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ABSTRACT 

Introduction 

APOBEC3G and other related cellular cytosine deaminase family members have potent 

antiviral activity.  In the absence of HIV-1 Vif, APOBEC3G mutates the viral DNA during 

viral reverse transcription.  Our knowledge of the Vif-APOBEC3G interaction in human 

populations infected with subtype C HIV-1 is limited. Investigation of interactions between 

HIV and its host is crucial as it can ultimately be exploited in vaccine and therapy design. We 

hypothesised that certain APOBEC3G haplotypes and/or their expression in peripheral blood 

mononuclear cells of seroconverters affect viral setpoint and CD4+ T cell counts. We also 

hypothesised that certain APOBEC3G genetic variants are associated with increased 

frequency of G to A hypermutations during primary HIV-1 infection and that Vif variability 

influences disease progression and its ability to neutralise APOBEC3G haplotypes. 

 

Methods 

Our South African study cohort consisted of females at high risk for HIV-1 infection and 

women with known recent HIV-1 infection. We used quantitative real-time PCR to measure 

APOBEC3G expression in HIV- and HIV+ samples during primary infection.  APOBEC3G 

variants were identified by DNA sequencing and TaqMan Genotyping. The HIV-1env gene 

was sequenced to assess Env diversity and the extent of APOBEC3G induced 

hypermutations. Vif variability was assessed by plasma derived clonal Vif sequences (n= 10-

20 per patient) and Vif function was assessed by APOBEC3G degradation assays and HIV-1 

infectivity assays. 
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Results 

We found no correlation between APOBEC3G expression levels and plasma viral loads 

(r=0.053, p=0.596) or CD4+ T cell counts (r=0.030, p=0.762) in 32 seroconverters. However, 

APOBEC3G expression levels were significantly higher in HIV- individuals compared to 

HIV+ individuals (p<0.0001) including matched pre- and post-infection samples from the 

same individuals (n=13, p<0.0001). Twenty five single nucleotide polymorphisms (SNPs) 

were identified within the APOBEC3G region. SNP 186R/R was associated with significantly 

higher viral loads (p=0.0097) and decreased CD4+ T cell levels (p=0.0081), indicating that 

186R/R has a negative effect on HIV restriction. Overall HIV-1 env sequences contained a 

higher number of APOBEC3F compared to APOBEC3G-induced hypermutations and the 

number of APOBEC3F-induced hypermutations correlated negatively with viral load (r= -

0.6, p=0.006) and positively with CD4 T cell counts (r=0.6, p=0.004).  We cloned and 

sequenced a total of 392 subtype C Vifs, which showed an interpatient diversity of 6.2% to 

19.2% at the amino acid level.  Interestingly, Vif sequence comparison showed a strong 

preference for a Lysine or a Serine at position 36 for APOBEC3G 186R/R and APOBEC3G 

186H/H individuals, respectively. Selected natural subtype C Vif alleles had greater ability to 

counteract wild type APOBEC3G 186H as compared to the APOBEC3G 186R variant as 

shown by both functional and HIV infectivity assays. 

 

Conclusions 

In conclusion, APOBEC3G expression in peripheral blood mononuclear cells does not 

correlate with viral loads or CD4+ T cell counts during primary HIV-1 subtype C infection.  

However, genetic variants of APOBEC3G may affect HIV-1 pathogenesis. Amino acid 

changes in Vif may influence its anti-APOBEC3 activity. HIV-1 subtype C Vifs may have 

adapted to counteract the more active wild type APOBEC3G as compared to the less active 
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APOBEC3G 186R variant.  These studies have improved our understanding of viral-host 

interactions in African populations and HIV-1 subtype C infections. 
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CHAPTER ONE 

LITERATURE REVIEW 

 

1.1 The HIV Epidemic 

The human immunodeficiency virus (HIV) is the causative agent of the acquired immune 

deficiency syndrome (AIDS), a disease characterized by progressive failure of the immune 

system which allows life-threatening opportunistic infections and cancers to thrive.  

 

June 2011 marked the third decade since the documentation and publication of the first AIDS 

related cases (Gottlieb et al. 1981). Tragically almost 60 million people have been afflicted 

since the start of the AIDS epidemic but significant progress is being made in our 

understanding of the causative HIV. According to the 2012 UNAIDS, Global Report, 34 

million people were living with HIV worldwide at the end of 2011 and alarmingly sub-

Saharan Africa was home to 69% of these infections. Sub-Saharan Africa also accounted for 

71% of new infections in 2011. Further, the sub-region of Southern Africa is the most 

severely affected by this epidemic with South Africa being hardest hit, and harbouring the 

world’s largest population of people living with HIV (5.6 million) (UNAIDS 2012; UNAIDS 

2012). Additionally, within South Africa, the province of KwaZulu-Natal is the epicentre of 

the HIV pandemic with a 39% prevalence rate (Figure 1.1). 

 

Although, the number of new infections has decreased by more than 700 000 globally in 2011 

compared to 2001, with Africa having reduced AIDS-related deaths by approximately 30% in 

the past six years (UNAIDS 2012), the statistics remain disturbing and advocate the urgent 

need for an effective vaccine against HIV. Several effective therapeutic drugs against HIV 

have been developed, however, the development of an efficacious vaccine has been 
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challenging and hindered by HIV’s high replicative capacity, extensive tissue dissemination 

and its extreme degree of variability. In addition, there are many pathways and factors of the 

human immune system which are not yet well understood or identified, and further 

knowledge and understanding of such factors and pathways will increase the prospect of 

finding an effective vaccine and new therapies. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Global HIV prevalence map showing that the highest burden of HIV is in 

southern Africa (UNAIDS, Report on Global AIDS Epidemic, 2010) 

 

Scientists have for some time questioned the heterogeneity of disease progression in HIV 

infected individuals, where some progress unusually slowly to AIDS despite many years of 

untreated HIV infection, while in contrast, rapid progressors progress to AIDS within 5 years. 

And interestingly, there are also individuals who remain uninfected despite repeated exposure 

to HIV. Studies have shown that individual and population susceptibility to AIDS may be 

influenced by the possession of genetic variants that modulate immune function and viral 

replication (An et al. 2004; O'Brien and Nelson 2004; An and Winkler 2010). Identification 
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and investigation of such genes, that influence resistance and susceptibility to HIV infection 

may be crucial in understanding the interaction between HIV and its host, which can 

ultimately be exploited in vaccine and therapy design.  

 

The first evidence that genetic resistance to HIV infection existed, was from studies that 

discovered and characterised the mutant CCR532 allelle which has been shown to confer 

resistance to HIV infection in those individuals who are homozygotic for the mutation (Dean 

et al. 1996; Liu et al. 1996). The mutation, found predominantly in Caucasians, is a 32 base 

pair deletion in the single coding exon of the gene that causes a frame shift in the coding 

sequence and produces a defective CCR5, which is not expressed on the surface of cells. A 

recent study reported the case of an HIV-infected patient in whom viral replication could no 

longer be detected after transplantation with CCR532 /32 stem cells even though 

antiretroviral therapy was discontinued (Hutter et al. 2009). After a 4 year follow up, the 

study strongly suggested that a cure for HIV had been achieved in this patient (Allers et al. 

2011). This demonstrates that virus-host interaction sites can definitely be utilized in therapy 

design.  

 

 In recent years a number of host innate cellular factors that target HIV-1 and restrict 

intracellular viral replication have been identified and these include, Apolipoprotein B 

mRNA-editing enzyme 3G (APOBEC3G) (Sheehy et al. 2002), bone marrow stromal cell 

antigen 2 (BST-2) also known as Tetherin (Neil et al. 2008), tripartite motif protein 5 alpha 

(TRIM5α) (Stremlau et al. 2004), and sterile α motif (SAM) and an HD domain protein 

SAMHD1 (Goldstone et al. 2011; Laguette et al. 2011).  
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Of particular interest is APOBEC3G, a member of the human cytidine deaminase family, has 

been shown to have potent antiviral activity (Mangeat et al. 2003; Bishop et al. 2004; Harris 

and Liddament 2004; Huthoff and Malim 2005), and has been described as a novel candidate 

AIDS restriction gene (ARG) (Stephen and Nelson 2004). APOBEC3G acts as a post-entry 

restriction factor where it enters nascent virions and its enzymatic activity induces 

detrimental mutations in the viral genome. However, the apparently minor HIV accessory 

protein virion infectivity factor (Vif) counteracts APOBEC3G in its defense against this host 

immune mechanism. This interaction between virus and host has been a focus of intense 

study in recent years as it presents a potential novel opportunity for drug intervention and 

therapy. 

 

Our knowledge of viral-host interactions in human populations infected with subtype C HIV-

1 is limited, particularly in southern Africa where the HIV-1 epidemic is severest. Studies 

have shown that APOBEC3G is an important intrinsic antiretroviral host factor that has 

significant anti-HIV-1 activity in vitro. The purpose of this study was to investigate its 

antiviral effects in vivo which we hypothesized may be more prominent during primary HIV-

1 subtype C infection before adaptive immune responses become established. In addition, 

amino acid changes in Vif may influence its anti-APOBEC3G activity and in this study our 

goal was also to further understand the complex attack-counterattack interaction between 

APOBEC3G and Vif in the HIV-1 subtype C context. This may open a window for the 

design of pharmacological inhibitors that could complement existing AIDS therapies. 
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1.2 Discovery and Origin of HIV 

AIDS was first recognised in 1981 in the United States of America after an increase in the 

incidence of Pneumocystis carinii pneumonia, extensive mucosal candidiasis and Kaposi's 

sarcoma in young homosexual men (Gottlieb et al. 1981). These were shown to be caused by 

a general immune deficiency and the condition became known early on as AIDS, however, it 

was only in 1983 that the etiological agent was identified. At the outset several retroviral 

isolates were implicated as the causative agents of AIDS and these included the 

lymphadenopathy-associated virus (LAV) (Barre-Sinoussi et al. 1983), human T-cell 

lymphotropic virus type III (HTLV III) (Gallo et al. 1984) and AIDS-associated retroviruses 

(ARV) (Levy et al. 1984). However, in 1986, HIV was internationally recognized as the virus 

that causes AIDS (Coffin et al. 1986). Soon after this discovery another human retrovirus was 

isolated from patients with AIDS in West Africa (Clavel et al. 1986). This virus was 

reasonably genetically different from HIV-1 by up to 40%, and was named HIV-2. 

 

Evidence suggests that HIV-1 and HIV-2 entered the human population through several 

zoonotic infections from simian immunodeficiency virus (SIV) infected primates (Hahn et al. 

2000). It is believed that widespread bush meat hunting and trade in West Africa resulted in 

the transmission of HIV to humans. This most probably occurred through cutaneous or 

mucous membrane exposure to SIV infected ape blood and/or other body fluids as a result of 

injury during hunting (Peeters et al. 2002). The simian source of HIV-1 and -2 have been 

identified based on the phylogenetic relatedness of their sequences to known SIVs.  

 

HIV-1 is most closely related to SIVcpz isolated from the chimpanzee subspecies Pan 

troglodytes troglodytes (Huet et al. 1990; Gao et al. 1999; Hahn et al. 2000). HIV-1 further 

comprises distinct groups M, N, O, and a rare group P, each of which resulted from an 
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independent cross-species transmission event, and all of which are distributed across the 

geographic area consistent to the spread of P.t. troglodytes in west equatorial Africa. Of these 

the M group which is the most diverse, most likely began in Kinshasa in the Democratic 

Republic of Congo (Vidal et al. 2000) but has now spread throughout the world and is 

responsible for more than 95% of HIV infections worldwide. Group M has been further 

divided into clades referred to as HIV-1 subtype A to K. Subtypes A, B and C are the most 

prevalent genetic forms with subtype C being most predominant and accounting for 

approximately 50% of all HIV-1 infections globally (Figure 1.2). HIV-1 subtype C is also 

most prevalent in those regions that carry the world’s largest HIV burden, specifically 

southern Africa and India (Buonaguro et al. 2007) (Figure 1.2). Additionally, the emergence 

of HIV circulating recombinant forms or CRFs has resulted from co-infection of viruses with 

different subtypes (Figure 1.2). 
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Figure 1.2 [A] Geographical distribution of HIV showing the global spread of HIV-1 

subtypes and HIV-2 confined to West Africa. (Adapted from IAVI report, August 2003, 

http://www.pbs.org/wgbh/pages/frontline/aids/atlas/clade.html) [B] Classification of HIV 

subtypes and their origins (self-generated). 

A 

B 

http://www.pbs.org/wgbh/pages/frontline/aids/atlas/clade.html
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 Based on phylogenetic data it is thought that HIV-1 group P may have a gorilla origin via the 

lineage SIVgor. This lineage clusters with strains from P. t. troglodytes apes, and therefore 

suggests that gorillas acquired SIVgor by cross-species infection from sympatric 

chimpanzees from a single transmission event over 100 years ago. HIV-1 group P has only 

been identified in two people from Cameroon (Van Heuverswyn et al. 2006; Sharp and Hahn 

2011). 

 

On the other hand, HIV-2 has been shown to be phylogenetically related to SIVsm from 

sooty mangabeys whose habitat overlaps with the epicenter of the HIV-2 epidemic (Hirsch et 

al. 1999). HIV-2 also comprises 8 different ancestries, referred to as groups A to H and has 

been mostly confined to West Africa, with the highest prevalence rates documented in 

Guinea-Bissau and Senegal (de Silva et al. 2008). 

 

There are more than 40 different SIVs that are known to infect Old World monkeys. 

However, only three of these (SIVcpz, SIVsm and SIVgor) have been able to make the cross-

species jump to humans (Figure 1.3). The ability of an SIV to infect a new primate species 

depends largely on its ability to counteract different host restriction factors (Sharp and Hahn 

2011). These host restriction factors pose a barrier to cross-species infection because they 

have rapidly evolved as a consequence of their innate immune function to protect against 

endless attack by various viral pathogens (Malim and Emerman 2008; Neil and Bieniasz 

2009). Of note, the three key restriction factors (mentioned on page 3) that have been shown 

to pose as obstacles to cross-species transmission of SIV include 1) APOBEC3G, which 

hypermutates the viral genome during reverse transcription (Sheehy et al. 2002), 2) TRIM5α, 

which induces premature viral uncoating (Stremlau et al. 2004), and 3) Tetherin, which 

inhibits the release of HIV-1 particles from infected cells (Neil et al. 2008). SAMHD1 is the 
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most recently discovered restriction factor and is believed to act at the step of reverse 

transcription (Goldstone 2011). These will be discussed in more detail in subsequent sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Origins of human AIDS viruses. Old World monkeys are naturally 

infected with more than 40 different lentiviruses, termed simian immunodeficiency 

viruses (SIVs). Three of these SIVs have crossed the species barrier to humans 

(highlighted in red). (Source: (Sharp and Hahn 2011) Origins of HIV and the AIDS 

Pandemic, Cold Spring Harbor Perspectives in Medicine). 
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1.3 Taxonomic Classification and Morphology of HIV 

HIV is a single stranded RNA virus that belongs to the retroviridae family and is a member of 

the lentivirus genus that causes slow degenerative diseases.  

 

A mature HIV virion has a spherical morphology with a diameter of approximately 100-

120nm (Figure 1.4). Like all lentiviruses HIV is enveloped by a lipid bilayer membrane that 

is derived from the membrane of the infected host cell from which it buds. The lipid bilayer 

membrane further consists of approximately 72 exposed surface glycoprotein spikes (Hirsch 

and Curran 1996; Turner and Summers 1999). Each of these spikes are made up of 3 SU 

glycoprotein 120 (gp120) molecules, which are anchored to the virus via noncovalent 

interaction with each of 3 transmembrane (TM) glycoprotein 41 (gp41) molecules and held 

together as a trimer (Weiss et al. 1990). The lipid bilayer also contains host cell membrane 

proteins such as human leukocyte antigens (HLA), actin and ubiquitin (Arthur et al. 1992). 

 

The viral membrane is lined by a matrix shell (MA) that is made up of approximately 2,000 

copies of the MA protein p17 molecules. The capsid (CA) is a shell that surrounds the 

ribonucleoprotein complex containing the genomic RNA and is made up of approximately 

2,000 copies of CA protein p24 molecules (Ganser et al. 1999). The CA and the components 

it encloses are referred to as the viral core, is located at the center of the virus, and assumes a 

conical shape. 
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Figure 1.4 Structure of a mature HIV virion (Vogt 1997) . 

 

 

Within the viral conical CA core exists 2 copies of the single stranded RNA viral genome, 

which is stabilized as a ribonucleoprotein complex with approximately 2,000 copies of 

nucleocapsid (NC) protein molecules (p7) (Frankel and Young 1998). The viral core also 

contains 3 crucial virally encoded enzymes namely reverse transcriptase (RT), integrase (IN) 

and protease (PR), (located inside and outside the core) (Vogt 1997; Turner and Summers 

1999). 
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1.4 Genomic Organisation of HIV 

 

 

Figure 1.5 The genome organisation of HIV-1 showing the structural and enzymatic 

genes of HIV, gag, pol and env; the regulatory tat and rev genes and four accessory 

genes vif, vpr, vpu, and nef. The LTR regions flank the genome on each side. (Adapted 

from HIV-1 Gene Map, Los Alamos National Library, HIV Database) 

 

The genome of HIV-1 is made up of two identical positive sense single stranded RNA copies, 

is 9.7 kilobases in length and constitutes nine genes (Figure 1.5) that code for nine primary 

proteins (Table 1.1). The organisation of the HIV genome is extremely functionally efficient 

with all 3 reading frames of its genetic sequence being utilised thereby allowing for 

overlapping of the gene coding regions.  

 

Common to all retroviruses are the three genes gag, pol and env which encode the structural 

and enzymatic proteins. In addition, the HIV genome has two genes encoding regulatory 

proteins, the transcriptional transactivator (Tat) and the regulator of virion gene expression 

(Rev). Also present are four genes that encode accessory proteins: the negative effector (nef), 

viral infectivity factor (vif), and the viral proteins “R” (Vpr) and “U” (Vpu). Sixteen proteins 

are generated in all as a result of cleavage of three of the primary products (Coffin et al. 

1997; Frankel and Young 1998).  
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 Flanking the coding region on each end are the long terminal repeat (LTRs) regions. The 5’ 

LTR functions as the promoter for the entire retroviral genome and the 3’ LTR provides for 

nascent viral RNA polyadenylation (Cullen 1991; Jones and Peterlin 1994; Kingsman and 

Kingsman 1996). 

 

1.5 The Proteins encoded by HIV 

 

Table 1.1 Classification of the nine genes of HIV and their associated proteins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.1 The Structural and Enzymtic Proteins: Gag, Pol and Env 

The gag, pol and env genes of HIV encode for the structural and enzymatic proteins that are 

required for viral replication and assembly of progeny virions.  

 



Page | 14  
 

1.5.1.1  Gag 

HIV-1 assembly is driven by the Gag (Group specific Antigen) protein which recruits all the 

building blocks and components, both viral and cellular, required for the formation of a fully 

infectious virion. Gag is a 55kDa polyprotein precursor which is cleaved by the viral PR to 

produce the internal structural proteins of the mature virion namely the MA (p17) proteins, 

CA (p24) proteins, the NC (p7) proteins (Gottlinger et al. 1991; Freed 1998) as well as the P6 

protein that binds Vpr and recruits the cellular machinery required for virus budding (Ganser-

Pornillos et al. 2008). 

 

The 132 residue amino acid, 17kDa myristylated MA protein is the N-terminal component of 

Gag and is important for targeting the Gag polyprotein to the plasma membrane for viral 

assembly (Adamson and Freed 2007; Bukrinskaya 2007; Ganser-Pornillos et al. 2008; Ono 

2009; Chukkapalli and Ono 2011). In mature virus particles the MA protein also lines the 

inner surface of the virion membrane. Studies also suggest that MA may play a role in 

facilitating the infection of non-dividing cell types, primarily macrophages (Bukrinsky et al. 

1993; Gallay et al. 1995). 

 

The second component of the Gag polyprotein is the 24kDa CA protein that forms the shell 

of the core of the virus. The capsid contains two domains that have different roles in the 

development of the virus. The C-terminal domain is vital both for particle assembly and for 

core formation (Dorfman et al. 1994). The N-terminal domain is primarily responsible for the 

formation of the mature viral core but is also important for infectivity, by participating in the 

process of viral coating (Fassati 2012). 
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The NC is the third fragment of the Gag polyprotein and is found within the viral core where 

it coats the genomic RNA. The primary function of the NC domain is essentially for the 

delivery and packaging of two copies of the genomic viral RNA into assembling virions 

(Berkowitz et al. 1996). 

 

1.5.1.2  Pol 

Polymerase is also a polyprotein and is cleaved into the viral enzymes PR, RT, IN and 

RnaseH which play a vital role in HIV replication.  

 

HIV-1 PR is encoded in the 5’ end of the Pol gene. This 99 amino acid protein functions to 

cleave the Gag polyprotein into its mature components MA, CA and NC which contributes to 

the structure of the virion and to RNA packaging. PR also cleaves the Pol polyprotein into its 

enzymatic components PR, RT and IN (Kohl et al. 1988; Peng et al. 1989). In recent years 

PR has become a key target for drug design with several PR inhibitors currently in use 

(Flexner 1998).  

 

RT possess two distinct enzymatic activities, a DNA polymerase activity that utilises RNA or 

DNA as a template, and an RNase H activity that degrades the RNA strand of an RNA/DNA 

hybrid (Gilboa et al. 1979). RT is a heterodimer with each of its functions being localised in 

separate protein domains. The first domain is a 560-residue, 66kDa subunit (p66) and the 

second domain is a 440-residue, 51kDa subunit (p51). The p66 subunit contains the RT 

domain and the RNase H domain at the C terminal end. The p51 subunit is formed by 

proteolytic cleavage of p66 and is devoid of RnaseH activity (Freed 2001). RT catalyses the 

multi-step process of the synthesis of integration competent double-stranded DNA from the 

positive (+) RNA strand genome of retroviruses. The viral RNase H degrades the RNA from 
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the DNA/RNA hybrid, so as to free the newly synthesised DNA allowing it to be used as a 

template for RT to generate the complementary DNA to complete the double stranded DNA 

copy of the HIV genome (Schultz and Champoux 2008). 

 

The viral IN is a 32 kDa protein that is essential for incorporation of the double stranded viral 

DNA into host genome after the process of reverse transcription and localization of the viral 

DNA to the nucleus (Frankel and Young 1998; Turner and Summers 1999). 

 

1.5.1.3  Env 

The viral envelope (Env) glycoprotein is the only surface-expressed protein and is a 160kDa 

polyprotein (gp160), which is exclusively required for binding and entry into host cells. 

Following translation gp160 is cleaved into two mature envelope glycoproteins; a 120 kDa 

SU protein (gp120) and a 41 kDa TM protein (gp41). Glycoproteins gp120 and gp41 remain 

non-covalently linked to form a single subunit of a trimeric spike on the virion surface 

(Turner and Summers 1999; Arrildt et al. 2012). Gp120 is responsible for interaction with the 

cell surface receptor CD4 (Dalgleish et al. 1984; Klatzmann et al. 1984) and co-receptor 

CCR5 (Feng et al. 1996) or CXCR4 (Deng et al. 1996) that are essential for infection (Berger 

et al. 1999) while gp41 has domains that catalyse the fusion of viral and cellular lipid bilayers 

during virus entry (Freed and Martin 1995). Gp120 is extensively glycosylated (Leonard et 

al. 1990) and contains five highly variable regions (V1-V5) (Starcich et al. 1986). It has been 

established that this surface variability is vital for HIV-1 to escape an effective immune 

system (Profy et al. 1990).  
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1.5.2 The Regulatory Proteins, Tat and Rev 

Tat and Rev are two crucial viral regulatory factors required for HIV gene expression and 

replication.  

 

1.5.2.1  Tat 

HIV transcription is controlled primarily by the trans-activator protein (Tat), a 101 amino 

acid protein encoded by a two-exon RNA, although there are some isolates that encode a 

smaller 72 amino acid one-exon Tat (Freed 2001). The HIV-1 promoter is located in the 5’ 

LTR and serves as the site of transcriptional initiation, harbouring several sites for cellular 

transcription factors that are required for RNA synthesis. However, these transcription 

complexes initiated at the HIV-1 promoter have low elongation efficiency. Tat functions to 

enhance transcriptional elongation and RNA synthesis is increased by approximately a 100 

fold when Tat is present (Dayton et al. 1986; Fisher et al. 1986). Tat differs from the majority 

of cellular transcription factors that bind to the viral DNA because it acts by binding to the 

trans-activating response element, a stem-loop structure at the 5’ end of nascent viral RNA. It 

subsequently recruits Cyclin T1 and CDK9 which phosphorylate RNA polymerase II thereby 

increasing the efficiency of elongation of the nascent viral mRNA (Berkhout et al. 1989; 

Reines et al. 1996; Wei et al. 1998). 

 

1.5.2.3  Rev 

Rev is 19 kDa phosphoprotein made up of 116 amino acids with two functional domains. The 

first is an RNA binding and nuclear localisation domain, rich in Arginine while the second is 

a hydrophobic, Leucine-rich motif that mediates nuclear export (Pollard and Malim 1998).  
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Viral RNAs generated from HIV-1 LTR transcription exist in three forms: 1) multiply spliced 

RNAs, which encode Rev, Tat, and Nef proteins, 2) partly spliced RNAs, which function as 

mRNAs for the Env, Vif, Vpu, and Vpr proteins, and 3) unspliced RNAs, which serve as the 

mRNAs for the Gag and GagPol polyprotein precursors, as well as genomic RNA which is 

packaged into virions (Purcell and Martin 1993). It is here that the Rev protein functions by 

aiding the transport of unspliced and partially spliced viral RNAs out of the nucleus into 

cytoplasm. Rev binds to the “Rev response element” (RRE) that is found in the env gene and 

also located in all unspliced and partially spliced HIV-1 RNAs. The Rev/RRE complex is 

able to interact with the cellular nuclear export machinery and transports the unspliced or 

partially spliced RNAs to the cytoplasm (Hammarskjold et al. 1989; Pollard and Malim 

1998). 

 

1.5.3 The Accessory Proteins, Nef, Vpu, Vpr and Vif 

In addition to the common primary proteins encoded by other retroviruses specifically Gag, 

Pol, Env and the regulatory proteins Tat and Rev, a distinctive characteristic of HIV-1 is that 

it also encodes four accessory proteins: Vpu, Vif, Vpr and Nef. It is believed that these 

accessory proteins function to alter the milieu within infected cells to ensure viral persistence, 

replication, dissemination, and transmission (Malim and Emerman 2008). 

 

 

1.5.3.1  Nef 

Nef is a 27kDa, 96 amino acid, myristoylated protein that is mostly cytoplasmic and linked 

with the plasma membrane via the myristoyl residue. It is the most immunogenic HIV-1 

accessory protein and is crucial for efficient viral spread and disease progression. The key 

functions of Nef are: 1) the downregulation of CD4 and major histocompatibility complex 
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(MHC) class I, 2) the stimulation of virion infectivity, 3) modulation of the activation state of 

cells (Goldsmith et al. 1995; Mangasarian and Trono 1997).  

 

High levels of CD4 on the surface of HIV-producing cells inhibit the infectivity of released 

virions by trapping the viral envelope and may also block virion release (Lama et al. 1999; 

Ross et al. 1999). Therefore, downregulation of CD4 is required for maintenance of viral 

infectivity of HIV-1 (Tanaka et al. 2003). Nef steers CD4 from the cell surface and Golgi 

apparatus to lysosomes resulting in receptor degradation. Nef functions as a bridge between 

CD4 and cellular endocytic complexes. On one end, Nef binds to CD4 by interacting with 

dileucine-based signal in the cytoplasmic tail of the receptor (Aiken et al. 1994) while on the 

other end it interacts with adapter protein complexes in clathrin-coated pits (Mangasarian and 

Trono 1997).  

 

Nef also downregulates the cell-surface expression of MHC I molecules, however, its 

mechanism is not completely elucidated. It has been shown that Nef interacts with tyrosine 

on the cytoplasmic tail of HLA-A and -B. MHC class I is subsequently internalised, directed 

to the trans Golgi network and eventually degraded (Greenberg et al. 1998; Le Gall et al. 

1998). Through this mechanism HIV-infected cells are able to evade detection and 

eradication by cytotoxic T lymphocytes.  

 

Nef has also been shown to promote virion infectivity in three distinct ways. Firstly, the actin 

cytoskeleton in the target cell which acts as a barrier to infection can be disrupted and 

overcome by Nef (Campbell et al. 2004). Secondly, Nef may enhance infectivity by 

downregulating the protein Dynamin 2, a cellular protein which, in addition to CD4, blocks 

Env function in the virion (Pizzato et al. 2007). Thirdly, Nef may shield the viral core from 
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post-entry proteosomal degradation, by facilitating intracytoplasmic transport of the viral 

core to allow reverse transcription to proceed (Qi and Aiken 2008).  

 

Additionally, it has been demonstrated that Nef forms a complex with p21-activated protein 

kinase-2 (PAK-2) and induces PAK-2 activation (Renkema et al. 1999; Arora et al. 2000). 

Besides playing a role in vital cellular functions, the PAKS also play a key role in the entry, 

replication and spread of many significant pathogenic human viruses including HIV (Van den 

Broeke et al. 2010). 

  

1.5.3.2  Vpu 

Viral protein U (Vpu) is a 16kDa, 81 amino acid membrane phosphoprotein that is expressed 

late in infection and is unique to HIV-1 and SIVcpz (HIV-1’s closest relative) (Cohen et al. 

1988; Strebel et al. 1988). The two main functional activities of HIV-1 Vpu are: 1) CD4 

degradation in the endoplasmic reticulum (ER) (Levesque et al. 2003) and 2) enhancement of 

virion release from virus-producer cells (Terwilliger et al. 1989; Klimkait et al. 1990; Bour et 

al. 1999). Vpu consists of two major domains that control these two biological functions 

specifically the cytoplasmic domain that is involved in CD4 degradation in ER and the TM 

domain which plays a role in enhancing virion release (Nomaguchi et al. 2008).  

 

Nascently synthesised Env polyprotein (gp160), are occasionally retained in the ER by 

interactions with CD4 molecules (Crise et al. 1990). Formation of these Env/CD4 complexes 

in the ER inhibits the transport and maturation of the Env protein (Bour et al. 1991). Vpu 

promotes the degradation of CD4, through the host ubiquitin/proteasome pathway, to the 

release of gp120 from the Env/CD4 complexes in the ER, thereby increasing the amount of 

Env glycoprotein for transport to the cell surface (Fujita et al. 1997; Schubert et al. 1998). 
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The second function of Vpu, which is to promote the efficient release of viral particles from 

the cell surface, has been recently attributed to its ability to inhibit a host protein CD317 

(Tetherin). Tetherin has been shown to cause retention of virions to cell surfaces after 

endocytosis (Neil et al. 2008).  

 

1.5.3.3  Vpr 

Viral protein R (Vpr) is a 14kDa protein, composed of 96 amino acids that is packaged into 

mature virions. Vpr is a multifunctional protein and that plays an essential role in maintaining 

HIV-infection. Via interactions with nuclear transport machinery, Vpr regulates the transport 

of nucleoprotein pre-integration complexes into the nucleus of the infected host cell 

(Heinzinger et al. 1994) and is essential for productive infection in non-dividing cells such as 

macrophages (Balliet et al. 1994).  

 

Vpr has also been demonstrated to induce cell cycle delay or arrest in proliferating cells in the 

G2/M phase of the cell cycle (Jowett et al. 1995; Rogel et al. 1995). A study has shown that 

arrest of cells in the G2 phase of the cell cycle increases transcription from HIV-1 LTR and 

other promoters (Goh et al. 1998). In addition to its role in nuclear import and cell cycle 

arrest, Vpr is able to reduce mutation rates during viral DNA synthesis (Mansky 1996), by 

recruiting Uracil-DNA glycosylase 2, a cellular DNA repair enzyme, into virions (Chen et al. 

2002).  

 

The main activities of Vpr are encoded in distinct domains of the protein. The two α-helical 

domains, in the N-terminal and central regions of Vpr, control cell cycle progression and 

nuclear translocation respectively, with both domains contributing to incorporation of Vpr 

into virions (Mahalingam et al. 1997; Subramanian et al. 2011). C-terminal basic domain 
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functions in both nuclear localisation and cell cycle functions, but is not involved in 

incorporation of HIV-1 virions (Mahalingam et al. 1995).  

 

1.5.3.4  Vif 

Virion infectivity factor (Vif) is encoded by all lentiviruses except equine infectious anaemia 

virus (EIAV). Vif is a 23kDa, 192 amino acid, cytoplasmic protein that is expressed from a 

multiply-spliced Rev-dependant mRNA. Vif plays a crucial role in HIV replication and 

infectivity (Strebel et al. 1987; Goncalves et al. 1994; Karczewski and Strebel 1996).  

 

The Vif protein is essential for the production of infectious particles in peripheral blood 

mononuclear cells, primary T cells, macrophages and in non-permissive cell lines such as H9 

and CEM (Schwartz et al. 1991; Strebel 2007). However, Vif is not required for viral 

replication in permissive cell lines such as HeLa, Jurkat, SupT1 and 293T cells (Simon et al. 

1998; Strebel 2007). This cell type specificity suggested that Vif function may be influenced 

by the presence of a restrictive endogenous factor in non-permissive cells that inhibits HIV-1 

replication in the absence of Vif (Madani and Kabat 1998; Simon et al. 1998). The restrictive 

factor in non-permissive cells was discovered to be the cytidine deaminase apolipoprotein B 

mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) (Sheehy et al. 2002). 

 

To date, the crystal structure of HIV-1 Vif protein has not been deciphered as Vif is a highly 

insoluble protein with a strong propensity to aggregate therefore hindering efforts to purify 

the protein. Vif contains multiple functional domains that might be important for the 

interaction with viral or cellular proteins. Sequence data reveals that the protein contains 

several highly conserved motifs, specifically an N-terminal Tryptophan-rich fragment, a 

conserved HCCH motif and a SOCS-box motif (Oberste and Gonda 1992). 
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The N-terminal region Tryptophan-rich stretch (residues 1 to 21) mediates Vif recognition 

and suppression of the target molecules APOBEC3G and APOBEC3F [21]. Amino acids 63–

70 and 86–89 are thought to be important for formation of β-strand structures and are critical 

for maintaining a normal expression level of Vif. A central hydrophilic region, EWRKKR, 

bears a Glutamic acid and Tryptophan at positions 88 and 89 respectively and is believed to 

augment steady-state expression of Vif in host cells (Fujita et al. 2004). The HCCH motif 

(residues 108–139) has two conserved His/Cys pairs flanking an α-helix and was shown to 

coordinate binding of zinc and Cullin5 (Mehle et al. 2006; Xiao et al. 2006). The HCCH 

motif also induces a conformational change that promotes Vif multimerisation and 

aggregation (Paul et al. 2006). The highly conserved SLQYLA motif (Oberste and Gonda 

1992) delineates the BC-box motif and is responsible for the binding to Elongin C. This 

region is often referred to as the SOCS-box as it bears strong similarity to the SOCS-box of 

the SOCS protein, a suppressor of cytokine signalling (Yu et al. 2004).  

 

Vif is incorporated into HIV-1 virions by interaction with the HIV-1 genomic RNA mediated 

by the N-terminal region of Vif (Dettenhofer et al. 2000; Zhang et al. 2000), as well as 

through interaction with the Gag precursor Pr55 gag via its C-terminal region (Bouyac et al. 

1997).  Several studies have investigated the number of Vif molecules packaged into virions, 

and estimates have ranged from less than one molecule per virion to as many as 100 

molecules of Vif per virion. Generally, studies using virus from chronically infected cells or 

from stable cell lines stated lower amounts of virus-associated Vif than studies using virus 

from productively infected cells (Liu et al. 1995; Camaur and Trono 1996; Fouchier et al. 

1996; Dettenhofer and Yu 1999). 
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Studies show that Vif has a tendency to oligomerize and the domain that facilitates Vif's 

ability to form multimers is found in the conserved PPLP motif (residues 161 to 164) in its C-

terminus. The formation of Vif multimers is believed to be essential for Vif function in the 

HIV-1 life cycle (Yang et al. 2001; Yang et al. 2003).  It has been suggested that 

multimerisation of Vif triggers Vif to form an ordered structure which perhaps enables it to 

better interact with APOBEC3G and induce its degradation (Auclair et al. 2007; Donahue et 

al. 2008). Virus-associated Vif is also cleaved by HIV-1 PR between residues 150 and 151 

which is a position within the SLQYLA motif necessary for Vif function against APOBEC3 

proteins. It is therefore thought that Vif cleavage by PR may be significant for Vif function 

within non-permissive cell lines (Khan et al. 2002; Barraud et al. 2008). 

 

Vif is found predominantly in the cytoplasm (Simon et al. 1999) but studies also show 

regulated nuclear localisation of Vif (Simon et al. 1997). Vif may also interact with the 

cytoskeleton as a result of its association with Pr55gag (Karczewski and Strebel 1996; 

Bouyac et al. 1997). The association of intracellular Vif with specific subcellular structures 

may possibly be related to its function of APOBEC3 neutralisation. 
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1.6 The Replication Cycle of HIV 

 

Figure 1.6 The HIV replication cycle consists of a complex train of events that occur 

in a systematic step-wise fashion. These steps include: (1) attachment of the virus onto 

the host cell receptors, (2) fusion of virus and host cell membranes (3) uncoating of the 

viral capsid and (4) reverse transcription of viral genome, (5) nuclear import followed 

by (6) integration into the host genome, (7) transcription of the provirus and (8) nuclear 

export of RNA transcripts, then (11) translation into viral proteins (10) viral assembly 

(11) budding and (12) release of the nascent virion from the host and finally (13) 

maturation of the virus. (adapted from: (Engelman and Cherepanov 2012) The structural 

biology of HIV-1: mechanistic and therapeutic insights, Nature Reviews Microbiology) 
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1.6.1 Binding and Entry 

The CD4 molecule on the host cell is the primary cell-surface receptor for HIV entry (Bour et 

al. 1995) (Figure 1.7). The gp120 region of the HIV viral envelope protein (Env) binds to 

CD4 via a high affinity binding site on CD4 located in the N-terminal extracellular domain 

(Kwong et al. 1998) (Figure 1.6). CD4 binding exposes the co-receptor binding site on 

gp120, formed by the variable regions V1 and V2, conserved region C4 and the variable V3 

loop (Sierra et al. 2005). Additionally, CD4 binding promotes the formation of a bridging 

sheet. The bridging sheet and exposed V3 loop play a vital role in engaging the coreceptors, 

CCR5 and/or CXCR4, which are essential for viral entry (Choe et al. 1996; Dragic et al. 

1996; Wu et al. 1996; Berger et al. 1999) (Figure 1.7). T-cell lines typically express CXCR4 

but not CCR5, primary lymphocytes express both CXCR4 and CCR5 and macrophages 

express CCR5 only. The differential cell-type tropism displayed by viruses is explained by 

the expression of these co-receptors. T-cell (T) tropic viruses utilise CXCR4 and are termed 

X4 viruses while macrophage (M) tropic viruses utilise CCR5 and are designated R5 viruses. 

Dual tropic viruses use both CXCR4 and CCR5 and are named R5X4 viruses (Choe et al. 

1996; Dragic et al. 1996; Wu et al. 1996; Berger et al. 1998; Berger et al. 1999; Coakley et al. 

2005).  
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Figure 1.7 During the HIV entry into host cells [A] the viral envelope glycoprotein 

gp120 interacts with the CD4 receptor at the cell membrane. [B] gp120 interacts with 

the co-receptors CCR5 and/or CXCR4 [C] the viral glycoprotein gp41 anchors into the 

cell membrane (Source: (De Clercq 2005), Antiviral drug discovery and development: 

Where chemistry meets with biomedicine, Antiviral Research). 

 

Co-receptor binding induces further conformational changes in gp41 of HIV-Env which 

exposes fusion peptides and leads to anchorage of the virus and fusion of viral and cellular 

membranes (Freed et al. 1990; Doms and Moore 2000). Thereafter during the process of 

uncoating the viral lipid membrane is stripped away to release the viral core into the 

cytoplasm of the host cell (Figure 1.6).  
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1.6.2  Reverse Transcription 

A characteristic feature of retroviruses is that they are able to alter their single stranded RNA 

genomes into double stranded DNA, a process that is catalysed by the RT enzyme (Harrich 

and Hooker 2002) (Figure 1.8).  

 

Reverse transcription is initiated using the tRNA3
Lys

 molecule of RT which acts as a primer 

and base pairs with viral genomic RNA in a region called the primer binding site (PBS) 

(Figure 1.8). DNA synthesis proceeds in a 3’ to 5’ direction of the RNA strand and creates a 

DNA/RNA hybrid (Mak and Kleiman 1997). RNase H subsequently degrades the RNA 

strand of the hybrid to produce a minus strand strong-stop DNA fragment ([-] ssDNA) 

(Schatz et al. 1990). The [-] ssDNA is then transferred to the 3’ end of the genomic RNA, to 

allow a continuation of minus-strand DNA synthesis. This step of first-strand transfer is 

facilitated by the repeat (R) region of the [-] ssDNA that is complementary to the R region of 

the 3’-end of the RNA template (Peliska and Benkovic 1992). 

 

As minus strand synthesis continues, RNase H cleaves the RNA template except the two 

purine rich fragments that are highly resistant to degradation and which function as RNA 

primers for plus strand DNA synthesis. These purine-rich regions of genomic RNA are 

situated near the 3’-end and in the centre of the viral RNA, and named the polypurine tract 

(3’PPT) and the central PPT (cPPT), respectively ((Rausch and Le Grice 2004)). Initiation of 

plus strand synthesis from both the cPPT and PPT results in the formation of two distinct 

plus-strand DNA segments called the downstream (D+) and upstream (U+) segments 

(Charneau et al. 1992; Charneau et al. 1994). 
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The PBS at the 3’-terminus of the [+] ssDNA is regenerated by the tRNA that primed reverse 

transcription and remained attached to the 5’-terminus of the minus strand DNA. RNase H 

subsequently removes the tRNA and PPT primers from minus- and plus-strand DNA, 

respectively. The plus- and minus-strand DNA copies of the PBS facilitates second strand 

transfer where the PBS sequence of the plus strand DNA anneals to the PBS on the minus 

strand DNA (Das et al. 1995; Wakefield et al. 1995; Zhang et al. 1998). DNA synthesis 

proceeds with strand displacement synthesis (Hottiger et al. 1994).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 The steps of HIV-1 reverse transcription (Source: (Esposito et al. 2012), 

HIV-1 RT Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and 

New Inhibitors with Innovative Mechanisms of Actions, Molecular Biology International) 
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Upstream plus-strand DNA synthesis terminates when RT encounters the central termination 

sequence (CTS) located at the centre of the genome. Termination occurs approximately 100 

nucleotides downstream of the 5’-end of the downstream segment resulting in the 

displacement of a fragment of about 100 base pairs. This results is a plus-strand overlap in 

the full-length double-stranded DNA known as the central DNA flap (Charneau et al. 1994; 

Hameau et al. 2001).  

 

In addition, the consequence of the two strand transfer reactions is that the provirus acquires a 

duplicated U3-R-U5 sequence at both of its ends which are known as LTRs. 

 

1.6.3 Nuclear Import, Integration and Transcription 

Following the process of reverse transcription, the double stranded DNA forms a complex 

with host cell and viral proteins IN, Vpr, MA and Gag NC. The complex known as the pre-

integration complex (PIC) is actively transported into the nucleus of the cell (Figure 1.6) 

(Farnet and Haseltine 1991). HIV-Vpr promotes the docking of the PIC into the nuclear 

membrane (Popov et al. 1998) and enters the membrane through the nuclear pore (Le Rouzic 

and Benichou 2005). The central DNA flap is also thought to play a role in nuclear import 

(Zennou et al. 2000). 

 

Once inside the nucleus, the linear double stranded viral DNA in the PIC is inserted into the 

host cell genome by viral IN protein. During a process called 3’-end processing, IN cleaves 

off nucleotides from the 3’ termini of both strands of viral DNA resulting in double stranded 

DNA with 3’ recessed ends. IN also cleaves the cellular target DNA allowing the 3’ recessed 

ends of the viral DNA to join the ends of the cellular DNA, completing the process of 

integration (Bushman 2002; Van Maele and Debyser 2005). 
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Once the proviral DNA is integrated, cellular RNA polymerase II promotes the first round of 

proviral transcription. Transcription is initiated at the U3/R junction of HIV-1 LTR region. 

The LTR U3 contains various elements that mediate the binding of RNA polymerase II to the 

DNA template. The LTR also has binding sites for several host-cell transcription factors, 

including Sp1, NF-B, AP-1, and NF-AT which play an important role in regulating the 

production of RNA transcripts (Garcia et al. 1987; Kawakami et al. 1988; Wu and Marsh 

2003). Tat, Rev and Nef are the earliest gene products and are the proteins that alter cellular 

and viral functions to promote efficient viral replication, but more precisely to control the 

viral transcription output (Dayton et al. 1986; Hammarskjold et al. 1989; Mangasarian and 

Trono 1997).  

 

The transcribed viral RNAs are generated as: 1) multiply spliced RNAs, which encode Rev, 

Tat, and Nef proteins, 2) partly spliced RNAs, which function as mRNAs for the Env, Vif, 

Vpu, and Vpr proteins, and 3) unspliced RNAs, which serve as the mRNAs for the Gag and 

GagPol polyprotein precursors, as well as genomic RNA which is packaged into virions. The 

mixed use of splicing sites results in the production of nearly 40 different transcripts from a 

single RNA that is generated from the integrated DNA and consequently encodes a total of 

sixteen different proteins (Purcell and Martin 1993). Transcribed RNAs are exported from the 

nucleus into the cytoplasm where translation takes place.  
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1.6.4 Assembly and Release 

Once viral proteins have been synthesised they are processed into functional forms and 

assembled with full-length HIV RNA transcripts into new viral particles. The process of viral 

assembly and release occurs at the plasma membrane of the infected cell (Figure 1.6) and is 

driven by the Gag-polyprotein (Pr55 Gag) (Sandefur et al. 2000; Adamson and Freed 2007). 

Assembly of nascent viral particles at the plasma membrane is essential as it facilitates 

extracellular virus release and transmission to the next target cells. Viral assembly is a multi-

step process involving: (1) the targeting of Gag to the site of assembly and binding of the 

plasma membrane, mediated by MA, (2) multimerization of Gag that requires CA and NC, 

(4) encapsidation of the genomic RNA controlled by NC, (5) transport and recruitment of 

Env into virus particles also mediated by MA (Bieniasz 2009; Ono 2010). The main 

components of the HIV-1 virion are Gag, which constitutes approximately 50% of the entire 

virion mass and the viral membrane lipids, which make up 30% of virion mass. An additional 

20% is made up by other viral and cellular proteins, while the genomic RNA and other small 

RNAs contribute 2.5% of virion mass (Sundquist and Krausslich 2012). 

 

The final step is the budding and release of the nascent immature viral particles from the host 

cell plasma membrane. Sequences that are encoded to facilitate particle release are 

collectively referred to as “late” or “L” domains to indicate their late role in viral assembly. 

The L-domain is located in the p6 region of Gag (Gottlinger et al. 1991; Huang et al. 1995). 

Vpu also facilitates virus release by forming ion conductive pores (Ewart et al. 1996; 

Schubert et al. 1996). Nef, Env and Vpu are also involved in this process to decrease the 

number of CD4 molecules present in the plasma membrane to avoid interactions with newly 

made viruses (Willey et al. 1992; Das and Jameel 2005). 
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1.6.5 Viral Maturation  

Once the virus is released from the plasma membrane, Gag and Gag-Pol are cleaved by viral 

PR to form mature Gag and Pol proteins which leads to numerous structural rearrangements 

resulting in viral maturation. The process of viral maturation is essential for viruses to 

become infectious (Adamson and Freed 2007; Ganser-Pornillos et al. 2008).  
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1.7. The Immune System 

The host immune system provides defence and confers a relative state of resistance to a 

constant barrage of pathogens and resulting infectious diseases. This defence system is a 

multifaceted network that constitutes cells and molecules with specialised function in 

defending against infection (Figure 1.9). 

 

1.7.1 Innate and Adaptive Immunity 

The immune system is divided into innate and adaptive components. Innate or natural 

immunity provides the primary or first line of defence against invading pathogens, and can 

control many infections and prevent disease. However, the innate response is not always able 

to eliminate infectious pathogens, and therefore successful immunity may also depend on the 

second line of defence known as the adaptive or acquired immune response. 

 

Innate immune components play a critical role during early phase of infection and are 

essential in initiating and guiding the subsequent adaptive immune response. Additionally, 

the innate immune cells are also involved in removing pathogens and debris that have been 

targeted by the adaptive immune system.  

 

However, the innate immune system lacks immunologic memory and remains unchanged 

despite many antigen encounters. On the other hand, the adaptive immune system has 

adapted to provide a more versatile form of protection and exhibits immunological memory 

of invading organisms which facilitates a more rapid response on subsequent re-infection. 

Acting together, the innate and adaptive immune responses provide a highly effective defence 

system (Janeway et al. 2005). 
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1.7.2 Components of the Immune System 

1.7.2.1  The Major Histocompatibility Complex (MHC) 

The MHC also called the HLA system plays a vital role in the immune system where it 

functions to bind peptide fragments derived from pathogens and display them on the cell 

surface for recognition by appropriate T cells. There are two classes of MHC molecules, 

namely, MHC class I and MHC class II which bind peptides fragments from two distinct 

intracellular compartments. MHC class I molecules bind peptides from intracellular 

pathogens that multiply in the cytoplasm, MHC class II molecules present peptide antigens 

from pathogens multiplying in intracellular vesicles and those derived from extracellular 

bacteria and toxins (Janeway et al. 2005; Neefjes et al. 2011). Studies have shown that the 

HLA system is associated with susceptibility or resistance to many viruses, and more recently 

it has been reported that HLA is associated with HIV transmission and disease progression to 

AIDS (Carrington and O'Brien 2003). 

 

1.7.2.2  The Interferon System 

Interferons (IFN) play a crucial role in modulating immune responses and facilitating 

antiviral and antigrowth responses. The IFN system constitutes cells that produce IFN in 

response to an external stimulus for example viral infection and cells that react to IFN by 

establishing an antiviral state (Pestka et al. 1987; Samuel 1991; Stark et al. 1998). The IFN 

response is an early host defence and is initiated before the onset of the immune response. 

 

The IFNs family constitutes several inducible cytokine genes which are divided into two 

groups. Type I IFNs are also known as viral IFNs and include IFN-α, IFN-β, and IFN-ω. 

Type II IFN is also known as immune IFN or IFN-. Viral IFNs are induced during viral 

infection by pathogen recognition receptors (PRRs) such as Toll-like receptors and retinoic 
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acid induced gene (RIG)-like receptors, whereas type II IFN is initiated by mitogenic or 

antigenic stimuli (Samuel 1991; Samuel 2001). 

 

IFN-α and –β appear to be synthesised by most types of virally infected cells in cell culture. 

However IFN- is produced only by certain cells of the immune system such as natural killer 

(NK) cells, CD4 Th1 cells, and CD8 cytotoxic suppressor cells (Young 1996; Bach et al. 

1997). 

 

IFN-α is known to downregulate a multitude of viruses by upregulating many different 

proteins, for instance the protein kinase R, oligoadenylate synthetase, adenosine deaminase 

and RANTES which are able to inhibit viral replication at the levels of penetration, 

uncoating, mRNA synthesis, protein synthesis, or assembly (Haller et al. 2007) and most 

recently discovered host antiviral factors such as, TRIM5α, Tetherin and APOBEC3G 

(Parmar and Platanias 2003; Asaoka et al. 2005; Tanaka et al. 2006; Pillai et al. 2012). 

 

1.7.2.3  Innate Immune Components 

Pathogen recognition and the initial innate immune response is activated by pathogen 

associated molecular patterns (PAMPs) which are detected by PRRs on the host cell. PAMPs 

are conserved molecular motifs that are generally expressed on microbes, and include 

flagellin, lipopolysaccharides, or double-stranded RNA. The PRRs are evolutionary 

conserved recognition receptors that are confined within the germline of cells. Binding of 

PRRs with their associated PAMPs induces removal and obliteration of infected cells through 

a number of mechanisms such as opsonisation, complement activation, acute inflammation, 

or phagocytosis (Akira 2009; Mogensen 2009).  
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Immune responses are mediated by leukocytes (white blood cells) that have their origin in the 

bone marrow stem cells. The innate immune system predominantly involves granulocytes 

(neutrophils, basophils, eosinophils), dendritic cells (DC), macrophages, mast cells and NK 

cells which form from myeloid progenitor cells. 

 

Dendritic cells provide the key link between the innate and adaptive immunity. These cells 

are highly specialised phagocytes and display engulfed antigens, via MHC molecules on their 

cell surface, for recognition by T-cells, thereby inducing the adaptive immune responses. 

Activated DCs are also a major producer of cytokines such as type I IFN which activate 

inflammatory responses (Matzinger 1998; Bell et al. 1999).  

 

Macrophages are the mature form of monocytes and are one of four types of phagocytes in 

the immune system. Once a macrophage is activated by a pathogen, it engulfs the pathogen 

and subsequently initiates an inflammatory response. Macrophages possess receptors for 

carbohydrates like mannose that is expressed by infecting microorganisms but not normally 

expressed on host cells and are thereby able to recognise self from non-self. Macrophages 

and neutrophils also have receptors for antibodies and complement and thereby enhance 

phagocytosis of organisms coated with these (Fraser et al. 1998; Aderem and Underhill 

1999). When macrophages take up pathogens they express MHC class II molecules on their 

surface allowing them to present peptides from degraded pathogens to T lymphocytes, 

however they are less powerful than DCs at activating naïve T cells. 

 

Mast cells and basophils have similar functional characteristics where both cell types express 

high-affinity receptors for immunoglobulin E (IgE). These cells are important in initiating 

allergic responses and are known to secrete inflammatory mediators particularly, histamines, 
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prostaglandins and leukotrienes. Eosinophils and neutrophils are weakly phagocytic and kill 

parasites when activated by releasing cationic proteins and reactive oxygen metabolites 

(Wardlaw et al. 1995; Abraham and Arock 1998). 

 

Lymphoid progenitor cells give rise to NK cells of the innate immune system.  NK cells are 

activated by IFNs and macrophage derived cytokines and plays a significant role in the early 

immune response to certain infections and malignancies by direct cytolysis of infected or 

altered cells and by secretion of potent immune mediators. NK cells express inhibitory and 

activating receptors that interact with MHC class I molecules, MHC class I–like molecules, 

and molecules unrelated to MHC. Inhibitory receptors enable NK cells to distinguish between 

infected and uninfected cells thereby ensuring tolerance to self while allowing toxicity toward 

stressed cells. The MHC class I–specific inhibitory receptors are the killer cell 

immunoglobulin-like receptors (KIRs).  Absence of MHC class I molecules signals an 

abnormal cell which is subsequently destroyed by NK cells. NK cells also recognise their 

targets by Fc receptors that bind Immunoglobulin G (IgG) on target cells thereby exerting 

antibody-dependent cell cytotoxicity (Caligiuri 2008; Vivier et al. 2008; Campbell and 

Hasegawa 2013).  
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Figure 1.9 Immune system interactions.  Cellular interactions lead to different 

functional responses by different immune cells. Several cell surface receptor–ligand 

interactions, cytokines, and inflammatory molecules mediate and affect the immune 

response. Antigen presenting cells, for example dendritic cells, can interact with CD8 T 

cells to stimulate cytolytic immune responses, or with CD4 T cells to activate humoral 

antibody responses.  CD4 T cells differentiate into an assortment of effector subsets, 

some of which stimulate B cells to produce antibodies or those that help activate other 

immune clearance and regulatory processes (Source: (Look et al. 2010). Application of 

nanotechnologies for improved immune response against infectious diseases in the 

developing world, Advanced Drug Delivery Reviews). 
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Innate responses also frequently involve complement, acute phase proteins, and cytokines.  

Complement is a system of plasma proteins that play a vital role in innate immunity. The 

complement proteins play a role in immune surveillance; they promote inflammation and 

eradication of infectious microbes and eliminate cellular debris. The three pathways of 

complement activation include the classic pathway, activated directly by pathogens or 

indirectly by antibodies bound to pathogens; the lectin pathway, activated by the interaction 

of microbial carbohydrates with mannose binding protein in the plasma, and the alternative 

pathway, activated by microbial cell walls (Rus et al. 2005; Ricklin et al. 2010). Acute phase 

proteins are secreted during the acute phase response which is a systemic reaction, triggered 

by cytokines, to local or systemic disturbances in homeostasis caused by infection, tissue 

injury, inflammation or immunological disorders.  Acute phase proteins include C-reactive 

protein, serum amyloid A protein, proteinase inhibitors and coagulation protein (Gruys et al. 

2005). Cytokines are important mediators of immune responses and include a diverse 

collection of interleukins, IFNs, and growth factors. Cytokines are produced by most cells of 

the immune system and bind to specific membrane receptors, which then signal the cell 

via second messengers to alter cellular activity (Mire-Sluis 1993).  

 

1.7.2.4  Adaptive Immune Components 

Adaptive immune responses are governed by specialised T and B lymphocytes which arise 

from lymphoid progenitor cells. The adaptive immune responses are divided into the T-cell 

responses mediated by T-lymphocytes and humoral immune responses directed by B 

lymphocytes. 

 

The adaptive immune response is activated when naïve T cells encounter a specific antigen 

on the surface of an antigen presenting cell. The key antigen presenting cells are DCs that 
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ingest antigen at sites of infection and migrate to lymphoid tissue where they present the 

antigen via MHC molecules to T cells.  The T cells become activated, and produce 

interleukin (IL) - 2 which drives them to proliferate and differentiate into effector T cells. 

Antigens carried by MHC class I molecules are presented to CD8 T cells which differentiate 

into cytotoxic T lymphocytes (CTL) that kill virally infected cells (Janeway and Medzhitov 

2002; Santana and Esquivel-Guadarrama 2006). 

 

On the other hand antigens carried by MHC class II molecules are presented to CD4 T cells 

which differentiate into T helper cells, specifically Th1, Th2, Th17, and T regulatory (Treg) 

or T follicular helper (TFH) cells (Janeway et al. 2005).  Th1 cells produce IFN-γ and tumour 

necrosis factor-α (TNF-α) cytokines, which facilitate protection against intracellular 

pathogens, while Th2 cells stimulate antibody production from B cells and also produce IL-4, 

IL-5, and IL-13 cytokines, which are important in generating immune responses to 

extracellular infections. Th17 cells secrete the proinflammatory cytokine IL-17, whereas Treg 

cells are involved in maintaining tolerance for self-antigen. TFH cells activate B cells in the 

lymph nodes and spleen and stimulate B cells to produce antibodies (Romagnani 1992; Kaiko 

et al. 2008; Crotty 2011; Tangye et al. 2013). 

 

T cells produce an array of effector molecules which determine their function. CTLs secrete 

cytotoxins which are stored in specialised lytic granules and induce apoptosis of target cells. 

CTLs also produce IFN  which inhibits viral replication, induces MHC class I molecule 

expression and macrophage activation.  Cytokines and the TNF family of membrane 

associated effector proteins are produced by CTLs and T helper cells. Th2 cells express 

effector molecules that activate B cells while Th1 cells express macrophage activating 

effector molecules (Janeway et al. 2005; Santana and Esquivel-Guadarrama 2006). 
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B lymphocytes or B cells secrete antigen-specific antibodies against antigens that are 

presented to the lymphocytes by antigen presenting cells.  Th2 helper cells play a role in 

activation and differentiation of B cells into antibody secreting plasma cells and memory B 

cells.  Antibodies contribute to immunity in different ways:  Neutralising antibodies are able 

to bind to pathogens and prevent their entry into cells. Additionally, antibodies are able to 

coat the surface of pathogens to enhance phagocytosis in a process call opsonisation. 

Antibodies coating the pathogen are either recognised by Fc receptors on phagocytic cells or 

are able to activate the proteins of the complement system (Janeway et al. 2005).   

 

 The antibody response begins with the secretion of Immunoglobulin M (IgM) and soon 

progresses to the production of other isotypes. Antibodies of each isotype have distinct 

locations and specialised functions. IgM is found predominantly in the blood and is 

specialised to activate the complement system. IgG antibodies are located in blood and 

extracellular fluid and function to neutralise toxins, viruses, bacteria, opsonise for 

phagocytosis and activate the complement system. Immumoglobulin A (IgA) antibodies can 

also be found in the blood and extracellular fluids as well as in epithelial tissue. They are 

often transported into the lumen of the gut where they function to neutralise toxins, viruses 

and bacteria in the intestinal epithelium. IgE is frequently bound to mast cells and triggers 

local defence reactions (Delves and Roitt 2000; Delves and Roitt 2000; Janeway et al. 2005). 
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1.8 HIV Pathogenesis and the Host Immune Response  

1.8.1 The HIV-1 Transmission Event and the Acute Stage of Infection 

HIV infection proceeds by viral transmission; followed by an acute phase of intense viral 

replication and spread to lymphoid tissues; a chronic phase of continued immune activation 

and viral replication; and an advanced phase of marked CD4+ T cell loss resulting in 

acquired immune deficiency syndrome (Moir et al. 2011). 

 

The majority of HIV-1 infections (approximately 70%) occur through exposure of mucosal 

surfaces to the virus via heterosexual contact. The remaining 30% of infections occur through 

mucosal transmission in men who have sex with men (MSM), by percutaneous or intravenous 

drug use, through exposure of blood and blood products via transfusions or by maternal-

infant transmission either in-utero, intra-partum or through infected breast milk (Datta et al. 

1994; Nduati et al. 2000; 2010). The ratio between these routes of transmission does however 

differ between different countries. 

 

Once HIV crosses the mucosal barrier, local CD4+ T cells, Langerhans cells and other DCs 

are the virus’s first targets by binding to the high affinity C-type lectin receptor, DC-SIGN. 

Within a few days the virus begins spreading into lymphoid tissue, with preference for the 

gut-associated lymphoid tissue, followed by subsequent widespread dissemination (Cohen et 

al. 2011). The lymphoid tissue becomes the main HIV reservoir and site of persistent viral 

replication (Fox et al. 1991). 

 

After viral transmission, there is a period of about 10 days, while HIV-1 replicates in the 

mucosa, submucosa and lymphoid tissues, known as the eclipse phase, where viral RNA is 

undetectable in the plasma (Figure 1.10 I) (Little et al. 1999). Virus can be detected by the 
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sensitive, qualitative method of nucleic acid amplification once HIV-1 RNA reaches a 

concentration of 1-5 copies/ml in plasma.  The eclipse phase is followed by the acute phase 

of HIV-1 infection which is characterised by an exponential increase in viral titres, which 

reaches a peak (Figure 1.10 I and II) (Clark et al. 1991; Daar et al. 1991) and thereafter 

spontaneously decreases (Figure 1.10 III - V) to a steady state level or set point (Figure 1.10 

VI) that initiates a more chronic phase of the infection and predicts disease progression 

(Mellors et al. 1995; O'Brien et al. 1996).  

 

Acute or primary HIV infection is defined as the first period of infection from the detection 

of HIV RNA until the formation of HIV-specific antibodies (seroconversion) 3-4 weeks after 

infection (Busch and Satten 1997; Mogensen et al. 2010).  Early-stage HIV infection usually 

refers to the interval between seroconversion and the establishment of the viral load set point, 

which typically occurs  6–12 months after infection.  

 

The stages that delineate acute and early infection (Figure 1.10) are associated with the 

sequential appearance of viral markers and antibodies in the plasma, specifically HIV-1 viral 

RNA, the Gag p24 protein antigen, antibodies specific for recombinant HIV proteins (that 

can be detected by enzyme linked immunosorbent assays (ELISA), and antibodies that bind 

fixed viral protein, including p31 (detected by Western immunoblot) (Daar et al. 2008).  

 

Additionally, the sharp increase in viral load also coincides with the appearance of acute 

phase reactants, and a surge of innate immune responses and inflammatory cytokines (Stacey 

et al. 2009; Kramer et al. 2010).  The acute phase of infection is also characterised by a rapid 

decline in CD4+ T cell levels particularly in the gastrointestinal tract (Brenchley et al. 2004; 

Mehandru et al. 2004). Additionally, the first CD8 T-cell responses also appear during this 
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phase, days before the peak of viremia (Lichterfeld et al. 2004). These immune responses are 

discussed further in section 1.8.2. 

 

Figure 1.10 Representation of the sequence of events during the acute and early 

chronic phases of HIV-1 infection (Source: (Cohen et al. 2011), Acute HIV-1 Infection, The 

New England Journal of Medicine) 

 

1.8.2 Immune Responses to HIV 

Even though HIV causes progressive and persistent destruction of the immune system and 

ultimately extensive immunodeficiency, it also stimulates strong immune responses. During 

the initial period of rapid viral replication the host immune system attempts to control viral 

spread and eliminate the virus.  Innate responses as well as adaptive cell-mediated immune 

responses (by HIV-specific CTLs) (Plata et al. 1987; Walker et al. 1987) and HIV-specific 

humoral responses (from antibodies against HIV proteins) (Gray et al. 2007; Tomaras et al. 

2008) have been detected early in the course of infection.  However, CTLs have been 

detected prior to the appearance of neutralising antibodies (Safrit et al. 1994).  
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The first indication of an immune response during HIV-1 infection is the appearance of acute 

phase reactants, specifically alpha1 anti-trypsin and serum amyloid, in plasma 3-5 days post-

infection (Kramer et al. 2010). Additionally, the rapid increase in viral load overlaps with a 

surge of inflammatory cytokines directed by interferon-α and interleukin 15 (Stacey et al. 

2009). Early cytokines are produced by DCs but later in infection they are also produced by 

macrophages, NK cells and T cells (Borrow and Bhardwaj 2008) 

 

Acute infection is typically associated with a large T-cell response with substantial 

oligoclonal expansion in CD8+ T cell numbers, representing approximately 40% of all T 

cells (Roos et al. 1994).  The CTL response emerges during the exponential increase in viral 

load and although narrowly directed (Radebe et al. 2011), coincides with a decrease of acute 

viremia (Koup et al. 1994; Borrow and Bhardwaj 2008; Goonetilleke et al. 2009). CTLs peak 

at approximately 12 months post infection and have been shown to inhibit viral replication by 

two mechanisms. Firstly, CTLs have the ability to kill infected cells by cell lysis mediated by 

perforin and granzymes which trigger target-cell death (Shankar et al. 1999). Secondly, CTLs 

simultaneously secrete soluble antiviral factors, such as cytokines and specifically the 

chemokines RANTES, MIP-1 alpha, and MIP-1 beta. These chemokines are able to directly 

inhibit infection by progeny virions, by competition for or downregulation of the cellular 

coreceptor for the HIV, CCR5 (Cocchi et al. 1995). 

 

CD4+ T cell responses in acute infection are particularly weak. HIV- specific CD4+ T cells 

are extremely susceptible to attack and destruction by HIV, resulting in rapid and substantial 

loss of CD4+ T cells in lymphoid tissue, particularly in the gastrointestinal tract, early in 

infection.  Once primary infection resolves CD4 + T cell counts rebound, but rarely return to 

baseline, however, CD4+ T cell function remains abnormal throughout the course of 
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infection. In untreated HIV infection CD4+ T cell counts again abruptly decrease late in 

disease (Gruters et al. 1991; Gupta 1993; Zaunders et al. 2001).  

 

The formation of HIV-specific antibodies is usually detectable by weeks 3-12 of infection. 

Most early antibodies against HIV are directed against virus debris and non-neutralising 

epitopes on envelope glycoprotein and therefore are unable to elicit an effective antiviral 

response. Antibody responses that neutralise transmitted and early infection virus isolates are 

delayed and arise several months after the transmission event (Tomaras et al. 2008). These 

neutralising antibodies are targeted particularly against the highly variable V3 loop of the 

envelope protein involved in virus entry as well as the CD4 binding domain (Burton and 

Montefiori 1997).  Nonetheless, neutralising antibodies against HIV are generally inadequate 

and lack broad cross-reactivity, and are therefore unable to cross-neutralise newly evolving 

strains of the virus within a person (Parren et al. 1999). Additionally, by the time the 

neutralising antibody response develops, it is too late to influence the course of infection. 

 

The production of specific T-helper cells has also been implicated in the HIV cellular 

immune response and has been shown to assist with maintenance of CTLs in chronic viral 

infections. T-helper cell responses are mediated by CD4+ cells and are stimulated by the 

presence of viral peptides bound to the MHC class II binding groove, and become activated 

to enhance the immune response. However, impairment of CD4+ T cell function early in 

infection results in loss of T-cell help and ultimate decline in virus-specific CTLs, inevitably 

resulting in disease progression (Rosenberg et al. 1999; Altfeld and Rosenberg 2000). 

 

Despite the strong initial immune responses which results in reduced viral load and an 

increase in circulating CD4+ T cell numbers, the host is unable to completely clear the 
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infection (Grossman et al. 2006). Continued antigen stimulation results in expanded T-cell 

numbers persisting into chronic infection. Thus, chronic HIV infection is characterised by 

massive immune activation, high cell turn over, apoptosis and activation induced cell death 

(Finkel et al. 1995; Grossman et al. 2006; Mogensen et al. 2010).  Immune activation 

ultimately leads to depletion of CD4+ T cell numbers by decreasing the half-life of CD4+ and 

CD8+ T cells, influencing irregular cell trafficking, causing T cell clonal exhaustion and 

draining memory T cell pools (Grossman et al. 2002; Douek et al. 2003). This phenomenon 

of chronic immune activation plays a key part in driving immunopathogenesis and 

progression to AIDS.  

  

There is also considerable heterogeneity in the strength of innate, humoral and cell-mediated 

immune responses observed between infected individuals during primary infection and with 

clinical outcome.  Some individuals are able to control HIV infection and progress 

remarkably slowly to AIDS in the absence of HIV treatment, while others progress rapidly to 

AIDS. Additionally, a complex interplay of host and viral factors may influence the 

susceptibility of individuals and populations to HIV infection and disease progression.   

   

In recent years a new component of innate immunity to HIV has been discovered, comprising 

several host genes encoding innate cellular restriction factors, that demonstrate the ability to 

inhibit viral replication and influence susceptibility to HIV-1 infection (An et al. 2004; 

O'Brien and Nelson 2004; An and Winkler 2010).  These innate cellular restriction factors 

and are discussed in subsequent sections. 
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1.9 Host Restriction Factors that Target HIV Replication 

Cellular restriction factors are host proteins that are able to inhibit specific steps in the life 

cycle of HIV and serve as a potent obstruction to HIV replication (Sheehy et al. 2002; 

Stremlau et al. 2004; Neil et al. 2008; Goldstone et al. 2011; Laguette et al. 2011).  

Restriction factors can be identified by four defining traits. Firstly, they must directly and 

dominantly inhibit viral replication. Secondly, the restriction factor should provoke a strong 

virus encoded counter-restriction mechanism if they are a significant threat to viral 

replication. Third, they will carry positive selection signatures that would arise from repeated 

pathogenic pressure. And fourth, restriction factors should possess interferon responsiveness 

which strongly associates them with the host’s immune system (Harris et al. 2012).  

 

Four key host restriction factors that act at various steps in the HIV-1 replication cycle 

(Figure 1.11) include APOBEC3G (Sheehy et al. 2002), BST-2 also known as Tetherin (Neil 

et al. 2008), TRIM5α (Stremlau et al. 2004), and SAMHD1 (Goldstone et al. 2011). 
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Figure 1.11 Cellular restriction factors acting at specific steps in the life cycle of HIV 

to inhibit replication of the virus. (Adapted from: (Engelman and Cherepanov 2012), The 

structural biology of HIV-1: mechanistic and therapeutic insights, Nature Reviews 

Microbiology) 

 

Type I IFNs, which are activated in the presence of viruses by PPRs, mediate the 

upregulation of many cellular restriction factors. Type I IFNs induce an autocrine and 

paracrine-signaling cascade via the Type I IFN receptor and Janus Kinases/Signal 

Transducers and Activators of Transcription (Jak/Stat) pathway resulting in activation and 

upregulation of many genes that restrict viral replication thereby initiating an antiviral state 

(Samuel 2001; Horvath 2004; Baum and Garcia-Sastre 2010).  

 

 

http://www.nature.com/nrmicro/journal/v10/n4/full/nrmicro2747.html
http://www.nature.com/nrmicro/journal/v10/n4/full/nrmicro2747.html
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1.9.1 TRIM5α 

TRIM5α was identified as the protein responsible for blocking HIV infection in Old World 

monkeys (Stremlau et al. 2004). TRIM5 proteins belong to a family of more than 100 

tripartite motif genes in the human genome (Han et al. 2011).  

 

Studies thus far indicate that the rhesus orthologue of TRIM5α (rhTRIM5α) is the first 

restriction factor that acts to inhibit HIV-1 after entry into target cells. rhTRIM5α binds to the 

viral core and disrupts the normal uncoating process of the core (Chatterji et al. 2006). The 

B30.2 (SPRY) domain of rhTRIM5α facilitates binding by recognising and interacting with 

specific sequences on the HIV CA. Human TRIM5α only weakly inhibits HIV-1 replication. 

However, it is interesting that a single amino acid substitution in B30.2 (SPRY) domain of 

human TRIM5α enables it to restrict HIV-1 as efficiently as rhTRIM5α (Yap et al. 2005). 

TRIM5α may additionally block HIV-1 replication at the steps of reverse transcription and 

nuclear import (Berthoux et al. 2004; Yap et al. 2005).  Studies also indicate that HIV-1 CA 

recognition by rhTRIM5α is facilitated by host cell cyclophilin A (Berthoux et al. 2004; Yap 

et al. 2005). 

 

Tripartite proteins typically contain a RING finger, B –box and a coiled-coil domain. The B-

box is unique to TRIM proteins and is critical for TRIM5 mediated restriction, as deletion of 

this domain eliminates the ability of TRIM5α to inhibit HIV-1 (Stremlau et al. 2004; 

Javanbakht et al. 2005; Li and Sodroski 2008). The coiled-coil region plays a role in protein-

protein interaction and promotes TRIM5α multimerisation. It has been suggested that 

multimerisation is important for positioning the B30.2 (SPRY) domain to facilitate CA 

binding. Additionally mutants in the coiled-coil region fail to hinder HIV-1 (Javanbakht et al. 

2006). The TRIM5 RING finger has ubiquitin ligase activity and is not essential for 
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restriction activity but plays an important role (Yamauchi et al. 2008). Additionally, recent 

studies showed that high expression of TRIM5 was associated with reduced likelihood of 

infection in a high risk longitudinal follow-up cohort and that TRIM22 expression levels 

were associated with lower plasma viral load and higher CD4+ T cell counts during primary 

HIV-1 infection (Sewram et al. 2009; Ndung'u 2011; Singh et al. 2011).  

 

The mechanism of TRIM5 mediated retroviral restriction remains to be completely 

elucidated. It is unknown whether its mechanism is as simple as binding to the viral core and 

initiating premature uncoating or if its mechanism is a more complicated one involving other 

factors. A recent study highlights a further mechanism of TRIM5 in innate immune signalling 

where it acts as a pattern recognition receptor specific for the retrovirus CA lattice (Pertel et 

al. 2011). Additionally, in contrast to the other restriction factors, it has not yet been 

discovered whether SIV/HIV has a means to counteract TRIM5. 

 

1.9.2 Tetherin 

Vpu is required for efficient HIV-1 particle release in certain human cells (Terwilliger et al. 

1989; Klimkait et al. 1990). In the absence of Vpu, mature virions are unable to detach from 

certain types of infected cells and subsequently accumulate on the plasma membrane and 

within cellular compartments (Geraghty et al. 1994; Varthakavi et al. 2003; Neil et al. 2006).  

 

Studies show that human cells possess an antiviral activity that inhibits the release of 

retrovirus particles and is antagonized by the HIV-1 accessory protein, Vpu. The protein 

responsible for this HIVVpu antiviral phenotype has been identified as Tetherin (also 

known as BST-2 or CD317) (Neil et al. 2008). Tetherin is an IFN -induced protein, as Vpu 

independent cells can become Vpu dependent by IFN  treatment (Neil et al. 2007).  
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Tetherin is a 30-36kDa type II transmembrane glycoprotein (Ishikawa et al. 1995), containing 

an N-terminal cytoplasmic tail, a transmembrane domain, an extracellular coiled coil domain 

and a C-terminal glycosyl-phosphatidylinositol (GPI) anchor (Kupzig et al. 2003). Tetherin 

exists as a homodimer formed by disulphide bridges between the coiled coil ectodomain 

regions of two Tetherin proteins (Andrew et al. 2009).  

  

A few mechanisms of Tetherin-induced inhibition of HIV-1 particle release have been 

proposed (Perez-Caballero et al. 2009) (Figure 1.12). In the first model, as budding occurs, 

the GPI anchors of a Tetherin dimer remain embedded in the host-cell membrane and tether 

budding virus via the transmembrane domains incorporated into the virion envelope. The 

second model is the reverse of model 1 where transmembrane domains of a Tetherin dimer 

are incorporated into the host-cell membrane while the GPI anchors remain embedded in the 

virion envelope.  In a third model one disulfide linked Tetherin dimer that has incorporated 

into the virion envelope interacts with another dimer in the host-cell membrane via coiled-

coil-based interactions (Perez-Caballero et al. 2009). 

 

HIV-1 Vpu protein counteracts the antiviral mechanism of Tetherin. Studies suggest that Vpu 

and Tetherin interact through their respective transmembrane domains and that these domains 

are essential for Vpu mediated Tetherin degradation (Vigan and Neil 2010; Kobayashi et al. 

2011; Skasko et al. 2011). It has been suggested that Vpu degrades tetherin post-

translationally, by interaction with β-transducin repeat containing protein (β-TrCP) –E3 

ligase complex, thereby inducing the ubiquitination of Tetherin (Guatelli 2009; Mangeat et al. 

2009).  
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Figure 1.12 Models of interaction of Tetherin with HIV-1 virions (Source: (Perez-

Caballero et al. 2009), Tetherin Inhibits HIV-1 Release by Directly Tethering Virions to 

Cells, Cell) 

 

Ubiquitination of Tetherin results in its endocytosis from the cell membrane and degradation 

via the proteosomal or lysosomal degradation pathways (Douglas et al. 2009; Mitchell et al. 

2009). Additionally, Vpu can alter cell surface expression of Tetherin by sequestering it 

intracellularly, preventing its trafficking to the cell membrane and subsequently delivering it 

to late endosomal compartments (Dube et al. 2010; Hauser et al. 2010).  
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1.9.3 SAMHD1 

Cells of the myeloid lineage such as primary monocytes, monocyte-derived DCs and 

macrophages are more resistant to HIV-1 infection than CD4+ T lymphocytes. SAMHD1 

was discovered as the host factor expressed by myeloid cells that restricts HIV-1 by blocking 

an early step of the HIV-1 replication cycle. SAMHD1 expression levels were found to be 

high in monocytes and monocyte-derived DCs, low in monocyte-derived macrophages, and 

lacking from HIV-1-sensitive T cell lines. Interestingly, these expression profiles correlate 

inversely with the permissiveness of the cell types to HIV-1 infection (Laguette et al. 2011).  

 

SAMHD1 constitutes a putative protein-interacting sterile alpha motif (SAM) and a C-

terminal dNTP phosphohydrolase domain (HD domain). The current accepted mechanism for 

antiviral activity of SAMHD1 is that it causes hydrolysis of cellular deoxynucleoside 

triphosphates (dNTPs) to the constituent deoxynucleoside and inorganic triphosphate, thereby 

starving the process of reverse transcription of crucial molecular building blocks required for 

viral cDNA synthesis (Goldstone et al. 2011).  

 

It has been proposed that IFN production during the innate immune response results in 

SAMHD1 upregulation. Additionally, SAMHD1 was originally cloned from human DCs as 

an IFN--inducible gene and has been suggested to act as a negative regulator of the IFN 

response (Li et al. 2000; Rice et al. 2009).  

 

Studies have shown that viral protein X (Vpx) of HIV-2 and SIV, but absent in HIV-1, is able 

to enhance the susceptibility of myeloid cells to HIV-1 infection by counteracting SAMHD1 

(Hrecka et al. 2011; Laguette et al. 2011). Vpx triggers the degradation of SAMHD1 by 

facilitating the formation of an E3 ubiquitin ligase complex comprising DCAF1, DDB1 and 
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CUL4, which facilitates the polyubiquitination and subsequent eradication of SAMHD1 (Ahn 

et al. 2012; Wei et al. 2012). The C-terminus of SAMHD1 has been reported as the region 

involved in functional interaction with Vpx (Laguette et al. 2012).  

 

SAMHD1 is the most recently discovered restriction factor and the regulation of SAMHD1 

activity remains an important area of study. Additionally, HIV-1 has not yet evolved a 

counter-attack strategy against SAMHD1 and therefore further understanding of this intrinsic 

restriction factor may unravel novel methods of combating the virus. 

 

1.9.4 The APOBEC3 Family of Cytidine Deaminases 

The mechanism of RNA editing plays an important role in the growth of genetic diversity in 

many organisms by expanding gene products from a single structural gene without generating 

new genes.  In mammals, there are two types of substitutional RNA editing that occur by 

deamination of encoded nucleotides.  One results in the deamination of adenine (A) to 

inosine (I) and the other of cytidine (C) to uridine (U) (Blanc and Davidson 2003; Turelli and 

Trono 2005). Recent evidence shows that RNA editing by cytidine deamination in particular, 

may play a vital role in host defense against infectious agents, firstly by contributing to 

antibody diversification and therefore playing an important role in mature B cells for the 

production of secondary antibody repertoire, a crucial element of adaptive immunity, and 

secondly, by inhibiting the replication of retroviruses, a possible innate immune strategy 

(Cascalho 2004; Turelli and Trono 2005). 

 

A recently discovered and well documented RNA editing enzyme, APOBEC3G, a member of 

the human APOBEC cytidine deaminase family, has been shown to have potent antiviral 

activity, providing intrinsic immunity to retroviral infection (Bishop et al. 2004; Harris and 
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Liddament 2004; Mangeat et al. 2004; Huthoff and Malim 2005) and is a novel candidate 

ARG (O'Brien and Nelson 2004).  

 

The family of cytidine deaminase proteins in humans includes activation induced deaminase 

(AID) and APOBEC1 (with their gene locus on chromosome 12), APOBEC2 (on 

chromosome 6), and an array of seven APOBEC3 proteins, named APOBEC3A – 3H, whose 

genes flank each other on human chromosome 22.  Additionally, the APOBEC4 subfamily 

was recently discovered with genes located on chromosome 1 (Rogozin et al. 2005).  

 

The pattern of APOBEC3 protein expression is tissue specific, with APOBEC3G, -3F, and -

3C expressed in spleen, ovary and testes, with little or no APOBEC3B being detectable in 

these tissues (Jarmuz et al. 2002).  Additionally, APOBEC3G and -3F are expressed 

extensively in hematopoietic cell populations, including T cells, B cells, and in monocytes 

and DCs, as well as in hepatocytes (Jarmuz et al. 2002; Peng et al. 2007).  APOBEC3A is 

also expressed in monocytes (Peng et al. 2007) and -3B and -3C are expressed in hepatocytes 

(Bonvin and Greeve 2007).  

 

Along with APOBEC3G, APOBEC3B (Doehle et al. 2005), -3D (Hultquist et al. 2011), -3F 

(Zheng et al. 2004; Hultquist et al. 2011) and -3H (Dang et al. 2008; Ooms et al. 2010; 

Hultquist et al. 2011) have also been shown to have antiviral activity. 
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1.9.4.1  Discovery of APOBEC3G as an Antiviral Factor  

Viruses that are vif deficient ( vif) have been shown to be non-infectious. Interestingly, this 

defective phenotype is cell type dependent, determined by the virus producing cell, and 

expressed by primary human T cells, the principal cell target for HIV-1 in vivo, and a limited 

number of cell lines, including HUT78 and CEM. These cells have been termed non-

permissive. On the other hand, permissive cell lines (eg. HeLa, Jurkat, SupT1, CEM-SS and 

293T cells) support the production of fully infectious  vif viruses (Gabuzda et al. 1992; von 

Schwedler et al. 1993; Madani and Kabat 1998). 

 

This cell type specificity suggested that Vif function may be influenced by host factors. In 

cell fusion assays, the heterokaryon formed between non-permissive and permissive cells 

indicated that the non-permissive phenotype was dominant and suggested that non-permissive 

cells selectively express an antiviral factor that is suppressed by Vif (Simon et al. 1998). 

CEM15 (also known as APOBEC3G) was subsequently identified as the cellular gene whose 

anti-viral action is inhibited by Vif (Sheehy et al. 2002). 

 

1.9.4.2  Structural Characteristics of APOBEC3 Proteins 

APOBEC3 proteins have a distinctive domain structure comprising either one (APOBEC3A, 

-3C, -3H) or two cytidine deaminase domains (CDAs) (APOBEC3B, -3D, -3E, -3F, -3G) 

(Conticello et al., 2003; Jarmuz et al., 2002).  However, generally only the C-terminal CDA 

is catalytically active while the N- terminal CDA is involved in nucleic acid binding and 

virus encapsidation (Navarro et. al., 2005) (Figure 1.13).  The CDAs are characterized by a 

conserved zinc-finger binding motif His-X-Glu-X27-28-Pro-Cys-X2-Cys (Conticello et al., 

2005; Jarmuzet al., 2002). This site catalyses the hydrolytic deamination of deoxycytidine, to 
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form a deoxyuridine. During the deamination reaction, the cysteines coordinate a single zinc 

ion and glutamate is involved in proton shuttling (Betts et al. 1994). 

 

The 3-D structure of the 384 amino acid residue APOBEC3G protein has not yet been 

resolved by either X-ray or nuclear magnetic resonance. However, a high-resolution crystal 

structure of the carboxy-terminal deaminase domain of APOBEC3G has been determined. 

The C-terminal domain, extending from residue 198 – 384, is a well-defined core structure of 

five alpha helices (α1-α5) and five beta strands (β1-β5), with the zinc-coordinating catalytic 

domain surrounding α1 and α2 and β3 strands (Chen et al. 2008; Holden et al. 2008). 

APOBEC3G also has an inherent tendency to multimerise and forms homo-multimers 

(Jarmuz et al. 2002; Opi et al. 2006). Studies also suggest that APOBEC3G is packaged into 

viral particles as an oligomer bound to RNA (Burnett and Spearman 2007). 

 

 

 

 

 

 

 

Figure 1.13 Domain Structure of APOBEC3G 

  

Additionally, APOBEC3G is known to exist in two distinct cytoplasmic forms: an 

enzymatically active low molecular mass form (LMM) and an inactive high molecular mass 

complex (HMM). In activated cells and T cell lines, APOBEC3G is present as a mixture of 

both LMM and HMM APOBEC3G. In resting CD4+ T cells APOBEC3G exists 
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predominantly in the LMM conformation, where it has been shown to inflict strong post-

entry restriction on HIV-1 infection (Chiu et al. 2005).  

 

1.9.4.3  Viral Encapsidation of APOBEC3G 

Studies have shown that APOBEC3G is incorporated into budding virions via an interaction 

with the viral Gag precursor protein through its NC component (Alce and Popik 2004; Cen et 

al. 2004; Schafer et al. 2004; Zennou et al. 2004; Khan et al. 2005). The interaction occurs 

through the N-terminal deaminase domain of APOBEC3G, which although catalytically 

inactive, is still crucial for RNA binding and encapsulation into virions (Navarro et al. 2005; 

Opi et al. 2006). It has also been shown that it is the N-terminal region of HIV-1 NC, vital for 

binding to RNA and mediating Gag-Gag oligomerisation, which plays a significant part in 

APOBEC3G binding and virion packaging (Luo et al. 2004). 

 

Further, it has been suggested that 7SL cellular RNA may also facilitate the packaging of 

APOBEC3G into viruses. 7SL RNA is a component of signal recognition particles but is also 

an abundant constituent of HIV-1 virions (Onafuwa-Nuga et al. 2006; Khan et al. 2007; 

Wang et al. 2007). Therefore, APOBEC3G virion incorporation is mediated by APOBEC3G 

interactions with both viral and nonviral RNAs that are packaged into viral particles.  

 

1.9.4.4  Anti-Viral Mechanism of APOBEC3G 

Amongst the APOBEC3 proteins, APOBEC3G appears to have most potent antiviral activity 

in vitro, and most studies to date have focused on the antiviral activity of this isoform as 

compared to other APOBEC3 proteins. 
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1.9.4.4.1 Deamination of HIV-1 DNA by APOBEC3G 

In the absence of Vif, APOBEC3G is encapsulated into budding virions (as described above) 

where it primarily directs extensive deamination of deoxycytidine (dC) to deoxyuridine (dU) 

on viral minus strand DNA, that is formed during the replication step of reverse transcription. 

These dU rich transcripts serve as templates for plus strand synthesis thus producing 

extensive deoxyguanosine (dG) to deoxyadenosine (dA) substitutions in plus strand DNA 

(Sheehy et al. 2002; Mangeat et al. 2003) (Figure 1.14).  The consequence of dG to dA 

hypermutated viral DNA is the alteration of reading frames, introduction of premature stop 

codons or mutated, non-functional viral proteins (Lecossier et al. 2003; Mangeat et al. 2003; 

Zhang et al. 2003). Hypermutated viral sequences have been identified in long term non-

progressors and associated with increased CD4 counts suggesting an in vivo role for cytidine 

deaminases in disease progression (Huang et al. 1998; Alexander et al. 2000; Land et al. 

2008).   

 

Studies show that APOBEC3G preferentially targets sequences in the dinucleotide context 

5’-CC, distinguishing it from APOBEC3F which prefers the 5’ TC signature dinucleotide 

(Lecossier et al. 2003; Beale et al. 2004; Liddament et al. 2004; Yu et al. 2004).  

 

In addition, it has been shown that G to A mutations occurs with an increasing 5’ to 3’ graded 

frequency over the viral genome (Yu et al. 2004).   Furthermore, recent studies actually 

identified twin gradients of APOBEC3G editing with one peak located just 5’ to the cPPT 

within the integrase gene and the second peak 5’ to the polypurine tract near the 3’ LTR 

(3’PPT) (Figure 1.15). The region upstream of the primer binding site at the 5’ end of the 

viral genome also appears to be hypersensitive to APOBEC3G editing (Suspene et al. 2006; 

Wurtzer et al. 2006).  It has been suggested that the length of time that each nucleotide 
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remains single stranded during reverse transcription determines the frequency with which it is 

mutated (Yu et al. 2004).   

 

 

Figure 1.14 Antiviral activity of APOBEC3G. In the absence of Vif, APOBEC3G is 

effectively packaged into nascent virions where it inhibits viral replication through 

deaminase dependant and independent mechanisms (Source: (Greene et al. 2008), Novel 

targets for HIV therapy, Antiviral Research). 

 

During the process of reverse transcription, plus strands of the viral DNA are synthesized as 

two distinct segments. The downstream segment is initiated at the cPPT and covers the 3’ 

half of the genome, including the entire 3’LTR, while the upstream segment is initiated at the 

3’PPT, covers the 5’LTR and the 5’ half of the genome (Charneau et al. 1992; Charneau et al. 

1994). The PPTs as well as the PBS at which reverse transcription is initiated therefore 

remain single stranded for the least amount time and are consequently less vulnerable to 

deamination by APOBEC3G.  These sites also offer a degree of protection against 

http://www.sciencedirect.com.ezp-prod1.hul.harvard.edu/science/journal/01663542
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APOBEC3G immediately downstream of their location which decreases gradually further 

downstream (Wurtzer et al. 2006).  Hence, the regions closest to the sites of plus strand 

initiation such as gag, are less prone to editing than env, which is located just upstream of the 

3’ PPT priming site (Yu et al. 2004). 

 

 

Figure 1.15 Gradients of APOBEC3G mediated hypermutation (Adapted from: 

(Gandhi et al. 2008), Role of APOBEC3G/F-Mediated Hypermutation in the Control of 

Human Immunodeficiency Virus Type 1 in Elite Suppressors, Journal of Virology). 

 

In addition to the inhibitory effects of G to A hypermutation, dU’s resulting from cytidine 

deamination, can trigger DNA degradation through the action of DNA repair pathways by 

recruiting cellular uracil-DNA glycosylases and other endonucleases, thus preventing plus 

strand viral synthesis (Klarmann et al. 2003; Newman et al. 2005; Yang et al. 2007). 
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1.9.4.4.2 Deaminase Independent Anti-viral Activity of APOBEC3G 

Studies have suggested that APOBEC3G may also be able to inhibit viral propagation 

through pathways independent of its deaminase activity (Klarmann et al. 2003; Shindo et al. 

2003; Li et al. 2004; Newman et al. 2005; Guo et al. 2007; Iwatani et al. 2007; Mbisa et al. 

2007; Mbisa et al. 2010).  

 

Expression of the N-terminal domain alone, which is primarily involved in RNA binding and 

encapsidation, was able to inhibit HIV-1 replication, showing that catalytic activity is not 

solely required for APOBEC3Gs antiviral function (Li et al. 2004).   Additionally, N- and C-

terminal deletion mutants of APOBEC3G that were unable to deaminate viral DNA were still 

able to inhibit viral replication by interfering with reverse transcription priming and extension 

(Li et al. 2007).  APOBEC3G can disrupt priming of HIV-1 reverse transcription by 

interfering with tRNA3
Lys

 binding to viral RNA (Guo et al. 2007). In addition, APOBEC3G 

has been shown to restrict DNA strand transfer (Li et al. 2007; Mbisa et al. 2007), obstruct 

integration of viral DNA into the host genome (Luo et al. 2007; Mbisa et al. 2007; Mbisa et 

al. 2010) and inhibit elongation during reverse transcription (Iwatani et al. 2007; Bishop et al. 

2008). 

 

There remains uncertainty about whether deaminase activity is essential for the antiviral 

activity of APOBEC3G. Recent studies indicate that the catalytically inactive mutant form of 

APOBEC3G maintains very slight antiviral activity compared to APOBEC3G with complete 

deaminase activity (Newman et al. 2005). It therefore seems possible that both deaminase 

dependent as well as -independent mechanisms contribute synergistically to the overall 

antiviral activity of APOBEC3G. 

 



Page | 65  
 

1.9.4.5  Vif - Viral Armour against APOBEC3G 

To counteract the potent mutagenic and inhibitory activities of APOBEC3G, HIV-1 has 

evolved a strategy in the form of the accessory protein Vif, to eradicate this host anti-viral 

factor. Vif physically interacts with and binds newly synthesised APOBEC3G by hijacking a 

cellular E3 ligase complex and targets the protein for degradation via the ubiquitin-dependant 

26S proteosomal pathway (Conticello et al. 2003; Marin et al. 2003; Sheehy et al. 2003; 

Stopak et al. 2003; Yu et al. 2003; Mehle et al. 2004).  

 

Studies show that overexpression of Vif results in a striking reduction of APOBEC3G in 

HIV-1 infected T cells. Additionally, APOBEC3G is a naturally stable protein with a half-life 

of >8 hrs, calculated in transiently infected HeLa or 293T cells and Vif is able to reduce 

APOBEC3Gs half-life to between 5 minutes and 4 hours (Conticello et al. 2003; Marin et al. 

2003; Stopak et al. 2003; Mehle et al. 2004).  

 

1.9.4.5.1 Sites of Interaction between Vif and APOBEC3G 

Several domains within Vif, responsible for the critical interaction with the E3 ligase 

complex and APOBEC3G have been identified. Studies have shown that there are various 

regions in the N-terminal domain of Vif that are important for binding to APOBEC3G 

(Simon et al. 2005; Schrofelbauer et al. 2006; Mehle et al. 2007; Russell and Pathak 2007; 

Yamashita et al. 2008) (Figure 1.16). Studies have shown that residues in Vif spanning 

position 40 to 44 (YRHHY) (Schrofelbauer et al. 2006; Mehle et al. 2007; Russell and Pathak 

2007; Yamashita et al. 2008) and the region between amino acids 52 to 72 (He et al. 2008) 

are essential for interaction with APOBEC3G. The amino acids I9, K22, E45 and N48 in Vif 

have also been shown to be necessary for binding APOBEC3G (Simon et al. 2005; Wichroski 
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et al. 2005). Additionally, tryptophans (Trp) in the N-terminal region of Vif, specifically Trp 

5, 21, 38 and 89, have been found to be important for APOBEC3G binding (Tian et al. 2006).  

The highly conserved SLQ SOCS-box motif spanning residues 145 to 154 near the C-

terminus of Vif was found to mediate binding of Vif to Elongin C, a known component of the 

E3 ubiquitin ligase complexes (Yu et al. 2003; Mehle et al. 2004; Mehle et al. 2004; Yu et al. 

2004). Further, the highly conserved HCCH zinc binding motif, situated upstream of the BC 

box, mediates interaction with Cullin-5 (Luo et al. 2004; Mehle et al. 2004; Yu et al. 2004). 

 

Both the SLQ and HCCH domains facilitate the recruitment of an ubiquitin-ligase (E3) 

complex containing elongin –B and –C, cullin-5 and Rbx1 (Yu et al. 2003; Mehle et al. 2004; 

Yu et al. 2004; Mehle et al. 2006). Thus, Vif forms a bridge between the cullin-

5/elonginB/elonginC/Rbx1 complexes and APOBEC3G and accelerates polyubiquitylation of 

this host defence factor targeting it for destruction by the 26S proteasome (Conticello et al. 

2003; Marin et al. 2003; Sheehy et al. 2003; Yu et al. 2003; Yu et al. 2004).  
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Figure 1.16 [A] Representation of the functional domains of Vif. (Adapted from: 

(Barraud et al. 2008), Advances in the structural understanding of Vif proteins, Current HIV 

Research) [B] Vif interaction sites. VIF targets APOBEC3G for proteosomal degradation by 

functioning as a bridge that specifically recruits APOBEC3G into an E3 ubiquitin–ligase 

complex for ubiquitination and subsequent degradation via the 26S proteasome (Adapted 

from: (Lv et al. 2007), Three-dimensional structure of HIV-1 VIF constructed by comparative 

modeling and the function characterization analyzed by molecular dynamics simulation, 

Organic & Biomolecular Chemistry; and (Harris and Liddament 2004), The mechanism of 

Vif-dependent APOBEC3G degradation, Nature Reviews Immunology). 

A 

B 
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Studies show that it is also the N-terminal region of APOBEC3G that is involved in Vif 

binding. Amino acids at positions 128, 129 and 130 and the region spanning residues 54 to 

124 in APOBEC3G have been shown to be responsible for its interaction with Vif (Li et al. 

2004; Huthoff and Malim 2007). 

 

Additionally, the interaction between Vif and APOBEC3G is species-specific. HIV-1 Vif 

blocks the inhibitory activity of human APOBEC3G while African Green Monkey (agm) SIV 

Vif inhibits agmAPOBEC3G. Interestingly, SIV Vif from Rhesus Macaque (rh) can inhibit 

human, agm and rhAPOBEC3G (Mariani et al. 2003). Residue D128 in the N-terminal region 

of huAPOBEC3G has been shown to be the determining factor in this species-specific 

interaction (Bogerd et al. 2004; Mangeat et al. 2004; Schrofelbauer et al. 2004; Xu et al. 

2004; Schrofelbauer et al. 2006).  

 

1.9.4.6  APOBEC3F joins APOBEC3G in the fight against HIV-1 

Studies have shown that APOBEC3G is joined by APOBEC3F as an anti-viral factor in the 

fight against HIV-1 infection. It has been shown that APOBEC3F is often co-expressed with 

APOBEC3G in nonpermissive cells (Liddament et al. 2004; Wiegand et. al. 2004; Zheng et 

al. 2004).  APOBEC3G and APOBEC3F have approximately 49% identity in their amino 

acid sequences however they have different dinucleotide specificities in editing substrates, 

where  APOBEC3G prefers 5’-CC dinucleotides while APOBEC3F prefers 5’-TC 

dinucleotides (the underline nucleotide being target for deamination) (Beale et al. 2004; 

Bishop et al. 2004; Liddament et al. 2004; Wiegand et al. 2004).  Most studies to date have 

shown that APOBEC3G is a significantly more powerful inhibitor of HIV-1 replication and 

causes a greater frequency of G-to-A mutations than APOBEC3F (Bishop et al. 2004; 

Liddament et al. 2004; Wiegand et al. 2004; Zennou et al. 2006). However, APOBEC3F 
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demonstrates a more pronounced deamination-independent effect on HIV-1 replication 

compared to APOBEC3G (Holmes et al. 2007; Mbisa et al. 2007). Additionally they also 

differ in their dependency on HIV-1 genomic or non-genomic RNAs for virion incorporation 

(Simon et al. 2005). Despite these differences HIV-1 degrades both APOBEC3G and 

APOBEC3F via the same pathway to eliminate its anti-viral activity.  HIV-1 Vif is able to 

bind both proteins and targets them for proteosomal degradation via ubiquitin-dependant 26S 

proteosomal pathway ((Conticello et al. 2003; Marin et al. 2003; Sheehy et al. 2003; Stopak 

et al. 2003; Yu et al. 2003; Mehle et al. 2004Liu et al 2007). Even with the evidence of 

APOBEC3Fs anti-viral activity this host restriction factor has not been as extensively studied 

as APOBEC3G, particularly in the context of HIV-1 subtype C infection. 

 

1.9.4.7  Other Exogenous and Endogenous APOBEC3 Targets 

In addition to providing intrinsic immunity against HIV-1 infection, the spectrum of activity 

of APOBEC3 proteins extends to other exogenous retroviruses and endogenous mobile 

retroelements.  

 

Studies have shown that APOBEC3G can block lentiviruses such as SIV, and EIAV, as well 

as the gammaretrovirus murine leukemia virus. (Harris et al. 2003; Mangeat et al. 2003). It 

has also been demonstrated that APOBEC3G is able to inhibit replication of hepatitis B virus 

by extensive editing of its DNA strands (Suspene et al. 2005; Turelli and Trono 2005). 

APOBEC3G is also able to inhibit human T-lymphotropic virus type I (HTLV-1) via its 

deaminase independent antiviral activity (Sasada et al. 2005). Editing by APOBEC3 proteins 

therefore constitutes an obstacle to cross-species transmission of numerous retroviral 

pathogens and retroelements.   
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Additionally, APOBEC3G also functions in the inhibition of endogenous retroelements. The 

human genome contains a large number of mobile genetic elements specifically, DNA 

transposons and retrotransposons. Retrotransposons account for approximately one-third of 

the genome and are mobile DNA sequences that are able to integrate into the genome of host 

cells. In a process called retrotransposition, new copies are generated by coupled transcription 

and reverse transcription followed by insertion of the new DNA into different sites in the 

genome. Endogenous retrotransposons include elements that bear LTRs, such as endogenous 

retroviruses, and non-LTR retroelements, namely long interspersed nuclear elements (LINEs) 

and short interspersed nuclear elements (SINEs). Retrotransposons play an essential role in 

genome remodelling, evolution and speciation and may facilitate adaptation. Nevertheless, 

they can also be damaging to the host genome and represent genetic threats, as they are able 

to disrupt genes by insertional mutagenesis, enhance translocations and other rearrangements 

by recombination, create aberrant cellular transcripts from their promoter, and exert antisense 

effects (Prak and Kazazian 2000; Kazazian 2004).   

 

Primates have unusually low levels of retrotransposon activity which interestingly 

corresponds with the expansion of the APOBEC3 gene cluster from a single gene in mice to 

seven genes in primates (Jarmuz et al. 2002). APOBEC3 genes have been subjected to strong 

positive selective pressure throughout the history of primate evolution for more than 30 

million years (Sawyer et al. 2004; Zhang and Webb 2004).  This selection appears older than 

modern lentiviruses suggesting that this gene family expanded in order to curtail the genomic 

instability caused by endogenous retroelements (Sawyer et al. 2004). 
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1.10 The Tortuous Vif-APOBEC3G Interplay 

The interplay between HIV-1 Vif and APOBEC3G appears to be a complex one in the human 

host. The interaction between the virus and host factor is of particular interest and there is 

considerable evidence that suggests that the dynamics of this interaction may greatly 

influence disease progression.   

 

Several studies show a presence of APOBEC3 footprints in HIV-sequences isolated from 

treated and untreated chronically and early-infected patients (Rose and Korber 2000; Janini et 

al. 2001; Kieffer et al. 2005; Pace et al. 2006; Wood et al. 2009), infected infants (Koulinska 

et al. 2003; Amoedo et al. 2011; De Maio et al. 2012), and elite controllers (Wei et al. 2004; 

Simon et al. 2005). Studies that have attempted to examine the association between the extent 

of hypermutation in HIV-1 and clinical markers of disease progression, specifically viral 

loads and CD4 counts, have presented conflicting findings (Gandhi et al. 2008; Land et al. 

2008; Ulenga et al. 2008; Piantadosi et al. 2009; Kourteva et al. 2012). Additionally, some 

studies demonstrate an inverse correlation between APOBEC3G expression (Jin et al. 2005; 

Ulenga et al. 2008; Vazquez-Perez et al. 2009; Kourteva et al. 2012) and viraemia while 

others found no such correlation (Cho et al. 2006; Amoedo et al. 2011). It has also been 

demonstrated in vitro that APOBEC3G expression is upregulated upon CD4+ T cell 

activation (Refsland et al. 2010)  and APOBEC3G expression decreases as HIV-1 disease 

progresses (Vazquez-Perez et al. 2009). 

 

To further investigate the association between APOBEC3G and disease progression, studies 

have attempted to examine the influence of host and virus variability at the Vif-APOBEC3 

system on disease outcome. Several polymorphisms within APOBEC3G have been identified 

with only a few being associated with increased risk of infection and disease progression or 
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hypermutation of viral genomes (An et al. 2004; Do et al. 2005; Pace et al. 2006; Valcke et 

al. 2006; De Maio et al. 2011). The single nucleotide polymorphisms of particular interest are 

the H186R (rs8177832) mutation in exon 4 identified in African Americans (An et al. 2004), 

a 5’ extragenic mutation (rs5757463) (Bizinoto et al. 2011), and C40693T (rs17496018) in 

intron4 (Valcke et al. 2006), all of which were found to be associated with high viral loads 

and decreased CD4+ T cell counts or accelerated progression to AIDS-defining conditions. 

Interestingly, APOBEC3G polymorphisms may be able to influence HIV-1 adaptation and 

evolution of specific Vif variants, as shown by (De Maio et al. 2011) where the Vif variant 

E45D associated with the APOBEC3G C40693T minor allele.  

 

Natural variants of Vif have been frequently identified; however, there is uncertainty about 

how these particular Vif variants may contribute to viral pathogenicity (Zhang et al. 1997; 

Hassaine et al. 2000; Yamada and Iwamoto 2000; Rangel et al. 2009; Fourati et al. 2010). Vif 

variants may have an enhanced or diminished capacity to counteract APOBEC3G. (Simon et 

al. 2005) showed that natural variation in subtype B Vif proteins results in defective or 

partially active Vif variants. Vif variants that have increased or partial activity against 

APOBEC3G and may possibly contribute to HIV-1 genome diversification by allowing sub 

lethal levels of APOBEC3G editing of the viral genome during reverse transcription thus 

facilitating the emergence of immune escape or drug resistant viral forms. Therefore, an 

increase or decrease in Vif activity may facilitate accelerated disease progression (Simon et 

al. 2005; Munk et al. 2012). 

 

Further, degradation of APOBEC3G by Vif may also be regulated by genetic polymorphisms 

within the components of the E3 ubiquitin ligase complex such as Cullin 5 (An et al. 2007; 

De Maio et al. 2012). 
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1.10.1  Harnessing the Vif-APOBEC3G Interaction as a Therapeutic Target 

There seems to be a delicate balance between Vif and APOBEC3, which if slightly disturbed 

may be a key determinant of the disease outcome in retroviral infection. Moreover it might 

even be possible to take advantage of this balance therapeutically as a potential new target for 

anti-HIV drugs. 

 

A Vif inhibitor may be able to directly prevent Vif from degrading APOBEC3G allowing the 

host factor to freely restrict infection. However, as with current anti-HIV-1 therapies, this 

method might also eventually succumb to viral escape mutants by generating Vif variants that 

would no longer be bound by the inhibitors. Nevertheless, if used in conjunction with other 

anti-retroviral drugs, a Vif inhibitor would complement the current pharmaceutical anti-HIV-

1 cache.  An alternative approach would be to facilitate APOBEC3G mediated viral 

restriction by using a ‘molecular shield’ that would shelter APOBEC3G from Vif but at the 

same time would not hinder its antiretroviral activities. This approach might be more 

advantageous over Vif inhibitors, as the molecular shield would be directed to a somewhat 

more stable cellular target (Harris and Liddament 2004). One may even envision a scenario in 

which APOBEC3G antiviral activity is enhanced, accompanied by its protection from Vif-

mediated destruction.  

 

Several groups have already attempted to target the Vif-APOBEC3 interaction with both Vif 

inhibitors as well as APOBEC3 shields. The first potential Vif inhibitor, the RN 18 molecule 

was shown to antagonise Vif function and inhibit HIV-1 replication. RN 18 enhanced 

APOBEC3G incorporation into virions and boosted cytidine deamination of the viral genome 

(Nathans et al. 2008).  The IMB-26 and IMB-35 molecules were shown to bind directly to the 

APOBEC3G and consequently suppressed Vif-APOBEC3G interaction, therefore protecting 
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APOBEC3G from Vif-mediated degradation (Cen et al. 2010). The SN-2 compound was also 

shown to stabilise APOBEC3G in the presence of HIV-1 Vif (Ejima et al. 2011). 

Additionally, Chim3, an engineered Vif-derived molecule, was shown to preserve the 

antiviral function of APOBEC3G and impaired the early steps of HIV-1 life cycle (Porcellini 

et al. 2009; Porcellini et al. 2010). 

 

Additionally, it was recently shown that IFNα potently increases the amount of APOBEC3G 

mRNA and protein expressed by human primary monocyte-derived macrophages, and this 

increase correlated with a decrease in viral replication (Stopak et al. 2007). The induction of 

APOBEC3G expression by IFNα in macrophages possibly tilts the delicate balance between 

APOBEC3G and Vif in favour of APOBEC3G, and represents a mechanism by which IFNα 

mediates its anti-HIV effects in macrophages (Peng et al. 2006). This novel tactic by which 

IFN-α mediates its antiviral activity suggests the possibility of a therapeutic intervention to 

render the host non-permissive for viral replication. 
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1.11 Study Objectives and Hypotheses 

Restriction factors and viral-host interactions in the HIV-1 subtype C setting are understudied 

and knowledge is limited, specifically in South Africa which has the highest HIV prevalence 

in the world. This study was carried out in a South African based cohort with the purpose of 

investigating the antiviral effects of APOBEC3G in HIV-1 subtype C in vivo. We 

hypothesised that APOBEC3G, an important intrinsic immune factor plays an important role 

in vivo.  Specifically, we hypothesised that expression levels of APOBEC3G and genetic 

polymorphisms may affect susceptibility or disease outcome in early HIV-1 infection.  We 

also hypothesised that the extent of APOBEC induced G-to-A hypermutation within the viral 

genome may be influenced by expression levels and/or genetic polymorphisms within 

APOBEC3G. We will also test the hypothesis that HIV-1 Vif anti-APOBEC3G activity and 

evolution is driven by the spectrum of APOBEC3G variants. 

 

 

1.12 The Aims of the Study were to: 

1. To determine the mRNA levels of APOBEC3G in peripheral blood mononuclear cells in 

HIV-uninfected individuals and during acute HIV-1C infection.  

 

2. To identify single nucleotide polymorphisms within APOBEC3G and to describe the 

extent of genetic variation within the gene in the acute infection cohort and investigate if the 

genetic variants of APOBEC3G may affect the course of acute and early HIV-1 infection.  

 

3. To understand the mechanisms of APOBEC3G polymorphisms in driving viral evolution 

by cloning and sequencing HIV-1 vif from patients whose APOBEC3G genotypes are known.  
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4. To functionally test vif alleles for their ability to counteract the action of APOBEC3G 

variants and to determine whether natural vif variants result in altered anti-APOBEC3G 

activity in the HIV-1 subtype C setting.  

 

5. To study the extent and frequency of APOBEC3G induced G-to-A hypermutation in HIV-

1 env gene and to determine if there is an association between hypermutations and 

APOBEC3G variants. 
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CHAPTER TWO 

Materials and Methods 

 

2.1 Study Participants 

The CAPRISA 002 Acute Infection Study is an observational natural history study of HIV-1 

subtype C infection developed in Durban, KwaZulu-Natal, South Africa in 2004 and was 

established as a cohort at high risk of HIV infection (van Loggerenberg et al. 2008). The 

cohort was developed to study the impact of host, immune and viral factors during the phases 

of acute and early HIV-1 subtype C infection.  Seven hundred and seventy five women who 

were at least 18 years old were screened between August 2004 and May 2005 for 

participation in the cohort and HIV-1 negative women, considered as high-risk for HIV 

infection, based on self-identification as sex workers or self-report of more than three sexual 

partners in the previous 3 months. The process of screening to identify HIV –ve women 

included voluntary counselling and testing (VCT) and collection of a blood sample for rapid 

HIV antibody testing (Determine: Abbott Laboratories, Tokyo, Japan) and a urine sample for 

a pregnancy test. Of the 775 women screened, 313 were HIV negative and 245 of them were 

eligible for participation in the HIV negative cohort. The HIV negative women who were 

excluded at screening either had less than three sexual partners in the previous 3 months, or 

were pregnant at the time of screening or had planned to relocate or were younger than 18 

years. Those who were diagnosed as HIV positive, by two positive antibody tests (Determine 

(Abbott Laboratories, Tokyo, Japan) and Capillus (Trinity Biotech, Jamestown, NY, USA)), 

were referred for HIV follow-up care. 

 

Thus, 245 females at high risk for HIV infection were enrolled into Phase 1 of the study and 

underwent baseline evaluation (Figure 2.1).  Thereafter, participants were followed monthly 
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with a series of assessments including a clinical evaluation, two HIV antibody rapid tests, 

Determine (Abbott Laboratories, Tokyo, Japan) and Capillus (Trinity Biotech, Jamestown, 

NY, USA), HIV enzyme immunoassay (EIA) test (BEP 2000; Dade Behring, Marburg, 

Germany) and pooled HIV-1 RNA testing (Ampliscreen v1.5, Roche Diagnostics, Rotkreuz, 

Switzerland).  A urine dipstick was also performed if pregnancy was suspected and STI 

screening was performed on a 6 monthly basis. Samples that were HIV-1 RNA positive after 

pooled PCR testing were subsequently confirmed by a quantitative RNA (Amplicor v2.0, 

Roche Diagnostics) and HIV enzyme immunoassay (EIA) test.  

 

The diagnosis of acute HIV infection was made by either the detection of HIV antibodies 

within 3 months of a previously negative result or, if HIV-1 antibodies were absent, by sign 

of HIV-1 viral replication indicated by a HIV RNA PCR positive result. Participants with 

acute HIV infection were subsequently enrolled into Phase 2 of the study together with 

seroconverters from the Vulindlela and HIV Trials Prevention Network – 035 (HTPN-035) 

seroincidence cohorts.  

 

Sixty one participants were recruited into Phase 2 of the study.  Their estimated time of 

seroconversion was determined as the midpoint between the last antibody negative and first 

antibody positive test or 14 days before the participant was PCR positive and antibody 

negative.  During Phase 2, acutely infected participants were followed weekly for 3 weeks 

and thereafter fortnightly until 3 months post-infection.  Participants subsequently entered 

Phase 3 of the study where they underwent monthly follow up until 12 months post-infection. 

In Phase 4 participants were followed quarterly for a maximum of 5.5 years.  
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2.1.1  Ethics 

The present study forms a component of the research protocol for which ethical approval was 

obtained from the University of KwaZulu-Natal’s Biomedical Research Ethics Committee 

(E013/04). All participants provided written informed consent. All women who were 

screened for participation received HIV pre- and post-test counseling, risk reduction 

counseling, condoms, access to clinical care and treatment for sexually transmitted diseases. 

Additionally, participants who became HIV infected in the duration of the study were 

referred to the CAPRISA Antiretroviral Treatment Programme, where they were offered 

continued care and HIV treatment when clinically eligible. 

 

2.2 Sample Collection, measurement of CD4 counts and Plasma Viral Load 

Blood samples were collected into acid citrate dextrose tubes (Becton Dickinson Diagnostic 

Systems, Baltimore, MD, USA) and peripheral blood mononuclear cells (PBMCs) were 

isolated by Ficoll-Histopaque (Sigma, St Louis, MO) density gradient centrifugation and 

frozen until use.  Blood for viral load quantification and CD4 counting was collected in 

EDTA anticoagulated vacutainer tubes.  Viral load was determined using the automated 

COBAS AMPLICOR HIV-1 Monitor Test v1.5 (Roche Diagnostics).  CD4 cells were 

enumerated by using the Multitest kit (CD4/CD3/CD8/CD45) on a four-parameter 

FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, New Jersey, USA).   
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Figure 2.1   Schematic diagram of the CAPRISA Acute Infection Study 002 
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2.3 Quantification of APOBEC3G mRNA Expression by Real Time PCR 

2.3.1 RNA Isolation 

The accuracy of real time PCR results is heavily dependent on the preparation and isolation 

of high quality RNA. RNA was isolated from cryopreserved PBMCs using Trizol reagent 

(Invitrogen, Life Sciences, California, USA) according to the manufacturer’s protocol.   The 

quantity and quality of extracted RNA was determined by measuring the optical density at 

260 nm and 280 nm.  All RNA samples had a 260nm/280nm ratio > 1.8 and < 2.0.  

 

2.3.2 Synthesis of cDNA 

Total RNA was reverse transcribed to generate cDNA using the Quantitect Reverse 

Transcription Kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions (Table 

2.1). The kit consisted of gDNA Wipeout Buffer, Quantiscript Reverse Transcriptase 

Enzyme, Quantiscript RT Buffer, RT Primer Mix, RNase-Free Water. For a total reaction of 

20 μl the following standard volumes were used:  

 

Table 2.1 Components of cDNA Synthesis for APOBEC3G 

Reagent (μl) Volume 

gDNA Wipeout Buffer  2.0 

Template RNA  5.0 

Quantiscript Reverse Transcriptase  1.0 

Quantiscript RT Buffer 4.0 

RT Primer Mix 1.0 

RNase-Free Water  7.0 

Total Volume 20.0 

 

The reaction was carried out in 200 μl thin walled reaction tubes using a GeneAmp 9700 

PCR System (Applied Biosystems (ABI), Lifesciences, California, USA). Template RNA and 
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gDNA Wipeout Buffer were incubated for 2 min at 42°C and placed immediately on ice. This 

was then added to the reverse transcription mix and the reaction was incubated at 42
o
C for 15 

minutes and 95
o
C for 3 minutes. The cDNA was then stored at -20

o
C until used. 

 

2.3.3 Real Time PCR 

APOBEC3G mRNA expression levels were quantified by real-time PCR using SYBR Green 

chemistry (Roche Applied Science, Mannheim, Germany). Target specific primers were used 

to amplify APOBEC3G and were previously designed and described by (Jin et al. 2005) 

(Table 2.2).  

 

The method of relative quantification was used where the concentration of the target gene is 

expressed in relation to the concentration of a reference (housekeeping) gene. The 

housekeeping gene is used to normalize for variations in cell count or differences in nucleic 

acid extraction. The housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) (NM_002046) was used in this study and was amplified with specific primers 

highlighted in Table 2.2. All primers were synthesized by Roche Applied Sciences. 

 

Table 2.2 Oligonucleotide Sequences for the APOBEC3G and GAPDH genes 

Primer Name Sequence Position 

APOBEC3G (Fwd) 5’ CGCAGCCTGTGTCAGAAAAG 3’ 637 to 657 

APOBEC3G (Rev) 5’ CCAACAGTGCTGAAATTCGTCATA 3’ 714 to 691 

GAPDH (Fwd) 5’ AAGGTCGGAGTCAACGGATT 3’  115 to 134 

GAPDH (Rev) 5’ CTCCTGGAAGATGGTGATGG 3’ 339 to 320 
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Primers were optimised and the PCR reactions used for APOBEC3G and GAPDH 

amplification was as follows in Table 2.3. 

 

Table 2.3    Components of PCR reaction for amplification of APOBEC3G and GAPDH  

Reagent (μl) APOBEC3G GAPDH 

MgCl2 (25mM)      1.26   1.47 

10X LightCycler FastStart DNA Master SYBR Green I   1.00   1.00 

Primer (Forward) (10uM)   0.20   0.50 

Primer (Reverse) (10uM)   0.20   0.50 

cDNA Template   2.00   2.00 

Water   5.34   4.53 

Total Volume 10.0 10.0 

 

 

All reactions were performed on the LightCycler Instrument Version 1.5 (Roche Applied 

Science).   The PCR cycling conditions are described in Table 2.4. 

 

 

 

 

 

 

 



Page | 84  
 

Table 2.4 PCR cycling conditions for APOBEC3G and GAPDH  

 APOBEC3G  GAPDH  

Step 
Temperature  

o
C 

Time 

(min) 

# of 

cycles 

Temperature 

(
o
C) 

Time 

(min) 

# of 

cycles 

Initialisation 95 10:00 1 95 10:00 1 

Denaturation  95 0.05  95 0.05  

Annealing 55 0:15 40 65 0:15 40 

Extension 72 0:05  72 0:05  

Hold 4 ∞  4 ∞  

 

Quantification of gene expression by the LightCycler is based on a standard curve for each 

gene.  Standard curves were generated for APOBEC3G and GAPDH from 10 fold serial 

dilutions of cDNA of known concentrations.  The standard curves were imported into each 

PCR run and was used by the LightCycler Software to quantify each gene in a sample by 

extrapolation. All samples and standards were run in duplicate and the average value was 

used to compute APOBEC3G and GAPDH copy number.  The relative expression levels of 

APOBEC3G to GAPDH in each sample were determined by dividing the absolute 

concentration of the target gene (APOBEC3G) by the absolute concentration of the 

housekeeping gene (GAPDH). The resulting target/reference ratio expressed the amount of 

APOBEC3G normalized to the level of GAPDH within each sample. 
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2.3.4 Isolation of CD4+ T cells 

As an additional exploratory investigation we also assessed APOBEC3G expression in cells 

primarily targeted by HIV-1 that is CD4+ T cells as APOBEC3G expression levels may vary 

in the different cell types that constitute PBMCs. For this investigation we studied 8 

anonymous healthy donors and 8 HIV-1 chronically infected patients from the Sinikithemba 

Cohort based in Durban, South Africa. Ethical approval for use of study samples was 

obtained from the University of KwaZulu-Natal’s Biomedical Research Ethics Committee 

(E036/06). 

  

PBMCs were isolated from whole blood by the Histopaque-1077 (Sigma Aldrich, St. Loius, 

Missouri) density gradient medium. Thereafter, cells were counted by the Guava Viacount 

assay (EMD Millipore, Merck, Darmstadt, Germany) and 10 million cells were used for 

subsequent cell separation assays. CD4+ T cells were isolated from total PBMCs using the 

MACS CD4+ T Cell Isolation Kit II and MS columns (Miltenyi Biotec, California, USA). 

CD4+ T cells were isolated by the negative selection method where non-CD4+ T cells were 

depleted. The non-CD4+ T cells were magnetically labeled with a primary labeling cocktail 

of biotin-conjugated monoclonal antibodies as well as with a secondary labeling reagent of 

anti-biotin monoclonal antibodies conjugated to microbeads. The magnetically labeled non-

CD4+ T cells were depleted by retaining them on a MACS column in a magnetic field while 

the unlabeled CD4+ T cells pass through the column. 

 

Purity of the isolated CD4+ T cells was evaluated by flow cytometry on the LSR II Flow 

Cytometer (BD, Biosciences, California, USA). Aliquots of the total PBMC (that is before 

CD4 isolation) as well as the cell fraction were stained with flourochrome-conjugated 

antibodies against CD4 (CD4 FITC-A) and against the T cell marker CD3 (CD3 PerCP-A). 
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Thereafter, RNA was extracted from the isolated CD4+ T cells and processed for 

quantification of APOBEC3G mRNA levels by real time PCR as described in the previous 

section.  

 

2.4 Detection of APOBEC3G polymorphisms 

A subset of HIV-ve and HIV+ve samples was selected for resequencing to screen for and 

identify single nucleotide polymorphisms (SNPs) within APOBEC3G.  

 

APOBEC3G amplification and sequencing primers, and protocols that were used have been 

previously published (An et al. 2004). The primers covered the putative 5’ regulatory region, 

eight exons, exon-intron junctions, intron 1 and the 3’ untranslated region of the APOBEC3G 

gene (GenBank sequences AL022318 and AL078641).  These regions were amplified 

separately. The components of each 25µl PCR reaction and PCR cycling conditions are 

shown in Table 2.5 and Table 2.6 respectively. 
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Table 2.5 Components of PCR reaction for amplification and sequencing of 

APOBEC3G 

Reagent   

MgCl2 (25mM)      1.5 - 2.5mM 

10X PCR Buffer   1.50 µl 

Taq Gold (ABI)   0.15 µl 

dNTPs   2.4 mM 

Primer (Forward) (100uM)   5 µM 

Primer (Reverse) (100uM)   5 µM 

DNA    12.5 ng 

 

 

Table 2.6 PCR cycling conditions for amplification of APOBEC3G 

Step Temperature  (
o
C) Time (min) #of cycles 

Initialisation 95 10:00 1 

Denaturation  94   0.30  

Annealing 60   0:30 35 

Extension 72   0:45  

Final Extension 72 10:00 1 

Hold 4 ∞  
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For optimal sequencing, PCR products were purified to remove excess dNTPs and primers. 

The PCR products were purified by addition of Exonuclease and Shrimp Alkaline Phospatase 

(SAP) (Amersham Biosciences, GE Healthcare, Buckinghamshire, England) and incubation 

at 37
o
C for 25 minutes and 72

o
C for 15 minutes.  

 

The purified PCR products were subsequently sequenced using gene specific overlapping 

primers (Table 2.7) and a BigDye Terminator v3.1 Cycle Sequencing Kit (ABI) (Table 2.8). 

Extension products were purified using Sephadex G50 (Amersham, Pharmacia) to remove 

unincorporated dye terminators in sequencing reactions which would otherwise obscure 

sequencing data. Sequences were resolved on the 3730xl DNA Analyzer (ABI/Hitachi).
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Table 2.7  APOBEC3G amplification and sequencing primers, regions amplified and Mg++ concentration used in PCR 

 

 
 

Amplified Regions Forward primer Reverse primer Mg++ (mM) 

CEM15-Ex1 Exon 1, intron 1, exon 2, intron 2 5’ gacggaatttcgctcttgtc 3’ 5’ gggagagaaggacacactgg 3’ 1.5 

CEM15-Ex3 Exon 3, Intron 3, exon 4, intron 4  5’ ggtgagaagtgggaggttca 3’ 5’ gacctggtctggaacagagg 3’ 1.5 

CEM15-Ex4 Intron 4, exon 5 5’ aggtttggaggctctagcaa 3’ 5’ cactgaagccgaagtctcc 3’ 1.5 

CEM15-Ex5 Exon 5, Intron 5, exon 6, intron 6 5’ cctcatggcttgctttcttt 3’ 5’ gtcgaccccaaagtcaggt 3’ 1.5 

CEM15-Ex6 Intron 6, exon 7, intron 7, 5’ gctggaagtggaagcagaac 3’ 5’ agtgacaatgatcggagagga 3’ 1.5 

CEM15-In12 Intron 2 5’ ctgcgtgggtcacgtaca 3’ 5’ gcctcgtgtgtgaattctagc 3’ 1.5 

CEM15-In13 Intron 2, exon 3, intron 3 5’ gctgggaaaacttccaaactc 3’ 5’ tttccctccatccccctgt 3’ 1.5 

CEM15-pm1 5’ region, exon 1 5’ acgcctggccatttactct 3’ 5’ aagtgaggcttcatccttgg 3’ 2.5 

CEM15-pm2 5’ region 5’ ctcctcctgtagcctgttcaa 3’ 5’ gacagggagggagagtaa 3’ 1.5 

CEM15-pm3 5’ region 5’ ggcggtggaaagttacagtc 3’ 5’ tttagaagcaggaggggttg 3’ 2.5 

CEM15-3U Intron 7, exon 8, 3’ region 5’ cctcctctccgatcattgtc 3’ 5’ cctcctctccgatcattgtc 3’ 1.5 
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Table 2.8 Components of APOBEC3G Sequencing Reaction 

Reagent  Volume (µl) 

Big Dye ReadyReaction Mix     0.25 

Big Dye Sequencing Buffer (5X)   1.875 

Primer (10 µM)   0.32 

Water   5.055 

DNA    2.5 

Total Volume 10.0 

 

 

2.5 Genotyping of APOBEC3G Variants by TaqMan and RFLP Assays 

Following resquencing and screening of APOBEC3G, 5 SNPs that were identified were 

selected to be genotyped in a larger group of samples. The SNPs were selected based on their 

high minor allele frequencies and previous description in an American cohort (An et al. 2004) 

. The SNPs were genotyped using pre-designed TaqMan SNP genotyping assays (ABI) 

(Table 2.9), and where a TaqMan SNP genotyping assay was unavailable, PCR restriction 

fragment length polymorphism (RFLP) was used.  TaqMan assays were carried out according 

to the manufacturer’s protocol (ABI).  Details of the reaction mix and cycling conditions used 

are described in Table 2.10  and 2.11 respectively. 

 

The ABI TaqMan SNP genotyping assay depicted in Figure 2.2  employs 5’-nuclease 

technology and uses forward and reverse PCR primers, and two differently labelled TaqMan 

minor groove binder (MGB) probes. The biallelic SNP is located in the middle third of the 
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probe and each allele-specific MGB probe is labelled differently with either a VIC or FAM 

fluorescent reporter dye and attached with a fluorescence quencher. The reporter dye is 

quenched when the MGB probe is intact. During PCR, the 5’-nuclease activity of Taq DNA 

polymerase cleaves the reporter dye (FAM or VIC) from the MGB probe that has hybridized 

to the DNA strand. The reporter dye fluoresces when separated from the quencher. An 

increase in either VIC or FAM dye fluorescence specifies homozygosity for FAM- or VIC 

specific alleles (X/X or Y/Y), and an increase in the fluorescence of both dyes points to 

heterozygosity (X/Y) (Shen et al. 2009). The ABI Prism 7900HT sequence detection system 

was used to distinguish fluorescence and hence genotypes.  

 

 

Figure 2.2 TaqMan Genotyping/Allelic Discrimination Chemistry depicting the 5’-

nuclease activity of Taq DNA polymerase which cleaves the reporter dye (R) (FAM or 

VIC) from the probe that has annealed to the DNA strand. The reporter dye (R) 

fluoresces when separated from the quencher (Q) (Source: ABI PRISM® 7900HT 

Sequence Detection SystemUser Guide, ABI). 

 

 



Page | 92  
 

Table 2.9 Details of pre-designed TaqMan SNP genotyping assays 

NCBI dbSNP ID ABI Assay ID 

rs8177832   C_2189646_10 

rs17496046 C_25649193_10 

rs6001417 C_30089175_10 

rs3736685 C_27489853_10 

 

 

 

Table 2.10 Components of Reaction Mix for TaqMan Genotyping Assays 

Reagent  Volume (µl) 

TaqMan Universal PCR Master Mix   12.5 

Primer and TaqMan Probe (20X)   0.625 

Water   5.875 

DNA (10ng/µl)   1.0 

Total Volume 20.0 
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Table 2.11 Cycling conditions for TaqMan Genotyping Assays 

Step Temperature  (
o
C) Time (min) #of cycles 

Activation 95 10:00 1 

Denaturation  92   0.15  

Annealing/Extend 60   1:00 40 

Hold 4   ∞  

 

 

PCR primers, PCR conditions and restriction enzymes used for the RFLP assay (NCBI 

dbSNP ID: rs5750743) are described in Tables 2.12, 2.13 and 2.14 respectively. Restriction 

enzymes and buffers were from New England Biolabs (NEB). The RFLP assay is a 

commonly used method of genotyping that is based on endonuclease cleavage. A SNP that 

alters a restriction sequence can be genotyped by an RFLP assay as it produces or eliminates 

restriction endonuclease recognition sites, thereby affecting quantities and length of DNA 

fragments that result from restriction endonuclease digestion.  
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Table 2.12 Components of PCR RFLP Assay 

Reagent  Volume (µl) 

PCR Buffer (10X) (++Mg)     2.00 

dNTPs   0.40 

Primer (Fwd) (CEM15-P1-AVAI-S)
a
 (100µM)   0.10 

Primer (Rev) (CEM15-P1-AVAI-A)
b
 (100µM)   0.10 

Taq Gold    0.25 

Water 12.15 

 
a
 acgcctggccatttactct 

 
b 

gccctccctaaagtgacctc 

 

Table 2.13 Cycling conditions of PCR RFLP Assay 

Step Temperature  (
o
C) Time (min) #of cycles 

Activation 95 10:00 1 

Denaturation  94   0.30  

Annealing 62   0:30 35 

Extension 72   0:45  

Final Extension 72   8:00  

Hold 4   ∞  
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Table 2.14 Components of Restriction Endonuclease Digestion 

Reagent  Volume (µl) 

Restriction Enzyme (AvaI) (NEB) 2.00 

NEB Buffer 3 0.40 

DNA (4ng/ µl) 5.00 

Water 0.10 

 

 

The restriction endonuclease digestion was incubated at 37
o
C for 4 hours and digested 

products were separated by electrophoresis on a 4% agarose gel. Genotypes were 

distinguished by the following pattern of digestion: 

 

 Undigested:   385 base pairs (bp) 

 Homozygous (wild type): 316 bp, 69bp 

 Heterozygous:  316 bp, 180 bp, 136 bp, 69 bp 

 Homozygous (mutation) 180 bp, 136 bp, 69 bp 
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2.6 Study of APOBEC3G hypermutation within HIV-1 env 

A subset of 30 patient samples with known APOBEC3G H186R genotypes that was selected 

for HIV-1 vif analysis was also used to assess APOBEC3G hypermutation within HIV-1 env. 

Samples used for this analysis were at the 36 month post infection time point to allow for the 

accumulation of APOBEC3G induced mutations which are more pronounced in late 

infection. 

 

2.6.1 Proviral DNA Extraction 

Proviral DNA was extracted from cryopreserved PBMCs using a QIAamp DNA Mini Kit 

(Qiagen) according to the manufacturer’s protocol. The quantity and quality of extracted 

DNA was determined by measuring the optical density at 260 nm and 280 nm.  All DNA 

samples had a 260nm/280nm ratio > 1.8 and < 2.0.  

 

2.6.2 Amplification of HIV-1 env 

The 3kb HIV-1 env gene was amplified by nested PCR using primers (Singh et al. 2009; 

Archary et al. 2010) located outside the Env coding region (Table 2.15).  
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Table 2.15 HIV-1 env amplification primer sequences 

Primer Sequence HXB2 Position 

Outer   

OFM19 5’ GCACTCAAGGCAAGCTTTATTGAGGCTTA 3’ 9604-9632 

VIF1 5’ GGGTTTATTACAGGGACAGCAGAG 3’ 4923-4900 

Inner    

Env1A 5’ CACCGGCTTAGGCATCTCCTATGGCAGGAAGAA 3’ 5955-5982 

EnvM 5’ TAGCCCTTCCAGTCCCCCCTTTTCTTTTA 3’ 9096-9068 

 

 

Platinum Taq DNA Polymerase High Fidelity (Invitrogen, Life Sciences) was used for the 1
st
 

round of PCR amplification while Phusion Hot Start High-Fidelity DNA Polymerase 

(Finnzymes, Finland) was used in the 2
nd

 round of amplification. The nested PCR reactions 

were prepared as outlined in Tables 2.16 and the PCR cycling conditions that were used are 

outlined in Table 2.17.  All PCR reactions were performed on the GeneAmp PCR System 

9700 (ABI). 
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Table 2.16 Components of nested PCR reactions for amplification of HIV-1 env 

Reagent  Volume (μl) 

1
st
 Round  

Buffer (10X)   2.0 

dNTPs (10mM)    0.4 

MgSO4   0.8 

Primer (Fwd) (OFM19) (20μM)    0.2 

Primer (Rev) (VIF1) (20μM)    0.2 

Platinum High Fidelity Taq   0.1 

Water 12.3 

DNA   4.0 

Total Volume 20.0 

2
nd

 Round  

Phusion Buffer (5X) 10.0 

dNTPs (10mM)    1.0 

Primer (Fwd) (Env1A) (20μM)    1.0 

Primer (Rev) (EnvM) (20μM)    1.0 

Taq Polymerase   0.5 

Water 31.5 

1
st
 round PCR product    3.0 

Total Volume 50.0 
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PCR amplicons were analysed by electrophoresis on a 1% agarose gel. DNA bands were 

excised from the agarose gel and purified using the illustra GFX PCR DNA and Gel Band 

Purification Kit (GE Healthcare, Life Sciences). Purified PCR amplicons were analysed on a 

1% agarose gel with a DNA quantification marker to determine the DNA concentration and 

quality which is crucial for downstream sequencing. 

 

Table 2.17    PCR cycling conditions of nested PCR assay for amplification of HIV-1 env 

Step Temperature  (
o
C) Time (min) #of cycles 

1
st
 Round    

Activation 94   4:00 1 

Denaturation  94   0.15  

Annealing 55   0:30 35 

Extension 68   4:00  

Final Extension 68 20:00 1 

Hold 4  ∞  

2
nd

 Round    

Activation 98   0:30 1 

Denaturation  98   0.10  

Annealing 62   0:30 35 

Extension 72   4:00  

Final Extension 72 10:00 1 

Hold 4  ∞  
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2.6.3 Sequencing of HIV-1 env 

HIV-1 env PCR products were directly sequenced with the BigDye Terminator v3.1 Cycle 

Sequencing Kit (ABI) (Table 2.18) and 16 overlapping sequencing primers (Table 2.19) 

(Rousseau et al. 2006).  Purified PCR products were diluted in sterile water in a 1:15 ratio 

before they were sequenced.  

 

Table 2.18 Components of Sequencing Reaction for HIV-1 env 

Reagent  Volume (µl) 

Big Dye ReadyReaction Mix     0.4 

Big Dye Sequencing Buffer (5X)   2.0 

Primer (2.5 µM)   2.0 

Water   3.6 

DNA   2.0 

Total Volume 10.0 

 

Sequencing cycling conditions were 96
o
C for 1 minute, 35 cycles of 96

o
C for 10 seconds, 

50
o
C for 5 seconds, 60

o 
C for 4 minutes. Sequence extension products were purified using the 

Ethanol/EDTA/sodium acetate precipitation method to remove unincorporated dye 

terminators in sequencing reactions which would otherwise obscure sequencing data. 

Sequences were resolved on the 3730xl DNA Analyzer (ABI/Hitachi). Sequences were edited 

and analysed with Sequencher DNA Sequence Analysis Software (Genecodes). 
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Table 2.19 HIV-1 env Sequencing Primers 

Primer Name Sequence Direction HXB2 Position 

SQ4R(2)C 5’ GTTGATCCCTTAGGTATCTTTCTA 3’ Reverse 7972-7995 

ED31 5’ CCTCAGCCATTACACAGGCCTGTCCAAAG 3’ Forward 6817-6845 

SQ6RC-DESH 5’ ATAATGTATAGGAATTGGGT 3’ Reverse 6856-6875 

SQ3RC-DESH 5’ TTTAGTTCCAGACCCCAATA 3’ Reverse 8585-8603 

ES7 5’ CTGTTAAATGGCAGTCTAGC 3’ Forward 7002-7021 

EnvA 5’ GCTTAGGCATCTCCTATGGCAGGAAGAA 3’ Forward 5955-5982 

EnvN 5’ CTGCCAATCAGGGAAGTAGCCTTGTGT 3’ Reverse 9145-9171 

SQ11F-DESH 5’ ACTCTATTCTGTGCATCAGA 3’ Forward 6375-6394 

BSTQ2+ 5’ CCAATTCCTATACATTATTGTGC 3’ Forward 6858-6880 

SQ5.5RC 5’ CTAGGAGCTGTTGATCCTTTAGGTAT 3’ Reverse 7979-8004 

SQ6RC(2) 5’ GAATTGGGTCAAAAGAGACCTTTGGA 3’ Reverse 6839-6864 

SQ3R(2)C 5’ GCTATGGTATCAAGCAGACTAATAGCACTC 3’ Reverse 8651-8680 

SQ13F(2)C 5’ TATATAAATATAAAGTGGTAGAAATTAAGC 3’ Forward 7672-7701 

SQ14FC 5’ ACTCACGGTCTGGGGCATTA 3’ Forward 7925-7944 

EnvM 5’ TAGCCCTTCCAGTCCCCCCTTTTCTTTTA 3’ Reverse 9096-9068 

EF00 5’ AAAGAGCAGAAGACAGTGGCAATGA 3’ Forward 6204-6228 
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2.6.4 HIV-1 env Sequence Analysis 

HIV-1 env sequences were edited and analysed with Sequencher DNA Sequence Analysis 

Software v5.1 (Genecodes). Sequences were thereafter aligned against an HIV-1 env subtype 

C consensus reference sequence (obtained from the HIV Los Alamos National Laboratory 

HIV database (http://www.hiv.lanl.gov)) using the Clustal W algorithm in the Molecular 

Evolutionary Genetics Analysis (MEGA) software v5.05. The aligned nucleotide sequences 

were translated into corresponding amino acid sequences imported with the Bioedit Sequence 

Alignment Editor v7.1.3.0 software programme. 

 

Neighbour joining phylogenetic newick tree files were generated by importing the amino acid 

sequence alignment file into the online Tree Maker tool available in the HIV Los Alamos 

National Laboratory HIV database. The newick tree files were imported into FigTree v1.3.1 

for assembly of phylogenetic trees. Nucleotide and amino acid sequence diversity was 

calculated using MEGA software v5.05. The online Highlighter tool (HIV Los Alamos 

National Laboratory HIV database) was used to depict mismatches in aligned HIV-1 env 

sequences as compared to a consensus subtype C HIV-1 env reference sequences.  

 

HIV-1 env sequences were also assessed for the frequency of APOBEC3G induced 

hypermutation. The Hypermut 2.0 Tool available on the HIV Sequence Database from the 

Los Alamos National Laboratory (http://www.hiv.lanl.gov) was used to detect APOBEC-

specific hypermutations. Hypermut 2.0 allows for detection of excess APOBEC-induced 

hypermutation relative to a control reference sequence and employs the Fisher's exact test to 

detect any increase of mutation for the test sequences compared to the control sequence. 
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2.7 Cloning and Sequencing of HIV-1 vif 

A subset of 26 patient samples with known APOBEC3G H186R genotypes was selected for 

HIV-1 vif analysis. Samples used for this analysis were chosen at the 36 month post infection 

time point, as we anticipated that in-patient accumulation of APOBEC immune-driven 

mutations within Vif would be more evident at this late stage of infection.  

 

2.7.1 Viral RNA Extraction 

Viral RNA was extracted from cryopreserved plasma using a Qiagen QIAamp Viral RNA 

Mini Kit as per manufacturer’s instructions. The quantity and quality of extracted RNA was 

determined by measuring the optical density at 260 nm and 280 nm.  All RNA samples had a 

260nm/280nm ratio > 1.8 and < 2.0. 

 

2.7.2 Synthesis of cDNA 

Viral RNA was then reverse transcribed into a cDNA with the reverse Vif outer primer 

(Table 2.21) using the Thermoscript RT PCR Sytem (Invitrogen, Life Sciences) (Table 2.20). 
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Table 2.20 Components of cDNA synthesis reaction for HIV-1 vif 

Reagent  Volume (μl) 

Mix 1  

Primer (SQ8R) (10µM)   2.0 

dNTPs (10mM)    4.0 

RNA 10.0 

Water   8.0 

Mix 2  

cDNA Synthesis Buffer (5X)   8.0 

DTT   2.0 

Rnase out   2.0 

Thermoscript Reverse Transcriptase   2.0 

Total Volume 40.0 

 

 

Mix 1 was incubated at 65
o
C for 5 minutes to denature the RNA sample. Thereafter Mix 2 

was added to Mix 1 followed by incubation at 50
o
C for 60 minutes and 85

o
C for 5 minutes. 

Then 1μl of RNase H was added to each reaction and incubated for a further 20 minutes at 

37
o
C, to remove excess mRNA. 
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2.7.3 Amplification of HIV-1 vif 

The full length of the HIV-1 vif (579 base pairs) was amplified by nested PCR using primers 

located approximately 225 base pairs on either side of the Vif coding region (Table 2.21, 

Figure 2.3). Primers sequences were either previously published (Rousseau et. al., 2006) or 

selected from an HIV primer database supplied by Prof. Carolyn Williamson (HIV Diversity 

and Pathogenesis Group, University of Cape Town, South Africa). 

 

Table 2.21 Primer sequences used for amplification and sequencing of HIV-1 vif  

Primer Sequence HXB2 Position 

Outer   

For9 5’ AAAATTAGCAGGAAGATGGCCAGT 3’ 4535-4558 

SQ8R 5’ CTCCGCTTCTTCCTGCCATAGGAGAT 3’ 5988-5963 

Inner and Sequencing   

P10 5’ TACTCTGGAAAGGTGAAGG 3’ 4951-4969 

7Rev9 5’ CTTCCTGCCATAGGAGATGCCTAA 3’ 5980-5957 

Additional Sequencing   

Rev12 5’ AGAGATCCTACCTTGTTATGTCCT 3’ 5474-5451 
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Figure 2.3 Position of primers used to amplify HIV-1 vif. (Adapted from HIV-1 Gene 

Map, Los Alamos National Library, HIV Database). 

 

The Expand High Fidelity PCR system (Roche Diagnostics) was used to amplify HIV-1 vif. 

The nested PCR reactions were prepared as outlined in Tables 2.22 and the PCR cycling 

conditions that were used are outlined in Tables 2.23.  All PCR reactions were performed on 

the GeneAmp PCR System 9700 (ABI) 
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Table 2.22 Components of nested PCR assay for amplification of HIV-1 vif 

Reagent  Volume (μl) 

1
st
 Round  

Buffer 1   5.0 

dNTPs (10mM)    1.0 

Primer (Fwd) (For9) (10μM)    1.0 

Primer (Rev) (SQ8R) (10μM)    1.0 

Expand High Fidelity Taq   0.75 

Water 37.25 

cDNA   4.0 

Total Volume 50.0 

2
nd

 Round  

Buffer 1   5.0 

dNTPs (10mM)    1.0 

Primer (Fwd) (P10) (10μM)    1.0 

Primer (Rev) (7Rev9) (10μM)    1.0 

Expand High Fidelity Taq   0.75 

Water 38.25 

1
st
 round PCR product   3.0 

Total Volume 50.0 
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Table 2.23      PCR cycling conditions of nested PCR assay for amplification of HIV-1 vif 

Step Temperature  (
o
C) Time (min) #of cycles 

1
st
 Round    

Activation 95  2:00 1 

Denaturation  95 0.15  

Annealing 52 0:30 10 

Extension 72 1:00  

Denaturation  95 0:15  

Annealing 55 0:30 15 

Extension 72 1:30  

Final Extension 72 7:00 1 

Hold 4  ∞  

2
nd

 Round    

Activation 95  2:00 1 

Denaturation  95 0.15  

Annealing 55 0:30 35 

Extension 72 1:30  

Final Extension 72 7:00 1 

Hold 4  ∞  
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Each sample was amplified in replicates of eight. PCR products were analysed by 

electrophoresis on a 2% agarose gel. PCR amplification yielded a 1030 base pair amplicon 

containing the 579 base pair vif gene.  Five positive amplicons per sample were selected for 

subsequent cloning assays.  

  

Positive amplicons were excised from the agarose gel and purified using the illustra GFX 

PCR DNA and Gel Band Purification Kit (GE Healthcare/Life Sciences, 

Buckinghamshire, United Kingdom). DNA concentration and purity is essential for successful 

molecular cloning. This was determined by analysing the purified PCR amplicons on 2% 

agarose gel with the O’Gene Ruler 1kb DNA marker (Fermentas).  

  

2.7.4 TA Cloning of Vif  

In order to selectively amplify and generate homogenous HIV-1 vif DNA populations for 

sequencing, the purified HIV-1 vif amplicons were cloned by the TOPO TA cloning method 

(Invitrogen, Life Sciences) (Figure 2.4).  The concept behind the TA cloning method utilises 

the Taq polymerase non template-dependent activity that adds a single deoxyadenosine (A) 

overhang to the 3´ ends of PCR products. The linearized pCR
 
2.1vector supplied with the 

TOPO TA cloning kit has single 3´ deoxythymidine (T) residue overhangs with the 

topoisomerase enzyme covalently attached at each end. This permits PCR inserts to ligate 

efficiently with the vector.  

 

Purified HIV-1 vif amplicons were ligated into the pCR2.1 vector in a 3:1 ratio as shown in 

Table 2.24 and incubated at room temperature for 30 minutes. Including salt (200 mM NaCl; 

10 mM MgCl2) in the TOPO cloning reaction increases the number of transformants 2- to 3-

fold. 
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Table 2.24 Ligation Mix for HIV-1 vif insert and pCR2.1 vector 

Reagent  Volume (μl) 

HIV-1 vif Insert (30ng/ul)   1.0 

Salt solution (200 mM NaCl; 10 mM MgCl2)   1.0 

Vector (10ng/ul)    1.0 

Water    3.0 

Total Volume   6.0 

 

The 3μl of insert/vector ligation mix was then chemically transformed into TOP10 One Shot 

Chemically Competent E. coli (Invitrogen, Life Sciences) by heat shock at 42
o
C for 30 

seconds. This was followed by the addition of SOC medium (Sigma-Aldrich) and incubation 

at 37
o
C for 1 hour to maximize the transformation efficiency of competent cells. Each 

transformation was plated onto pre-warmed Xgal (5-bromo-4-chloro-3-indolyl-β-d-

galactopyranoside) (Promega, Wisconsin, USA) coated, ampicillin (50 μg/ml) containing, 

Luria-Bertani (LB) agar plates, and incubated at 37
o
C overnight. 

 

 A blue-white selection method was used to detect the bacterial colonies that contained the 

HIV-1 vif insert. This method is based on the disruption of the LacZ gene, which is present in 

the plasmid vector and codes for the beta-galactosidase enzyme.  DNA ligated into the 

plasmid vector disrupts the LacZ gene and therefore inhibits β-galactosidase formation. X-

Gal is an inert colorimetric substrate for active beta-galactosidase which hydrolyses X-Gal 

into colourless galactose and 4-chloro-3-brom-indigo which forms a strong blue 

precipitate.  Therefore, blue colonies indicate the presence of active beta-galactosidase and 

thus a vector with an uninterrupted LacZ gene and therefore no insert. Oppositely, a white 
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colony, where X-gal is not hydrolysed, confirms the presence of an insert which would have 

disrupted LacZ and hence inhibited the formation of active β-galactosidase. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Vector Map depicting the location of the 1030 base pair insert containing 

the 579 base pair HIV-1 vif gene within the 3908 base pair pCR2.1TOPO vector, 

producing a 4938 base pair plasmid vector. Restriction endonuclease digestion at the 

BstXI restriction sites were used to verify the presence of the insert once the plasmid 

DNA was isolated. (Generated with pDRAW32 DNA Analysis Software, Acaclone).  

  

Two to four white colonies were picked from each agar plate, resulting in a total of 10 – 20 

clones per sample (5 PCRs X (2 to 4 colonies)). It is assumed that each colony is derived 

from a single bacteria and that it is therefore a single clone. Each colony was placed into 5 ml 

of LB/ampicillin medium and grown overnight at 37
o
C.  
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Plasmid DNA was isolated from the overnight culture using the GeneJET Plasmid Miniprep 

kit (Fermentas, Thermoscientific, Massachusetts, USA) following the manufacturers 

protocol. Plasmid DNA isolation yielded concentrations of 150-200 ng/µl with 260 nm/280 

nm ratios > 1.8 and < 2.0.  

 

Restriction endonuclease digestion with the BstXI enzyme (New England Biolabs Inc.) was 

used to confirm the presence of the insert in each plasmid DNA sample (Table 2.25). 

 

Table 2.25 Components of Restriction Endonuclease Digestion by BstXI 

Reagent  Volume (µl) 

Restriction Enzyme (BstXI) (10U/µl) 1.00 

NE Buffer 3 (10X) 2.00 

Plasmid DNA 0.50 

Water 6.50 

 

 

Digestion was carried out at 37
o
C for 1 hour and digested products were separated by 

electrophoresis on a 2% agarose gel. The following digestion pattern was observed:  

 Insert present: 2 bands - 3886 bp, 1075 bp,  

 No insert:  1 band - 3908 bp 

 

Plasmid DNA samples that were positive for the insert was subsequently sequenced. 
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2.7.5  Sequencing of HIV-1 vif 

A plasmid DNA concentration of 150 ng or 200 ng, and the primers P10, 7Rev9 and Rev12 

was used to sequence HIV-1 vif. The BigDye Terminator v3.1 Cycle Sequencing Kit (ABI) 

was used for sequencing (Table 2.26).  

 

Table 2.26 Components of Sequencing Reaction for HIV-1 vif 

Reagent  Volume (µl) 

Big Dye ReadyReaction Mix     0.4 

Big Dye Sequencing Buffer (5X)   2.0 

Primer (P10, 7Rev9, R12) (1.6 µM)   2.0 

Water   4.6 

DNA (150ng/ µl or 200ng/ µl)   1.0 

Total Volume 10.0 

 

Sequencing cycling conditions were 96
o
C for 1 minute, 35 cycles of 96

o
C for 10 seconds, 

50
o
C for 5 seconds, 60

o
 C for 4 minutes. 

 

Sequence extension products were purified using the Ethanol/EDTA/sodium acetate 

precipitation method to remove unincorporated dye terminators in sequencing reactions 

which would otherwise obscure sequencing data. Sequences were resolved on the 3730xl 

DNA Analyzer (ABI/Hitachi).  
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2.7.6 HIV-1 vif Sequence Analysis 

Sequences were edited and analysed with Sequencher DNA Sequence Analysis Software v5.1 

(Genecodes). Thereafter the sequences were converted to the FASTA format and aligned 

against an HIV-1 subtype C consensus reference sequence (obtained from the HIV Los 

Alamos National Laboratory HIV database (http://www.hiv.lanl.gov) using the Clustal W 

algorithm in the Molecular Evolutionary Genetics Analysis (MEGA) software v5.05. 

Thereafter, the aligned nucleotide sequences were imported into the Bioedit Sequence 

Alignment Editor v7.1.3.0 software programme where they were translated into 

corresponding amino acid sequences. 

 

The amino acid sequence alignment file was imported into the online Tree Maker tool 

available in the HIV Los Alamos National Laboratory HIV database where neighbour joining 

phylogenetic newick tree files were created. The newick tree files were subsequently 

imported into FigTree v1.3.1 for construction of phylogenetic trees. Nucleotide and amino 

acid sequence diversity was calculated using MEGA software v5.05.  

 

For the purpose of identifying and comparing regions of conservancy and variability within 

HIV-1 vif sequences, we created consensus sequences from clonal sequences for each of 26 

study participants with the online Consensus Maker tool (HIV Los Alamos National 

Laboratory HIV database). HIV-1 vif consensus sequences were aligned against an HIV-1 

subtype C consensus reference sequence (from HIV Los Alamos National Laboratory HIV 

database (http://www.hiv.lanl.gov)) and protein translation inferred using Bioedit Sequence 

Alignment Editor v7.1.3.0 before analysis of the sequence alignment. 
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Additionally, signature amino acids were identified by examining HIV-1 vif sequences with 

the Viral Epidemiology Signature Pattern Analysis (VESPA) (Los Alamos National 

Laboratory HIV database (http://www.hiv.lanl.gov)) to compute the frequency of each amino 

acid at each position in the HIV-1 Vif sequence alignment. Emphasis was placed on 

sequences belonging to the 186H/H (wild type) group and the 186R/R (mutant) group.  

  

For subsequent functional testing of HIV-1 vif alleles, unique HIV-1 vif clonal sequences 

were selected by the Duplicate Sequence Removal (ElimDupes) tool (Los Alamos National 

Laboratory HIV database). The online tool was used to eliminate clonal sequences that were 

90% similar to each other, thereby creating a file of distinctive and diverse HIV-1 vif clonal 

sequences from which vif variants were selected for use in functional assays. 

 

2.8 Expression and Functional Analysis HIV-1 Vif   

2.8.1 Sample Selection 

A subset of HIV-1 vif sequences generated from the cloning and sequencing assays were 

selected for subsequent HIV-1 vif functionality assays. HIV-1 vif clonal sequences from 

patients whose H186R genotype was wild type (186H/H) or homozygous mutant (186R/R) 

were assessed for functionality.  A file of unique HIV-1 vif sequences was created using the 

online Duplicate Sequence Removal Tool as described above (in section 2.7.6). The output 

from a total of 237 HIV-1 vif sequences (from 186 -H/H and R/R patients) was 34 unique 

sequences. Thereafter one HIV-1 vif sequence per patient was randomly selected resulting in 

a subset of 16 HIV-1 vif clonal sequences that was used in ensuing functionality assays. We 

reasoned that selection of the most extreme genotypes would provide good representation of 

the functional differences that exist between different Vif variants. Of the 16 HIV-1 vif clonal 
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sequences, 11 were from patients with the 186H/H genotype while 5 were from those 

carrying the 186R/R genotype. 

 

2.8.2 Cloning of HIV-1 vif into the pCRV1 Expression Vector 

Sixteen HIV-1 vif clonal sequences that were previously cloned into the pCR2.1 vector were 

used as templates for PCR amplification with Vif primers designed specifically for the 5’ and 

3’ regions of each variant and containing NotI and EcoRI restriction sites (Tables 2.27). In 

addition, a second set of reverse primers were designed to introduce a carboxy terminal 

FLAG-tag (Table 2.28) to each of the sixteen HIV-1 vif sequences described above. The 

peptide sequence of the FLAG-tag from the N-terminus to the C-terminus is DYKDDDDK 

and was added to the HIV-1 vif sequences so that the expressed proteins could also be 

identified with an antibody against the FLAG sequence.  

 

Further, HIV-1 vif sequence analysis to determine signature amino acid patterns had 

suggested an association between the amino acid at position 36 and the patients H186R 

genotype. Therefore, site-directed mutagenesis was performed on 4 HIV-1 vif sequences to 

mutate the amino acid at position 36 from a serine to a lysine and vice versa. Site directed 

mutagenesis was carried out using sequence specific overlapping primers that were designed 

to introduce the mutation at position 36 (Table 2.29). The technique employed for site-

directed mutagenesis is described in Figure 2.5. FLAG-tags were also introduced onto the 

HIV-1 vif mutants. 

 

HIV-1 vif sequences in pCR2.1 vector were diluted 50X in sterile water and amplified using 

the specific primers and PCR reaction and cycling conditions described in Tables 2.30 and 

2.31. 
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Table 2.27 Primer sequences used for HIV-1 vif amplification designed specifically 

for each HIV-1 vif variant 

Primer Name Sequence Direction 

1770 Vif-C 7G8G EcorI+ 5’ AAAGAATTCATGGAAGGCAGATGGCA 3’ Forward 

1771 Vif-C 6C EcorI+ 5’ AAAGAATTCATGGACAACAGATGGCA 3’ Forward 

1772 Vif-C EcorI+ 5’ AAAGAATTCATGGAAAACAGATGGCA 3’ Forward 

1762 Vif-C1 NOT- 5’ TTTGCGGCCGCCTAATGTCCACTCATT 3’ Reverse 

1763 Vif-C2 NOT- 5’ TTTGCGGCCGCCTAGTGTCCATTCATT 3’ Reverse 

1764 Vif-C3 NOT- 5’ TTTGCGGCCGCCTAGTGTCCATTCACT 3’ Reverse 

1765 Vif-C4 NOT- 5’ TTTGCGGCCGCCTAATGTCCATTCATT 3’ Reverse 

1766 Vif-C5 NOT- 5’ TTTGCGGCCGCCTAGTGCCCATTCATT 3’ Reverse 

1767 Vif-C6 NOT- 5’ TTTGCGGCCGCCTAGTACCCATTCATT 3’ Reverse 

1768 Vif-C7 NOT- 5’ TTTGCGGCCGCCTAATGCCCACTCATT 3’ Reverse 

1769 Vif-C8 NOT- 5’ TTTGCGGCCGCCTAATGCCCATTCATT 3’ Reverse 

1807 Vif-C1 FLAG- 5’ TCGTCGTCATCCTTGTAATCATGTCCACTCATT 3’ Reverse 

1808 Vif-C2 FLAG - 5’ TCGTCGTCATCCTTGTAATCGTGTCCATTCATT 3’ Reverse 

1809 Vif-C3 FLAG - 5’ TCGTCGTCATCCTTGTAATCGTGTCCATTCACT 3’ Reverse 

1810 Vif-C4 FLAG - 5’ TCGTCGTCATCCTTGTAATCATGTCCATTCATT 3’ Reverse 

1811 Vif-C5 FLAG - 5’ TCGTCGTCATCCTTGTAATCGTGCCCATTCATT 3’ Reverse 

1812 Vif-C6 FLAG - 5’ TCGTCGTCATCCTTGTAATCGTACCCATTCATT 3’ Reverse 

1813 Vif-C7 FLAG - 5’ TCGTCGTCATCCTTGTAATCATGCCCACTCATT 3’ Reverse 

1814 Vif-C8 FLAG - 5’ TCGTCGTCATCCTTGTAATCATGCCCATTCATT 3’ Reverse 
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Table 2.28    Vif specific primers used for amplification of each HIV-1 vif variant as well  

                as the reverse primers used to introduce a FLAG-tag to each HIV-1 vif variant 

HIV-1 vif  Variant Forward Primer* Reverse Primer* FLAG Reverse Primer 

CAP37_P1C1 1772 Vif-C EcorI+ 1762 Vif-C1 NOT- 1807 Vif-C1 FLAG- 

CAP40_P4C1 1771 Vif-C 6C EcorI+ 1764 Vif-C3 NOT- 1809 Vif-C3 FLAG - 

CAP45_P1C1 1772 Vif-C EcorI+ 1765 Vif-C4 NOT- 1810 Vif-C4 FLAG - 

CAP65_P1C1 1772 Vif-C EcorI+ 1763 Vif-C2 NOT- 1808 Vif-C2 FLAG - 

CAP84_P2C3 1772 Vif-C EcorI+ 1763 Vif-C2 NOT- 1808 Vif-C2 FLAG - 

CAP137_P1C1 1772 Vif-C EcorI+ 1763 Vif-C2 NOT- 1808 Vif-C2 FLAG - 

CAP206_P1C3 1772 Vif-C EcorI+ 1765 Vif-C4 NOT- 1810 Vif-C4 FLAG - 

CAP217_P2C3 1772 Vif-C EcorI+ 1766 Vif-C5 NOT- 1811 Vif-C5 FLAG- 

CAP221_P3C3 1772 Vif-C EcorI+ 1763 Vif-C2 NOT- 1808 Vif-C2 FLAG- 

CAP225_P2C2 1772 Vif-C EcorI+ 1765 Vif-C4 NOT- 1810 Vif-C4 FLAG- 

CAP278_P2C1 1772 Vif-C EcorI+ 1768 Vif-C7 NOT- 1813 Vif-C7 FLAG- 

CAP174_P3C3 1772 Vif-C EcorI+ 1766 Vif-C5 NOT- 1811 Vif-C5 FLAG- 

CAP256_P1C1 1772 Vif-C EcorI+ 1766 Vif-C5 NOT- 1811 Vif-C5 FLAG- 

CAP261_P1C4 1772 Vif-C EcorI+ 1765 Vif-C4 NOT- 1810 Vif-C4 FLAG- 

CAP262_P1C1 1770 Vif-C 7G8G EcorI+ 1768 Vif-C7 NOT- 1813 Vif-C7 FLAG- 

CAP280_P2C1 1772 Vif-C EcorI+ 1763 Vif-C2 NOT- 1808Vif-C2 FLAG- 

 

*Primer sequences detailed in Table 2.27 
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Table 2.29 Primers used for site-directed mutagenesis 

Primer Name Sequence Direction 

1773 37p4c1 S36K+ 5’ GTTTCAAGGAGAGCTAaaGGATGGTTTTACAGA 3’ Forward 

1774 37p4c1 S36K- 5’ TCTGTAAAACCATCCttTAGCTCTCCTTGAAAC 3’ Reverse 

1775 45p1c1 S36K+ 5’ GTTTCCAAGAGAGCTAaaGGATGGTTTTATAGA 3’ Forward 

1776 45p1c1 S36K- 5’ TCTATAAAACCATCCttTAGCTCTCTTGGAAAC 3’ Reverse 

1777 256p2c1 K36S+ 5’ ATTTCAAGGAGTGCTAgtGGATGGGTTTACAGA 3’ Forward 

1778 256p2c1 K36S- 5’ TCTGTAAACCCATCCacTAGCACTCCTTGAAAT 3’ Reverse 

1779 261p1c1 K36S+ 5’ GTCTCAAGGAGAGCTAgtGGATGGTTATACAGA 3’ Forward 

1780 261p1c1 K36S- 5’ TCTGTATAACCATCCacTAGCTCTCCTTGAGAC 3’ Reverse 

*Mutated nucleotides are highlighted in blue  

 

 

Table 2.30 PCR reaction for amplification HIV-1 vif variants from plasmid DNA 

Reagent  Volume (μl) 

Buffer (10X)   2.5 

dNTPs (10mM)    0.5 

Primer (Forward) (10μM)    1.0 

Primer (Reverse) (10μM)    1.0 

PFU DNA Polymerase (Promega)   0.2 

Water 18.8 

pDNA   1.0 

Total Volume 25.0 
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Figure 2.5 Site-directed mutagenesis by primer extension involves incorporating 

mutagenic primers in independent, nested PCRs before combining them in the final 

product. The reaction requires flanking primers (A and B) complementary to the ends 

of the target sequence, and two internal primers (C and D) that contain the desired 

mutation and will hybridize to the region to be altered. During PCR 1 and 2 two 

separate fragments (AC and DB) are created. These products are combined in a 3rd 

PCR using primers A and B. The complementary ends of the products hybridize in this 

second PCR to create the final product, AB, which contains the mutated internal 

sequence. 
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Table 2.31 Cycling conditions used for amplification HIV-1 vif variants from plasmid   

DNA 

Step Temperature  (
o
C) Time (min) #of cycles 

Activation 94   2:00 1 

Denaturation  94   0.20  

Annealing 50   0:20 30 

Extension 72   0:30  

Final Extension 72   5:00  

Hold 4   ∞  

 

 

Once amplified, PCR fragments were digested with NotI and EcoRI restriction enzymes 

(Fermentas, Thermoscientific) (Table 2.32) analysed on a 2% agarose gel and purified with a 

QIAquick Gel Extraction Kit (Qiagen). T4 DNA Ligase (New England Biolabs Inc.), was 

used to insert the purified PCR products into a linearized pCRV1 expression vector (Table 

2.33) that contains NotI and EcoRI overhangs. pCRV1 provides an HIV-1 Rev response 

element that is essential for the expression of HIV-1 vif. The above cloning procedure is 

depicted in Figure 2.6.  
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Table 2.32 Restriction Endonuclease Digestion of PCR products by NotI and EcoRI 

Reagent  Volume (µl) 

NotI (10U/µl)   2.00 

EcoRI (10U/µl)   2.00 

Fast Digest Green Buffer (Fermentas)   5.00 

Water 16.00 

PCR Product 25.00 

 

 

Table 2.33 Ligation Mix for HIV-1 vif insert and pCRV1 vector 

Reagent  Volume (μl) 

HIV-1 vif Insert (30ng/ul)   4.0 

Buffer   1.0 

pCRV1 Vector    1.0 

T4 DNA Ligase   1.0 

Water    3.0 

Total Volume 10.0 
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Figure 2.6. Cloning of HIV-1vif variants into the pCRV1 expression vector.  [1] HIV-1 vif clone in the pCR2.1 vector were used as 

templates for PCR amplification with primers designed specifically for the 5’ and 3’ regions of each variant and containing NotI and EcoRI 

restriction sites. [2] PCR amplicons containing NotI and EcoRI restriction sites were [3] digested with NotI and EcoRI restriction enzymes to 

create overhangs and [4] inserted into a linearized pCRV1 expression vector containing complementary NotI and EcoRI overhangs to [5] create 

the virus/vector construct. pCRV1 provides an HIV-1 Rev response element that is essential HIV-1 vif expression.
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The virus/vector construct was then used to transform ElectroMAX DH10B electrocompetent 

E. coli cells (Invitrogen, Life Sciences) by electroporation at 1.8 volts. This was followed by 

the addition of SOC medium (Sigma-Aldrich) and incubation at 37
o
C for 1 hour to maximize 

the transformation efficiency of competent cells. Each transformation was plated onto pre-

warmed ampicillin (50 μg/ml) containing, Luria-Bertani (LB) agar plates, and incubated at 

30
o
C overnight.  

 

Two colonies were picked from each agar plate, placed into 3 ml of LB/ampicillin medium 

and grown overnight at 30
o 

C. Plasmid DNA was isolated from 1 ml of the mini bacterial 

culture with the QIAprep Spin Miniprep Kit (Qiagen) as per manufacturer’s instruction. 

Restriction endonuclease digestion by EcoRI and NotI was used to confirm the presence of 

the insert. DNA preparations that contained the insert were commercially sequenced 

(Macrogen, USA) with a pCRV1 specific primer (5’ GACTGGTGAGTACGCCAAAA 3’) to 

confirm the integrity of the HIV-1 vif sequences.  

 

Once the HIV-1 vif sequence of the virus/vector constructs was confirmed, the remaining 2 

ml of the mini bacterial culture was used to inoculate 100 ml of LB medium containing 

carbenicillin in preparation of a midi bacterial culture. The midi culture was grown overnight 

at 30
o 

C. Plasmid DNA was isolated from the midi culture using the High Pure Plasmid Midi 

Prep Kit (Invitrogen, Life Sciences) according to the manufacturer’s protocol. All midi-

prepped DNA concentrations were between 1000 – 3000 ng/µl, with 260 nm/280 nm ratios > 

1.8 and < 2.0. Plasmid DNA was diluted to a working concentration of 500 ng/ul for 

subsequent transfection assays. 
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2.8.3 Vif Expression Assay 

Plasmids expressing both untagged and FLAG-tagged HIV-1 vif as well as HIV-1 vif mutated 

at position 36 were used in this assay. HEK 293T cells were grown in Dulbecco’s modified 

Eagle’s medium (DMEM) (Invitrogen, Life Sciences) and supplemented with 10% 

penicillin/streptomycin and fetal bovine serum (FBS). A total of 3 million 293T cells in a 24 

well flat bottom culture plate were transfected with 250 ng of each pCRV1 Vif expression 

plasmid and 250 ng of PTR600-green fluorescent protein (GFP) plasmid. A total amount of 

500 ng of DNA was transfected with 4 mg/ml of the transfection agent polyethylenimine 

(PEI) (Polysciences, Inc., Pennsylvania, USA). After 48 hours, SDS lysis buffer (1% SDS, 50 

mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA) was added to the transfected cells, and 

the clarified lysates were analysed by Western blotting described below. 

 

HIV-1 Vif was detected with a rabbit anti-Vif primary antibody (NIH catalogue number 

2221) at a 1:1,000 dilution and with goat anti-rabbit secondary antibody (Sigma) at a 1:5,000 

dilution. FLAG-tagged HIV-1 Vif proteins were detected with a mouse anti-FLAG primary 

antibody (Sigma) at a 1:5,000 dilution. 

 

2.8.4 APOBEC3G Degradation Assay 

Plasmids expressing both untagged HIV-1 vif as well as HIV-1 vif mutated at position 36 

were used in this assay. A total of 3 million HEK 293T cells (grown in DMEM (Invitrogen, 

Life Sciences) and supplemented with 10% penicillin/streptomycin and FBS) in 24-well 

plates were co-transfected with 10 ng of each pCRV1 Vif expression plasmid, 390 ng of 

PTR600-GFP and 100 ng of PTR600-A3G (186H), or PTR600-A3G (186R) expression 

plasmids, respectively. A total amount of 500ng of DNA was transfected with 4 mg/ml of the 

transfection agent polyethylenimine (PEI). After 48 hours, SDS lysis buffer (1% SDS, 50 
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mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA) was added to the transfected cells, and 

the clarified lysates were analysed by Western blotting.  PTR600-A3G (186H) and PTR600-

A3G (186R) expression plasmids were haemagglutimin (HA)-tagged. Therefore APOBEC3G 

was detected with a rabbit anti-HA primary antibody (Sigma).  The PTR600-GFP and 

PTR600-A3G plasmids were generated at and obtained from the Simon Laboratory, 

Department of Microbiology at the Mount Sinai School of Medicine, New York. 

 

2.8.5 Western Blotting 

Transfected HEK 293T cell lysates were separated on 10% bis-Tris 26-well gels (Invitrogen, 

Life Sciences) and transferred by semi-dry transfer (BioRad) onto polyvinylidene difluoride 

(PVDF) membranes (Thermo Scientific).  The PVDF membranes were then blocked in 1% 

low fat milk solution for 1 hour and incubated in primary antibody at 4
o
C overnight.  

Membranes were then washed in wash buffer (0.1% Tween in phosphate-buffered saline 

(PBS)) and incubated in secondary antibody for 2 hours at room temperature. Membranes 

were subsequently developed with SuperSignal West Pico or Femto substrate (Thermo 

Scientific) in an LAS-3000 imaging system (FujiFilm). 

 

2.8.6 Infectivity assay 

To assess the extent of infectivity rescue that would be achieved by each Vif variant, viral 

stocks were produced in the presence of APOBEC3G 186H and 186R expression plasmids. A 

total of 3 million HEK 293T cells were co-transfected with 500 ng of HIV pNL4-3Δvif, 25 ng 

of each pCRV1 Vif expression plasmid, 100 ng of PTR600-A3G (186H) or PTR600-A3G 

(186R) expression plasmids and 100 ng of PTR600-GFP respectively, using 4 mg/ml of PEI. 

Additionally, HIV-1 pNL4-3 as well as pNL4-3 Vif expression plasmids were included as a 

controls.  
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HIV-1 infection was quantified using TZM-bl cells, which express a luciferase and β-

galactosidase gene under the control of the HIV-1 LTR promoter. After 48 hours post-

transfection viral supernatants were used to infect 2 million TZM-bl cells in black 96-well 

plates. Infections were carried out in triplicate. TZM-bl cells were exposed to virus particles 

for 48 hours before infectivity was measured using the Galacto-Star System for detecting β-

galactosidase activity (ABI).  Infectivity was assessed by chemiluminescence on the Wallac 

1420 VICTOR (Perkin Elmer). 

 

2.9 Statistical Analysis 

APOBEC3G mRNA expression levels was compared between HIV-ve and HIV+ve 

individuals using the Wilcoxon Signed Rank Test.  The association between APOBEC3G 

mRNA levels and viral loads and CD4 counts was determined using rank correlation tests. 

Fisher’s Exact Test was used to test the association between HIV status and H186R 

genotypes.  The genetic effect of the H186R mutation on viral loads and CD4 counts was 

determined using a Generalized Estimating Equation model (Liang and Zeger 1986; Zeger 

and Liang 1986; Ballinger 2004). This analysis takes into account longitudinal (repeated) 

measures for each participant. Viral loads were log transformed to guarantee normality of 

these outcomes. Decline in CD4 levels was determined and compared between H186R 

genotype groups. A Kaplan-Meier survival curve was performed to assess the difference 

between the genotype groups and a Cox Regression was used to acquire Hazard Ratios.   

 

The association between APOBEC3G and -3F hypermutation levels and viral load and CD4 

counts, as well as the association between the levels of hypermutation induced by 

APOBEC3G and -3F was determined by Spearman correlation tests. The Wilcoxon signed 

rank test was used to compare the number of hypermutations induced by APOBEC3G and -
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3F. A one way ANOVA Kruskal-Wallis test was used to compare APOBEC3G mRNA 

expression levels, Vif diversity and APOBEC3G induced hypermutation levels between the 

three H186R genotype groups. The association between Vif diversity and viral loads and CD4 

counts was also analysed using Spearman correlation tests.  

 

The SAS statistical package version 9.1 (SAS Institute, Cary, NC, USA.) and GraphPad 

Prism version 5.01 for Windows (GraphPad Software, San Diego, California, USA) was used 

to perform all statistical analyses and all graphs were generated using GraphPad Prism v5.01. 

P-value less than 0.05 were considered significant. 
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CHAPTER THREE  

APOBEC3G Expression is Dysregulated in Primary HIV-1 Infection and a Polymorphic 

Variant Influences CD4+ T Cell Counts and Plasma Viral Load 

 

3.1 Introduction 

Increased expression of APOBEC3G mRNA may overcome the effects of Vif by providing a 

competitive advantage over time and the cumulative G-to-A hypermutations in the HIV 

genome, induced by APOBEC3G, may eventually incapacitate the virus and suppress viremia 

(Jin et al. 2005).   Additionally, genetic variants of APOBEC3G may alter its function or level 

of expression thereby enhancing or diminishing its anti-HIV activity (Mariani et al. 2003; An 

et al. 2004; Pace et al. 2006).  

 

Given that APOBEC3G is a key intrinsic antiretroviral host factor that possesses significant 

anti-HIV-1 activity in vitro, we reasoned that its antiviral effects in vivo might be particularly 

pronounced during the primary infection phase before adaptive immune responses become 

established.  We therefore tested the hypothesis that high mRNA levels of APOBEC3G in 

peripheral blood mononuclear cells (PBMCs) of individuals at high risk for HIV-1 infection 

are associated with decreased likelihood of HIV-1 infection and that in seroconverters, 

increased APOBEC3G mRNA levels are associated with low viral set point and high CD4+ T 

cell counts during primary HIV-1 subtype C infection.  We also investigated the effects of 

APOBEC3G genetic polymorphisms on HIV-1C pathogenesis in a South African cohort, in a 

population where the HIV-1 epidemic is severest.   
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3.2 Sample Selection 

Figure 3.1 summarizes the study cohort and samples selected for real time PCR assays to 

study APOBEC3G expression and for sequencing and genotyping assays. 

 

 

Figure 3.1. Outline of study cohort and experiments. HIV-positive samples are indicated 

by pink blocks and HIV-negative samples are indicated by blue blocks. 
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3.3 Quantification of APOBEC3G Expression 

A significant number of in vitro studies suggest that APOBEC3G and other cytidine 

deaminases may constitute an important mechanism of cellular defense against viruses. 

However, there is paucity of data regarding the interplay between HIV-1 and APOBEC3G 

expression in vivo, particularly during primary infection when rapid viral replication occurs, 

followed by resolution of viremia and establishment of steady state equilibrium between the 

virus and the body’s immune responses.  We therefore investigated whether primary HIV-1C 

infection is associated with changes of APOBEC3G expression in PBMCs compared to HIV  

-ve samples. 

 

Relative quantification was used to measure APOBEC3G mRNA levels in relation to the 

housekeeping gene GAPDH. Quantification of gene expression by the LightCycler is based 

on a standard curve for each gene.  Standard curves were successfully generated for 

APOBEC3G (Figure 3.2) and GAPDH (Figure 3.3) from 10 fold serial dilutions of cDNA of 

known concentrations. A standard curve with a slope of approximately -3.3 indicates optimal 

PCR efficiency while a low error value of less 0.1 indicates minimal variation between 

standards and hence accuracy of generated standard curve (Roche Applied Science Technical 

Note No. LC 10/update 2003). PCR amplicons that are identical melt at the same 

temperature, therefore melting curves created by the LightCycler can confirm that 

amplification of each gene product was specific. Additionally, real-time PCR products were 

analysed on a 2% agarose gel to further confirm amplification specificity of APOBEC3G 

(Figure 3.2D) and GAPDH (Figure 3.3D). This also ruled out that a slight shift in the melting 

peak was due inaccurate amplification. 
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Figure 3.2 APOBEC3G real time PCR amplification curves (A), standard curve (B), 

melting curves (C) melting peaks (D) and 2% agarose gels (E). A slope of -3.3 indicates 

optimal PCR efficiency while an error value of 0.05 indicates accuracy of the standard 

curve. Equal melting temperatures of standards confirmed specificity of the PCR. On 

the agarose gel, lanes 1-3 depict 77 base pair amplicons which further confirmed PCR 

specificity, lane 4 is the negative control and lane 5 a 50 base pair DNA ladder.   
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Figure 3.3 GAPDH real time PCR amplification curves (A), standard curve (B), 

melting curves (C) melting peaks (D) and 2% agarose gels (E). A slope of -3.6 indicates 

optimal PCR efficiency while an error value of 0.06 indicates accuracy of the standard 

curve. Identical melting temperatures of standards confirmed specificity of the PCR. 

On the agarose gel, lane 1 is a 100 base pair DNA ladder, lanes 2-7 depict the 224 base 

pair amplicons which further confirmed PCR specificity, lane 8 is the negative control.  
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3.3.1 Analysis of APOBEC3G Expression Levels in HIV-ve and HIV+ve Samples 

Comparison of APOBEC3G mRNA levels between HIV-ve and HIV+ve subjects within 12 

months of infection (primary infection) showed that APOBEC3G levels were significantly 

higher in HIV-ve individuals than in HIV+ve individuals (p<0.0001) (Figure 3.4A).  

Additionally, comparison of APOBEC3G expression levels in matched pre- and post-

infection samples of seroconverters also showed that APOBEC3G expression was 

significantly higher before seroconversion (p<0.0001) (Figure 3.4B).  Further, there was no 

significant difference in APOBEC3G levels when compared between individuals who are 

persistently seronegative and pre-infection samples of seroconverters (Figure 3.4C).  

Comparison of APOBEC3G mRNA levels at various time points post-infection (Figure 3.4D) 

showed no significant change in expression levels over time.  

 

There is conflicting data on the relationship between APOBEC3G mRNA levels in PBMCs 

versus plasma viral load and CD4 cell counts in chronic HIV-1 infection (Jin et al. 2005; Cho 

et al. 2006; Gandhi et al. 2008).  We thus next investigated whether there is a correlation 

between APOBEC3G mRNA levels and HIV-1 plasma viral load (Figure 3.5A).and CD4 cell 

counts (Figure 3.5B) during primary HIV-1 infection and found no association between these 

factors. 

 



Page | 135  
 

 

Figure 3.4 Comparison of APOBEC3G mRNA levels between [A] HIV-uninfected 

and HIV-infected participants, [B] pre-infection and post-infection samples of HIV-

infected individuals, [C] persistently seronegative individuals and pre-infection samples 

of seroconverters and [D] longitudinal post-infection samples. In [B], the post-infection 

column represents post-infection samples from three time points for each individual. 

These time points are at 3, 6 and 12 months after infection. A generalized estimating 

equation analysis model was used to analyze these data, as this model takes into account 

longitudinal (repeated) measures for each participant. 
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Figure 3.5 Relationship between APOBEC3G expression levels and [A] viral load 

and [B] CD4 counts. 

 

 

PMBCs constitute a mixture of cells from different lineages and therefore it was important to 

assess APOBEC3G expression in the different cell types that constitute PBMCs.  We were 

unable to perform extensive experiments to characterize this due to the scarcity of samples as 

well as low cell counts, of approximately 5 million cells, of the samples which were 

available. However, we compared the distribution of APOBEC3G in PBMCs and CD4 cells 

from 8 healthy controls as well as in 8 chronically HIV infected subjects for which samples 

were available. CD4 cells were isolated by negative selection and purity confirmed by flow 

cytometry thereafter (Figure 3.6).  

 

 

 

 

 

A B 
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Figure 3.6 Dot plot resulting from a flow cytometry analysis following isolation of 

CD4+ T cells from PBMCs of two representative samples, using the CD4+ T Cell 

Isolation Kit II and MS column. Cells were fluorescently stained with CD3 PerCP-A 

and CD FITC-A. Cell debri and dead cells were excluded based on scatter signals. 
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Our results suggested that APOBEC3G mRNA expression was enriched in the CD4+ T cell 

subset.  APOBEC3G mRNA levels were higher in CD4+ T cells as compared to levels in 

PBMCs in the 8 healthy donors (p=0.08) and in 8 chronically infected subjects (p=0.02) 

(Figure 3.7). Although sample numbers were too few, this data suggested that APOBEC3G 

levels are augmented in cells primarily targeted by HIV-1 as a crucial factor in the anti-viral 

immune response. However, further studies are required to investigate APOBEC3G 

expression in a larger sample cohort and in other cell subsets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Comparison of APOBEC3G mRNA levels between total PBMCs and 

CD4 T cells in HIV-ve and HIV+ve individuals. 
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3.4 Resequencing of APOBEC3G 

The APOBEC3G gene was amplified and sequenced in separate fragments using several 

specific amplification primers that covered all regions of the gene. PCR conditions 

(specifically MgCl2 concentrations and primer annealing temperatures) were optimized for 

each amplification primer pair before samples were processed for sequencing (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Amplification of APOBEC3G. Representative agarose gels depicting 

optimization of PCR conditions for 2 of 11 primers used i.e. [A] cem15-ex1-t7 which 

amplified a 470 base pair region and [B] cem15-ex3-t7 which amplified a 446 base pair 

region. MgCl2 concentration of 1.5mM and annealing temperature of 60
o
C was selected 

for both primers. 

 

 

A 

B 
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3.4.1 APOBEC3G Variants 

APOBEC3G genetic variants have not been described in African populations.  By re-

sequencing a subset of 30 HIV+ve and 30 HIV-ve samples we identified 24 SNPs within 

APOBEC3G in our cohort, which are described in Table 3.1.  Sixteen of these SNPs were 

described previously and 8 were novel. Further, (An et al. 2004) described 7 SNPs within 

APOBEC3G in a United States based study cohort, 4 of which were identified in our study 

cohort.  Frequencies of these SNPs in our cohort were similar to those of the African 

American group in the United States based cohort (Table 3.1).   

 

Following preliminary analysis of the identified SNPs, 6 were selected to be genotyped in a 

larger group of samples, based either on their high minor allele frequencies, association with 

viral load and CD4 counts or previous description in the American study cohort (An et al. 

2004). Genotyping was performed by predesigned TaqMan genotyping assays (Figure 3.9) 

and an RFLP assay (Figure 3.10). 
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Figure 3.9 A typical allelic discrimination plot obtained from a TaqMan genotyping 

assay of SNP ID rs8177832 (H186R). Samples of similar genotype cluster together. The 

clustering of points can vary along the horizontal axis (Allele X), vertical axis (Allele Y), 

or diagonal (Allele X/Allele Y) due to differences in the extent of reporter dye 

fluorescent intensity after PCR amplification. 
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Figure 3.10 Representative agarose gel depicting the RFLP assay and digestion 

pattern used to identify the genotypes of SNP ID rs5750743. Lanes 1, 3 and 7 represent 

samples whose genotypes for rs5750743 are wild type (WT), mutant (MUT) and 

heterozygote (HET) respectively. Lane 25 is a 50 base pair DNA ladder. 

 

3.4.2 Effects of H186R mutation on Primary HIV Pathogenesis 

The codon changing variant, H186R (rs8177832), in exon 4, had a frequency of 0.307, and 

was analyzed further, as the 186R allele was previously shown to have AIDS accelerating 

effects (An et al. 2004). 

 

H186R genotypes were determined for 250 subjects (61 HIV+ve and 189 HIV-ve). We tested 

the association between HIV status and H186R genotypes and found no significant difference 

in the distribution of H186R genotypes between HIV-ve and HIV+ve subjects (p=0.5838) 

(Figure 3.11). 
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Figure 3.11 Distribution of H186R genotypes between HIV-ve and HIV+ve subjects 

 

We also compared viral loads (Figure 3.12A) and CD4+ T cell counts (Figure 3.12B) 

between genotypes. Viral load and CD4 measurements were classified into 0-3 months post 

infection and 3-12 months post infection time intervals, to identify possible differences 

between genotypes during acute infection (0-3 months) and early chronic infection (3-12 

months).  There was an overall significant difference in viral loads between genotypes 

(p=0.0097) across both time periods (Figure 3.12A). In addition, during the first 3 months of 

infection there was a significant difference in viral loads between the wild type reference 

group (AA) and those homozygous for the mutation (GG) (p=0.0362), with the GG genotype 

having higher viral loads than the AA genotype. There was also an overall significant 

difference in CD4 counts between the AA reference group and the GG genotypes (p=0.0081) 

(Figure. 3.12B). Further, during the first 3 months of infection, there was a significant 

difference in CD4 counts between AA and GG genotypes (p=0.0006), with GG genotype 

having lower CD4 counts than the AA genotype. 
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Table 3.1   APOBEC3G SNPs and their minor allele frequencies 

NCBI dbSNP ID
a
 Location 

Nucleotide 

Change 

Amino 

Acid 

Change 

Hardy 

Weinberg 

Minor Allele 

Frequency 

Minor Allele Frequency 

from the work of An. et.al 
a
 

SNP # AA EA CA 

rs5757463  5’ regulatory region c/g/t  0.419 0.089 571G/C 0.091 0.063 0.116 

rs7291971 5’ regulatory region c/g  0.858 0.016  

rs6519166 5’ regulatory region a/c  0.185 0.111  

rs8142124   5’ regulatory region c/t  0.574 0.246  

rs5750743
 c
 5’ regulatory region c/g  0.966 0.327 90C/G 0.319 0.340 0.263 

rs8177832
d
 exon 4 a/g H186R 0.040 0.307 H186R 0.368 0.029 0.074 

rs17496046
 d
 exon 6 c/g Q275E 0.028 0.169  

rs11545130 exon 7 c/t L371L 0.846 0.019  

rs34300092 intron 2 a/g  0.300 0.089  

rs6001417
 d
 intron 3 c/g  0.030 0.303 197193T/C

e
    0.368    0.029     0.086 

rs3736685
 d
 intron 3 c/t  0.004 0.151     

rs17537581 intron 6 a/g  0.112 0.454  

rs17537574 intron 6 a/g  0.030 0.033  

rs17537588 intron 7 a/g  0.722 0.031  

rs35342554 3’ region c/t  0.155 0.290  

rs35228531
 d
 3’ region c/t  0.519 0.207  

cem15-ex1-snp1-R
f
 intron 1 a/g  0.357 0.078  

cem15-ex3-snp1-R
f
 exon 4 a/g  0.060 0.164  

cem15-ex6-snp1-R
f
 intron 7 a/g  0.846 0.019  

cem15-In13-snp3-R
f
 intron 2 a/g  0.300 0.089  

cem15-In13-snp1-Y
f
 intron 2 c/t  0.401 0.073  

cem15-pm1-snp1-Y
f
 5’ regulatory region c/t  0.344 0.082  

cem15-3u-snp1-R
f
 intron 7 a/g  0.581 0.048  

cem15-3u-snp2-W
f
 intron 7 a/t  0.518 0.056  

NCBI dbSNP ID, National Center for Biotechnology Information SNP database reference number; RFLP=restriction fragment length 

polymorphism; SNP=single-nucleotide polymorphism. 
a
Comparisons with results from a published study, 

b
SNPs identified by resequencing,

 

c
SNP genotyped by RFLP assays, 

d
SNPs genotyped by TaqMan assays, 

e
T/C denotes complementary alleles, 

f
Novel SNPs. 
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The association with CD4+ T cell count is consistent with observed genotype effects on viral 

load.  At 3-12 months post-infection, the GG genotype maintained its association with higher 

viral loads and lower CD4 counts when compared to the other genotypes.  Additionally, the 

heterozygous AG genotype also displays significantly higher viral loads (p=0.0005) and 

lower CD4 counts (p=0.0078) when compared to the reference AA genotype at this later time 

period.    

 

Kaplan Meier survival analysis (Figure 3.12C) shows that those who have the GG genotype 

have a significantly shorter time to CD4 count < 350 cells/μl. The hazard ratio (HR) for the 

GG group as compared to the AA or AG group is 3.84 (95% CI 1.43 – 10.35, p=0.0078). 

 

Comparisons to viral load and CD4 counts were also performed for other SNPs highlighted in 

Table 3.1. rs6001417 and rs35228531 demonstrated significant associations with viral load 

and CD4 counts. rs6001417 is actually in near complete linkage disequilibrium with H186R 

(D’ = 0.95, r
2 

= 0.9)1 and therefore displayed similar allele frequencies and associations. 

 

Analysis of the rs35228531 mutation indicated that individuals who are heterozygous for the 

mutation (CT) had significantly higher viral loads and lower CD4 levels over 12 months of 

infection as compared to the wild type group (Figure 3.13A and Figure 3.13B).  A Kaplan 

Meier survival analysis (Figure 3.13C) shows that those who have the CT genotype progress 

faster to a CD4 count < 350 cells/μl. The hazard ratio (HR) for the CT group as compared to 

the CC group is 2.28 (95% CI 0.85 – 6.07, p=0.1005).  Although this was not statistically 

significant a trend is observable, as only 22.9% of the CC group progressed to a CD4 count < 

350 cells/μl while 47.1% of individuals with the CT genotype progressed to a CD4 count < 

350 cells/μl. 
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Figure 3.12 Comparison of viral loads and CD4+ T-cell counts between H186R 

genotypes (A and B) over 0–12 months after infection using a locally weighted 

scatterplot smoothing model. Measurements were classified into 0–3 months after 

infection and 3–12 months after infection time intervals to identify differences between 

the genotypes during acute infection and early chronic infection. Confidence intervals 

are shown by the vertical lines and overall P values are indicated. Kaplan–Meier 

survival curve (C) were performed to assess the difference between the H186R genotype 

groups in the event of a CD4+ T-cell count less than 350 cells/μl for more than two 

consecutive visits. Cox regression was used to acquire hazard ratio. 

A 

B 

C 

AA 186H/H (n=32) 

AG 186H/R (n=24) 

GG 186R/R (n=5) 
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Figure 3.13 Comparison of viral loads and CD4+ T-cell counts between rs35228531 

genotypes (A and B) over 0–12 months after infection using a locally weighted 

scatterplot smoothing model. Measurements were classified into 0–3 months after 

infection and 3–12 months after infection time intervals to identify differences between 

the genotypes during acute infection and early chronic infection. Confidence intervals 

are shown by the vertical lines and overall P values are indicated. Kaplan–Meier 

survival curve (C) were performed to assess the difference between the rs35228531 

genotype groups in the event of a CD4+ T-cell count less than 350 cells/μl for more than 

two consecutive visits. Cox regression was used to acquire hazard ratio. 

A 

B 

C 

CC (n=36) 

CT  (n=19) 
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We also performed an analysis to determine whether the H186R mutation has an influence on 

the expression levels of APOBEC3G. However, we found no association between H186R 

genotypes and APOBEC3G mRNA expression levels (p=0.695) (Figure 3.14). 

 

 

 

Figure 3.14 Comparison of APOBEC3G levels between H186R genotype groups 
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CHAPTER FOUR 

 Hypermutation within HIV-1 envelope and its Association with APOBEC3G  

Genetic Variants 

 

Guanine-to adenine (G-to-A) transitions in retroviruses have an overall expected frequency of 

5% of the number of Gs (Koulinska et al. 2003). The phenomenon referred to as G to-A 

hypermutation occurs when G-to-A substitutions are inordinate and exceed all other 

mutations in a viral sequence. Editing of minus-strand viral DNA by APOBEC3G, as well as 

APOBEC3F, is the most common mechanism by which G-to-A hypermutation is induced 

(Lecossier et al. 2003; Mangeat et al. 2003; Zhang et al. 2003; Harris and Liddament 2004).  

APOBEC3G and -3F differ in their preferred target sequence for mutation. APOBEC3G 

favours the CC dinucleotide (resulting in GG to AG transition) while APOBEC3F prefers CT 

dinucleotide (resulting in GA to AA transition) (Mangeat et al. 2003; Zhang et al. 2003; 

Bishop et al. 2004; Liddament et al. 2004; Yu et al. 2004).  

 

Our previous data suggests that polymorphic variants of APOBEC3G may predispose to 

accelerated HIV-1 disease progression, however the mechanism remains unknown. It is 

possible that genetic variation within APOBEC3G may thwart HIV-1 DNA editing in vivo 

and that optimal function of APOBEC3G may further require unhindered conditions, such as 

defective vif activity. 

 

For this reason we chose to assess hypermutation within HIV-1 env from patients whose 

H186R genotype were known. This region was selected for its high rate of hypermutation 

(Suspene et al. 2006). Studies show that regions of the HIV-1 genome at which reverse 

transcription is initiated i.e. the PPTs as well as the PBS are less vulnerable to deamination by 

APOBEC3G as they remain single stranded for the least amount time. Additionally, regions 
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located immediately downstream of the PPTs and PBS remain protected against APOBEC3G 

however the degree of protection decreases gradually further downstream (Wurtzer et al. 

2006).  Hence, the regions such as gag, are less prone to editing, while env is highly 

susceptible as this region is located immediately upstream of the 3’ PPT priming site (Yu et 

al. 2004)  (Figure 1.15). 

 

4.1 Sample Selection 

A subset of 22 participants from the Centre for the AIDS Programme of Research in South 

Africa (CAPRISA) acute infection study cohort (van Loggerenberg et al. 2008) was assessed 

for hypermutation in HIV-1 env. We chose to study proviral DNA isolated from PBMCs at 

the 36 month post infection time point as APOBEC induced hypermutations are accumulative 

and may be prominent in archived proviral DNA. The 22 individuals were selected based on 

their APOBEC3G H186R genotypes which we previously characterised. Patient 

characteristics are described in Table 4.1. 
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Table 4.1 Characteristics of 22 participants selected for the study of HIV-1 env 

PID H186R 
Viral Load 

(copies/ml) 

CD4 

(cells/µl) 

CAP40 AA – 186 H/H 2,030 685 

CAP45 AA – 186 H/H 517 1043 

CAP65 AA – 186 H/H 28,100 214 

CAP84 AA – 186 H/H 1,710 575 

CAP137 AA – 186 H/H 24,600 173 

CAP188 AA – 186 H/H 185,000 352 

CAP217 AA – 186 H/H 48,900 486 

CAP225 AA – 186 H/H 22,200 505 

CAP278 AA – 186 H/H 1,340 635 

CAP281 AA – 186 H/H 400 809 

CAP08 AG – 186 H/R 40,700 175 

CAP61 AG – 186 H/R 400 601 

CAP85 AG – 186 H/R 242,000 270 

CAP211 AG – 186 H/R 2,470 424 

CAP220 AG – 186 H/R 400 546 

CAP229 AG – 186 H/R 15,400 802 

CAP274 AG – 186 H/R 125,000 468 

CAP282 AG – 186 H/R 641 452 

CAP174 GG – 186 R/R 414,000 131 

CAP256 GG – 186 R/R 55,000 274 

CAP262 GG – 186 R/R 1,060 383 

CAP280 GG – 186 R/R 37,500 355 
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4.2 Amplification of HIV-1 env 

Successful amplification of HIV-1 env was confirmed by gel electrophoresis of PCR 

amplicons on a 1% agarose gel. The presence of a 3141 base pair product indicated a specific 

and successful amplification (Figure 4.1).  

 

 

 

 

 

 

 

 

 

Figure 4.1 Representative agarose gel depicting successful amplification of HIV-1 

env in patient samples. Lane 1 is a 1 kilo base DNA ladder. The 3141 base pair HIV-1 

env amplicons are represented in lanes 2-4 from PID CAP8, lanes 5-7 from CAP65 and 

lanes 8-10 from CAP85. 
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4.3 Phylogenetic characterisation of subtype C HIV-1 env 

HIV-1 displays significant diversity, the extent of which evolves over time. The most 

outstanding changes in diversity take place within the envelope glycoproteins (Env). HIV-1 

Env glycoproteins can differ by around 35% across subtypes and HIV-1 Env of subtype C 

origin has been well studied and characterised (Coetzer et al. 2007; Lynch et al. 2009; Singh 

et al. 2009; Archary et al. 2010).  

 

In this study we amplified and directly sequenced HIV-1 env for the purpose of assessing 

APOBEC3G induced hypermutation within the gene as described previously (Land et al. 

2008). By phylogenetic analysis, we confirmed that the 22 study samples were of subtype C 

origin. A neighbour joining phylogenetic tree assembled with sequences of the 22 study 

samples and reference sequences of HIV-1 group M subtypes A to K shows that all study 

samples clustered with HIV-1 subtype C reference sequences (Figure 4.2). 

 

The mean overall population diversity at the amino acid level was 15.6% but increased to 

40% at the nucleotide level. CAP84 displayed the greatest degree of divergence from the 

consensus subtype C reference (Figure 4.3).  
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Figure 4.2 Neighbour joining phylogenetic tree of HIV-1 Env sequences.  Consensus 

sequences of 22 samples and reference sequences of HIV-1 group M subtypes A to K 

(obtained from the Los Alamos National Laboratory HIV database 

(http://www.hiv.lanl.gov) are included. All samples (blue) cluster with subtype C 

reference sequences (red). The tree was constructed with Los Alamos National 

Laboratory HIV database treemaker tool and Fig Tree v1.3.1. 

 

0.02 

http://www.hiv.lanl.gov/
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Figure 4.3 Phylogenetic and highlighter analyses depicting amino acid differences in 

HIV-1 Env sequences compared to a reference consensus C sequence. The neighbour-

joining phylogenetic tree and the Highlighter analysis were generated using the HIV 

Sequence Database from the Los Alamos National Laboratory 

(http://www.hiv.lanl.gov). In the Highlighter plot, amino acid differences from the 

consensus C sequence are indicated by vertical bars. Diversity within HIV-1 env is 

extensive with sample CAP84 displaying the greatest divergence. 
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4.4 Assessment of Hypermutation within HIV-1 env 

To further understand the mechanism behind the influence of APOBEC3G genetic variants 

on disease pathogenesis, we assessed the aforementioned HIV-1 env sequences for the 

magnitude of hypermutation induced by APOBEC3G. The Hypermut 2.0 Tool available on 

the HIV Sequence Database from the Los Alamos National Laboratory (http:// www.hiv .lanl. 

gov) was employed to detect APOBEC-specific hypermutations as decribed in Materials and 

Methods section 2.6.4. 

 

The analysis indicated that the HIV-1 env sequence of only CAP84 was significantly 

hypermutated (p<0.0001). This sequence contained a total of 56 APOBEC3G induced 

hypermutations and 19 of the APOBEC3F context (Figure 4.4).  Cloning and sequencing for 

this sample was repeated and sequence contigs were rechecked for errors during editing. 
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Figure 4.4.  [A] Hypermut 2.0 plot of nucleotide changes relative to a reference 

consensus subtype C sequence. APOBEC3G mutations in the dinucloetide context GG 

to AG are denoted by red bars while APOBEC3F mutations in the dinucloetide context 

GA to AA indicated by turqouise bars. [B] Summary of the corresponding 

hypermutation count for APOBEC3G and -3F. Fisher’s exact p-values indicate degree 

of significance of hypermutation. Hypermutation analysis was performed with the 

Hypermut 2.0 Tool available on the HIV Sequence Database from the Los Alamos 

National Laboratory (http://www.hiv.lanl.gov). 

 

A B 

http://www.hiv.lanl.gov/
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Closer examination of the HIV-1 Env amino acid sequence of CAP84 revealed the presence 

of numerous stop codons across the gene (Figure 4.5). CAP84 carried the wild-type 186H/H 

genotype and also maintained a relatively low viral load of 1,710 copies/ml at the time point 

analysed. 

 

 

 

Figure 4.5 HIV-1 Env amino acid sequence of CAP84. Multiple stop codons, 

represented by red stars, are evident across the gene. 

 

We subsequently assessed whether H186R variants had an impact on the editing function of 

APOBEC3G by comparing the hypermutation count between the H186R genotype groups. 

However, our results showed that there was no significant difference in the number of 

hypermutations between the genotype groups (p=0.85) (Figure 4.6) 
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Figure 4.6 Comparison of APOBEC3G hypermutation count between H186R 

genotype groups. Kruskal-Wallis test indicates that there is no significant differences 

between the groups tested (p=0.85). 

 

4.5 Correlation of Hypermutation with Markers of Disease Progression 

To determine whether the degree of APOBEC3G induced mutations has a clinical influence 

the next analysis was to the correlate the levels of APOBEC3G hypermutation calculated by 

Hypermut 2.0 with viral load and CD4 counts. Additionally, out of interest, APOBEC3F 

hypermutation was included in the analysis as well, as the data was already available.  

 

Data showed that there was no significant correlation between the number of APOBEC3G 

induced mutations and viral load (p=0.52, r= -0.15) (Figure 4.7A) or CD4 count (p=0.55, 

r=0.14) (Figure 4.7B). However, there was a weak trend towards a negative correlation with 

viral load and a positive correlation with CD4 count.  Interestingly, there was a strong 

significant correlation between the number of APOBEC3F induced mutations and viral load 
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(p=0.006, r= -0.6) (Figure 4.7A) and CD4 count (p=0.004, r=0.6) (Figure 4.7B). The number 

of APOBEC3F induced mutations associated negatively with viral load and positively with 

CD4 counts. 

 

This steered us to further assess whether there was association between the number of 

APOBEC3G and APOBEC3F induced mutations as well as to determine if overall there was 

a difference in the quantity of APOBEC3G versus APOBEC3F induced mutations. The 

outcome of this analysis demonstrated that overall there was a greater number of APOBEC3F 

induced mutations present in the analysed HIV-1 env sequences as compared to APOBEC3G 

induced mutations (p=0.003) (Figure 4.8A). Additionally, there was a positive association 

between the number of mutations induced by APOBEC3G and APOBEC3F (p=0.027, r=0.5) 

(Figure 4.8B). 
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Figure  4.7 Correlation between the number of mutations induced by APOBEC3G 

(red) and APOBEC3F (blue) and viral load [A] and CD4 counts [B].  

A 

B 
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Figure 4.8 APOBEC3G versus APOBEC3F. [A] Overall comparison between the 

number of APOBEC3G mutations and the number of APOBEC3F mutations present in 

HIV-1 env sequences [B] Association between levels of APOBEC3G vs. APOBEC3F 

induced mutations. 

A 

B 
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Although, we did not have corresponding APOBEC3G expression data at the time point that 

hypermutation was analysed, these data was available for seven of the studied samples at an 

earlier time of infection. We therefore performed an exploratory analysis with these samples 

to determine if there was correlation between APOBEC3G levels and the number of 

hypermutations (Figure 4.9).  However, our data showed no significant correlation (p=0.23) 

between these two factors, although there was a weak trend towards a positive correlation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Correlation between APOBEC3G mRNA expression and the number of 

hypermutations. 
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CHAPTER FIVE 

Association of APOBEC3G Genetic Variants with HIV-1 vif Sequence Variation and 

Impact on HIV-1 Pathogenesis 

 

5.1 Introduction 

The relationship between human immunodeficiency virus-1 (HIV-1) and the infected host is a 

complex and tumultuous one. Even though HIV-1 depends on its host to replicate it must also 

escape and shield itself against the host’s antiviral restriction factors, which exert strong 

selective pressure on the virus. An apparent example of this co-evolutionary tussle is the 

interaction between HIV-1’s virion infectivity factor (vif) and the cellular restriction factor 

apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G).  

 

Our data shows that certain APOBEC3G genetic variants display differential clinical 

outcomes following HIV-1 infection. Specifically, the H186R mutation was associated with 

high viral loads and decreased CD4+ T cell counts. These data are consistent with findings 

from a previous study (An et al. 2004) in which the underlying mechanisms of this 

association remained unclear. We were therefore interested in extending these observations to 

investigate the possible underlying mechanisms. Additionally, natural variants in Vif have 

been frequently identified (Wieland et al. 1994; Adekale et al. 2005; Simon et al. 2005; 

Jacobs et al. 2008) and have been shown to have variable activity against APOBEC3G 

resulting in selective and partial neutralization of the host restriction factor (Simon et al. 

2005).  Studies also demonstrate that the interaction between HIV-1 Vif and APOBEC3G is 

species-specific, suggesting adaptation of Vif to its host (Mariani et al. 2003; Bogerd et al. 

2004; Xu et al. 2004).  Interestingly, subtype C Vif proteins have been demonstrated to have 
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the highest activity against APOBEC3G (Iwabu et al. 2010). However, there remains a gap in 

knowledge about the effect of subtype C vif alleles on different APOBEC3G haplotypes. 

 

The constant conflict and interplay between host and virus may drive and shape the ongoing 

evolution and adaption of HIV-1 Vif (Compton et al. 2012). The best characterized interplay 

between HIV-1 and host genetic factors that leads to predictable and reproducible evolution 

and immune escape for the virus is the HIV-1/HLA class I interaction. HLA molecules are 

encoded by the MHC genetic loci and are the most polymorphic genes in the human genome 

as a result of its evolution from the constant barrage of pathogens faced by the human 

population throughout its existence (Jeffery and Bangham 2000; Klein and Sato 2000). This 

characteristic of HLA alleles allows them to identify numerous epitopes of pathogens which 

they present to T cells for activation of suitable immune responses. HLA class I molecules in 

particular recognize, bind and present viral epitopes to CTLs and have been shown to have a 

profound impact on the control HIV-1. This host immune response also imposes major 

selective pressure on the virus and drives the continuous process of immune escape (Phillips 

et al. 1991; Goulder et al. 2001; Draenert et al. 2004). The HLA protective alleles, HLA-

B*57, -B*27 and –B*51, in particular have been shown to drive the formation of specific 

CTL escape mutants (Carrington and O'Brien 2003; Stephens 2005; Rousseau et al. 2008; 

Kawashima et al. 2009).  The dynamics and patterns of HIV-1 evolution are somewhat 

predictable based on HLA restriction. For example selection for a T to N mutation at position 

three of the TW10 epitope in the p24 Gag protein within the first weeks after infection is 

associated with expression of the HLA-B*57 allele (Leslie et al. 2004). While individuals 

expressing HLA-B*27, initially select for an L to M change at position 6  in the 

immunodominant Gag epitope KK10 followed years later by an R to K change at position 

two (Kelleher et al. 2001). 
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 Additionally, these escape mutations also result in replicative fitness cost in the absence of 

the selective HLA-allele and CTL pressure, as epitopes are often located in regions of the 

viral genome that are functionally conserved. Thus, when an escape variant is transmitted 

between individuals who are HLA-mismatched, rapid reversion of the mutation to wild-type, 

occurs (Friedrich et al. 2004; Leslie et al. 2004). 

 

For this reason, we wanted to investigate for evidence of HIV adaptation, within Vif in 

particular, to ongoing  in vivo pressure by APOBEC3G variants in a similar manner to which 

HIV adapts to host HLA.  The aim of this study was to sequence and analyse subtype C HIV-

1 vif alleles from patients whose APOBEC3G H186R genotypes were previously 

characterised.   We also tested the hypothesis that APOBEC3G genetic variants may 

differentially influence subtype C Vif protein evolution in vivo as the virus adapts to ongoing 

APOBEC3G immune pressure. 

 

5.2 Sample Selection 

A total of 26 participants from the Centre for the AIDS Programme of Research in South 

Africa (CAPRISA) acute infection study cohort (van Loggerenberg et al. 2008) were selected 

for this arm of the study. Cryopreserved plasma samples were obtained at 36 months post-

HIV-1 infection. The 26 individuals were selected based on their APOBEC3G H186R 

genotypes which were previously characterised.  Samples used for this analysis were chosen 

at the 36 month post infection time point, as we expected that the accumulation of APOBEC 

immune-driven mutations within Vif would be more apparent at a later stage of infection.  

Patient characteristics are described in Table 5.1. 
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Table 5.1  Characteristics of 26 participants selected for the study of HIV-1 vif 

PID H186R 
Viral Load 

(copies/ml) 

CD4 

(cells/µl) 

# of Vif Clonal  

Sequences  

CAP37 AA – 186 H/H 92,300 380 10 

CAP40 AA – 186 H/H 2,030  685 10 

CAP45 AA – 186 H/H 517 1043 10 

CAP65 AA – 186 H/H 28,100 214 10 

CAP84 AA – 186 H/H 1,710 575 10 

CAP137 AA – 186 H/H 24,600 173 19 

CAP206 AA – 186 H/H 431,000 277 19 

CAP217 AA – 186 H/H 48,900 486 19 

CAP221 AA – 186 H/H 104,000 264 14 

CAP225 AA – 186 H/H 22,200 505 17 

CAP278 AA – 186 H/H 1,340 635 12 

CAP8 AG – 186 H/R 40,700  175 10 

CAP61 AG – 186 H/R 400 601 10 

CAP85 AG – 186 H/R 242,000 270 11 

CAP88 AG – 186 H/R 142,000 627 17 

CAP177 AG – 186 H/R 48,300 270 19 

CAP200 AG – 186 H/R 563,000 183 17 

CAP211 AG – 186 H/R 2,470 424 20 

CAP229 AG – 186 H/R 15,400 802 17 

CAP274 AG – 186 H/R 125,000 468 18 

CAP282 AG – 186 H/R 641 452 16 

CAP174 GG – 186 R/R 414,000  131 17 

CAP256 GG – 186 R/R 55,000 274 16 

CAP261 GG – 186 R/R 7,490 322 14 

CAP262 GG – 186 R/R 1,060 383 16 

CAP280 GG – 186 R/R 37,500 355 17 
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5.3 Amplification and Cloning of HIV-1 vif 

A 1030 base pair fragment containing the 579 base pair HIV-1 vif gene was successfully 

amplified as shown by analysis on a 2% agarose gel (Figure 5.1). The amplicons were 

subsequently cloned into the pCR2.1 vector and successful ligation of the amplicon into the 

vector was confirmed by a restriction digest performed on plasmid DNA using the BstXI 

enzyme (Figure 5.2). 

 

 

 

 

Figure 5.1 Agarose gel depicting successful amplification of the 1030 base pair 

fragment containing the 579 base pair HIV-1 vif gene on a 2% agarose gel. Lane 1 

depicts a 1 kilo base DNA ladder. The 1030 base pair amplicons are depicted in lanes 2-

6 from sample PID CAP37 and lanes 7-11 from CAP40. 
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Figure 5.2 Agarose gel depicting plasmid DNA digestion products confirming 

successful cloning of HIV-1 vif amplicons into the pCR2.1 vector. Lane 1 is a 1 kilo base 

DNA ladder. Lanes 2-11 depicts 10 representative clones. 

 

5.4 Phylogenetic Analysis of subtype C HIV-1 vif sequences 

There is limited sequence information available for subtype C HIV-1 vif of South African 

origin. In this study we cloned and sequenced HIV-1 vif from plasma of 26 participants with 

recent infection. A total of 392 HIV-1 vif clonal sequences were generated. All viral isolates 

encoded a full length 192 residue amino acid sequence. The phylogenetic relationship 

between all vif sequences is depicted in Figure 5.3 and shows that clonal sequences from each 

patient sample clustered with each other. This indicated that sequences were free of lab strain 

contamination or sample mix-ups between patients. 

 

Additionally, a neighbour joining phylogenetic tree constructed with consensus sequences of 

26 study samples and reference sequences of HIV-1 group M subtypes A to K. demonstrated 

that study samples belonged to HIV-1 subtype C (Figure 5.4) 
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Figure 5.3 Neighbour joining phylogenetic tree of 392 full length HIV-1 vif clonal 

sequences.  HIV-1 vif clonal sequences from each of 26 samples (depicted by different 

colours) cluster together indicating that samples are free of contamination.  The tree is 

rooted with a South African subtype C reference sequence (Ref.C.ZA.04.04Z ASK146.A 

Y772699) obtained from the Los Alamos National Laboratory HIV database 

(http://www.hiv.lanl.gov). 

http://www.hiv.lanl.gov/
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Figure 5.4 Subtype neighbour joining HIV-1 vif phylogenetic tree.  Consensus 

sequences of 26 samples and reference sequences of HIV-1 group M subtypes A to K 

(obtained from the Los Alamos National Laboratory HIV database 

(http://www.hiv.lanl.gov) are included. All samples (blue) cluster with subtype C 

reference sequences (red). The tree was constructed with Los Alamos National 

Laboratory HIV database treemaker tool and Fig Tree v1.3.1. 

http://www.hiv.lanl.gov/
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Intra-individual sequence differences were substantial with a range of 0.1% to 4.9% at the 

protein level and 0.1% to 2.8% at the DNA level. Inter-individual diversity ranged from 6.2% 

to 19.2% (protein) and 4.7% to 11.4% (DNA). Assessment of intra-individual sequence 

diversity for correlation with markers of disease outcome i.e. viral load and CD4 count 

showed that there was no significant association between these factors (Figure 5.5). 

Figure 5.5 Association between Vif intra-patient amino acid diversity and [A] viral 

load and [B] CD4 count 

 

An alignment with consensus sequences of 26 study samples and a consensus subtype C 

reference sequence is represented in Figure 5.6.  Regions that are crucial for degradation of 

APOBEC3G are shaded. These sites include amino acids I9, K22, E45 and N48; YRHHY 

motif (40-44); amino acids 52 to 72 particularly the highlighted VHIPLx4-5Lxx2YWGI 

motif; tryptophan residues Trp 5, 21, 38 and 89; the HCCH motif important for binding to 

Cullin 5 and the  SLQYLA motif important for recruitment of ubiquitin-ligase (E3) complex 

containing elongin –B and –C, cullin-5 and Rbx. All of these known crucial sites for 

APOBEC3G/Vif interaction were found to be highly conserved in the studied HIV-1 subtype 

C sample set.  

A B 
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Figure 5.6 Alignment of Vif amino acid consensus sequences of 26 study samples. 

Nucleotide sequences were aligned and protein translation inferred using Bioedit 

Sequence alignment editor v7.1.3.0. The sequences are compared to a consensus subtype 

C reference sequence (obtained from the Los Alamos National Laboratory HIV 

database (http://www.hiv.lanl.gov). Protein domains involved in degradation of 

APOBEC3G are shaded or marked as follows: yellow indicates I9, K22, E45 and N48, 

YRHHY (40-44), amino acids 52 to 72 including the highlighted VHIPLx4-5Lxx2YWGI 

motif which are important for binding to APOBEC3G; * shows tryptophan residues 

also significant for APOBEC3G binding; blue indicates the HCCH motif important for 

binding to Cullin 5; pink shows SLQYLA motif important for recruitment of ubiquitin-

ligase (E3) complex containing elongin –B and –C, cullin-5 and Rbx. 

http://www.hiv.lanl.gov/
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5.5 In Vivo Effect of APOBEC3G H186R Genotypes on HIV-1 Vif Sequence 

Diversity 

Evolution of HIV-1 Vif may be influenced by the continuous selective pressure imposed by 

APOBEC3G. HIV-1 Vif divergence may therefore occur as an adaptive response to the 

APOBEC3G repertoire present within the host. 

 

For subsequent analysis we stratified the study samples according to their APOBEC3G 

H186R genotypes to determine if there were sequence differences in HIV-1 Vif between the 

genotype groups. Our data shows that overall there was no significant pattern or difference in 

HIV-1 Vif diversity between the H186R genotypes groups (Figure 5.7).  

 

We next employed the Viral Epidemiology Signature Pattern Analysis (VESPA) (Los 

Alamos National Laboratory HIV database (http://www.hiv.lanl.gov)) to calculate the 

frequency of each amino acid at each position in our HIV-1 Vif alignment focusing on 

sequences belonging to the 186H/H (wild type) group and the 186R/R (mutant) group. 

Positions 36 and 93 were the most distinguishing sites with the most common amino acid in 

the 186R/R group differing approximately five fold from that in the 186H/H group (Figure 

5.8A). Interestingly, Vif sequence comparison at position 36, showed a strong preference for 

Lysine (K) in APOBEC3G 186R/R individuals and for Serine (S) in 186H/H individuals 

(Figure 5.8B). Additionally, at position 93 there was a strong preference for an Arginine (R) 

or a Serine (S) for APOBEC3G 186H/H and 186R/R individuals respectively (Figure 5.8C). 

 

 

 

 

http://www.hiv.lanl.gov/
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Figure 5.7 Vif Diversity versus APOBEC3G H186R genotype. [A] Phylogenetic tree 

of all Vif clonal sequences stratified by H186R genotype. [B] Comparison of Vif 

diversity between genotypes groups. 

A 

B 
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Figure 5.8 Comparison of amino acid frequencies at each position of Vif for 

APOBEC3G 186H/H (wild type) group and the 186R/R (mutant) group. Amino acid 

frequencies were calculated by VESPA available at Los Alamos National Laboratory 

HIV database. At Vif position 36 there is a strong preference for Lysine in 186R/R 

individuals and for Serine in 186H/H individuals [A,B]  while at position 93 there is 

preference for an Arginine (R) or a Serine (S) for 186H/H and 186R/R individuals 

[A,C]. 

A 

B C 
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5.6 Amino acid frequencies differ at Vif position 36 and 93 between 186H/H and 

186R/R individuals. 

Inspection of Vif positions 36 and 93 in other HIV-1 subtypes (Figure 5.9A and 5.9B 

respectively) revealed that the amino acid frequency and distribution at these loci in our Vif 

sequences conforms to other subtype C Vif sequences. Interestingly, for subtype C the 

predominant amino acid expressed at position 36 is a Serine (S), while all other subtypes 

typically express a Lysine (K) at this site. At position 93, Arginine (R) is the predominant 

amino acid expressed in all subtypes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Comparison of amino acid frequencies at Vif positions 36 [A] and 93 [B] 

between HIV-1 subtypes. Amino acid frequency at these sites in our study samples 

(CAP subtype C) conform to other subtype C Vif alleles.  Subtype A (n=135), subtype B 

(n=771), subtype C (n=414), subtype D (n=51), subtype F (n=55), subtype G (n=32), 

CAP subtype C (n=332). 

 

A B 
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5.7 Amplification and Cloning of Subtype C HIV-1 vif into the pCRV1 Expression 

HIV-1 vif clones within the pCR2.1 vector was successfully amplified with specific primers 

containing EcoRI and NotI restriction sites and digested with the same enzymes to create 

suitable overhangs for further cloning into the pCRV1 expression as depicted on a 2% 

agarose gel (Figure 5.10). 

 

 

 

 

 

 

Figure 5.10. Agarose gel depicting successful amplification of HIV-1 vif variants 

contained within pCR2.1 vector, which were also digested with EcoRI and NotI 

enzymes for subsequent cloning into the pCRV1 vector. Lanes 1-2 depict a 100 base pair 

DNA ladder while lanes 3-11 depicts the 579 base pair HIV-1 vif amplicons.  

 

5.8 Site Directed Mutagenesis of Vif Position 36 

Site-directed mutagenesis of each of four samples was achieved by primer extension which 

involved incorporating mutagenic primers in two independent, nested PCRs per sample as 

depicted on the 2% agarose gel in Figure 5.11.  

 

The two separate fragments that were created, were successfully combined in a 3rd PCR 

using outer primers to create the final product which contained the mutated internal sequence 

specifically serine mutated to lysine or lysine mutated to serine at position 36 (Figure 5.12A) 

. 
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Figure 5.11 Agarose gel depicting successful amplification of four HIV-1 vif variants, 

each amplified as two separate fragments by specific mutagenic primers. Lane 1 is a 100 

base pair DNA ladder. Lanes 2 and 3 represent one HIV-1 vif variant amplified as two 

separate fragments and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 [A] Successful recombination of PCR fragments (depicted in Figure 5.11) 

to create the final products (lanes 3-6) which now contained the mutation at position 36, 

[B] specifically serine mutated to lysine or lysine mutated to serine as confirmed by a 

sequence alignment. Lane 1 of the agarose gel depicts a 100 base pair DNA ladder. 



Page | 180  
 

5.9 Functional activity of Vif alleles against APOBEC3G H186R Genotypes  

HIV-1 Vif counteracts APOBEC3G by inducing proteasome mediated degradation of the 

host protein. Although HIV-1 Vif has been genotypically characterised, knowledge on the 

phenotypic function remains limited, particularly in the HIV-1 subtype C setting. 

Additionally, the influence of APOBEC3G genetic variants on the function of HIV-1 Vif 

remains to be elucidated. 

 

For this reason we cloned a subset of the subtype C vif alleles from our study cohort into the 

pCRV1 expression vector to test their function in vitro. From the pool of 392 vif sequences, 

16 unique vif plasmids were selected for functional testing as described in Materials and 

Methods section 2.7.6.  An additional 4 vif sequences were selected for site directed 

mutagenesis at position 36 following our Vif sequence analysis also described in section 

2.7.6. CAP37 and CAP45 were selected as they expressed a Serine at position 36 while 

CAP256 and CAP261 were selected for expressing a Lysine at postion 36. Serines were then 

mutated to a Lysines while Lysines were mutated to Serines (Figure 5.12). We focused on 

amino acid 36 as it is located in the N-terminal region of Vif which has been shown to 

interact with APOBEC3G. 

 

5.9.1 Vif Expression 

The 16 pCRV1 vif expression plasmids showed considerable variation in their levels of 

expression when transfected into 293T cells.  To confirm that the variation observed was not 

a result of diminished antibody recognition by the rabbit polyclonal anti-Vif serum, each of 

the Vif variants were FLAG tagged and Vif expression detected once more by rabbit 

monoclonal anti-FLAG serum.  Results confirmed that there was indeed substantial variation 

in expression levels of the 16 Vif variants (Figure 5.13).  
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Figure 5.13 Both tagged and untagged pCRV1 vif expression plasmids display 

varying levels of expression upon transfection in 293T cells.  

 

 

 

 

 

 

 

 

 

Figure 5.14 Expression profile of both tagged and untagged vif plasmids that were 

subjected to site directed mutagenesis at position 36. Serine was mutated to a Lysine in 

2 samples (lanes 1 and 2) while Lysine was mutated to Serine in an additional 2 samples 

(lanes 3 and 4).  Lanes 4 – 5 contain the corresponding wild type vif plasmids. Varying 

levels of expression can be observed upon transfection in 293T cells.  
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Varied expression profiles were also examined for vif plasmids that were subjected to 

mutagenesis at position 36 (Figure 5.14).  Interestingly, mutating a Serine to a Lysine (S36K) 

(lanes 1 and 2) resulted in an increase in expression as compared to the corresponding wild 

type vif plasmids (lane 5 and 6). There was no observable difference in expression when 

Lysine was replaced with a Serine (K36S) (lanes 3 and 4) compared to the corresponding 

wild type plasmids (lanes 7 and 8).  All Vif expression assays were repeated and a consistent 

trend was observed. 

 

5.9.2 APOBEC3G Degradation 

Vif variants were then tested for their ability to degrade APOBEC3G 186H and 186R variants 

by co-tranfection in 293T cells. Analysis by Western blotting showed that the subtype C Vif 

variants preferentially targeted the wild type APOBEC3G 186H allele rather than the 186R 

variant (Figure 5.15).  Vif variants mutated at position 36 were also tested for the activity 

against APOBEC3G alleles. Although Vif expression plasmids again seemed to favourably 

degrade the wild type (WT) APOBEC3G 186H allele, the level of degradation did not seem 

to be influenced by the amino acid (Serine or Lysine) at position 36. (Figure 5.16).   

 

 

 

 

Figure 5.15  Degradation of APOBEC3G 186H (WT) and 186R in the presence of Vif 

expression plasmids when transfected in 293T cells.  Subtype C Vifs seem to favourably 

degrade the wild type (WT) APOBEC3G 186 H allele. 
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Figure 5.16 Degradation of APOBEC3G 186H wild type (WT) and 186R in the 

presence of mutant Vif expression plasmids when transfected in 293T cells.  Vif 

expression plasmids seem to favourably degrade the  WT APOBEC3G 186 H allele. The 

level of degradation does not seem to be influenced by the amino acid at position 36. Vif 

WT and corresponding site directed mutant are depicted in the same colour. 
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5.10 Impact of Subtype C Vifs on Infectivity in the Presence of APOBEC3G 186H 

and 186R  

The anti-APOBEC3G phenotype of Vif was tested by measuring rescue of infectivity by 

HIV-1 (WT) (NL4-3), HIV-1Vif (NL4-3 with a deletion of Vif - NL4-3Vif) and HIV-1 

Vif complemented with a subtype C Vif (NL4-3Vif  + Vif_C) in the absence or presence 

of APOBEC3G (Figure 5.18). In the absence of APOBEC3G, HIV-1 WT, HIV-1Vif and 

HIV-1Vif + Vif_C established 100% infectivity (relative to HIV-1 WT). However, upon 

introduction of APOBEC3G WT, infectivity of HIV-1 WT decreased by 50% while the 

infectivity of HIV-1Vif was completely abolished, but infectivity of HIV-1Vif was 

restored to 50% upon supplementation with Vif_C. The same pattern of infectivity and rescue 

was observed in the presence of APOBEC3G 186R. 

 

 

 

 

 

 

 

 

Figure 5.17  Anti-APOBEC3G phenotype of Vif. HIV-1 WT, HIV-1Vif, HIV-1Vif 

+ Vif_C displayed 100% infectivity when APOBEC3G was lacking. Addition of either 

APOBEC3G WT or 186R resulted in a 50% decrease in infectivity of HIV-1 WT and 

eradication of HIV-1Vif infectivity which was rescued to 50% by supplementation 

with Vif_C. Infectivity was assessed at 48 hours post-transfection on TZM-bl reporter 

cells. Infectivity is expressed relative to the infectivity of HIV-1 WT alone. 
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We also tested the infectivity of HIV-1ΔVif (NL4-3ΔVif) supplemented with all selected 16 

subtype C Vifs in the presence of APOBEC3G 186H and 186R (Figure 5.19). As described 

previously, the infectivity of viral stocks was quantified 48 hours post-transfection by use of 

TZM-bl reporter cells. The NL4-3 WT, NL4-3Vif, NL4-3 WT without APOBEC3G were 

used as assay controls. 

 

Results showed that 14 out of 16 subtype C Vifs had greater activity against APOBEC3G 

186WT compared to APOBEC3G 186R allele. There were 7 Vifs that displayed a >10% 

difference in activity between APOBEC3G 186WT and 186R variants. Additionally the 

tested subtype C Vifs appear to have greater ability to degrade APOBEC3G 186WT 

particularly if the Vif was derived from a patient who carried the 186H/H (WT) genotype. 

However, if Vif was derived from a patient who carried the 186R/R genotype, its ability to 

counteract both the 186H or 186R alleles was similar.  Interestingly, these subtype C Vifs 

exhibited contradictory activity to that of NL4-3 Vif which had greater activity against the 

APOBEC3G 186R variant. In the absence of Vif, the infectivity of NL4-3Vif was abolished.  

 

In addition, we tested the infectivity of HIV-1ΔVif (NL4-3ΔVif) supplemented with Vifs that 

were subjected to site directed mutagenesis at residue 36, in the presence of APOBEC3G 

186H and 186R (Figure 5.20).  As above, the infectivity of viral stocks was quantified 48 

hours post-transfection by use of TZM-bl reporter cells and the NL4-3 WT, NL4-3Vif, 

NL4-3 WT without APOBEC3G were used as assay controls. Vifs expressing a serine at 

position 36 appeared to have a greater tendency to degrade the APOBEC3G 186H (WT) 

allele while a Lysine at this position displayed a greater or equal ability to degrade the 

APOBEC3G 186R variant.   
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Figure 5.18 Activity spectrum of subtype C Vifs against the APOBEC3G 186H (WT) 

and 186R alleles.  Infectivity of HIV-1 ΔVif (NL4-3ΔVif) supplemented with 16 subtype 

C Vifs was measured 48 hours post-transfection using TZM-bl reporter cells. Vifs 1 – 11 

were derived from patients carrying the 186H/H genotype while Vifs 12 – 16 were 

derived from those carrying the 186R/R genotype. NL4-3 WT, NL4-3Vif, NL4-3 WT 

without APOBEC3G were controls.  
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Figure 5.19 Activity spectrum of subtype C Vifs mutated at position 36 against the 

APOBEC3G 186H (WT) and 186R alleles.  Infectivity of HIV-1ΔVif (NL4-3ΔVif) 

complemented with subtype C Vifs expressing either lysine or serine at position 36 was 

measured 48 hours post-transfection using TZM-bl reporter cells. NL4-3 WT, NL4-3 

Vif, NL4-3 WT without APOBEC3G were used as controls.  
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CHAPTER SIX 

Discussion and Conclusions 

 

6.1 APOBEC3G is Dysregulated in Primary HIV-1 Infection 

Cytidine deaminases represent a recently discovered class of novel intrinsic factors that are 

involved in cellular defense against viruses.  Most studies that have characterized these 

proteins have employed in vitro experimental systems that have led to insight into how these 

proteins work, raising the hope that this knowledge could lead to new therapeutic strategies 

against HIV-1.  Relatively few studies have investigated the contribution of cytidine 

deaminases to viral control in vivo.  In this study, we focused on the characterization of 

APOBEC3G; the best studied of the cytidine deaminases.  In particular, we were interested in 

describing the contribution of APOBEC3G to viral control during the critical primary 

infection phase, as well as understanding the kinetics of APOBEC3G expression pre- and 

post-infection. Primary HIV-1 infection is characterized by rapid viral replication during the 

acute phase, which is followed by resolution of peak viremia to a hypothesized viral set point.  

Previously, it has been shown that an arm of innate immunity, namely NK cells, dominates 

early in HIV-1 infection and then declines as virus specific T cells and antibody responses 

become established (Alter et al. 2007).  We thus wondered whether we might see a similar 

mobilization of intrinsic antiviral host factors such as APOBEC3G characterized by its 

increased expression.  Further, we hypothesized that at this critical phase of infection, 

APOBEC3G expression levels might negatively correlate with viremia and positively with 

CD4+ T cell counts.  However, HIV-1 infection is associated with profound immune 

dysregulation (Munier and Kelleher 2007) and it is unclear if this dysregulation extends to 

intrinsic antiviral host factors such as APOBEC3G.  Therefore, in this study we investigated 

how primary HIV infection may affect APOBEC3G expression. 
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Our data show that APOBEC3G mRNA levels are lower in HIV+ve primary infection 

PBMCs compared to HIV–ve PBMCs.  Previously, a number of studies have also 

investigated mRNA levels of APOBEC3G in PBMCs of HIV-1-uninfected individuals versus 

during chronic HIV-1 infection.  In agreement with our findings, the earlier studies showed 

that APOBEC3G expression levels were higher in HIV-uninfected individuals when 

compared to HIV infected individuals (Jin et al. 2005; Cho et al. 2006; Gandhi et al. 2008). 

Our study comparing APOBEC3G mRNA in HIV-1–ve and HIV-1 primary infection samples 

suggests that APOBEC3G expression is rapidly downregulated upon HIV-1 infection.  To test 

the possibility that individuals with lower expression of APOBEC3G are more susceptible to 

HIV-1 infection, we quantified APOBEC3G mRNA levels in pre-infection samples of 13 

seroconverters and compared these levels to baseline APOBEC3G mRNA levels of 

persistently seronegative participants.  We found no significant differences between these two 

groups, suggesting that APOBEC3G mRNA levels per se are not associated with protection 

against HIV-1 infection.   

 

We then addressed the question of whether APOBEC3G expression is downregulated upon 

HIV-1 infection, by comparing matched pre- and post-seroconversion samples from the 13 

seroconverters.  Our data show that APOBEC3G expression is actively downregulated upon 

HIV-1 infection as the primary infection samples had lower APOBEC3G levels than the pre-

infection samples.  Our results therefore lend further support to previous observations that 

HIV-1 has specific mechanisms for counteracting APOBEC3G, as a possible immune 

evasion strategy.  We cannot also rule out the possibility that HIV-1 infection is associated 

with redistribution away from peripheral blood of cellular components that are enriched for 

APOBEC3G or that HIV-1 specifically targets such cells.  Previous studies show that immune 

evasion against APOBEC3G is mediated by HIV-1 Vif, and that it is two-fold, involving 
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translational and posttranslational inhibitory effects on APOBEC3G (Stopak et al. 2003). 

There have been no previous reports showing that HIV-1 inhibits APOBEC3G expression at 

the transcriptional level.  Whether the APOBEC3G mRNA reduction seen in HIV+ve 

samples in this study is tied to or independent of the Vif ubiquitin proteasome degradation 

mediated via HIV-1 Vif may require further investigation but our results suggest that a third 

mode of HIV-1 APOBEC3G inhibition may involve down-regulation of mRNA expression.  

This observation is in contrast to in vitro studies where HIV-1 infection does not appear to 

affect APOBEC3G mRNA levels (Sheehy et al. 2002; Kao et al. 2003; Stopak et al. 2003).     

 

We did not find a correlation between APOBEC3G mRNA levels and viral load or CD4 

counts in this primary infection cohort.  This finding is in agreement with at least two other 

studies, albeit performed in chronic infection settings (Cho et al. 2006; Gandhi et al. 2008). 

One study found a statistically significant inverse correlation between APOBEC3G mRNA 

levels and viral load and a positive correlation with CD4+ T cell count in chronic HIV-1 

infection but it is worth noting that in that study the investigators stimulated PBMCs with 

antibodies before RNA isolation.  This difference in processing and handling of samples may 

thus explain the unique findings of that study.  Given the significant downregulation of 

APOBEC3G mRNA seen in HIV-1 infected PBMCs compared to HIV uninfected ones, it is 

perhaps not surprising that we did not find a correlation between APOBEC3G mRNA levels 

and viral load or CD4+ T cell counts.  HIV appears to have evolved efficient mechanisms for 

counteracting APOBEC3G even at the transcriptional level thus inhibiting its contribution to 

antiviral control in most instances.  Further studies may be required to assess whether 

stabilization of APOBEC3G mRNA in HIV-1 infection could result in improved correlation 

with markers of disease progression such as viral load and CD4 counts.  Further studies may 
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also investigate APOBEC3G expression in specific subsets of cells within PBMCs that are 

specifically targeted by HIV-1. 

 

6.2 APOBEC3G Genetic Variants Influence CD4+ T cell Counts and Plasma Viral 

Load 

In this study, we also investigated the extent of genetic variation within the APOBEC3G gene 

in a South African study cohort.  The Southern African sub-region continues to be the 

epicentre of the HIV epidemic. Although the number of new infections has decreased in this 

region by more than 25% in recent years,  analyses estimates that approximately 5.6 million 

people remain HIV-infected in South Africa and the incidence remains unacceptably high 

(UNAIDS 2012; UNAIDS 2012).  Despite these statistics, relatively few studies in southern 

Africa have attempted to define AIDS restriction genes, defined as genes with polymorphic 

variants that influence outcome of exposure to HIV-1 or disease progression. AIDS 

restriction genes and their frequencies may vary according to ethnic background (An et al. 

2004; O'Brien and Nelson 2004; Donfack et al. 2006). Besides, there is evidence that AIDS 

restriction genes that affect the rate of disease progression may have differential effects at 

distinct phases of infection (Gao et al. 2005).  We therefore took the opportunity within a 

well characterized HIV–ve cohort at high risk for HIV infection to investigate the 

contribution of APOBEC3G gene variants to susceptibility and viral control in an area where 

HIV-1 subtype C dominates. We described here the frequencies of several SNPs in this 

cohort and identified several novel SNPs that have not been described before. 

 

It was earlier reported that a genetic variant of APOBEC3G, the H186R mutation, influenced 

HIV-1 pathogenesis and accelerated the rate of progression to AIDS in African Americans 

infected with HIV-1 subtype B (An et al. 2004).  This mutation was identified in our cohort, 
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with a frequency of approximately 30%, and our data shows that this association extends to 

southern Africans infected with HIV-1C, where the mutation was associated with 

significantly increased viral loads and decreased CD4+ T cell counts.  These associations are 

detectable during primary infection and become more prominent with progression to early 

chronic infection. The presence of this polymorphism within APOBEC3G may affect its 

activity or levels of expression by altering its interaction with other proteins, or modifying its 

editing functions, thus influencing HIV-1 replication (MacGinnitie et al. 1995; Jarmuz et al. 

2002; Mariani et al. 2003; An et al. 2004).  However, in this study, we were unable to link 

this polymorphism with expression levels (p=0.695), possibly as a result of the sample 

number being too small.  However, given the lack of correlation between APOBEC3G 

mRNA levels and viral load or mRNA levels, it is doubtful that this polymorphism acts by 

merely affecting APOBEC3G expression. 

 

Our data however, indicates that this SNP is out of Hardy Weinberg Equilibrium (HWE) 

(p=0.04) in our study population.  We were able to eliminate genotyping error as a reason for 

this, as we have both re-sequencing and TaqMan genotyping confirmation.  Further, 

genotypes that were obtained were consistent between duplicates and free of contamination 

as the negative controls did not amplify. When HWE was calculated separately for HIV+ve 

and HIV-ve individuals we found that the HIV+ve group conformed to HWE (p>0.05) while 

the HIV-ve group were out of HWE (p=0.03).  Therefore, the distortion seems to be due to 

the excess of the GG genotype in the negative group (26/31).  While not significant, this may 

suggest that the minor allele is protective against infection in homozygotes (OR=0.54; 

p=0.23) but not heterozygotes (OR=0.9, p=0.75) using the AA as the reference group. This 

may be the reason for the distortion in HWE in the negative group where we see an excess of 

GG genotypes. This suggests that this mutation may reduce susceptibility to HIV infection, 
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but upon infection becomes detrimental and accelerates disease progression.  A larger sample 

size will be required to resolve this issue. 

 

APOBEC3G expression may vary within cell types and it is important to consider and define 

the inter-individual distribution of APOBEC3G expression within different PBMC 

subpopulations and to determine the changes within the same subpopulations during 

infection. We therefore compared the distribution of APOBEC3G in PBMCs and CD4 cells 

from healthy controls and in chronically HIV-1 infected subjects. Our results showed that 

APOBEC3G mRNA expression was augmented in the CD4+ T cell subpopulation.  

APOBEC3G mRNA levels tended to be higher in CD4+ T cells as compared to levels in 

PBMCs in the healthy donors (p=0.08) as well as in chronically infected subjects (p=0.02) 

Although sample numbers were too few, the data suggests that APOBEC3G levels are 

augmented in cells primarily targeted by HIV-1 as an essential factor in the anti-viral immune 

response. A study by Koning et. al. (2009) showed that APOBEC3G expression was higher in 

B cells and T cells as compared to monocytes (Koning et al. 2009). However, further studies 

are necessary to investigate APOBEC3G expression in a larger sample cohort and in other 

cell subsets. 
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6.3 The APOBEC3G H186R Polymorphism Does Not Influence Hypermutation  

An abundance of APOBEC3G induced hypermutation in HIV-1 infected individuals has been 

associated with decreased viral loads and increased CD4+ T cell counts (Pace et al. 2006; 

Land et al. 2008; Vazquez-Perez et al. 2009; Kourteva et al. 2012), however, other studies 

report contradictory findings (Gandhi et al. 2008; Ulenga et al. 2008).  Additionally, 

APOBEC3G footprints have been identified in treated and untreated patients at different 

clinical stages of infection (Rose and Korber 2000; Janini et al. 2001; Kieffer et al. 2005; 

Pace et al. 2006; Keele et al. 2008; Kijak et al. 2008), in infected infants (Koulinska et al. 

2003; Amoedo et al. 2011; De Maio et al. 2012), as well as in long term non-progressors and 

elite suppressors (Huang et al. 1998; Alexander et al. 2000; Wei et al. 2004; Bailey et al. 

2006).  On the other hand, sub-lethal levels of APOBEC3G-mediated DNA editing may also 

promote HIV-1 evolution by contributing to its diversification thus resulting in the emergence 

of drug resistance and immune escape (Mulder et al. 2008; Wood et al. 2009; Kim et al. 

2010).  

 

HIV-1 subtype C derived Vif proteins have been shown to have the highest neutralising 

activity against APOBEC3G (Iwabu et al. 2010) substantiating an earlier finding that the 

extent of G to A hypermutation was less frequent in viral genomes of subtype C origin as 

compared to other subtypes (Janini et al. 2001).  APOBEC3G mediated DNA editing in vivo 

may be influenced by the presence of APOBEC3G polymorphisms as well as by variation 

within Vif.  Studies thus far have reported no difference in levels of hypermutation for 

APOBEC3G genetic variants that were studied (Pace et al. 2006; De Maio et al. 2012), 

however hypermutated proviruses, attributable to both APOBEC3G and -3F, have been 

identified in individuals with complete or partially defective Vif variants (Simon et al. 2005). 
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Given the high frequency of the H186R polymorphism and its association with disease 

progression in our study cohort, we were curious to determine the effects of this APOBEC3G 

variant on hypermutation. We focused on the HIV-1 env gene as it has been documented to 

have high rate of hypermutation (Yu et al. 2004; Suspene et al. 2006).   

 

Phylogenetic analysis of proviral HIV-1 Env sequences revealed that all sequences were 

subtype C derived with a calculated mean interpatient diversity of 15.6% at the amino acid 

level. The highest diversity within HIV-1 Env was observed in patient sample CAP84 which 

diverged by 14.3% from a consensus subtype C reference sequence. Interestingly, further 

analyses of sequences for investigation of APOBEC hypermutation revealed that CAP84 was 

significantly hypermutated (p<0.0001). Closer inspection of CAP84 revealed that the 

sequence contained numerous stop codons, a known characteristic consequence of 

APOBEC3G hypermutation. Further, this patient carried the APOBEC3G 186H/H (wild 

type) genotype and had a viral load set point of 8485 copies/ml and experienced episodes of 

viral control with RNA copies below 2,000 copies/ml during follow-up, including at the time 

of evaluation (1,710 copies/ml) suggesting a degree of viral inhibition and control of viral 

replication. 

 

Additionally, we stratified the sample set according to H186R genotypes to determine if there 

was a difference in the level of hypermutation for the APOBEC3G variants. However, our 

data showed that there was no association between H186R genotype and the number of 

hypermutations present as reported previously (Pace et al. 2006; De Maio et al. 2012). 
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6.4 APOBEC3F-related Hypermutation Occurs More Frequently than APOBEC3G 

changes and Associates Inversely with HIV-1 Viremia 

The Hypermut 2.0 tool that was used to assess APOBEC3G hypermutation also provides data 

on APOBEC3F-induced hypermutation. As this data was already available, out of interest we 

analysed and compared differences between the levels of APOBEC3G and -3F 

hypermutations for the HIV-1 env sequences.  Surprisingly, we found that overall that was a 

greater number of APOBEC3F hypermutations as compared to those induced by 

APOBEC3G but there was also a significant correlation between the number of APOBEC3G 

and -3F-induced mutations that were present. Most studies have shown that APOBEC3G is a 

significantly more powerful inhibitor of HIV-1 replication and causes a greater frequency of 

G-to-A mutations than APOBEC3F ((Bishop et al. 2004; Wiegand et al. 2004; Zennou and 

Bieniasz 2006)). However, in keeping with our findings, one study showed that APOBEC3F 

may function as the major contributor to HIV-1 hypermutation in vivo ((Liddament et al. 

2004). 

 

Other studies have also shown that APOBEC3F-related hypermutation can occur more 

frequently than APOBEC3G changes at specific regions in the HIV-1 genome, the largest 

being the pol PR region (Janini et al. 2001; Armitage et al. 2008; Amoedo et al. 2011). 

Interestingly, it has also been demonstrated that APOBEC3G and APOBEC3F seem to be co-

ordinately expressed and co-regulated in a range of human tissues (Bishop et al. 2004; 

Wiegand et al. 2004; Kourteva et al. 2012) which may substantiate the correlation between 

the number of APOBEC3G and -3F induced hypermutations that we observed. However, 

while APOBEC3G expression has previously been shown to correlate with the amount of G 

to A mutations (Ulenga et al. 2008), to date there is no evidence that APOBEC3F expression 

influences the extent of hypermutation. 
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We next tested for an association between hypermutation and markers of disease progression. 

 Our data showed that there was a significant negative correlation between the levels of 

APOBEC3F induced hypermutation and viral load. APOBEC3F hypermutation also showed 

a significant positive correlation with CD4+ T cell count.  However, no such significant 

correlation was noted for APOBEC3G. Contradictory to our findings, most previous studies 

have reported that APOBEC3F is actually the less potent inhibitor of HIV-1 (Liddament et al. 

2004; Miyagi et al. 2007; Mulder et al. 2008; Chaipan et al. 2013).  Interestingly, it has  been 

shown that Vif can only partially restore the infectivity of viruses produced in the presence of 

APOBEC3F, suggesting that APOBEC3F is less susceptible to Vif than APOBEC3G 

((Liddament et al. 2004). However, contradictory findings suggest that APOBEC3F is fully 

susceptible to inhibition by Vif ((Bishop et al. 2004)). Additionally, Liddament et. al further 

showed that decreases in HIV infectivity attributable to APOBEC3F and APOBEC3G  were 

additive, suggesting that these proteins can function independently.  

 

The interesting findings in our study cohort may be also explained in part by the high 

frequency of the APOBEC3G H186R polymorphism that exists exclusively within African 

populations, and has been demonstrated by us and others (An et al. 2004) to accelerate 

disease pathogenesis, thereby inferring loss of APOBEC3G editing function. This may 

therefore prompt a somewhat larger contribution of APOBEC3F to cytidine deaminase 

editing and hypermutation in our South African study cohort. APOBEC3F has been 

understudied in the HIV-1 subtype C setting particularly within African populations and 

certainly requires further investigation. 
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6.5 HIV-1 Subtype C Vif Displays Substantial Diversity But Also Contains Several 

Highly Conserved Motifs 

HIV-1 Vif plays a crucial role in establishing and maintaining infection in vivo and functions 

primarily to suppress the APOBEC3 anti-viral function. Even though HIV-1 subtype C is the 

most prevalent clade globally particularly in regions that bear the world’s greatest HIV 

burden (Buonaguro et al. 2007), this strain of the virus is still relatively understudied. Studies 

of genetic diversity and characteristics of South African HIV-1 subtype C viruses can provide 

vital information that can inform vaccine or novel immunotherapeutic designs, particularly at 

sites involved in host interaction. Previous studies that have characterized subtype C HIV-1 

Vif have described only a limited number of sequences (Scriba et al. 2001; Bell et al. 2007; 

Jacobs et al. 2008). 

 

In this study we cloned and sequenced HIV-1 vif from 26 study participants and generated a 

total of 392 HIV-1 vif clonal sequences for analysis. HIV-1 Vif sequences displayed notable 

diversity with intra-individual sequence differences ranging between 0.1 - 4.9% at the amino 

acid (aa) level and 0.1 - 2.8% at the DNA level and inter-individual diversity ranging from 

6.2 - 19.2% (aa) and 4.7 - 11.4% (DNA). A previous study on a Ugandan cohort of subtypes 

A, D and an A/D mosaic, reported intra-individual differences of ≤ 6% (aa) or ≤ 4% (DNA) 

and inter-individual variability of ≤ 28% (aa) or ≤ 16% (DNA) (Wieland et al. 1997). These 

levels of diversity were comparable to but slightly higher than that observed in our subtype C 

cohort.   

 

Additionally, consensus vif sequences from each individual diverged by 1.8 - 7% (DNA) and 

3.8 - 13.8% (aa) from a consensus subtype C reference sequence. A study on subtype B HIV-

1 vif showed a divergence of 3 - 9% from the prototype HIV-1 NL4-3 vif allele ((Simon et al. 
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2005). These data confirm that vif genes have relatively high in vivo genetic variability. HIV-

1 Vif divergence perhaps occurs as an adaptive response to the selection pressure exerted by 

APOBEC3G. It is also probable that the sequence diversity displayed by HIV-1 Vif may 

result in differential activity against APOBEC3G which has also been tested in the current 

study. 

 

Despite the substantial degree of diversity that was observed, several highly conserved motifs 

were present within the HIV-1 subtype C Vif proteins analysed in study and were in 

agreement with previous studies (Scriba et al. 2001; Bell et al. 2007; Jacobs et al. 2008). 

Interestingly, all of the conserved motifs are key sites involved in the Vifs interaction with 

APOBEC3G or cullin-5 and the E3 ubiquitin ligase complex which ultimately result in the 

degradation of the host restriction factor. Conservation of these functional motifs suggests 

that HIV-1 Vif strives to maintain its primary activity to counteract the obstructive anti-viral 

effect of APOBEC3G. Additionally, these stretches of conserved residues represent attractive 

drug target sites. 

 

6.6 APOBEC3G H186R Genotypes do not Influence in Vivo HIV-1 Vif Sequence 

Diversity but Demonstrate an in Vivo and in Vitro Association with Vif Residues 36 and 

96 

Data from the present study as well as a previous study (An et al. 2004) showed an 

association between the APOBEC3G 186R/R polymorphism and accelerated progression to 

AIDS, however the mechanism remains unknown. Studies also indicate that natural sequence 

variation at a number of pivotal residues can influence the Vif-APOBEC interaction (Santa-

Marta et al. 2005; Simon et al. 2005). We were therefore interested in determining whether 

the 186R/R polymorphism influences the diversity of HIV-1 Vif and/or the evolution of 
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specific Vif variants which may consequently alter the interaction between Vif and 

APOBEC3G. 

 

To determine whether APOBEC3G variation influences the overall diversity of HIV-1 Vif we 

compared intra-patient diversities among the APOBEC3G H186R genotype groups. 

However, our data shows that the H186R genotype does not have an impact on overall HIV-1 

Vif diversity per se.  

 

We also assessed the frequency of amino acid residues at each position in our HIV-1 Vif 

sequence alignment and concentrated on sequences that belonged to the 186H/H (wild type) 

and the 186R/R (mutant) groups.  There was a striking difference in the amino acid profile at 

residues 36 and 93 for each of the genotype groups.  The most common amino acid at these 

two positions differed approximately five fold between the 186R/R group and the 186H/H 

group. At position 36, there was a strong preference for Lysine (K) in APOBEC3G 186R/R 

individuals and for Serine (S) in 186H/H individuals, while at position 93 there was a strong 

preference for an Arginine (R) or a Serine (S) for APOBEC3G 186H/H and 186R/R 

individuals respectively. Comparison of Vif positions 36 and 93 between other HIV-1 

subtypes indicated that the amino acid frequency and distribution at these loci in the studied 

Vif sequences is similar to other subtype C Vif sequences. Notably, at position 36, the 

predominant residue for subtype C is a Serine (S), while all other subtypes typically express a 

Lysine (K) at this site. At position 93, Arginine (R) is the predominant amino acid expressed 

in all subtypes. 

 

Although, there was no association between the APOBEC3G H186R genotype and overall 

Vif diversity, the latter data suggests that the APOBEC3G polymorphism may have an 
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impact on the evolution of individual Vif residues; however it is difficult to speculate about 

how this might influence viral pathogenesis.  

 

We therefore proceeded to investigate the phenotypic effect of altering Vif residue 36, by site 

directed mutagenesis, on degradation of APOBEC3G variants as well as its impact on 

infectivity in the presence of the APOBEC3G 186WT (H) and 186R alleles. We chose to 

focus on residue 36 as it is located in the amino-terminal domain of Vif which has been 

shown to play a critical role in binding of APOBEC3G   (Simon et al. 2005; Schrofelbauer et 

al. 2006; Mehle et al. 2007; Russell and Pathak 2007; Yamashita et al. 2008). While no 

specific pattern of degradation of APOBEC3G was observed with the presence of either a 

Serine or Lysine at Vif position 36 by Western blot, HIV-1 infectivity assays showed that 

Vifs expressing a Serine at position 36 had a stronger propensity to degrade the APOBEC3G 

186H (WT) allele whereas those expressing a Lysine at this position had a greater or equal 

ability to degrade the APOBEC3G 186R variant.  These findings further suggest that the 

evolution of individual Vif residues is shaped by polymorphisms within APOBEC3G, in this 

case H186R. Thus, it seems likely that HIV-1 Vif adapts to ensure optimal degradation of the 

APOBEC3G variant that it encounters. It may also be possible that residue 36 acts in synergy 

with residue 93 in controlling Vifs antagonism of APOBEC3G; however this remains to be 

investigated.   

 

Interestingly, a recent study (De Maio et al. 2011) observed a correlation between the 

APOBEC3G polymorphism C40693T, which has been associated with an increased risk of 

infection in a cohort of Caucasian adults (Valcke et al. 2006), and a Vif variant E45D which 

lies in a region involved in the Vif-APOBEC3G interaction. The residue at position 45 is 

significant to Vif interaction with the APOBEC3 proteins, as it has been shown that the 
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naturally occurring E45G variant is able to counteract APOBEC3F but not APOBEC3G 

(Simon et al. 2005; Mulder et al. 2008). This concordance further highlights that Vif 

substitutions are may be selectively influenced by host APOBEC3G genetic variants. 

 

6.7 HIV-1 Vif Adapts to Preferentially Counteract the APOBEC3G Wild Type 186H 

Allele 

Investigations on primate models of SIV infection demonstrate that adaptation of lentiviruses 

to their host is influenced by cellular restriction factors that create an obstruction to viral 

replication. Specifically, it has been reported that in reacting to changes and polymorphisms 

within APOBEC3G, SIV adapts through evolution of its Vif protein which is required to re-

target the restriction factor for destruction (Malim and Emerman 2008; Compton et al. 2012).  

Further, Vif degrades APOBEC3G in a species specific manner. The specificity of Vif is 

indicative of its amazing adaptability to varying environments (Mariani et al. 2003; Bogerd et 

al. 2004; Xu et al. 2004).  

 

Moreover, HIV-1 is known to adapt to host immune pressure as demonstrated by studies that 

show the presence of positively selected amino acid changes in various viral proteins (Liang 

et al. 2007; Liang et al. 2008; Peters et al. 2008). Additionally, there is subtype variation in 

the frequency of positive selection sites in Envelope and Pol sequences from various 

geographical locations, suggesting that HIV-1 subtypes in different parts of the world evolve 

in response to specific immunogenetic profiles of the host population (Liang et al. 2007; 

Avila-Rios et al. 2009). The most well documented example of HIV-1 adaptation to host 

immune pressure is that of specific and predictable viral adaptation to HLA class I mediated 

CTL pressure, which results in selection of immune escape mutations (Phillips et al. 1991; 

Goulder et al. 2001; Draenert et al. 2004), that hinder viral peptide binding to HLA molecules 
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and ultimately restrict the processes of antigen presentation to CTLs. Further, depending on 

their costs to viral fitness, some CTL escape mutations upon transmission can revert to wild 

type in the absence of the selecting HLA allele or may also select for compensatory 

mutations that restore viral fitness (Friedrich et al. 2004; Leslie et al. 2004; Liu et al. 2007). 

 

In this study we tested patient derived subtype C HIV-1 vif alleles for their ability to 

counteract the action of APOBEC3G H186R variants from a South African cohort.  

Additionally, infectivity of HIV-1ΔVif (NL4-3ΔVif) supplemented with 16 patient derived 

subtype C Vifs was measured in the presence of either APOBEC3G 186H or 186R expression 

plasmids.  

 

Our findings show that subtype C Vifs appear to have greater ability to degrade the wild type 

APOBEC3G 186 H allele particularly if the Vif was derived from a patient who carried the 

186H/H genotype. However, if Vif was derived from a patient who had the186R/R genotype, 

its ability to counteract both the 186H or 186R alleles was similar.  Our preceding association 

of the 186R/R polymorphism with accelerated disease pathogenesis implies loss of anti-viral 

function of this variant. Thus, preferential degradation of the wild type APOBEC3G 186H 

allele, corroborates adaptation of Vif to target the more active and hostile APOBEC3G 186H 

allele.  

 

Our study demonstrates that just as HIV-1 has the remarkable capability to adapt across 

species as well as the ability to adapt to immune pressure exerted by HLA alleles, so too 

exists the possibility that the virus also adapts to intrinsic immune pressure exerted by host 

restriction factors, presumably in a predictable and specific way.  
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6.8 Study Limitations 

Although the research project has achieved its aims, there were several unavoidable 

limitations. Firstly, the sample size of the study population was relatively small and a larger 

cohort may have strengthened the findings of the study.   

 

Secondly, APOBEC3G mRNA levels were measured in PBMCs as opposed to specific HIV 

target cells such as T cells, DCs and macrophages. We are aware that APOBEC3G expression 

may vary within cell types and that it is important to define these cell subsets in which 

APOBEC3G expression is enriched or naturally expressed. As mentioned we were unable to 

perform extensive experiments to assess APOBEC3G expression in the different cell types 

due to the scarcity of samples as well as low cell counts, of approximately 5 million cells of 

the samples which were available. However, two recent studies performed a detailed 

examination of APOBEC3 expression in haemopoetic cell subsets, in a range of human tissue 

and in lymphocyte subsets (Koning et al. 2009; Refsland et al. 2010).  

 

Additionally, APOBEC hypermutation was not assessed against the patient’s own founder 

virus but against a consensus subtype C reference sequence. Although it is acceptable to use 

an appropriate subtype consensus reference sequence when assessing hypermutation in a set 

of unrelated sequences, the dataset would have been more informative if longitudinal samples 

in an intrapatient set was analysed with the reference representing the most common form in 

the first sampled time point. Although, there is evidence that hypermutated proviral HIV-1 

DNA sequences can be demonstrated by bulk PCR methods (Pace et al. 2006), some may 

argue that the study of hypermutation by bulk sequencing is not ideal and truly informative, 

and that hypermutation is best studied in individual clonal sequences. It may therefore be 
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necessary to repeat the hypermutation experiments by cloning or 3D PCR (Suspene et al. 

2005) to confirm our findings. 

 

We were also unable to carry forward all study samples in which APOBEC3G expression 

was measured, for assessment of APOBEC3G hypermutation. We were therefore unable to 

perform a complete analysis of the relationship between the degree of hypermutation and the 

levels of APOBEC3G mRNA expression. However, it has been reported before that 

APOBEC3G expression correlates with the extent of G to A mutations (Ulenga et al. 2008). 

 

HIV-1 Vif sequences were only characterised at a single time point at 36 months post 

infection. A longitudinal analysis of Vif sequences from each patient would have provided 

further insight into the evolution and adaptation of Vif from acquisition to chronic infection.  

Additionally, even though there was considerable variation in Vif expression levels this was 

not standardised before investigating their effects on APOBEC3G degradation.  This is a 

limitation of our study and needs to re-assessed in the future using Vifs that are similar or 

matched for their levels of expression.  
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6.9 Conclusions 

In conclusion, we have shown that HIV-1 infection is associated with rapid downregulation 

of APOBEC3G expression at the transcriptional level.  Studies to decipher the mechanisms 

involved and to possibly develop means for counteracting this are needed.  During primary 

infection, APOBEC3G expression levels in PBMCs do not correlate with viral loads or CD4+ 

T cell counts.  Importantly, this is the first study to describe genetic polymorphisms with 

APOBEC3G in an African setting, where HIV-1C prevalence and incidence rates are 

extremely high.  Genetic variants of APOBEC3G were shown to significantly affect early and 

late HIV-1 pathogenesis. This is the first study that indicates that APOBEC3G may be an 

important AIDS restriction gene during the primary phase of HIV.   

 

We also found that APOBEC3G genetic variation did not contribute to the differential 

development of hypermutation. Interestingly, APOBEC3F induced hypermutation was more 

frequent than that of APOBEC3G and associated inversely with HIV-1 viraemia, suggesting 

that APOBEC3F may in fact play a greater role in HIV-1 subtype C pathogenesis particularly 

in African populations.  

 

In an effort to understand the mechanisms by which APOBEC3G genetic variants affect HIV-

1 pathogenesis our investigation of HIV-1 Vif revealed that although this gene displays 

considerably diversity it also maintains several conserved regions essential for its interaction 

with and antagonism of APOBEC3G. There was no association between H186R genotype 

and HIV-1 Vif diversity; however, this APOBEC3G variant did associate with changes at 

specific Vif residues, 36 and 93. HIV-1 subtype C Vifs also demonstrated adaptation to 

preferentially target and counteract the functionally intact wild type 186H allele, indicating 

that Vif characteristics are certainly shaped by the host genotype. Taken together these data 
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exemplify the existence of the co-evolutionary arms race that exists between HIV-1 Vif and 

the host protein APOBEC3G. 

 

This is the first extensive study on the role of APOBEC3G in HIV-1 subtype C infection 

within the South African setting.  The study emphasises that the dynamic of the APOBEC3G-

Vif interplay may vary within different populations, based on genetic variants that exist 

within the population. In terms of clinical relevance, the APOBE3G-Vif interaction exposes a 

lucrative target for the design of drug therapy, however there remains controversy about 

which counterpart should be targeted to achieve optimal antiviral effects. Inhibition of Vif 

would seem to be the obvious and best strategy as this would allow to APOBEC3 proteins to 

freely inhibit and destroy the virus. However it is interesting, that some scientists have also 

proposed that inhibiting APOBEC proteins and reducing the rate of APOBEC induced 

mutations, would reduce sublethal editing and thus evolution of HIV-1, thereby increasing 

vulnerability of the virus to adaptive immune response as well as decreasing the emergence 

of drug resistant strains.  Nevertheless, our study has raised the possibility of population 

specific differences that influences this virus-host interaction, which may need to be 

considered in drug therapy design, but further studies are needed to devise the best strategy. 

 

6.10 Future Directions 

This study has raised many significant leads that need to be explored in future studies. Firstly, 

a study to assess APOBEC3 hypermutations at a clonal level in a longitudinal sample set 

would provide further evidence about the roles of APOBEC3G and -3F in HIV-1 subtype C 

infection.  Further a more comprehensive investigation on the influence of APOBEC3F on 

HIV-1 subtype C infection in a cohort of African ethnicity would be necessary to determine if 
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this host restriction factor may be playing a more crucial role in restricting HIV-1 infection in 

this population. 

 

Additionally, an interesting study would be to characterise Vif sequences longitudinally to 

determine the degree and effects of selective pressure being exerted by APOBEC3G on the 

viral protein over time from initial infection. Functional studies of Vif adaptation to 

APOBEC3G variants would need to be extended to a larger sample set. It would also be 

interesting to extend the functional studies to assess Vif adaptation to APOBEC3G variants in 

a longitudinal manner.  

 

Additionally, the effects of amino acids at positions 36 and 93 on Vif function also need to be 

investigated further in a larger group of samples. The mutations at these positions will also 

have to be introduced and tested simultaneously to determine whether they act in a 

synergistic manner to influence Vif function. 
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An overall model summarising the effects of APOBEC3G variants on HIV-1 viraemia and their interaction with HIV-1 Vif and the 

possible role of APOBEC3F in HIV-1 subtype C infection as suggested by the findings of  this study.
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