0.2 
NE Buffer 2 3 
H2O 6.8 

1 2 3 4 5 6 7 8 9 10 11 12 
A 2 tu 18 26 37 44 63 99 137 TW -mu IW 

1 1 1 1 1 1 1 1 1 1 0 1 

B J I1 19 27 38 46 65 102 140 163 172 181 

1 1 1 1 1 1 1 1 1 1 1 1 

C 4 12 20 :l0 39 49 77 -103 144 164 174 184 

1 1 1 1 1 1 1 1 1 1 1 1 

D H2U JJ 21 JI 40 54 78 -105 145 lO'5" 175 l8b 

0 1 1 1 1 1 1 1 0 1 1 1 
E 5 14 22 33 H2O 55 85 111 146 H2O 176 -r87 

1 1 1 1 0 1 1 1 1 0 1 1 
F 7 15 23 34 41 56 87 130 147 107 TI7 TI&" 

1 1 1 1 1 1 1 1 0 1 1 1 
G 8 16 24 35 42 57 94 JJ3 156 168 178 lSg 

1 1 1 1 1 1 1 1 1 1 1 1 
H 9 17 25 36 43 60 93 JJ6 158 169 179 lW 

1 1 1 1 1 1 1 2 1 1 1 1 

FIG 17: 

(See page 170) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 
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11~-HSD2 - peR: 

x100 bp 

GA 

FIG 17: peR For I1Jl-Hydroxysteroid Dehydrogenase Polymorphism: 
PROBANDS 

After digestion with Alu-l enzyme the peR yielded 2 products corresponding to GG 
and AG genotypes. Only one proband coded for the heterozygote (GA No. 136). 
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11 p-HSD2 - peR 
DNA: PROBANDS + REPEATS + BFU HETEROZYGOTES 

Buffer 
MgCI 
DNTP 1.25M 
Taq 
DMSO 
Primer HSD 540A (5f.lM) 
Primer HSD 870B (5f.lM) 
H20 
DNA-template 

TOTAL 

RESTRICTION: 
ALu 1 Enzyme 
NE Buffer 2 
H20 

A 

B 

C 

D 

E 

F 

G 

H 
1 

FIG 18: 

1 1 

Mastermix: 
Dry 

2 
0.75 

1 
0.03 

1 
0.4 
0.4 

14.42 
o 

20 

0.2 
3 

6.8 

2 1 

Dry 

~~, 

ttlr~§":'6 

1 

Liquid 

1 

2.5 
0.75 

1 
0.03 

1 
4 
4 

6.n 
5 

25 

Master: 
Liquid 

For 80 tubes 

3 min 94° C 
30 sec 94°C 
30 sec 63°C 

~i4 . 30 sec n Oc 
!8li 

~~O 10 min n Oc 
~~D 

Stn.6 

4 Hrs 37° C 

(See page 172) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-8). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 
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11~-HSD2 - peR: 

GG 

GA 

FIG 18: peR for IlJ3-Hydroxysteroid Dehydrogenase Polymorphism: 
PROBANDS & REPEATS & BFU HETEROZYGOTES 

After digestion with Alu-l enzyme the peR yielded 2 products corresponding to GG 
and AG genotypes. Since the rare - 534A allele was not identified the peR reaction 
known from BFU heterozygotes as positive controls (coded yellow) and the results of 
the peR confmned. 
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IlB-HSD2 - PCR 
DNA: CONTROLS 

Mastermix: Dry Liquid Master: For 210 tubes 

Dry Liquid 

2.5 " 3 min 94° C Buffer 2 
MgCI 0.75 0.75 , 30 sec 94°C 

DNTP 1.25M 1 1 '" 30 sec 63°C 

Taq 0.03 0.03 , 30 sec nOc 
DMSO 1 1 

Primer HSD 540A (5f.!M) 0.4 4 10 min nOc 
Primer HSD 870B (5f.!M) 0.4 4 

H2O 14.42 6.n 
DNA-template 0 5 

TOTAL 20 25 

RESTRICTION: 
ALu 1 Enzyme 0.2 4"2' 1 == 'l~"G 
NE Buffer 2 3 ~ ='~Q;lA, 4 Hrs 37° C 

H2O 6.8 ' J~~~ . 

1 2 3 4 5 6 7 8 9 10 11 
A I 9 17 25 :53 40 48 A012 A080 AII9 AI61 

1 1 1 1 1 0 0 1 1 1 1 
B 2 10 18 26 H2O 41 4lJ f\U05 ~ ATIlJ A10T 

1 1 1 1 0 0 1 1 1 1 0 

C 3 II 19 27 34 42 50 AOl9 A104 Al23 Al66 

1 1 1 1 1 1 1 1 1 1 1 
D 4 12 2U 2~ 35 43 H2O AlJ24 ArUb Al49" AT7T 

1 1 1 1 1 1 0 1 1 0 1 
E 5 13 21 2lJ 36 44 A006 B003 AI08 Al50 A2lY) 

1 1 1 1 0 1 1 1 1 1 0 
F 6 14 22 30 37 45 A004 8004 A 109 AI 54 AI70 

1 1 1 1 1 1 1 1 1 1 1 
G 7 IS 23 31 3S 46 AUOS B005 AIIO Af57 AU80 

1 1 1 1 0 1 1 1 1 1 1 
H 8 16 24 32 3lJ 47 AUIO A064 H2O ATO(J 6CO 

1 1 1 1 0 1 1 1 0 1 1 

FIG 19: 

(See page 174) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 
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11~-HSD2 - peR: 

GG 

FIG 19: PCR for l1~-Hydroxysteroid Dehydrogenase Polymorphism: 
CONTROLS 

After digestion with Alu-l enzyme the peR yielded 2 products corresponding to GG 
and AG genotypes. However, only the GG genotypes was identified. 



TGF-pl peR: 
DNA: 

Buffer 
MgCI (25Mm) 
dNTP 1.25M 

Taq 5U/Ill 
TSG ~ 1 (20IlM) 
TSG ~2 (201lM) 
TSG ~3 (20IlM) 
H20 
DNA-template 

TOTAL 

1 
A 1. 

1 
B 3 

1 
C 4 

1 
D H2O 

0 
E 5 

1 
F 7 

1 
G 8 

1 
H Y 

1 

FIG 20: 

2 
IU 

1 
11 

1 
11. 

1 
13 

1 
14 

1 
15 

1 
16 

1 
17 

1 

PROBANDS 

Mastermix: 
Dry 

1 
0.6 

0.25 
0.05 
0.05 

0.045 
0.075 
7.93 
o 

10 

3 
HI 

1 
l~ 

1 
1.U 

0 
21 

1 
l.l. 

1 
23 

1 
24 

1 
1.5 

1 

4 
1.6 

1 
27 

1 
jU 

1 
JI 

1 
jj 

1 
34 

1 
35 

1 
36 

1 

Dry 

2200 

5 
37 

1 
38 

1 
3Y 

1 
40 

1 
H2O 

0 
41 

1 
42 

1 
43 

1 

6 7 8 9 
44 63 YY ITI 

1 1 1 1 
46 65 102 140 

1 1 1 1 
49 77 103 144 

1 1 1 1 
54 78 105 145 

1 1 1 0 
55 liS III 146 

1 1 1 1 
56 87 130 14) 

1 1 1 1 
57 ~4 IJj ISo 

1 1 1 1 
60 93 1J0 1515 

1 1 1 1 

10 
D~ 

1 
163 

1 
164 

1 
165 

1 
H1.U 

0 
10 1 

1 
IbIS 

1 
lo~ 

1 

175 

For 220 tubes 

3 min 94° 
45 sec 94°C 
45 sec 68°C 
60 sec nOc 
10 min nOc 

11 12 
H1.U 11IO 

0 1 
I'll. 181 

0 1 
174 184 

1 1 
175 186 

1 1 
1'16 187 

1 1 
177 188 

1 1 
I III 189 

0 1 
I /~ 190 

1 1 

(See page 176) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



TGF-~l peR: 

FIG 20: TGF-f31 PCR :MUTAGENICALLY-SEPARATED peR ASSAY 
PRO BANDS 

176 

x100 bp 

150 bp 

Three primers were used in a single reaction mix to yield two products. In the 
presence of Thr 263 a peR product of 150 bp was amplified, whereas a 129 bp 
fragment was amplified in the presence of the Ile 263 variant. Since no individual 
homozygous for the rare allele (lie 263) was identified the peR was repeated using 
known heterozygotes and the results of the peR confirmed. 



TGF-pt peR: 
DNA: 

Buffer 
MgCI (25Mm) 
dNTP 1.25M 
Taq 5U/f.!1 
TSG 131 (20f.!M) 
TSG 132 (20f.!M) 
TSG 133 (20f.!M) 
H20 
DNA-template 

TOTAL 

A 

B 

C 

D 

E 

F 

G 

H 
1 

FIG 21: 

1 

PROBANDS & REPEATS 

Mastermix: 
Dry 

1 
0.6 
0.2 
0.05 
0.05 

0.045 
0.075 
7.93 
o 

10 

1 

Dry 

2200 

4 5 6 

2 0 

177 

For 60 tubes 

3 min 94° 
45 sec 94°C 
45 sec 68°C 
60 sec nOc 
10 min nOc 

(See page 178) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-6). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 
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TGF-~l peR: 

x100 bp 

Thr263 

lie 263 

FIG 21: TGF-J31 PCR: MUTAGENICALLY-SEPARATED PCR ASSAY 
PROBANDS & REPEATS: 

Three primers were used in a single reaction mix to yield two products. In the 
presence of Thr 263 a peR product of 150 bp was amplified, whereas a 129 bp 
fragment was amplified in the presence of the He 263 variant. Since no individual 
homozygous for the rare allele (Ile 263) was identified the peR was repeated using 
known heterozygotes and the results of the peR confrrmed. 
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TGF-(31 PCR: 
DNA: CONTROLS 

Mastermix: Dry For 110 tubes 

Dry 

Buffer 1 3 min 94° 

MgCI(25Mm) 0.6 45 sec 94°C 

dNTP 1.25M 0.25 45 sec 68°C 

Tag 5U/f.l1 0.05 60 sec nOc 
TSG [31 (2Of.lM) 0.05 §~~ 10 min nOc 
TSG [32 (20f.lM) 0.045 4.~i 

TSG [33 (20f.lM) 0.075 t~~ 
H2O 7.93 ff ~ 6 
DNA-template 0 

TOTAL 10 

1 2 3 4 5 6 7 8 9 10 11 
A I ':I 17 25 33 4U 4l! AUI2 A080 AI19 Am 

1 1 1 1 1 0 1 1 1 1 1 
B 2 IU 18 26 H2O 41 49 A005 AU':Il! AI2U AI62 

1 1 1 1 0 1 1 1 1 1 0 

C 3 I1 19 27 J4 42 51r AllTII AIU4 AID AI66 

1 1 1 1 1 1 1 1 1 1 1 
D 4 12 20 28 35 43 H2O A024 A106 Al49 AI71 

1 1 1 1 1 1 0 1 1 1 1 
E ~ 13 LT --zg- 36 44 A006 BOO3 AlUl! AISU ALUS 

1 1 1 1 0 1 1 1 1 1 1 
F 6 14 22 30 J7 4~ A004 B004 AI 0':1 AIS4 A17TJ 

1 1 1 1 1 1 1 1 1 1 1 
G 7 15 23 31 38 46 AOOl! BOOS AIIO AlS7 AIT80 

1 1 1 1 0 1 1 1 1 1 1 
H 11 16 24 32 3':1 47 AOITJ A064 H2O AI6U 006 CO 

1 1 1 1 0 1 1 1 0 1 1 

FIG 22: 

(See page 180) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 
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TGF-~l peR: 

Thr263 

x100 bp 

FIG 22: TGF-JH PCR: MUTAGENICALLY-SEPARATED PCRASSAY: 
CONTROLS 

Three primers were used in a single reaction mix to yield two products. In the 
presence of Thr 263 a peR product of 150 bp was amplified, whereas a 129 bp 
fragment was amplified in the presence of the Ile 263 variant. Since no individual 
homozygous for the rare allele (Ile 263) was identified the peR was repeated using 
known heterozygotes and the results of the peR confirmed. 



MTHFR-PCR 
DNA: PROBANDS 

Buffer 
MgCI 
DNTP 1.25M 
Taq 
MTHFR-S (6).lM) 
MTHFR-AS( 6).lM) 
H20 
DNA-template 

TOTAL 

RESTRICTION: 
Hinf 1 

1 2 
A L 10 

1 3 
B 3 II 

1 1 
C 4 12 

2 2 
D HLO U 

0 1 
E 5 14 

1 1 
F 7 15 

1 1 
G 8 16 

1 1 
H 9 17 

2 2 

FIG 23: 

Mastermix: 

3 
18 

1 
19 

1 
20 

1 
L I 

2 
U 

1 
23 

1 
24 

1 
25 

1 

Dry 

1 
0.6 
l.6 

0.03 
1 
1 

4.77 
o 
10 

0.1 
2 

7.9 

4 
26 

1 
L7 

1 
30 

1 
31 

1 
JJ 

1 
34 

1 
35 

2 
36 

1 

5 
37 

1 
Jt! 

1 
39 

1 
4U 

1 
HLO 

0 
41 

1 
42 

2 
43 

2 

Dry 

6 7 
44 63 

1 1 
46 6) 

1 1 
49 77 

1 1 
)4 I t! 

1 2 
55 85 

1 1 
56 87 

1 2 
57 Y4 

1 1 
60 YJ 

2 1 

Liquid 

1.3 
0.9 
l.3 

0.03 
0 .13 
0.13 
1.77 

13 

0.2 
2.3 
7.9 

8 
99 

1 
JUL 

1 
103 

1 
lu5 

1 
III 

1 
IJU 

1 
UJ 

1 
U6 

1 

Master: 
Liquid 

9 
1J7 

1 
14U 

1 
144 

1 
145 

0 
146 

1 
14'1 

1 
156 

1 
1511 

1 

(j~6' 

'2I8J6· 
t Si6 
~;S~t4. 

10 
159 

1 
16J 

2 
164 

1 
165 

1 
H2O 

0 
167 

1 
168 

1 
169 

1 

181 

For 220 tubes 

3 min 94° C 
15 sec 94°C 
45 sec 5SoC 
45 sec n Oc 

11 12 
HLO IlW 

0 1 
17L 1t!1 

0 1 
174 184 

1 1 
175 186 

2 1 
1/6 1t!7 

2 1 
177 188 

2 1 
178 189 

1 2 
179 IYU 

1 1 

(See page 182) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



246 bp 
175 bp 

71 bp 

FIG 23: 

MTHFR-PCR: 

MTHFR C677T PCR: PROBANDS 

182 

x100 bp 

After digestion with Hinf I restriction endonuclease the PCR yielded three products: 
246, 175, 71 bp fragments corresponding to the CC, CT and TT genotypes 
respectively. 
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MTHFR-PCR 
DNA: CONTROLS 

Mastermix: Dry Liquid Master: For 220 tubes 

Dry Liquid 

Buffer 1 1.3 3 min 94° C 

MgCI 0.6 0.9 15 sec 94°C 

DNTP 1.25M 1.6 1.3 45 sec 58°C 
;±t 

45 sec nOc Taq 0.03 0.03 

MTHFR-S (6f.iM) 1 0.13 

MTHFR-AS(6f.iM) 1 0.13 10 min nOc 
H2O 4.77 1.77 

DNA-template 0 
TOTAL 10 13 

RESTRICTION: 
Hinf 1 0.1 0.2 4;:4 
BufferNr.2 2 2.3 'io'(j, 20 Hrs 37° C 

H2O 7.9 7.9 ." .. .(~:S~ 
~ 

1 2 3 4 5 6 7 8 9 10 11 
A I 9 17 2) 33 40 48 AOl2 A080 All9 iUOI 

2 1 1 1 1 0 1 1 1 3 1 

B 2 IU 18 26 H2O 41 49 AOOS A098 AIW AIbL 

2 1 1 1 0 1 1 1 3 1 0 

C 3 1I IY 27 34 42 SO AOl9 AI04 AI23 AI66 

1 1 1 1 1 1 1 1 1 2 1 
D 4 12 2U 28 35 43 H2O -AD2'1 AlO6 A149 . Am 

1 1 1 1 2 1 0 1 1 2 1 

E 5 13 21 29 36 44 A006 B003 AI08 AlSO ALU) 

1 1 1 2 0 1 1 1 1 1 1 
F 6 14 U 30 37 45 AOO4 13004 109 AI54 A170 

1 1 1 2 1 1 1 1 1 1 1 
G 7 15 n 31 38 46 A008 BOOS AIIO A157 AG&o 

1 2 1 2 0 2 2 2 1 1 1 
H IS 16 24 32 39 47 AOIO A064 H2O AI60 6CO 

1 1 2 1 0 1 1 1 0 1 1 

FIG 24: 

(See page 184) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



FIG 24: 

246 bp 
175 bp 

71 bp 

MTHFR-PCR: 

MTHFR C677T PCR: CONTROLS 

184 

After digestion with Hinf I restriction endonuclease the PCR yielded three products: 
246, 175, 71 bp fragments corresponding to the CC, CT and TT genotypes 
respectively. 



MTHFR-PCR 
DNA: PROBANDS + REPEATS 

Buffer 
MgCI 
DNTP 1.25M 
Taq 
MTHFR-S (6/-lM) 
MTHFR-AS(6/-lM) 
H20 
DNA-template 

TOTAL 

RESTRICTION: 
Hinf 1 
BufferNr.2 
H20 

A 

B 

C 

D 

E 

F 

G 

H 
1 

FIG 25: 

1 

Mastermix: 

1 

Dry 

1 
0.6 
1.6 

0.03 
1 

4.77 
o 
10 

0.1 
2 

7.9 

1 

Dry 

2 

Liquid 

1.3 
0.9 
1.3 

0.03 
0.13 
0.13 
1.77 

13 

0.2 
2.3 
7.9 

Master: 
Liquid 

,110 
~t,i 
39:5 

185 

For 50 tubes 

3 min 94° C 
j' 15 sec 94°C 
I 45 sec 58°C 
" ° 45 sec 72 C 

" ° 10 min 72 C 

20 Hrs 37° C 

(See page 186) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-5). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 



246 bp 
175 bp 

71 bp 

FIG 25: 

186 

MTHFR-PCR: 

,x100 bp 

MTHFR C677T PCR: PROBAND REPEATS 

After digestion with Hinf I restriction endonuclease the PCR yielded three products: 
246, 175, 71 bp fragments corresponding to the CC, CT and TT genotypes 
respectively. 



G-PROTEIN-PCR 
DNA:PROBANDS 

Mastermix: 
Dry 

Buffer 1 
MgCI 0.75 
DNTP 1.25M 1 
Tag 0.02 

GPROT 1+2 (20~M) 0.26 

H2O 6.97 
DNA-template 0 

TOTAL 10 

DSE D 1 (~L) 0.6 
Buffer Nr.Y 1.8 
BSA 1: 10 1 
H2O 6.6 

1 2 3 4 5 
A 2 tu I~ 26 37 

2 3 2 2 2 

B 3 11 1':1 n ,;~ 

3 2 2 2 3 
C 4 12 20 30 3Y 

2 2 2 3 3 
D H2U 13 21 31 40 

0 3 2 2 3 
E 5 14 22 33 H2U 

3 2 1 3 0 
F 7 15 23 34 41 

2 3 3 2 2 
G II 16 24 35 42 

2 2 3 2 3 
H 

') 17 25 ';0 43 

3 3 3 2 3 

FIG 26: 

Dry Liquid 

,1~liO 1.5 
1.2 
1.5 

0.03 

0.4 
5.37 

5 
15 

0.6 
2.2 
1.0 
6.2 

6 7 8 
44 63 YY 

2 0 2 
46 65 102 

3 1 3 
49 77 103 

3 3 2 
54 711 105 

3 2 3 
55 85 III 

2 2 2 
56 87 UO 

0 3 2 
57 94 UJ 

2 3 3 
00 YJ 136 

2 3 2 

Master: 
Liquid 

9 
137 

2 
140 

3 
144 

3 
145 

2 
146 

3 
141 

3 
150 

3 
158 

2 

~(j5 

.~~ 
ll(Jji' 
~.J . 

10 
ISY 

3 
163 

2 
164 

2 
165 

3 
H2U 

0 
107 

2 
16!! 

2 
10':1 

3 

187 

For 110 tubes 

3 min 94° 
45 sec 94°C 
45 sec 60°C 
60 sec nOc 

2 Hrs 60° C 

11 12 
H2U IlSU 

0 0 
172 181 

2 3 
174 184 

2 3 
175 1116 

3 3 
lIo Ill / 

3 2 
177 Illll 

2 1 
I7S 189 

(3) 3 
1I':I IYO 

1 3 

(See page 188) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-12). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



268 bp 
152 bp 
116 bp 

FIG 26: G-PROTEIN: 

G-PROTEIN peR: 

PRO BANDS 

188 

x100 bp 

After digestion with BSE DI restriction endonuclease the PCR yielded 3 products: 
268, 152 116 bp fragments corresponding to the TT, TC and CC genotypes 
respectively. 



G-PROTEIN-PCR 
DNA:PROBANDS & REPEAT CONTROLS 

Mastermix: Dry Liquid 
Dry 

Buffer 1 ~O 1.5 

MgCI 0.75 3.~;$ 1.2 

DNTP 1.25M 1 .$0) 1.5 

Taq 0.02 1 0.03 

GPROT 1+2 (20f.!M) 0.26 l~~ 0.4 

H2O 6.97 . ,cl~J!Slf$~5 ..... 5.37 

DNA-template 0 5 

TOTAL 10 15 

DSE D 1 (f.!L) 0.6 0.6 

BufferNr.Y 1.8 2.2 
BSA 1: 10 1 1.0 
H2O 6.6 6.2 

A 

B 

C 

D 

E 

F 

G 

H 
2 1 3 3 0 

FIG 27: 

Master: 
Liquid 

7"!r 
'GO 
'1~ 

l.i 

~Ot 
i(68:;5 

189 

For 110 tubes 

3 min 94° 
45 sec 94°C 
45 sec 60°C 
60 sec nOc 

2 Hrs 60° C 

(See page 190) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-6). The molecular weight marker is a 100 bp ladder. Control samples 
are indicated as water (H20). 



268 bp 
152 bp 
116 bp 

FIG 27: G-PROTEIN: 

G-PROTEIN peR: 

PROBANDS & REPEATS 

190 

x100 bp 

After digestion with BSE DJ restriction endonuclease the PCR yielded 3 products: 
268, 152: 116 bp fragments corresponding to the TT, TC and CC genotypes 
respectively. 
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G-PROTEIN-PCR 
DNA: CONTROLS 

Mastermix: Dry Liquid Master: For 110 tubes 

Dry Liquid 

Buffer 1 1.5 3 min 94° 

MgCI 0.75 1.2 45 sec 94°C 

DNTP 1.25M 1 1.5 45 sec 60°C 

Taq 0.02 0.03 60 sec nOc 

GPROT 1 +2 (20f.lM) 0.26 0.4 10 min nOc 
H2O 6.97 5.37 

DNA-template 0 5 

TOTAL 10 15 

DSE D 1 (f.lL) 0.6 0.6 

BufferNr.Y 1.8 2.2 2 Hrs 60° C 

BSA 1: 10 1 1.0 

H2O 6.6 6.2 

1 2 3 4 5 6 7 8 9 10 11 
A I Y 17 L5 33 40 41! AolL AOI!O A1l9 AI61 

3 2 3 3 3 0 3 2 2 3 3 

B 2 10 III L6 HLU 41 49 A005 AOYI! Auo AI6L 

3 3 0 3 0 2 3 3 3 3 3 

C 3 II IY L7 34 42 50 AOIY AI04 AIL) AIM 

2 2 2 2 3 3 2 1 3 3 1 

D 4 IL LU 2ll 35 4J H:lU AO:l4 AI06 AI4Y AI71 

2 2 1 2 3 2 0 2 3 3 2 

E 5 1J Lt 29 36 44 A006 BOOJ AlUl! AlSo AL05 

2 2 3 3 0 3 3 2 3 2 0 
F 6 14 u 30 37 45 A004 B004 AI09 AI54 AI70 

0 2 3 3 3 2 2 2 2 3 3 
G 7 IS 23 31 3ll 46 AOOll BOOS AllO AI57 AOll6 

2 2 0 1 0 2 1 3 3 2 2 
H 8 16 24 32 39 47 AOlU A064 HLU A I 6U AUU6 

3 3 3 1 0 3 3 3 0 0 3 

FIG 28: 

(See page 192) - 2% Agarose gel electrophoresis showing DNA profile as per table 
above (lanes 1-11). The molecular weight marker is a 100 bp ladder. Control 
samples are indicated as water (H20). 



268 bp 
152 bp 
116 bp 

FIG 28: G-PROTEIN: 

G-PROTEIN peR: 

CONTROLS 

192 

x100 bp 

After digestion with BSE DI restriction endonuclease the PCR yielded 3 products: 
268, 152 116 bp fragments corresponding to the TT, TC and CC genotypes 
respectively. 



Chi2ace 193 

ACE controls (0) cases (0) sum 

11 25 44 69 

ID 34 55 89 

DD 17 16 33 

76 115 191 

controls (E) cases (E) cont (0-EY2 cas (O-E)A2 co (O-E)A2/E ca (O-E)A2/E 

11 27.46 41.54 6.03 6.03 0.22 0.15 

ID 35.41 53.59 2.00 2.00 0.06 0.04 

DD 13.13 19.87 14.97 14.97 1.14 0.75 

76.00 115.00 23.00 23.00 1.42 0.94 

X 2= 2.35 DF=2 

Hardy-Weinberg Equilibrium? 

controls cases 

observed expected XA2 observed expected XA2 

11 25 23 0.14 11 44 44 0.00 

ID 34 38 0.34 ID 55 54 0.02 

DD 17 15 0.21 DD 16 16 0.01 

n= 76 76 0.69 n= 115 115 0.03 

fl 0.55 f1 0.62 

fD 0.45 f3 0.38 

I D 

cases 143 87 230 

controls 84 68 152 

227 155 382 X2= 1.81 DF = 1 



Chi2agt 194 

AGT controls (0) cases (0) sum 

1 ':I') 44 76 .. Uoo 

2 32 50 82 

3 11 18 29 

75 112 187 

controls (E) cases (E) cant (O-EY2 cas (O-E)I'2 co (O-E)I'2/E ca (O-EY\2/E 

1 30.48 45.52 2.31 2.31 0.08 0.05 

2 32.89 49.11 0.79 0.79 0.02 0.02 

3 11.63 17.37 0.40 0.40 0.03 0.02 

75.00 112.00 3.49 3.49 0.13 0.09 

X 2= 0.22 DF=2 

Hardy-Weinberg Equilibrium? 

controls cases 

observed expected XA2 ob-served expected XA2 

1 32 31 0.05 1 44 43 0.05 

2 32 35 0.19 2 50 53 0.17 

3 11 10 0.17 3 18 17 0.13 

n= 75 75 0.41 n= 112 112 0.35 

f1 0.64 f1 0.62 

f3 0.36 f3 0.38 

1 3 

cases 138 86 224 

controls 96 54 150 

234 140 374 X2= 0.22 DF = 1 



CHI2tgfb 195 

TGF-B controls (0) cases (0) sum 

1 78 114 192 

2 1 1 2 

3 1 1 2 

80 116 196 

controls (E) cases (E) cont (0-E)A2 cas (0-E)A2 co (O-E)A2fE ca (O-E)A2/E 

1 78.37 113.63 0.13 0.13 0.00 0.00 

2 0.82 1.18 0.03 0.03 0.04 0.03 

3 0.82 1.18 0.03 0.03 0.04 0.03 

80.00 116.00 0.20 0.20 0.08 0.06 

X 2= 0.14 DF==2 

Hardy-Weinberg Equilibr:ium? 

controls cases 

observed expected XA2 observed expected XA2 

1 78 77 0.01 1 114 113 0.01 

2 1 3 1.28 2 1 3 1.30 

3 1 1 0.00 3 1 1 0.00 

n= 80 81 1.30 n= 116 117 1.31 

f1 = 0.98 f1 = 0.99 

f3 = 0.02 f3 = 0.01 
1 3 

cases 229 3 232 

controls 157 3 160 

386 6 392 X2 = 0.21 DF = 1 

Fisher's exact (number of cells < 5) 

P = 0.69 

For the purposes of the Hardy-Weinberg calculation, the 0 value for the CC and the 

TT genotype was replaced by 1. The allelic frequencies remained the same 



Chi2atl 196 

AT1 controls (0) cases (0) sum 

1 65 100 165 

2 15 16 31 

3 0 0 0 

80 116 196 

controls (E) cases (E) cont (0-E)1I.2 cas (0-E)A2 co (0-E)1I.2/E ca (0-E)A2/E 

1 67.35 97.65 5.51 5.51 0.08 0.06 

2 12.65 18.35 5.51 5.51 0.44 0.30 

3 0.00 0.00 0.00 0.00 

80.00 116.00 11 .02 11.0? 

X 2 = 0.88 DF=2 

Hardy-Weinberg Equilibrium? 

controls cases 

observed expected XII.2 observed expected XII.2 

1 65 66 0.01 1 100 101 0.00 

2 15 14 0.15 2 16 15 0.08 

3 0 1 0.70 3 0 1 0.55 

n= 80 80 0.86 n= 116 116 0.64 

f1 = 0.91 f1 = 0.93 

f3 = 0.09 I f3 = 0.07 

1 3 

cases 216 16 232 

controls 145 15 160 

361 31 392 X2= 0.80 DF = 1 

For the purposes of the Hardy-Weinberg calculation, the 0 value for the CC genotype 

was replaced by 1 . The statistical significance for the allelic frequencies was kept the 

same. 



CHI2CYPllB2 197 

CYP11B2 controls (0) cases (0) sum 

1 31 48 79 

2 42 54 96 

3 7 15 22 

80 117 197 

controls (E) cases (E) cant (0-E)A2 cas (0-E)A2 co (O-E)A2IE ca (0-E)A2/E 

1 32.08 46.92 1.17 1.17 0.04 0.02 

2 38.98 57.02 9.09 9.09 0.23 0.16 

3 8.93 13.07 3.74 3.74 0.42 0.29 

80.00 117.00 14.00 14.00 0.69 0.47 

X 2= 1.16 DF=2 

Hardy-Weinberg Equiiibrium? 

controls cases 

observed expected XA2 observed expected XA2 

1 31 36 0.71 1 48 48 0.00 

2 42 32 3.20 2 54 54 0.00 

3 2 1 1.00 3 15 1 0.02 

n= 75 69 4.91 n = 117 103 0.02 

f1 = 0.69 f1 = 0.64 

f3 = 0.31 f3 = 0.36 

1 3 

cases 150 84 234 

controls 104 56 160 

254 140 394 X 2= 0.03 DF = 1 

p= 0.97 



CHI211 BHSD2 198 

11BHSD2 controls (0) cases (0) sum 

1 7t;!;. 11 ~ 191 , IV , '''' 
2 1 1 2 

3 1 1 2 

78 117 195 

controls (E) cases (E) cont (0-E)A2 cas (0-E)A2 co (0-E)A2/E ca (0-E)A2/E 

1 76.40 114.60 0.16 0.16 0.00 0.00 

2 0.80 1.20 0.04 0.04 0.05 0.03 

3 0.80 1.20 0.04 0.04 0.05 0.03 

78.00 117.00 0.24 0.24 0.10 0.07 

X 2 = 0.17 DF=2 

Hardy-Weinberg Equiiibrium? 

controls cases 

observed expected XA2 observed expected XA2 

1 76 75 0.01 1 115 114 0.01 

2 1 3 1.28 2 1 3 1.30 

3 1 1 0.00 3 1 1 0.00 

n= 78 79 1.29 n= 117 118 1.31 

f1 = 0.98 f1 = 0.99 
f3 = 0.02 f3 = 0.01 

1 3 

cases 231 3 234 

controls 153 3 156 

384 6 390 X2= 0.25 DF = 1 

Fisher's exact (number of cells < 5) 

P = 0.69 



CHI2MTHFR 199 

MTHFR controls (0) cases (0) sum 

1 64 94 158 

2 14 21 35 

3 2 1 3 

80 116 196 

controls (E) cases (E) cant (O-E)A2 cas (0-E)A2 co (O-E)A2fE ca (0-E)A2!E 

1 64.49 93.51 0.24 0.24 0.00 0.00 

2 14.29 20.71 0.08 0.08 0.01 0.00 

3 1.22 1.78 0.60 0.60 0.49 0.34 

80.00 116.00 0.92 0.92 0.50 0.35 

X 2= 0.85 DF=2 

Hardy-Weinberg Equilibrium? 

controls cases 

observed expected XA2 observed expected XA2 

1 64 63 0.02 1 94 94 0.00 

2 14 16 0.24 2 21 21 0.00 

3 2 1 1.00 3 1 1 0.02 

n= SO SO 1.26 n= 116 116 0.02 

f1 = 0.89 f1 = 0.90 

f3 = 0.11 f3 = 0.10 

1 3 

cases 209 23 232 

controls 142 18 160 

351 41 392 X2= 0.1S DF = 1 

p= 0.83 



CHI2GPROT 
200 

G-PROT controls (0) cases (0) sum 

1 6 9 15 

2 32 47 79 

3 42 61 103 

80 117 197 

controls (E) cases (E) cont (0-EY'2 cas (O-E)1I2 co (O-E)1I2!E ca (O-E)1I2/E 

1 6.09 8.91 0.01 0.01 0.00 0.00 

2 32.08 46.92 0.01 0.01 0.00 0.00 

3 41.83 61.17 0.03 0.03 0.00 0.00 

80.00 117.00 0.04 0.04 0.00 0.00 

X 2= 0.00 OF=2 

Hardy-Weinberg Equilibrium? 

controls cases 

observed expected XII2 observed expected XII2 

1 6 6 0.00 1 9 9 0.00 

2 32 32 0.00 2 47 47 0.00 

3 42 42 0.00 3 61 61 0.00 

n= 80 80 0.00 n= 117 117 0.00 

f1= 0.28 f1 = 0.28 

f3= 0.73 f3 = 0.72 

1 3 

cases 65 169 234 

controls 44 116 160 

109 285 394 X2 = 0.00 OF -1 
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