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Abstract

We present mathematical models to study the mechanism of interaction of tu-

mour infiltrating cytotoxic lymphocytes (TICLs) with tumour cells. We focus on

the phase spaces of the systems and the nature of the solutions for the cell den-

sities in the short and long term. The first model describes the production of

offspring through cell proliferation, death and local kinetic interactions. The sec-

ond model characterises the spatial distribution dynamics of the cell densities

through reaction diffusion, which describes the random movement of the cells,

and chemotaxis, which describes the immune cell movements towards the tu-

mour cells. We then extend these models further to incorporate the effects of

immunotherapy by developing two new models. In both situations, we analyse

the phase spaces of the homogeneous models, investigate the presence of trav-

elling wave solutions in our systems, and provide numerical simulations. Our

analysis shows that cancer dormancy can be attributed to TICLs. Our study also

shows that TICLs reduce the tumour cell density to a cancer dormant state but

even with immunotherapy do not completely eliminate tumour cells from body

tissue. Travelling wave solutions were confirmed to exist in the heterogeneous

model, a linear stability analysis of the homogeneous models and numerical sim-

ulations show the existence of a stable tumour dormant state and a phase space

analysis confirms that there are no limit cycles.
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Chapter 1

Introduction

1.1 Motivation and aim of the study

The origin of the term cancer is ascribed to Hippocrates (460-370BC). He used

the terms carcinos and carcinoma to describe non-ulcer and ulcer-forming tu-

mours. Later, Celsus (28-50BC) translated these terms into cancer [1]. Cancer,

known medically as a malignant neoplasm is a group of diseases, all involving

un-regulated cell growth. Tumours can be benign or malignant (cancerous). Can-

cer cells divide irrepressibly forming cancerous tumours, and can invade adjacent

parts of the body. There are several types of tumours with names usually reflect-

ing either the kind of tissue in which they arise in, or suggestive of the shape

or manner of tumour growth. For example, meningioma is a tumour that arises

from meninges, the system of membranes that cover the central nervous system.

Diagnosis depends on the type and location of the tumour [2].

Organs in the body are made up of cells. These cells replicate as the body needs

them. If the cells continue multiplying irrepressibly, a mass of tissue known as a

tumour may be formed [3]. These growths are either benign (non cancerous) or

1
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malignant (cancerous). Benign tumours do not spread to other parts of the body

and are often easily removed whereas malignant tumours invade nearby tissues

and spread to other parts of the body. Cancer can result from chemical expo-

sure, cells skipping certain phase transitions, chronic infections, medicinal drugs,

immunosuppression, and gene mutations [2]. Yashiro et al. [4] state that cell

evolutionary processes may give rise to an abnormal DNA thus causing cancer.

For instance he stresses that more than four-fifths of colorectal cancer evolve as a

consequence of chromosomal instability. A proper and definitive cure to several

cancers does not yet exist despite modern cancer therapies such as radiotherapy,

medical oncology, and chemotherapy. However, the World Health Organisation in

the 2012 cancer report [5] states that cancers are preventable and the primary goal

of prevention is to stop the growth of cancerous cells by reducing exposure to

cancer causing factors such as environmental carcinogens or lifestyle factors such

as poor nutrition. According to the World Health Organisation [5], 7.6 million

people worldwide died from cancer in 2008. Approximately 70% of cancer deaths

occur in low and middle-income countries. The same report, however, indicates

that 30% of the cancers could have been prevented. The report also indicates that

cancer is the second major killer cause of deaths in Europe responsible for 25% of

total deaths after cardiovascular diseases.

Despite various control measures that have been implemented, cancer is still a

leading cause of death in the world [2]. Much is still not known about the dy-

namics of its growth and destructive strategies. Further more, little is known

about cancer dormancy, limiting the comprehension of the full complexity and

dynamics of the disease [6]. Cancer is therefore of major public health interest.

For this, and other socio-economic related reasons, much effort is needed to un-

derstand the dynamics of tumour-immune interactions.
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Our aim therefore, is to use mathematical models to understand the interaction

between tumour cells and cytotoxic infiltrating T-lymphocytes and investigate the

phenomenon of cancer dormancy as a result of these interactions. Later we incor-

porate immunotherapy to determine the effect it has on both immune and tumour

cell densities in the human body. Efforts in this line have been made before by

Matzavinos et al. [6] and Zeyton et al. [7]. Understanding this interaction could

help in predicting the impact of immunotherapy on cancer and possibly help plan

control strategies or develop more efficient and effective anti cancer drugs.

1.2 Cancer

In this section, we briefly explain cancer, discuss the major steps in cancer pro-

gression, and highlight immunotherapy, a form of intervention.

1.2.1 Cancer in general

Tumours are known to progress through two or three distinct growth stages; the

avascular and vascular growth stages. The avascular stage is the earliest stage dur-

ing which cells begin to replicate uncontrollably. During the vascular stage, pro-

liferating tumour cells move into the blood stream thus spreading to other parts of

the body [8]. The vascular stage consists of two phases, the angiogenetic phase,

during which tumour cells secret tumour angiogenetic factors (TAF), which at-

tract blood vessels toward the tumour, by forming secondary blood vessels that

provide the tumour with unlimited nutrients. The last phase is metastasis, where

tumour cells migrate to the blood stream and invade other parts of the body. The

tumour nodule is made up of three layers, the necrotic core, quiescent layer, and

proliferating zone. The necrotic core at the centre forms when cells are deprived
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of vital nutrients and end up dying. The proliferating cells are in the outer lay-

ers. In between these regions, lie the nascent cells which form the quiescent layer.

Chaplain et al. [9] states that a fraction of these can be recruited into the layer of

proliferating cells. These three layer structures are shown schematically in Figure

1.1.

Figure 1.1: Schematic diagram showing the three layer structure of a tumour.

In the development of a tumour from the avascular to the vascular stage, within

the tumour bears the ability to invade surrounding tissue and metastasise to dis-

tant parts of the body. This depends upon its ability to induce new blood vessels

from surrounding tissue to sprout towards the tumour which gradually pene-

trate it, thus providing the tumour with an adequate blood supply and micro-

circulation [9]. However, tumour growth may not systematically go through all

the three stages. There is clinical evidence that some people live with benign

tumours for their entire life time [10]. This pause can be explained by cancer

dormancy, a situation where the tumour cells are neither proliferating nor dy-

ing. Cancer dormancy is however poorly understood [6] . Recent studies, for
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example Matzavinos et al. [6] have established that cancer dormancy could be

caused by tumour infiltrating cytotoxic lymphocytes (TICLs). When an immune

cell comes into contact with a tumour cell, it sends a signal to other immune cells

by secreting a chemical (chemokine). These immune cells react to the signal by

chemotactically moving towards the tumour nodule [6]. The phenomenon where

somatic cells, bacteria and other single-cell or multi cellular organisms move in ac-

cordance with an external chemical stimulus spread in the environment is known

as chemotaxis [11]. The immune cells are either tumour infilitrating cytotoxic-

lymphocytes (TICLs), meant to directly contact infected cells or others that do

not necessarily attack infected cells for example phagocytes. The TCILs may be

cytotoxic lymphocytes (CTLs, CD8+ cells), natural killer-like cells (NK) and/or

lymphokine activated killer cells (LAK) [6, 12]. This family of T-cells is believed

to keep the tumour cells at a dormant level and for longer time periods.

1.2.2 Immune system response to cancer and treatments

MD Coley, a New York surgeon first noted in the 1800’s that contracting an in-

fection seemed to help some cancer patients. He began treating cancer patients

by deliberately infecting them with certain bacteria, which became known as Co-

ley toxins. His techniques have since been superseded by other types of cancer

treatment as doctors have learnt more about the immune system. In modern treat-

ments, two basic conditions should be fulfilled in order for a cancer treatment to

be considered effective. It should firstly destroy the cancer cells and should also

distinguish between cancerous and healthy cells [12]. It is possible to do this

through immunotherapy. The role of the immune system in tumour eradication

has been clearly established [13]. However, the biological knowledge required to

win the battle against cancer is still limited just as stated by Lollini et al. [13]. The
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earliest evidence of anti-tumour immune reactivity was witnessed in the 1940’s

and 1950’s by showing that inbred mice vaccinated against syngeneic tumours

had a good immune memory although they had less immune specificity required

to target specific antigens, Lollini et al. [13]. This type of finding led to the es-

tablishment of the "immune surveillance" theory. The theory postulated that the

protection of the host from carcinogenesis and tumour development was a cardi-

nal function of the immune system [14]. The way in which the immune cells fight

tumour cells is summarised by Lollini et al. [13] as follows.

Phagocytic cells such as macrophages and granulocytes have a two fold role in

immunity against tumours. They directly attack and destroy the tumour cells

and at the same time generate cell degradation products that are picked up by

antigen presenting cells (APCs). Dendritic cells (DCs) are the APCs that pick up

those tumour antigens in the boundaries, then move to the lymph nodes so as

to present them to the TICLs. This process in which antigens are presented and

cytokines released, is an indispensable and essential action for the initiation of all

primary immune systems. After antigen presentation, helper cells proliferate and

secret cytokines to activate TICLs that in turn kill the tumour cells. B-cells play a

minimal role in immune responses to solid tumours. As can be seen, TICLs play a

major role in tumour eradication. This was in essence deduced from experimental

results and clinical approaches done by Rosenberg et al. [15].

Immunotherapy falls into three major categories. Firstly, it can enhance the nat-

ural immune response, or secondly, specific antibodies are introduced, or thirdly,

vaccines are used. The first category involves using substances that boost the im-

mune system such as interleukines. For example interleukine-2 (IL2) [16]. In the

second category, Monoclonal antibodies are formulated to target specific cancer

antigens. These antibodies can distinguish between normal and cancer cells and
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so they can be used both to diagonise cancer and to treat tumours by directing

anti cancer drugs towards malignant cells [17, 18]. The third category involves

therapeutic use of vaccines. These vaccines being specifically created to target

tumour cells. Among many examples of such vaccines, there are Cell genesys

(GVAX), Cancer vax (canvaxin), and Genitop Corp. In this dissertation, we shall

consider only the first category of immunotherapy, that protein like substances,

specifically IL2 are injected into a human body to stimulate the immune system

thus boosting the immune response.

1.3 Review of cancer modelling studies

Research on cancer greatly advanced in the nineteenth century when Rudolf Vir-

chow who is often referred to as the father of cellular pathology, provided the

scientific basis for the modern study of cancer [1]. Mathematical modelling also

began around the same time with a logistic growth equation being used to de-

scribe tumour growth (see [19]). In this section, we present some famous tumour

growth models and classify models that have been previously used to model

tumour grow at the avascular stage. We then, briefly discuss some major phe-

nomenons used in this dissertation (diffusion and chemotaxis). Finally, we present

the Matzavinos et al. [6] model. A model that we rely on in this dissertation to

construct our models.

1.3.1 Tumour growth models

We begin with a brief review of the three basic growth models used for describ-

ing tumour growth, namely the exponetial growth model, the Compertz growth

model, and models based on metabolic considerations.
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1. Exponential growth model This model assumes that all tumours follow a

standard pattern of growth, growing fastest at the beginning of a time period

and eventually reaching a plateau [19]. The major shortfall of this model is

that it is unable to model the behaviour in vivo.

2. Gompertz growth model The Gompertz curve or function, developed by

Benjamin Gompertz, is a mathematical model for a time series, where growth

slows down at the end of a time period [19]. It was however suggested

that this function is unable to sufficiently model clinical data because tu-

mour cells almost certainly have different growth characteristics in different

patients, and individual micrometastases within a single patient may also

have different growth parameters (see [19]). In the 1960s, Laird [20] was

the first to successfully use the Compertz logistic growth function to fit data

to the growth of tumours. Another setback of this model is that different

individuals have got different parameters.

3. Model based on metabolic considerations This model is at times referred

to as the universal law. It describes the chemical transformations within

the tumour cells. The major disadvantage associated with the universal law

model is that there are so many parameters to determine and each individ-

ual or organism would require a different set of parameters which is not

feasible (see [19]).

The mathematical models describing tumour-immune interaction are usually or-

dinary differential equations (ODEs), delay differential equations (DDEs) or par-

tial differential equations (PDEs) depending on the physical aspects considered.

These models could be stochastic or through a deterministic regime like Kolmogorov-

Petrovsky-Piskounov-Fisher (KPP-Fisher) model [21].
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1.3.2 Classification of avascular tumour growth models

It is not easy to describe all tumour growth models. However, all avascular tu-

mour growth models can be categorised as either (1) microscopic or (2) macro-

scopic growth models. Rose ata l. [22] further classify avascular tumour models

into two basic categories: (1) continuum mathematical models that incorporate

space and thus are made up of partial differential equations, and (2) discrete

population models that consider dynamics occurring on a single cell scale and

incorporate cell to cell interactions.

Microscopic tumour growth models

Microscopic models are based on microscopic observations, both in-vivo and in-

vitro. They model growth dynamics basing on observations includings the acidity

of the cells, vascularization or internal cell dynamics [23]. They strive to incor-

porate physical and chemical interactions between cancer cells, the extra-cellular

matrix and healthy cells. Mechanical phenomena such as pressure, cohesion and

adhesion forces in the cells are often included in these descriptions. As for chemi-

cal interactions, microscopic models incorporate phenomena such as the diffusion

of nutrients and oxygen in the cells, secretion of different diffusible factors by tu-

mour cells and their effects on the surrounding [24]. As a consequence, there are

many parameters for such models. Specific factors that are normally modelled at

a microscopic level include mitosis, cell division, distribution and consumption

of oxygen, apoptosis, surface tension, cell cycles, diffusion, and chemotaxis. From

a technical point of view, formulations of microscopic models allow for a large

variety of mathematical methods. The systems used to characterize microscopic

models are PDEs, cellular automata and statistical models. Some studies further
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classify microscopic models into avascular, angiogenesis, and vascular growth

models, the tumour growth stages. Some examples of microscopic models can be

found in [26, 27, 28, 29]. Nevertheless Araujo and McElwain [25] maintain that

tumour-immune interactions at a microscopic level is limited.

Macroscopic tumour growth models

Macroscopic models are based on observations on a macroscopic level, for in-

stance, magnetic resonance images (MIR), computed tomography (CT) scans, and

diffusion tensor images (MR-DTI) [24]. Because observable factors are not so

many, macroscopic models incorporate only a few factors and so are mathemati-

cally simpler than microscopic models. Factors normally considered in macro-

scopic models include cell proliferation and death, diffusion and chemotaxis.

Some studies further classify macroscopic models into mechanical and diffusive

models. Mechanical models consider the mechanical interactions between tumour

cells. They are used with the aim of providing answers to questions pertaining to

about how the mechanical properties of the tumour, and the tissue in which the

tumour grows, influence growth [22]. Diffusive models concentrate on reaction-

diffusion formalism. In this dissertation, we consider a macroscopic scale. Some

examples of macroscopic models can be found in [6, 8, 30, 31, 32, 33].

Next, we review some models that have been used to model certain aspects of

cancer evolution, immune cell movement and tumour-immune interactions. The

models incorporate the diffusion of both tumour and immune cells, chemotaxis

(which models immune cell movement), apoptosis for both tumour and immune

cells, and local kinetic interactions between the tumour and immune cells.
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1.3.3 Fisher-Kolmogorov equation

The Fisher-Kolmogorov equation, also known as the Fisher-KPP equation, is the

simplest macroscopic reaction-diffusion evolution equation for modelling cancer

invasion [33]. It has been used frequently in modelling diffusive tumours and the

evolution of cancer on a macroscopic scale [33, 34, 35]. The system

∂C
∂t

= ∇.(D(x)∇C) + ρC(1− C), (1.1a)

D.∇~n∂Ω = 0, (1.1b)

is the basic building block of such reaction diffusion models where C is the tu-

mour cell density, D is the diffusivity, ρ is the proliferation rate of the tumour

cells, Ω is the domain under consideration and ∂Ω represents the boundaries

of the tumour tissue. Equation (1.1a) describes the evolution of the tumour cell

density distribution whereas (1.1b) represents the no-flux boundary conditions

[33].

1.3.4 Keiller-Seigel model

The Patlak/Keler-Seigel model considers the density n(x, t) of cells and the chemoat-

tractant density C(x, t) assuming that the cells emit the chemoattractant directly

which is then instantly diffused [11]. The Keiler-Seigel chemotaxis model has the

form
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∂n
∂t

= ∆n− χ∇.(n∇C), t > 0, x ∈ Rd, (1.2a)

−∆C = n, t > 0, x ∈ Rd, (1.2b)

n(0, x) = n0(x) ≥ 0, x ∈ Rd, (1.2c)

χ is the chemotactic sensitivity function, C is the chemical density and n is the cell

density. Equation (1.2b) describes the Drichlet boundary conditions and equation

(1.2c) describes the initial conditions. Other models however, such as Myerscough

et al. [36] use the Neumann boundary conditions, based on the assumption that

neither the cells nor the chemo-attractant are able to cross the boundary of the do-

main. In this study, we make the same assumption and thereby use the Neumann

boundary conditions.

1.3.5 Receptor-ligand kinetics

Receptor-ligand interactions form the backbone of many biological processes such

as signal transduction, physiological regulation, gene transcription, and enzy-

matic reactions [37]. Kinetics is a generic term used to describe both rates at

which processes occur and the field associated with study of rates [38]. A re-

ceptor is a biological target that binds specifically with small molecules (ligands)

resulting in certain biological responses [39]. For any similar molecules that as-

sociate, it is possible to consider one as the a ligand and the other as a receptor

[38]. The simplest representation of the receptor-ligand kinetics is through stoi-

chiometry, a term used to refer to how many molecules of ligand can bind to a

receptor. Lauffenburger and Linderman [38] used the simple equation to describe

the receptor-ligand kinetics.

R + L
k f−⇀↽−
kr

RL, (1.3)
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where R is the receptor, L is the ligand and RL is the receptor-ligand complex

formed after the ligand binding to the receptor. K f is a parameter describing the

forward rate whereas kr is the reverse constant rate. Taking this chemical kinetics

and applying it to cells, we consider the tumour cells to be the receptors and the

tumour infiltrating cytotoxic lymphocytes to be the ligands. The TICLs bind to

the tumour cells to form tumour-TICLs complexes [31, 40].

1.3.6 Tumour-cytotoxic T-lymphocyte interactions

Matzavinos et al. [6] developed a model for the attack of tumour cells by TICLs

without necrosis and at some stage before angiogenesis. This model used re-

action diffusion and chemotaxis kinetics. The basic findings of this model in-

clude existence of periodic solutions in the phase space, travelling wave solutions,

oscillatory kinetics of tumour-immune densities, and evolution of cancer dor-

mancy. Matzavinos et al. [6] considered a tumour density T, a TICLs density

E, a chemokine concentration secreted by the TICLS α, tumour-TICLs complex

density C, dead TICLs E∗ and dead tumour cells T∗. The complete system is

∂E
∂t

= D1∇2E− χ∇.(E∇α) + sh(x) +
f C

g + T
− d1E− k1ET + (k−1 + k2p)C,

(1.4a)

∂α

∂t
= D2∇2α + k3C− d4α, (1.4b)

∂T
∂t

= D3∇2T + b1(1− b2T)T − k1ET + (k−1 + k2(1− p))C, (1.4c)

∂C
∂t

= k1ET − (k−1 + k2)C, (1.4d)

∂E∗

∂t
= k2(1− p)C− d2E∗, (1.4e)

∂T∗

∂t
= k2pC− d3T∗, (1.4f)



Section 1.3. Review of cancer modelling studies Page 14

where D1, D2 and D3 are diffusion constants for the TICLs, tumour and chemokine

concentrations respectively, χ is the chemotaxis constant, s is a parameter repre-

senting the supply of immune cells into the tumour localization, h(x) is a heavi-

side function to differentiate tumour and immune cells localization, f C/(g+ T) is

the proliferation function, d1, d2, d3, and d4 are de-activation rates of the immune

cells, de-activated immune cells, lethally hit tumour cells and tumour cells respec-

tively and b1(1− b2T) is a tumour propagation term. The TICL-tumour complex

is dissociated at a rate k1, k2 is a parameter describing the rate of detachment

of TICLs from tumour cells resulting into death of the tumour cells, k−1 is the

rate of detachment of TICLs from tumour cells without damaging the cells p is a

parameter representing the probability of tumour death and k3 is the chemokine

production rate.

1.3.7 Results from prior modelling studies

We list some previously published results from tumour-immune modelling stud-

ies.

• A stable cancer dormant state exists where the immune cells manage to take

the tumour cells to a level where they neither proliferate nor die, Matza-

vinos et al. [6] and Randuskaya et al. [16]. Some modelling studies, for

example, Wordaz and Jansen [41] have shown that the cancer dormant state

may later cease and there may be a tumour regrowth, thus showing the dor-

mant state to be unstable. However, empirical evidence would suggest that

this is not achievable in real life as for such a situation to occur, it would

take thousands of years, a life span that is not feasible.
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• The immune cells are capable of reducing the level of tumour cell concen-

tration, but do not completely eliminate them from the tissue, Matzavinos

et al. [6], Zeyton et al. [7] and Randuskaya et al. [16].

• Oscillatory dynamics of the immune and tumour cell concentrations in the

tissue. These oscillations are possibly as a result of diffusion of both cell

concentrations in the tissue and the local kinetic interactions, Matzavinos et

al. [6].

In this dissertation, we seek to expound on cancer dormancy, a phenomenon at-

tributed to tumour-immune cell interactions. We seek to investigate the dynamics

of the tumour and immune cells and also see the effects of treatment, in our case

immunotherapy on these interactions.

1.4 Methodology used

In this section, we present the assumptions we consider in this dissertation to

construct our models, methods, and the aspects that we choose to analyse.

1.4.1 Benchmark modelling criteria

It is common understanding that any useful mathematical model should have

a minimum number of parameters, the variables should be measurable and the

model’s predictions should be reasonably accurate so as to give a good fit to

experimental data. Ellner and Guckenheimer [42] set out the steps of what one

should follow in the process of model construction. According to Chaplain [9], the

major questions to consider in cancer-immune modelling are whether modelling

is done in vivo or in vitro, the scale of description; whether it is sub cellular,



Section 1.4. Methodology used Page 16

cellular, or the whole organism is considered, whether space is considered or not,

and whether the cell cycle is represented and whether cell invasion is represented.

It is impractical to incorporate all natural processes involved in cancer-immune

response into a single model. However, Chaplain [9] notes that a realistic model

should include certain nonumiformities in the central processes of inhibition of

mitosis, namely: the consumption of nutrients, cell proliferation, geometrical con-

straints and central necrosis. Bru’ et al. [44] further stress that the central physical

aspects describing macroscopic spatial dynamics of avascular tumours, a scale we

consider in this dissertation, are proliferation of cells in the outer rim, cell dif-

fusion along the tumour tissue border surface and the linear growth of tumour

radius after a critical time but before exponential growth.

1.4.2 Congruent assumptions

In previous tumour-immune models, certain assumptions have been made. They

are derived from experimental results, published statements or theories coupled

with reasonable suppositions [6, 7, 16, 41, 43, 45, 49]. We list some of the most

important adopted in this work.

• Tumour cells progress logistically in the absence of immune response. This

growth model was used by Briton [49], and fitted into real data by Diefen-

bach et al. [43].

• TICLs are capable of killing tumour cells [6, 16, 43, 45].

• Tumour cells interact with TICLs in such a way that tumour-cell complexes

are formed. When a TICL binds to a tumour cell, it can lead to either the

tumour cell being killed or the TICL being inactivated [6].
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• Immune cells are normally present in the body, even when no tumour cells

are present, because they are part of the innate immune system [16]. This is

a reason for a source term for immune cells being included in our model.

• TICLs have an element of random motility and also respond chemotactically

to chemokines, Matzavinos et al. [6].

• Diffusion and chemotaxis is considered to be linear [6]. Although this as-

sumption may be unrealistic, it is necessary for the sake of simplicity.

• The dead immune and tumour cells do not influence the formation of cellu-

lar conjugates [6].

In addition to the above assumptions above, we also assume that

• the formation of cellular conjugates occurs in a time frame of several min-

utes to a few hours whereas that of tumour cells as well as the influx of

immune cells into the spleen occurs on a much slower time scale. This is the

same assumption made by Kuznetsov et al. [46] and is based on biological

measurements.

1.4.3 Models used

In this dissertation, we develop four mathematical models to study the interaction

of immune and tumour cells in body tissue.

• Model 1- Extension of Matzavinos et al. [6]: The first model we consider

is used to study the growth, production of off spring, death and the local

interaction between species. It consists of a system of five coupled ordinary

differential equations that represent the rates of change of cell densities. The

analysis of this model begins by collapsing it to a system of two differential
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equations on the assumption that the formation of cellular conjugates occurs

on a time scale of few minutes while that of tumour cells as well as the influx

of immune cells into the spleen occurs on a much slower time scale, probably

tens of hours [46]. Another assumption, considered also by Matzavinos et al.

[6] is that the dead immune and tumour cells do not influence the formation

of cellular conjugates. These two assumptions lead to two ODEs in immune

and tumour cell densities. This allows us to explicitly analyse the two cell

concentration competition in the body. Further, as noted by Matzavinos et

al. [6], an explicit two dimensional model could be investigated.

• Model 2- Extension of Matzavinos et al. [6]: The second model is used

to study the spatial distribution dynamics of the cell populations through

reaction diffusion, which describes the random mobility of cells, and the

chemotaxis phenomenon which describes the migration of immune cells

towards tumour cells. It consists of three PDEs compared to the four that

Matzavinos et al. [6] analysed. In simulating this model, we use finite

differences. We discretize the space and time using the Crank Nicholson

method which is unconditionally stable. We as well perform a travelling

wave analysis on this model. We introduce immunotherapy and formulate

two new models which we analyse to study the effects of immunotherapy

on the cell densities.

• Model 3- New local kinetics model with immunotherapy: We construct a

new model to incorporate immunotherapy in model 1. We then analyse this

model to study the effects of immunotherapy on TICLs-tumour interaction

particularly cancer dormancy.

• Model 4- New spatial distribution model with immunotherapy: We con-

struct a new model by extending model 3 to consider spatial distribution,
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that is diffusion of the cell densities and the cytokine we consider (IL2), and

chemotaxis of TICLs.

The analytical solutions to the models we formulate are hard to get and in fact

may not exist. We therefore do a linear stability analysis of the homogeneous

models to predict the long term behaviour of the solutions. We study the feasibil-

ity of our models to establish whether the domains under which we assume the

solutions to lie make sense and also perform a sensitivity analysis to establish the

most important parameters that should be targeted in order to eliminate cancer

in a human tissue. For the local kinetic interaction models, we obtain thresh-

old conditions for the stability of healthy steady states (tumour free steady state

solutions). Numerical simulations for all models (1-4) are performed to verify

the theoretical results, and they also aid us in shading a big picture of what the

analytical solutions can be. Matzavinos et al. [6] reduced the 6D system to a

4D system. However, for simplicity they could have further reduced it to a 2D

system for the homogeneous part, and a 3D system for the non homogeneous

part. It is possible that little further insight would be gained by analysing the

more complex 4D model. Consequently it may be feasible to reduce the original

6D system to a 3D system by assuming that the rate of change of cell complex

formation is extremely slow; the same assumption as was made by Kuznetsov eta

al. [46] and Fishelson et al. [50]. The models so developed would be easier to

analyse, because their focus would be limited to TICLs and tumour cell densities.

Similarly, Matzavinos et al. [6] did not analyse the feasibility of the domain under

which the immune and tumour cell solutions are defined. In developing our new

models, we introduce a new class of cells, the resting cell class from which the

TICLs are recruited. Matzavinos et al. [6] considered a constant supply of TICLs

into the tumour cell localization but this is not the case in real life.
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1.5 Overview

In this Chapter, we have given a brief motivation for our research, outlined how

tumours are formed and how the immune system responds to them. We reviewed

some cancer modelling studies and the basic aspects we do consider in this dis-

sertation. Tumour-immune interactions can be modelled mathematically and they

have been reasonably useful, however, the phenomenon of cancer dormancy up to

now is still not fully understood. So in an attempt to understand tumour-immune

interactions particularly the phenomenon of cancer dormancy, we develop math-

ematical models to investigate the interaction between tumour cells and cytotoxic

infiltrating T-lymphocytes. Understanding these interactions can possibly paint a

clear picture of what cancer dormancy is. Four models are presented and studied

in this dissertation: models 1 and 2 are presented in Chapters 2 and 3 respec-

tively, and models 3 and 4 are both studied in Chapter 4. Our final conclusions

and recommendations are presented in Chapter 5.



Chapter 2

Local kinetic interactions

In this Chapter, we investigate the dynamics of TICLs-tumour cells interaction

in a spatially homogeneous domain. We present a mathematical kinetic model

to study the growth, proliferation, production of offspring, and death with local

interactions between tumour cells and the TICLs. We discuss its feasibility, obtain

the steady states and investigate their stability. We then determine a threshold

condition for the local asymptotic stability of the healthy steady state, investigate

the global stability of the healthy steady state, carry out a sensitivity analysis

of some of the parameters and also analyse the phase space in which the solu-

tions to the model we formulate lie, simulate the model and finally discuss the

implications of the results.

2.1 Model formulation

The model we consider is a slight modification of Matzavinos et al. [6]. It sub-

divides the cell population into local concentrations of TICLs E, tumour cells T,

TICL-tumour complexes C, inactivated TICLs E∗, lethally hit or programmed for

21
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lysis tumor cells T∗ and a single chemokine α. We consider a simplified process

of a growing, avascular tumour that calls for a response from the host immune

system and allure a population of lymphocytes. The growing tumour is directly

attacked by TICLs (see [31, 40, 47]) which in turn secrete soluble diffusible factors

called chemokines. These factors capacitate the TICLs to respond in a chemotac-

tic manner and migrate towards the tumour cells. We firstly consider the local

interactions involving cell proliferation for both the tumour and immune cells,

formation of cell complexes and cell deaths for both tumour and immune cells.

These interactions are modelled to take place in vivo. According to the scheme

shown in Figure 2.1 and following the receptor-ligand kinetics theory by Lauffen-

burger et al. [38], when a tumour cell and a TICL cell come into contact, it may

lead to formation of a TICL-tumour complex at a binding rate k1 which later can

either lead to tumour cell death with a probability p and a rate k2p, or inactivation

of TICLs at a rate k2(1− p). In case of the latter, the TICL-tumour complex is dis-

sociated at a rate k1. Here k2 is a parameter describing the rate of detachment of

TICLs from tumour cells, resulting in an irreversible programming of the tumour

cells for lysis. We assume that the rate of supply of immune cells into the region

of tumour localization is constant s. We consider the immune cells proliferation

term to be f C/(g + T), where f and g are constant parameters derived from ex-

perimental results. Its a function that explains how tumour cells proliferates a

result of interaction with immune cells. This term was first considered by Matza-

vinos et al. [6] in response to experimental observations on the proliferation of

TICLs in response to the tumour. This functional form is in line with a model

in which one presumes that the enhanced proliferation of TICLs is as a result

of signals such as interleukins, generated by immune cells in tumour-TICL cell

complexes (eg IL2) and act mainly in an autocrine fashion [6].
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CE + T
k2p

k2(1− p)

E + T∗

E∗ + T
s + f C

g+T aT(1− bT)

d1E

k−1

k1

Figure 2.1: A diagram showing local interactions between T-cells and tumour

cells, cells’ proliferation and death.

With the above assumptions, we get the following Matzavinos et al. [6] competi-

tion model:

dE
dt

= s +
f C

g + T
− d1E− k1ET + (k−1 + k2p)C, (2.1a)

dT
dt

= aT(1− bT)− k1ET + (k−1 + k2(1− p))C, (2.1b)

dC
dt

= k1ET − (k−1 + k2)C, (2.1c)

dE∗

dt
= k2(1− p)C− d2E∗, (2.1d)

dT∗

dt
= k2pC− d3T∗, (2.1e)

where a is the intrinsic growth rate of tumour cells. It is equivalent to the natural

tumour growth rate less the death rate, b−1 is the tumour carrying capacity, d1,

d2 and d3 are respectively the death rate of the immune cells, and de-activation

rates of the dead immune cells and dead tumour cells. All the parameter values

are positive.
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Table 2.1: State variables for the tumour-immune cells model (2.1).

State variable Description

E Concentration of TICLs in cells per centimetre.

T Concentration of tumour cells in cells per centimetre.

C Tumor-TICLs complexes in cells per centimetre.

E∗ De-activated/dead TICLs in cells per centimetre.

T∗ Lethally hit/dead tumour cells in cells per centimetre.

Table 2.2: Parameter description for the tumour-immune cells interaction model

(2.1).

Parameter Description

k1 Rate of binding of TICLs to tumour cells.

k−1 Rate of detachment of TICLs from tumour cells without damaging the cells.

k2 Rate of detachment of TICLs from tumour cells resulting into cell death.

p Probability of de-activating/killing tumour cells.

k2 p Death rate of tumour cells.

k2(1− p) Death rate of TICLs.

s Rate of normal flow of mature cytotoxic T-lymphocytes into the tumour localisation.

d1 Natural death rate of TICLs.

d2 Rate of decay of de-activated TICLs.

d3 Rate of decay of lethally hit/dead tumour cells.

a Intrinsic tumour growth rate.

1/b Tumor carrying capacity.
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It is worth noting that the rate C of formation of tumour-TICL complexes is fast

compared to the rate of change of TICLs and tumour cells. The formation of these

cellular conjugates occurs on a time scale of several minutes to a few hours.

A time interval of this order is also observed before the programmed lysis of

lethally hit tumour cells [50, 51]. However, the multiplication of immune cells

into the spleen occurs on a much slower time scale, probably tens of hours. This

motivates the application of a quasi-steady state approximation to (2.1c) (i.e dC
dt ≈

0) [46]. Substituting

dC
dt
≈ 0 into the equation (2.1c),

we get the following relation: C≈ KET,

where

K =
k1

k−1 + k2
. (2.2)

It is also worth noting that E∗ and T∗ do not in any way affect the tumour, immune

cells or tumour-TICL complexes. It is therefore sufficient to analyse the dynamics

of TICLs and tumour cells in equations (2.1a) and (2.1b). Equations (2.1a to e)

now become simplified down to two equations

dE
dt

= s +
ρET

g + T
− lET − d1E, (2.3a)

dT
dt

= aT(1− bT)−mET, (2.3b)

where ρ, l and m are positive parameters such that

l = Kk2(1− p), ρ = f K, m = Kk2p.

We start the analysis of model (2.3) by non-dimensionalizing the system of equa-

tions by setting
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x =
E
E0

and y =
T
T0

and t̄ =
t
t0

, (2.4)

where T0 = T(t = 0) and E0 = E(t = 0). We choose the magnitude of the TICLs

and tumour concentrations to be E0 = 106 cells/cm and T0 = 107 cells/cm. This

choice is motivated by the fact that a tumour nodule grows to relatively a size

1− 3 mm in diameter, containing approximately 105 to 109 cells. This is got from

clinical observations of dormant tumours [52]. The time is scaled relative to the

rate of TICLs’ deactivation; i.e t0 = 1/d1. Substituting for x, y, and t̄ into the

equations (2.3), we obtain a 2-dimensional system of fractional populations x,

and y. For convenience, we later drop the bar on the non-dimentionalised time t̄.

The model (2.3) can then be re-expressed as:

dx
dt

= σ1 +
γxy

η + y
− νxy− x, (2.5a)

dy
dt

= β1y(1− β2y)− µxy, (2.5b)

where

σ1 =
s

E0d1
, γ =

f K
d1

=
ρ

d1
, η =

g
T0

ν =
lT0

d1
,

β1 =
a
d1

, β2 = bT0, and µ =
mE0

d1
.

In this section we have developed a simplified 2D model of tumour-TICL inter-

action dynamics in a homogeneous domain (without space). We next analyse the

domain in which we impose the solutions, to establish whether it is feasible.

2.2 Boundedness and feasibility analysis

In this section we analyse the boundedness of the solutions to the system (2.5),

describe the domain under which they carry meaning and analyse the feasibility
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of solutions in this domain. In equations (2.5), x and y carry no physical meaning

when x < 0 and y < 0. For this model, there exists a domain D in which the

system of equations is mathematically and epidemiologically well-defined. We

define this domain D as

D =


 x

y

 ∈ R2

∣∣∣∣∣∣ x ≥ 0,

y ≥ 0

 .

Theorem 2.1 For the system (2.5), if the initial conditions lie in D, the system of equa-

tions for the TICLs-tumour interaction model has a unique solution that exists and re-

mains in D for all t > 0.

Proof

We proceed by firstly determining the nature of the trajectories on the boundary

of the domain D. Let D1 = {(0, y)} and D2 = {(x, 0)}. On D1,

dx
dt
|x=0 = σ1 > 0 and

dy
dt
|x=0= β1(1− β2y) ≥ 0.

On D2,
dx
dt
|y=0= σ1 − x and

dy
dt
|y=0= 0.

This implies that at the boundaries (Ω0 := {D1 ∪ D2 | x, y ∈ R}) of the domain,

the trajectories are always pointing in the positive direction or simply remain on

D2. For solutions to be negative, they must cross the boundary of the domain,

but this does not happen because the trajectories remain on D2 irrespective of the

value of σ1 (see Figure 2.2). We are therefore left to show that for the system (2.5),

if the initial conditions lie in D, the solutions to the system of equations for the

TICLs-tumour interaction model do not blow up, that is they are bounded from

above in D for all t > 0.
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Figure 2.2: Diagram showing the direction vector field on D1 and D2.

It is easy to see from (2.5b) that,

β1y(1− β2y)− µxy =
dy
dt
≤ β1y(1− β2y),

1
β1

∫ dy
y

+
β2

β1

∫ dy
(1− β2y)

≤
∫

dt,

1
β1

ln y− 1
β1

ln |1− β2y| ≤ t + ln C,

y(t) ≤ C
Cβ2 + exp(−β1t)

,

where

C ≥ y0

1− β2
, y(0) = y0 ∈ D. Taking limits on both sides as t tends to infinity,

lim
t→∞

y(t) ≤ 1
β2

.

This also confirms that y(t) is bounded from above by 1/β2.

From equation (2.5a) and taking into consideration that

limt→∞ y(t) ≤ 1
β2

,
dx
dt
≤ σ1 + γ0ȳx− νxȳ− x,
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where

ȳ =
1
β2

, and γo =
γβ1

ηβ1 + 1
.

By the boundedness of y, and using the inequality theorem,

dx
dt
≤ σ1 + (γ0ȳ− (νȳ + 1))x,∫ dx

σ1 + (γ0ȳ− (νȳ + 1))x
≤
∫

dt,

1
γ0ȳ− (νȳ + 1)

ln | σ1 + (γ0ȳ− (νȳ + 1))x
K

| ≤ t,

x(t) ≤ K exp−((νȳ + 1)− γ0ȳ)− σ1

γ0ȳ− (νȳ + 1)
.

Taking the limit as time tends to infinity,

lim
t→∞

x(t) ≤ σ1

νȳ + 1− γ0ȳ
.

This as well confirms that x(t) is bounded from above provided that

νȳ + 1
γ0ȳ

> 1.

We have proved that our solutions are bounded and also shown that the domain

D is positively invariant. In fact for all t ≥ 0,

0 ≤ x(t) ≤ σ1

νȳ + 1− γ0ȳ
and 0 ≤ y(t) ≤ 1

β2
.

We now next investigate the steady state solutions of the model (2.5).

2.3 Steady state solutions and stability analysis

The solutions to the model (2.5) are analytically hard to find. We therefore de-

termine the steady state solutions to observe the nature of the solutions for large
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times. We obtain the steady states by equating equations (2.5a) and (2.5b) to zero

and solving them simultaneously. The model (2.5) has four solutions: one healthy

steady state

X0 =

 x

y

 =

 σ1

0

 , (2.6)

and the three other solutions are the roots of the equation

β1β2νy3 + ξ1y2 + y + ξ2σ1η + β1γ− β1γ = 0, (2.7)

where

ξ1 = (β1β2γη + β1β2 − β1ν) and ξ2 = (σ1µ− β1βγ− β1γη + β1β2η).

With the parameter values defined in Table 2.3, equation (2.7) has three roots, two

of which are biologically meaningless because they are negative and do not lie in

the domain of interest D. The third steady state that lies in D is

X1 ≈

 x

y

 ≈
 5.8998

0.91938

 . (2.8)

By linearising the system (2.5) about the steady states, we obtain the linear sys-

tems
dX
dt

= D f (X0) and
dX
dt

= D f (X1),

where D f (X0) and D f (X1) are Jacobian matrices evaluated at X0 and X1 respec-

tively. For D f (X0), there are two eigenvalues, λ1 = −1 and λ2 = 41.2, implying

that the healthy (tumour free steady state) is unstable. For D f (X1), there are two

complex eigenvalues, λ1,2 = −0.43± 5.26i with negative real parts. This means

that X1 is a stable focus, implying that the steady state representing tumour dor-

mancy is stable. This is in line with findings in Matzavinos et al. [6]. This steady

state analysis explains tumour dormancy, a situation where tumour cells neither
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do proliferate nor die. The tumour dormant state is stable implying that a person

can indeed live with a tumour in this sort of state for his or her entire life time.

We next formulate a threshold condition for the stability of the healthy steady

state.

2.3.1 Threshold condition

We obtain a threshold condition for the stability of the tumour free equilibrium

state (TFE). We do this to establish a condition that should be strived for in order

to eradicate tumour cells in a human body. We obtain this threshold from the

Jacobian of the system (2.5) at the TFE (2.6) and on the assumption that all pa-

rameter values are positive. The stability of the three other solutions depends on

all the parameter values.

JE0 = DV(E0) =

 −1 0

0 β1 − µσ1

 . (2.9)

For the TFE to be locally asymptotically stable, the eigenvalues of the Jacobian

matrix (2.9) should be negative or should have negative real roots. It is however

trivial to show that the characteristic equation of the Jacobian matrix (2.9) can not

have complex roots. It can however have negative eigenvalues only if β1 < µσ1.

We therefore define the threshold to be;

R0 :=
β1

µσ1
=

ad1(k−1 + k2)

k1k2p
. (2.10)

The TFE (2.6) is locally stable if R0 < 1 (see van den Drische et al. [53]). Our

analysis suggests that, in order for the TICLs to out-compete the tumour cells in

the body tissue, R0 < 1. In (2.10), it is evident that parameter values that need
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to be kept low are the intrinsic tumour growth rate a, the rate of natural death

of TICLs d1, and the rate of detachment of TICLs from tumour cells k−1 while

those that should be kept high are rate of detachment of TICLs from tumour

cells resulting in an irreversible tumour cells for lysis k2, probability of killing

tumour cells p and the rate of binding of TICLs to tumour cells k1. These all make

sense. For example, immunotherapy, chemotherapy, surgery or other suitable

interventions, will target increasing tumour cell death thus reducing the intrinsic

rate of growth of tumour cells and also increasing the number of immune cells.

This portrays a clear picture that it is hard to have R0 < 1 and therefore hard

to have a tumour free steady state (eliminate cancer in a human body) because

some of the parameters in equation 2.10 that should be targeted for example a,

the intrinsic tumour growth rate and d1, the natural death rate of TICLs are hard

to actually in any way be altered by any form of cancer treatment.

2.3.2 Investigating global stability of the TFE

In this section, we investigate the stability of the TFE. From van den Drische et

al. [53], we know that the tumour free equilibrium point is locally asymptotically

stable if and only if R0 < 1. We investigate global stability using a theorem by

Castillo-Chavez et al. [54].

Theorem 2.2 For a system

dX
dt

= F(X, Z),

dZ
dt

= G(X, Z), G(X, 0) = 0,

where the components of the column vector X ∈ Rm denote the number of uninfected

classes and the components of the vector Z ∈ Rn denote the number of infected classes
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and U0 = (X∗, 0) denotes the disease fee equilibrium of the system, the fixed point U0 =

(X∗, 0) is globally asymptotically stable if R0 < 1 and the following two conditions are

met:

1. For dX
dt = F(X, 0), X∗ is globally asymptotically stable,

2. G(X, Z) = AZ− Ĝ(X, Z), Ĝ ≥ 0 for X, Z ∈ Ω, where A = DzG(X∗, 0) is an M-

matrix (the off diagonal elements of A are non negative) and Ω is the region where

the model makes biological sense. If the system satisfies the the above two conditions,

then the fixed point U0 = (X∗, 0) is globally asymptotically stable provided R0 < 1.

Proof

For simplicity, we write the system (2.5) using the notation in Theorem 2.2 above;

X = (x) and Z = (y),

and

F =

(
σ1 +

γxy
η + y

− νxy− x
)

,

G = (β1y(1− β2y)− µxy) .

It follows that

Ĝ(X, Z) = DZGE0 Z−G(X, Z) =
(
(β1 −

µ

σ1
)y− β1y(1− β2y) + µxy

)
≯ 0 (2.11)

using the parameter values in Table 2.3. We note that the TFE point (2.6) is not

globally asymptotically stable.

This indicates that in case one has a tumour, it is impossible for them to achieve

a TFE and it lasts forever (situation where they are tumour free). In this section,
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we calculated a threshold condition R0 and showed that for the tumour free equi-

librium steady state (TFE) to be locally assymptotically stable, R0 < 1. We also

showed that the TFE is not globally stable implying that its impossible to achieve

it. In the next section, we investigate the most important parameter values that

influence the phase space of model (2.5).

2.4 Sensitivity and phase space analysis

The parameter values defined in Section 2.1 are only baseline values. In this

section we investigate critical parameter values that have an effect on the system

of equations (2.5). We also analyse the phase space of the solutions to the system

(2.5). Firstly, we analyse the phase space of the system by investigating whether

it has a limit cycle or not. In the model considered by Matzavinos et al. [6], they

found that their system had closed orbits. In this case however, we prove that the

system has no closed orbits.

Theorem 2.3 The system (2.5) has no closed orbits for positive values of x and y.

Theorem 2.4 We use Dulac’s criterion [55] as follows.

Let D be a simply connected region of the x− y pane and

dx
dt

= f (x, y), (2.12a)

dy
dt

= g(x, y) (2.12b)

be a dynamical system in which f and g are continously differentiable. If there exists a

continuously differentiable function φ(x, y) such that

∂

∂x
{φ(x, y) f (x, y)}+ ∂

∂y
{φ(x, y)g(x, y)}
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is of a constant sign in D, then the system (2.12) has no closed orbits wholly contained in

D.

Proof

To prove that our system (2.5) has no closed orbits (limit cycle), we consider

φ(x, y) =
1

xy
,

∇.(φ(x, y)Ẋ) =
∂

dx
(φ(x, y) f (x, y)) +

∂

∂y
(φ(x, y)g(x, y)) ,

=
∂

∂x

(
σ1

xy
− γ

η + y
− ν− 1

y

)
+

∂

∂y

(
β1

x
(1− β2y)− 1

)
,

= −
(

σ1

x2y
+

β1β2

x

)
.

since β1, β2 and σ1are all positive, this implies that ∇.(gẊ) < 0 ∀ x, y ∈ D, where

D =


 x

y

 ∈ R2

∣∣∣∣∣∣ x ≥ 0,

y ≥ 0

 .

From the threshold condition (2.10) given in Section 2.3.1, we choose to analyse

the nature of the phase space for high and low values of σ1 and µ. These are

the parameter values that any form of cancer treatment will have to target. The

other parameter values are set to be fixed by taking those in Table 2.3. By using

PPLANE 2005.10, a software package that uses MATLAB to sketch phase portraits

for 2D systems, we plot values of x against y for low and high values of σ1 and

µ. This is shown for the ODE system (2.5) in figures 2.4. We also use parameter

values in Table 2.3 to plot the phase portrait of y the fractional tumour density

against x, the fractional TICLs cell density in Figure 2.3.
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Figure 2.3: Phase space of the ODE system (2.5). The phase plane is a stable

focus converging to the tumour dormant state.

Figure 2.3 shows the phase space of the ODE system (2.5). It shows that the x and

y solutions spiral to a stable steady state. Figures 2.4(c & d) show that lower values

of µ are desirable for TICLs to out number tumour cells. Low or high values of

σ1 seem not to have a significant effect on the structure of the phase space (see

Figures 2.4(a & b)). In this section we have highlighted the parameter values that

are more responsive in eliminating cancer. We have also analysed the nature of

the phase space by proving that there are no periodic solutions, contrary to what

Matzavinos et al. [6] found in their model and the solutions spiral to a cancer

dormant state which explains cancer dormancy. In the next section we discuss

numerical simulations of the model (2.5) to determine whether they correspond

to the theoretical results that we have established.
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(a) (b)

(c) (d)

Figure 2.4: Phase plots showing the direction fields corresponding to parameter

values (a) σ1 = 0.001, (b) σ1 = 1, (c) µ = 0.3 and (d) µ = 3 respectively.
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Table 2.3: Dimensional parameter values obtained from Matzavinos et al. [6].

Parameter Estimated value Units

a 0.18 day−1

k1 1.3× 10−7 day cells−1cm

k2 7.2 day−1

d1 0.0412 day−1

g 2.02× 107 cells cm−1

b 2.0× 10−9 cells−1cm

k−1 24 day−1

p 0.9997 dimensionless

f 0.2988× 108 day−1cells cm−1

s 1.36× 104 day−1cells cm−1

2.5 Numerical simulations

We simulate the model (2.5) using the parameter values given in Table 2.3 with

initial conditions x(0) = 0.3 and y(0) = 0.5. The Parameter values are obtained

from experimental data on Marine B cell lymphoma(BCL1) [56]. This cell was

used to model tumour dormancy in a mouse [56, 57]. In the experiments, CD8+ T

cells were enhanced with anti-Id antibodies into inducing dormancy by secreting

Interferon-gamma (INF-γ), a dimerized soluble cytokine that is the only member

of the type II class of interferons. The non-dimensionalized parameter values

were obtained from the dimensionalised parameter values in Table 2.3 together

with K = 4.17× 10−9 cm/cell, ρ = 0.1246 day−1, l = 9× 10−12 cm·(cells · day)−1,

m = 3.0× 10−8 cm·(cells · day)−1.

Using the non-dimensionalized parameter estimates and initial values of x and y

as 0.3 and 0.5 respectively, four steady state solutions were obtained and two of
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Figure 2.5: Plots of cell densities against non-dimensional time.

(a) (b)

Figure 2.6: Plots of immune (TICLs) and tumour cell densities against non-

dimensional time time on different scales. .
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them are negative. Since we are dealing with cell densities, these two negative

steady states are meaningless. The two steady states are;

A = (0.3301, 0) and B = (5.8998, 0.91938),

where A(0.3301,0) represents a tumour-free unstable (saddle point) equilibrium

state and B(5.8998,0.91938) represents a tumour dormancy stable (spiral sink) state

just as discussed in Section 2.3. Our analysis suggests that without any form

of intervention, TICLs alone cannot completely eradicate the tumour. However,

TICLs keep the tumour at some dormant state. From our theoretical results, the

tumour free equilibrium steady state can only be locally asymptotically stable if

R0 < 1. The baseline values used do not however satisfy this condition. Figure 2.5

represents a cancer dormancy state, a state where the tumour cells’ proliferation

and death balances. It represents the steady state solution B. It shows that the

immune cells out number the tumour cells but do not completely deactivate or

kill all the tumour cells. In fact, without intervention, the disease is not eradicated

from the tissue. Figure 2.6 shows the variation of TCILs and tumour cells with

time on different scales. These Figures were obtained by simulating the model

(2.5) using Euler’s numerical scheme with n, the number of iterations equal to

20, 000. We implemented this in PYTHON software.

In Section 2.4, we performed a sensitivity analysis to determine the quantitative

change in the behaviour of the solutions in response to change in the parameter

values that form the threshold (2.10) that we found in Section 2.3.1. We showed

that µ has a significant effect on the solutions to (2.5). Contour plots (Figures

2.7 (a) and (b)) show the effect of σ1 and µ on the basic reproduction ratio R0.

From Figure 2.7 (a), we note that in order for the basic reproduction ratio to

be minimized, µ and σ1 should be maximized. From 2.7 (b), we note that a small

basic reproduction ratio requires β1 to be minimized and µ to be maximized. This
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is in line with what we earlier found in Section 2.3. We noted earlier in Section

2.3.1, that for a tumour free equilibrium steady state to be locally asymptotically

stable, R0 = β1/σ1µ < 1. Thus we should endeavour to maximize σ1 and µ in

order to lower R0. This implies that indeed, the natural tumour growth rate a,

the rate of natural death of TICLs d1, and the rate of detachment of TICLs from

tumour cells k−1 should be reduced whereas the rate of detachment of TICLs from

tumour cells resulting in an irreversible tumour cells for lysis k2, probability of

killing tumour cells p and the rate of binding of TICLs to tumour cells k1 should

be kept high by any cancer intervention.

In this Chapter we developed a 2D model to explicitly analyse the dynamics of

tumour and TICLs in a homogeneous domain. We did this by slightly modifying

Matzavinos et al. [6] model. This we did by assuming that the rate of formation

of tumour-TICL complexes is too low. We in sections 2.1 and 2.2, non dimen-

sionalized the model (2.3), formulated a domain under which the solutions to our

model lie, and discussed the feasibility of the solutions to it. In Section 2.3, we

obtained the steady state solutions and investigated their stability. We obtained

a cancer dormant state which is stable. We furthermore determined a threshold

condition for the local asymptotic stability of the healthy steady state and inves-

tigated the global stability of the healthy steady state. We found out that the

healthy steady state is not globally stable implying that it may be hard to actually

eradicate a tumour in a human body. We carried out a sensitivity analysis of some

of the parameters to the model in Section 2.4. We simulated the model and lastly,

we discussed the implications of the results in Section 2.5. In the next Chapter,

we analyse the model (2.5) in a spatially heterogeneous domain.
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(a) (b)

Figure 2.7: Contour plots showing the effect of the parameters σ1, β1 and µ as

(a) σ1 and µ change, with β1 fixed. (b) β1 and µ change, with σ1 fixed.



Chapter 3

Spatially heterogeneous model

In this Chapter, we investigate the dynamics of TICLs-tumour interaction in a

spatially heterogeneous domain. We present a mathematical model which takes

into account the local interaction kinetics, the diffusion of TICLs and tumour cells,

and the chemotatactic movement of the TICLs towards the tumour. We use the

Crank Nicholson scheme to simulate the resulting system of PDEs. We perform

a travelling wave analysis and discuss the implications of such solutions. Finally,

we explain the possible implications of the results.

3.1 Introduction

Diffusion in the context of this study describes the random movement of both

the TICLs and the tumour cells whereas chemotaxis describes the movement of

the TICLs towards the tumour nodule. When an immune cell interacts with a

tumour cell, it sends a signal to other cells in the form of a chemokine. The

chemokine distributes in the body with different concentration gradients. Other

immune cells in the body react to the signal by moving towards the area with a

43
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high concentration of the chemokine. This process is referred to as chemotaxis.

Hence chemotaxis is the phenomenon whereby somatic cells, bacteria, and other

single-cell or multicellular organisms direct their movements according to certain

chemicals in their environment. The model presented here is an extension of

Matzavinos et al. [6] and focusses on the initial avascular stage of tumour growth.

Below is a brief description of the variables in the model.

1. Tumour infiltrating cytotoxic lymphocytes

In addition to cell proliferation, local kinetic terms, source term, and TICLs

death, we assume that the individual TICLs have an element of random

mobility. We also assume that they respond to the chemokine elicited by

a corresponding immune cell, thus moving chemotactically. In this model

we include a TICL space competition function. This models the existence

of a subregion of the domain of interest where initially there are only tu-

mour cells and where lymphocytes do not reside as in Matzavinos et al. [6].

With all these assumptions, the partial differential equation describing the

dynamics of TICLs is

∂E
∂t

= D1∇2E− χ∇.(E∇α) +
ρET

g + T
+ sh(x)− lET − d1E, (3.1)

where h(x) is the Heaviside function to incorporate space competition for

TICLs, D1 is the diffusion coefficient which we assume to be constant, χ is

the chemotaxis coefficient, and α is the chemokine concentration elicited by

the immune cells. The parameters χ, l, and d1, are all positive.

2. Tumour cell concentration

It is difficult to incorporate all the observed experimental results into a math-

ematical model even for an avascular tumour. However, a realistic tumour
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growth model should include certain non uniformities in the central pro-

cesses of inhibition of mitosis, consumption of nutrients, cell proliferation,

dependence of cell mitotic rate of growth inhibitor concentration, geograph-

ical constraints as well as central Chaplain [9]. In our model, we consider

diffusion of tumour cells to be linear and therefore the diffusivity is a linear

constant. According to Kyle et al. [58], the rate at which tumour cells de-

stroy the extracellular matrix is slow, this allows for lymphocytes to migrate

into the tumour tissue faster than in normal tissue that has regular extra-

cellular matrix. In addition to the population growth model in Chapter 2,

we add a reaction diffusion equation to incorporate the random mobility of

the tumour cells. Putting together all the above assumptions, The partial

differential equation describing the dynamics of tumour cell density is

∂T
∂t

= D2∇2T + aT(1− bT)−mET, (3.2)

where D2 is the diffusivity of the tumour cells.The parameters a, b, and m

are all positive.

3. Tumor-TICL complexes

We assume that there is no diffusion of complexes and therefore, we only

have interactions defined by the local kinetics discussed in Chapter 1 (see

[6]). The absence of diffusion is justified by the large difference in time scales

for the two densities. The formation and dissociation of complexes occurs

on a time scale of minutes, whereas diffusion of tumour cells and immune

cells occurs on a time scale of hours. The above assumptions give the partial

differential equation

∂C
∂t

= k1ET − (k−1 + k2p)C. (3.3)
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However, since the formation of tumour-TICL complexes takes place in min-

utes, and that of immune and tumour cells requires tens of hours, we assume

a quasi-steady state approximation so that

C = KET, K =
k1

k−1 + k2

as used in the previous Chapter.

4. Chemokine concentration

The production of chemokines in a tumour nodule is a dynamic, multi-

step process and the precise role of chemokines in tumour expansion is

still not clearly understood [48]. We assume that the rate of chemokine

production is proportional to tumour cell-TICls complex density C. This is

because we assume that chemokines are produced when TICLs are activated

by tumor cell-TICL interactions. We also assume that the chemokines diffuse

throughout the tissue at a constant diffusion rate. The above assumptions

lead to the partial differential equation governing chemokine concentration

as

∂α

∂t
= D3∇2α + nET − d4α, (3.4)

where D3 is the diffusivity of the chemokine concentration, d4 is the de-

activation rate of the chemokine concentration, n = Kk3, and k3 is the

chemokine production rate. The parameters n, k3, D3 and d4 are all pos-

itive.

5. Inactivated TICLs and lethally hit cells

We assume that the dead cells are eliminated from the tissue and do not

much influence the immune processes. The inactivated cells also do not

move. These assumptions lead to the equations
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∂E∗

∂t
= lET − d2E∗, (3.5)

∂T∗

∂t
= mET − d3E∗, (3.6)

where d2 and d3 are deactivation rates of the lethally hit and dead tumour

cells respectively. l, m, d2 and d3 are positive parameters. Equations (3.5),

and (3.6) are coupled to the system through the tumour-TICL complexes

and neither E∗ nor T∗ have any effect on the variables E, T and C.

All the given assumptions together give the following system of non-linear partial

differential equations:

∂E
∂t

= D1∇2E− χ∇.(E∇α) +
ρET

g + T
+ sh(x)− lET − d1E, (3.7a)

∂T
∂t

= D2∇2T + aT(1− bT)−mET, (3.7b)

∂α

∂t
= D3∇2α + nET − d4α. (3.7c)

For simplicity, we consider the case of one-dimensional tumour growth. The one-

dimensional version of (3.1)-(3.4) does not capture the true evolution of cancer in

a human body because the true geometry is complicated. Nevertheless, our major

objective is to first understand the dynamics of the model in a one-dimensional

setting. Later this could be extended to higher dimensions. The Heaviside func-

tion h(x) models the existence of a subregion of the domain of interest where

TICLs do not reside and which is permeated by the immune cells throughout

the process of diffusion and chemotaxis [6]. We define a one dimensional spatial

domain to be the interval [0, x0], and assume that there are two regions in this

interval. One fully occupied by tumour cells, the other is fully occupied by the
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TICLs. We propose that the initial interval of tumour localization is [0, L], where

L = 0.2x0 (see Matzavinos et al [6]). The function h(x) is therefore defined as

h(x) =


0 if x− L ≤ 0

1 if x− L > 0.

3.2 Boundary and initial conditions

We close the system by imposing Neumann zero flux boundary conditions on the

variables E, T, and α. The boundary conditions for the model (3.7) are therefore;

n.∇E = n.∇T = n.α = 0. (3.8)

We use the initial conditions considered by Matzavinos et al. [6]. The initial

conditions for the model (3.7) are;

E(x, 0) =


0, 0 ≤ x ≤ L

E0[1− exp(−1000(x− L)2)], L ≤ x ≤ x0

(3.9)

T(x, 0) =


T0[1− exp(−1000(x− L)2)], 0 ≤ x ≤ L

0, L ≤ x ≤ x0

(3.10)

α(x, 0) = 0 ∀x ∈ [0, x0]. (3.11)

3.3 Parameters estimation

In addition to the parameter values that were given in Table 2.3, the set of new

parameter values used, their standard units and sources are presented in Table
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3.1.

Table 3.1: Parameter values for diffusion and chemotaxis.

Parameter Estimated value Units Source

D1 10−6 cm2 day−1 [6]

D2 10−6 cm2 day−1 [6]

D3 10−4 cm2 day−1 [6]

k3 20− 3000 molecules cell−1 min−1 [6]

χ 1.728× 106 cm2 day−1 moles−1 cells cm−1 [59]

d4 1.55× 10−2 day−1 [60]

3.4 Non-dimensionalization of equations

We non-dimensionalize the system (3.7) by scaling each concentration variable

using fractional quantities and letting;

Ē =
E
E0

, T̄ =
T
T0

, C̄ =
C
C0

, ᾱ =
α

α0
, x̄ =

x
x0

, and t̄ =
t
t0

,

where E0 = 3.3 × 105 − 106 cells/cm, and T0 = 107 − 0.5 × 109cells/cm. Time

is scaled relative to immune cell death, ie t0 = x0/D1. It is worth noting that

the initial TICLs and tumour cell densities make sense because, as noted earlier

a human body can contain between 105 and 109 cells cm−1. The chemokine con-

centration is normalized through some reference concentration which in our case

we take to be 10−10, a value also considered by Nomiyama et al. [61]. The space

variable x is scaled relative to the length under consideration (i.e. x0 = 1 cm) [61].

On making the above substitutions and dropping the bar on t for convenience,

the model (3.7) becomes
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∂E
∂t

= ∇2E− λ∇.(E∇α) + εh(x) +
γET

η + T
− νET − ψE, (3.12a)

∂T
∂t

= φ∇2T + β1T(1− β2T)− µET, (3.12b)

∂α

∂t
= τ∇2α + κET − δα, (3.12c)

where

λ = χα0t0, ε =
st0

E0
, γ = ρt0, ψ = d1t0,

η =
g
T0

, ν = lT0t0, φ = D2t0, β1 = at0,

µ = mE0t0, τ = D3t0, κ =
nE0T0t0

α0
, δ = d4t0, and β2 = bT0.

The boundary and initial conditions become

∂E
∂x

(0, t) =
∂T
∂x

(0, t) =
∂α

∂x
(0, t) = 0,

∂E
∂x

(1, t) =
∂T
∂x

(1, t) =
∂α

∂x
(1, t) = 0,

E(x, 0) =


0, 0 ≤ x ≤ L

[1− exp(−1000(x− L)2)], L ≤ x ≤ x0,

T(x, 0) =


[1− exp(−1000(x− L)2)], 00 ≤ x ≤ L

0, L ≤ x ≤ x0,

α(x, 0) = 0, ∀x ∈ [0, x0],

respectively.

Figure 3.1 shows the initial conditions of the model (3.12) in terms of cell densities.

It shows that initially, the tumour cells occupy the region [0, 0.2] while the TICLs

occupy the region [0.2, 1].
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Figure 3.1: Initial cell densities of TICLs and tumour cells.

3.5 Numerical simulations

We use the Crank Nicholson discretization method to simulate the system (3.12).

Because our system has diffusion terms, it is appropriate to use the Crank Nichol-

son method because it is unconditionally stable. However, due to the nature of

the chemotaxis term, to prevent a blow up of our solutions, careful consideration

is made when choosing the number of iterations.

The system (3.12) represents coupled non-linear PDEs, and by using the Crank

Nicholson scheme, getting the next values of the solutions, for our case, Ej+1,

T j+1, and αj+1 in space will involve solving a system of linear algebraic equations.

In cases where there are non linear terms, we descritize by considering old or

previous values that are known (Ej, T j, αj). This will then leave the right hand

side of the system (3.12) with constants.
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3.5.1 Methodology

The Crank Nicholson method [63] transforms the components ∂E
∂t , ∂2E

∂x2 and ∂E
∂x as:

∂E
∂t

=
Ej+1

i − Ej
i

∆t
, (3.13a)

∂2E
∂x2 =

1
2(∆x)2

(
Ej+1

i+1 − 2Ej+1
i + Ej+1

i−1 + Ej
i+1 − 2Ej

i + Ej
i−1

)
, (3.13b)

∂E
∂x

=
1

4∆x

(
Ej+1

i+1 − Ej+1
i−1 + Ej

i+1 − Ej
i−1

)
, (3.13c)

where j and i represent position and time respectively. Applying this to equations

(3.12a), (3.12b), and (3.12c) and then arranging them in such a way that the left

hand side has unknown terms and the right hand has known terms, we get

−(W1 + P1τ1)Ej+1
i−1 + P4Ej+1

i − (P4 + W1)Ej+1
i+1

= (W1 + P4τ1)Ej
i−1 + P1Ej

i + εh(x) + γEj
i T

j
i νEj

i T
j
i − Ej

i − P5τ2Ej
i + (P4τ1−W1)Ej

i+1,

(3.14)

−W2T j+1
i−1 + P2T j+1

i +W2T j+1
i+1 = −W2T j

i+1 + P2T j
i + β1T j

i − β1β2T j
i T j

i −µEj
i T

j
i −W2T j

i−1,

(3.15)

−W3α
j+1
i−1 + P3α

j+1
i +W3α

j+1
i+1 = −W2α

j
i+1 + P3α

j
i + β1T j

i − κEj
i T

j
i − δα

j
i −W− 3α

j
i+1,

(3.16)

where

τ1 = α
j+1
i+1 − α

j+1
i−1 + α

j
i+1 − α

j
i−1,

τ2 = α
j+1
i+1 − 2α

j+1
i + α

j+1
i−1 + α

j
i+1 − 2α

j
i + α

j
i−1.
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Using the boundary conditions 3.8, together with forward finite differences, the

first and last terms become;

Ej
1 = Ej

0, T j
1 = T j

0 , and, α
j
1 = α

j
0 for any j,

Ej
N+1 = Ej

N−1 , T j
N+1 = T j

N−1, and α
j
N+1 = α

j
N−1 for any j.

We solve (3.14), (3.15), and (3.16) simultaneously by arranging the left hand sides

into matrices and solving first for α and T before E is found. The left hand

tridiagonal matrices for the three equations are:

AE =



−χ1 (P4 −W1) 0 · · · · · · 0

P1τ1 −W1 P1 P4 −W1 0 0
...

0 P1τ1 −W1 P1 P4 −W1 0
...

...
...

...
... 0

... 0 0 P1τ1 −W1 P1 P4 −W1

0 0 0 0 χ2 P1





Ej+1
1

Ej+1
2
...
...

Ej+1
N−1

Ej+1
N


,

AT =



P2 −W2 −W2 0 · · · · · · 0

−W2 P2 −W2 0 0
...

0 −W2 P2 −W2 0
...

...
...

...
... 0

... 0 0 −W2 P2 −W2

0 0 0 0 −2W2 P2





T j+1
1

T j+1
2
...
...

T j+1
N−1

T j+1
N


,
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and

Aα =



P3 −W3 −W3 0 · · · · · · 0

−W3 P3 −W3 0 0
...

0 −W3 P3 −W3 0
...

...
...

...
... 0

... 0 0 −W3 P3 −W3

0 0 0 0 −2W3 P3





α
j+1
1

α
j+1
2
...
...

α
j+1
N−1

α
j+1
N


,

respectively, where

χ1 = (W1 + P1τ1 − P1), χ2 = −2W1 + P1 − τ1P1

and the right hand sides (known values) correspond to

bE = (W1 + P4τ1)Ej
i−1 + P1Ej

i + εh(x) + γEj
i T

j
i νEj

i T
j
i − Ej

i − P5τ2Ej
i + (P4τ1 −W1)Ej

i+1,

bT = −W2T j
i+1 + P2T j

i + β1T j
i − β1β2T j

i T j
i − µEj

i T
j
i −W2T j

i−1,

bα = −W2α
j
i+1 + P3α

j
i + β1T j

i − κEj
i T

j
i − δα

j
i −W − 3α

j
i+1,

where

W1 =
1

2h2 , W2 =
φ

2h2 , and W3 =
τ

2h2 ,

P1 =
2W1dt + 1

dt
, P2 =

2W2dt + 1
dt

, and P3 =
2W3dt + 1

dt
,

and

dt = time step, and h = space step.

The parameter values used are from Matzavinos et al. [6]. They however corre-

spond to in vitro settings because in vivo measurements in literature are insuffi-

cient. We used Gaussian elimination to solve the individual systems of equations

and implemented it in PYTHON programming software to solve for E, T, and α

for each time step.
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3.5.2 Numerical simulation results

(a) (b)

(c) (d)

Figure 3.2: Spatial distribution of immune (TICLs) and tumour cell densities in the

tissue at times corresponding to (a) 600, (b) 700, (c) 800 and (d) 1000 days

respectively. The left and right hand scales correspond to TICLs and tu-

mour cell densities respectively.

The model (3.12) was simulated using parameter values in Tables 2.3 and 3.1.

Figures 3.2(a)-(d) show the spatial distribution dynamics of TICLS and tumour

cell densities in the tissue at times corresponding to 100, 700, 800 and 1000 days

respectively. The graphs show that the TICL density remains dominant in the
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tissue. Furthermore, they show that with time, TICLs manage to bring down the

tumour density to a dormant state. Initially (see Figure 3.1), the tumour cells

are concentrated on one side of the domain ([0, 0.2]) and the immune cells on

another ([0.2, 1]). The tumour cells invade the tissue with a soliton-like wave but

are subsequently reduced by the TICLs.

In Figure 3.2, we set two scales on either sides using twinx in PYTHON software,

to clearly distinguish the tumour and immune cell dynamics. The right hand

scale, from 0.0 to 1.0 corresponds to the tumour cell density while that on the left

from 0.0 to 12.0 and 16.0 corresponds to TICLs cell density.

3.6 Travelling wave simulation and analysis

A travelling wave is a one in which the medium moves in the direction of propa-

gation of the wave. Travelling wave analysis is of great importance in our model

because, if travelling waves exist, then the tumour invades the healthy tissue at its

full potential [62]. If this happens, we would expect that with time the immune

cells are highly probable to outweigh the tumour cell density. In this section,

we investigate the existence of travelling wave solutions that emerge as a result

of a certain range of values of µ, β1 and ε. For simplicity, we ignore the effects

of chemotaxis [62]. This simplifying assumption is reasonable because according

to Matzavinos et al. [64], the propagation of travelling waves is not influenced

by chemotaxis. Further more, we set the Heaviside function h(x) to 1. We thus,

consider the non dimensionalised system below:
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∂E
∂t

= ∇2E + ε +
γET

η + T
− νET − ψE, (3.17a)

∂T
∂t

= φ∇2T + β1T(1− β2T)− µET. (3.17b)

(a) (b)

(c) (d)

Figure 3.3: Travelling wave solutions of the system (3.18) for a long (a,b) and

short time periods (c,d).

The numerical simulations (see Figure 3.3(a)-(d)) indicate that the system of equa-

tions exhibits travelling wave solutions for some choice of parameters. We use the

geometric treatment of an apt phase space with the aim of establishing the in-

tersection between a stable and unstable manifolds [62]. We specify a travelling
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co-ordinate z = x + ct where c > 0 and let Ẽ(z) = E(x, t), and T̃(z) = T(x, t). It

is worth noting that the travelling co-ordinate above is different from that consid-

ered by Bellomo et al. [62]. Our travelling waves are from the right to the left. By

using the chain rule and a change of variables,

∂Ẽ
∂t

=
dẼ
dz

.
∂z
∂t

, and
∂T̃
∂t

=
dT̃
dz

.
∂z
∂t

.

the system (3.17) without the tildes, becomes

c
dE
dz

=
d2E
dz2 + ε +

γET
η + T

− νET − ψE, (3.18a)

c
dT
dz

= φ
d2T
dz2 + β1T(1− β2T)− µET. (3.18b)

Our intention is to take advantage of phase space techniques and thus we formu-

late the system (3.18) in R4. In particular we define new variables

E1 =
dE
dz

, and T1 =
dT
dz

.

The system can therefore be transformed as

dx
dz

= f (x) where


x =

E1

E

T1

T


∈ R4, (3.19)

and

f (x) =


−cE1 − ε− γET

(η+T) + νET + ψE

E1

−c T1
φ −

β1
φ T(1− β2T) + µET

φ

T1


. (3.20)
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The system (3.19) can be regarded as an eigenvalue problem because the wave

velocity, c is unknown. Several analytical methods have been developed for esti-

mating c but for our case, we take c ≈ 850, as used by Bellomo et al. [62]. The

idea behind travelling wave analysis is to find a heteroclinic connection between

X0 and X1 where

X0 ≈


0

0.546

0

0.305


and X1 ≈


0

0.3301

0

0


. (3.21)

Here X0 and X1 are steady state solutions to the system (3.18) obtained by equat-

ing equations (3.18a) and (3.18b) to zero. Our interest is to establish the existence

of an orbit Xcon(z) that satisfies

lim
z→−∞

Xcon(z) = X0 and lim
z→∞

Xcon(z) = X1. (3.22)

The existence of such an orbit would imply that travelling wave solutions do exist

[62]. We consider the linearisation

dX
dz

= D f (X0)x, and
dX
dz

= D f (X1)X (3.23)

of the vector field f at the equilibrium points X0 and X1 respectively. From the

Jacobian

J(x) =



−c −γT
(η+T) + νE + ψ 0 −ηγE

(η+T)2

1 0 0 0

0 0 −C
φ

β1
φ + 2β1β2

φ + µE
φ

0 0 1 0


(3.24)
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of the system (3.20), we determine the spectrum of the matrices D f (X0) and

D f (X1). For values of the parameters for the system (3.20) under discussion,

D f (X0) has four real eigenvalues, two positive and two negative. The eigenvalues

imply the existence of a 2-dimensional stable manifold Ws(X1). Similarly, D f (X1)

has four eigenvalues, one positive and three negative, implying the existence of

an unstable 3-dimensional manifold Wu(X0). From this result, we note that

dim(Wu(X0)) + dim(Ws(X1)) = dimR4 + 1 (3.25)

Equation (3.25) suggests that Wu(X0) and Ws(X1) probably intersect traversally

along a one-dimensional curve in the four-dimensional phase space. This is be-

cause the solutions of the system (3.20) lie in four dimension (4D) but the sum-

mation of the dimension of the stable and unstable manifolds is five (5D) just as

shown in equation (3.25) (see [30, 62]). If this is the case, then this curve would

define a generic heteroclinic connection [62]. The simulations of (3.20) portray

travelling wave solutions (shown in Figure 3.3) that maintain their structure with

time.

We in this Chapter presented a mathematical model of tumour-TICLs interactions

which incorporated local interaction kinetics, the diffusion of TICLs and tumour

cells, and the chemotatactic movement of the TICLs towards the tumour. In Sec-

tion 3.5, We used the Crank Nicholson scheme to simulate the resulting system of

PDEs. Furthermore, We in Section 3.6, performed a travelling wave analysis and

discussed the implications of such solutions. Finally, we explained the possible

implications of the results. We discovered from the numerical simulations that the

TICLs bring down the tumour density to some dormant state and that the TICLs

reduce the tumour cell concentration through out the tissue. In the next Chapter

we develop two new models that incorporate immunotherapy and we investigate
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its effects on the tumour-TICLs interactions that we have already discovered in

Chapters 2 and 3.



Chapter 4

TICLs-tumour cell interaction with

immunotherapy

In Chapter 2 we investigated the TICLs-tumour interaction without any form of

treatment and found that while TICLs alone are not enough to completely eradi-

cate tumour cells in the body, they bring a tumour to a dormant and a lower stable

state (cancer dormant state). In this Chapter we start by developing a model that

includes immunotherapy. We find the steady state solutions for this model and in-

vestigate their stability. As in the previous homogeneous model, we also analyse

the model’s phase space and perform numerical simulations with well defined

parameter values. Then, we consider spatial distribution, by formulating a suit-

able model and numerically analysing its spatial-temporal dynamics. Finally, we

give possible insights as to the application and reliability of the results.

We focus on immunotherapy as a stimulus to the immune system. We therefore

assume that there is no cell complex formation as a result of IL2 binding to the

immune cells. Specifically, We consider the case of immunotherapy employing

62
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cytokines in adaptive cellular immunotherapy (ACI); the main cytokine responsi-

ble for lymphocyte activation, growth and differentiation being IL2 (see Section

1.2).

4.1 Model development

In this section, we develop a model to study the tumour-TICLs interaction with

immunotherapy. The model considers local kinetic interactions as described in

Chapter 2 in addtion to the effects of IL2. It subdivides the cell population into

local densities of hunting TICLs E, tumour cells T, tumour-TICLs complex con-

centration C, Interleukine2 concentration IL2, and a resting TICLs R. In addition

to the IL2 class introduced, we in this model consider a new class of resting

TICLs. We assume that these are cells from which the hunting TICLs are re-

cruited (see models in [65, 66]). As described in Section 1.2), we assume that with

immunotherapy there is an interaction of cultured immune cells (IL2) that have

anti tumour reactivity with the tumour host. We assume that IL2 does not nec-

essarily bind with TICLs to form a cell complex but rather stimulates the TICLs

to fight cancer through lymphocyte activation, growth and differentiation. We

also assume that IL2 increases the rate of conversion of resting TICLs to hunting

TICLs (see [66]).
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Table 4.1: State variables for the tumour-immune cells model with immunother-

apy (4.1).

State variable Description

E Concentration of activated TICLs in cells per centimetre.

T Concentration of tumour cells in cells per centimetre.

C Concentration of tumour-TICLs cell complexes in cells per centimetre.

IL2 Interluikine concentration in U per m2.

R Resting TICLs in cells per centimetre.

With the above assumptions, we get a system of five coupled non-linear ODEs.

dE
dt

= ρR +
f C

g1 + T
− d1E− k1ET + (k−1 + k2p)C + ωIL2R +

θ2EIL2

g2 + IL2
+ cT,

(4.1a)

dT
dt

= a1T(1− b1T)− k1ET + (k−1 + k2(1− p))C, (4.1b)

dC
dt

= k1ET − (k−1 + k2)C, (4.1c)

dIL2

dt
= s2 +

θ3ET
g3 + T

− d2 IL2, (4.1d)

dR
dt

= s3 + a2R(1− b2R)−ωIL2R− ρR, (4.1e)

where θ2EIL2/(g2 + IL2) is a proliferation term also considered by Kirschener and

Panetta [32]. It is a term that models the stimulation of TICLs by IL2 and is of the

Michaelis-Menten form [32]. θ2 and g2 are Michaelis-Menten constants, obtained

from experimental results. The term θ3ET/(g3 + T) is also a proliferation term

that is as a result of tumour-TICLs interactions. It is also of Michaelis-Menten

form and it is used to account for the self-limiting production of IL2. θ3 and

g3 are also Michaelis-Menten constants. Just like in Chapter 2, the TICLs cells

proliferation term is considered to be f C/(g + T).
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Table 4.2: Newly introduced Parameter description for the tumour-immune

cells interaction model with immunotherapy (4.1).

Parameter Description

s2 Rate of IL2 is supply (amount of IL2 injected into the tissue).

s3 Rate of resting TICLs supply.

ω Stimulation rate of resting TICLs to hunting cells as a result of IL2 supply.

ρ Recruitment rate of hunting TICLs from the resting cells.

c Ability of IL2 to provoke an immune response (antigenicity rate).

a2 Growth rate of resting TICLs.

b2 inverse of carrying capacity for resting TICLs.

d2 Rate of decay of IL2.

As in Chapters 2 and 3, we assume that formation of cellular conjugates occurs

on a time scale of a few minutes, that is dC/dt ≈ 0. The system (4.1) then reduces

to a system of four coupled non-linear ODEs,

dE
dt

= ρR +
θ1ET

g1 + T
− d1E− lET + ωIL2R +

θ2EIL2

g2 + IL2
+ cT, (4.2a)

dT
dt

= a1T(1− b1T)−mET, (4.2b)

dIL2

dt
= s2 +

θ3ET
g3 + T

− d2 IL2, (4.2c)

dR
dt

= s3 + a2R(1− b2R)−ωIL2R− ρR, (4.2d)

where

l = Kk2(1− p), θ1 = f K, and m = Kk2p.
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4.2 Non-dimensionalization

We begin the analysis of the model (4.2) by non-dimensionalizing the system of

equations by scaling the concentrations of E, T, IL2 and R as;

x =
E
E0

, y =
T
T0

, z =
IL2

IL20
, w =

R
R0

, and t̄ =
t
t0

. (4.3)

The order of magnitude of the concentrations for TICLs and tumour cells are the

same as in Chapter 2 (i.e E0 = 106 cells/cm and T0 = 107) cells/cm, we also set

R0 = 107 cells/cm. IL20 is set to be 109 cells/cm, a value that also lies in the

range of concentrations or dosage that a human body can contain [67]. Time is

scaled relative to the rate of TICLs’ deactivation, i.e t0 = d−1
1 . This gives a four-

dimensional system of fractional populations x, y, z, and w . We drop the bar

on the non-dimentionalised time t̄ for convenience. The model (4.2) can then be

re-expressed as:

dx
dt

= φ̄1w +
θ̄1xy

η1 + y
− νxy− x +

θ̄2xz
η2 + z

+ ω̄1wz + c̄y, (4.4a)

dy
dt

= β1y(1− β2y)− µ̄1xy, (4.4b)

dz
dt

= σ2 +
θ̄3xy

η3 + y
− µ̄2z, (4.4c)

dw
dt

= σ3 + α1w(1− α2w)− ω̄2wz− φ̄2w, (4.4d)

where

φ̄1 =
ρR0

E0d1
, θ̄1 =

θ1

d1
, η1 =

g1

T0
, ν =

lT0

d1
, c̄ =

cT0

E0d1
,

ω̄1 =
ω1R0 IL20

E0d1
, β1 =

a
d1

, β2 = bT0, µ̄1 =
mE0

d1
, σ3 =

s3

R0d1
,
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θ̄2 =
θ1

d1
, η2 =

g2

IL20
, ω̄2 =

ωIL20

d1
, σ2 =

s2

E0d1
, φ̄2 =

ρ

d1
,

¯̄θ3 =
θ3

d1
, η3 =

g3

d1
, µ̄2 =

µ2

d
, α1 =

a2

d1
, and α2 = b2R0.

In the above system of equations (4.4), x, y, z and w carry no physical meaning

when x < 0, y < 0, z < 0 and w < 0. For this model, there exists a domain D

in which the system of equations is mathematically and epidemiologically well-

defined. We define this domain D as

D =




x

y

z

w


∈ R4

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ≥ 0

y ≥ 0

z ≥ 0

w ≥ 0


.

4.3 Steady state solutions and stability analysis

Finding analytical solutions to model (4.4) is a difficult undertaking because the

system is coupled and non-linear. We therefore in this section investigate the long

term behaviour of the solutions by calculating the system’s steady state solutions.

We get the steady state solutions by equating the system of equations (4.4) to zero.

Using the parameter values given in Tables 2.3 and 4.3 together with g3 = 103cm3,

a value lower than that in Kirschener and Panetta [32] and s2 = 7.9× 107U/m2,

a value that we choose motivated by the study on dosages of IL2 in Tritarelli at

al. [67], we obtain seven steady state solutions, one healthy steady state (TFE),

a steady state depicting cancer dormancy and five solutions that are biologically

meaningless because they do not lie in the domain D. Of these five, two are
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complex and three have some negative solutions. The two feasible steady states

(healthy and cancer dormant states) are;

E1 = (x1, y1, z1, w1) = (0.3301, 0, 0.796, 0.001) ,

E2 = (x2, y2, z2, w2) ≈ (5.89, 0.798, 0.82, 0.00016) .

To investigate the stability of the steady states above, we linearise the system (4.4)

about each of the steady states to obtain

dXi

dt
= AiXi,

where Ai is the Jacobian matrix of the system evaluated at the steady state.

For i = 1, there are four eigenvalues λ1 = −1, λ2 = −242, λ3 = −192.6 and

λ4 = 3.94, that is three negative and one positive, implying that (x1, y1, z1, w1)

representing a healthy steady state is unstable. For i = 2, there are four complex

eigenvalues λ1,2 = −0.3 ± 5.16i and λ3 = −242.018 ± 5.16i with negative real

parts, implying that (x2, y2, z2, w2) representing a tumour dormant steady state

is a stable focus. This tumour dormant steady state suggests that immunother-

apy does not completely eliminate tumour cells from the human body but rather

brings the tumour cell concentration to a lower cancer dormant state.

4.4 Phase space analysis

Using the parameter values in Tables 2.3, and 4.3, we plot the phase portrait of y

the fractional tumour density against x, the fractional TICLs cell density in Figure

4.1.
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Table 4.3: Dimensional parameter values obtained from Kirschener and Panetta

[32] and Borges et al. [66].

Parameter Estimated value Units

θ2 0.1245 day−1

θ3 5 day−1

c 0 ≤ c ≤ 0.005 day−1

g2 107 cm3

d2 10 day−1

a2 0.0245 day−1

b2 10−7 cell−1

ρ 6.2× 10−9 cells−1day−1

As can be seen from Figure 4.1, the phase space of the fractional densities of TICLs

and tumour cells respectively spiral to a stable focus (tumour dormant state). The

spiralling occurs at a fast rate due to the introduction of immunotherapy. We have

shown that the solutions to the system (4.4) spiral to a cancer dormant state. We

proceed to show using the Dulac-Bendixon theorem [55] that model (4.4) has no

closed orbits in D. This will help us in determining whether the system (4.4) has

periodic solutions or not.

Theorem 4.1 The system (4.4) has no closed orbits for positive values of x, y, z and w.

Proof

In a similar way to that did with system (2.5) (see Theorem 2.4 in Chapter 2),

using Dulac’s criterion, it is equivalent to show that

∂

∂x
(φ(x, y, z, w)ẋ)+

∂

dx
(φ(x, y, z, w)ẏ)+

∂

∂z
(φ(x, y, z, w)ż)+

∂

∂w
(φ(x, y, z, w)ẇ) 6= 0
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Figure 4.1: Orbit of the ODE system (4.2) converging to the tumour dormant

state.

∀ x, y, z, w ∈ D.

Consider

φ(x, y, z, w) =
1

xyzw
,

∇.(gẊ) =
∂

∂x
(φ(x, y, z, w)ẋ) +

∂

∂y
(φ(x, y, z, w)ẏ) +

∂

∂z
(φ(x, y, z, w)ż) +

∂

∂w
(φ(x, y, z, w)ẇ) ,

= − θ̄1

x2yz
− ω1

x2y
− c̄

x2zw
− β1β2

xzw
− σ2

xyz2w
− θ̄3

z2w(η3 + y)
− σ3

xyzw2 −
α1α2

xyz
,

= −
(

θ̄1

x2yz
+

ω1

x2y
− c̄

x2zw
+

β1β2

xzw
+

σ2

xyz2w
+

θ̄3

z2w(η3 + y)
+

σ3

xyzw2 +
α1α2

xyz

)
.

Since we assumed that all parameter values are positive, it implies that
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∇.(gẊ) < 0 ∀ x, y, z, w ∈ D, where

D =




x

y

z

w


∈ R4

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ≥ 0

y ≥ 0

z ≥ 0

w ≥ 0


.

We have shown that the system (4.4) has no periodic solutions thereby ruling out

the possibility of regularly repeating processes. We next simulate the model (4.4)

to determine its numerical solutions since the analytical solutions are hard to get.

4.5 Numerical simulations of the model

Using the parameter values in Tables 2.3, and 4.3, together with g3 = 103cm3, a

value lower than that in Kirschener and Panetta [32] and s2 = 7.9× 107U/m2, a

value that we choose motivated by the study on dosages of IL2 in Tritarelli at al.

[67]. The results are shown in figures 4.2 and 4.3.

From Figure 4.2, it can be seen that the tumour cell concentration reduced from

0.919 in approximately six years, with the case without immunotherapy (see Sec-

tion 2.5, Figure 2.5) to 0.796 in approximately three years. This is a much shorter

time than the time for a similar outcome shown in Figure 2.5). Thus due to the

introduction of immunotherapy to the system, tumour cell concentration is low-

ered down to a dormant state, which is stable in a much shorter time than with

no immunotherapy.

Similarly Figure 4.3 which shows the variation of TICLs cell and tumour cell den-

sities with immunotherapy, against time on different concentration scales, may be
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Figure 4.2: Plots of cell densities with immunotherapy against non-dimensional

time.

compared with Figure 2.6 (with no immunotherapy). In all the numerical simula-

tions, we considered the initial conditions to be x(0) = 0.3, y(0) = 0.5, z(0) = 1,

and w(0) = 0.1 and we used Eulers numerical scheme with n, the number of iter-

ations equal to 20, 000. This was implemented in PYTHON. From the numerical

solutions of the model (4.2) one can then conclude that immunotherapy aids in

bringing the tumour cells to a dormant state but can not completely aid TICLs in

eradicating them.
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(a) (b)

Figure 4.3: Variation of immune (TICLs) and tumour cell densities with im-

munotherapy against time. The time is non-dimensional

4.6 Immunotherapy model in a spatially heterogeneous

domain

In this section we consider the spatial distribution of the TICLs, resting TICLs,

tumour cells, and IL2. We do this to compare and contrast the effects of im-

munotherapy on TICLs-tumour interactions with the incorporation of space.

4.6.1 Model development

We assume that IL2 diffuses in the body. This is a reasonable assumption because

it is a protein like substance and indeed its mechanism of movement in the body

is through diffusion (see Cornelissen et al. [68]). We maintain the same elements

considered in (3.7), that is, chemotaxis and diffusion for the TICLs and diffusion

of the tumour cells.
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Since IL2 diffuses through the tumour localization, and coupled with the elements

already discussed in the previous paragraph, this leads to the PDE system

∂E
∂t

= D1∇2E− χ∇.(E∇α) + ρRh(x) +
θ1ET

g1 + T
− d1E− lET + ωIL2R +

θ2EIL2

g2 + IL2

+ cT, (4.5a)

∂T
∂t

= D2∇2T + aT(1− bT)−mET, (4.5b)

dIL2

dt
= D4∇2 IL2 + s2 +

θ3ET
g3 + T

− d2 IL2, (4.5c)

∂α

∂t
= D3∇2α + nET − d2α, (4.5d)

∂R
∂t

= D5∇2R + s3 + a2R(1− b2R)−ωIL2R− ρR, (4.5e)

where D4 and D5 are the diffusion rates of IL2 and R respectively. We apply

the zero flux boundary conditions to the IL2 and R and assume that their initial

localization in the tissue is the same as that of the TICLs. In other words, the

boundary and initial conditions for IL2 and R respectively are;

∂IL2

∂t
(0, t) =

∂R
∂t

(0, t) = 0, (4.6)

IL2(x, 0) =


0 if 0 ≤ x ≤ L

IL20[1− exp(−1000(x− L)2)] if L ≤ x ≤ x0.
(4.7)

R(x, 0) =


0 if 0 ≤ x ≤ L

R0[1− exp(−1000(x− L)2)] if L ≤ x ≤ x0.
(4.8)

In our case L = 0.2, as assumed in Chapter 3. We non-dimensionalize system (4.5)

as previously done by taking IL2 and R as a fractions of their initial densities.
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Time is nondimentionalized with respect to immune cell diffusion, ie,

Ē =
E
E0

, T̄ =
T
T0

, ᾱ =
α

α0
, ¯IL2 =

IL2

IL20
, R̄ =

R
R0

, and t̄ =
t
t0

.

The bars are dropped for convenience, to give the system of equations

∂E
∂t

= ∇2E− χ∇.(E∇α) + φ̄1Rh(x) +
θ̄1ET

η1 + T
− ψE− νET + ω̄1 IL2R +

θ̄2EIL2

η2 + IL2

+ c̄T, (4.9a)

∂T
∂t

= φ∇2T + β1T(1− β2T)− µ̄1ET, (4.9b)

dIL2

dt
= ξ∇2 IL2 + σ2 +

θ̄3ET
η3 + T

− µ̄2 IL2, (4.9c)

∂α

∂t
= τ∇2α + kET − δα, (4.9d)

∂R
∂t

= ζ∇2R + σ3 + α1R(1− α2R)− ω̄2 IL2R− φ̄2R, (4.9e)

where

λ = χα0t0, θ̄1 = θ1t0, ψ = d1t0, θ̄2 = θ2t0, η2 = g2t0,

ω̄1 =
ωR0 IL20t0

E0
, η1 =

g
T0

, ν = lT0t0, φ = D2t0, β1 = at0,

µ̄1 = mE0t0, τ = D3t0, κ =
nE0T0t0

α0
, δ = d2t0, β2 = bT0,

ξ = D4t0, θ̄3 = θ3t0, η̄3 = g3t0, c̄ =
cT0t0

E0
, σ3 =

s3t0

R0
,

φ̄1 =
ρR0t0

E0
, σ2 =

σ2t0

IL20
, ζ = D5t0, µ̄2 = µ2t0,

ω̄2 =20 t0, α1 = a2t0, α2 = b2R0, φ̄2 = ρt0.

The boundary and initial conditions are, respectively;

∂E
∂x

(0, t) =
∂IL2

∂x
(0, t) =

∂R
∂x

(0, t) =
∂T
∂x

(0, t) =
∂α

∂x
(0, t) = 0,

∂E
∂x

(1, t) =
∂R
∂x

(1, t) =
∂IL2

∂x
(1, t) =

∂T
∂x

(1, t) =
∂α

∂x
(1, t) = 0,



Section 4.6. Immunotherapy model in a spatially heterogeneous domain Page 76

E(x, 0) =


0, 0 ≤ x ≤ L

[1− exp(−1000(x− L)2)], L ≤ x ≤ x0,

R(x, 0) =


0, 0 ≤ x ≤ L

[1− exp(−1000(x− L)2)], L ≤ x ≤ x0,

IL2(x, 0) =


0, 0 ≤ x ≤ L

[1− exp(−1000(x− L)2)], L ≤ x ≤ x0,

T(x, 0) =


[1− exp(−1000(x− L)2)], 0 ≤ x ≤ L

0, L ≤ x ≤ x0,

α(x, 0) = 0, ∀x ∈ [0, x0].

Using a similar method as in Chapter 3, Section 3.5, we discretize model (4.9)

using the Crank Nicholson method. The tridiagonal matrices for the TICLs, tu-

mour and chemokine concentrations remain the same. The right hand sides of

the tumour and chemokine equations (bT and bα) also remain the same except for

bE. The tridiagonal matrices for IL2 and R equations are

AIL2 =



P4 −W4 −W4 0 · · · · · · 0

−W4 P4 −W4 0 0
...

0 −W4 P4 −W4 0
...

...
...

...
... 0

... 0 0 −W4 P4 −W4

0 0 0 0 −2W4 P4





IL2j+1
1

IL2j+1
2

...

...

IL2j+1
N−1

IL2j+1
N


,
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and

AR =



P5 −W5 −W5 0 · · · · · · 0

−W5 P5 −W5 0 0
...

0 −W5 P5 −W5 0
...

...
...

...
... 0

... 0 0 −W5 P5 −W5

0 0 0 0 −2W5 P5





Rj+1
1

Rj+1
2
...
...

Rj+1
N−1

Rj+1
N


,

respectively where

W4 =
ξ

2h2 , W5 =
ζ

2h2 , P4 =
2W4dt + 1

dt
, and P5 =

2W5dt + 1
dt

.

4.6.2 Numerical solutions

We simulate the model using parameter values in Tables 2.3, 3.1, and 4.3. For

these simulations, we also assumed that R and IL2 diffuse at the same rate as

TICLs (ie D1 = D4 = D5 = 10−6). We chose to simulate the model for a long

time period (hundreds and thousands of days) because in reality, tumour forma-

tion and cancer progression takes a long time. Figure 4.4 gives the solutions for

the tumour and TICLs cell densities against distance into the tissue after incor-

porating space and with immunotherapy. In Figures 4.4(a)-(d), we used twinx in

PYTHON to set the TICLs and tumour cell densities on different scales, so as to

compare the two. The right hand side corresponds to the tumour cell density

while the left hand side corresponds to TICLs density. Comparing Figures 4.4(a)-

(d) to Figures 3.2(a)-(d), we observe that the tumour cell density drops to more

than half that in Figure 3.2. We also observe that the TICL density is increased

through out the tissue and the tumour penetration in the tissue drops to half that

of Figure 3.2. Finally, a lower tumour cell density is observed, going by the peaks

of the graphs.
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(a) (b)

(c) (d)

Figure 4.4: Plots of solutions showing spatial distribution of immune (TICLs) and

tumour cell densities with immunotherapy in the tissue at times corre-

sponding to (a) 600, (b) 700, (c) 800 and (d) 1000 days respectively. The

left and right hand scales correspond to TICLs and tumour cell densities

respectively.
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In this Chapter we formulated a model that includes immunotherapy to inves-

tigate TICL-tumour interactions by extending the model of of Matzavinos et al.

[6] and also introducing a new class of resting TICLS. We determined the steady

state solutions to predict the long term behaviour of the system (4.4). We anal-

ysed the model’s phase space and determined numerical solutions. We showed

that while IL2 did not enhance the effectiveness of TICLs to completely eradicate

the tumour cells, it aided in quickly converging the solutions to a cancer dormant

state. Like in Chapter 3, we considered diffusion of TICLs, IL2, and tumour cells

and chemotaxis of TICLs to incorporate spatial distribution of cells. We used the

Crank Nicholson method to numerically solve the resulting system of equations

(4.9). The numerical solutions suggested that tumour cell density drops to more

than half that in 4.4. We also observe that the TICL density is increased through

out the tissue. These results suggest that immunotherapy enhances the proba-

bility of TICLs eradicating the tumour cells but still do not completely eliminate

them from the tissue. Immunotherapy helps to achieve cancer dormancy (the

state to which the TICLs and tumour cells converge).



Chapter 5

Conclusion

The objective of this study was to examine the interaction between immune cells

particularly TICLs and tumour cells and to investigate the phenomenon of cancer

dormancy as a result of these cell interactions using mathematical models. In do-

ing so, we determined the homogeneous models’ equilibria and investigated their

stability, we found a threshold for the homogeneous model without treatment and

established a condition for the existence of a stable tumour free equilibrium state.

We analysed the phase spaces by determining the most important parameter val-

ues that need to be targeted to eradicate cancer in body tissue. We investigated

the existence of periodic solutions and plotted the phase portraits of the models.

For the heterogeneous model without treatment, we investigated the existence of

travelling wave solutions in the phase space. Numerical simulations were com-

pared to analytical predictions, where possible.

In Chapter 2 we considered a 5D TICL-tumour interaction model by Matzavinos

et al. [6] and reduced it to a 2D model by making two major assumptions:

• the formation of cellular conjugates occurs on a time scale of a few hours

while that of tumour cells as well as the influx of immune cells into the
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spleen occurs on a much slower time scale, probably tens of hours

(i.e dC
dt ≈ 0).

• the dead immune and tumour cells do not influence the formation of cellular

conjugates.

We analysed the 2D model to determine the nature of interaction of TICLs and

tumour cells. The model gave one healthy steady state that was unstable and one

cancer dormant state that was stable. Some studies such as Wordaz and Jansen

[41], have shown that a tumour may disappear but after some time regrow to a

lethal size. In our analysis, however, we do not achieve such a result. Our study

showed that the TICLs brought the tumour cells to a cancer dormant state but

did not completely eliminate them from the tissue. We determined a threshold

condition, R0, for the healthy steady state (TFE) and showed that this is locally

asymptotically stable for R0 < 1. We used the centre manifold theory to prove

that this healthy steady state is globally unstable. Sensitivity analysis showed

that the tumour cell death parameter value is the most sensitive in influencing

the phase space of the 2D system. We also showed that the 2D model does not

exhibit a limit cycle, contrary to the results of Matzavinos et al. [6].

In Chapter 3 we incorporated space into our first model to account for the diffu-

sion of TICLS and tumour cells in the tissue, and the movement by chemotaxis of

the TICLs into the tissue. We used finite differences for this spatial distribution

model and the Crank Nicholson method, because it is unconditionally stable. The

model consisted of non-linear coupled PDEs and the non-linearities are evaluated

at the jth level, where the node values are known. The simulations showed oscilla-

tions of densities of both TICLs and tumour cells inside the tissue and less tumour

cells outside the tissue. We carried out travelling wave analysis and showed that

our model exhibited travelling wave solutions. The existence of travelling wave
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solutions confirmed the expectation that the density of the TICLs would outweigh

that of the tumour cells in the tissue. However, in reality, it may not be the case.

In Chapter 4 we developed two new models which incorporated immunotherapy,

one described local interaction kinetics of TICLs-tumour cell interaction and the

other incorporating space. In developing these models, we introduced a new class

of cell concentration, that is the resting TICLS, the cells from which hunting TICLs

are recruited. Our choice of immunotherapy over other cancer interventions was

motivated by the particular models we had developed in Chapters 2 and 3. Other

interventions, such as chemotherapy, radiotherapy and surgery would completely

change the structure of the first two models and so were not part of this study.

Our analysis of both the homogeneous and the spatial temporal models revealed

that immunotherapy aids TICLs in bringing the tumour density to a lower level

but does not completely eradicate cancer in the tissue. The spatial distribution

of the TICLs and tumour cell densities, in the second model with immunother-

apy, remained almost the same as before (without immunotherapy) although the

tumour cell concentration in the tissue was lowered. In future, we will further

extend these models by considering mixed cancer intervention methods, possi-

bly chemotherapy and immunotherapy or radiotherapy and immunotherapy or

radiotherapy and chemotherapy. The investigations would focus on the TICLs-

tumour interactions, and the efficacy of each of these treatments. We hope to

further extend the study to consider diffusion and chemotaxis in higher dimen-

sions to give more accurate insights into TICLs-tumour interactions because in

reality, the geometry of human body tissue is very complex.



Appendix 1- Glossary

• Apoptosis (pages 10, & 11)- is a process of programmed cell death that may occur
in multicellular organisms.

• Avascular (pages 3, 4, 7, 9, 10, 16, 24 & 45 )- is a stage in cancer growth where a
tumour nodule is not supplied with any sort of nutrients by blood vessels.

• Chemokine (pages 5, 13, 14, 17, 23, 43, 47, & 79) - is a cytokine, or signalling protein
type secreted by cells.

• Chemotaxis (pages i, 5, 7, 8, 10, 11, 12, 14, 15,18, 19, 20, 44, 45, 48, 50, 53, 57, 58,
77, 82, & 84) - is the phenomenon whereby tumour and immune cells direct their
movements according to certain chemicals in their environment.

• Kinetics (pages 12, 13, 19, 23, 44, 46, 62, & 85)- is a rate of change in a Biochemical
reaction.

• Mitosis (10, 16, & 46)- is a stage in cell cycle formation.

• Nascent cells (page 4)- are cells that are just coming into existence and beginning
to display signs of future potential.

• Necrotic core (page 4)- Is a layer in a tumour nodule that contains cells that are
dead.

• Proliferating cells (page 4)- is a layer in a tumour nodule containing cells that are
reproducing or replicating.

• Quiescent layer (page 4)- is a layer in a tumour nodule that lies between the pro-
liferating layer and the necrotic core.

• Somatic cells (5, 45) - is any biological cell forming the body of an organism.

• Tumour nodule (pages 4, 5, 27, & 44) is a relatively hard solid that is formed by
an abnormal growth of neoplastic cells. It can be cancerous (malignant) or non-
cancerous (benign).
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Appendix 2- List of Abbreviations

BCL1 Marine B-cell Lymphoma.

CD8+ Cluster of Differentiation 8.

CT Computed Tomography.

DCs Dendritic cells.

DTI Diffusion Tensor Images.

GVAX Cell Genesys.

IL2 Interleukine-2.

IMR Magnetic Resonance Images.

IFNγ Interferon-gamma.

LAK Lymphokine Activated Killer Cells.

NK Natural Killer Cells.

TAF Tumour Angiogenetic Factors.

TICLs Tumour Infiltrating Cytotoxic Lymphocytes (same as Cytotoxic T-lymphocytes, CTLs)
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Appendix 3- List of parameters

Parameter Description

k1 Rate of binding of TICLs to tumour cells.

k−1 Rate of detachment of TICLs from tumour cells without damaging the cells.

k2 Rate of detachment of TICLs from tumour cells resulting into cell death.

p Probability of de-activating/killing tumour cells.

k2 p Death rate of tumour cells.

k2(1− p) Death rate of TICLs.

s Rate of normal flow of mature TICLs into the tumour localisation.

d1 Natural death rate of TICLs.

d2 Rate of decay of de-activated TICLs.

d3 Rate of decay of lethally hit/dead tumour cells.

a Intrinsic tumour growth rate.

1/b Tumor carrying capacity.

D1 TICLs diffusion coefficient.

D2 Tumour diffusion coefficient.

D3 Chemokine diffusion coefficient.

k3 Chemokine production rate.

χ Chemotaxis coefficient.

d4 Deactivation rate of the chemokine concentration.

s2 Rate of IL2 is supply (amount of IL2 injected into the tissue).

s3 Rate of resting cells supply.

ω Stimulation rate of resting cells to hunting cells as a result of IL2 supply.

ρ Recruitment rate of TICLs from the resting cells.

c Ability of IL2 to provoke an immune response (antigenicity rate).

a2 Growth rate of resting cells.

b2 inverse of carrying capacity for resting cells.

d2 Rate of decay of IL2.
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