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ABSTRACT 

South African commercial plantation forests are established primarily to meet both the local 

and global demands of industries that require direct raw materials such as pulpwood or timber. 

Consequently, the commercial forest industry in South Africa is held in high esteem as it makes 

up one of the largest economic forces within the country. For this reason, individuals 

responsible for implementing strategies pertaining to silvicultural and harvesting operations 

within commercial plantations require up to date and detailed multi-forest inventory datasets 

to ensure that optimal yields are guaranteed and that sites are well maintained.  

Despite this, various drawbacks within commercial plantations exist: steep slopes, high 

elevations, and other forms of topographic irregularities, can affect the productivity of the site 

and impact mechanical silvicultural and harvesting operations. In lieu of making more 

informed and efficient decision-making protocols, forest researchers are often tasked with 

implementing and utilising alternative technologies such as remote sensing to determine if 

specific methodologies can be used for gathering multi-forest inventory data that also 

incorporate terrain information. Light Detection and Ranging (LiDAR), a recent remote 

sensing technology, has demonstrated that it is highly robust and can lend itself towards 

providing highly accurate vertical forest structural attributes and horizontal topographic 

derivatives.  

This study employs the use of a LiDAR derived Digital Terrain Model (DTM) (1 m x 1 m 

spatial resolution) to create terrain indices that are representative of the horizontal features 

within the commercial forest sites of interest. In addition, a machine learning approach using a 

random forest (RF) ensemble classifier was adopted to determine how much of the variation in 

forest structural attributes: mean dominant height, mean height, pulpwood volumes and 

diameter at breast height can be attributed to terrain when using the LiDAR derived DTM 

terrain variables. 

The overall findings presented in this study are encouraging and show that a LiDAR derived 

DTM can be successfully used for creating highly accurate terrain indices and can be used for 

predicting variability within even-aged Eucalyptus forest structural attributes within 

commercial plantation forests in KwaZulu-Natal, South Africa, with an acceptable level of 

accuracy. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

 1.1 Introduction 

Over the past few years, there has been a significant increase in the expanse of areas that has 

been used for the establishment of eucalypt forest around the world (de Moraes Goncalves et 

al., 2004). In South Africa, approximately 1.35 million hectares (ha) (0.5%) of land is used in 

the commercial industry alone with eucalypt making up the largest of monoculture forests due 

to its high growth rate (Shackleton et al., 2007). Commercial forestry therefore, holds a high 

intrinsic value and makes up one of the largest economic sectors (Shackleton et al., 2007). For 

this reason, research pertaining to forest productivity has always been of high interest for 

forests that are managed for commercial ventures.  

Most often, the data that is gathered for research and operational purposes take the form of 

multi-source forest inventory (MSFI) that include variables such as height, volume, and 

diameter breast height (DBH) amongst others. Traditionally, all forest structural and terrain 

measurements are captured manually using hand-held/ mobile equipment in the field (Hyde et 

al., 2006). They also employ expensive and time-consuming sampling methodologies that 

requires efficient personnel (Tesfamichael et al., 2010a). Whilst field assessments are often 

described as the most accurate method to capture data, it has many disadvantages, this is 

especially so when working with large field plots or large areas that spans over hundreds of 

hectares such as within commercial plantations (Hyde et al., 2006). Many a time, it limits 

mapping assessments to be carried out at fine scales, to which detailed information of the area 

of interest is not acquired.  In South Africa, similar procedures are applied for gathering of the 

required structural and terrain measurements. However, detailed information that covers all 

areas of interest is particularly important for commercial plantation forests and particularly for 

applications that require detailed accurate representations of the terrain as South African forests 

often consist of highly heterogenous landscapes.  

Remote sensing has been used for various application fields within the last few decades. Within 

the forestry sector, researchers have seen the benefits of alternative technologies such as that 

of remote sensing for the extraction of MSFI data for variables such as height stratification and 

volume yields with high success rates (Tesfamichael et al., 2010a; Tesfamichael et al., 2010b; 

Järnstedt et al., 2012). Over the past decade alone, advances in remote sensing technologies 

have been plentiful and remote sensing has been crucial at addressing challenges that traditional 
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data collections methods cannot handle. For instance, it is well established that is not always 

feasible to gather forest inventory data through manual operations when dealing with areas that 

are over great spatial scales (Wulder, 1998). For this reason, remote sensing becomes 

advantageous as it offers spatially consistent data sets which covers larger areas, it provides 

high spatial detail and is more efficient for applications that require higher temporal resolutions  

(Wulder, 1998). Remote sensing technologies also become highly promising as it can be used 

to provide synoptic views of areas that are otherwise inaccessible and which would result in 

breaks of the spatial data collected if it cannot be gathered. 

Multispectral remotely sensed data sources have provided great strides within the forestry 

sector and have demonstrated high capability for applications related to structure such as for 

the extraction of detailed forest information (Wulder, 1998). However, in the twenty first 

century researches pertaining to forestry and terrain have predominantly shifted to the 

utilisation of optical remote sensed data sources. Optical remotely sensed data sources such as 

the use of aerial imagery, Very High Spatial Resolution (VHR) imagery contain spatial 

resolutions ranging from up to 10 cm or between 2m to 3m resolutions, have been incorporated 

to attain MSFI data (Tuominen and Pekkarinen, 2005). Aerial imagery is highly favoured as 

the mixed pixels that occurs within this data is lower than that of multispectral imagery and 

therefore can provide relatively accurate estimates of forest stand characteristics (Tuominen 

and Pekkarinen, 2005). Despite this advantage noted complications does exist with this data 

source, for example in aerial imagery a single pixel does not represent a forest stand, as opposed 

to that of multispectral imagery, where stand information can be estimated from a single pixel 

(Tuominen and Pekkarinen, 2005). In addition, the stand information or information for a 

single tree must be estimated from a local neighbourhood approach or alternatively convert the 

pixel size into a larger spatial unit which sometimes lead to loss of detailed information 

(Tuominen and Pekkarinen, 2005).  

Light Detection and Ranging (LiDAR) or Laser Scanning, one recent active optical remote 

sensing technology has gained immense popularity by forestry researchers for its robust utility 

for applications within the forestry sector. LiDAR provides two sets of surface models either 

from its first returns which is used for modelling vegetation canopy and last returns which are 

used for representing ground surface and which is used predominantly for terrain applications 

(Wilson, 2012). The advantages of using LiDAR are abundant, for example LiDAR offers high 

density sampling, it provides a high vertical accuracy and is used to provide highly accurate 

surface derivates such as a Digital Elevation Model (DEM) and a Digital Terrain Model (DTM) 
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(Wilson, 2012). Often in remote sensing the two terms are frequently used synonymously 

however, a DEM refers to a gridded raster of a bare earth ground surface, whereas the DTM is 

derived to represent the natural geodetic properties of the surface only, and represents ridges 

and valleys (Ullrich et al., 2007; Wilson, 2012).  In a DTM all non-natural surfaces such as 

buildings and vegetation is subsequently removed and therefore for this reason, DTMs become 

highly valuable for applications such as for the extraction of terrain roughness.  

Terrain roughness can be best described as the topographic variability that exists at a given 

scale and is an important factor known to deter the productivity of forest (Grohmann et al., 

2011). For this reason, accurate information on topographical variability that exists within 

commercial plantation forests are of equal importance for tasks related to productivity through 

the associated impacts of aspect, slope, or incoming solar radiation on the plantation health and 

growth (Maack et al., 2016). At different slopes and aspects within a forest stand, a difference 

in the incoming radiant energy, light, heat, and moisture contents may exist to which variances 

in the structural growth of the stand may be exhibited (Bale et al., 1998). Therefore, these 

derivatives are determined, as areas with steeply sloped terrain or poor aspect are often avoided 

(Bale et al., 1998). These factors thus have the potential to affect the site productivity of the 

stand and volume yields.  

In addition to productivity levels, the importance of terrain roughness is twofold as it can 

drastically impact harvest productivity levels as topographic information is a prerequisite for 

optimal tree felling operations because highly rugged terrain affects the rate to which the 

operations are conducted when using mechanical methods (Davis and Reisinger, 1990; Visser 

and Spinelli, 2012). Inaccurate terrain representations can also lead to the destruction of 

machinery if it is deployed to areas that are dominated by steeped slopes or by terrain that is 

dominated by large boulders (Visser and Spinelli, 2012). The accurate detection of terrain 

therefore allows forest managers to have up to date spatial information that can be used to make 

informed decision pertaining to these operations.  

1.2 Motivation for the study 

Over the past few decades, remote sensing has exceeded expectations for providing accurate 

data sources for applications within the forestry sector and researchers have often exhausted 

their means to demonstrate the importance of how climate, edaphologic factors and mean 

annual rainfall affect productivity and volume yields within commercial plantation forests. 

However, thus far little research exists on how land surface parameters (i.e. slope, aspect, 
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roughness) affects commercial plantation growth and quality when using remotely sensed data 

sources and techniques.  

Additionally, most research to date that utilises optical remotely sensed data sources such as 

LiDAR has focused on using the data as a tool for characterising vertical forest structure 

attributes such as that of tree and stand height, volume, and biomass (Wulder et al., 2008). This 

study is therefore concerned with LiDAR, and its application for terrain roughness modelling 

and wishes to promote an interest on the horizontal capabilities associated with LiDAR for 

determining topographic variability that exist within commercial plantation forests.  

The information that is provided from forest inventories are compulsory for informative and 

effective decision making across various spatial and temporal scales for the management of 

commercial plantations (Wulder et al., 2008).  In lieu of sustainable forest management, forest 

inventories that are up to date and which include terrain variability are required for consistent 

assessments pertaining to distribution, composition, and condition of the forest resources  

(Wulder et al., 2008).  

Once tested this methodology can be applied to South African commercial plantation forest to 

significantly improve the detection of microscale terrain roughness which would result in more 

complete MSFI data and therefore lead to more informed decision making and effective 

management protocols within plantations. One of the main advantages of including terrain 

information into MSFI data is that the terrain does not experience drastic changes on an annual 

basis and therefore terrain assessments conducted can be used for long periods or until there 

has been significant surface disturbance on the terrain.  

1.3 Aim 

Given the above discussion, the general aim of this study is to determine if LiDAR derived 

DTM terrain roughness indices can be used to detect microscale terrain variations within 

commercial Eucalypt plantation forests in KwaZulu-Natal, South Africa. 

1.4 Objectives 

This study contributes to the current standing of knowledge on LiDAR derived DTM modelling 

for terrain roughness modelling, however in this study it is applied to detect microscale 

variability in topography within that of commercial plantation forests in a South African 

context. 
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The objectives of this study are: 

1. To model terrain roughness using high resolution LiDAR derived DTM for commercial 

plantation forests 

2. To determine which roughness indices can accurately detect microscale terrain 

roughness within commercial plantation forests of South Africa 

3. To evaluate if terrain roughness has significant influence on structural variables (i.e. 

tree height, diameter breast height and volumes) when using LiDAR derived DTM 

derived roughness indices for predictive modelling 

4. To determine if the random forest machine learning algorithm can be used for predictive 

modelling of terrain variables 

1.5 Study area  

This study utilises two different commercial plantation forests, Riverdale and Comrie, located 

within Pietermaritzburg, KwaZulu-Natal, South Africa. The average altitude for the Riverdale 

plantation is 1190 m and the terrain is characterised by low mountains and undulating hills. 

The average altitude for the Comrie plantation ranges between 70 m and 650 and displays high 

levels of heterogeneity, as the study site is composed of highly dissected low undulating 

mountains, undulating hills, lowlands, and plains. The main land use in both Riverdale and 

Comrie is plantation forests. A visual representation of the study areas can be seen in figure 1.  
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Figure 1: Location of the study areas: a) South Africa; b) Riverdale Plantation and c) Comrie 

Plantations 
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1.6 Outline of the thesis 

The thesis contains four chapters, two of these chapters were prepared in a peer-reviewed 

publication format with the intention of submitting to peer-reviewed journals. The title of the 

paper is therefore mentioned at the beginning of each of the two subsequent chapters.  

Chapter one deals with the general introduction for this research, the motivation for the study 

undertaken, and the aim and objectives of the study are also provided.  

In chapter two, modelling the effect of terrain variability on even aged Eucalyptus species 

volume using LiDAR derived DTM variables are investigated. In this study 32 terrain variables 

are determined and modelled against structural variables (volume, heights, and diameter breast 

heights) by using machine learning and particularly the random forest algorithm.  

In chapter three, the potential of eight terrain toughness indices extracted from a LiDAR 

derived DTM data for detecting terrain roughness using a supervised random forest 

classification method is then investigated.  An Analysis of Variance is also conducted to 

determine the significance level of each terrain indices derived for detecting terrain roughness. 

Chapter four, provides a conclusion that synthesises the findings of the two papers provided 

and of the overall research conducted.   
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CHAPTER TWO 

Modelling the Effect of Terrain Variability in Even-aged Eucalyptus 

Species Volume using LiDAR-derived DTM Variables. 
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 Munsamy R., Ismail, R., and Gebreslasie, M. (2017) Modelling the Effect of Terrain 

Variability in Even-aged Eucalyptus Species Volume using LiDAR-derived DTM Variables. 

In preparation.  
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Abstract. Reliable and accurate multi-source forest inventory measurements that include 

vertical and horizontal information can assist commercial forest managers in making informed 

decisions pertaining to forest services such as tree species selection, estimating volume yields, 

harvesting planning, as well as the designing of silvicultural protocols within stands of 

commercial plantations. Thus, the aim of this study is to characterise the variation in forest 

structural attribute measurements of Eucalyptus species based on terrain variability derived 

from a Light Detection and Ranging (LiDAR) dataset. In this study 32 terrain variables at five 

different spatial resolution were computed from a LiDAR-derived digital terrain model (DTM). 

Field data were collected for 502 plots within the study area in Richmond, KwaZulu-Natal, 

South Africa. A Random Forest (RF) regression statistical technique was applied to model the 

effect of terrain on forest structural variables such as volume, dominant tree height (HtD), mean 

tree height (Htm), and diameter breast heights (DBH). The results from the random forest 

regression showed that a single resolution analysis returned statistically insignificant 

relationship between most of the computed spatial resolutions and forest structural attribute. 

Only two of the spatial resolutions i.e. 1 m and 7 m produced statistically good relationship 

with HtD of a young E.dunni and Htm of a mature E.dunni returned R2 of 0.70 and 0.68 and 

their RMSE was 1.24 m and 2.33 m respectively. Whereas multi resolution analysis produced 

promising results for example for young E. grandis stands, the RF model predicted high 

significance for HtD and Htm with a R2 value of 0.98 and 0.80, and their RMSE was 1.0023 m 

and 1.80 m respectively. Variable importance indicated that the incoming solar radiation terrain 

variable is the most significant variable for modelling forest structural variability, especially 

for dominant tree height (HtD). The findings from this study indicate that the terrain variable 

incoming solar radiation that is extracted from high resolution LiDAR-derived DTM data is 

particularly useful for height stratification within the plantation forests of South Africa.  

Keywords: Light Detection and Ranging, Terrain variables, Random forest, regression, 

volume, tree height 

2.1 Introduction 

Terrain derived variables such as slope (Wilson and Gallant, 2000), aspect (Grohmann, 2015) 

and local curvature (Freeman, 1991) impact productivity levels within plantations (Maack et 

al., 2016).  Therefore, by modelling terrain variables, additional information related to forest 

structural attributes can be acquired. Several studies have demonstrated a statistically 

significant relationship between the variables derived from LiDAR and forest inventory 
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measurements (Tesfamichael et al., 2010a; Tesfamichael et al., 2010b; Van Leeuwen and 

Nieuwenhuis, 2010; Järnstedt et al., 2012; Jakubowski et al., 2013). However, only a limited 

number of studies has investigated the utility of terrain variables derived from LiDAR to 

predict forest inventory measurements. An increase in the detail of the knowledge and  

understanding of the role of terrain variability (specific to plantation sites) would lead to the 

derived information being used to successfully manipulate and homogenise stands (Li et al., 

2014), thereby increasing site productivity and decreasing the heterogeneity associated with 

large commercial plantations. 

In a recent study Ediriweera et al. (2016) aimed to characterise the variation in the structural 

attributes of vegetation with relation to terrain by calculating the Terrain Wetness Index (TWI), 

potential solar insolation, slope and elevation using a LiDAR dataset for both an open canopy 

eucalypt forest and a closed subtropical rainforest within Australia. A general linear model 

approach was employed to examine the relationship of structural attributes and terrain. The 

results showed that maximum over story height decreased when there was an increase in 

potential solar radiation in the eucalypt forest (R2=0.45) and showed that eucalypt forests were 

more prone to variations in terrain than subtropical rainforests (Ediriweera et al., 2016). 

In another study Saremi et al. (2014a) employed the use of a mixed linear model to investigate 

the relationship between terrain variables, i.e. slope and aspect, derived from LiDAR against 

the mean tree height (Htm) of radiate pine (Pinus radiate. D.Don) for two even-age (9 and 34 

year-old) sites. The mixed linear model used in this study was based on one continuous 

dependent variable with several explanatory variables and showed that the derived height 

estimates were highly correlated with field heights (R2=0.90 and RMSE =0.66) for 9-year sites 

and (R2=0.87 and RMSE=1.49) for the 34-year sites (Saremi et al., 2014a). The results obtained 

from this study also showed that taller trees were present in low slopes with southerly aspects, 

whilst short trees were found in steep slopes with northerly aspects.  

The same authors also applied a mixed linear model to quantify the relationship between the 

DBH of these trees and height classes along with the terrain factors (slope and aspect) (Saremi 

et al., 2014c). The results obtained from that study showed that a greater DBH was found in 

gentle slopes with southerly aspects (Saremi et al., 2014c). Further investigations by Saremi et 

al., (2014b) found that micro-scale variations of DBH and Htm could be quantified, based on 

incoming solar radiation. The results were reported as (R2=0.58) for height and (R2=0.60) for 

DBH for mature stands; and (R2=0.58) and (R2=0.60) for the young stands respectively (Saremi 
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et al., 2014b). Trees that had larger DBH and which were taller were found in areas with lower 

incoming solar radiation, with the authors stating that variation exists within stands of the same 

age category (Saremi et al., 2014b). These studies have introduced and exampled the benefits 

of utilizing LiDAR and its derivatives within the forestry sector. For more information see 

Popescu et al., 2003; González et al., 2008; Wulder et al., 2012). 

Many of these studies apply statistical techniques to quantify these measurements. Regression 

techniques including Artificial Neural Networks (ANN) (Svetnik et al., 2003); Multiple Linear 

Regression (MLR) and k-nearest neighbour (KNN); Partial Least Squares (PLS) (Duncanson 

et al., 2015); Support Vector Regression (SVM) (Jakubowski et al., 2013); Bayesian Model 

Averaging (BAM) (Verkerk et al., 2015); Generalized Addictive Model (GAM) (Maack et al., 

2016) and Random Forest (RF) (Aertsen et al., 2012) are examples of statistical techniques that 

have been utilised to explain the relationships between forest structural attributes and remote 

sensing data. However, whilst ANN, MLR, KNN and many more of these methods provide 

relatively high prediction performance, the drawback in using these methods is that they are 

not able to deal with high-dimensional data without performing dimension reduction (Svetnik 

et al., 2003).  

RF for regression, however, has been a method consistently favoured by the remote sensing 

community. For example, Yu et al. (2011) and Nurminen et al. (2013) utilised RF to model 

forest structural attributes using aerial imagery and Lidar data respectively. Yu et al. (2011) 

successfully used the RF algorithm to predict forest structural attributes (i.e. tree height, DBH 

and stem volume) within a boreal forest in Southern Finland. The independent variables 

included 26 tree features that were derived from the LiDAR data, whilst the dependent 

variables included the forest structural attributes. The results derived showed high correlations 

for the observed and predicted height (R=0.93 and RMSE=10.03%), DBH (R=0.79 and 

RMSE=21.35%) and volume (R=0.87 and RMSE=45.77%). Similarly, Nurminen et al. (2013) 

used a RF approach to predict Htm, DBH and volume for plots extracted from both LiDAR 

point clouds and aerial photography (Nurminen et al., 2013). Such results show that LiDAR-

derived forest attributes are more accurate than information derived from digital aerial 

photography. The results also showed high correlations for mean height (R=0.98 and 

RMSE=0.97), DBH (R=0.94 and RMSE=2.16m) and volume (R=0.93 and RMSE=37.58m3/ 

ha).  



  

12 
 

Therefore, in the last decade alone RF has gained widespread acceptance by researchers 

involved with remote sensing analysis due to its ability to successfully analyse non-parametric 

data that may exhibit high levels of noise. RF is able to provide a higher prediction accuracy 

than other machine learning approaches with a faster computation rate (Ismail and Mutanga, 

2011). As an ensemble technique, RF consist of unpruned regression trees that are created using 

bootstrap sampling for training data (Svetnik et al., 2003), and by growing a large number of 

trees it is able to keep prediction bias low (Prasad et al., 2006; Cutler et al., 2007; Dye et al., 

2012). It is also consistently used as a random feature selection in tree induction  and provides 

measures of variable importance (Svetnik et al., 2003).  

Based on the studies reviewed we therefore acknowledge that LiDAR can provide valuable 

forest structural and terrain information, and machine learning statistical techniques such as RF 

can be used with highly accurate results for predictive modelling. Hence, in this study RF is 

adopted to access the relationship between LiDAR terrain variables and forest structural 

attributes. To our knowledge, the question that remains is: Does the terrain have an impact on 

forest structural attributes within the Eucalyptus plantation environments of South Africa? The 

aim of this study is therefore to explain the variability in forest structural attributes such as 

height, pulpwood volumes and DBH across terrains when using LiDAR-derived terrain 

variables. 

2.2 Materials and Methods 

2.2.1 Study Area 

The study was conducted in Sappi’s Riverdale plantation. The extent of the plantation is 2503 

hectares (ha). The Riverdale plantation is composed of two areas with compartment blocks 

found near the west and east of the town of Richmond, which is in the Midlands of KwaZulu-

Natal, South Africa. The area of interest within the plantation spans approximately 6 ha. The 

average altitude for the plantation is 1190 m and the terrain is characterised by low mountains 

and undulating hills. The geology of the region is dominated by mudstones, sandstones, tillite, 

amphobilite and basalts. The average air temperature is 16. 1o C. The mean annual precipitation 

reported for the region is 916 mm and the mean annual runoff for the plantation is 143 mm. 

The Riverdale plantation comprises of areas that are dominated by the Ngongeni veld of Natal 

(40%), Highveld Sourveld (30%) and Southern Tall Grassland (20%) veld types. The soils 

found in the plantation are composed mostly of sandy-clay and sandy-clay loams.  
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The dominant land use in the study area is commercial forestry consisting of Eucalyptus species 

which provide affordable direct raw materials for industries producing pulp for paper and 

packing, and timber for commercial processing and for the production of wood chips  (Hassan, 

1999). The Eucalyptus stands in the study area are aged between 2 and 10 years in the 

plantation, and Eucalyptus is the main species grown due to its growth rate being favourable 

in KwaZulu-Natal province (Godsmark, 2013). Eucalyptus species are known for their fast-

growing stands and the trees are therefore planted as clones from seedlings. These stands are 

established at 1667 trees per ha, as per the pulpwood regime, and are harvested between 6 and 

7 years (Dube et al., 2015).  This study area consisted of E. grandis and E. dunni stands. 
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Figure 2: Location of the study area: a) South Africa; b) KwaZulu-Natal and c) Riverdale 

Plantation 
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2.2.2 LiDAR Dataset 

The LiDAR data was acquired by Land Resources Institute (LRI). The LiDAR surveys were 

conducted between the 15th and the 22nd of March 2014 at the Riverdale plantation. The 

surveyed point cloud data was used to create a very high resolution DTM. The data was then 

projected to the Transverse Mercator with a Gauss Conformal projection. The central meridian 

was 31 and the datum used was Hartebeeshoek 94. The flight and sensor instrument parameters 

used for the collection of the LiDAR data are presented in table 1.  

Table 1: LiDAR flight and sensor instrument parameter 

LiDAR Survey 

Parameters 

Unit  

Altitude  m AGL  800 

Flight speed  kt  100 

Scan angle  o  25 

Scan swath width  M  324.3 

Scan overlap  %  50 

Scan rate  Hz                                           52 

Laser pulse rate  Hz  128000 

Laser pulse density  pulses/ m2  4 

 

2.2.3 Field Surveys 

Field surveys were conducted from the 12th to the 22nd May 2014; a total of 502 plots spanning 

over 27 compartments at the Riverdale plantation were covered. The following structural 

attributes were included in this study from the inventory surveys: volume, mean dominant 

height (HtD), mean height (Htm) and diameter at breast height (DBH). A Global Positioning 

Device (GPS) was used in the field to survey circular plots at a 10-m radius using a grid-based 

systematic sampling technique. DBH was measured using a Vertex IV laser instrument and the 

tree heights were measured using a Haglof Digitech Calliper Methods. 

Further, to be able to consider the species and age variation in this study, the plots were 

partitioned into datasets based on species and age. Eucalyptus grandis was separated into age 

categories of young (3-6, n = 151) and mature (7-10, n = 137), while Eucalyptus dunnii 

included young (2-5, 104) and mature (6-9, n = 110). The descriptive statistics for the age 

categories are provided in Table 3. 
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2.2.4 DTM developing 

2.2.4.1 Extracted Terrain Variables  

The various terrain variables were calculated, using the nearest neighbour re-sampling 

technique, at the following spatial resolutions: 3 m x 3 m, 5 m x 5 m, 7 m x 7 m and 9 m by 9 

m. A complete list of terrain variables that were calculated is provided in table 2 below. Spatial 

analysis and map algebra tools were then used to extract the zonal statistics for each of the 

terrain variables (n = 32) at a plot level. The final datasets were composed of the various terrain 

variables at the five re-sampled spatial resolutions. 

Table 2: Terrain variables modelled in this study 

Variable  Description Reference  

Direct Insulation DIRECT Direct solar radiation received  Lukovic et al. (2015) 

Diffuse Insulation  DIFFUSE Solar radiation received after 

scattering  

Saremi et al. (2014b) 

Curvature Classification CC Planimetric curvature ratio Drăguţ and Blaschke 

(2006) 

Convergence Index CI Uses aspect to determine flow 

convergence and divergence 

Wilson and Gallant 

(2000) 

Down Slope Distance 

Gradient 

DDG Quantifies local drainage patterns 

on topography 

Hjerdt et al. (2004) 

Flow Accumulation FA Measures upstream catchment area 

for a cell  

Navarro-Cerrillo et al. 

(2014) 

LS Factor LSF Determines slope length based on 

the Universal Soil Loss Equation 

Boehner (2006) 

Mass Balance Index MBI Measures geomorphographic relief Möller et al. (2008) 

Melton Ruggedness 

Number 

MRN Measures basin relief Melton (1965) 

Slope Length  SL Determines effects of erosion on 

slope 

Navarro-Cerrillo et al. 

(2014) 

Slope Variability  SV Measures difference in relief (Popit and Verbovšek, 

2013) 

Slope SLP Measure of steepness Wilson and Gallant 

(2000) 

Aspect ASP Direction of slope Grohmann (2015) 

Profile Curvature PC Rate at which slope changes  Wilson and Gallant 

(2000) 
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Surface Specific Points SSP Detects specific points from parallel 

processing of elevation  

Hutchinson (1989) 

Standard Deviation of 

Elevation 

SDELV Standard deviation of elevation 

from the mean 

Grohmann et al. (2011) 

Standard Deviation of 

Slope 

SDSLP Standard deviation of slope from the 

mean 

Grohmann et al. (2011) 

Terrain Surface Convexity TSC Measures cells having positive 

convexity   

Iwahashi and Pike (2007) 

Morphometric Protection 

Index 

MPI Determines immediate surrounding 

and how relief is protected 

Olaya and Conrad (2009) 

Real Surface Area RSA Calculates real area of slope Olaya and Conrad (2009) 

Topographic Position 

Index 

TPI Measures relative topographic slope 

position 

Guisan et al. (1999) 

Terrain Ruggedness Index TRI Represents a change in the sum of 

elevation  

Riley et al. (1999) 

Topographic Wetness 

Index 

TWI Measures hydrological conditions 

within a site relatively 

Sørensen and Seibert 

(2007) 

Local Curvature LC Calculates sum of the gradients to 

its neighbouring cells 

Distance of weighted average of 

local curvature 

Calculates the local curvature on 

flow direction as a sum of 

neighbour cells that are facing 

upwards  

Calculates the local curvature on 

flow direction as a sum of 

neighbour cells that are facing 

downslope 

Calculates local curvature as a sum 

of neighbour cells 

Freeman (1991) 

Freeman (1991) 

Freeman (1991) 

 

Freeman (1991) 

 

Freeman (1991) 

Upslope Curvature UC 

Local Upslope Curvature LUC 

 

Downslope Curvature 

 

DC 

 

 

 

Local Downslope 

Curvature  

 

 

 

LDC 

Vector Ruggedness 

Measure 

VRM Measures roughness around a 

neighbourhood  

Sappington et al. (2007) 

Midslope MS Position of slope Florinsky et al. (2002) 

Valley Depth  VD Vertical distance to channel base Schmidt and Hewitt 

(2004) 

Terrain Curvature Index TCI Measure of terrain shape Park et al. (2001) 
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2.2.5 Regression Analysis 

2.2.5.1 Random Forest 

RF was implemented in this study using libraries found in R statistical software (R 

Development Core Team, 2008). RF has been described as a method that is easy to implement 

as the user is required to input only the number of trees to be split (ntree) and the number of 

variables (mtry) to be used in the process. Each decision tree in the algorithm is then responsible 

for casting a unit vote for class that is the most popular at unit x (Breiman, 2001). In order to 

increase the diversification of decision, trees random forest makes use of a bootstrap 

aggregating method using one third of the data to ensure the trees grow from different subsets 

within the training data  (Rodriguez-Galiano et al., 2012).  These bootstrap samples are referred 

to as out-of-bag (OOB) samples. The OOB data that were not used during the training process 

is then used for prediction, as it provides an unbiased assessment of accuracy as outlined by 

Breiman (2001), Rodriguez-Galiano et al. (2012) and Kulkarni and Sinha (2013).  

2.2.5.2 Multi-resolution analysis  

In this section, the following was discovered: 

i. The terrain variables that were calculated at the various spatial resolutions were 

aggregated and used in 8 RF models to predict the forest structural attributes of the two 

Eucalypt species. 

ii. To determine the optimal set of variables that could best explain forest structural 

attributes for the young and mature Eucalyptus species, a backward feature selection 

approach was used to reduce the number of input terrain variables that could best 

explain the variation in the various forest structural attributes. 

2.2.5.3 Random Forest Variable Importance 

Variable importance can be described as a measurement used to decide how much of an 

influence a variable has on the predictive accuracy of a model (Treeratpituk and Giles, 2009). 

In RF two types of variable importance measures are often used, a Gini importance and a 

permutation importance (Treeratpituk and Giles, 2009). According to Grömping (2012) the 

Gini importance method may result in bias due to the average impurity reduction associated 

with this technique for regression trees. Breiman (2001) suggests the permutation method, 

which has been widely adopted. In this method, for each tree t in the RF, the OOB  mean 

squared error (MSE) is computed by averaging the squared deviations of the OOB responses 
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for the predictor variables (Breiman, 2001; Grömping, 2012). In this study, RF variable 

importance is based on the permutation accuracy method.  

2.2.5.4 Random Forest Variable Selection  

Variable selection becomes important when dealing with multiple predictor variables for 

prediction, as many predictors may lead to a decrease in model performance. A variable 

selection method based on RF-recursive feature elimination was adopted. In this method, 

variables are selected based on their variable importance ranking. All variables are first iterated 

through the algorithm. The algorithm then drops any variables that do not contribute to the 

predictive accuracy of the model (Granitto et al., 2006). The algorithm runs until all 

unnecessary variables are progressively dropped.   

2.3 Results 

The descriptive statistics (the mean, Standard Deviation (SD), minimum and maximum values) 

of the plots categorised by species and age from the field inventory assessment are illustrated 

in table 3 below. 

Table 3: Descriptive statistics for the field inventory assessment, sample size n=502 

  HtD 

(m/ha) 

Htm  

(m) 

Vol  

(m3/ ha) 

DBH 

(cm/ ha) 

Young E. Grandis Mean 24.15 20.14 228.16 14.42 

Standard Deviation  3.73 3.02 83.56 2.29 

Minimum 17.46 14.59 77.42 9.55 

Maximum 29.07 25.20 366.49 18.80 

      

Mature E. Grandis 

 

Mean 30.95 25.14 321.02 17.55 

Standard Deviation 

Minimum 

Maximum 

3.33 

26.9 

40.03 

 

2.40 

20.27 

31.37 

 

76.35 

221.73 

590.52 

 

2.19 

13.50 

23.02 

Young E. Dunni Mean 14.65 13.27 74.93 10.49 

Standard Deviation 3.01 2.70 32.35 1062 

Minimum 8.18 6.42 13.05 4.24 

Maximum 19.23 17.69 141.69 14.3 

      

Mature E. Dunni 

 

Mean 23.23 19.37 195.62 13.70 

Standard Deviation 

Minimum 

Maximum 

4.74 

15.53 

32.78 

3.40 

13.54 

27.17 

71.14 

54.91 

344.47 

1.96 

9.30 

19.28 
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2.3.1 Individual Spatial Resolution Analysis 

In this section, the results of the various spatial resolutions are reported separately to determine 

if a specific spatial resolution (i.e. 1 m x 1 m, 3 m x 3 m, 5 m x 5 m, 7 m x 7 m or 9 m x 9 m) 

could best explain the variation in the forest structural attributes for the young and mature 

Eucalyptus species. In total, 80 RF models were developed for the two Eucalypt species that 

were considered in this study. A graphical representation of certain terrain variables re-sampled 

to the various spatial resolutions is to be found in figure 3 below. 
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                Diffuse                    Standard Deviation of Slope               Local Curvature 

 

 

 

 

 

Figure 3: The effect of different spatial resolutions on diffuse, standard deviation of slope, and 

local curvature. 
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obtained at a 9 m spatial resolution with a R2 value of 0.58 and a RMSE value of 1.24 m. The 

highest predictive accuracy obtained for the Htm response variable was obtained at a 9 m 

spatial resolution with a R2 value of 0.42 and a RMSE of 0.99 m. For the DBH response 

variable, the highest predictive accuracy was obtained at the 5 m spatial resolution with a R2 

value of 0.55 and a RMSE value of 0.81 cm. With regards to the volume response variable, the 

highest predictive accuracy was obtained at a 9 m spatial resolution with a R2 value of 0.42 and 

a RMSE of 37.37 m3/ha.  

  

Figure 4: Random Forest predictive accuracies (R2) obtained for (a) young and (b) mature E. 

grandis stands. The black arrows show the models with the highest predictive accuracies. 

The mature E. grandis stands produced varied results. For the HtD response variable, the 

highest R2 value was reported as 0.31 at a 5 m spatial resolution and a RMSE value of 2.18 m. 

The Htm response variable yielded the highest accuracy at a 1 m spatial resolution with a R2 

value of 0.23 and a RMSE value of 1.28 m. The DBH model that yielded the highest R2 value 

was at a 9 m spatial resolution with a value of 0.47 and a RMSE value of 0.77 cm. Volume 

yielded the highest predictive accuracy at a 1 m spatial resolution with a reported R2 value of 

0.37 and a RMSE value of 29.16 m3/ha.  

2.3.1.2 E. dunnii  

The results for the young (a) and mature (b) E.dunnii stands are depicted in figure 5. For young 

E.dunnii stands the highest predictive accuracy for the HtD response variable was obtained at 

a 1 m spatial resolution with a R2 value of 0.7 and a RMSE value of 1.24 m. The highest 

predictive accuracy obtained for the Htm response variable was obtained at a 7 m spatial 

resolution with a R2 value of 0.68 and a RMSE of 1.15 m. For the DBH response variable, the 

highest predictive accuracy was obtained at the 1 m spatial resolution with a R2 value of 0.18 
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and a RMSE value of 1.88 cm. The highest predictive accuracy was obtained at a 1 m spatial 

resolution with a R2 value of 0.29 and a RMSE of 18.53 m3/ha for the volume response variable.  

  

Figure 5: Random Forest predictive accuracies (R2) obtained for (a) young and (b) mature E. 

dunni stands. The black arrows show the models with the highest predictive accuracies. 

For mature E. dunnii stands, the highest R2 value for the HtD response variables was reported 

as 0.62 and a RMSE value of 2.73 m at a 5 m spatial resolution. The Htm response variable 

yielded the highest accuracy at a 3 m spatial resolution with a R2 value of 0.66 and a RMSE 

value of 1.48 m. The DBH model that yielded the highest R2 value of 0.60 and a RMSE value 

of 0.71 cm occurred at a 7 m spatial resolution. The volume model yielded the highest 

predictive accuracy at a 5 m spatial resolution with a reported R2 value of 0.58 and a RMSE 

value of 41.08 m3/ha. 

2.3.2 Multi-resolution analysis  

2.3.2.1 E. grandis 

For young E. grandis stands (table 5a), the RF model predicted high significance for HtD and 

Htm with a R2 value of 0.98 and 0.80, and their RMSE was 1.0023 m and 1.80 m respectively. 

The RF model predicted moderate significance for volume with a R2 value of 0.56 and a RMSE 

of 67.80 m3/ha, while DBH was predicted with the lowest R2 value of 0.48 and a RMSE value 

of 1.93 cm using the RF model.  

In most cases, RF models for mature E. grandis stands (table 5a) showed poorer results than 

for the younger stands.  The highest predictive accuracy was a R2 value of 0.29 and a RMSE 

of 2.42 m/ha for HtD. Volume yielded a R2 value of 0.27 and a RMSE of 55.67 cm3/ha. DBH 

gave rise to a R2 value of 0.22 and a RMSE of 1.97 cm. The lowest accuracy reported was for 

the Htm model, as a R2 value of 0.13 with a RMSE of 2.09 m.  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

HtD Htm Volha DBH

R
2

a)

1m 3m 5m 7m 9m

0

0,2

0,4

0,6

0,8

HtD Htm Volha DBH

R
2

b)

1m 3m 5m 7m 9m



  

24 
 

2.3.2.2 E. dunni  

For young E. dunni stands (table 5b), the RF model also predicted high significance for HtD 

and Htm with a R2 value of 0.66 and 0.61, and their RMSE was 1.85 m/ha and 1.66 m 

respectively. The RF predicted moderate significance for volume with a R2 value of 0.27 and 

RMSE of 27.78 cm3/ha, whilst DBH was predicted with the lowest R2 value of 0.14 and a 

RMSE of 1.93 cm. In the case of mature E. dunnii (table 5b), like young E. dunnii, the RF 

model predicted high significance for HtD and Htm, with a R2 value of 0.61 and 0.61, and their 

RMSE was 2.78 m/ha and 2.04 m respectively. The RF predicted moderate significance for 

DBH with a R2 value of 0.55 and a RMSE of 1.24 m/ha, while volume was predicted with the 

lowest R2 value of 0.44 with a RMSE of 49.57 cm3/ha.  

  

Figure 6: Coefficient of determination (R2) for (a) young and mature E. grandis and (b) young 

and mature E. dunni 

2.3.3 Variable Importance  

There was no consistent pattern for variables that were ranked important for both young and 

mature eucalypt species. For young E. grandis, the terrain variable diffuse solar radiation was 

frequently returned as the most important variable, as it is placed in the first and/or second rank 

in most forest structural attribute predictions. For young and mature E. grandis species, direct 

solar radiation appeared highly significant, as it appeared in the top five ranking predictor 

variables for HtD, Htm and Volume, to which DBH is the exception. For young and mature E. 

dunnii, the terrain variable diffuse solar radiation was the most frequently returned variable, as 

it provided the highest-ranking variable for all structural models in these categories.  There was 

also no consistent ranking of important variables after the terrain variable diffuse solar 

radiation, as the variables ranked important fluctuated for each structural attribute modelled. 
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The varied importance for the structural variables with the highest R2 value for each structural 

attribute for each species is provided in figure 7. 

 

 

 

 

Figure 7: Varied Importance for young and mature E. grandis and E. dunnii for (a) HtD (b) 

Htm (c) Volume and (d) DBH 

2.3.4 Random Forest Variable Selection 

In efforts to improve the predictive accuracy of the structural attributes modelled, a variable 

selection based on RF-recursive feature elimination was implemented. For young E. grandis 

there was a decrease in R2 values for HtD models at all spatial resolutions. For Htm there was 

an increase in predictive accuracy for models at the 1 m and 3 m spatial resolutions. For 

volume, there was a decrease in all models except at the 1 m spatial resolution.  For DBH, only 

models at the 1 m and 3 m spatial resolution increased in predictive accuracy. However, when 

modelling mature E. grandis all spatial resolutions displayed higher R2 values, to which the 

exception was for the DBH model at a 9 m spatial resolution.  
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For young E. dunnii, HtD models showed increases in R2 values for all spatial resolutions. 

However, for Htm, Volume and DBH the R2 values either decreased or remained the same. 

When modelling mature E. dunnii all R2 values increased for HtD. The models also showed 

increases in R2 values for Htm and Volume, whereas the models for DBH showed decreases in 

the R2 values obtained. The results obtained for RF variable selection are provided in table 4. 

R2 values with an * indicate that there was an increase in predictive accuracy after variable 

selection. 

For young E. grandis the highest predictive accuracy was maintained as a R2 value of 0.98 was 

reported whilst decreasing the predictor variables to three (figure 6a and table 4). The lowest 

result obtained in this age category was for DBH, but post-variable selection increased the 

predictive accuracy to a R2 value of 0.63 by using only 12 predictor variables. For the mature 

age category, the highest accuracy was also maintained as a R2 value 0.29 was reported; the 

algorithm decreased the predictor variables to nine. Lastly, for Htm, which produced the lowest 

accuracy in this age group, increased post-variable selection as a R2 value of 0.30 was reported 

using 13 predictor variables.    

For young E. dunnii the predictive accuracy for HtD improved by 1.51% with a R2 value of 

0.67 using only 32 predictor variables. For DBH the results were reported as a R2 value of 0.20 

post-variable selection using 60 predictors.  For mature E.dunnii, HtD yielded a R2 value of 

0.71, which was an overall 8.20% increase. The algorithm decreased the predictors from 160 

to 108.  The lowest value obtained for volume was subsequently increased to a R2 value of 0.48 

by reducing the predictors to only 12.   
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Table 4: Coefficient of determination (R2) for young and mature E. grandis and E. dunnii from 

variable selection 

  
E. grandis E. dunnii 

  
1m 3m 5m 7m 9m 1m 3m 5m 7m 9m 

HtD Young 0.98 0.27 0.53 0.28 0.48 0.70 0.69* 0.68* 0.53 0.59* 

Mature 0.35 0.36* 0.31 0.44* 0.45* 0.74* 0.67* 0.68* 0.69* 0.55* 

Htm Young 0.33* 0.36 0.33* 0.33 0.17 0.59 0.58* 0.68* 0.62 0.52 

Mature 0.25 0.23* 0.18 0.15* 0.22 0.62* 0.67* 0.65* 0.58* 0.62* 

Vol Young 0.34* 0.10 0.30 0.31 0.22 0.31* 0.25* 0.22 0.06 0.15 

Mature 0.40* 0.50* 0.34* 0.45* 0.39* 0.49* 0.53* 0.55 0.57* 0.51 

DBH Young 0.46* 0.35 0.55 0.35 0.38 0.14 0.09* 0.13 0.08 0.14* 

Mature 0.27* 0.28* 0.20* 0.31* 0.30 0.47 0.38 0.36 0.43 0.41 

 

2.4 Discussion 

This study investigated the variation in forest structural attributes within young and mature 

commercial eucalypt plantation sites. Pulpwood volume, HtD, Htm and DBH were modelled 

in relation to variations in topography by using a machine-learning RF statistical technique. 

The results obtained from this study indicate that the RF ensemble technique is useful for 

explaining the difference that exists between explanatory forest structural attributes and terrain-

based predictor variables.  It was also evident that variations in structural attributes can be 

primarily attributed to response variables that are associated with solar radiation. 

2.4.1 Individual spatial resolution versus multi-resolution analysis 

This research applied regression modelling to both individual and multi-resolution spatial 

approaches to determine if there was an optimal spatial resolution for each structural variable 

modelled. Furthermore, Navarro-Cerrillo et al. (2014) stated that micro-scale terrain variability 

cannot be accounted for at the micro scales within plantations, since terrain heterogeneity is 

dominated by both spatial and temporal scales. The results indicated that young and mature E. 

grandis requires a 9 m spatial resolution for predicting variations in terrain for HtD, whereas a 

1 m spatial resolution provides the highest predictive accuracies for young and mature E. dunnii 

species. 

Individual spatial resolution indicated that there was no spatial resolution that was consistent 

for predicating pulpwood volume for both eucalypt species. In addition to these trends, it was 
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found that a multi-resolution approach did not improve the predictive accuracy of the HtD, 

pulpwood volume or DBH structural variables modelled, and even resulted in errors obtained 

for the HtD model, as it overestimated the model performance for young E. grandis (R2= 0.98 

and RMSE of 100.23 m). However, in that regard it was also found that Htm can be modelled 

using a multi-resolution approach, as the model yielded more significant results (R2= 0.80 and 

RMSE of 1.80m) than did an individual spatial resolution approach for young E. grandis. The 

results obtained can be explained, as terrain details are often lost or refined when DTMs or 

DEMs are coarsened into larger spatial scale. Site-specific regions such as commercial 

plantation forests, where variations in terrain can be affected by spatial variability such as slope 

and aspect, may therefore require multi-resolution analysis for Htm modelling. 

2.4.2 Variable Selection versus using all the variables 

To improve the predictive accuracy of the structural attributes modelled, a RF-backward 

feature selection was implemented to reduce the number of variables that did not contribute to 

the predictive accuracy of the algorithm. The results obtained were surprising, as the predictive 

accuracy of the models did not improve, and in many cases even decreased the predictive 

accuracy of the explanatory structural variables. This was unexpected, as various other studies 

have shown improvements in the predictive accuracies of the attributes modelled when using 

variable selection methods (Treeratpituk and Giles, 2009; Ismail et al., 2010; Genuer et al., 

2010).  In addition to the unusual trends associated with the predictive accuracy of the structural 

variables modelled, variable importance analysis showed that that not all predictor variables 

had significant weights for the RF algorithm and therefore did not contribute to the predictive 

accuracy of the explanatory structural attributes modelled. Significantly high weights were 

placed on the diffuse and direct incoming solar radiation predictor variables. This trend was 

especially evident for regression models pertaining to height stratification and HtD for both 

eucalypt species and is evident in the literature, as solar radiation or competition for light has 

been found to impact tree growth. Larger diameters and height and thus pulpwood volume 

yields are found in areas with lower intensities of radiation (Saremi et al., 2014b). It has 

therefore been shown that solar radiation can impact the variation in tree heights. Further 

variation can be seen between young and mature eucalypt species. 

2.4.3 Young versus mature stands  

This research has also shown that age categories (young and mature), where characteristically 

open canopies are associated with younger age groups and closed canopies with mature age 

groups, display different degrees of variability. Younger stands of E. grandis displayed more 
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variation in height, pulpwood volume and DBH than mature E. grandis stands in the plantation.  

This result is comparable with Saremi et al. (2014a) in which mixed linear modelling explained 

a 90% variation in height stratification for young sites and only a 87% variation for mature 

radiata pine plantations. Edirirweera et al. (2014) also produced similar results, as an 80% 

variation was found for young open canopy E. propinqua and E. siderophloia forest as 

compared with a 60% variation in closed canopy conditions.  

Different results were found for E. dunnii, higher variations were found for mature stands than 

for young stands. These results indicated that subspecies variation occurs in eucalypt plantation 

forest for terrain. According to Arnold et al. (2004) E. dunni is considered as an excellent 

alternative to E. grandis as it is more adaptable to dry or frost-prone areas and demonstrates 

faster growth rates. The results from this study therefore support those in the literature and 

show that E. dunni can adapt better to variations in terrain than E. grandis. In commercial 

plantation forests, the heterogeneity of height and volume within stands is important to 

ascertain, as these characteristics affect the overall profitability and quality of the deliverables. 

This study therefore shows that whilst plantations contain the same climatic, topographic, soil, 

precipitation and silvicultural regimes, micro-scale variations within stands of even-aged 

plantations still exist. The special factors that cause the differences in the growth rates of E. 

grandis and E. dunnii species would require further analysis, which is not within the scope of 

this study.  

2.4.4 Other considerations and limitations noted in this study 

Of notable interest to terrain applications is the accuracy of the LiDAR derived DTM, which 

can be compromised if is not captured and handled at optimal conditions, especially for studies 

at such as fine scale as this. According to Hawbaker et al. (2010)  LiDAR can be captured 

either for on-leaf or off-leaf conditions within the forest. When using low-density LiDAR, 

which is often used for elevation mapping, the data should be captured during off-leaf 

conditions so that the pulses can reach the ground (Andersen et al., 2005; Reutebuch et al., 

2005). However, the LiDAR that is captured for forestry applications are captured during on-

leaf conditions as per Hawbaker et al., (2010). The impact of using on-leaf and off-leaf LiDAR 

is demonstrated by Bouvier et al. (2015), where the results indicate that obtaining LiDAR for 

volume estimates can be improved by collecting it during off-leaf conditions. This can 

therefore have substantial impacts on the DTM that may be created from the LiDAR system 

for terrain applications in forestry, as tree crowns intercept the pulses.  The accuracy of many 

3D-acquired remotely-sensed data including LiDAR is affected by topography, with many of 
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the errors occurring in areas where the slope faces away from the sun or has a low solar angle 

(Rahlf et al., 2014). These characteristics could therefore inadvertently have impacted the 

accuracy of this research.  

Issues associated with LiDAR pulse densities and spatial resolution are important, as errors 

associated with plot data can be manifested when using field inventory data. Often such studies 

will make use of forest inventories that have been previously collected, as this study has. The 

error associated with this data lies in the Global Positioning System (GPS) that is used to collect 

plot data, where location error by the system can be up to ten metres (Hill et al., 2014). This 

becomes of interest when working with DTM of very high spatial resolution i.e. 1-5 metres. 

According to Fuller (1987), when the exact location or centre of the plot location is given, the 

R2 value obtained for modelling will be higher. In addition, the area studied in this research 

was dominated by a heterogeneous landscape with variations in the plots sampled, different 

age groups ranging from two to ten years, and different heights, DBH and observed volumes. 

Therefore according to Straub et al. (2013b), should a more homogenous or a larger site be 

sampled there is a possibility that the RMSE could be decreased. 

Despite the high cost of LiDAR and LiDAR-derived DTM, which remains a barrier to many 

researchers, this study has shown that a 1 x 1 m spatial resolution is required for modelling 

terrain variables in site-specific localities such as plantation forests in which plot level 

information is required. Nevertheless, various successful research projects have shown that 

there is no requirement for high density LiDAR within forestry applications (Hawbaker et al., 

2010). This study is different from those in that it suggests that there may be a need for such 

data when modelling terrain and structural variables at the plot level within a plantation forest. 

Whilst the cost associated with LiDAR and LiDAR-derived DTM is high, should one high 

quality DTM be purchased and readily available it could be used in many analyses, as it is 

expected that the terrain will remain unchanged,  and the equipment could therefore be used 

for future inventories within forest (Järnstedt et al., 2012). 

 2.5 Conclusion 

For many decades forest managers have known the intrinsic value of attaining accurate height 

metrics for volume estimation at the stand level in commercial plantation forest. The main aim 

of this study was to examine the relationships between forest structural attributes such as height 

(Htm and HtD), volume and DBH across terrain variables derived from LiDAR data. This study 

has been a first attempt to determine how much of the variation in tree structure can be 
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attributed to terrain, using LiDAR-derived DTM. Whilst the results have not produced the level 

of accuracy necessary for operational use, they do indicate that there is a great potential for 

LiDAR-derived DTM as a tool to determine the impacts of terrain on volume and tree structure 

estimates, especially on height metrics which show greatest variation in stands associated with 

different terrains. For this reason, this study provides a framework for use as a tool in forest 

inventory decision making by forest managers. Given accurate forest inventories and spatial 

datasets, forest managers would be able to make informed decisions to regularise stands due to 

their knowledge of the variations that exist within stands of even-aged species.  
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CHAPTER THREE 

 

Modelling Terrain Roughness using a LiDAR-derived DTM and a 

Supervised Random Forest Approach 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Munsamy, R., Ismail., R and Gebreslasie, M. (2017) Modelling Terrain Roughness using a 

LiDAR-derived DTM and a Supervised Random Forest Approach. In preparation.  
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Abstract. The accurate detection of terrain roughness is imperative for both silvicultural and 

operational functions within commercial plantation forests. This study investigates the 

potential of Terrain Roughness Indices extracted from LiDAR data for detecting terrain 

roughness in a commercial plantation forest using a supervised random forest classification 

method. All studied Terrain Roughness indices showed strength in discriminating between 

roughness classes (rough, intermediate, and smooth). The results indicated that all eight terrain 

roughness indices could discriminate all or some classes and were significant at (p<0.05), 

whilst the Terrain Ruggedness Index (TRI), the Standard Deviation of Slope (SDSLP), the 

Melton Ruggedness Number (MRN) and the Slope Variability (SV) were significant at 

(p<0.001). When using all eight terrain indices the random forest supervised methodology that 

was adopted in this approach yielded a classification accuracy of 90% with a Cohen’s kappa 

statistic of 0.85. However, the random forest variable importance result showed that TRI and 

SDSLP provide the most accurate result for the detection of all terrain roughness classes in a 

commercial plantation forest in KwaZulu-Natal, South Africa. A supervised random forest 

approach proved to be a robust technique for classifying terrain roughness. 

Keywords: LiDAR, DTM, terrain roughness, random forest, forestry 

3.1 Introduction 

Airborne Laser Scanning (ALS) or Light Detection and Ranging (LiDAR) is a recent active 

remote sensing technology that has proven its capabilities in the forestry industry  (Hudak et 

al., 2002; Antonarakis et al., 2008; Asner, 2009; Edson and Wing, 2011). LiDAR has 

significant advantages with regard to resolution, systems automation and cost efficiency, and 

provides terrain information for densely vegetated regions that is more accurate than that 

provided by more traditional passive remote sensing technologies (Baltsavias, 1999; Hollaus 

and Höfle, 2010). In addition, the technology has the capability to accurately capture the 

vertical and horizontal plantation forest surface structure and thereby capture terrain structure 

at a higher precision by extending measurements into the third dimension (3D) (Lefsky et al., 

2002; Van Leeuwen and Nieuwenhuis, 2010; Wulder et al., 2012).  

By means of utilizing remote sensing data and Geographic Information System (GIS) 

techniques, precise terrain information for inaccessible, densely forested regions can be 

provided (Baltsavias, 1999; Hollaus and Höfle, 2010). For this reason, LiDAR is rapidly 

becoming the sole method of gaining accurate forest data, and has already replaced traditional 

data collection in certain localities of the world, especially for terrain mapping within 
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heterogeneous and inaccessible environments. Thus, the advent of high spatial resolution 

LiDAR data with overall accuracies (OA) ranging between 10-15 centimetres (cm) has 

revolutionized the way in which elevation data is captured and sourced for terrain applications 

(Baltsavias, 1999; White et al., 2010).  

Most terrain-related applications make use of topographical mapping that relies on the use of 

Digital Elevation Models (DEM) or Digital Terrain Models (DTM) to represent surface 

characteristics (Wilson, 2012). From LiDAR a high-resolution DEM or DTM is derived from 

the last pulse of the LiDAR data, which is achieved by filtering a point cloud into off-terrain 

(non-ground) points and terrain points (Ullrich et al., 2007; Cavalli and Marchi, 2008). A DTM 

represents the bare ground surface, with all non-ground surfaces or objects such as vegetation 

and buildings removed (Sterenczak et al., 2013). DEM is often used interchangeably with DTM 

as an umbrella term in various research projects (Hoechstetter et al., 2008). However, 

Podobnikar et al. (2000) state that the characteristic difference between the two models is that 

a DEM is referred to as grid data and therefore contains only elevation attributes, whilst the 

term DTM refers to a modelled structure of the surface that may contain additional terrain data 

including peak points and ridgelines. 

In forestry the accuracy of the DTM is an important consideration (Sterenczak et al., 2013). 

The main advantage of DTM data is that it provides an efficient means to extract topographic 

information and it allows for surface processes to be easily modelled, whilst still containing a 

high spatial resolution and accuracy. Researchers have noted that the infrared illumination 

emitted by the LiDAR system has the capability to penetrate gaps in the canopy of densely 

forested areas and due to the high precision of the data it becomes possible to accurately 

identify and monitor objects of interest that are located within the forestry understory, 

producing accurate surface measurements and representations (Kasai et al., 2009; White et al., 

2010). For that reason, LiDAR overcomes the limitations of traditional passive remote sensing 

systems, thereby becoming particularly valuable in terrain mapping in the forestry sector. 

Primary analysis can be based on the DTM, which provides data pertaining to aspect, elevation, 

slope, plan and profile curvature and terrain roughness, for instance (Zomer et al., 2002; 

Mulder et al., 2011).  

 

One of the most valuable topographic attributes derived from a DTM is terrain roughness, 

which is described as the variability or irregularity that is experienced by a topographic surface 

at a given scale (Grohmann et al., 2011). Terrain roughness consists of three categories 
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dependent on scale and can be based on a micro-level (mm/ cm), the meso-level (dm/ m), where 

objects such as shrubs and boulders are depicted, or the macro-level (m/ km), the choice being 

determined by topographical features (Hollaus et al., 2011). Differing levels of terrain 

roughness are therefore required for distinct applications, and information derived from terrain 

roughness modelling has been utilized in applications within geomorphology (Sankey et al., 

2010; Rodríguez-Caballero et al., 2012); geology (Morris et al., 2008; Berti et al., 2013)  

ecology (Sanson et al., 1995; May et al., 2008) and forestry (Ferry et al., 2010; Saremi et al., 

2014). 

 

To date, a range of approaches has been put forward to quantitatively describe the roughness 

of terrains using LiDAR-derived data  for various applications (Sankey et al., 2010). Whilst 

numerous techniques have been employed for calculating terrain roughness in various 

landscapes across multiple scales, the methodological approaches utilized for modelling terrain 

roughness are either based on a statistical nature or are more traditional approaches which 

involve the physical collection of surface information, which is often recognised as a 

cumbersome task to perform (Shepard et al., 2001; Sankey et al., 2010). In environments where 

traditional approaches are the main method of determining roughness, morphometric indicators 

of terrain roughness can also provide  an excellent complementary method for validation 

purposes (Popit and Verbovšek, 2013).  

An example of modelling terrain roughness is provided by Cavalli and Marchi (2008). The 

authors made use of a LiDAR-derived DTM with a resolution of 2 m x 2 m to quantitatively 

analyse the local topography of alluvial fans in a small alpine stream located in Moscardo 

Torrent in the Eastern Italian Alps. A topographic roughness index based on SDrestopo, plan 

curvature and a shaded relief map were used to determine the roughness of the alluvial fans. 

The results demonstrated that the DTM was a valuable source of data for modelling surface 

morphology. Similarly, Grohmann et al. (2011), who conducted research in the Midland 

Valley, Scotland, utilised six common techniques for determining terrain roughness. Methods 

were compared for five different resolutions ranging from 5 m x 5 m, 10 m x 10 m, 25 m x 25 

m, 50 m x 50 m and 100 m x 100 m, and across twelve different moving window sizes. The 

methods used to determine terrain roughness included the area-ratio, vector-dispersion, 

SDELV, SDrestopo, SDSLP, and SDPC. The outcome of the study showed that the SDSLP, the 

SDPC and the vector-dispersion methods yielded good results whilst the SDELV and SDrestopo 

produced intermediate results and the area-ratio method failed to yield meaningful results 



  

36 
 

(Grohmann et al., 2011). In a more recent study conducted by Popit and Verbovšek (2013) in 

the Rebrnice area, Slovenia, DEMs with a resolution of 3 m x 3 m were utilised to determine 

terrain roughness for landslides. In this study, the slope variability (SV) and the Terrain 

Ruggedness Index (TRI) were used. The results obtained from this study showed that the TRI 

method was preferred in this region as it yielded more defined differences in relief and visually 

produced a larger range of data. Other noteworthy studies include those done by Sappington et 

al. (2007), Streutker et al. (2011), Bretar et al. (2013) and De Reu et al. (2013). From the 

aforementioned studies, LiDAR-derived DTMs and DEMs have proved to be useful tools for 

characterizing terrain roughness across multiple scales (González et al., 2008).  

Whilst numerous techniques have been employed for calculating terrain roughness, a standard 

methodology has yet to be developed for quantitatively measuring the accuracy of terrain 

roughness algorithms and indices for complex environments such as that of a plantation forest. 

Random Forest, which is a common machine-learning classifier, has been used in many fields 

for classification. A Random Forest classification provides more accurate results than most 

commonly used classifiers  (Ismail and Mutanga, 2011). It is highly favoured due to the fact 

that it can account for high levels of noise and is found to be more suited to dealing with any 

outliers that may exist within the data  (Breiman, 2001; Rodriguez-Galiano et al., 2012). 

Application fields that have utilized Random Forest for classification with high accuracy 

include forestry, geomorphology and ecology. In addition, Random Forest is highly favoured 

as it can provide an indication of the predictor variables that are most important for 

classification accuracy. Presently the utilization of a supervised Random Forest for terrain 

roughness analysis is rather new, with little to no literature documenting any findings. In one 

study conducted by Baldwin et al. (2017) a supervised Random Forest algorithm was adopted 

to classify terrain variables for the stratification scheme for the Shale Hill’s Catchment 

Area.  Terrain variables were combined with soil information and classified. The Random 

Forest algorithm showed that the most important variables for detecting soil properties included 

depth of bedrock, Upslope Contributing Area (UCA), Valley Depth (VD) and Local Slope 

(LS), thereby providing an indication of the best variables to use for stratification (Baldwin et 

al., 2017). In a contrasting research project, Zhang et al. (2016) utilised a Random Forest 

classifier to evaluate the transversability of the terrain for mobile robot navigation. The results 

indicated that the Random Forest classifier could effectively determine the subset of highly 

important variables for classification. The author was then able to use the best set of variables 

to attain a higher classification accuracy of 91.75%. 
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It is important to note that despite the popular use of remote sensing and particularly LiDAR 

technology in various application fields in South Africa, there is no significant research that 

utilizes a high spatial resolution LiDAR-derived data set for the application of modelling terrain 

roughness in local environments of South African forests, which indicates considerable gaps 

in the research in this field, and more importantly in large-scale South African agricultural 

plantation environments. The importance of terrain roughness detection within forestry lies in 

its ability to affect productivity in commercial forestry, particularly for operations that make 

use of mechanized systems and that may be slowed due to rough or very steep slopes (Alam et 

al., 2012). By utilising terrain roughness algorithms and indices, primary factors within sites 

such as roughness or the steepness of slopes can be determined, thus allowing for a more 

optimal selection of the required equipment before field operations are conducted (Alam et al., 

2012). Thus, by evaluating the use of terrain indices from LiDAR-derived DTMs for detecting 

terrain roughness in plantation forests, sustainable forest management goals and up-to-date 

forest inventory systems with accurate spatial information can be derived (Reutebuch et al., 

2005; Wulder et al., 2008). It is within this context that this study seeks to determine if the 

terrain indices extracted from high resolution LiDAR-derived DTM can be used to accurately 

detect terrain roughness in a commercial plantation when using a supervised Random Forest 

technique.   

3.2 Materials and Methods 

3.2.1 Study Area 

The study was conducted in Sappi’s Comrie forest plantation. Figure 8 represents the study 

site. The main land uses in the area are forestry and sugar cane cultivation. The altitude for the 

site ranges between 70 m and 650 m. The mean annual temperature in the plantation ranges 

between 19o and 20o.  Precipitation in the site ranges between 890 mm and 940 mm per year. 

The terrain of the plantation displays high levels of heterogeneity, as the study site is composed 

of highly dissected low undulating mountains, undulating hills, lowlands, and plains. The 

geology of the site is composed of the Natal Group and Red-Brown Sandstones.  
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Figure 8: Location of the study area: a) South Africa, b) KwaZulu-Natal and c) Comrie 

Plantation 
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3.2.2 Dataset  

3.2.2.1 LiDAR 

The airborne LiDAR point data was collected over the Sappi Comrie forest plantation. The 

Land Resource International collected the data. The LiDAR points were classified for each 

flight line into either ground or non-ground points. In order to inspect the integrity of the 

LiDAR data set, quality assurance was conducted by using 16 Real-Time Ground Control 

Points (GCP) collected using a TrigNET system (Land Resources International, 2015). The 

RMSE for the LiDAR was reported as 0.08 m. Other residuals achieved in the accuracy 

assessment produced minimum residual values ranging from -0.09 m to 0.17 m (Land 

Resources International, 2015). By utilizing a  vendor-specific proprietary technique the 

filtered LiDAR ground points were then thinned and used to create a Triangular Irregular 

Network (TIN) (Brubaker et al., 2013). The resultant TIN was then utilized to create the high-

resolution DTMs with a grid elevation of 1 m x 1 m based on the Hartebeesthoek 94 datum 

with a Transverse Mercator Lo31 projection system. 

3.2.3 Methods 

3.2.3.1 DTM Developing 

3.2.3.1.1 Extracted Terrain Roughness 

Considering the scale and local topography of the study area, the following terrain roughness 

methods were chosen: TRI, VRM, TPI, SDSLP, SDELV, SDPC, MRN and Slope Variability. 

The input elevation data was the DTM data with a 1 m x 1 m resolution. To determine an 

optimal cell size for this study, a preliminary test was conducted for a single terrain roughness 

method against two commonly used moving-window sizes, 3 m x 3 m and 10 m x 10 m. A 

basic comparison showed that the 10 m x 10 m moving-window visually displayed coarser 

detail than the 3 m x 3 m moving-window, which displayed finer detail in roughness over a 

greater area, as is required for micro-scale terrain roughness mapping. Even though larger relief 

objects could not be depicted at relatively small window sizes, it was important in this study to 

determine micro-scale terrain roughness which could otherwise have become obscured by 

using larger window sizes.  As the window size becomes larger, it is impossible to determine 

the response of the objects of interest, as the scale becomes larger than that of the feature of 

interest (Grohmann et al., 2011). A 3 m x 3 m cell size was therefore chosen for this study. A 

visual representation of the different terrain roughness variables modelled is presented in table 
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5. The cast of colours represented in the subset maps is based on the code rough (blue), 

intermediate (dark green) and smooth (light green). 

The terrain roughness modelling was conducted using an open-source System for Automated 

Geoscientific Analysis (SAGA) GIS Software v. 2.1.4. and the Environmental Systems 

Research Institutes (ESRI) ArcGIS v. 10.1 software package. The following morphometric 

indicators of terrain analysis in the SAGA GIS package were utilized to create the TRI VRM; 

Slope, Aspect, and Curvature and the MRN information layers. ESRI’s ArcGIS Model Builder 

in ArcCatalog was utilized. The Focal Statistics under Spatial Analysis Tools were added to 

the model to create the following information layers for the TPI method: minimum elevation, 

maximum elevation and a smoothed DTM. The resultant data were then imported into ArcMap, 

where the raster calculator in the Spatial Analysis Tools was then utilized to calculate the final 

roughness information layer. A similar process was followed for SDELV, Slope Variability and 

SDSLP methods. A detailed description of the multiple roughness methods used in this study 

is provided in table 5. A summary of the framework that was employed in this study is 

presented in figure 9.  

 

Figure 9: Framework for this study 
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Table 5: Terrain indices used in this study 

Method Name   Equation/ Index Description Reference 

1. Terrain 

Ruggedness 

Index 

 

TRI 

 

TRI= 

√|(maxDEM)2– (minDEM)2| 

maxDEM= maximum raster 

minDEM= minimum raster 

 

Change in elevation between 

the central grid and the mean of 

an 8-cell neighbourhood of 

surrounding cells 

 

(Riley et al., 

1999) 

2. Slope 

Variability                                   

 

SV 

 

SV=  Smax−Smin  

SV = Slope Variability output 

raster; Smax= maximum raster; 

Smin= minimum raster 

 

 

Difference in relief between the 

minimum and maximum 

elevations of a landscape 

(Popit and 

Verbovšek, 2013) 

3.Topographic 

Position Index 

 

TPI 

 
 

TPI= Z0-Z̅ 

Z0 = elevation at central point Z̅= 

average elevation 

 

 

Measures the relative 

topographic slope position of 

the central point using the 

difference between the 

elevation of the first point and 

the mean elevation of a 

predetermined neighbourhood 

(Guisan et al., 

1999) 

4.Melton’s 

Ruggedness 

Number 

MRN 

 

MRN= (Zmax-Zmin)/ Sqrt(A) 

 

 

 

 

 

Determines basin relief divided 

by the square root of the basin 

area 

 

(Melton, 1965) 
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5. Vector 

Ruggedness 

Measure 

 

VRM 

 
 

∣ r ∣ =  √(∑ )2x  +  (∑ )2y  + 

(∑ )2z  

 

Roughness is measured as the 

variation of a three-

dimensional orientation of grid 

cells within a neighbourhood  

 

(Sappington et al., 

2007) 

6. Standard 

Deviation of 

Slope 

 

SDSLP 

 
 

SDslope=√
1

nR−1
∑ i = 1(zi − z̅)2 

zi= height and z̅= average height 

Determines roughness as a 

factor of standard deviation 

(Grohmann et al., 

2011) 

7. Standard 

Deviation of 

Elevation 

SDELV 

 

(“meanDEM”-“DEM”)/ 

“rangeDEM”  

meanDEM = mean raster, 

rangeDEM= raster with range of 

elevation values 

 

Measures topographic 

roughness when the mean of 

the DEM is subtracted from the 

original DEM value 

(Grohmann et al., 

2011) 

8. Standard 

Deviation of 

Profile 

Curvature 

SDPC 

 
 

SDprofc=√
1

nR−1
∑ i = 1(zi − z̅)2 

zi= height and z̅= average height 

Measures downslope curvature 

and identifies breaks in slopes 

(Grohmann et al., 

2011) 
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3.2.4 Statistical analysis 

In this study we tested the hypothesis that the terrain roughness indices extracted from a high-

resolution LiDAR-derived DTM would be able to discriminate amongst the differing 

roughness classes (i.e. rough, intermediate and smooth). An Analysis of Variance (ANOVA) 

with a Tukey’s HSD post-hoc test was conducted to determine the significance level.  The 

ANOVA and Tukey’s HSD post-hoc test were conducted using SPSS.  

 

3.2.5 Classification 

3.2.5.1 Random Forests 

Random Forest was implemented using the Random Forest library available in R statistical 

software (R Development Core Team, 2008). Random Forest is an ensemble classifier that 

makes use of multiple decision trees, in which each tree is selected on a bootstrap method of 

the original data set (Breiman, 2001). Each of the subsets of data drawn is different for each 

decision tree (Halmy et al., 2015). This method also allows for minimal error estimation from 

the test data set, and is referred to as the Out–of-Bag (OOB) error. The remaining test set is 

predicted from the bootstrap samples in which the OBB predictions are calculated based on all 

trees and is referred to as the Mean Square Error (MSEOOE) (Liaw and Wiener, 2012).  The 

Random Forest algorithm requires the user to determine two parameters: the number of 

decision  trees to be grown and the number of predictor variables that should be split for each 

of the decision trees  (Rodriguez-Galiano et al., 2012).  In this study default parameters were 

used. An illustration of the Random Forest classifier for classification is provided in figure 10. 

 

Figure 10: Illustration of the Random Forest Classifier 
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The most commonly used method of reporting the accuracy of classification accuracy is 

through the generation of a Confusion matrix (Asmala, 2012). The confusion matrix relates the 

accuracy of the classification on a class-to-class basis and provides the accuracy of the 

classification compared with the reference image and the classification data (Patil et al., 2012). 

As this study employed a supervised Random Forest technique to train the model, the User’s 

Accuracy (UA), which refers to the probability that a given pixel on the classified image 

matches the land-cover that is being classified, and the Producer’s Accuracy (PA), which 

relates to the probability of the reference pixel’s being accurately classified, are calculated. The 

Cohen’s Kappa statistic, which includes some elements of the error matrices (classification 

errors), is calculated by the Random Forest classifier  (Yuan et al., 2005). 

3.2.5.2 Variable Importance 

Variable importance is described as the measurement of influence on accuracy (Treeratpituk 

and Giles, 2009). The amount of influence that a variable has on classification accuracy can be 

determined by the Random Forest classifier during the training process (Zhang et al., 2016). In 

a Random Forest classifier, variable importance is determined when a critical variable is 

permutated, and other variables remain unchanged whilst the out-of-bag (OOB) mean square 

error accuracy shows a decrease (Zhang et al., 2016). The OOB mean squared error (MSE) is 

determined by averaging the squared deviations of the OOB response for all the predictor 

variables (Breiman, 2001; Grömping, 2012).  

3.4 Results 

3.4.1 ANOVA and Post-Hoc Tukey Test 

In this study, we tested the hypothesis that the terrain roughness indices would be able to 

discriminate amongst the differing roughness classes by conducting a one-way ANOVA. The 

ANOVA was conducted at a 0.05 significance level. The results indicated that all eight terrain 

roughness indices could discriminate all or some classes and were significant (p<0.05). A one-

way ANOVA can tell that there is a significant difference between the terrain roughness 

classes, but it is unable to tell where the difference in the classes lies (Ismail et al., 2007). A 

Tukey’s HSD post-hoc test is therefore required to determine where the difference lies in each 

of the terrain roughness classes (Ismail et al., 2007). The results obtained from Tukey’s HSD 

post-hoc test are provided in table 6. 

From the statistical analysis, it was found that all terrain roughness indices can discriminate 

between some or all classes. Post-hoc analysis also showed that all terrain roughness variables 
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could discriminate either between all or some classes at a higher significance level (p<0.001). 

VRM was significant at (p<0.05), but was unable to show significance for classes intermediate 

and smooth at (p<0.001). MRN and TRI could discriminate classes at both the (p<0.05) and 

(p<0.001). SDELV was the only index that was unable to discriminate between classes rough 

and intermediate, but could discriminate between classes rough and smooth and intermediate 

and smooth at the (p<0.05). SDELV could discriminate between classes rough and smooth and 

intermediate and smooth at (p<0.001). TPI was significant (p<0.05) for all classes, but it 

demonstrated significance for classes rough and smooth and intermediate and smooth only at 

(p<0.001). SDPC showed significance for all classes at (p<0.05), but could discriminate 

between classes rough and smooth only at (p<0.001). SV and SDSLP showed significance for 

both (p<0.05) and (p<0.001) for all classes. The most significant separation of results was for 

the terrain variables TRI, SDSLP, MRN and SV, as these indices demonstrated the ability to 

distinguish at all classes at the significance level (p< 0.001).   
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Table 6: Analysis of variance results with a Tukey’s Post-Hoc HSD test.  Class rough, 

intermediate and smooth. (P<0.05= * not significant, P<0.05= ** significant, P<0.001= † not 

significant, P<0.001 ††= significant) 

VRM Rough Intermediate Smooth MRN Rough Intermediate Smooth 

Rough .. ** 

†† 

** 

†† 

Rough .. ** 

†† 

** 

†† 

Intermediate ** 

†† 

.. * 

† 

Intermediate ** 

†† 

.. ** 

†† 
Smooth ** 

†† 

* 

† 

.. Smooth ** 

†† 

** 

†† 

.. 

TRI Rough Intermediate Smooth SDELV Rough Intermediate Smooth 

Rough .. ** 

†† 

** 

†† 

Rough .. * 

† 

** 

†† 
Intermediate ** 

†† 

.. ** 

†† 

Intermediate * 

† 

.. ** 

†† 
Smooth ** 

†† 

** 

†† 

.. Smooth ** 

†† 

** 

†† 

.. 

TPI Rough Intermediate Smooth SDPC Rough Intermediate Smooth 

Rough .. * 

† 

** 

†† 

Rough .. * 

† 

** 

†† 
Intermediate * 

† 

.. ** 

†† 

Intermediate * 

† 

.. * 

† 
Smooth ** 

†† 

** 

†† 

.. Smooth ** 

†† 

* 

† 

.. 

SV Rough Intermediate Smooth SDSLP Rough Intermediate Smooth 

Rough .. ** 

†† 

** 

†† 

Rough .. ** 

†† 

** 

†† 
Intermediate ** 

†† 

.. ** 

†† 

Intermediate ** 

†† 

.. ** 

†† 
Smooth ** 

†† 

** 

†† 

.. Smooth ** 

†† 

** 

†† 

.. 

 

3.4.2 Classification 

In this study the OOB rate of error was reported as 12.5%. The results from the Random Forest 

classifier indicated that the classifier produced an overall accuracy of 90% with a Cohen’s 

kappa statistic of 0.85 when using a supervised classification techique (table 3).  The PA and 

UA were reported as 92.10% and 90.00% respectively (table 7). The Random Forest classifier 

also provides an indication of the optimal tuning parameter (mtry). Several different mtry 

values from two to eight were tested by the classifier. An mtry value of two provided the lowest 

accuracy, whilst mtry values three to seven demonstrated high accuracies at a stable trend and 
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Cohen’s kappa statistics value of 82.50%.  The results indicated that in this study the optimal 

mtry needed to acquire the highest classification accuracy was eight (figure 11). 

Table 7: Confusion matrix showing the predicted accuracy of terrain roughness when using a 

3-level classification system: Rough, Intermediate, and Smooth 

Class Rough Intermediate  Smooth UA 

Rough 35 3 2 87.50% 

Intermediate 2 35 3 87.50% 

Smooth 1 4 35 87.50% 

PA 92.10% 83.33% 87.70% 90.00% 

 

 

Figure 11: mtry (horizontal axis) versus the  rate of error (Cohen’s kappa in percent (%) 

(vertical axis) 

3.4.3 Random Forest Variable Importance 

The most important terrain variables in the Random Forest supervised classification process 

are presented in figure 12. The variables are sorted in accordance with their importance across 

the classes. In this study, VRM, TRI and SDSLP are the top three terrain roughness variables 

as identifiedby the classifier. SV and TPI were ranked 4th and 5th. SDelv was ranked 6th, whilst 

MRN and SDPC were ranked 7th and 8th respectively.  
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Figure 12: Variable importance determined from the RF classifier. 

 The most important terrain variables for the supervised classification variables are sorted 

according to their importance across the classes. The horizontal axis represents the terrain 

variables and the vertical axis represents the importance of each variable. Arrow indicated the 

variables with the greatest importance. 

3.5 Discussion 

In this study eight terrain indices were extracted from a high-resolution LiDAR-derived DTM 

to determine if it could be accurately utilised to detect terrain roughness within a commercial 

plantation forest when using a supervised Random Forest technique. The results obtained from 

this study indicate that high-resolution LiDAR-derived DTM and that the supervised Random 

Forest technique provide a robust method for accurately detecting and classifying terrain 

roughness within a commercial plantation forest dominated by highly heterogonous 

landscapes. 

3.5.1 ANOVA 

According to Sappington et al. (2007) a perfect terrain roughness measure should include both 

aspect and slope gradient, so that the result is a multivariate representation of the topography. 

However, many of the commonly used terrain roughness methods fail to provide such a 

representation.  In this study the ANOVA indicated that all eight terrain roughness indices can 

significantly discriminate between the classes of interest at (p < 0.05) whilst four terrain indices 

(TRI, SDSLP, SV and MRN) could significantly discriminate between the classes at the 

(p<0.001) level.  

VRM TRI SDSLP SV TPI SDELV MRN SDPC
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3.5.2 Classification 

In this study the OOB error rate was reported as 12.5%, but various studies have suggested that 

discrepancies in the OOB rate may make it an unreliable measure of class error for 

classification. The Cohen’s kappa statistic is a more accurate measure of error (Heung et al., 

2014) . The classification results showed that the supervised Random Forest classifier is a 

robust method and provided a high classification accuracy of 90% with a Cohen’s kappa 

statistic of 0.85. Whilst visual interpretation indicated various discrepancies, for instance that 

the following indices (TPI and SDELV) had overestimated roughness, certain indices appeared 

also to have underestimated roughness (MRN and SDPC). Furthermore, by way of visual 

analysis TRI, SV, VRM and SDSLP showed similarities in interpretability and produced results 

that were visually good.  

3.5.3 Variables and their importance 

Variable importance indicated that VRM, TRI and SDSLP were the top three variables for the 

classification. However, whilst VRM had displayed the highest variable importance for the 

Random Forest classification procedure and was able to discriminate between all classes at the  

significance level (p<0.05), it did not display significance for all classes at (p<0.001) as it was 

able to discriminate only between the classes intermediate and smooth. TRI and SDSLP  were 

ranked two and three by the Random Forest classifier and were able to display discrimination 

between all classes at both significance levels. Furthermore, these indices were the only two of 

the eight indices to show significance (p<0.001) for all classes. Similar results were achieved 

in a study conducted by  Grohmann et al. (2011) where SDSLP, SDPC and Vector Dispersion 

were found to have produced the best results, whilst SDELV and SD residual topography were 

able to provide only intermediate results.  

The results obtained from this study are in accordance with those obtained in the study 

conducted by  Grohmann et al. (2011), where it was found that SDSLP was one of the top 

terrain indices that yielded better performance than the other indices that were tested.  SDSLP 

could correctly identify steep or smooth slopes, including areas that displayed high surface 

clutter such as forest stands (Grohmann et al., 2011). SDSLP was also able to identify breaks 

of slope across multiple scales. In this study, SDPC and SDELV did not produce visually good 

results and seemed to either overestimate or underestimate terrain roughness. In the study 

conducted by Grohmann et al. (2011), whilst SDELV was not able to detect local terrain 

roughness, at larger window sizes the indices demonstrated the ability to detect breaks in slope. 
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The literature suggests that SDELV would be more applicable for the regional detection of 

terrain roughness than the microscale detection of terrain roughness. 

However, TRI is closely related to slope and includes into its calculation roughness that occurs 

perpendicular to slope. In this study, TRI was the third most important variable as illustrated 

by the Random Forest classifier. Similar results were demonstrated in the study conducted by 

Scarpone et al. (2017), where the Random Forest classifier found that TRI was one of the top 

3 terrain variables out of 43 variables for the detection of exposed bedrock (EB).  According 

to Popit and Verbovšek (2013), TRI produces a larger range of data and is the preferred terrain 

index as it can highlight pronounced differences in the roughness that other indices may not be 

able to detect.  

Comparable results were achieved in the study conducted by Popit and Verbovšek (2013) 

where TRI and SV were calculated using a LiDAR derived DTM. In this study, SV was 

modified to determine change in elevations of height as compared to slope. In addition, it was 

also found that the indices had overestimated terrain roughness for areas with relatively low 

terrain  (Popit and Verbovšek, 2013). Similar trends were seen in this study, however, despite 

the overestimation of roughness, in general a satisfactory result was obtained from this indice.  

In this study, TPI produced intermediate results and was ranked as only the fifth most important 

variable. The shortcomings of TPI were shown, as the index was unable to accurately represent 

terrain roughness, as it overestimated roughness. Similar results demonstrating the 

shortcomings of TPI were produced in the study conducted by De Reu et al. (2013) in north 

western Belgium, on a highly heterogenous landscape.  According to De Reu et al. (2013) TPI 

is influenced predominantly by roughness in terrain, where height differences may occur at 

several metres or more, and can therefore lead to the incorrect classification of slope positions 

and landforms within heterogenous environments, therefore indicating the disadvantages of 

TPI within complex environments. Whilst this terrain roughness index did not produce 

satisfactory results in this study, other studies have employed TPI with higher success rates. 

For example, in a study conducted by Weiss (2011) in Mt Hood in Oregon, USA, TPI proved 

to be a very useful tool for classifying features of roughness such as slope positions and related 

landforms. It is worth noting that the study area used in Weiss (2001) was more homogenous 

than the area that was used in this study or in the study conducted by De Reu et al. (2013).  
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3.5.4 Other considerations and limitation in this study 

A supervised Random Forest technique was employed in this study, which means that the user 

was responsible for discriminating between the various classes of interest prior to the 

classification process.  Whilst this approach is commonly utilised with great accuracy, a high 

level of uncertainty and error may be introduced into the training process when a user is 

responsible for training the classifier. For this reason, further research should focus on 

unsupervised methodologies. For example, Peerbhay et al. (2016) employed the Random 

Forest classifier in an unsupervised approach for the detection of Solanum mauritianum 

(Bugweed) plant invasions in forest margins, open areas and riparian areas. Accuracies of 

91.33%, 85.08%, and 67.90% were obtained respectively (Peerbhay et al., 2016).  

In addition, whilst this study used the Random Forest technique to determine the most 

important variables, no variable reduction technique was employed. Future research efforts 

should employ the use of variable reduction techniques with the Random Forest classifier to 

determine the optimal number of variables that are required to achieve the highest possible 

accuracy. In a study conducted by Heung et al. (2014) a Random Forest variable reduction 

technique was employed. The results indicated that the mtry value had remained fairly 

consistent until the number of variables was reduced to 9 from the original 27 to acquire a 

kappa index of 89.6% (Heung, 2014). Other studies that have employed Random Forest 

variable selection with high success rates include those done by Dye et al. (2012) and Ismail 

and Mutanga (2011), amongst others. 

Lastly, whilst the indices extracted from LiDAR provide a great source of roughness 

information that would be highly valuable for many application fields, especially in 

commercial plantation forests, the results obtained from this study indicate that not all of the 

indices extracted from high-spatial resolution LiDAR provide consistently accurate 

representations of the roughness. In this study TRI and SDSLP, whose indices have 

calculations based around slope, were found to be the most significant indices for detecting 

terrain roughness in complex environments such as commercial plantations. Should further 

research focus on the gaps that may be seen in this study, it might be possible for the accuracy 

level to be increased. Nevertheless, the results obtained from this research are promising and 

provide a new methodology to determine terrain roughness in complex landscapes. 

3.5 Conclusion 
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Accurate terrain roughness calculations are invaluable for many operational systems in 

commercial plantation forests, especially for planning harvesting operations. This study has 

applied a new methodology using high-resolution LiDAR-derived terrain variables and a 

machine-learning technique to successfully detect terrain roughness. The terrain indices 

derived from high-resolution LiDAR provide a practical tool to map terrain roughness in 

commercial plantation forests as they can accurately discriminate among roughness classes of 

interest. The results obtained from this study show that TRI and SDSLP can be used to 

accurately detect roughness in commercial plantation forests. 
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CHAPTER FOUR 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions  

In this thesis, the aim was to utilise LiDAR derived DTM for determining variability in terrain 

within commercial eucalypt forests in KwaZulu-Natal, South Africa.  

The first study examined the use of LiDAR derived DTM for the application of determining 

variability in terrain within a dense commercial eucalypt forests within the Riverdale plantation 

site in KwaZulu-Natal, South Africa. More specifically this study focused on determining how 

much of the variability in forest structural attributes of eucalypt forests can be attributed to 

terrain.  For this, HtD, Htm, pulpwood volumes and DBH were modelled against the 32 terrain 

variables that were derived from LiDAR derived DTM for even aged E. grandis and E. dunni 

respectively.  

• The results obtained from this study indicated that from all 32 derived terrain variables, 

only terrain variables that was associated with solar radiation had displayed importance for 

determining variability of forest structural attributes associated with terrain.  

• It was further found that direct incoming solar radiation influenced the forest structural 

attribute HtD as it demonstrated the highest variability to terrain and consistently modelled 

highly significant.  

• It was further found that a spatial resolution of 1 m x 1 m consistently provided the highest 

coefficient of determination for structural variables modelled and indicated that this spatial 

scale is required to determine variations in structural variables that are associated with 

micro-scale terrain. This result indicates that a high-resolution LiDAR derived DTM is 

required for application fields that require modelling of forest structural attributes in 

relation to terrain. 

• In this study, the RF as a machine learning regression technique demonstrated its 

applicability and indicated that it is a robust technique that can be used to attain accurate 

results for terrain modelling. In addition, this study applied a RF variable selection method, 

to which demonstrated results subpar as compared to that identified in literature.   

• Lastly, in this study, it was found that E. grandis and E. dunni demonstrated different 

patterns of variation, and that the latter species can be successfully modelled using this 

proposed approach. This pattern where E. dunni is described as more adaptable to 

heterogenous environments is widely known to researchers and individuals in the forestry 
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sector. For this reason, one can suggest based on the results acquired from this research that 

E. dunni is more suited to plantations that are dominated by rugged terrains, different 

amounts of incoming solar radiation and steep slopes. 

In the next study, a LiDAR derived DTM was used to investigate the potential of terrain indices 

for detecting terrain roughness in a commercial plantation forest using a supervised random 

forest classification method in the Comrie plantation in KwaZulu-Natal, South Africa. A 

supervised methodology was applied to detect three different roughness classes i.e. rough, 

intermediate, and smooth, respectively.  

• This study found that whilst all terrain indices displayed significance for all or some 

classes and were significant at (p<0.05), four indices were significant at (p<0.001). This 

result indicated that whilst all terrain indices can be used for terrain detection, that TRI, 

MRN, SDSLP, and Slope Variability can be used for the detection of terrain roughness 

with higher accuracies. 

• Lastly, this study indicated that the RF is a robust classifier that provides a high 

classification accuracy even for studies that make use of small datasets for supervised 

learning. 

4.2 Recommendations for future research 

Due to the high value that forests have on the local economy and environment, the past two 

decades has seen consorted efforts placed on sustainable forest management within commercial 

plantation.  Considering this, abundant research using alternative technologies such as remote 

sensing has been conducted to better understand the process that affects plantation structure 

and growth with high success rates. LiDAR, which can overcome the two-dimensional spatial 

disadvantage, has demonstrated its ability to remotely measure complex vertical forest 

structures. In this research, it has demonstrated its ability to measure complex horizontal 

structure within forest. 

Despite this, this research indicated that more investigations are still required to develop 

detailed methodologies that can be easily transferred from one researcher to the next. Further, 

research that utilises LiDAR derived DTM terrain variables should be conducted within a 

different plantation site and on a different species to determine if there is a trend in the 

variability that exist with terrain and with the species that were used as in this study. Further to 

this, whilst many researches have already focused on determining the optimal point densities 

of LiDAR for structural variables, no research highlights this for terrain studies; therefore, 
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further research should focus on determining the optimal point densities that will be required 

for creating highly accurate DTMs.  

It is further hoped; that South African researchers employ and develop methodologies that 

utilise LiDAR on a regular basis. Coupled with its many advantages and applicability to 

machine learning techniques such as the RF, it can be said that LiDAR really does offer many 

advantages for forestry research.  Further research in this application field will be beneficial 

and help local foresters, forest managers and researchers to better understand the complexities 

and advantageous associated with utilizing LiDAR technology for forestry.  However, from 

the recent trends seen thus far within the remote sensing community, one can postulate that 

developments in this application field are only expected to escalate, which can then provide 

even greater frontiers to a host of many other valuable research applications within the forestry 

sector. 
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