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Abstract 

 

Background: There is an urgent need to identify novel drug and diagnostic targets for Mycobacterium 

tuberculosis, as well as vaccine candidates because of the lack of biomarkers that have been adequately 

characterised for this purpose. Improving our current understanding and knowledge of immune-

pathogenesis of TB can assist in the design of these new vaccines and drug candidates, and facilitate 

the evaluation of their effectiveness. It has been increasingly demonstrated that biosignatures, rather 

than individual biomarkers, would be more beneficial for this purpose due to the multifactorial 

complexity of TB. Mycobacterium tuberculosis curli pili (MTP), encoded by the mtp gene was recently 

reported as a potential candidate biomarker for diagnostic, drug and vaccine development. Therefore, 

this study aimed to further the understanding of the role of MTP in pathogenesis by evaluating its role 

in, host-pathogen interactions and host immune response in a mouse model infected with Δmtp-mutant, 

mtp-complemented and wild type (WT)strains of the V9124 strain of M. tuberculosis. 

Methods: Female Balb/C mice were infected with the WT, ∆mtp-mutant and mtp-complemented 

strains. Bacterial growth kinetics were carried out to determine the effect of the gene on growth by 

observing in vitro CFU assays, and in vivo CFUs from M. tuberculosis infected tissues. Global changes 

in gene expression were analysed by RNA-sequencing. The transcriptional responses of the mice lungs 

after infection with the WT and ∆mtp-mutant strains, relative to that of uninfected mice were 

investigated 14 days post infection, using the mm10 mouse reference genome. The transcriptional 

profiles of lungs infected with the Δmtp-mutant, and WT strains for fourteen days were compared using 

Tophat, Cuffdiff and various other bioinformatics tools to further analyse the effect of MTP.  

Results and discussion: The growth assays revealed that the ∆mtp-mutant strain grew at a significantly 

decreased rate compared to that of the WT during the log phase in broth culture and in the lungs and 

spleen of infected mice. This suggests that the deletion of the mtp gene results in a slower growth rate 

of the bacterium, and hence, MTP has an effect on the growth of M tuberculosis in vitro and in vivo. A 

total of 512 and 1 059 genes were significantly differentially expressed due to infection with WT and 

∆mtp-mutant respectively. Only 128 genes were common in both infections, and of those, 74.2% and 

25.8% were upregulated and down regulated respectively. The number of differentially expressed genes 

uniquely induced by WT and ∆mtp-mutant strains were 384 and 930 respectively. Analysis of fold 

changes in Gene Ontology functional categories (FCs) revealed that over-represented FCs from WT 

infection included functions associated with host immune response such as chemokine and cytokine 

receptor binding and cytokine activity (p<0.05). In contrast, the ∆mtp-mutant did not elicit these host 

functions. Specific pathways were identified to be affected by the absence of MTP from the bacilli cell 

wall. This was seen by the lower enrichment of pathways, molecular networks and cytokines involved 

in the host immune response to the ∆mtp-mutant strains compared to the WT. Pathways involved in 

host-pathogen interaction (PRR pathway, complement pathway and TLR signalling pathway), host 



xvi 

 

immune response (antigen presentation pathway and phagosome maturation pathway), as well as 

regulation of the immune response (MIF (Macrophage Migration Inhibitory Factor) Regulation of 

Innate Immunity pathway, Crosstalk between Dendritic cells and Natural Killer Cells pathway) were 

positively enriched only during WT infection, and negatively enriched in the ∆mtp-mutant infection. 

Our current results support findings from other studies that infection with the WT strain of M. 

tuberculosis initiated a cascade of immune responses and inflammatory signals from the host. WT 

associated networks were associated with immunologically related functions such as Immunological 

Disease, and antimicrobial inflammatory response, whereas the top ∆mtp-mutant networks were not 

related to these functions. Overall, the gene ontology, canonical pathway and network analysis in this 

study suggests that MTP has a significant impact on the biological functions, and pathways that are 

essential for host immunity during M. tuberculosis infection.  

Conclusions: MTP was proven to play a significant role in the specific host-pathogen interactions 

following M. tuberculosis infection, resulting in host immune responses essential to the hosts’ defence 

by triggering the innate immune response and inflammatory response. Further, it is associated with the 

regulation of the immune response by transcription factors and cytokines. Taken together, transcriptome 

analyses of lung tissue infected with the MTP-deficient strain of M. tuberculosis has shown MTP to be 

a strong immunogen.  These findings provide further supporting evidence to previous studies that 

suggested that MTP is a strong therapeutic and vaccine candidate. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

  



2 

 

1.1 INTRODUCTION 

More than a century since  its discovery, TB still continues to be the major cause of mortality in the 

world [1,2] together with the Human Immuno-deficiency Virus (HIV) [2]. Tuberculosis (TB) is 

believed to be the leading infectious disease globally [2], with an estimated mortality of 1.5 million 

people in 2014, about 27% of whom were HIV-positive. About a third of the world’s population is 

thought to be latently infected [2]. The highest TB incidence was reported in Asia and Africa, with 

South Africa documenting the highest incident burden in the latter continent [3]. 

 

Mycobacterium tuberculosis, the causative agent of TB in humans belongs  to the Mycobacterium 

tuberculosis complex (MTBC)  that includes also  M. bovis, M. bovis BCG, M. bovis subsp. caprae 

comb, M. africanum, M. microti and M. canettii, that cause TB in different hosts [4]. It is a facultative 

intracellular bacterial pathogen a slow growing, non-motile, non-spore forming bacillus, that flourishes 

in the oxygen rich apex of lungs. TB is a chronic airborne infectious disease, with the source being an 

infected patient with cavitary pulmonary TB [3].  

 

Of the estimated 9.6 million new TB cases in 2014, only 6 million were recorded and documented by 

the WHO.  This translates into a staggering 37% undocumented, or most importantly, undiagnosed 

cases.  In order to reduce these major gaps in the detection and treatment of TB,  the development of 

new tools is required [2]. To date, there is no TB vaccine that is completely protective against this 

deadly disease, and the development of new drugs is very slow. This is worsened by the long therapy 

regimens (up to six months) of the current therapy regimens, which makes patient compliance difficult, 

resulting in the emergence of resistant strains of the organism, that significantly threaten TB control 

programmes  [5].  

 

The WHO have implemented the “The End TB Strategy” in order to end the TB epidemic (REF), by 

decreasing TB mortality by 90% by the year 2030 [2]. In order to achieve this goal, the research and 

development pipeline would need key breakthroughs including a point-of-care diagnostic test that is 

capable of distinguishing latent TB infection from active TB disease, a short and effective treatment for 

latent TB, and an effective post-exposure vaccine [2]. Therefore, there is a need to identify novel drug 

targets for M. tuberculosis because of the lack of biomarkers that have been adequately characterised 

for this purpose. Currently, there are 7 vaccines that are in the Phase I of clinical trials, and 8 that in the 

Phase II or Phase III of clinical trials [2]. The immune responses elicited early in the lung during TB 

infection have been shown to be vital in the TB pathogenesis, and therefore possess great potential in 

drug and vaccine  discovery [6]. 

 

Adhesion to host cells is essential for most bacterial pathogens. Microbial adhesins mediate the essential 

processes that determine bacterial attachment to host tissue surfaces [7]. The attachment and invasion 
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capacity of M. tuberculosis is important to its pathogenesis as it enables entry into the host cells, i.e. 

macrophages and other host cell types. This provides the bacilli with a chance to resist killing in the 

extra-cellular environments, and to replicate in the intracellular sites [7]. M. tuberculosis has been 

shown to adhere to and invade the alveolar epithelial cells [8], possibly due to the presence of adhesins 

that interact with receptors present on these  cell surfaces, since bacterial adhesion to host cell surfaces 

is specific [9]. There is increasing evidence that M. tuberculosis curli pili (MTP) is one of the major 

adhesins involved in pathogenesis of this organism. MTP encoded by the Rv3312A (mtp) gene [10] 

play a significant role in biofilm production in vitro [11], as well as in adhesion and invasion of 

epithelial cells [12,13] and macrophages [14,15]. Bacterial pili have also been reported to induce host 

immune response via cytokine/chemokine production [16].  M. tuberculosis has been documented to 

elicit the production of certain cytokines and chemokines in different types of host cells including 

microglia, macrophages [17], and epithelial cells [18]. However, Ramsugit and Pillay, 2015 have shown 

surprisingly  minimal contribution of MTP to the overall cytokine and chemokine induction in the latter 

non-phagocytic host cell type,  suggesting this to be one of the mechanisms used to bypass the host 

defence [18]. Therefore, there is accumulating evidence in recent years of the utility of MTP as a 

biomarker with potential to be targeted for diagnostic and therapeutic interventions. 

 

Upon infection, different signals induce the alteration of gene expression,  resulting  in up-regulation 

and /or down regulation of specific genes [19]. The number of transcriptomic studies has increased over 

the years, resulting in the discovery and listing of functionally categorized genes [20]. In the past 

decade, Next-generation RNA sequencing (RNA-Seq) of microbes has evolved into a standard 

technique for quantifying and annotating microbial transcripts [21,22] and  recently, has allowed for the 

positive identification of both lowly and highly expressed genes in a single experiment [21]. However, 

the application of this technique in whole transcriptomic studies in M. tuberculosis infection models is 

still in its infancy,  and have explored the pathogen and its interactions with experimental hosts in order 

to advance our knowledge TB pathology [20]. In addition, transcriptomic research has also  elucidated 

molecular mechanisms associated with virulence and resistance to drugs [20].  

 

In order to complement the growing body of knowledge on the role of MTP in TB pathogenesis, and to 

identify potential biosignatures for therapeutic interventions, RNA-Seq was used in the current study to 

elucidate and quantify significantly differentially expressed genes induced by MTP in the lungs of 

Balb/C mice during early infection with a mtp knockout mutant strain of Mycobacterium tuberculosis. 
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1.2 LITERATURE REVIEW 

1.2.1 Tuberculosis: Historical perspective 

The causative agent of the deadly disease Tuberculosis (TB), M. tuberculosis was discovered in 1982, 

by Robert Koch [1,23]. This was however, thousands of years after the disease had been documented 

to be a problem, and  dates as far back as the writing of the Biblical books such as Deuteronomy and 

Leviticus, more than two thousand years ago [1], and the ancestor from whom  it is thought to have 

evolved from was found in East Africa more than 3 million years ago [24]. Koch’s discovery paved the 

way for research, enabling Scientists the opportunity to fight against TB with an understanding of how 

the pathogen causes disease, leading to therapeutic regimens against the disease, and efforts of 

preventing and controlling its spread [1].  

 

The World Health Organisation (WHO) has been at the forefront in the fight against TB. In 2015, the 

WHO concluded  their Millennium Development Goals (MDGs) where they had set global TB targets 

to stop and decrease TB incidence worldwide [2,25]. The positive achievements were highlighted, 

including the overall decrease of TB mortality by 47 percent, and the continuous decrease in TB 

incidence by 1.5 percent annually, since 2000 [2]. Recently, the Sustainable Development Goals 

(SDGs), and simultaneously, the Stop TB Strategy transitions to the End TB Strategy had been initiated.  

 

It has been twenty years since the establishment of the TB global monitoring system was established 

by the World Health Organisation, and the annual collection of  data and statistics have shown that   

advances in prevention, treatment and diagnosis have failed to see an end to this disease [2]. The 

development of the only TB vaccine, the attenuated strain Bacille Calmette-Gue´rin (BCG), by 

Calmette and Gue´rin, was a major step forward in the fight against TB. However, the vaccine has 

proven to be not as effective in adults. The exploitation of immune-pathogenesis of tuberculosis using 

global transcriptomics is promising in the pursuit of a proper vaccine as well as immunotherapy, 

especially in patients infected with drug resistant strains of tuberculosis. 

 

1.2.2 Epidemiology of tuberculosis 

TB has been deemed an international public health problem. A decade ago, the WHO documented 

almost a third of the world’s population to have latent TB infection [26]. With an estimate of 9.6 million 

new cases (12 percent being HIV-positive), TB has claimed the lives of about 1.5 million people in 

2014, 37% of them being HIV positive [2]. Of the new cases, 5.4 million were men, 3.2 million were 

women, and 1.0 million were children [2].  The TB epidemic was aggravated by co-infection of TB 

patients with the Human Immunodeficiency Virus (HIV), as well as the rise in drug-resistant TB making 

it even more difficult to treat the disease [2].  
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1.2.2.1 TB and HIV co-infection 

The combination of TB and HIV is a lethal one, which results in the speeding of both conditions in a 

patient. The increase in the prevalence of TB is related to the increase of HIV infection in Sub Saharan 

Africa [27]. An individual infected by the HIV virus is more likely to develop active TB when they are 

exposed to the M. tuberculosis bacilli. This lethal combination is the most frequent cause of death 

amongst immune compromised individuals [28]. This is because HIV makes the immune system weak, 

and less likely to fight TB infection, leading to the high TB mortality among HIV-positive individuals. 

About a third of the HIV infected people worldwide are co-infected with TB. In 2014, the number of 

people living with HIV, and developed TB was estimated to be 1.2 million [2], and only a third of those 

were documented as receiving antiretroviral therapy (ART). However, there was a 32% decrease in the 

HIV-associated TB mortality rate between 2004 and 2014 [2].  

 

 

Figure 2.2.2.1.1: An estimate of the HIV prevalence in TB cases in 2014 worldwide [2]. 

 

A majority of these cases are observed in the sub Saharan region (Figure 1.2.2.1.1). Whilst TB is the 

leading cause of death amongst the HIV infected population, an overall 32% of TB cases in the African 

region were estimated to be co-infected with HIV [2]. This proportion ranks Africa the highest with 

HIV-TB co-infection in the world as it accounts for 74% of all TB cases among HIV-positive people 

worldwide. Some parts of southern Africa have more than 50% of TB their cases living with HIV [2]. 

South Africa alone constituted up to 17% of the HIV burden globally in 2007 [29], and the combined 

HIV and TB epidemics are a key public health concern [30].  
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1.2.2.2  M. tuberculosis and drug resistance  

In addition to TB-HIV co-infection, the emergence of drug resistant (DR) M. tuberculosis strains has 

become a major problem to cure TB patients using the standard anti-TB drug regimens, increasing the 

threat to TB control programs [2]. The resistant strains include multidrug-resistant (MDR) (resistant to 

the first-line-TB drugs,  Rifampicin (RIF) and Isoniazid (INH) [2]), and extremely drug-resistant (XDR) 

strains (MDR-plus resistance to any injectable second-line-TB drugs namely the fluoroquinolones, 

amikacin, capreomycin or kanamycin [2,5,31]. A further resistant to more drugs results in totally drug 

resistant TB (TDR-TB) in extreme cases. Totally drug resistant (TDR) strains, are defined as those that 

are resistant to all the 1st and 2nd line drugs [32]. TDR were first documented in Italy in 2007 [33], and 

have been reported to be emerging most recently from South Africa [34] in 2013 and India [35,36] in 

2012. 

 

In 2014, 480 000 MDR-TB cases were estimated to have occurred worldwide, and of those, 190 000 

died [2]. India, China and Russia were reported to have the largest burden (54%) of cases of MDR-TB 

(Figure 1.2.2.2.1). A total 9.7% of people with MDR-TB are estimated to have XDR-TB [2]. 

Figure 1.2.2.2.1: Estimated TB incidence including MDR and XDR in 2014 [2].  

 

1.2.2.3 TB in South Africa 

The African Region carried 28% of the burden of the estimated number of TB cases in 2014 [2]. In 

Southern Africa, roughly 1% of the population develops TB annually. Figure 1.2.2.3.1 provides a 

graphic overview of the TB incidence as estimated by the WHO in 2014 [2]. South Africa is one of the 

high-burden countries, ranked at 6th highest [2,37], accounting for up to 19% of all adult TB cases in 
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the world [26,29,30] (Figure 1.2.2.3.1). The high mortality rate of MDR and XDR-TB patients in South 

Africa (47%) could possibly be related to the  high prevalence (696 per 100 000) of HIV-TB co-

infection [2,5,34]. 

 

The KwaZulu-Natal (KZN) province is one of the high ranking provinces with new cases [5]. Currently, 

the TB incidence rate is 295 cases per 100,000 in this province. In 2006, 31% of the national TB cases 

in SA were recorded in the KZN province, and the first cases of MDR and XDR-TB were reported in 

this province [5,29]. 

 

A) 
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B) 

Figure 1.2.2.3.1: Estimated TB incidence in 2014. A) Estimated new TB cases of all forms per year. 

B) Top 10 countries, 2014. The range shows the lower and upper bounds of the 95% uncertainty 

interval. The bullet mark is the best estimate [2]. 

 

1.2.2.4 M. tuberculosis strain families 

The MTBC demonstrates a robust phylogeographical population structure, and thus, consists of 7 

phylogenetically lineages that are distinctly related to different geographical regions (Figure 1.2.2.4.1) 

[38]. Whole genome sequencing is the current gold standard for strain typing of M. tuberculosis [39]. 

The most broadly spread amongst the 7 lineages are Lineage 2 and 4 (Figure 1.2.2.4.1), also known as 

the East-Asian and Euro-American lineages respectively [38], are also the most virulent lineages 

[38,40]. Lineage 2 which includes the Beijing family of strains is predominantly present in Eastern Asia 

(endemic in China), and also circulates in Russia and South Africa (Figure 1.2.2.4.1). 

 

Different strain families circulate in different areas of South Africa. For example, in the Western Cape, 

the Beijing, F11, F28 strains were found to drive the TB burden [41], with the Beijing strain dominating 

amongst drug resistant strains. In contrast, only 2 strains primarily drive the KZN province TB burden, 

the Beijing and F15/LAM4/KZN (KZN) strains [42]. A large number of resistant TB cases reported in 

South Africa were observed in the KZN province that saw the Tugela Ferry XDR-TB outbreak [43]. 

The genotype responsible for this outbreak (KZN) has been since reported to be strongly associated 

with drug resistance,  XDR-TB cases included [42–45]. 
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Figure 1.2.2.4.1: Global Lineages of Mycobacterium tuberculosis represented in colour [38]. 

 

1.2.3 Pathophysiology of Tuberculosis 

M. tuberculosis is a rod-shaped, acid fast bacillus, whose cell wall structure is unique, contributing to 

its virulence. This facultative intracellular pathogen is characterised by the presence of cell wall rich in 

lipids, like other mycobacteria, and its generation time ranges between 18 to 24hours, hence it is one of 

the slow growing mycobacteria [24,46].  

 

Tuberculosis is nearly entirely transmitted by aerosolized droplets that contain infectious M. 

tuberculosis and primary route of infection is the respiratory tract, to the lung [1]. When a person with 

the pulmonary TB coughs, droplets containing infectious M. tuberculosis, are generated, which, when 

inhaled by an uninfected person, can transmit the infection [1]. The number of bacilli contained in  one 

aerosol droplet ranges between 1 to 400, and the infectious dose (the number of bacilli required to cause 

infection) is reported to range from 1 and 200 bacilli [24]. The inhaled tubercle bacilli migrate to the 

alveoli, where they rapidly enter resident alveolar macrophages via phagocytosis, and replicate at the 

site of infection [1,24,47]. The disease progression thereafter, was described in detail by Dr Arthur 

Dannenberg using rabbit infection models [47]. There are five stages during infection, namely; the 

onset; symbiosis; early stages of caseous necrosis; interplay of cell-mediated immunity and tissue 
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damaging delayed-type hypersensitivity; and liquefaction and cavity formation [48]. As these cellular 

processes occur in an individual, the development of TB will differ in each patient [47], according to 

the complex host-pathogen interactions following infection, and the status of the patient’s immune 

system, and this will determine the clinical outcome of infection. Figure 1.2.3.1 provides a schematic 

summary of the possible outcomes following infection with M. tuberculosis [49].  

 

Figure 1.2.3.1. Pathophysiology of Tuberculosis. Possible outcomes of infection with M. 

tuberculosis. The clinical manifestations of M. tuberculosis infection are either active disease or latent 

TB infection (LTBI) [49]. 

 

Infection with M. tuberculosis results in different outcomes ranging from asymptomatic infection 

known as latent TB infection (LTBI), to fatal disease [1,50]. The host is capable of mounting an 

effective initial response that will eliminate the bacilli [51]. In the event that the host response is not as 

effective, about 10% of infected immune competent individuals will develop active, symptomatic 

disease. However, primary tuberculosis is often asymptomatic as the majority (90%) of infected people 

develop a LTBI [50], where the bacilli are enclosed but not completely eliminated, and the individuals 

will not show any signs or symptoms of the disease upon initial infection [47]. This latency can last a 
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life time, but if an individual’s immune system later becomes compromised (Figure 1.2), the risk of 

disease reactivation increases [47]. 

 

1.2.3.1 Active Tuberculosis 

Most persons exposed to M. tuberculosis maintain a latent state of the infection. The small percentage 

of the infected community that develops active TB could be explained by the differences in the 

capability to develop an effective immune response displayed by every individual. The inability of an 

individual to mount an immune response capable of controlling the initial infection [52] is strongly 

correlated with the  ability to control M. tuberculosis infection, resulting in active disease characterised 

by  signs of clinical disease [53]. The infected host has several immunity checkpoints that the bacterium 

has to pass in order to cause active TB [53], and these include  

(i) avoiding being destroyed by the very early host immune mechanisms,  

(ii) overcoming the initial innate immune control by the host, and presentation to adaptive 

immunity by host antigen presenting cells (APCs), 

(iii)  finally, the bacteria have to overcome the effector mechanisms posed by the subsequent 

adaptive immunity mounted by the host. Once immune control is lost, the host allows for 

effective replication of the bacteria [54]. 

 

1.2.3.2 Immune responses against tuberculosis 

The mammalian immune response to any infective pathogen, M. tuberculosis included, consists of the 

innate and adaptive immune responses. The innate system is a form of natural immunity whereby the 

immune cells provides the first line of protection against an invading pathogen that the host has never 

previously encountered. It is facilitated by phagocytes like macrophages and dendritic cells (DCs) that 

are resident at the site of infection, and are recruited following the establishment of M. tuberculosis 

[55]. Once microbial infection has been sensed, the invading microbe is engulfed, and an inflammatory 

response is induced. An inflammatory response is necessary in order for the host to control the infection 

[56]. When strong enough, the innate immune response is capable of eliminating the pathogen. On the 

other hand, the adaptive immune system is extremely specific, as it is influenced by the immune 

system’s previous interaction with the pathogen, or its immunogenic components (antigens). It is 

therefore facilitated by specific antigen receptors that are expressed on the surface of T and B 

lymphocytes, and its immunological memory makes the adaptive response long lasting. Both mediated 

immunity (Th1) and humoral responses (Th2) are activated during M. tuberculosis infection [57,58]. 

Cytokines such as TNF-a, IL-1b, IL-6, and IL-12 are secreted in the inflammatory Th1 response [58]. 

In order for host to eliminate invading microbial pathogens efficiently, cooperation of the innate and 

adaptive immune systems is required [48,56,59].  
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1.2.3.3 Host and Pathogen interaction 

It is important to understand the clinical characteristics induced by M. tuberculosis in its host in order 

to comprehend its pathogenesis and infection at a molecular level [1]. The host’s internal environment 

is separated from the external by various cell types such as epithelial cells which act as important 

barriers by lining the mucosal surfaces. Epithelial cells have various functions, including facilitating 

the transport of ions and acting as the first site of contact for invading pathogens in a host organism 

[16]. The pathways and outcome of infection within the host depend on the primary interaction between 

M. tuberculosis and the host. Once bacilli reach the alveoli after inhalation, they interact with and are 

phagocytosed by the resident alveolar macrophages [55], which are the key resident cell population 

leading the host defence against M. tuberculosis [55,60]. Dendritic cells (DCs) and neutrophils, as well 

as the pulmonary epithelial cells lining the alveoli also take up the bacilli [8,55]. The number of alveolar 

macrophages present in the alveolar space is small compared to the number of epithelial cells [8]. 

Therefore, after inhalation, the probability of the bacilli encountering an epithelial cell than a 

macrophage in the lung is higher [8,9,61]. This initial interaction of M. tuberculosis with epithelial cells 

might result in chemokine secretion [13], which elicits macrophage recruitment to the primary site of 

infection. Furthermore, the chances of survival within epithelial cells are much higher than in the 

potential killing environment within the macrophage [62]. Nevertheless, not much attention has been 

focused on the interaction of M. tuberculosis with epithelial cells, while the role of the alveolar 

macrophages in the pathogenesis of TB has been extensively studied [61]. This is because the bacteria 

favour alveolar macrophages and other mononuclear phagocytes as hosts, even though they are able to 

invade  the other three cell types [8].  

 

Bermudez and Goodman (1996) were the first investigators to demonstrate that M. tuberculosis bacilli 

binds to and invades alveolar epithelial cells was [8]. The involvement of epithelial cells with host 

immune has since been of interest and studies have shown that that play a role in inflammatory response 

by producing chemokines such as IFN-γ, MCP-1 and IL-8 after infection with M. tuberculosis-infected 

epithelial [63,64]. Epithelial cells produce collectins surfactant protein A (SP-A) and surfactant protein 

D (SP-D) that control phagocytosis and opsonisation, as well as increase the adherence of epithelial 

cells to M. tuberculosis [65]. Epithelial cells also produce the glycoprotein fibronectin (FN), which has 

a role in pathogen opsonisation, and has been shown to enhance the attachment of and direct invasion 

of epithelial cells by M. tuberculosis bacilli [65,66] 

 

During M. tuberculosis infection, the bacilli primarily infects macrophages [56], and therefore, they are 

essential for initiating of an immune response by the host [67]. They internalize the bacteria via a range 

of multiple cell surface receptors like the mannose receptors (MRs), complement receptors (CRs), and 

Fc receptors. M. tuberculosis  contains a cell wall- associated mannosylated glycolipid, 

(Lipoarabinomannan) LAM, which are able to bind directly to the MRs on macrophages [68]. The 
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binding of CRs and Fs receptors to the bacilli occurs indirectly [68]. The bacteria then reside within 

membrane-bound vacuoles inside the macrophages, which become phagosomes. The phagosomes go 

through maturational procedures that allow lysosomes to fuse with them, exposing the internalized 

microbes to substances that are cytotoxic, like acid and lytic enzymes [69]. However, M. tuberculosis 

is known to modify the maturation of the phagosomal compartment, and subvert the killing mechanisms 

of the phagosome [69,70], so as to allow for its own intracellular survival and replication within the 

macrophage [71,72]. 

 

M. tuberculosis also infect DCs [73,74] by binding the Dendritic Cell-Specific ICAM-3-Grabbing Non-

integrin (DC-SIGN) receptor to its mannose-capped cell-wall component lipoarabinomannan 

(ManLAM). DCs also possess other antigen receptors like the Fc receptors and Mannose receptors 

(MRs). These bone marrow immune cells [73] have a major role in the initiation of the early immune 

response to M. tuberculosis infection [51,74]. DCs are the key antigen-presenting cells, better than 

macrophages [75], and have the unique ability to activate naïve T-cells with specific M. tuberculosis 

antigens [73,74,76], thus they are known as “professional antigen presenting cells” [51]. The expression 

receptors on DCs differs with their developmental stage. Immature antigen capturing DCs express 

abundant MRs and DC-SIGN on their surface [77]. These interact with M. tuberculosis ligands during 

phagocytosis and initiate processes that result in the activation and maturation of DCs into APCs [51], 

and their migration to lymph nodes. The expression of MRs and DC-SIGN decreases with maturation 

[73,78], and their migration is linked to their activation which  ends with the interaction and activation 

of T-cells [51] when they present the mycobacterial antigens. This ability of DCs cells to express 

different receptors at different developmental stages allows for the cells to have different levels and 

forms of activation. This determines the degree and type of immune response induced by M. 

tuberculosis in each individual, which in turn determines whether the infection is controlled, or leads 

to disease progression.  

 

1.2.3.4 Pattern recognition receptors in Mycobacterium tuberculosis infection 

The main defense mechanism of the host after inhalation of M. tuberculosis is phagocytosis by resident 

phagocytic cells. In order to invade and overcome the early innate immunity of the host, M. tuberculosis 

or  its components have to be recognized as an invading pathogen  [79], prior to phagocytosis. The 

bacterium possesses various microbial structures known as pathogen- associated molecular patterns 

(PAMPs), and these initiate the innate immune response by facilitating the recognition of invading cells 

[80]. Host cells (mainly immune cells) have several pattern recognition receptors (PRRs) that recognize 

the pathogen’s PAMPs [80], and engulf the bacilli, initiating infection. These PRRs have been 

associated with M. tuberculosis infection [81], and include Toll-like receptors (TLRs), DC-SIGN, 

Dectin-1, nucleotide-binding oligomerization domain- containing protein 2 (NOD2), C-type lectin 

receptors (CLRs), and MRs [82,83]. The type of receptor the host uses to internalize M. tuberculosis 
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influences the host cellular response [83], and because  the pathogen possesses a number of these 

receptors, it does not have an exact route of entry into the host phagocytic cells [83]. These receptors 

mediate cytokine production and other effector molecules that are involved in mounting an effective 

immune response on antigen presenting cells (APCs). However, the route of entry can also influence 

M. tuberculosis survival within host cells, as some of these receptors might favour the infection of the 

bacilli [83]. Thus, this PRR- dependent entry of the bacilli into host cells is an important determinant 

of the fate of infection. 

 

A number of other PRRs expressed on the surface of immune cells (Figure 1.2.2.2) can facilitate 

phagocytosis of M. tuberculosis, besides TLRs [83]. CRs, namely, CR1, CR3, and CR4 are other 

examples of membrane proteins that are expressed on host phagocytic cells, particularly macrophages. 

These facilitate M. tuberculosis internalization [83] by interacting with complement components that 

are important for opsonisation of M. tuberculosis in preparation of phagocytosis [83]. Phagocytosis of 

M. tuberculosis by monocytes was evidently reduced in vitro after the addition of monoclonal 

antibodies against CR3, showing  its significance  relative to the other CRs [84]. However, M. 

tuberculosis entrance into host cells via CRs is also an advantageous route for its and pathogenesis.  

CR3 binding to M. tuberculosis was shown to prevent the maturation of phagosomes by inhibiting 

establishment of respiratory bursts [83,84]. MRs on the other hand, assist the uptake of non-opsonised 

bacteria by macrophages [83]. They are transmembrane proteins that specifically bind to the sugar 

mannose, that is found on the outer wall of pathogens.  MRs were demonstrated to be associated only 

with virulent strains of M. tuberculosis[85] [83,85], where they interact with the LAM that is 

specifically capped with a mannose residue, known as the ManLAM [83]. MRs and CRs have a minor 

part in the interaction of M. tuberculosis with DCs, with DC-SIGN playing the major role of mediating 

the recognition and internalization of M. tuberculosis by DCs [51,83]. DC-SIGN also recognizes 

carbohydrates (ManLAM), and are mostly expressed on DCs [51,83].  
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Figure 1.2.3.4.1. Cell biology of the recognition of M. tuberculosis through pattern recognition 

receptors (PRRs). The innate immune system detects the presence of pathogens through different 

PRRs that are germ line-encoded. Specific PRRs are expressed on phagocytic cells and recognize the 

various PAMPs of M. tuberculosis, allowing the bacilli to enter into the cells, initiating and coordinating 

the immune response. PRRs are expressed in different compartments of the cell likes the cell surface, 

lysosome, endosome, or cytoplasm. The 2 families of PRRs shown here are the transmembrane proteins 

which include the Fc receptor (FcR), mannose receptor (MR), complement receptors (CR1, CR3, CR4), 

surfactant protein receptors (SPR), scavenger receptors (SR), CD14, and Toll-like receptors (TLRs). 

The second family is the cytoplasmic proteins (not shown here), such as the NOD-like receptors (NLRs) 

and the Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) [86]. 

 

1.2.3.4.1 Membrane bound PRRs - Toll-like Receptors 

Toll-like receptor (TLR) signaling is crucial for immunity against numerous intracellular pathogens 

[87], and TLRs are believed to be the most significant PRRs during M. tuberculosis infection [88]. They 

are expressed either on the cell surface, for example, TLR-2 and TLR-4, or they are expressed inside 

the compartments of the cell (TLR-8 and TLR-9) [59,87], and stimulate an intracellular signalling 

cascade in the host cells. This mediates the secretion of various pro-inflammatory cytokines [82,88] 

like interferon (IFN)-γ and tumour necrosis factor (TNF)-α, which are crucial for eliciting the adaptive 

immune system, and other anti-bacterial effector molecules, thereby stopping bacterial growth, and 

clearing infecting M. tuberculosis [83,87].  

 

TLR2 can function alone, or form heterodimers with TLR1 or TLR6 (Figure 1.2.2.3) to produce a strong 

pro-inflammatory response after interacting with mycobacterial cell wall components like the 19 KDa 

lipoprotein, Lipoarabinomannan (LAM), Lipomannan (LM) and Phosphatidyl-myo-inositol mannoside 

(PIM) [87,89]. The robust pro-inflammatory response elicited by the host immune system against M. 

tuberculosis infection via TLR2 signalling was  determined to be mediated by myeloid differentiation 

primary-response protein 88 (MyD88), an adaptor protein [80,90], from studies that used mouse 

macrophages lacking TLR2 and MyD88. Furthermore, MyD88- deficient mice or mice lacking both 

TLR2 and TLR4 or TLR9 were found to have uncontrolled bacterial growth, and more susceptible to 

infection [24]. TLRs trigger and mount the recruitment of MyD88, which induces cytokine production 

via the activation and translocation of transcription factors such as the nuclear factor kappa-light chain-

enhancer of activated B-cell (NFκB) signalling cascade (Figure 1.2.2.3) [59]. NFκB activation leads to 

the transcription of genes that are involved in the activation of the innate immune defences, primarily 

the production of pro-inflammatory cytokines like TNF, IL1β, and IL-12 and nitric oxide [79,80]. 

Interestingly, recent in vivo studies suggested that the TLR signalling pathway may possibly be one of 

the many pathways exploited by M. tuberculosis [87,90]. Studies have shown that persistent TLR2 

signalling due to the over-stimulation of the TLR2 pathway may also be beneficial for M. tuberculosis 
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by decreasing the antigen presentation ability of infected macrophages [87,90]. Thus, an equilibrium in 

the TLR signalling network must be reached in order to control inflammation and prevent an inflated 

inflammatory response that may be damaging for the host [87,91]. Cytokines and chemokines are also 

important for recruiting and activating more phagocytes and immune cells [63,81]. Hence, TLRs also 

function as an important link connecting the innate immune response to the  adaptive immune response 

against infection with M. tuberculosis [83].  

 

 

Figure 1.2.3.4.1.1: Toll-Like Receptor Signaling Pathways. The best-characterized PRR family is 

the TLR family. Different bacterial components interact with different TLRs [90], but most important 

in TB immunity is the interaction of TLR2, TLR4, TLR1/6 and TLR9 [90,92]. TLR2 recognizes its 

ligands and functions alone, or forms heterodimers with either TLR1 or TLR6. This pathway recognizes 

the 19 KDa lipoprotein, Lipoarabinomannan (LAM), Lipomannan (LM) and Phosphatidyl-myo-inositol 

mannoside (PIM). Lipopolysaccharide (LPS) is recognized on the cell surface by 2 sets of TLR4/MD2 

complexes. Both pathways result in the strong induction of pro-inflammatory cytokine genes [93]. 

 

1.2.3.4.2 Cytosolic PRRs - Nucleotide-binding Oligomerization Domain (NOD)-like 

receptors (NLRs) 

NLRs like NOD-1 and NOD-2 also have a role in host immune defence against M. tuberculosis 

infection. They are located in the cytoplasm, therefore, they are intracellular receptors that regulate 

stimulation of pro-inflammatory cytokine response by M. tuberculosis, and control the intracellular 

growth of the organism [79,94]. NOD2 contains a caspase activation and recruitment domain (CARD) 

which allows it to form interactions that lead to the recruitment of NF-κB after recognizing bacterial 

peptidoglycans like Mycolylarabinogalactan-peptidoglycan (MAGP) from the M. tuberculosis cell wall 
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(Figure 1.2.2.2.). Therefore, both TLR and NOD2 signalling pathways use the transcription factor NF-

kB to induce the transcription of cytokine genes.  

 

NODs synergize with TLRs to activate the pro-inflammatory cytokine production [92]. NOD2 can 

cooperate with other signalling pathways like TLRs to enhance pro-inflammation [95]. This occurs 

through cytosolic vesicular fusion mechanisms controlled in the course of M. tuberculosis phagocytosis, 

as it appears to be associated with intracellular vesicles [96] like the early phagosome (Figure 1.2.2.2.). 

NOD2-deficient mice IL-1R-deficient mice showed impaired production of pro-inflammatory 

cytokines and nitric oxide increased susceptibility to infection when infected with M. tuberculosis. 

However, the exact mechanisms, and the capability of NOD-2 associated with networks involved in 

phagocytic receptor trafficking has not yet been established. The intersection of NOD-2 with these 

signalling networks still needs to be explored. Several other NLRs have also been found to function in 

immunity via the formation of an inflammasome, which is a multi-protein complex that plays a vital 

role in the pathogenesis of chronic disorders [86].  

 

1.2.4 Adhesins 

Adhesion to host cells is necessary for colonizing the host and its immune response [72], and is therefore 

an essential virulence factor of most bacterial pathogens such as M. tuberculosis. The fundamental 

processes that determine bacterial attachment to host tissue surfaces are mediated by microbial 

adherence molecules known as adhesins [7]. Adhesins are typically surface-exposed molecules [97] 

that facilitate cell-to-cell interactions and thus are termed intercellular adhesion molecules (ICAM). The 

other group of adhesins, substrate adhesion molecules (SAM), facilitate cell-to- extracellular matrix 

(ECM) adherence [97]. Both bacterial and host cell determinants are involved in the specific interactions 

that occur between the pathogen and the host which lead to the invasion of host cells by microbes [8], 

and adhesins are key players that have a vital role in this complex process [8,98]. There is little 

information on the adhesins associated with the complex interaction that specifically takes place 

between M. tuberculosis and the human host [7]. M. tuberculosis has been shown to adhere to and 

invade the alveolar cells (A549) more efficiently compared to bronchial cells (BBM). This may possibly 

be due to the presence of multiple adhesins (Table 1.2.3.5.1) that interact with receptors present on the 

alveolar epithelial cells, since bacterial adhesion to host cell surfaces is specific [9].  

 

It is known that M. tuberculosis has a number of adhesins on its cell surface like Heparin binding 

hemagglutinin adhesin (HbhA), a 19 kDa lipoprotein antigen, Apa, Malate Synthase (MS), and other 

molecules that are potential adhesins (Table 1.2.3.5.1) which may facilitate entry into epithelial cells 

and macrophages [66,99]. Of the few adhesins that have been described for M. tuberculosis, the HBHA 

surface-exposed protein is the most described. Most importantly, it is associated with dissemination of 

M. tuberculosis to extra-pulmonary infection sites [100]. The 19 kDa lipoprotein antigen binds to 
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mannose receptors on macrophages, promoting phagocytosis [101]. MS binds to laminin and 

fibronectin, and therefore it has adhesin during M. tuberculosis infection [102]. Recently, M.  

tuberculosis has been shown to produce pili during human infection [10,13], and this has been proven 

to have adherence properties towards host cells [12,14,15]. Further insights on the mechanisms used by 

M. tuberculosis to adhere to, and infect host cells may suggest a novel view on rapid diagnostics, drug 

design and vaccine production. 

 

Table 1.2.4.1: A list of the currently known adhesins of Mycobacterium tuberculosis [103] 

Adhesin Gene (s) Mediates adhesion to 

19-kDa antigen Rv3763 Monocytes and macrophages 

Alanine- and proline-rich antigen 

(Apa) 
Rv1860 

Pulmonary surfactant protein A and 

macrophages 

Antigen 85 complex 
Rv0129c, Rv1886c, 

Rv3803c, and Rv3804c 
Fibronectin and macrophages 

Cpn60.2 molecular chaperone Rv0440 Macrophages 

Curli pili Rv3312A 
Laminin, M. tuberculosis, 

macrophages, and epithelial cells 

DnaK molecular chaperone Rv0350 Macrophages 

Early secreted antigen ESAT-6 Rv3875 Laminin 

Glutamine synthetase A1 Rv2220 Fibronectin 

Glyceraldehyde-3-phosphate 

dehydrogenase 
Rv1436 

Possibly fibronectin (as occurs in 

group A streptococci) 

Heparin-binding hemagglutinin 

adhesin 
Rv0475 M. tuberculosis and epithelial cells 

Laminin-binding protein Rv2986c Laminin 

L,D-transpeptidase Rv0309 Fibronectin and laminin 

Malate synthase Rv1837c 
Fibronectin, laminin, and epithelial 

cells 

Membrane protein Rv2599 Collagen, fibronectin, and laminin 

Mycobacterium cell entry-1 protein Rv0169 Epithelial cells 

N-acetylmuramoyl-L-alanine 

amidase 
Rv3717 Fibronectin and laminin 

PE-PGRS proteins 
Rv1759c Fibronectin 

Rv1818c M. tuberculosis and macrophages 

Protein kinase D Rv0931c Brain endothelia and laminin 

PstS-1 (38-kDa antigen) Rv0934 Macrophages 

Type IV pili Rv3654c-Rv3660c 
Possibly macrophages and epithelial 

cells 

 

1.2.4.1 Curli pili and M. tuberculosis pili (MTP) 

Like many pathogenic bacteria, M. tuberculosis produces polymeric cell-surface adhesive organelles 

called fimbriae, or pili [10], that assist the initial attachment and subsequent successful colonization of 

eukaryotic cells [104]. Bacterial pili are polymeric, hydrophobic, proteinaceous structures generally 
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composed of a major repeating subunit called pilin and, in some cases, a minor tip-associated adhesin 

subunit [105]. They are involved in many virulence-associated biological functions, such as adherence, 

cell aggregation, colonization of mucosal surfaces, host cell adhesion and invasion, and biofilm 

formation [105,106]. Bacterial pili have also been reported to be potent inducers of the host’s 

inflammatory response by inducing host cytokine/chemokine production [16]. They are viewed as 

virulence factors because of their key role in bacterial pathogenesis, therefore, are important targets for 

vaccine and drug development [10].  

 

In M. tuberculosis infection, production of certain cytokines and chemokines has been shown to be 

elicited in different types of host cells including microglia and macrophages. In microglia, the following 

cytokines are elicited, TNF-a, IL-1b, and IL-6, and the following chemokines CCL2, CCL5, CXCL8, 

and CXCL10 [107]. Infected alveolar epithelial cells have also been shown to produce cytokines such 

as IL-6, IL-8, IFN-gamma and TNF-a  [18,63,108,109].  

 

Alteri (2005) showed evidence using transmission electron microscopy (TEM) that M. tuberculosis 

produces a compact fibrillar meshwork made of thin coiled, grouped fibres similar to pili, and named 

these Mycobacterium tuberculosis curli pili or MTP [10,13]. Further scanning electron microscopy 

revealed that M. tuberculosis possesses the ability to produce 2 different pili types, the second being a 

type IVB pili [13]. The pilin subunits of MTP are encoded by the Rv3312A (mtp) gene in M. 

tuberculosis [10,13], which is located between the Rv3312c gene whose function is still unknown, and 

the add, deoA and cdd whose function is involved in intermediary metabolism [110]. Alteri 

demonstrated the presence of  IgG antibodies specific to MTP in the blood serum of patients suffering 

from TB, which suggested that MTP are produced in vivo during human infection [10,13]. In vitro 

studies with isolated MTP and the extracellular matrix (ECM) protein, laminin, showed both bind to 

each other, suggesting that MTP have adherence properties, and therefore may be essential for host 

colonization by M. tuberculosis [10,13]. Further in vitro studies conducted by Ramsugit and Pillay 

(2014), using a mtp-deficient strain [11,15], its wild-type and complemented strains, confirmed the  

findings by Alteri [15]. This study showed that that MTP play a significant role in the adhesion to and 

invasion of macrophages (THP-1 cells) [15]. MTP were also shown to be involved in biofilm production 

in vitro [11], as well as in adhesion and invasion [15,18] of epithelial cells [10,13,18]. A study by 

Naidoo et al (2014) showed that MTP are distinctive to members of the MTBC and that the mtp gene 

is extremely conserved among the clinical strains of M. tuberculosis, [111]. Taken together, these 

findings suggest that MTP could be considered as a diagnostic, drug and/or vaccine candidate, thus, the 

importance of MTP during in vivo TB infection in a mouse model will be interrogated further in this 

study. 
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1.2.5 Mouse models 

Generally, most bacteria are hardly ever found to exist in environments similar to those in the cultures 

of a laboratory, i.e. in favourable conditions that permit for exponential growth for extended periods of 

time. An example of those unfavourable conditions is the deprivation of Oxygen, but it has been 

however, shown that the bacilli of M. tuberculosis stay viable and virulent for long periods of time in 

the absence of Oxygen in vitro [112]. Furthermore, results obtained by Ashiru et al showed that the 

bacilli are also able to invade epithelial cells when they are grown under oxygen deprivation [113]. This 

is important as these environments deprived of Oxygen are common in the human body, especially in 

the environments where TB takes its course, like macrophages and granuloma. Granuloma formation is 

a typical feature of latent TB infection,  conditions  of low redox potential which results in Oxygen 

deprivation in the environment [114]. This makes in vivo experiments important in TB research. The 

correlation between in vitro findings and in vivo conditions is not clear, but important information is 

revealed from laboratory studies. 

 

Mice, rabbits and guinea pigs are productively used as models for M. tuberculosis studies. All 3 models 

can be infected with different strains of the bacilli, but they confer different susceptibilities to TB. 

Generally, the guinea pig is used in studies that define the progressive pathology of tuberculosis, whilst 

the mouse model is used in host immune response studies [115]. The mouse model is the most widely 

used for in vivo TB research due to the  ease of handling  and their cost effectiveness compared to other 

in vivo models [56]. They are efficiently infected by different M.tuberculosis strains and are usually 

used to explain and describe the host immune response to Mycobacterium tuberculosis infection [115]. 

The most appropriate route of infection used in mouse infections is the aerosol route of infection as it 

is more relevant to the human TB disease [115]. Furthermore, the aerosol route of infection is currently 

the most reproducible technique, with the least degree of variability, compared to other techniques used 

like the intravenous, intra-nasal or intra-tracheal inoculation techniques. The aerosol infection route 

involves the generation of a cloud of aerosols, containing the bacilli in very small droplet nuclei, that 

the mice inhale and deposit in the alveolar areas of the lungs, causing disease in the animal [115]. The 

mouse lung is therefore often used for many studies, including transcriptomic studies, for these reasons 

[20]. 

 

1.2.6 Gene expression 

 Pathogens express certain gene products that allow them to infect and cause disease upon encountering 

a host. Various types of genes are expressed that enable the pathogen to grow within the host, counteract 

the host defences and persist.  Different signals induce the alteration of gene expression which results 

in up- and/or  regulation of specific genes [114] in both the host and the pathogen. cDNA libraries 

synthesized from the RNA are used to analyse transcripts via sequencing by hybridization, for example, 
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microarrays. In the past decade, Next-generation RNA sequencing (RNA-Seq) of microbes and their 

host cells has developed into a standard technique for quantifying and annotating microbial transcripts. 

Understanding and quantifying the changing transcript levels and the dynamics of their gene expression 

dynamics is important as pathogens react to host conditions in order to determine which genes are up- 

or down-regulated upon infection, and for understanding host-pathogen interactions of M. tuberculosis.  

 

Recently, RNA sequencing methods (that are centered on ultra-high throughput sequencing of total 

RNA and methodical counts of all transcripts that are expressed) [116] have become more popular as 

they provide the possibility to overcome  many of the restrictions related to the microarray technology 

[21]. In contrast to the hybridization-based method, RNA-Seq methods are more sensitive, and enable 

strand-specific identification of common and novel transcripts in an unbiased manner, and allow for 

more information to be deducted from the RNA. It also allows the positive identification of both lowly 

expressed and highly expressed genes in a single RNA-Seq experiment [21], enabling  a platform for 

unbiased and fully qualitative and quantitative transcriptomic profiles of host cells to be interrogated, 

following mycobacterial infection [116].  

 

Global changes in transcriptional response have allowed some enlightening on the molecular events 

that occur within the host during the establishment of a M. tuberculosis infection [117,116,118]. Several 

studies have described the transcriptional responses to M. tuberculosis infection [119,120], and recently 

global transcriptional changes at different time points have been analysed in the host [121]. Lung gene 

expression profiles of mice infected with M. tuberculosis or vaccinated with BCG prior to M. 

tuberculosis infection have indicated differences in naturally and vaccine induced immune response 

signatures [122]. Differential whole lung gene expression has identified signature profiles during M. 

tuberculosis disease progression [122] for example those that define different signalling pathways and 

immunological responses to M. tuberculosis infection [120,121].  

 

Therefore, in this study, we have used RNA-Seq to examine the transcriptome of mice lungs following 

a 14 day in vivo infection with M. tuberculosis to gain novel understandings of the transcriptional 

changes and cellular pathways induced by MTP during the early stages of infection. 

 

1.3 Significance of work 

Pili are present on the surface of bacterial cells, including that of M. tuberculosis [105,106,123]. They 

have been demonstrated to have roles in bacterial adherence and host colonization, and have been shown 

to be immunogens, and thus pili make for ideal vaccine candidates [123]. This study will add to the 

body of knowledge of MTP, exposing its role in pathogenesis and host immune response.  
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1.4 Hypothesis 

MTP plays a role in the specific host-pathogen interactions that follow M. tuberculosis infection, and 

thus, the host immune response 

 

1.5 Aim  

To evaluate the role of M. tuberculosis curli pili (MTP) in host gene regulation in a mouse model 

infected with Δmtp-mutant, mtp-complemented and wild-type strains of the V9124 strain of the 

F15/LAM4/KZN genotype of M. tuberculosis. 

 

 

1.6 Objectives 

(i) To conduct in vitro growth assays of the WT, complemented and ∆mtp-mutant strains by 

performing colony-forming units (CFU) over a 28-day period. 

(ii) To determine the viability of M. tuberculosis Δmtp-mutant strain compared to the 

complemented and the WT in mice lungs and spleen by CFU enumeration during disease 

progression until 28 days. 

(iii) To assess visible signs of disease on infected lungs after 28 days of infection by photographic 

imagery using a NIKON 200 camera 

(iv) To evaluate the lung gene expression at D14 post M. tuberculosis infection of the Δmtp-mutant 

infected lungs compared to WT strain infected lungs by using whole transcriptome analysis. 

 

1.7 Study Design 

Female BALB/c mice were infected with the Δmtp-mutant, complemented and WT strains. Bacterial 

growth kinetics were carried out to determine the effect of the gene on growth by observing in vitro 

CFU assays, and in vivo CFUs from M. tuberculosis infected tissues. The transcriptional profiles of 

lungs infected with the Δmtp-mutant, and WT strains for fourteen days were compared using various 

bioinformatics tools to further analyse the effect of mtp.  

 

1.8 Dissertation Layout 

This dissertation is composed of four chapters, in the traditional format as accepted by the University 

of KwaZulu-Natal. The introduction and literature reviews are included in the first chapter. In Chapter 

two, the materials and methods used for the experimental work involved in this study are described in 

detail. Chapter three describes the results obtained, and Chapter four discusses the findings, challenges 

faced, conclusions and recommendations for future studies.  
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CHAPTER 2: MATERIALS AND METHODS 
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2.1 Ethics Approval 

The study was ethically approved by the Animal Research Ethics Committee (AREC), University of 

KwaZulu-Natal (reference number: 053/15/animal). 

 

2.2 Growth of Mycobacterium tuberculosis strains. 

A MTP-deficient (Δmtp-mutant), mtp-complemented and Wild Type (WT) strains of the clinical 

F15/LAM4/KZN genotype of M. tuberculosis [11], that were confirmed by PCR were cultured in 7H9 

broth (BD, Difco Laboratories, USA) (supplemented with 10% (v/v) Oleic Albumin Dextrose Catalase 

(OADC) (BD, Difco Laboratories, USA), 0.05% (v/v) Tween-80 and 0.5% (v/v) Glycerol (Sigma-

Aldrich, USA) to an optical density (OD600nm)) of 0.9 – 1.2 [124,125].  Stock cultures were subsequently 

stored in 50% supplemented Middlebrook 7H9 broth (BD, Difco Laboratories, USA) and 50% Glycerol 

(Sigma-Aldrich, USA) at -70°C  [124].  

 

2.3 In vitro growth studies. 

Frozen stocks of the WT, Δmtp-mutant and mtp-complemented strains were inoculated in triplicate into 

100 mL Middlebrook 7H9 liquid broth, supplemented as previously mentioned, and incubated with 

gentle shaking at 37°C until reaching an OD600 of 1.6–1.8. The cultures were centrifuged at 3000 rpm 

for 10 minutes and thereafter, the pellet was washed three times in 8 mL of 10 % Phosphate Buffered 

Saline (PBS) with 0.05% Tween-80. After the final wash, the pellet was re-suspended in 1mL of 

supplemented 7H9 broth, and vortexed to achieve a homogeneous suspension. The cultures were back 

diluted to an OD of 0.015 in 25mL of supplemented 7H9 broth in triplicate [125] and incubated in a 

shaking incubator at 37ºC for 28 days and colony forming units (CFUs) were quantified in triplicate on 

Middlebrook 7H11 agar plates supplemented with 10 % OADC and 0.5 % glycerol, from 10-fold serial 

dilutions at 4-day intervals. The Middlebrook 7H11 agar plates were read after incubation at 37ºC for 

three weeks. 

 

2.4 In vivo experiments 

2.4.1 Animals 

Female Balb/c mice aged between 6-8 weeks were purchased from the KwaZulu-Natal Research 

Institute for Tuberculosis and HIV/AIDS (K-RITH). The BALB/c mice were bred at the Biomedical 

Research Unit (BRU), University of KwaZulu-Natal (UKZN). All experiments involving mice were 

conducted under humane conditions specified by animal ethics guidelines, in Class II bio-safety 

cabinets in the bio-safety level 3 (BSL-3 facility) at the BRU, and K-RITH.  All subsequent experiments 

on harvested organs were conducted in the TB laboratory, Medical Microbiology and Infection Control, 

Nelson R Mandela School of Medicine, UKZN.  
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2.4.2 Mice Aerosol infection (Day 0) and inoculum preparation. 

A Glas-Col Middlebrook Inhalation Exposure System was used to infect the female BALB/c mice with 

the ∆mtp-mutant, complemented and WT strains of M. tuberculosis via the aerosol route. The mouse 

infection inoculum was prepared by culturing 100 µL of frozen stocks of each strain in supplemented 

7H9 broth (BD, Difco Laboratories, USA) to an OD600 of 1-1.2 [115], and a 1 in 100 dilution was 

performed to make the required dose. Colony forming units (CFU/mL) were enumerated by plating out 

serial dilutions of the inoculum onto 7H11 agar plates that were incubated at 37oC for about 3weeks, to 

determine the infection dose. A total of 95 mice i.e.  5 per strain (WT, ∆mtp-mutant and complemented) 

for the 6 time points of sacrifice (day 1; 2; 7; 14; 21; 28) were infected to ensure variability and greater 

accuracy of results.  

 

2.4.3 Organ harvesting and storage 

 Five mice infected with each of the 3 strains were anaesthetized with Isofor and sacrificed by cardiac 

puncture at the following intervals: 24 hours, 48 hours, 7, 14, 21 and 28 days. Blood was collected from 

each mouse and stored in Serum separator tubes for future cytokine analysis. The spleens and lungs 

which were removed under aseptic conditions, were split in half for CFU enumeration to determine the 

number of infecting mycobacteria at each interval, and RNA extraction. For CFU enumeration, half the 

organs were transferred to an O-ring tube containing 10% Phosphate PBS with 0.05% Tween 80 and 

2um glass beads, and were immediately homogenized using the MagNa Lyser (Roche Molecular 

Diagnostics, Rotkreuz, Switzerland) and stored on ice. For RNA extraction, the other half of the organs 

was transferred to an O-ring tube containing TRIzol solution, and immediately snap frozen on dry ice. 

[126].  

 

2.4.3.1 Gross organ morphology 

Infected lungs were photographed 28days post-infection using a NIKON 200 camera to assess visible 

signs of disease, and any differences in size among the organs from mice infected with the different 

strains. 

 

2.4.4 Determining Colony Forming Units (CFUs)  

All organs were homogenized at 7000rpm for 90s using the MagNa Lyser and homogenates were plated 

onto Blood and MacConkey Agar plates to detect for contamination. CFU enumeration to determine 

the number of infecting mycobacteria were performed at each interval, by plating out 100ul of serial 

dilutions  onto Middlebrook 7H11 agar (BD, Difco Laboratories, USA) supplemented with 10% OADC 

(BD, Difco Laboratories, USA), 0.5% Glycerol and PACT (200.000 units/L of Polymixin B (Sigma-

Aldrich, USA); 20 mg/L of Amphotericin B (Sigma-Aldrich, USA); 100 mg/L of Carbenicilin (Sigma-



26 

 

Aldrich, USA) and 20 mg/L of Trimethoprim (Sigma-Aldrich, USA) antibiotics in 65mm petri dishes. 

The plates were left to dry and thereafter incubated at 37°C in 5% CO2 for 21 to 28 days.  

 

2.4.5 Extraction of RNA 

Extraction of RNA was performed using a combination of the TRIzol reagent (Sigma-Aldrich, USA), 

and the RNeasy kit (Qiagen, South Africa) protocol.  

 

2.4.5.1 TriZol extraction 

Briefly, lung tissue was disrupted and homogenized in the TRIzol reagent (Sigma-Aldrich, USA) it was 

stored in (to minimize loss of RNA), using a sterile glass homogenizer on ice. Each organ was 

homogenized with its own homogenizer to prevent cross contamination. To allow for the complete 

dissociation of nucleoprotein complexes, the lysate was incubated for 5mins at room temperature (RT). 

Thereafter, 500 µL of Chloroform (Sigma-Aldrich, USA) was added to the tubes, vigorously inverted 

for 15 secs and incubated at room temperature for 2-3 min. After centrifugation for 15 min at 15 000 

rpm at 4°C, the top aqueous layer was carefully transferred into a sterile 1.5 mL Eppendorf tube. An 

equal volume of 70% cold ethanol (Sigma-Aldrich, USA) was added, and mixed immediately by 

pipetting.  

 

2.4.5.2 RNeasy purification 

The sample was transferred to the RNeasy spin column, washed once with 700 µl of Buffer RW1 and 

twice with 500 µl of Buffer RPE by centrifuging for 15 s at 12 000 rpm. The RNA was eluted from the 

RNeasy spin column into a new 1.5 ml Eppendorf tube in 60 µL of RNase-free water by centrifugation 

for 1 min at 12 000 rpm. The RNA was quantified using the Nanodrop (Thermo Scientific, South 

Africa), and the quality was checked by electrophoresis in a 3-(N-morpholino)propanesulfonic acid 

(MOPS) gel electrophoresis (Appendix 2). Aliquots of 25 uL of RNA were stored at -70C.  The integrity 

of the RNA was further analysed in the Agilent 2100 Bioanalyzer (Johns Hopkins Deep Sequencing & 

Microarray Core Facility, USA), prior to sequencing. 

 

2.4.6 RNA Sequencing 

Sequencing of the extracted RNA was outsourced to the Johns Hopkins Deep Sequencing and 

Microarray Core Facility. RNA samples at day 14 from 2 biological replicates with a RNA integrity 

number (RIN) equal to or above 7.9 were used to prepare single cDNA libraries with the Epicenter 

ScriptSeq Complete Epidemiology RNA-Seq kit (Illumina, CA, USA) following the manufacturer’s 

procedure. A maximum of 500 ng total RNA was treated with the Ribo Zero kit (Illumina, CA, USA) 

to remove all rRNAs in a 20 uL reaction. Of this, 9 uL was used to make the cDNA libraries with the 

ScriptSeq v2 RNA-Seq Library Preparation Kit (Illumina, CA, USA). The library products were used 
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to sequence 100 – 150 million paired 100bp reads, using the TruSeq Cluster Kits (Illumina, CA, USA) 

on the Illumina HiSeq 2000, in one sequencing lane per sample since the RNA contained both 

mammalian and bacterial transcriptomes. The duplicate RNA samples extracted from uninfected lungs 

as controls were multiplexed in a single flow cell lane. The resulting sequencing reads were provided 

via BaseSpace (Illumina) as fastq format. 

 

2.4.7 Bioinformatics and Data Analysis 

For the CFU assays, each dilution was plated in triplicate for each mouse. For the RNA Sequencing, 

library preparation was performed for mice infected by each strain, using RNA that was extracted at 

two independent times. Statistical analysis was performed with SSPS Software 23.0 (IBM) and 

Microsoft Excel, using a Student’s t-test and One-way analysis of variance (ANOVA) from SPSS, with 

a p-value ≤ 0.05 and a confidence level of 95% being considered statistically significant for growth and 

organ comparisons. The Illumina fastq sequencing raw reads were analysed by various Bioinformatics 

tools. All sequence manipulations were performed using in-house Linux shell scripts (Appendix 3), and 

a RNA-Seq analysis workflow was generated followed (Figure 2.4.7.1). Data visualization was carried 

out on the R platform with Cummerbund and plotting packages ggplot2 installed. 

 

Figure 2.4.7.1 Summary of the RNA-Seq analysis work flow that was followed. 

 

2.4.7.1 Raw data pre-processing - Quality assessment 

Pre-processing of the reads included the assessment for quality control (QC) using the FastQC tool 

[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/], (version 0.11.3; Babraham 

Bioinformatics, Cambridge, UK), to perform the following QC checks: per base sequence quality, per 

base  sequence  content, sequence length duplication, base  GC content, sequence duplication levels, 

sequence  quality  scores, sequence  GC  content, and overrepresented sequences, base  N  content and 

Kmer content [127].  
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2.4.7.2 Alignment of sequences to the mouse reference genome 

The principle of mapping of the RNA-Seq reads is to find matches, on the known reference genome for 

the sequences of the sampled short RNA-Seq reads. Quality controlled sequence reads were mapped to 

the UCSC mouse reference genome, Mus musculus (mm10), using Tophat (version tophat-2.1.0) 

(http://tophat.cbcb.umd.edu) together with Bowtie2 (http://bowtie-bio.sourceforge.net) [128,129]. The 

Tophat alignment was set to the default parameters, which allowed for a maximum of two mismatches 

at most to be accepted per read, and for mapping to more than one locus. The UCSC mouse reference 

genome was provided with a pre-built Bowtie2 index in order to create a transcriptome index from the 

gene transfer format (GTF) data. The Bash commands used for the alignment and the overall analysis 

pipeline are summarized in Appendix 3. 

 

2.4.7.3 Differential Expression Analysis of genes  

Differentially expressed genes were identified using the Cuffdiff package of Cufflinks (version 

cufflinks-2.2.1, http://cufflinks.cbcb.umd.edu/) [130]. Based on the Tophat and Bowtie mapping 

outputs, cufflinks assembled the mapped reads into transcripts, and Cuffdiff estimated their abundances, 

and reported the differentially expressed reads and transcripts in a txt file as log2-normalized [129]. 

Reads obtained from the uninfected lungs were used as a control to normalize the gene expression ratio 

as infected vs. uninfected, and denote the ratio as log2 values. Therefore, the genes differentially 

expressed in response to the WT infection were identified by calculating the ratio of gene expression 

between WT infection and uninfected, control mice, and the same was performed for genes 

differentially expressed in response to the ∆mtp-mutant infection. The Linux commands used for the 

differential expression are summarized in Appendix 3. 

 

2.4.7.4 Visualization of data and Global Transcriptomics 

The differential expression outputs were analysed using the reads obtained from the uninfected lungs 

as a control. Global statistics and visualisation of differentially expressed genes were conducted and 

determined using R version 2.4.1 (www.r-project.org), R-studio, and Bioconductor packages   such as 

CummeRbund. The Multi Experimental Viewer (MeV, v. 4.9.0) program was used to visualise the DE 

gene sets in heat maps.  

 

2.4.7.5 Identification of Significantly Differentially Expressed genes (SDEG)  

SDEGs were identified using the following parameters: (i) a log2 fold-change above 1.5 for up-

regulated genes, and less than 1.5 for down-regulated genes; and (ii) false discovery rate (FDR) 

corrected p-value (q-value) of ≤ 0.05 [131]. 

 

 

http://tophat.cbcb.umd.edu/
http://bowtie-bio.sourceforge.net/
http://cufflinks.cbcb.umd.edu/
http://www.r-project.org/
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2.4.7.6 Gene Ontology (GO) enrichment Analysis 

GO enrichment analysis of SDEGs was performed with the Gene Ontology Consortium 

(http://geneontology.org/page/go-enrichment-analysis) using text files that contained the Gene ID and 

expression values as given by Cuffdiff. Under- and over-represented GO terms a were extracted from 

the differentially expressed genes by selecting a p-value <0.05. This was used to study the molecular 

function (MF) of the regulated genes, the biological processes (BP) they are involved in, and, and the 

cellular compartments (CC) in which they are found. 

 

2.4.7.7 Pathway and network analysis 

Further analysis was carried out on the SDEGs (p ≤ 0.05) to determine their functional relevance within 

the context of networks and pathway enrichment using the Ingenuity Pathway Analysis (IPA) software 

(www.ingenuity.com) [132]. IPA interprets data from differentially expressed genes into known 

functions, pathways and gene interaction networks that are available on the Ingenuity database. Genetic 

networks are ranked by scores, transcriptional regulators are assigned activation z-scores which predict 

whether or not they are activated or inhibited in any given functional pathway/network, and molecules 

are assigned to functions and canonical pathways after specific p-value calculations. This data analysis 

by IPA permits for understanding and interpreting the significance of differentially expressed genes, 

and the gene products involved within a larger biological system [133]. Lists of SDEGs from the WT 

and ∆mtp-mutant infection were uploaded to IPA, and the significance was set at a p-value of 0.05 

[134]. 

 

 

 

  

http://geneontology.org/page/go-enrichment-analysis
http://www.ingenuity.com/
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CHAPTER 3: RESULTS 
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3.1 In vitro growth kinetics 

The WT, ∆mtp-mutant and mtp-complemented strains were cultured in Middlebrook 7H9 broth 

supplemented with 10% (v/v) OADC, 0.5% (v/v) glycerol and 0.05% (v/v) Tween-80, to assess their in 

vitro growth rate (Figure 3.1.1). The initial inoculum of the ∆mtp-mutant at Day 0 of the assay was 

unintentionally higher (3.02E+06 CFU/mL) than the WT (1.09E+06 CFU/ mL). However, the bacillary 

load of the latter increased to 2.07E+09 CFU/ mL compared to that of the ∆mtp-mutant (8.91E+08 

CFU/ mL) by Day 16 of the assay. This Day 16 was the first time at which the first significant difference 

in growth was observed (p = 0.01). The WT maintained a significantly higher (p<0.001) bacillary load 

through the stationary phase until day 28. 

   

Figure 3.1.1: In-vitro growth kinetics of ∆mtp-mutant, mtp-complemented and wild type strains 

of M. tuberculosis. The V9124 wild type of F15/LAM4/KZN family of M. tuberculosis, its ∆mtp-

mutant and mtp-complemented strains were grown in broth Middlebrook 7H9culture for 28 days. CFU 

were enumerated at every 4-day interval. The ∆mtp-mutant strain is deficient of the mtp gene that 

encodes curli pili in M. tuberculosis. Data from 3 experiments performed on 3 different days in 

triplicate. Mean CFU data and standard deviation is plotted. 

* student t-test performed for WT CFU compared to ∆mtp-mutant CFU, P<0.05.  

WT: Wild type infection; Mutant: ∆mtp-mutant infection; Complement: mtp-Complemented infection 
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3.2 Growth kinetics of M. tuberculosis in lungs and spleen during early infection 

In the present study, Balb/C mice were infected with the ∆mtp-mutant and complemented strains via 

aerosol inoculation to determine if they differed in their growth ability in vivo compared to the WT 

strain. Enumeration of the initial inocula by CFU/mL demonstrated that at day 0, mice were infected 

with 4.17E+06 CFU/mL, 1.08E+06 CFU/mL and 2.70E+06 CFU/mL (p=0.00018) of the WT, ∆mtp-

mutant and complemented strains, respectively.  

Figure 3.2.1: In vivo growth and dissemination of wild type, ∆mtp-mutant and complemented 

strains of M. tuberculosis in BALB/c mice. M. tuberculosis burden in the lungs and spleen of BALB/c 

mice infected via aerosol inhalation. CFU/mL, expressed as log10CFU were enumerated in the lungs 

and spleen at the different time intervals. The ∆mtp-mutant strain is deficient of the mtp gene that 

encodes curli pili in M. tuberculosis. Mean CFU data from 5 mice and standard deviation is plotted. 

* student t-test performed for WT CFU compared to ∆mtp-mutant CFU, P<0.05.  

WT: Wild type infection; Mutant: ∆mtp-mutant infection; Complement: mtp-Complemented infection 

 

On the specified days after infection, mice were sacrificed and their organs were collected, weighed 

and homogenized in PBS. The bacterial load in the lungs and spleen was determined by serial dilution 
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and plating of the organ homogenates onto 7H11 agar plates. The mean log CFU/ mL from five mice 

per group of strains at each time point is shown (Figure 3.2.1). Despite the limitation of unequal 

infecting inoculums, the initial lung burden implanted into the lungs after 24hours of infection was 

slightly, but not significantly higher (p= 0.36) for WT strain compared to the ∆mtp-mutant. The ∆mtp-

mutant strain was slower to grow in both the lungs, and spleen compared to the WT strain (Figure 3.2.1).  

Lungs infected with the WT strain displayed a non-significant higher number of infecting bacilli 

throughout the duration of infection (Figure 3.2.1), except at 7days post infection. By 21days post 

infection, lungs infected with the WT displayed a significantly higher bacillary load 1.46E+07 CFU/mL 

compared to those infected by the ∆mtp-mutant strain 8.55E+05 CFU/mL (p= 0.0098) (Figure 3.2.1). 

The mtp-complemented strain displayed a slightly lower microbial burden than the WT, but 

significantly higher than the ∆mtp-mutant strain, showing restoration of function.  Similarly, spleens 

infected with the WT strain contained a higher bacterial load (1.54E+04 CFU/mL) compared to the 

∆mtp-mutant strain (4.46E+03 CFU/mL) after 28 days of infection (p= 0.021) (Figure 3.2.1). At day 

28, a slight decrease was observed in the number of bacilli burdening the lungs infected with the WT 

strain (p= 0.019), but not in the lungs infected with the ∆mtp-mutant strain. The mtp-complemented 

strain displayed a higher bacterial burden than both the WT and ∆mtp-mutant strain, again, showing 

restoration of function.  

 

3.3 Gross organ pathology 

After aerosol challenge with M. tuberculosis, all mice survived up until they were sacrificed according 

to protocol. Photographic images of harvested lungs and spleens were taken 28days post-infection using 

a NIKON 200 camera to assess visible signs of disease, and any differences in size between the organs 

infected with the 3 different strains (Figure 3.3.1). The spleen length correlated with the bacillary load 

of each strain in this organ (Figures 3.3.1 and 3.3.2). In contrast, the width of the lung infected with 

only the WT strain correlated with the bacillary load at day 28 (Figures 3.3.1 and 3.3.2). In the lungs, 

the WT strain resulted in the highest increase (p=0.04) in width (Figures 3.3.1 and 3.3.3B), whereas 

infection with the mtp-complemented strain resulted in the highest size increase in the spleen (Figures 

3.3.1 and 3.3.3D). The bacillary load in the lungs followed a similar pattern, where the number of 

organisms infecting the lungs was higher in the WT infected lungs than the mtp-complemented infected 

lungs (Figure 3.3.2). Similarily, the mtp-complement infected spleen harboured the most infecting 

bacilli (Figure 3.3.2), followed by the WT (6.37E+06 CFU/mL), the lastly the ∆mtp-mutant challenged 

spleen (2.97E+06 CFU/mL), and the increase in spleen length followed a similar pattern (Figure 3.3.3).  
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* Mutant: ∆mtp-mutant infection; Complement: mtp-Complemented infection 

Figure 3.3.1: Mean lungs and spleen sizes after aerosol inoculation, at week 4 post M. tuberculosis 

challenge. 

 

 
* WT: Wild type infection; Mutant: ∆mtp-mutant infection; Complement: mtp-Complemented infection 

Figure 3.3.2: In vivo M. tuberculosis burden at day 28. Histogram shows the mycobacterial CFU/mL 

of the V9124 wild type, ∆mtp-mutant and mtp-complemented strains of M. tuberculosis infecting 

BALB/c mice lungs and spleen 28 days post- infection. 
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Figure 3.3.3: Gross appearance of lungs and spleens from aerosol infected mice at 4 weeks after 

challenge with M. tuberculosis strains. A: Uninfected BALB/c mice organs; followed by organs 

infected with B: V9124 wild type strain of the F15/LAM4/KZN family of M. tuberculosis (C), ∆mtp-

mutant (D) mtp-complemented strain. 

  

 

3.4 M. tuberculosis burden in lungs 14days post infection 

RNA-Sequencing was performed at 14 days post-infection on the lungs of 6 mice, consisting of two 

uninfected, and two each infected with the WT and ∆mtp strains respectively, for transcriptome 

analysis. At this time point, the lungs of the infected mice contained fewer ∆mtp-mutant bacilli 

(3.21E+05 CFU/mL) than the WT (7.30E+06 CFU/mL) (Figure 3.4.1). However, this difference was 

not significant (p = 0.3).    
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* WT: Wild type infection; Mutant: ∆mtp-mutant infection; Complement: mtp-Complemented infection 

Figure 3.4.1: M. tuberculosis burden in infected mice lungs at day 14 post-infection.  CFU/mL of 

the V9124 wild type, ∆mtp-mutant and mtp-complemented strains of M. tuberculosis infecting BALB/c 

mice lungs at 14 days post- infection were enumerated. 

 

3.5 RNA Concentration and Integrity 

In order to interrogate the transcriptome profile of M. tuberculosis infected lungs, and understand the 

transcriptomic response associated with MTP, RNA was extracted from the WT- and ∆mtp-mutant 

infected lungs. RNA was also generated from uninfected lungs for comparative purposes. The 

concentration and integrity (Table 3.5.1) of the RNA was verified for its use in library preparation for 

RNA sequencing with an Illumina HiSeq 2000. For each condition (n=3), the two biological replicates 

(Table 3.5.1) yielded high RNA concentrations of over 1000ng/ µL, high A260/280 and high 260/230 

ratios for all 6 samples, and RNA integrity numbers (RIN) between 6.90 and 9.80 (Table 3.5.1). The 

MOPS gel (Appendix 2) showed 2 distinct RNA bands representing the 2 eukaryotic RNA species (18S 

and 28S). 

 

 

Table 3.5.1: RNA concentrations post extraction. RNA extraction was performed using the Qiagen 

RNeasy kit. RNA concentration was obtained using a Nanodrop, and the RIN was measured using the 

Agilent Bioanalyzer 
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Sample ID Concentration [ng/µl] A260/280 A260/230 RIN 

Uninfected Control 1 1378,7 2,13 2,17 9,80 

Uninfected Control 2 1119,4 2,06 2,14 9,30 

Day14 Wild Type 4 2252,6 2,12 2,22 7.50 

Day14 Wild Type 5 2521,8 2,14 2,22 6.90 

Day14 ∆mtp-mutant 3 1034,2 2,14 2,03 8.00 

Day 14 ∆mtp-mutant 4 2165.3 2,04 2,16 8,00 

 

3.6 Processing of RNA-Seq reads 

 

3.6.1 Pre-processing - Read Quality Control 

The extracted RNA was converted into cDNA, and RNA libraries were created for each condition. The 

independent biological replicates were sequenced and the resulting reads were processed through our 

RNA-Seq data analysis pipeline (Appendix 3). The FastQC tool was used to evaluate the read quality 

of the generated raw data [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]. The basic 

statistics of the quality control (QC) results showed that all reads generated were 100bp long in sequence 

length, with no sequences flagged as poor quality, and the GC base content was between 42-44%. The 

mean of the per base sequence quality score was above 20 (example shown in (Figure 3.6.1.1) for all 

but 1 sample, the reverse sequence of the ∆mtp-mutant 3 sample, where the quality score of the read in 

position 7 fell below 20, to a score of 16 (Figure 3.6.1.2).  
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Figure 3.6.1.1: Sample FastQC output of the Illumina reads from the 6 libraries that were 

generated from the RNA obtained from the WT and ∆mtp-mutant infected lungs. The rest of the 

graphs from this QC are presented in Appendix 4. The mean quality score across the sequence length 

is represented by the blue line. The green, orange and pink colours represent areas of good, acceptable 

and bad quality scores respectively. 

 



39 

 

 

Figure 3.6.1.2: FastQC output of the reverse sequence of the ∆mtp-mutant infected lung sample. 

The quality score of the read in position 7 is 16. The mean quality score across the sequence length is 

represented by the blue line. The green, orange and pink colours represent areas of good, acceptable 

and bad quality scores respectively. 

 

3.6.2 Alignment and comparison with the reference genome 

The raw Illumina sequence reads generated from M. tuberculosis infected and uninfected lungs were 

mapped to the annotated Mus musculus mm10 mouse genome from the UCSC browser 

(illumina.com/Mus_musculus/UCSC/mm10/Mus_musculus_UCSC_mm10.tar.gz) using Tophat 

version tophat-2.1.0 [135]. Between 64.9%-77% of the reads for each sample aligned to the mouse 

reference genome (Table 3.6.2.1). Of these, 91.7 % - 92.5% did not align to multiple locations in the 

genome (Table 3.6.2.1). The ∆mtp-mutant infected lung samples had the highest percentage (72.1%) of 

reads aligning to the reference genome, whereas the WT infected lung samples had 70.75% of their read 

aligning to the reference genome (Table 3.6.2.1). 
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Table 3.6.2.1. Summary of the number of the 100bp paired ended sequences and percent of 

mapped reads obtained for the 6 libraries mapped to the mus musculus mm10 mouse genome. 

 Mouse # Total number of 

reads 

% mapped reads % uniquely 

aligned reads  

Uninfected 1 69,548,356 64.9 92.50 

 2 73,775,199 72.5 91.90 

WT  1 195,652,780 70 92.55 

infected 2 177,887,281 71.5 91.70 

∆mtp-

mutant  
1 162,002,242 77 91.95 

infected 2 242,575,164 67.2 92.15 

* WT: Wild type infection 

 

3.7 Global changes in the lung transcriptional response of Balb/C mice to infection by M. 

tuberculosis 

Expression values of the 24 346 mouse genes were analysed to define global changes in the WT and 

∆mtp-mutant M. tuberculosis-infected mouse lung transcriptomes relative to uninfected lungs. The 

aligned reads were assembled into gene transcripts and Cufflinks was used to calculate the relative 

abundance of these transcripts. Transcription profiles were obtained using Cuffdiff outputs in order to 

identify the differentially expressed genes in the two experimental groups (WT and ∆mtp-mutant 

infected lungs). Density (Figure 3.7.1) and Dispersion (Figure 3.7.2) plots of host genes were 

constructed to assess the distributions of fragments per kilobase per million mapped reads (FPKM) 

scores across all samples. The total reads mapping to the mouse genome from the WT M. tuberculosis 

infection read pool was lower than that of the ∆mtp-mutant M. tuberculosis infection read pool (Table 

3.6.2.1). Similarly, the density of transcripts that were differentially expressed in response to ∆mtp-

mutant M. tuberculosis infection was greater than that of the WT relative to the transcripts from 

uninfected mice (Figure 3.7.1). However, the transcripts from the WT and ∆mtp-mutant infection 

showed similar patterns of dispersion (Figure 3.7.2). 
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Figure 3.7.1. Density plot of expressed genes. Differential expression analysis of uninfected and M. 

tuberculosis-infected mouse lungs. Differential gene expression data was analysed with the R version 

3.2.2. The plot was generated using the CummeRbund package v. 2.0. 
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Figure 3.7.2. Dispersion plot of expressed genes. Differential expression analysis of uninfected and 

M. tuberculosis-infected mouse lungs. Differential gene expression data was analysed with the R 

version 3.2.2. Plot was generated using the CummeRbund package v. 2.0. 

 

3.7.1 Significantly differentially expressed genes (SDEGs) and Gene Ontology (GO) 

Analysis 

A total of 24 346 genes was analysed, of which 1 262 and 1 523 genes were differentially expressed in 

the lungs of mice due to infection with the WT and ∆mtp-mutant strains of M. tuberculosis respectively, 

relative to the uninfected mice. Of these, only 512 and 1 058 genes were significantly differentially 

expressed due to the WT and ∆mtp-mutant respectively. The log2 fold change ratio of Treatment/Control 

was used to determine significant genes with a q-value < 0.05. A specific cut-off was imposed, where 

the upregulated or down regulated genes with a ratio of ≥1.5 or ≤ −1.5 respectively were selected and 

considered as significantly differentially expressed genes (SDEGs) in order to identify gene expression 

changes with the highest potential impact. A total of 1 442 genes was found to be significantly 

differentially expressed due to M. tuberculosis infection with the WT and ∆mtp-mutant strain. Of these, 

the total number of activated genes was significantly higher compared to the total number of repressed 

genes in both infections (Figure 3.7.1.1). The WT and ∆mtp-mutant infection uniquely induced 384 and 

930 SDEGs respectively (Figure 3.7.1.1). The WT infection displayed the widest range of expression 



43 

 

(-4.93211 to 10.1523) compared to the ∆mtp-mutant infection expression range (-4.54057 to 9.87822). 

Of the top 10 most upregulated genes (Table 3.7.1.1), 8 were common in both infections. These were 

the Krt13, Krt4, Acta1, Defb4, Serpinb3a, Serpinb12, Mylpf, and Tnnt3 genes. In contrast, only 2 genes, 

S100a9 and Hist1h3g were common in the top 10 downregulated genes. 

 

A)        B) 

   

Figure 3.7.1.1: Significantly Differentially Expressed Genes (SDEGs). Changes in the lung 

transcriptome of WT and ∆mtp-mutant M. tuberculosis infected mice lungs were expressed as a ratio 

of log2 fold change of gene expression relative to the uninfected lungs. A total of 512 and 1 058 genes 

were significantly differentially expressed due to the WT and ∆mtp-mutant infection respectively. A: 

Comparison of the up- (blue), and down- (orange) regulated SDEGs.  B. Venn diagram depicting the 

distribution of the SDEGs with the overlapping intersection representing a set of genes evident as 

significantly differentially expressed in both infections. Wild type: Wild type infection and ∆mtp-

mutant: ∆mtp-mutant infection. 

 

Table 3.7.1.1: Top ten up-regulated and down regulated SEDGs elicited by the host in response 

to each M. tuberculosis infection relative to uninfected mice. 

Upregulated  genes  Downregulated  genes  

WT infection ∆mtp-mutant infection WT infection ∆mtp-mutant 

infection 

Gene ID Expression 

value (log2 

fold 

change) 

Gene ID Expression 

value (log2 

fold 

change) 

Gene ID Expression 

value (log2 

fold change) 

Gene ID Expression 

value (log2 

fold 

change) 

Krt13 10.1523 Krt13 9.87822 Hist1h3g -4.93211 Camp -4.54057 

Krt4 8.609 Krt4 8.91507 Terc -4.53914 Ngp -3.86736 

Defb4 8.15211 Saa3 7.35888 H2-Ea-ps -4.08168 S100a9 -3.74043 
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Acta1 8.00758 Acta1 7.30966 S100a9 -4.00378 Stfa2 -3.60231 

Serpinb3a 7.3584 Defb4 6.75932 Hist1h4i -3.95731 Snord22 -3.52332 

Mylpf 7.14667 Serpinb3a 6.72511 Gdpd3 -3.94795 Mcpt8 -3.16553 

Serpinb12 7.00409 Serpinb12 6.4943 H2-Eb1 -3.80649 Prss34 -3.14263 

Tnnt3 6.88874 Mylpf 6.3218 Ifitm6 -3.77469 Retnlg -3.0125 

Myh8 6.53424 Tnnt3 6.03244 Wfdc21 -3.70049 Col4a6 -3.00524 

Myh1 6.17073 AA467197 5.8065 2410137M14Rik -3.47148 Hist1h3g -2.967 

 

3.7.1.1 Unique SDEGs in response to WT and ∆mtp-mutant M. tuberculosis infection 

The ∆mtp-mutant infection induced more than a 2-fold increase in the number of unique SDEGs 

compared to the WT infection (Figure 3.7.1.1). GO data was interrogated to determine the biological 

functions and the GO functional categories (FCs) associated with the 384, and 930 unique SDEGs 

elicited by the WT and ∆mtp-mutant M. tuberculosis infections respectively. Among the 384 SDEGs 

genes that were regulated ≥1.5-fold following bacterial infection with the WT strain only, a significant 

enrichment was observed in functions related to chemokine receptor binding e.g. GO:0042379, 

chemokine activity e.g. GO:0008009, cytokine receptor binding e.g. GO:0005126 and cytokine activity 

e.g. GO:0005125. Other binding functions e.g. GO:0005102 were also found to be associated with these 

genes (Table 3.7.1.1.1). The CXCR chemokine receptor binding (GO:0045236) and the CCR 

chemokine receptor binding (GO:0048020) were amongst the top biological functions enriched by the 

WT specific genes.  

 

Whilst the WT enriched biological functions were involved in immune response, comparative GO 

enrichment analysis of the 930 SDEGs uniquely elicited by the host after ∆mtp-mutant infection 

revealed that molecular transducer activity (GO:0060089), receptor activity (GO:0004872), signal 

transducer activity (GO:0004871), signalling receptor activity (GO:0038023) and ion binding 

(GO:0043167) were among the top biological functions (Table 3.7.1.1.1) affected by removal of the 

mtp gene. The G-protein was found to be significantly associated with biological functions enriched by 

SDEGs uniquely elicited by both infections. The G-protein coupled receptor binding (GO:0001664) 

and G-protein coupled receptor activity (GO:0004930) were enriched by the WT and ∆mtp-mutant 

infections respectively (Table 3.7.1.1.1). 

 

Table 3.7.1.1.1: The GO functional categories (FCs) of the GO molecular functions from the 

unique gene datasets.  

Genes unique to WT P-value Genes unique to ∆mtp-mutant P-value 

CXCR chemokine receptor binding 

(GO:0045236) 

1.51E-07 molecular transducer activity 

(GO:0060089) 

3.63E-19 
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chemokine activity (GO:0008009) 4.68E-18 receptor activity (GO:0004872) 2.56E-22 

CCR chemokine receptor binding 

(GO:0048020) 

1.23E-06 signal transducer activity 

(GO:0004871) 

5.48E-19 

chemokine receptor binding 

(GO:0042379) 

6.08E-19 signalling receptor activity 

(GO:0038023) 

2.73E-22 

cytokine receptor binding 

(GO:0005126) 

2.20E-12 ion binding (GO:0043167) 6.68E-03 

G-protein coupled receptor binding 

(GO:0001664) 

1.13E-10 organic cyclic compound binding 

(GO:0097159) 

2.42E-03 

protein homodimerization activity 

(GO:0042803) 

1.36E-02 heterocyclic compound binding 

(GO:1901363) 

2.78E-03 

receptor binding (GO:0005102) 9.93E-06 catalytic activity (GO:0003824) 2.22E-06 

identical protein binding 

(GO:0042802) 

5.21E-04 olfactory receptor activity 

(GO:0004984) 

2.06E-14 

carbohydrate derivative binding 

(GO:0097367) 

1.75E-03 G-protein coupled receptor activity 

(GO:0004930) 

3.71E-14 

anion binding (GO:0043168) 4.31E-03 odorant binding (GO:0005549) 1.12E-15 

hydrolase activity (GO:0016787) 4.06E-02 
  

protein binding (GO:0005515) 6.44E-12 pheromone receptor activity 

(GO:0016503) 

1.16E-05 

binding (GO:0005488) 4.33E-08 pheromone binding (GO:0005550) 5.26E-04 

* WT: Wild type infection 

 

3.7.1.2 Shared SDEGs in response to both WT and ∆mtp-mutant infection  

Only 128 (8.90%) of the 1442 genes were common in both infections, and of those, 74.2% and 25.8% 

were upregulated and downregulated respectively. In both strains, the regulation of the genes was 

similar, i.e. all genes were up/down regulated in both conditions. However, the extent of the regulation 

differed. For most of the genes, the magnitude of up-regulation was higher in the WT infection model 

compared to the ∆mtp-mutant infection.  Up and down regulated  SDEGs common in both infections 

were enriched for molecular functions, cellular components and  biological processes (Tables 3.7.1.3.1 

and Table 3.7.1.4.1.). 

 

3.7.1.3 Upregulated genes 

The heat map (Figure 3.7.1.3) showed that among the upregulated genes, the Keratin 13 (Krt13) and 

Keratin 4 (Krt4) genes were ;8the most up-regulated genes in both infections.  The Krt13 displayed a 

log2fold change value of 9.88 and 10.15, whilst the values for Krt4 were 8.91507 and 8.609 in the WT 

and ∆mtp-mutant infection respectively. These genes both belong to the keratin family, which are 

intermediate filaments involved in structural molecule activity, structural constituent of cytoskeleton; 
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protein binding and keratin filament binding. It then follows that the over-represented GO terms from 

this set of genes are associated with muscle contraction (GO:0006936), regulation of striated muscle 

contraction (GO:0006942), muscle system process (GO:0003012) and regulation of muscle system 

process (GO:0090257), and they were mostly found in the myofibril (GO:0030016) and contractile 

fibers (GO:0043292) (Table 3.7.2.1.1). 
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Figure 3.7.1.3.1: Differential expression of host genes in response to M. tuberculosis infection 

14days post-infection. The 95 commonly up-regulated genes between the WT and ∆mtp-mutant 
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infections of Balb/C mice lungs. UI vs WT: Wild type infection and UI vs mtp Mutant: ∆mtp-mutant 

infection. Colour intensity indicates the magnitude of up-regulation: red represents highly activated 

genes, and green represents lowly activated genes, relative to the uninfected control (p <0.05).  

 

Table 3.7.1.3.1: Gene ontology enrichment of the 95 common up-regulated genes. GO enrichment 

analysis was performed using the Gene Ontology Consortium. 

GO biological 

process 

P-value GO molecular 

function 

P-value GO cellular 

component 

P-value 

regulation of striated 

muscle contraction 

(GO:0006942) 

3.72E-03 serine-type 

endopeptidase 

inhibitor activity 

(GO:0004867) 

1.44E-04 myofibril 

(GO:0030016) 

5.14E-11 

muscle contraction 

(GO:0006936) 

6.08E-07 endopeptidase 

inhibitor activity 

(GO:0004866) 

3.27E-03 contractile fiber 

(GO:0043292) 

1.26E-10 

homophilic cell 

adhesion via plasma 

membrane adhesion 

molecules 

(GO:0007156) 

1.48E-02 endopeptidase 

regulator activity 

(GO:0061135) 

4.12E-03 sarcomere 

(GO:0030017) 

2.01E-10 

regulation of muscle 

contraction 

(GO:0006937) 

4.13E-05 peptidase inhibitor 

activity 

(GO:0030414) 

4.97E-03 contractile fiber 

part 

(GO:0044449) 

5.23E-10 

muscle system 

process 

(GO:0003012) 

5.26E-07 peptidase regulator 

activity 

(GO:0061134) 

1.48E-02 extracellular 

region 

(GO:0005576) 

2.00E-09 

regulation of muscle 

system process 

(GO:0090257) 

6.71E-04 calcium ion 

binding 

(GO:0005509) 

1.06E-09 desmosome 

(GO:0030057) 

1.41E-08 

  nucleic acid 

binding 

(GO:0003676) 

1.70E-02 extracellular 

exosome 

(GO:0070062) 

1.59E-07 

 

 

 

3.7.1.4 Downregulated genes 
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The down regulated genes did not follow a similar trend to the up-regulated genes. The 2 genes that 

were most repressed due to the WT infection, based on expression fold-change, differed from those that 

were most repressed in the ∆mtp-mutant. In the lungs infected with the WT strain, the cathelicidin 

antimicrobial peptide (Camp) gene was the most repressed, followed by the neutrophilic granule protein 

(Ngp), with log2fold change values of -3.87 and -4.54 respectively (Figure 3.7.1.1). Camp is associated 

with immune system processes like antibacterial and antifungal humoral response, and response to 

stimulus. The Ngp gene is involved in defence response processes as well as negative regulation of 

endopeptidase and peptidase activity. It is mostly found in the extracellular region. With an expression 

fold change value of -4.93, Histone cluster 1, H3g (Hist1h3g) gene was the most repressed gene in the 

lungs after infection with the ∆mtp-mutant. It plays a crucial role in DNA replication and chromosomal 

stability, DNA repair and transcription regulation. The 2nd most repressed gene with an expression fold 

change value of -4.54, encodes the telomerase RNA component (Terc) in the nucleus. It is involved in 

cell differentiation and proliferation, cellular component organization, homeostatic and immune system 

process, and system development.   
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Figure 3.7.1.4.1: Differential expression of host genes in response to M. tuberculosis infection 

14days post-infection. The heat map shows the 33 commonly downregulated genes between the WT 

and ∆mtp-mutant infections of Balb/C mice lungs. UI vs WT: Wild type infection and UI vs mtp Mutant: 

∆mtp-mutant infection. Colour intensity indicates the magnitude of up-regulation: Green represents 

highly activated genes, and Red represents lowly activated genes, relative to the uninfected control (p 

<0.05). 

 

The GO biological process terms from the downregulated genes are associated with neutrophil 

aggregation (GO:0070488), leukocyte migration involved in inflammatory response (GO:0002523), 

and leukocyte migration (GO:0050900). The molecular function involved with these genes is the Toll-

like receptor 4 binding (GO:0035662), and the significantly located in the extracellular space 

(GO:0005615) (Table 3.7.1.4.1). 

 

Table 3.7.1.4.1:  Gene ontology enrichment of the 33 common down regulated genes. GO 

enrichment analysis using the Gene Ontology Consortium revealed significantly enriched GO terms. 

GO biological 

processk 

P-value GO molecular 

function 

P-value GO cellular 

component 

P-value 

neutrophil 

aggregation 

(GO:0070488) 

2.39E-02 Toll-like receptor 4 

binding 

(GO:0035662) 

3.72E-02 extracellular 

space 

(GO:0005615) 

5.01E-03 

leukocyte migration 

involved in 

inflammatory 

response 

(GO:0002523) 

5.04E-03 
    

leukocyte migration 

(GO:0050900) 

1.09E-02 
    

 

3.8 Ingenuity Pathway Analysis (IPA) of SDEGs 

Canonical pathways, networks and upstream regulators associated with the SDEGs in the lungs after 

infection with the WT and ∆mtp-mutant strains were analysed by Ingenuity Pathway Analysis (IPA), 

in order to elucidate the effect of the mtp gene deletion on the host. The IPA knowledgebase was used 

for functional pathway/network analysis, using our annotated SDEGs. Pathways and networks enriched 

by both strains, and/or uniquely by either strain were identified and are summarized in Table 3.8.1. 
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Table 3.8.1: A summary of the numbers of significantly differentially expressed  

genes, and their associated networks and pathways.   

 All WT All ∆mtp-

mutant 

Shared Unique 

WT 

Unique ∆mtp-

mutant 

Number of 

Genes 

512 1058 128 384 930 

      

Number of 

Pathways 

109 54 30 79 24 

      

Number of 

Networks 

17 25 6 14 21 

      

WT: genes elicited in the Wild type infection 

∆mtp-mutant: genes elicited in the ∆mtp-mutant infection 

 

3.8.1 Canonical pathways enriched by all SDEGs 

Pathways with p-values <0.05 were considered significantly over-represented in a specific gene 

expression data set. Whist the number of SDEGs elicited by the ∆mtp-mutant infection was abundantly 

higher (2-fold) than the SDEGs elicited by the WT infection, the total number of canonical pathways 

significantly enriched by the WT genes (109) in IPA was higher than the total number of pathways 

enriched by the ∆mtp-mutant infection genes (54) (Table 3.8.1).  

 

3.8.1.1 Canonical pathways enriched by both WT and ∆mtp-mutant strains 

The pathways resulting from ∆mtp-mutant infection had a p-value significantly lower than those from 

the WT infection (Figure 3.8.1.1.1), showed by the higher –log(p-values) that correspond to higher 

significance. Of the top 10 most significantly enriched pathways, 8 were common in both infections 

(Table 3.8.1.1.1). These were the Agranulocyte Adhesion and Diapedesis, Granulocyte Adhesion and 

Diapedesis, Role of Hypercytokinemia / hyperchemokinemia in the Pathogenesis of Influenza, 

Interferon Signalling, Atherosclerosis Signalling, Hepatic Fibrosis / Hepatic Stellate Cell Activation, 

Calcium Signalling and LXR/RXR Activation. The Differential Regulation of Cytokine Production in 

Intestinal Epithelial Cells by IL-17A and IL-17F and Role of Pattern Recognition Receptors in 

Recognition of Bacteria and Viruses pathways were the 2 pathways enriched by the SDEGs elicited by 

the WT infection from the top 10 list of pathways (Table 3.8.1.1.1). In contrast, the ∆mtp-mutant 

infection SDEGs enriched the Acute Phase Response Signalling pathway and Communication between 

Innate and Adaptive Immune Cells pathway (Table 3.8.1.1.1).  
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Figure 3.8.1.1.1: IPA of the top 10 canonical pathways enriched from all genes, in response to the 

WT and ∆mtp-mutant infection relative to the uninfected. The rest of the pathways from this 

comparison analysis by the IPA tool are presented in Appendix 5. Dark blue represents WT and light 

blue represents ∆mtp-mutant (p-value < 0.05).  

 

Table 3.8.1.1.1: List of the top ten most significantly enriched canonical pathways by all genes 

elicited in both infections.  

Wild type Infection ∆mtp-mutant Infection 

Ingenuity 

Canonical 

Pathways 

Molecules Ingenuity 

Canonical 

Pathways 

Molecules 

Agranulocyte 

Adhesion and 

Diapedesis 

n = 35 

IL1A, MYH8, CCL17, CCL20, CCL22, 

Cxcl9, CXCL10, CXCL3, CCL2, CXCL13, 

Ccl8, CCL3L3, Ccl2, MMP8, XCL1, 

Cxcl3, MYL3, ACTA1, CCL19, MYH1, 

Cxcl11, Ppbp, MYL1, CXCL6, IL36B, 

MYL7, Glycam1, CCL4, CLDN5, MYH2, 

IL1RN, CXCL2, TNF, MMP9, Ccl7 

Agranulocyte 

Adhesion and 

Diapedesis 

n = 20 

MYH4, Ppbp, MYH8, PF4, MYL1, 

ITGB7, L36B, SELPLG, Glycam1, 

MYH2, CLDN5, MMP8, IL36RN, 

MMP11, Ccl6, MYL3, MMP9, ACTA1, 

CLDN3, MYH1 

 

Granulocyte 

Adhesion and 

Diapedesis 

n = 27 

IL1A, CCL17, CCL20, CCL22, Cxcl9, 

CXCL10, CXCL3, CXCL13, CCL2, 

Ccl8, CCL3L3, MMP8, Ccl2, XCL1, 

Cxcl3, CCL19, Cxcl11, Ppbp, CXCL6, 

IL36B, CLDN5, CCL4, IL1RN, CXCL2, 

TNF, MMP9,Ccl7 

Granulocyte 

Adhesion and 

Diapedesis 

n = 13 

Ppbp, PF4, IL36B, SELPLG, CLDN5, 

MMP8, IL36RN, MMP11, IL1RAPL1, 

Ccl6, MMP9, CLDN3, HSPB1 

 

Role of 

Hypercytokinemi

a/hyperchemokin

emia in the 

n = 10 

CXCL10, IFNG, IL1A, CCR5, CCL4, 

CCL2, IL1RN, IL12B, TNF, IL36B 

Role of 

Hypercytokinemia/h

yperchemokinemia 

in the Pathogenesis 

of Influenza 

n = 2 

IL36RN, IL36B 
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Pathogenesis of 

Influenza 

Interferon 

Signalling 

n = 9 

IFIT3, SOCS1, IFNG, STAT2, PSMB8, 

STAT1,TAP1, IRF1, ISG15 

Interferon 

Signalling 

n = 2 

IFITM3, IFITM2 

 

Atherosclerosis 

Signalling 

n = 15 

PLA2G16, ALOX15, IFNG, ALB, 

CD40LG, ALOX12B, IL1A, CCL2, 

PLA2G2D, MSR1, IL1RN, S100A8, TNF, 

MMP9, IL36B 

Atherosclerosis 

Signalling 

n = 8 

ALOX12B, IL36RN, ALOX12, S100A8, 

MMP9, IL36B, SELPLG, APOD 

 

Hepatic Fibrosis / 

Hepatic Stellate 

Cell Activation 

n = 18 

IFNG, CCR5, IL1A, CD40LG, COL4A6, 

MYH8, MYL1, MYL7, CXCL3, MYH2, 

CCL2, IGFBP3, CD14, STAT1, TNF, 

MYL3, MMP9, MYH1 

Hepatic Fibrosis / 

Hepatic Stellate 

Cell Activation 

n = 12 

MYH4, COL19A1, MYH2, Agtr1b, 

MYH8, CYP2E1, COL24A1, 

IL1RAPL1, MYL1, 

MMP9, MYL3, MYH1 

 

Calcium 

Signalling 

n = 17 

CALML5, TNNI2, TNNT3, MYH8, 

GRIA1, TNNT2, CREB5, MYL1, 

ATP2A1, MYL7, MYH2, TRPV6, CASQ1, 

RYR1, ACTA1, MYL3, MYH1 

Calcium Signalling n = 21 

MYH4, GRIN2A, CALML5, TP63, 

Calm1, TNNI2, TNNT3, MYH8, TRDN, 

GRIA2, TRPC4, GRIA4, Tpm2, MYL1, 

ATP2A1, MYH2, CASQ1, RYR1, 

MYL3, ACTA1, 

MYH1 

 

LXR/RXR 

Activation 

n = 14 

C4A/C4B, ALB, IL1A, MSR1, CCL2, 

IL1RN, VTN, CD14, S100A8, PTGS2, 

NOS2, TNF, MMP9,IL36B 

LXR/RXR 

Activation 

n = 11 

C4A/C4B, KNG1, TTR, ITIH4, IL36RN, 

CYP7A1, S100A8, IL1RAPL1, MMP9, 

IL36B, APOD 

 

Differential 

Regulation of 

Cytokine 

Production in 

Intestinal 

Epithelial Cells 

by IL-17A and 

IL-17F 

n = 7 

IFNG, IL1A, CCL4, CCL2, IL12B, LCN2, 

TNF 

Acute Phase 

Response Signalling 

n = 9 

C4A/C4B, TTR, F8, ITIH4, IL36RN, 

CEBPB, TCF3, CRABP2, IL36B 

 

Role of Pattern 

Recognition 

Receptors in 

Recognition of 

Bacteria and 

Viruses 

14 

IFNG, IL1A, C1QC, C1QA, C1QB, 

OAS3, IRF7, IL12B, LTA, CASP1, 

CLEC6A, EIF2AK2, TNF, C3AR1 

Communication 

between Innate and 

Adaptive Immune 

Cells 

6 

HLA-A, HLA-DRA, 

IL36RN, FCER1G, HLA-DRB5, IL36B 

 

 

 

 



54 

 

Pathway affected by MTP 

The most significant canonical pathway enriched by genes elicited in both infections was observed to 

be the Agranulocyte adhesion and Diapedesis pathway, with a p-value = 1.38E-22 for the WT infection 

compared to p-value = 7.11E-06 for the ∆mtp-mutant infection. As expected, this pathway was lowly 

enriched in the ∆mtp-mutant infection (Figure 3.8.1.1.2). This pathway is involved in Cell-To-Cell 

Signalling and Interaction; Haematological System Development and Function; and Immune Cell 

Trafficking Functions, which are part of the Cellular Immune Response.  

 

A) 
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B) 

 

Figure 3.8.1.1.2: Agranulocyte adhesion and Diapedesis Pathway as predicted by IPA. A: The 

pathway was enriched due to the WT infection (p-value=1.38E-22). B: The enrichment of the same 

pathway due to the ∆mtp-mutant infection (p-value=7.11E-06). The colour intensity indicates the degree 

of regulation: red representing activation and green representing repression, relative to the uninfected 

control. Grey shading indicates genes that were not differentially expressed; white shading represents 
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genes in the pathway not represented in the dataset. It is clear that the ∆mtp-mutant infection negatively 

enriched the pathway (green areas), whereas the WT infection only positively enriched the same 

pathway.  

 

With the exception of Calcium Signalling, the WT infection elicited more genes and molecules that 

were included in all the top significantly enriched IPA pathways compared to the ∆mtp-mutant infection 

(Table 3.8.1.1.1). For example, the WT infection elicited 3 more genes/molecules associated with the 

LXR/RXR Activation compared to the ∆mtp-mutant infection (Table 3.8.1.1.1), and it is clear that the 

pathway was significantly less enriched during the ∆mtp-mutant infection compared to the WT infection 

as (Figure 3.8.1.1.3). 

 

A)     
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B) 

 

                                                  

Figure 3.8.1.1.3: LXR/RXR Activation Pathway as predicted by IPA. A: The pathway as enriched 

due to the WT infection. B The enrichment of the same pathway due to the ∆mtp-mutant infection. 

Colour intensity indicates the degree of regulation: red representing activation and green representing 

repression, relative to the uninfected control. Grey shading indicates genes that were not differentially 

expressed; white shading represents genes in the pathway not represented in the dataset.  

 

Pathways unaffected by MTP 

The similar enrichment p-values of some canonical pathways for both infections demonstrated that they 

remained unaffected by MTP. These pathways included the Calcium signalling pathway (p-value = 
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7.23E-07 in WT and 3.86E-07 in ∆mtp-mutant infection) (Figure 3.8.1.1), Graft-versus-Host Disease 

signalling (p-value = 5.85E-04 in WT and 1.91E-04 in ∆mtp-mutant infection) and FXR/RXR 

Activation (p-value = 6.41E-03 in WT and 1.08E-02 in ∆mtp-mutant infection). 

 

3.8.2 Unique canonical pathways enriched by the SDEGs elicited by the host after WT and 

∆mtp-mutant M. tuberculosis infection. 

Some pathways were significantly enriched by the genes from only one infection, but not the other, 

with (Figure 3.8.1.1). IPA core analysis of all the SDEGs showed that the genes unique to WT infection 

were associated with a total of 79 canonical pathways, in comparison to only 24 with ∆mtp-mutant 

infection (Table 3.8.1). The pathways specific to the WT infection were associated with the host cellular 

immune response functions, categorized into various functional annotations (n=432). The Inflammatory 

Response functional category was the largest, with 106 associated functional annotations, for example, 

inflammation, activation, antigen presentation and phagocytosis. Cellular Movement (migration of 

leukocytes, T cells, antigen presenting cells, dendritic cells, phagocytes and NK cells), Cell-mediated 

Immune Response and Humoral Immune Response functional categories displayed in Appendix 6 are 

other functional categories associated with pathways specific to the WT infection. 

  

In contrast, only 50 functional annotations associated the ∆mtp-mutant pathways were involved with 

immune response (Appendix 7). The Cell-To-Cell Signaling and Interaction functional category was 

the largest, with 28 associated functional annotations. The top 10 most significant functional 

annotations associated with this category were signal transduction, communication of cells, 

communication, neurotransmission, synaptic transmission, GABA-mediated receptor currents, density 

of excitatory synapses, density of synapse, binding of lung cell lines and binding of blood platelets 

(Appendix 7). 

 

The most significantly enriched pathways by the WT infection SDEGs (Table 3.8.2.1) differed from 

those of the ∆mtp-mutant (Figure 3.8.2.1). The most significantly affected pathways during WT 

infection alone included Agranulocyte Adhesion and Diapedesis (Figure  3.8.1.2), Granulocyte 

Adhesion and Diapedesis, Interferon Signalling, Role of Pattern Recognition Receptors in Recognition 

of Bacteria and Viruses (Figure 3.8.2.2), Role of Hypercytokinemia/hyperchemokinemia in the 

Pathogenesis of Influenza, Differential Regulation of Cytokine Production in Intestinal Epithelial Cells 

by IL-17A and IL-17F (Figure 3.8.2.3), Complement System, Activation of IRF by Cytosolic Pattern 

Recognition Receptors, Acute Phase Response Signaling and  Dendritic Cell Maturation pathways 

(Table 3.8.2.1).  
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In contrast, SDEGs of the ∆mtp-mutant infection enriched the Graft-versus-Host Disease Signaling, 

GABA Receptor Signalling (Figure 3.8.2.4), Auto-immune Thyroid Disease Signaling, B-Cell 

Development, Allograft Rejection Signaling, OX40 Signaling Pathway, Nur77 Signaling in T 

Lymphocytes, Glutamate Receptor Signaling (Figure 3.8.2.5), Calcium-Induced T Lymphocyte 

Apoptosis, and the FXR/RXR Activation pathways. Our results suggest that in the absence of MTP in 

the infecting bacilli, the host upregulated genes involved in other signalling pathways enriched by the 

genes unique to the ∆mtp-mutant infection only (Figure 3.8.2.1).  These included the GABA receptor 

signalling pathway, Granzyme A signalling, Signalling by Rho GTPases, Glutamate receptor signalling 

and FXR/RXR signalling. These pathways were not enriched after infection with the WT.  

 

Table 3.8.2.1: Top 10 IPA pathways significantly enriched by the WT infection SDEGs. 

Ingenuity Canonical Pathways  -log(p-

value) 

Ratio Molecules 

Agranulocyte Adhesion and Diapedesis 1.32E+01 1.22E-01 IL1A, Cxcl11, CCL17, CCL20, CCL22, Cxcl9, CXCL6, MYL7, 

CXCL10, CXCL3, CCL4, CCL2, CXCL13, IL1RN, Ccl8, CCL3L3, 

Ccl2,XCL1,Cxcl3,CXCL2,TNF,CCL19,Ccl7 

Granulocyte Adhesion and Diapedesis 1.28E+01 1.24E-01 IL1A, Cxcl11, CCL17, CCL20, CCL22, Cxcl9, CXCL6, CXCL10, 

CXCL3, CCL4, CXCL13, CCL2, IL1RN, Ccl8, CCL3L3, Ccl2, 

XCL1, Cxcl3,CXCL2,TNF,CCL19,Ccl7 

Interferon Signalling 8.34E+00 2.50E-01 IFIT3,SOCS1,IFNG,STAT2,PSMB8,STAT1,TAP1,IRF1,ISG15 

Role of Pattern Recognition Receptors 

in Recognition of Bacteria and Viruses 

7.78E+00 1.12E-01 IFNG, IL1A, C1QC, C1QA, C1QB, OAS3, IRF7, IL12B, LTA, 

CASP1, CLEC6A,EIF2AK2,TNF,C3AR1 

Role of 

Hypercytokinemia/hyperchemokinemia 

in the Pathogenesis of Influenza 

7.60E+00 2.09E-01 CXCL10,IFNG,IL1A,CCR5,CCL4,CCL2,IL1RN,IL12B,TNF 

Differential Regulation of Cytokine 

Production in Intestinal Epithelial 

Cells by IL-17A and IL-17F 

7.26E+00 3.04E-01 IFNG,IL1A,CCL4,CCL2,IL12B,LCN2,TNF 

Complement System 6.94E+00 2.16E-01 C1R,C4A/C4B,C1S,CFB,C1QC,C1QA,C1QB,C3AR1 

Activation of IRF by Cytosolic Pattern 

Recognition Receptors 

6.17E+00 1.45E-01 IRF7,LTA,NFKBIE,ZBP1,STAT2,STAT1,IFIT2,TNF,ISG15 

Acute Phase Response Signaling 6.13E+00 8.28E-02 C1R, C4A/C4B, HMOX1, SOCS1, ALB, IL1A, IL1RN, Saa3, C1S, 

NFKBIE,CFB,SERPINA3,TNF,FGG 

Dendritic Cell Maturation 5.89E+00 7.91E-02 CD1D, IL1A, CD40LG, IL12B, IL1RN, FSCN1, LTA, NFKBIE, 

CD86, STAT2,STAT1,CREB5,TNF,FCGR3A/FCGR3B 
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Figure 3.8.2.1: Top canonical pathways enriched from the unique ∆mtp-mutant infection genes as 

shown in IPA. The rest of the pathways from this comparison analysis by the IPA tool are presented in 

Appendix 8. Red represents the genes that were up-regulated and green represents genes that were down 

regulated in the pathway.  
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Figure 3.8.2.2: IPA pathway and SDEGs associated with The role of Pattern Recognition 

Receptors (PRRs) in recognition of bacteria and viruses signalling. The role of Pattern Recognition 

Receptors (PRRs) in recognition of bacteria and viruses signalling pathway. Colour intensity indicates 

the degree of regulation: red representing activation and green representing repression, relative to the 

uninfected control. Grey shading indicates genes that were not differentially expressed; white shading 

represents genes in the pathway not represented in the dataset. This pathway was enriched by the genes 

from the WT infection only. The genes from the ∆mtp-mutant infection did not enrich this pathway.  

 

 

 

Figure 3.8.2.3: GABA Receptor Signalling pathway as predicted by IPA. Colour intensity indicates 

the degree of regulation: red representing activation and green representing repression, relative to the 
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uninfected control. Grey shading indicates genes that were not differentially expressed; white shading 

represents genes in the pathway not represented in the dataset. This pathway was enriched by the genes 

from the ∆mtp-mutant infection only. The genes from the WT infection did not enrich this pathway.  

 

 

Figure 3.8.2.4: Glutamate Receptor Signaling pathway as predicted by IPA. Colour intensity 

indicates the degree of regulation: red representing activation and green representing repression, relative 

to the uninfected control. Grey shading indicates genes that were not differentially expressed; white 

shading represents genes in the pathway not represented in the dataset. This pathway was enriched by 

the genes from the ∆mtp-mutant infection only. The genes from the WT infection did not enrich this 

pathway.  

 

3.8.2.1 Enrichment of canonical pathways does not necessarily lead to their activation  

IPA analysis of transcriptomic data indicates whether pathways may be either be activated or inhibited.  

The activation prediction states associated with the canonical pathways enriched from the unique genes 

are displayed in the form of a heat map based on their z-scores (Figure 3.8.2.1.1). A positive z-score 

infers activation, whilst a negative z-score implies inhibition of the pathway in IPA. These results 

revealed that the most significantly enriched pathways, represented by the –log (p-values (Figure 

3.8.2.1.2)) were not necessarily the most activated pathways. An example is represented by the 

Agranulocyte adhesion and Diapedesis Pathway (p=1.38E-22 and p=7.11E-06 in the WT and ∆mtp-

mutant infection respectively).  
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Pathways resulting from the ∆mtp-mutant infection had enrichment z-scores significantly less than 

pathways from the WT infection (Figure 3.8.2.1.1), resulting in a decrease in activation, or de-activation 

of the pathways. In contrast, the pathways enriched by the WT SDEGs exhibited positive z-scores that 

resulted in increased activation of the former (Figure 3.8.2.1.1). For example, the Dendritic Cell 

Maturation pathway was positively activated with a z-score of 3.61 in the WT infection, whilst the 

∆mtp-mutant infection deactivated the pathway with a negative activation z-score of -1.89 (Figure 

3.8.2.1.1). The Production of Nitric Oxide and Reactive Oxygen Species in Macrophages pathway 

responded in a similar manner with   activation z-scores of 2.65 and -2.24 in the WT and ∆mtp-mutant 

infection respectively (Figure 3.8.2.1.1). 

 
* Truncated pathways: Production of Nitric Oxide and Reactive Oxygen Species in Macrophages, Role of Pattern 

Recognition Receptors in Recognition of Bacteria and Viruses, Role of IL-17F in Allergic Inflammatory Airway 

Diseases, and Activation of IRF by Cytosolic Pattern Recognition Receptors. 
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Figure 3.8.2.1.1 Activation z-scores of the canonical pathways enriched from the unique genes 

induced by each strain as shown in IPA. Colour intensity indicates the activity prediction of 

regulation by IPA: orange represents an overall activation increase of the pathway, and blue represents 

the overall repression of the pathway activity, relative to the uninfected control (p <0.05). UI vs WT: 

Wild type infection and UI vs mtp: ∆mtp-mutant infection.  

 

 

Figure 3.8.2.1.2: Top canonical pathways enriched from the unique genes as shown in IPA. The 

rest of the pathways from this comparison analysis by the IPA tool are presented in Appendix 9 Dark 

blue represents WT and light blue represents ∆mtp-mutant (p-value < 0.05). 

 

3.8.2.1.1 Dendritic cell maturation pathway and Production of Nitric Oxide and Reactive 

Oxygen Species in Macrophages pathways 

Exploration of the genes involved in the Dendritic cell maturation pathway (Figure 3.8.2.1.1.1A) 

showed that all of these genes were up-regulated during infection with the WT, whereas only 4 of 11 

(CD40L, CD1D, CD86 and CD80) of these genes were up-regulated during the ∆mtp-mutant infection, 

and the rest, namely CD40, FCGR1A, FCGR2A, FCGR2B, FCGR3A/FCGR3B, TLR2 and CD83 were 

downregulated. However, the same number of different genes, 7 of 15, involved in the Production of 

Nitric Oxide and Reactive Oxygen Species in Macrophages pathway (Figure 3.8.2.1.1.1 B) were 

upregulated and downregulated during the WT and ∆mtp-mutant infection respectively (Figure 

3.8.2.1.1.1B). 
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A)      B) 

      

Figure 3.8.2.1.1.1: Differential expression of host genes in response to M. tuberculosis infection 

14days post-infection as predicted by IPA. A) Genes involved in the Dendritic cell maturation 

pathway, and B) Production of Nitric Oxide and Reactive Oxygen Species in Macrophages pathway. 

Colour intensity indicates the degree of regulation: red representing activation and green representing 

repression, relative to the uninfected control (p <0.05). UI vs WT: Wild type infection and UI vs 

mtp_Mutant or UI vs Mtp: ∆mtp-mutant infection.  

 

3.8.3 Network Analysis of SDEGs 

 The inter-relationships among the input genes/molecules were analyzed using IPA Path Designer tool 

and were displayed graphically as networks. These networks were ranked by a scoring system, where 

the scores are equal to the negative logarithm of the calculated p-value. This indicates the probability 

of the SDEGs being found randomly by chance in a given network, and hence, the significance of the 

network [136].  

 

3.8.3.1 Network Analysis of shared SDEGs 

Network analysis revealed a higher number of networks (n=25) associated with the abundantly higher 

(2-fold) SDGEs involved in the ∆mtp-mutant infection, than in the WT infection (n=17) (Table 3.8.1). 

Of these, 6 networks were found to be associated with the genes shared by both infections, 2 of which 

were involved with different molecules (Networks 3 and 4). These different molecules resulted in 

different diseases and functions associated with these networks between the UI vs WT and ∆mtp-mutant 

(Table 3.8.3.1.1). Network 3 lacked the calcifediol molecule in the ∆mtp-mutant infection, and this 

resulted in its association with Drug Metabolism, Lipid Metabolism, Small Molecule Biochemistry, 

whilst the WT infection was associated with Cancer, Organismal Injury and Abnormalities, 

Dermatological Diseases and Conditions. Similarly, the atypical chemokine receptor 1 (ACKR1) 
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molecule was present in WT infection Network 4 (Figure 3.8.3.1.1A), but absent in the ∆mtp-mutant, 

resulting in a difference in network structure (Figure 3.8.3.1.1B), and the functions this network was 

associated with in the 2 infections. Network 4 in the WT infection was associated with Cellular 

Movement, Haematological System Development and Function, and Immune Cell Trafficking, whilst 

in the ∆mtp-mutant, it was associated with Cellular Compromise, Cell Signalling, Molecular Transport. 

  

Table 3.8.3.1.1: Diseases and functions associated with networks enriched by shared genes. 

Network Analysis Score Molecules Top Diseases and Functions 

1 WT 67 35 Cancer, Dermatological Diseases and Conditions, 

Organismal Injury and Abnormalities 

1 ∆mtp-

mutant 

67 35 Cancer, Dermatological Diseases and Conditions, 

Organismal Injury and Abnormalities 

2 WT 57 31 Dermatological Diseases and Conditions, Hereditary 

Disorder, Organismal Injury and Abnormalities 

2 ∆mtp-

mutant 

57 31 Dermatological Diseases and Conditions, Hereditary 

Disorder, Organismal Injury and Abnormalities 

3 WT 54 30 Cancer, Organismal Injury and Abnormalities, 

Dermatological Diseases and Conditions 

3 ∆mtp-

mutant 

52 29 Drug Metabolism, Lipid Metabolism, Small Molecule 

Biochemistry 

4 WT 45 26 Cellular Movement, Haematological System 

Development and Function, Immune Cell Trafficking 

4 ∆mtp-

mutant 

43 25 Cellular Compromise, Cell Signalling, Molecular 

Transport 

5 WT 13 10 Lipid Metabolism, Molecular Transport, Small 

Molecule Biochemistry 

5 ∆mtp-

mutant 

13 10 Lipid Metabolism, Molecular Transport, Small 

Molecule Biochemistry 

6 WT 2 1 Organ Morphology, Organismal Survival 

6 ∆mtp-

mutant 

2 1 Organ Morphology, Organismal Survival 

∆mtp-mutant: ∆mtp-mutant infection 

WT: Wild type infection 
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A) 

 

B)   

Figure 3.8.3.1.1 Wild type and ∆mtp-mutant specific Network 4 enriched by shared SDEGs in 

IPA. A: Network 4 was enriched due to the WT infection, and B: Network 4 was enriched due to the 

∆mtp-mutant infection. IPA Path Designer tool was used for visual presentation. Solid connecting lines 
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represent directly connected SDEGs, and dotted lines show an indirect connection associated with the 

SDEGs. Colour intensity indicates the degree of regulation: red representing activation and green 

representing repression, relative to the uninfected control. 

 

3.8.3.2 Network Analysis of unique SDEGs 

Network analysis of the unique SDEGs showed that all top 10 networks from both infections were 

different, with distinct diseases and their associated functions (Table 3.8.3.2.1). The 2 highest scoring 

networks (scores = 66 and 64) induced by the WT strain were associated with Gastrointestinal and 

Immunological Disease (Figure 3.8.3.2.1A), and Antimicrobial Response, Inflammatory Response and 

Organismal Injury (Figure 3.8.3.2.1B) respectively. The 2 highest scoring networks (scores = 75 and 

73) induced by the ∆mtp-mutant strain were associated with Cell-To-Cell Signaling and Interaction, 

Cellular Function and Maintenance (Figure 3.8.3.2.1C), and Hereditary Disorder, Organismal Injury 

(Figure 3.8.3.2.1D) respectively. 

 

Table 3.8.3.2.1. Top diseases and functions associated with unique genes from top 10 IPA 

networks. 

                       Wild type infection                      ∆mtp-mutant infection 

ID Score Top Diseases and Functions ID Score Top Diseases and Functions 

1 66 Gastrointestinal Disease,  

Immunological Disease 

1 75 Cell-To-Cell Signaling and  

Interaction, Cellular  

Function and Maintenance 

2 64 Antimicrobial Response,  

Inflammatory Response,  

2 73 Hereditary Disorder,  

Organismal Injury  

3 62 Cell Cycle,  

Cellular Assembly and  

Organization,  

3 53 Cell-To-Cell Signaling and  

Interaction, Nervous System 

Development and Function 

4 50 Tissue Morphology,  

Organismal Injury and Abnormalities 

4 51 Skeletal and Muscular  

System Development and Function,  

5 48 Cell-To-Cell Signaling and Interaction, 

Cellular Movement, Hematological 

System Development and Function 

5 51 Carbohydrate Metabolism, Small 

Molecule Biochemistry, Lipid 

Metabolism 

6 48 Cell Morphology, Embryonic 

Development, Hair and Skin 

Development and Function 

6 42 Cell Cycle, Cellular Growth and 

Proliferation, Tissue Development 

7 41 Inflammatory Response, Cellular 

Movement, Hematological System 

Development and Function 

7 40 Cellular Assembly and Organization, 

Cellular Movement, Neurological 

Disease 
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8 41 Humoral Immune Response, Protein 

Synthesis, Cellular Movement 

8 40 Embryonic Development, Organ 

Development, Organismal Development 

9 41 Gastrointestinal Disease, Organismal 

Injury and Abnormalities, Post-

Translational Modification 

9 39 Embryonic Development, Tissue 

Development, Cellular Growth and 

Proliferation 

10 37 Cellular Movement, Hematological 

System Development and Function, 

Immune Cell Trafficking 

10 39 Hereditary Disorder, Neurological 

Disease, Organismal Injury and 

Abnormalities 

 

A)       
 

 

 

 

 

 

B) 
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C)        

 

D) 

  

Figure 3.8.3.2.1: Top 2 Wild type and ∆mtp-mutant specific Networks enriched by SDEGs in IPA. 

A and B: Top 2 networks enriched due to the WT infection. C and D: Top 2 networks enriched due to 

the ∆mtp-mutant infection. IPA Path Designer tool was used for visual presentation. Solid connecting 

lines represent directly connected SDEGs, and dotted lines show an indirect connection associated with 
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the SDEGs. Colour intensity indicates the degree of regulation: red representing activation and green 

representing repression, relative to the uninfected control.  

 

3.8.4 The effect of MTP on specific host-pathogen interactions 

 

3.8.4.1 Pattern Recognition Receptors 

The Pattern Recognition Receptors in recognition of bacteria and viruses signalling pathway (Figure 

3.8.2.2) (p= 6.01E-07) was ranked as the 5th most activated pathway. Analysis of the genes involved in 

this pathway showed that these were up-regulated only during infection with the WT, but not the ∆mtp-

mutant strain (Figure 3.8.4.1.1.1A). Thus, this pathway was enriched in the WT infection only, and not 

in the ∆mtp-mutant infection (Figure 3.8.1.1.1), and is involved in the following signalling pathway 

categories: Cellular Immune Response; Pathogen-Influenced Signalling, and associated with the 

following functions: Infectious Diseases; Inflammatory Response; Antimicrobial Response.  

 

3.8.4.1.1 Toll-like receptors (TLRs), and Complement system receptors 

The PRRs that have been associated with M. tuberculosis infection [81] include Toll-like receptors 

(TLRs), and receptors of the complement system. Analysis of the genes involved in the TLR signalling 

pathway showed that 8 of these 9 genes were up-regulated during infection with the WT, whereas only 

3 (UBD, IL36B and IL36RN) were up-regulated during the ∆mtp-mutant infection (Figure 3.8.4.1.1.1B) 

in this study. This resulted in the enrichment of the TLR signalling pathway only during WT infection 

(Figure 3.8.4.1.1D), and the transcription factors (Figure 3.8.4.1.1C) and cytokines (Figure 3.8.4.1.1D) 

elicited by this pathway were enriched only in the WT infection). Likewise, the pathway associated 

with the complement system (Complement Signalling pathway, p = 1.06E-06) utilised by host cells to 

engulf infecting bacteria was not activated during infection with the MTP-deficient strain (Figure 

3.8.4.1.1.2).  

 

 

 

 

 

 

 

 

 

 

 



72 

 

 

A)     B)            C) 

      

D) 
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Figure 3.8.4.1.1.1: Differential expression of host genes in response to M. tuberculosis infection 

14days post-infection as predicted by IPA. A) Genes involved in the Pattern Recognition Receptors 

in recognition of bacteria and viruses signalling pathway, and B) Genes involved in the Toll-like 

receptor signalling pathway. UI vs WT: Wild type infection and UI vs Mtp: ∆mtp-mutant infection. C) 

TLR 2/3/49 Mechanistic pathway of upstream regulators and D) Toll-like receptor signalling pathway. 

Colour intensity indicates the degree of regulation: red representing activation and green representing 

repression, relative to the uninfected control (p<0.05). Grey shading indicates genes that were not 

differentially expressed; white shading represents genes in the pathway not represented in the dataset. 
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Figure 3.8.4.1.1.2: Complement Signalling pathway as predicted by IPA. The activation of this 

pathway in response to WT M. tuberculosis infection 14days post- infection (p=1.06E-06). Genes that 

are involved in the Complement system pathway and differentially expressed in the WT, but not mtp-

mutant infection model, are highlighted in colour. Colour intensity indicates the degree of regulation: 

red representing activation and green representing repression, relative to the uninfected control. Grey 

shading indicates genes that were not differentially expressed; white shading represents genes in the 

pathway not represented in the dataset. 

  

3.8.4.2 Analysis of specific genes associated with host-pathogen interactions 

To further elucidate the role of MTP in host-pathogen interactions, the expression levels of the 

associated genes (n=51) involved in these interactions were interrogated (Appendix 10). The WT 

infection resulted in a significant differential expression of all the genes chosen, in contrast to only 5 

out of 51 by the ∆mtp-mutant infection (Appendix 10). TLR1, TLR2, ITGAM, CIITA, TAP1 and 17 other 

genes were upregulated in the WT infection, whilst being downregulated in the ∆mtp-mutant infection 

(22/51). A total of 19 genes was upregulated (C3AR1, C4B, IGF1, IGIP, IGTP and 14 others), whilst 
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only 10 were downregulated in both infections (ITGA2B, ITGA8, IGFBP2, IGFBP3, IGFN1, FCGRT, 

CLEC14A, CD209A, CD300LG and CD9). The top 10 most upregulated and down regulated genes 

from this gene set are exhibited in Table 3.8.4.2.1. The most upregulated gene was the CD274 gene in 

the WT infection with a log2(fold change) value of 2.9262 compared to 0.812163 for the ∆mtp-mutant 

infection. The ∆mtp-mutant strain caused the most downregulation in these genes, with the ITGA2B 

gene having a log2(fold change) value of -3.0907. 

 

Out of the selected 51 genes associated with host-pathogen interaction (Appendix 10), 49 clustered 

together into 8 gene families (Figure 3.8.4.2.1), the C-type lectin domain family, toll like receptor 

family, integrin subunit alpha family, Fc fragment of IgG receptor family, Insulin Like Growth Factor 

family, Transporter associated with Antigen Processing family, CD gene family and the complement 

system family of genes. The largest family, CD gene family, contained 21 genes: CD14, CD163, 

CD163L1, CD1D1, CD209A, CD274, CD28, CD300LG, CD3E, CD3G, CD4, CD40, CD40LG, CD53, 

CD63, CD69, CD72, CD80, CD83, CD86 and CD9. However, all 51 genes are associated and belong 

to the “cluster of differentiation molecules” group. 

 

Table 3.8.4.2.1: Top 10 most upregulated and down regulated genes associated with host-

pathogen interactions. 

                 Upregulated genes               Downregulated genes 

Gene ID WT Mtp  Gene ID WT Mtp 

Cd274 2.9262 0.812163  Igfbp3 -1.69101 -0.64387 

Fcgr4 2.73725 -0.38016  Cd300lg -1.59795 -1.16734 

Igtp 2.39848 0.23047  Igfbp2 -1.4404 -1.42984 

Clec4e 2.23019 0.04585  Clec14a -1.42536 -0.66403 

Cd40lg 2.14313 1.52679  Itga8 -1.32416 -0.54906 

Nlrc5 1.83406 -0.12355  Cd209a -1.2476 -0.50808 

Tap1 1.78121 -0.40511  Igfn1 -1.2349 -0.0225 

Cd86 1.7798 0.661663  Cd9 -1.10082 -1.49473 

Cd1d1 1.75068 1.17743  Itga2b -1.06062 -3.0907 

Cd72 1.66875 -0.90293  Fcgrt -0.97318 -1.18799 
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Figure 3.8.4.2.1: MeV heat map of differential expression of host genes involved in the host-

pathogen interaction, in response to M. tuberculosis infection 14days post-infection. The 51 host-

pathogen interaction associated genes shared by both the WT and ∆mtp-mutant infections of Balb/C 

mice lungs clustered into 8 families. UIvsWT: Wild type infection and UIvsMutant: ∆mtp-mutant 

infection. Colour intensity indicates the magnitude of up-regulation: red represents highly activated 

genes, and green represents lowly activated genes, relative to the uninfected control (p <0.05). The level 

of regulation (up- or downregulation) was higher in the WT infection genes compared to ∆mtp-mutant 

infection genes.  

 

3.8.4.2.1 Top 5 canonical pathways associated with host-pathogen interaction SDEGs 

IPA analysis revealed a total of 52 canonical pathways that were enriched from the host-pathogen 

interaction genes listed in (Appendix 10). All 5 of the high-ranking canonical pathways were associated 
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with the host immune response. Whilst the WT infection resulted in a higher enrichment of these 

pathways, 4 of them were lowly enriched by the ∆mtp-mutant infection (Figure 3.8.4.1.1), suggesting 

that MTP plays a significant role in host response.   

 

  

*line 3: Role of NFAT in Regulation of the Immune Response 

 

Figure 3.8.4.2.1.1: The top 5 canonical pathways associated with the host-pathogen interaction 

genes as predicted by IPA. The heat map shows a comparison of z-score for the 5 top pathways 

involved in host-pathogen interaction; namely TREM1 Signalling, Dendritic Cell Maturation, Role of 

NFAT in Regulation of the Immune Response, NF-κB Signalling and iCOS-iCOSL Signalling in T 

Helper Cells. UIvsWT: Wild type infection and UIvsmtp_Mutant: ∆mtp-mutant infection. The WT 

strain resulted in positive differential regulation (shown by orange bars) of all 5 pathways. In contrast, 

the ∆mtp-mutant strain elicited a negative differential regulation in most of these pathways (shown by 

blue bars). 

 

IPA predicted an activation z-score of 2.83 and -2.12 for the enrichment of the TREM1 Signaling 

pathway (3.8.4.2.1.2A) by the WT and the ∆mtp-mutant genes respectively. The Dendritic Cell 

Maturation pathway (Figure 3.8.4.2.1.2B) showed a similar trend in its activation as previously 

mentioned (Figure 3.8.2.6), as did the NF-κB Signaling pathway (Figure 3.8.4.2.1.2C), with z-scores 

of 2.0 and -1.0 for the WT and ∆mtp-mutant infection respectively. The role of NFAT in regulation of 

the immune response (Figure 3.8.4.2.1.2D) pathway with the same activation score as the Dendritic 

Cell Maturation pathway in the WT infection was neither activated nor deactivated, (z-score of 0.0) 

during infection with the ∆mtp-mutant strain. The iCOS-iCOSL Signaling in T Helper Cells pathway 

(Figure 3.8.4.2.1.2E) was the only pathway that was activated in both infections, with the WT and ∆mtp-

mutant infections resulting in z-scores of 2.24 and 0.45 respectively. The magnitude of activation was 

still greater in the WT infection (Figure 3.8.4.2.1.1).  
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Figure 3.8.4.2.1.2A: TREM1 Signalling pathway as predicted by IPA.  Colour intensity indicates 

the degree of regulation: red representing activation and green representing repression, relative to the 

uninfected control. Grey shading indicates genes that were not differentially expressed; white shading 

represents genes in the pathway not represented in the dataset. This pathway was enriched by the genes 

from the WT infection only. The genes from the ∆mtp-mutant infection did not enrich this pathway. 
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Figure 3.8.4.2.1.2B: The Dendritic Cell (DC) Maturation pathway as predicted by IPA.  Colour 

intensity indicates the degree of regulation: red representing activation and green representing 

repression, relative to the uninfected control. Grey shading indicates genes that were not differentially 

expressed; white shading represents genes in the pathway not represented in the dataset. This pathway 

was enriched by the genes from the WT infection only. The genes from the ∆mtp-mutant infection did 

not enrich this pathway.  
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Figure 3.8.4.2.1.2C: The Role of NFAT in Regulation of the Immune Response pathway as 

predicted by IPA. Colour intensity indicates the degree of regulation: red representing activation and 

green representing repression, relative to the uninfected control. Grey shading indicates genes that were 

not differentially expressed; white shading represents genes in the pathway not represented in the 

dataset. This pathway was enriched by the genes from the WT infection only. The genes from the ∆mtp-

mutant infection did not enrich this pathway. 
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Figure 3.8.4.2.1.2D: The NF-κB Signalling pathway as predicted by IPA. Colour intensity indicates 

the degree of regulation: red representing activation and green representing repression, relative to the 

uninfected control. Grey shading indicates genes that were not differentially expressed; white shading 

represents genes in the pathway not represented in the dataset. This pathway was enriched by the genes 

from the WT infection only. The genes from the ∆mtp-mutant infection did not enrich this pathway. 
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Figure 3.8.4.2.1.2E: The iCOS-iCOSL Signalling in T Helper Cells pathway as predicted by IPA. 

i: The pathway was enriched due to the WT infection. ii: The enrichment of the same pathway due to 

the ∆mtp-mutant infection. The colour intensity indicates the degree of regulation: red representing 

activation and green representing repression, relative to the uninfected control. Grey shading indicates 

genes that were not differentially expressed; white shading represents genes in the pathway not 

represented in the dataset. It is clear that the ∆mtp-mutant infection negatively enriched the pathway 

(green areas), whereas the WT infection only positively enriched the same pathway. 

 

Heat maps (Figure 3.8.2.8A and Figure 3.8.4.2.1.3) of elicited genes associated with the top 5 canonical 

pathways showed that the WT infection was associated with positively regulated genes in the pathways, 

in contrast to the largely negative regulation by the ∆mtp-mutant infection. As a result, all 5 pathways 

were graphically depicted for only the WT infection by IPA, as shown in the Dendritic Cell Maturation 

pathway (Figure 3.8.4.1.3). 

A)      B) 

        

C)      D) 
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Figure 3.8.4.2.1.3: IPA Heat maps for top pathways enriched from the genes associated in host-

pathogen interaction as predicted by IPA: A: TREM1 Signaling, B: Role of NFAT in Regulation of 

the Immune Response, C: NF-KB Signaling and D: iCOS-iCOSL Signaling in T Helper Cells. Colour 

intensity indicates the degree of regulation: red representing activation and green representing 

repression, relative to the uninfected control (p <0.05). UIvsWT: Wild type infection and UIvsMtp: 

∆mtp-mutant infection. All heat maps show that the WT infection is associated with genes being 

positively regulated in the pathways, whereas the ∆mtp-mutant infection is associated with negative 

regulation of most of the genes involved in the pathways.  

 

3.8.4.2.2 Networks associated with host-pathogen interaction SDEGs 

The 51 host-pathogen interaction genes were found to be involved in only 3 IPA networks, 2 of which 

were similar in both infections. However, Network 2 was scored 30 in the WT infection and 28 in the 

∆mtp-mutant infection, resulting in different functions associated with each. The ∆mtp-mutant infection 

network was associated with Cellular Function and Maintenance, Developmental Disorder, and 

Hereditary Disorder, whilst the corresponding WT infection network was associated with Cellular 

Function and Maintenance, Inflammatory Response, and Cell Signaling (Table 3.8.4.2.2.1). 

 

Table 3.8.4.2.2.1: IPA network analysis of host-pathogen interaction genes. 

Network 

ID 

Analysis Score Focus 

Molecules 

                      Top Functions 

1 ∆mtp-mutant 54 25 Humoral Immune Response, Protein Synthesis, Cell-To-

Cell Signaling and Interaction 

1 WT 54 25 Humoral Immune Response, Protein Synthesis, Cell-To-

Cell Signaling and Interaction 

2 WT 30 16 Cellular Function and Maintenance, Inflammatory 

Response, Cell Signaling 

2 ∆mtp-mutant 28 15 Cellular Function and Maintenance, Developmental 

Disorder, Hereditary Disorder 

3 ∆mtp-mutant 23 13 Cell-To-Cell Signaling and Interaction, Amino Acid 

Metabolism, Protein Synthesis 

3 WT 23 13 Cell-To-Cell Signaling and Interaction, Amino Acid 

Metabolism, Protein Synthesis 

∆mtp-mutant: ∆mtp-mutant infection 

WT: Wild type infection 
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3.8.5 The effect of MTP on host innate and adaptive immune response 

Infection by M. tuberculosis results in the induction of both the innate and adaptive immune responses 

[137]. The host innate response by the internalization of pathogen via PRRs [90], was shown to be 

affected by the absence of MTP in this study (Figure 3.8.2.2). Furthermore, the Antigen presentation 

pathway was lowly enriched in the ∆mtp-mutant infection, compared to the WT infection (Figure 

3.8.5.1). This pathway impacts the ability of the host to present the antigen to immune cells, directly 

impacting the host’s innate immune response. The antigen presentation pathway enriched by the ∆mtp-

mutant infection SDEGs downregulated the MHC class II complexes of that pathway (Figure 3.8.5.1B), 

resulting in downregulation of antigen presentation in both CD4+ T lymphocytes and CD8+ T 

lymphocytes (Figure 3.8.5.1B) by antigen presenting cells (APCs). In contrast, these complexes were 

not downregulated in the WT infection, in which TAP1 of the peptide fragment, NLRC5 and Interferon 

gamma (IFNG) genes were upregulated (Figure 3.8.5.1A). 

 

A)  
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B) 

 

Figure 3.8.5.1: Antigen Presentation Pathway as predicted by IPA. The pathway as enriched due to 

the A: WT infection, and B: ∆mtp-mutant infection. Colour intensity indicates the degree of regulation: 

red representing activation and green representing repression, relative to the uninfected control. Grey 

shading indicates genes that were not differentially expressed; white shading represents genes in the 

pathway not represented in the dataset. It is clear that the ∆mtp-mutant infection negatively enriched 

the pathway (green areas), whereas the WT infection only positively enriched the same pathway.  

 

3.8.5.1 The effect of MTP on upstream regulators (Cytokines and Transcriptional factors) 

The IPA Comparison Analysis default parameters were used to identify and analyse upstream regulators 

of the SDEGs. Cytokines such as IFNG and Tumour necrosis factor (TNF), and transcriptional 

factors/regulators (TFs) of the canonical pathways activated by SDGEs, as well as other molecules e.g. 

lipopolysaccharide (LPS) which affect regulation and thus enrichment of pathways mentioned above, 

were predicted to be key upstream regulators affected by M. tuberculosis on Balb/C mouse lungs. IFNG 

was the top ranking upstream regulatory molecule, with an activation z-score of 9.18 and -3.78 in the 
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WT and ∆mtp-mutant infection respectively. The next most highly ranked key upstream regulator was 

LPS, with the WT infection exhibiting an activation score of 8.91, whilst the ∆mtp-mutant infection 

negatively regulated this molecule (z-score = -3.56). 

 

Analysis of cytokines and TFs with IPA default settings revealed that 139 cytokines were regulated by 

the 2 infection models studied, and only 7 of the top 20 most regulated cytokines were enriched by 

∆mtp-mutant genes relative to uninfected (Figure 3.8.5.1.1A). In contrast, the WT infection upregulated 

all 20 of these cytokines (Figure 3.8.5.1.1A). IFNG was the most highly ranked upstream regulatory 

cytokine. Similar to the cytokines, the WT infection SDEGs positively enriched 9 genes/molecules 

(IFIT3, SOCS1, IFNG, STAT2, PSMB8, STAT1, TAP1, IRF1 and ISG15) (Figure 3.8.5.1.2B) associated 

with the Interferon Signalling pathway, in contrast to only 2 genes/molecules (IFITM3, IFITM2) by the 

∆mtp-mutant infection. Moreover, these genes/molecules were negatively regulated Figure 3.8.5.1.2B), 

and hence, the genes from the ∆mtp-mutant infection negatively enriched this pathway (Figure 

3.8.5.1.2A), even though the pathway was shown to be significantly affected by the ∆mtp-mutant 

infection (Table 3.8.1.1). The mechanistic network of IFNG shows the interaction of IFNG with other 

upstream regulators (Figure 3.8.5.1.2C). TNF was the next most highly ranked upstream regulatory 

cytokine with a z-score of 8.11 and -3.04 in the in the WT and ∆mtp-mutant infection respectively. 

 

Comparison Analysis of the transcription factors enriched from the SDEGs showed signal transducer 

and activator of transcription (STAT)1 as the most upregulated, with a z-score of 5.93 and -1.15 in the 

in the WT and ∆mtp-mutant infection respectively. The STAT1 mechanistic network in the ∆mtp-

mutant infection differed from that in the WT infection (3.8.5.1.3). More (13) molecules regulated by 

SDEGs of the STAT1 mechanistic network were upregulated during WT infection (Figure 3.8.5.1.3A), 

whilst only 5 were upregulated during ∆mtp-mutant infection (Figure 3.8.5.1.3B). The same number of 

molecules (5) were down regulated during WT and ∆mtp-mutant infection (Figure 3.8.5.1.3). The next 

most highly ranked TF was the NF-κB complex, followed by IRF7 (Figure 3.8.5.1.1B). In the top 20 

most regulated TFs, most (17) were upregulated in the WT infection, but not in the ∆mtp-mutant 

infection (Figure 3.8.5.1.1B). 
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A)         B) 

   

Figure 3.8.5.1.1: Upstream regulator analysis by IPA. A: Comparison Analysis of the cytokines 

enriched from the unique genes as shown in IPA. B: Comparison Analysis of the transcription factors 

enriched from the unique genes as shown in IPA. Colour intensity indicates the activity prediction of 

regulation by IPA: orange represents an overall activation increase of the pathway, and blue represents 

the overall repression of the pathway activity, relative to the uninfected control. UIvsWT: Wild type 

infection and UIvsmtp: ∆mtp-mutant infection. 

A)
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B)       C)     

     

          

Figure 3.8.5.1.2: Interferon signalling pathway and the associated genes as predicted by IPA. A: 

Interferon signalling pathway. Colour intensity indicates the degree of regulation: red representing 

activation and green representing repression, relative to the uninfected control. Grey shading indicates 

genes that were not differentially expressed; white shading represents genes in the pathway not 

represented in the dataset. This pathway was enriched by the genes from the WT infection only, and 

genes from the ∆mtp-mutant infection did not enrich this pathway. B: The genes involved in the 

Interferon signalling pathway. Colour intensity indicates the degree of regulation: red representing 

activation and green representing repression, relative to the uninfected control (p <0.05). UIvsWT: Wild 

type infection and UIvsMtp: ∆mtp-mutant infection. C: The mechanistic network of IFNG. Colour 

intensity indicates the activity prediction of regulation by IPA: orange represents an overall activation 

increase of the pathway, and blue represents the overall repression of the pathway activity, relative to 

the uninfected control. Solid connecting lines represent directly connected SDEGs, and dotted lines 

show an indirect connection associated with the SDEGs. 
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A)       B)     

   

                        

Figure 3.8.5.1.3: STAT1 network as predicted by IPA. A:  The mechanistic network enriched due to 

the A: WT infection, and B: ∆mtp-mutant infection. Colour intensity indicates the activity prediction of 

regulation by IPA: orange represents an overall activation increase of the pathway, and blue represents 

the overall repression of the pathway activity, relative to the uninfected control. Solid connecting lines 

represent directly connected SDEGs, and dotted lines show an indirect connection associated with the 

SDEGs.  

 

3.8.5.2 The effect of MTP on the regulation of the host immune response. 

The activation status of specific IPA pathways, represented by z- scores, and the analysis of the involved 

in the pathways clearly shows the association of the WT infection in eliciting the immune response, 

whereas the ∆mtp-mutant infection did not activate these pathways. For example, the Crosstalk between 

Dendritic cells and Natural Killer (NK) Cells pathway (Figure 3.8.5.2.1). Based on the expression 

pattern of the SDEGs that regulated this pathway, it was only enriched in the WT infection. This infers 

that MTP plays a role in the communication of 2 cell types involved (DCs and NK cells). 

 

IPA cytokine analysis further corroborated our findings showing that cytokines were more upregulated 

by the WT infection (Figure 3.8.5.1.1A). The Macrophage migration inhibitory factor (MIF) is a 

cytokine with an integral role mediating the innate immune system. The heat maps of elicited genes 
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associated with the MIF Regulation of Innate Immunity pathway showed that the WT infection was 

associated with positively regulated genes in the pathways, in contrast to the absence of regulation by 

the ∆mtp-mutant infection (Figure 3.8.5.2.2). 

 

The genes associated in the Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 

pathway (Figure 3.8.5.2.3A) pathway were upregulated only in the WT infection, whilst the ∆mtp-

mutant infection depicted a downregulation of the genes (Figure 3.8.5.2.3B). Furthermore, the 

Phagosome formation pathway was also only enriched by SDEGs of the WT infection only (Figure 

3.8.5.2.4). The SDEGs involved in this pathway, were all positively regulated (squares in red) in the 

WT infection, whereas the ∆mtp-mutant infection was associated with negative regulation (green 

squares) of all of the genes involved in the pathway (Figure 3.8.5.2.4B). 
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Figure 3.8.5.2.1: Crosstalk between Dendritic cells and Natural Killer Cells pathway as predicted 

by IPA. Colour intensity indicates the degree of regulation: red representing activation and green 

representing repression, relative to the uninfected control. Grey shading indicates genes that were not 

differentially expressed; white shading represents genes in the pathway not represented in the dataset. 

This pathway was enriched by the genes from the WT infection only. The genes from the ∆mtp-mutant 

infection did not enrich this pathway. 

 

   

Figure 3.8.5.2.2: Genes involved in the Macrophage migration inhibitory factor (MIF) Regulation 

of Innate Immunity pathway as predicted by IPA. Colour intensity indicates the degree of regulation: 

red representing activation and green representing repression, relative to the uninfected control (p 

<0.05). UI vs WT: Wild type infection and UI vs Mtp: ∆mtp-mutant infection. 

 

A) 
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Figure 3.8.5.2.3: Production of Nitric Oxide and Reactive Oxygen Species in Macrophages as 

predicted by IPA. A) Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 

pathway. Colour intensity indicates the degree of regulation: red representing activation and green 

representing repression, relative to the uninfected control. Grey shading indicates genes that were not 

differentially expressed; white shading represents genes in the pathway not represented in the dataset. 

This pathway was enriched by the genes from the WT infection only. The genes from the ∆mtp-mutant 

infection did not enrich this pathway. B) Heat map of the genes involved in this pathway. Colour 

intensity indicates the degree of regulation: red representing activation and green representing 

repression, relative to the uninfected control (p <0.05). UIvsWT: Wild type infection and UIvsMtp: 

∆mtp-mutant infection.   

A)      B) 
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Figure 3.8.5.2.4: Phagosome formation pathway as predicted by IPA. A: Phagosome formation 

pathway. Colour intensity indicates the degree of regulation: red representing activation and green 

representing repression, relative to the uninfected control. Grey shading indicates genes that were not 

differentially expressed; white shading represents genes in the pathway not represented in the dataset. 

This pathway was enriched by the genes from the WT infection only. B. Heat map of the genes involved 

in this pathway, where all genes from the WT infection are shown as being positively regulated (squares 

in red) in the pathway, whereas the ∆mtp-mutant infection is associated with negative regulation (green 

squares) of all of the genes involved in the pathway.  
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CHAPTER 4: DISCUSSION 
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Since the first report of M. tuberculosis curli pili (MTP) [10], research in this field has gained 

momentum, resulting in a steady increase in the knowledge pertaining to its importance in the host-

pathogen interactions [12,14,138]. Curli pili, like other adhesins, have been previously found to 

facilitate bacterial adherence not only to host cells [10,15,18], but to surfaces [11] and other bacteria as 

well [7]. Adhesion to host cells is necessary for colonizing the host and induction of the immune 

response [7,72], and is therefore, an essential virulence factor of most bacterial pathogens, including M. 

tuberculosis. Ramsugit et al (2014) showed reduction in adhesion to and invasion of pulmonary 

epithelial cells [12,18] as well as THP-1 macrophages, by a MTP-deficient strain [12,15]. MTP was 

also reported to facilitate biofilm production in vitro  [11], thus targeting this protein has been previously 

suggested as a potential mechanism to reduce the pathogen’s persistence within a host during infection 

[14]. 

 

In this study, we analysed the in vivo growth kinetics of a mtp gene knockout mutant relative to its wild 

type and complemented strains, and the effect of MTP on gross organ pathology. In addition, this study 

elucidates for the first time, by RNA sequencing, the whole transcriptome response to MTP in a Balb/C 

mouse lung during early infection with the MTP deficient (∆mtp-mutant) clinical strain of M. 

tuberculosis. A time point of 14 days post-infection was chosen to compare and understand the different 

host responses including host-pathogen interactions and host immune response, as previous studies have 

shown that early onset of the host adaptive immune response can commence by day 14 [139], and hence 

the ability to look at both innate and early adaptive immune responses. 

 

4.1 The effect of MTP on growth of M. tuberculosis 

4.1.1 MTP is vital for growth of M. tuberculosis in vitro  

The in vitro growth assays statistically revealed that the mtp-mutant strain grew at a significantly 

decreased rate compared to that of the WT during the log phase in broth culture (Figure 3.1.1). This 

suggests that the deletion of the mtp gene results in a slower growth rate of the bacterium, and hence, 

MTP has an effect on the growth of M tuberculosis in broth culture. These findings are contradictory to 

those of another major adhesin of M tuberculosis, HBHA, which was reported to  have no effect on the 

in vitro  growth [140] after the ∆hbhA-mutant and its parent strain showed similar growth rates [140]. 

The restoration of the mtp gene in the complemented strain did not result the restoration of the growth 

rate. This observation suggests that the deletion of the mtp gene could have concurrently induced and 

resulted in another change in the genome, whose function is the growth deficit phenotype observed.  

 

4.1.2 MTP is essential for growth in vivo 

MTP are produced in vivo  during TB infection [10,13], and play a significant role in the adhesion to 

and invasion of Eukaryotic cells [15]. An exponential growth of the bacteria was observed in the mice 
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lungs during the first 21 days of infection with both the ∆mtp-mutant and its WT (Figure 3.2.1), in 

contrast to previous studies where exponential bacterial growth was observed within the first 30 days 

[137]. This could be associated with the control of bacterial growth that takes place in early innate 

immunity during lung infection of M. tuberculosis [6]. Deletion of MTP affected the growth of the 

bacilli in the lungs and spleen of infected mice. The lower bacterial load that was noted during the ∆mtp-

mutant infection over the infection period in this study could be due to the slower in vivo growth rate 

of the ∆mtp-mutant, or to a decrease in the ability of the ∆mtp-mutant to colonize or persist in the lungs. 

This serves as supporting evidence that M. tuberculosis uses pili to enable colonization of the host. This 

reduced infectivity was also observed by Mueller-Ortiz et al (2002), in the lungs of C57BL/6 mice using 

a ∆hbhA-mutant [140]. However, at day 14 post-infection the WT and mtp-mutant strain growth rates 

showed that there was no growth deficit in the mtp-mutant strain regardless of the absence of MTP after 

14 days of M. tuberculosis infection. Pathway analysis at this time point revealed enrichments of host 

pathways after infection with the WT strain compared to the mtp-mutant strain. This suggests that 

virulence of the mtp-mutant strain is not dependent on the growth rate, and hence proposing that MTP 

plays a role in the virulence of M. tuberculosis, but not on the growth of the bacilli. Studies have shown 

that the progressive inflammatory response to M. tuberculosis in mice is independent of the total number 

of bacilli that is cultureable [121]. To our knowledge, this is the first report that shows that mtp, the 

gene encoding curli pili in M. tuberculosis, is necessary for the complete virulence of M. tuberculosis 

in vivo. Curli pili has been previously shown to influence the virulence of Streptococcus pneumonia (S. 

pneumonia) in vivo after a non-piliated mutant strain of S. pneumonia was found to be less virulent than 

its WT strain [141]. 

 

4.2 Transcriptome profiling post M. tuberculosis infection.  

The analysis of the various host transcriptomes in response to M. tuberculosis infection has 

enriched our understanding of the molecular and immunological mechanisms underlying infection, 

as well as the signaling and cellular pathways that determine the outcome of the infection, whether 

it be active or latent infection [142–144]. The current study was carried out with the principal 

objective to distinguish the difference in transcriptome response of the ∆mtp-mutant strain compared to 

the WT after 14 days of infection. Global gene expression analysis revealed that the overall 

transcriptome response was greater in the lungs infected with the ∆mtp-mutant strain (Figure 3.7.1). 

However, the number of organisms contained in the lungs of the ∆mtp-mutant infected mice at the time 

point that RNA was sequenced was not significantly different (p = 0.3) from the infecting WT organisms 

after aerosol infection (Figure 3.4.1). This suggests that the higher number of reads elicited by the host 

after ∆mtp-mutant infection was due to MTP and not to significant differences in bacterial load between 

WT and ∆mtp-mutant infected mice. 
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Moreover, with the exception of only 1 read, only high quality read data was obtained from the 

sequencing method used. Thus, the host differential gene expression (DGE) profiles from these read 

pools could not have been affected by read quality, which may affect gene expression profiles. Care 

was exercised at the time of sample processing, both during organ harvesting and RNA extraction, in 

order to conserve RNA integrity. This contributed to the good RIN numbers obtained (Table 3.5.1), and 

the high quality reads for all samples (Figure 3.6.1.1). Thus, the higher number of reads elicited in the 

host after ∆mtp-mutant infection was not due to higher read quality for that sample. The read number 

was shown by the higher read pool density (Figure 3.7.1) which corresponded to the alignment/mapping 

percentages of the host transcriptome after infection with the ∆mtp-mutant strain, compared to the WT 

strain (Table 3.6.2.1). This suggests that the absence of MTP in M. tuberculosis resulted in the induction 

of an increased host response in the form of transcriptional regulation.  

 

A variation in the millions of reads between the two ∆mtp-mutant biological strain was observed. 

However, the quality check reported good quality reads that were obtained from RNA of the same good 

integrity (RIN=8 for both replicates). Therefore, variation would not be a limitation factor as the 

sequencing had enough coverage from each library to perform differential expression analysis [145]. 

Furthermore, the differential analysis tool used (Cufflinks) takes into account dataset size for comparing 

gene expression levels by normalizing reads mapping to each gene using gene length and total number 

of reads, and therefore any downstream analysis was not affected by the difference [145]. Cufflinks 

also assesses differential expression using an ‘expectation-maximization’ approach that approximates 

the transcript abundances by taking into account biases such as the non-uniform read distribution. 

Therefore, the total number of reads for the respective experiments will not alter the outcome of the 

analysis [130]. 

 

For stringent analysis, only transcripts showing a 2-fold or higher change in their gene expression, with 

a corrected false discovery rate (FDR) p<0.05 were considered for further analyses as significantly 

differentially expressed genes (SDEGs) [137]. The number of SDEGs in the ∆mtp-mutant infection was 

significantly higher (2-fold) than that of the SDEGs in the WT. The number of upregulated genes were 

significantly more than downregulated genes across both infections (Figure 3.7.1.1A).  

 

Analysis executed at the gene level showed that the defensin beta 4 (DEFB4) gene was one of the most 

highly upregulated genes, in both infections (Table 3.7.1.1). This is an immune related gene that codes 

for an antimicrobial peptide, beta defensin, that is also an important chemo-attractant [146]. Similar to 

our study, this gene has previously been shown to be induced after M. tuberculosis infection and is 

associated with innate immune response against M. tuberculosis [147]. Amongst the most 

downregulated ∆mtp-mutant infection genes in our study, was the CAMP gene which encodes the 
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cathelicidin antimicrobial peptide (CAMP), that has chemotactic activity and has been shown to control 

growth of M. tuberculosis [148]. This correlates with the low growth rate observed in vivo in this study. 

 

4.2.1 The WT and ∆mtp-mutant strains induce common as well as unique genes in Balb/C 

mice 

A group of 128 genes was significantly either up regulated or down regulated in both WT and ∆mtp-

mutant infections. However, the magnitude of the expression was different, with the WT strain causing 

a higher expression in most of the genes, both activated (Figure 3.7.1.3.1) and repressed (Figure 

3.7.1.4.1). We postulate that these 128 genes observed in both infections could represent the core host 

genes necessary for early infection, and are essential in the general pathogenesis of M. tuberculosis. 

 

Although the transcripts from the WT and ∆mtp-mutant infection showed similar patterns of dispersion 

(Figure 3.7.2), the gene expression profile of the ∆mtp-mutant infected lungs appear to be mostly unique 

compared to the expression profile of the WT infected lungs 14 days post infection. 

 

4.2.1.1 Gene Ontology (GO) analysis reveals the association of MTP with host immunity 

SDEGs were enriched to analyze the functional categories associated, alongside the concurrent 

description and comparison of the regulation of the host transcriptome profile after infection with the 2 

strains. This was anticipated to reveal the effect of MTP during infection of mammalian lungs. The 

patterns of transcript fold changes in GO functional categories (FCs) from the groups of shared gene 

set (n=128) revealed that over-represented upregulated genes were involved in enzyme related functions 

such as serine-type endopeptidase inhibitor activity (GO:0004867), endopeptidase inhibitor activity 

(GO:0004866), and endopeptidase regulator activity (GO:0061135) (Table 3.7.1.3.1). The over-

represented downregulated genes were associated with only 1 molecular function involved in the Toll-

like receptor 4 binding (GO:0035662; p = 3.72E-02)  (Table 3.7.1.3.1) and this is associated with host 

immune responses, and enriched significantly for related molecular functions such as those [80]. Genes 

for signalling molecules like S100a8 and S100a9, and chemokines e.g. Ppbp, featured among the most 

downregulated genes. This implies that the downregulation of immune related functions is due to the 

absence of MTP, and hence MTP plays a role in immune response. 

 

GO terms similar to those enriched by SDEGs regulated following bacterial infection with the WT 

strain only, have been reported to be stimulated by M. tuberculosis after 24hours of infection [149]. 

These include GO terms related to cytokine and chemokine receptor binding and activity. On the other 

hand, GO enrichment of 930 SDGEs unique to the ∆mtp-mutant infection revealed that molecular 

transducer activity (GO:0060089), receptor activity (GO:0004872), signal transducer activity 

(GO:0004871), signalling receptor activity (GO:0038023) and ion binding (GO:0043167) were among 
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the top biological functions (Table 3.7.1.1.1) affected by removal of the mtp gene. These results show 

evidence of the repression of the host immune response by the ∆mtp-mutant strain (Table 3.7.1.1.1). 

Taken together, these findings highlight that the involvement of MTP was host immune response 

related. A gene expression study of host responses of TB patients after M. tuberculosis infection 

revealed that the GO terms enriched by the gene expression profile specifically related to M. 

tuberculosis infection is mostly related to immune cell activation and differentiation, chemokine 

receptor activity, as well as regulation of the immune response [150]. Immune system genes in another 

previous study were also shown to enrich a wide range of GO biological processes, such as immune 

response activation, effector processes, cell migration, and immune response terms where antigen 

processing and presentation was found to be dominating [151]. Furthermore, in the same study, a 

substantial  number of genes associated with cytotoxic cell-mediated killing was reported to be 

significantly upregulated after GO analysis [151]. 

 

4.3 IPA Pathway analysis reveals host cellular pathways regulated by MTP during M. 

tuberculosis infection of Balb/C mice 

In order to decipher the effects of MTP on the molecular mechanisms engaged by the host, a 

comprehensive pathway analysis was performed on the ∆mtp-mutant and WT infected mouse lung 

transcriptome after 14 days of infection. Previous studies have shown that at this time point, both the 

host’s innate and adaptive immune responsible can be detected. However, the adaptive immune 

response would not have fully developed [139]. Although the p-values of the pathways enriched by all 

the genes showed significance (p<0.05), a trend of higher p-values was observed in the pathways 

enriched by the ∆mtp-mutant strain (Figure 3.8.1.1.1), suggesting lower significance of these pathways. 

The same trend was observed in pathways enriched by the unique genes, where the pathways from the 

WT infection were more significant than the ∆mtp-mutant strain pathways. This suggests that the 

deletion of the mtp gene affected the regulation of these pathways in mice lungs, resulting in a lower 

significance of the enriched pathway. The Agranulocyte adhesion and Diapedesis pathway was the most 

significantly enriched. The activation status of this pathway revealed an increased activity in the WT 

infection in contrast to that in the ∆mtp-mutant infection (Figure 3.8.1.1.2). The IPA database reported  

that this pathway is part of the Cellular Immune Response pathways, and is involved in Cell-To-Cell 

Signalling and Interaction; Haematological System Development and Function; and Immune Cell 

Trafficking functions [152]. 

 

4.3.1 Pattern recognition receptors (PRRs) 

The host utilizes a number of PRRs to recognize conserved structures or PAMPS on the bacilli [83]. 

After evasion by M. tuberculosis, modulation of the host immune response via PRRs is required for 

host protection. Irregularities in the activation of PRR signalling pathways regulated by TB affects 
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disease pathogenesis and thus, needs to be elucidated [86]. Alteri et al (2005) suggested that MTP may  

mediate the interactions between the bacilli and host cells when IgG antibodies were demonstrated in 

TB patient sera,  indicating that MTP  was produced during in vivo infection by M. tuberculosis [13]. 

Our study showed that the absence of MTP from the bacilli has a deleterious effect on the activation of 

the role of PRRs in recognition of bacteria and viruses signalling pathway (Figure 3.8.2.2), that is 

activated upon M. tuberculosis infection in mice lungs after 2 weeks of infection. These PRRs are 

located extracellularly, on membranes, as well as within phagocytic cells like Macrophages and DCs 

[77]. The PRR- dependent entry is a key determinant of the fate of M. tuberculosis after infection [83], 

and the induction of this pathway results in gene expression activation, and the production of a wide 

range of immune related molecules and their receptors [153]. In the current study, all 3 types of PRRs 

were shown to be affected by MTP. The extracellular C1q protein, the membrane bound C3a receptor, 

and the cytoplasmic Cosp1 were found to be upregulated in the pathway enriched by the WT infection 

(Figure 3.8.2.2). This resulted in an upregulation of transcription of the transcription factors IRF3 and 

IRF7, and subsequently an increase in the transcription and translation of pro-inflammatory cytokines 

(Figure 3.8.2.2). However, the ∆mtp-mutant infection did not enrich any of the genes involved in this 

pathway, that were seen in the WT infection, Furthermore, this pathway is important in linking the 

innate immune response to the adaptive immune response of the host [153]. 

 

4.3.1.1 MTP affects the Toll-like Receptor (TLR) pathway 

 TLRs play the most significant role, amongst all the PRRs during M. tuberculosis infection [91], as 

they are known to recognize a wide range of M. tuberculosis structures [87]. They induce the adaptive 

immune response by stimulating the production of cytokines and additional anti-bacterial effector 

molecules, after interacting with ligands that are pathogen specific [83,87]. They are also involved in 

arresting the growth of infecting bacteria, and link the innate immune responses to the adaptive immune 

responses [83]. Curli pili have been categorized as PAMPs, recognized by TLR2 and this interaction 

results in the activation of an innate immune response via the stimulation of IL-8 [105,154].  

 

In this study, the elimination of the PRRs pathway was accompanied by the exclusion of the TLR 

Signalling pathway in the host response where mtp was deleted (Figure 3.8.4.1.1.1). The genes involved 

in the TLR pathway were upregulated in the WT infection model while only 3 of them were upregulated 

in the ∆mtp-mutant infection model (Figure 3.8.4.1B). This resulted in the activation of the adapter 

molecule MYD88, and the NFkB complex proteins, initiating signal transduction [155]. Previously, the 

expression of nuclear factor proteins such as NFkB was found to be upregulated in M. tuberculosis 

infection, related to the upregulation of TLRs [156]. The enrichment of this pathway in the WT infection 

resulted in increased transcription of pro-inflammatory cytokines involved in the activation of the 

antimicrobial response and apoptosis as part of the innate host defence: IL-1 and TNF, and IL-12 as 

part of the adaptive immune response (Figure 3.8.4.1.1.1D) [79]. Because the TLR signalling pathway 
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is a pathogen-influenced signalling pathway [155], it strongly supports that MTP has a major role in the 

signalling of an immune response by the host. Our studies corroborate with earlier studies in mice with 

inactivated TLR genes that showed the importance of TLR2 controlling M. tuberculosis infection and 

regulating inflammation after infection [157]. The F15/LAM4/KZN strain used in this study was shown 

to enrich the TLR pathway, and other immune related canonical pathways in vitro study previously 

[132],  which is supported by these findings.  

 

4.3.1.2 MTP induces the Complement System 

 The host relies on complement activation, the humoral arm of the innate immune system [90,158]  to 

recognize and minimize microbial infection at an early stage [153]. The complement system 

components include receptors, regulators and effector proteins, that have a key role in the host’s anti-

bacterial defence [159].  The complement system is activated through three distinct pathways: the 

alternative, classical, and the lectin pathway, subject to the activating surface and the specific 

recognition molecules involved [160]. Previous studies demonstrated that some mycobacterial species 

like M. bovis, can activate all three complement pathways, however, only 2 have been shown to be 

activated by M. tuberculosis, the classical, and alternate pathways [158,160].  

 

In this study, the genes associated with the complement system pathway were significantly upregulated, 

including those activating the classical and alternate pathways complement system, after infection with 

the WT strain only. The complement subcomponent subunit C1q was significantly upregulated (Figure 

3.8.4.1.1.2) in the classical pathway of the complement system enriched by the WT SDEGs. In addition 

to the C1q protein, both the C1 receptors, C1r and C1s, were significantly upregulated. This in turn 

elicited the up-regulation of the C4a and C4b proteins of the classical pathway of the Complement 

system (Figure 3.8.4.1.1.2). The complement C4 components (C4a and C4b) play a crucial role in the 

complement system by activating the downstream paths of the classical pathway [161].  

 

The alternate pathway was also positively enriched in the current study, by the up-regulation of C3b 

peptidases (Figure 3.8.4.1.1.2) and C3 receptors, C3ar1 (Figure 3.8.4.1.1.2). As an essential factor in 

the complement system pathways, the complement C3 component is cleaved into 2 parts, C3a and C3b, 

to eventually form the terminal complement complex C5b-C9 or Membrane attack complex (MAC), 

which can infiltrate target cell membranes, forming pores that successively lyse the target cells 

[160,162]. These 2 pathways allow for the complement to execute its functions via stimulation of 

chemokine secretion [158]. The absence of this pathway in the host response to the ∆mtp-mutant 

infection illustrates that the complement system pathway was activated due to the presence of MTP in 

the bacterium, hence further highlighting its role.  
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4.3.2 The effect of MTP on host-pathogen interactions 

The pathogen’s phenotype and the immune status of the host play a role in determining the specific 

host-pathogen interactions that follow after infection. Recognition of bacilli by the host cells is the start 

of the complex and dynamic host-pathogen interactions, that determine the outcome of the infection by 

pathogenic mycobacteria [158].  This PRR-dependent entry of the bacilli into host cells, which is key 

to the determination of the fate of M. tuberculosis upon infection has already been demonstrated to be 

affected by the MTP.  

 

This, together with the further analysis of the host-pathogen interaction genes (Appendix 10) in the 

present study, showed that MTP affects the regulation and expression of these genes associated with 

host-pathogen interaction (Figure 3.8.4.2.1 and 3.8.4.1.1). This suggested that MTP plays a role in the 

specific host-pathogen interaction in infected Balb/C mice. Further analysis of the top 5 pathways 

(Dendritic Cell Maturation pathway, the triggering receptor expressed on myeloid cells 1 (TREM1) 

Signalling pathway, Role of NFAT in Regulation of the Immune Response pathway, Nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFκB) signalling pathway and iCOS-iCOSL 

Signalling in T Helper Cells pathway) enriched by the host-pathogen interaction gene set suggested that 

MTP is an important antigenic protein, whose presence on the M. tuberculosis cell wall results in a 

specific interaction of the bacilli with the host, which leads to a specific response in the host, as shown 

below.  

 

4.3.2.1 TREM1 Signalling pathway 

The TREM1 molecule is part of the Immunoglobulin (Ig) family of cell surface receptors, and is 

associated with the activation of pro-inflammatory immune responses [163]. It is associated with the 

cellular immune response pathways and cytokine signalling pathways, and its main functions include 

cell-to-cell signalling and interaction; Haematological system development and function and immune 

cell trafficking [163]. This was the most highly enriched pathway associated with genes involved in the 

host-pathogen interactions after WT infection in this study. The following molecules up-regulated 

during the WT infection are associated in the TREM1 signalling pathway: transmembrane receptors 

Cd40, Cd82, Cd83 and Cd86 molecules, Fc fragment of IgG receptor IIb (FCGR2B), Tlr1 and Tlr2 as 

well as the class II, major histocompatibility complex (MHC), trans-activator (CIITA) and NLR family, 

CARD domain containing 5 (Nlrc5), which are transcription regulators (Figure 3.8.4.2.1.2A). The 

stimulation of TREM1 observed in the WT infection by these transmembrane receptors activates the 

transcription regulators such as NF-κB. These, in turn, trigger the secretion of chemokines and 

cytokines like the monocyte chemotactic protein 1 (MCP-1), and the pro-inflammatory response (Figure 

3.8.4.2.1.2D).  This study also contributes to the knowledge on TREM1 as currently, its natural ligand 

is unknown.  
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4.3.2.2 DC response 

DCs are the major antigen presenting cells (APCs) that are associated with both the innate and adaptive 

immune systems [89]. Thus, their role during M. tuberculosis infection in the initiation of an immune 

response is expected [55]. DC responses are influenced by the specific infecting M. tuberculosis strain 

[55]. The initial events following M. tuberculosis infection also stimulate DCs and their response [55]. 

The functional capability of DCs is controlled and measured by their maturation state [164]. DC 

maturation results in the presentation of pathogen antigens and an upregulation of chemokine receptors, 

as well as activation of CD4+ T cells.  

 

In the current study, the DC Maturation pathway was enriched only during WT infection, whereas the 

SDEGs from the ∆mtp-mutant infection did not enrich this pathway. The DC Maturation pathway was 

the most activated pathway by the genes unique to WT infection, whereas the genes unique to the ∆mtp-

mutant infection negatively enriched this pathway (Figure 3.8.2.2.1). One of its top functions include 

Cell-To-Cell signalling and Interaction [164]. The host-pathogen interaction gene set also showed this 

pathway as highly enriched (2nd most activated as seen in Figure 3.8.4.2.1.1), involving the most number 

of genes (Figure 3.8.2.8A). Antigens are captured by receptors on the plasma membrane of naïve DCs 

which thereafter undergo maturation.  

 

In this study, the Fc fragment of Immunoglobulin G receptor Ia (Fcgr1), Fcgr3, Fcgr2b, Fcgr4 and Tlr2 

were the receptors that were upregulated. This led to the upregulation of co-stimulatory molecules 

(CD40, CD80, CD83, CD86 and CD1d) during the maturation pathway (Figure 3.8.4.2.1.2B). This 

maturation is triggered by several factors like microbial antigens, other host immune cells and cytokines 

[164]. However, the absence of the DC maturation pathway in the host response to the ∆mtp-mutant 

infection in our study suggests that the deletion of MTP has a deleterious effect on the factors that 

induce the maturation of DCs. Thus, the early interactions of M. tuberculosis that are specifically 

facilitated by MTP are important, and influence the initiation of a DC maturation response. Previously, 

the maturation of DCs in vivo was found to be mediated via TLR2 [157], and this study showed the 

upregulation of both TLR and DC maturation pathway, corroborating the involvement of these 2 

pathways with each other. Inhibiting these process, as seen in the ∆mtp-mutant infection leads to an 

unsuccessful immune response.  

 

4.3.2.3 Role of NFAT in Regulation of the Immune Response, NF-KB Signalling pathway and 

iCOS-iCOSL Signalling in T Helper Cells 

 The enrichment of these 3 pathways is similar to the 2 most highly enriched pathways, the TREM1 

signalling and the DC Maturation Pathways, and affect the signalling and function of APCs (Figure 
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3.8.4.2.1.2C and Figure 3.8.4.2.1.2E). They also upregulated transmembrane molecules that interact 

with the M. tuberculosis antigens and elicit an immune response, i.e. the increased expression of CD80 

and CD86 on APCs (Figure 3.8.4.2.1.2C), leading to the induction of signalling pathways that result in 

the secretion of NF-κB- and NFAT-inducible cytokines (Figures 3.8.4.2.1.2C-D), promoting the 

adaptive immune response [165,166]. The NFkB transcriptional factor regulates the TLR pathway 

which was positively enriched in this study as previously mentioned. Interestingly, NFkB was found to 

be upregulated after infection of epithelial cells with WT strain in a study conducted by Mvubu et al 

(2015), which also showed the positive enrichment of the TLR pathway [132]. Taken together, the 

absence of all these pathways in the host response to the ∆mtp-mutant infection strongly implies that 

MTP plays a major role in the interactions that occur between the M. tuberculosis and its host. 

 

4.3.3 MTP plays a role in the host immune response 

It is well known that pulmonary M. tuberculosis infection elicits intense innate and adaptive immune 

responses. The study of the host transcriptome after infection with M. tuberculosis has immensely 

improved the understanding of immunological mechanisms and cellular pathways of M. tuberculosis 

infection [6]. In this study, RNA was sequenced at an early time point, (Day14) which was reported to 

be the start of early adaptive immune responses [139]. Therefore, it was expected that the genes 

regulated in this study, would include those of the innate response, and some of the early adaptive 

immune response.  

 

Overall, the GO, canonical pathway, network and upstream regulator analysis suggested that MTP has 

a significant impact on biological functions and pathways that are important for host immunity during 

M. tuberculosis infection, e.g. the complement system pathway was found not to be enriched during 

infection with the ∆mtp-mutant, implying that MTP plays a role in the innate immune host defence 

against M. tuberculosis. These findings were further corroborated by our extended analysis of the 

SDEGs associated with host-pathogen interaction. The most highly activated pathway here, TREM1 

signalling pathway is associated with various parts of both the innate and adaptive immune system 

[163]. The DC maturation pathway is involved in cellular immune response, cytokine signalling and 

pathogen-influenced signalling [164]. 

 

4.3.3.1 Phagosome function pathway 

Pathogens reside within membrane-bound vacuoles inside macrophages, and these mature into 

phagosomes that assist in containing the infection. The Production of Nitric Oxide and Reactive Oxygen 

Species in Macrophages pathway (Figure 3.8.5.2.3) is important in the maturation of the phagosomal 

compartment, and the killing mechanisms of the phagosome [47,48]. Another pathway that was 

enriched by the genes associated with host-pathogen interaction was the phagosome formation pathway. 
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Phagosome formation occurs when specific receptors on a phagocyte surface recognize ligands on the 

bacterial cell surface leading to the engulfment and containment of the bacilli into a vacuole identified 

as a phagosome, during M. tuberculosis infection [167]. The genes (C-type lectin domain family 7 

member A (CLE7A), Fc fragment of IgG receptor I (FCGR1), FCGR 3, FCGR 2b, FCGR 4, TLR1 and 

TLR2) associated with this pathway were all down regulated during infection with the ∆mtp-mutant 

strain (Figure 3.8.5.2.4), suggesting that MTP plays a role in the containment of infecting bacilli by the 

host via this pathway, and therefore it is involved in a specific immune response elicited by the host. 

Furthermore, the Production of Nitric Oxide and Reactive Oxygen Species in Macrophages pathway 

was enriched only in the WT infection. This correlates with the upregulation of genes involved in the 

phagosome formation pathway. M. tuberculosis growth inhibition that is dependent of Nitric oxide has 

been found to be linked to TLR activation in murine macrophages [157], and in this current study, the 

TLR signalling pathway was found to be enriched as well, corroborating with previous studies. This 

strengthens the hypothesis that MTP is involved in the anti-microbial activities elicited by the host upon 

M. tuberculosis infection. 

 

4.3.3.2 Antigen Presentation 

Essential to the advancement of the innate immunity, and development of the adaptive immunity, is the 

presentation of processed antigens to T cells by APCs. APCs were observed in a few of the pathways 

that were enriched by the WT infection model. These included the Dendritic Cell (DC) Maturation 

pathway (Figure 3.8.4.2.1.2B), the Role of NFAT in Regulation of the Immune Response pathway 

(Figure 3.8.4.2.1.2C) and the iCOS-iCOSL Signalling in T Helper Cells pathway (Figure 3.8.4.2.1.2E). 

DCs are known to be the main APC and important initiators of immune responses that present antigens 

in a major histocompatibility complex (MHC) class I and II molecule -specific context [35]. During DC 

maturation, expression of MHC Class I and II molecules are upregulated, enhancing their capability to 

present antigens [164]. In this study, a negative enrichment was observed in the DC maturation pathway 

during infection with the ∆mtp-mutant strain.  This was followed by a negative enrichment in the antigen 

presentation pathway, which resulted from the downregulation of the genes involved (Figure 3.8.2.8A). 

The MHC complexes in the ∆mtp-mutant infection were seen to be downregulated (Figure 3.8.5.1B). 

In contrast, peptide complexes, cytokines such as IFN-γ and transcription regulators like NLRC5, that 

increase the innate and adaptive immune responses of the host [164] were upregulated in the WT 

infection (Figure 3.8.5.1A) 

 

4.3.3.3 Upstream regulators: Transcription factors 

The activation of upstream regulators such as the transcription factors STAT1 and NFκB (Figure 

3.8.5.1.1) in the WT infection resulted in a greater immune response elicited by the host, compared to 

the ∆mtp-mutant infection. NFκB transcription factors play a significant role in the expression of pro-

inflammatory genes including cytokines, chemokines, and adhesion molecules, thus contributing  
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significantly to the immune response [165]. The NFκB signalling pathway (Figure 3.8.4.2.1.2D) was 

positively enriched during WT infection, and negatively enriched in the ∆mtp-mutant infection (Figure 

3.8.2.2.1). STAT1 regulates cytokine production, and as observed in this study, the WT infection greatly 

upregulated STAT1, which resulted in transcription of a larger number of regulatory molecules than 

those regulated by STAT1 in the ∆mtp-mutant infection (Figure 3.8.5.1.3).  

 

The pathway involved in the multi-subunit nuclear factor of activated T cells (NFAT) transcription 

factor family in Regulation of the Immune Response was also downregulated during the ∆mtp-mutant 

infection (Figure 3.8.4.2.1.1). This TF is also important in the expression of cytokines, and is therefore, 

important in immune response. These pathways all impact on the ability of the host to present the 

antigen to immune cells, as can be seen in the Antigen presentation pathway. As expected, this pathway 

was lowly enriched in the ∆mtp-mutant infection, compared to the WT infection. These novel findings 

suggest that MTP plays a significant role in the presentation of M. tuberculosis antigens to immune 

cells by the host.  

 

4.3.3.3.1 The M. tuberculosis DosR transcription factor 

Activation of the host immune system by host transcription factors also regulates bacterial gene 

expression in response to host immunity.  For example, the bacterial transcription factor DosR controls 

expression of almost 50 genes in M. tuberculosis [144]. The regulation of this TF by bacilli infecting 

mice lungs was previously found to be dependent on the host immune system activation, specifically, 

the presence of NOS2 and IFNG [144]. In the present study, expression of these 2 was dependent on 

the presence of MTP, similar to the activation of the host immune system, hence suggesting that MTP 

plays a role on the regulation of host as well as bacterial TFs. However, this requires further 

interrogation.  

 

4.3.3.4 Cytokines and chemokines 

Bacterial pili have also been reported to induce host immune response via cytokine/chemokine 

production [16]. MTP was reported not to have a significant effect on the cytokine production during 

infection of epithelial cells with M. tuberculosis [12,18].In the present study, the difference in the 

cytokine genes regulated by the WT infection compared to those by the ∆mtp-mutant infection, 

suggested that MTP plays a role in cytokine and chemokine production during M. tuberculosis infection 

in mice lungs. Infection with the WT strain of M. tuberculosis induced the expression of various 

cytokine genes, in contrast to the ∆mtp-mutant infection (Figure 3.8.5.1.1A). The most regulated 

cytokines were Interferon Gamma (IFNG) and tumour necrosis factor (TNF), which were both highly 

activated during infection with WT, and repressed during ∆mtp-mutant infection. These are major pro-

inflammatory cytokines produced during M. tuberculosis infection, to control anti-mycobacterial 
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mechanisms of the host that could damage the host itself. They include the reactive oxygen 

intermediates (ROI) and reactive nitrogen intermediates (RNI) within phago-lysosomes [158]. In the 

current study, the 2 cytokines upregulated the expression of nitric oxide synthase 2 (NOS2) (Figure 

3.8.5.2.2). Increasing RNI production facilitates the killing of M. tuberculosis intracellularly [158]. The 

production of TNF-α has been shown to be dependent on the expression of TLR2 [157] and hence our 

study also correlates with these previous findings as TNF was downregulated in the ∆mtp-mutant 

infection, after a downregulation of TLR2 was observed. Furthermore, inflammatory response 

measured by the in vivo TNF response was directly affected by the presence of pili in S. pneumoniae 

[141]. Here, the authors found that compared with their respective wild-type strains, the pili deficient 

strains of S. pneumoniae caused a significantly lower TNF and IL-6 response [141]. Another study 

showed the activation of the IL-8 cytokine after recognition of curli pili of Salmonella enterica serotype 

Typhimurium by TLR2, showing evidence of the MTP induction of the immune system, supported by 

our current study [154].   

 

The pathway most highly enriched by genes associated with host-pathogen interactions, TREM1 

signalling pathway, activates expression and secretion of cytokines and chemokines, resulting in the 

expression of pro-inflammatory cytokines such as TNF, IL-1β, IL-6 and IL-18 [163]. The maturation 

of DCs is triggered by a number of cytokines such as IL-12, IL-15, IL-6, TNF and type I IFNs [164], 

and other cells of the innate immune system e.g. natural killer (NK) cells and other lymphocytes. These 

findings are in agreement with a previous study that demonstrated that curli pili have in E. coli can 

activate pro-inflammatory cytokines such as IL-6, IL-8, and TNF [168]. The in vitro study by Ramsugit 

et al (2015) showed contradictory findings on the ability of MTP to trigger a cytokine response. In their 

study, the epithelial cell cytokine production of TNF, MCP-1, IFN, the granulocyte colony-stimulating 

factor (G-CSF), IL-1, IL-4, IL-6 and IL-8 was tested. Only the production of TNF was significantly 

reduced after 48hrs of infection with the ∆mtp-mutant strain. IL-4, IL-8, and IFN were also lowly 

induced, but not significantly less than the WT strain [18]. This difference could be a result of the 

different infection times used, as well as the infection models.  

 

This study showed that the cytokine MIF (Macrophage Migration Inhibitory Factor) Regulation of 

Innate Immunity pathway was activated only in the WT infection, that is, in the presence of MTP 

(Figure 3.8.5.2.2). This pathway is an essential mediator of the innate immune system [169]. 

Furthermore, Crosstalk between Dendritic cells and Natural Killer Cells pathway was also positively 

enriched only during WT infection, and negatively enriched in the ∆mtp-mutant infection (Figure 

3.8.5.2.1). This pathway is associated with  many cytokines and molecules that modulate the immune 

system [170], like IL-12, TNF and IFNs. These were upregulated in the WT infection, supporting the 

hypothesis that MTP plays a role in modulating the host immune system. Our current results support 

findings from other studies in that infection with the WT strain of M. tuberculosis initiated a cascade of 
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immune responses and inflammatory signals from the host. Some of cytokines have been previously 

implicated in studies of the host immune response to M. tuberculosis infection, for example, IFN, TNF, 

IL-4 receptor [171,172]. Furthermore, in a gene-expression profile study, these genes have been found 

to be preferentially upregulated in patients with active TB disease [171–173]. 

 

4.4 MTP is associated with immune related networks and functions 

Network 3 lacked the calcifediol molecule in the ∆mtp-mutant infection, and this resulted in its 

association with Drug Metabolism, Lipid Metabolism, Small Molecule Biochemistry whilst the WT 

infection was associated with Cancer, Organismal Injury and Abnormalities, Dermatological Diseases 

and Conditions. Similarly, the atypical chemokine receptor 1 (ACKR1) molecule was present in WT 

infection Network 4 (Figure 3.8.3.1.1A), but absent in the ∆mtp-mutant, resulting in a difference in the 

network structure (Figure 3.8.3.1.1B), and the functions this network was associated with in the 2 

infections. Network 4 in the WT infection was associated with Cellular Movement, Hematological 

System Development and Function, and Immune Cell Trafficking, whilst in the ∆mtp-mutant it was 

associated in Cellular Compromise, Cell Signaling, Molecular Transport. The ACKR molecule is a 

receptor found on the plasma and endosome membrane, and is known to be involved in immune 

response activities such as stimulus response and signaling. It is also  involved in the control of 

chemokine levels and localization [174]. In our study, the absence of MTP hindered the transcription 

of this molecule, resulting in the network 4 lacking the Immune Cell Trafficking function, implying that 

MTP plays a role in immune response.  

 

From the unique genes, the 2 most statistically significant networks showed a similar result, where the 

WT associated networks were associated with immunologically related functions such as 

Immunological Disease, and antimicrobial inflammatory response, whereas the top ∆mtp-mutant 

networks were not related to these functions (Table 3.8.3.2.1). This difference in the functions 

associated with networks of the shared and unique SDEGs demonstrate the association of MTP with 

immune related networks and functions. M. tuberculosis is known to elicit immune related networks 

that play major roles in the host response, such as natural killer (NK) cell activation and immune cell 

antibacterial activity [134].   

 

Overall, the gene ontology, canonical pathway and network analysis in this study suggests that MTP 

has a significant impact on the biological functions, and pathways that are essential for host immunity 

during M. tuberculosis infection. Furthermore, these outcomes were supported by our comprehensive 

analysis, using z- scores of upstream regulators among the SDEGs that were affected by MTP. Taken 

together, the activation of a greater immune response to WT infection compared to ∆mtp-mutant 

infection may explain the significantly higher increase in the size of lungs and spleen of WT compared 

to ∆mtp-mutant infected mice. Pili have been shown to a play role in the response of mice to other 
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bacteriak2l infections. For example, during S. pneumonia, pili were found to be potent enhancers of the 

inflammatory response of the host [105,157], as seen in the current study. 

 

4.5 Conclusions  

The study findings indicate that while the removal of the gene encoding MTP does not completely 

prevent the growth of the bacilli, the lack of MTP expression does cause a growth deficit in the in vitro 

growth of M. tuberculosis under laboratory culture conditions. Thus, MTP does play a role in the growth 

of M. tuberculosis in vitro. MTP was demonstrated to play a significant role in the specific host-

pathogen interactions that follow M. tuberculosis infection, resulting in host immune responses essential 

to the hosts’ defence by triggering the innate immune response and inflammatory response. Taken 

together, transcriptome analyses of lung tissue infected with the MTP-deficient strain of the 

F15/LAM4/KZN family of M. tuberculosis has shown MTP to be a strong immunogen.  Further studies 

using the mtp-complemented strain would allow for the exact determination of the direct relationship 

between MTP and the host response. This will be addressed post-Master’s using RT-PCR.  These 

findings provide further supporting evidence to previous studies that suggested that MTP is a good 

therapeutic and vaccine candidate.  

 

4.6 Limitations of study 

Due to financial constraints, RNA-Seq was performed in duplicate and on lung homogenates from only 

a single time interval. The RNA-Seq data were not validated by RT-qPCR due to time constraints. 

However, a previous study in our research group demonstrated good correlation between these 2 

techniques. Several factors may have impacted on the variability observed in the bacterial lung 

implantation at 24hr, such as the difference in the initial inoculum used for aerosolization of the WT, 

∆mtp-mutant and complemented strains, as observed in the CFU/ml results of the inoculum. This was 

difficult to control, since care had to be exercised not to shear the MTP by vigorous methods to produce 

single cells. Despite the same inoculum being used for each strain, the 5 replicate mice displayed 

variability in the implantation at 24 hr, which suggests that the aerosolization technique by the 

equipment, the GlasCol, may not have been reliable. The use of 100 µL of the organ homogenate for 

plating out for the CFUs may not have been optimal for determining the CFU/mL compared to a larger 

volume.  

 

In addition, only half of the organ was homogenised for CFUs, as the other half was stored down for 

RNA extraction. Furthermore, the mice used were not pathogen free and a specific pathogen-free 

facility was not available to harbour the mice for the in vivo experiments. This may have impacted on 

the gene expression and implantation results. However, uninfected controls were used to normalize 

results against these background values.  
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It is recommended that the RNA be treated for genomic DNA that could contaminate downstream 

experiments, however, this step is optional. During our study, DNase treatment was causing RNA 

degradation, thus it was decided against. The RNA preparation method used in this study fractionates 

the RNA away from the DNA (Acid phenol in TRIzol). Furthermore, the RNeasy kit used to purify the 

RNA has a specific column that elutes RNA alone, thus the RNA was not treated for genomic DNA 

before sequencing. MOPS gels (Supplementary Figure A2 in Appendix) were used to check the quality 

of RNA prior to RNA Seq, and DNA contamination was not observed at this point. MOPS gels will 

reveal bright bands of DNA at the top of the gel as DNA sizes are large. Furthermore, the RNA samples 

had good A260/280 and high 260/230 ratios Nanodrop ratios, and RNA integrity numbers (RIN) 

between 6.90 and 9.80 (Table 3.5.1). Moreover, DNA contamination within the samples was removed 

during the mRNA isolation step. 

 

While complementation did not restore growth in vivo in this study, in our previous in vitro studies the 

complementation was found to restore biofilm production as well as adhesion and invasion of M. 

tuberculosis on macrophages and epithelial cells [11,18,111]. The inability of the mtp complementation 

to restore the growth deficit observed in the mtp deficient strain suggests that the deletion of the mtp 

gene might have concurrently resulted in other changes in the genome, which the complementation did 

not restore. Such changes can be detected by whole genome sequencing which was not performed in 

this study, and has potential to reveal more evidence to the effect of the mtp gene if explored in the 

future. 

 

Survival kinetics were not performed in this study, or prior to determine the virulence of the ∆mtp-

mutant strain. These studies are vital in determining the effect of MTP on virulence of M. tuberculosis. 

Furthermore, the infecting bacterial transcriptome response is key to ascertaining the overall effect of 

MTP, and therefore, future work should include elucidating the role of MTP in the regulation of the 

pathogen’s transcriptome. The development of improved bioinformatics tools for use with deep-

sequencing RNA technologies in future studies is essential for the analysis of the host and the pathogen 

transcriptomes simultaneously during infection. 

  

4.7 Recommendations for future work 

The effectiveness of any transcriptome profiling technique is analytically subject to the use of RNA 

samples that accurately reflect the actual ratios of the infected hosts’ RNA from their tissues, thus RT-

PCR should be performed on randomly selected genes to validate the RNA-Seq data. Since RNA-Seq 

was studied at only a single time point in this study, several identified genes/pathways of interest, such 

as NOS2 and IFNG can be interrogated further by RT-PCR to ascertain at which time point transcription 

occurs during infection. The organs had been stored for this purpose.  
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In addition, the certain pathways of interest can be further interrogated, such as the DC maturation 

pathway, where the maturation of DCs can measured in vitro after infection with 2 strains. Other 

phenotypic assays can be carried out to explore pathways at different time intervals using the expression 

of molecules for example, the measurement of NO and ROS in macrophages infected with the 2 strains 

can be monitored at different time points. Furthermore, multiplex cytokine analysis using the BioPlex 

System can be performed on stored serum samples that had been collected at the different time points 

to confirm the gene expression findings. 
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Appendices 

 

Appendix 1: Media 

 

A. Supplemented Middlebrook 7H9 broth (+ 10% OADC + 0.5% glycerol + 0.05% Tween 80) 

4.71g Middlebrook 7H9 powder  

100 ml OADC 

10 ml of 50% (w/v) glycerol 

2.5 ml 20% Tween-80. 

900ml distilled water 

4.71g of Middlebrook 7H9 powder was dissolved in approximately 900mL of distilled water and 

autoclaved at 121ºC for 15 minutes. 10ml of 50% (w/v) glycerol, 2.5ml of 20% Tween-80 and 100ml 

of OADC were added after cooling and media was stored at 4°C.  

 

B. Supplemented Middlebrook 7H11 Agar (+ 10% OADC + 0.5% glycerol) 

21g Middlebrook 7H11 powder  

900 ml distilled water 

100 ml OADC 

10 ml of 50% (w/v) glycerol  

21g of Middlebrook 7H11 powder was dissolved in approximately 900mL of distilled water and 

autoclaved at 121ºC for 15 minutes. 10ml of 50% (w/v) glycerol and 100ml of OADC were added after 

cooling the media*, and 12.5mL was aliquoted into 65mm petri dishes, and stored at 4°C. 

*For the selective media the following antibiotics were added at this point: 

200.000 units/L of Polymixin B  

20 mg/L of Amphotericin B  

100 mg/L of Carbenicilin 

20 mg/L of Trimethoprim 

 

C. 20% Tween-80 

20 mL Tween-80 into  

80 mL distilled water 

Tween-80 was dissolved in water and sterilized by filtration through 0.22-μm membrane. 

 

D. 50% (w/v) Glycerol 

50g glycerol 

100ml distilled water  
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50 g of glycerol was dissolved in approximately 80ml of autoclaved distilled water and the volume was 

brought up to 100ml. The solution was sterilized by filtration through a 0.22μm membrane into a sterile 

container. 

 

E. Phosphate buffered saline (PBS) (+ 0.05% tween) 

10PBS tablets (Oxoid) 

1000ml distilled water 

Ten PBS tablets were dissolved in 1000ml autoclaved distilled water. The PBS was autoclaved at 121°C 

for 15 minutes. 2.5 ml 20% Tween 80 was added, and thereafter decanted into 20ml aliquots and 

refrigerated at 4°C until use. 

 

F. Diethylpyrocarbonate (DEPC) treated water 

1ml 0.1% DEPC 

1 L Distilled water 

1ml of 0.1% DEPC was added to 1L of distilled water and left at room temperature for overnight. The 

water was autoclaved at 121°C for 15 minutes and allowed to cool before use. 

  

H. 0.5 M EDTA 

9.305 g EDTA 

40 ml DEPC water 

EDTA was dissolved in DEPC water, and brought to 50 ml volume with DEPC water. Thereafter, the 

solution was autoclaved. 

 

I. 5 X MOPS Buffer, 1 L 

41.86 g MOPS 

4.115 g sodium acetate 

800 ml DEPC water 

10 ml 0.5 M Ethylenediaminetetraacetic acid (EDTA) 

800ml of DEPC treated water was added to MOPS, EDTA and sodium acetate, and the volume was 

made up to 1 L with DEPC water. 200 ml aliquots were made and the solution was autoclaved for 15 

min at 121 °C. 

 

J. 37 % formaldehyde 

1.85 g paraformaldehyde 

3.5 mL H2O  

90 µL 1 N NaOH. 
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Water was added to paraformaldehyde and heated in a boiling water bath. NaOH was added and the 

mixture was agitated for ∼1 min. Thereafter, it was cooled until running water and was sterilized by 

filtration through a 0.22μm membrane 

 

Appendix 2: MOPS 1% agarose gel 

 

0.5g agarose 

10ml 10x MOPS buffer 

36 ml DEPC treated water 

9 ml Formaldehyde (37%) 

5 μl Gel red 

 

1. 0.5 g of agarose was heated in microwave oven 36 ml DEPC water until dissolved. 

2. 5 ml of 10x MOPS running buffer and 9 ml 37% formaldehyde was added in a fume hood after 

cooling a ‘hand-warm’ temperature. 

3. Gel red was added to the agarose and gently swirled to mix  

4. The gel was poured into a casting tray, avoiding air bubbles, and left to set for 30 minutes at 

room temperature. 

5. To 6 µl of each RNA sample, 2 μl of loading dye was added, and the mixture was heated at 

70°C for 10 minutes and cooled on ice for 2 minutes. 

6. The samples were loaded into gel and ran at 90V for 1 hours in 1xMOPS buffer. 

7. Bands were visualized. 

 

     

    1    2     3    4      5     6     7     8     9   10  
 

 

 

Lanes: 

1. Molecular Weight Marker  

2. M3 D14 ∆mtp-mutant 

3. M3 D21 ∆mtp-mutant 

4. M3 D14 WT 

5. M4 D14 ∆mtp-mutant 

6. M4 D21 ∆mtp-mutant 

7. M4 D14 WT 

8. M5 D14 ∆mtp-mutant 

9. M5 D21 ∆mtp-mutant 

10. M5 D14 WT 

   18S 

  28S 
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Figure A2: MOPS RNA gel image of RNA isolated from BALB/c mice infected lungs. Each time 

point had 5 independent biological replicates, and 2 biological replicates with the highest RIN numbers 

were selected for sequencing. RNA from the lungs of mice challenged with the WT and the ∆mtp-

mutant for 14 and 21 days was extracted. M3, M4, M5 represent Mouse replicate 3, 4 and 5 respectively. 

The intensity of the bands corresponds to the concentration of the RNA sample.  

Only RNA from Day 14 was sequenced. 

 

Appendix 3: RNA-Seq data analysis pipeline 

 

Setting up the machine/server and installing software 

Create a directory called bin in the Desktop where you will unzip all your software. 

>Install Java in the Linux computer/server (from application centre) 

>Install FastsX tool kit (download the zip file and unzip it within the command line) 

 

Commands used: 

>Install FastQC within the command line using: sudo apt-get install fastqc 

>Download zipped files of bowtie2, tophat, cufflinks and unzip them from a command line 

>Install Tophat: sudo apt-get install tophat,  

 samtools: sudo apt-get install samtools 

 cufflinks: sudo apt-get install cufflinks 

 

Concatenating files: 

1. create a new file/directory: mkdir newfile 

2. joined Read 1 and Read 2 inside this file, and named them mtp3_R1.gz and mtp3_R2.gz respectively.  

$  $ cat part1.fastq.gz part2.fastq.gz >merged_file.fastq.gz 

 e.g. $ cat SKuv13-1_S1_L004_R2_001.fastq.gz SKuv13-2_S1_L004_R2_001.fastq.gz 

>WT13_R2.fastq.gz 

 

NB: Keep the data files in a zipped format, as most of the NGS commands will take zipped formats. If 

you have to unzip for something specifically, unzip the file and keep the original zipped, use, then delete 

it.  

 

Quality analysis 

Run FastQC using the following command: fastqc ./sample_name.fastq 

Asses the quality scores of each read 
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Uploading files into the server: 

$ scp -r path_for_file_to_upload username@server_address:/home/georgina 

e.g. $ scp –r /home/ub2/Desktop/RNA-Seq_Data/RNA/ georgina@146.230.128.25:/home/georgina 

 

Downloading files from the server: 

$ scp -r username@server_address:file_to_be_copied/ where-to-copy 

e.g.$ scp -r georgina@146.230.128.25:/home/georgina/Mycobacterium_tuberculosis_H37RV_tar.gz 

/home/ub2/Documents/Georgina_RNA-Seq_Data 

 

 

Downloading files i.e. reference genome from the web to the server: 

1. log into the server and use the command: $ wget [OPTION]... [URL]... 

e.g. For Mouse genome: wget ftp://igenome:G3nom3s4u@ussd-

ftp.illumina.com/Mus_musculus/UCSC/mm10/Mus_musculus_UCSC_mm10.tar.gz 

 

Unzipping the ref genome: 

$ tar -zxvf yourdownload.tar.gz 

e.g. $ tar -zxvf Mus_musculus_UCSC_mm10.tar.gz 

NB: this reference genome contains all the important files required for the analysis, and these are already 

standardized e.g. the Bowtie2index is there already 

 

Running Tophat2: 

>Put the path for tophat when running on the laptop 

>In this example, brain is 1 variable, and adrenal is another. Run tophat using the following command: 

$ tophat (-p 4) -o output_sampleA_dir -G genes.gtf --transcriptome-index cds 

Homo_sapiens/UCSC/hg38/Sequence/Bowtie2Index/genome sampleA_1.fq.gz sampleA_2.fq.gz 

(this is for paired end (two files from each end) but for a single end sequencing, use each file separately) 

e.g. $ tophat2 -o tophat2_output_brain -G 

/home/georgina/Homo_sapiens/UCSC/hg38/Annotation/Genes/genes.gtf --transcriptome-

index=known/mrna /home/georgina/Homo_sapiens/UCSC/hg38/Sequence/Bowtie2Index/genome 

brain_1.fastq brain_2.fastq 

NB -index=known/mrna creates a transcriptome index and puts it in a directory called 'known', and the 

index files will have the suffix 'mrna'. 

NB when running Tophat for subsequent samples, i.e. adrenal, remove the -G and the .gtf file because 

the transcriptome index has already been made: 
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e.g. $ tophat2 -o tophat2_output_adrenal --transcriptome-index=known/mrna 

/home/georgina/Homo_sapiens/UCSC/hg38/Sequence/Bowtie2Index/genome adrenal_1.fastq.fastq 

adrenal_2.fastq 

Just make sure you use the same transcriptome index, and put the right paths. 

 

Running Cuffdiff: 

put the path for cuffdiff when running on the laptop 

$ cuffdiff -o outputname -L variable1,variable2 -b .fa_file .gtf_file accepted_hits.bam_variable1 

accepted_hits.bam_variable2  

e.g. $ cuffdiff -o brain_vs_adrenal -L brain,adrenal -b 

/home/georgina/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.fa 

/home/georgina/Homo_sapiens/UCSC/hg38/Annotation/Genes/genes.gtf 

tophat2_output_brain/accepted_hits.bam tophat2_output_adrenal/accepted_hits.bam 

 

Queueing jobs on the server 

Use the command: sbatch run_scriptname-to-be-run 

 

You use 2 different files: 

1. a .sh file containing the command you want to run. This file will specify the paths were the jobs will 

be run from, and where the output will go e.g. tophat_mtp1.sh and cuff_UN_WT.sh  

2. a .sh file containing the script to run the 1st file e.g. run_tophat_mtp1.sh and run_cuff_UN_WT.sh 

>>these files run together and must correspond 

 

Editing the script file: 

1. Change -p value to the correct one for that job i.e. for the small dataset change it from -p 140 to -p 

20. Note: -p value has a minimum of 20 

2. Change the file names within the script i.e. input and output file names, and give them their right, 

specific paths. Change the output file name within the script and give them their right, specific paths 

i.e. the output file should be specific for the job being run so that there is no confusion when handling 

the outputs later. Especially with Tophat jobs because each sample will have its own Tophat run.  

3. Make sure the command is right according to the job you are running, e.g. if running Tophat, check 

with the Tophat command under the 'Running Tophat2' section.  

4. Make sure you have all the required arguments in your command, e.g. if running Tophat for the first 

time, you will need to have the “-G ____.gtf” argument. 

5. Double check the paths of all your commands i.e. your .gtf, .fa, Index paths. 

6. Change the name of the script file and save it to be specific to which job its running.  
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Editing the run file: 

1. Change the name of the script file within the run file. Do not change anything in the run file except 

the name of the script file. 

>>the nodes value corresponds to the -p value. For every 20 of the -p, there is 1 of the nodes. So for -p 

140, nodes=7 

>also change the name of the run file to fit what job its running. 

 

Upload the new scripts into the server where it will run from and give the edited script files permission 

using: $ chmod u+x filename 

 

Submitting to the queue: 

Run the new edited run script: $ sbatch new-run-file 

You will get an output file called “slurm____.out" once your job starts running and it will show you the 

progress of your job: $ more slurm___.out 

>always open this file to make sure your job is running and that the script has permission before you 

leave it 

 

Running MeV on Linux: 

navigate to the MeV_4_8 folders in the terminal: /home/Documents/MeV_4_8  

make tmev.sh executable: chmod u+x tmev.sh  

run MeV: ./tmev.sh   

MeV can hereafter be run by double-clicking the tmev.sh file.   

 

Downstream Analysis 

1. Filter gene_exp.diff files for all conditions for significant genes, and genes with a log1.5 fold change 

up/down regulated. 

2. Draw Venn diagrams for interested conditions 

3. Save the genes of interest to be used for heat maps in a .txt file. Get the log1.5fold changes for each 

gene using the following script: 

 

$ grep -w -f file_input_with_genes_of_interest.txt A549_vs_Beijing/gene_exp.diff | awk -F "\t" 

'$10 >= 2 || $10 <= -2 {print $10}'> Output.2fold_change.txt 

 

eg1: $ grep -w –f  UIvsWT_UIvsmtp_input.txt cuffdiff_trial_UI_vs_WT/gene_exp.diff | awk -F "\t" 

'$10 >= 1.5 || $10 <= -1.5 {print $10}'> UIvsWT_UIvsmtp_output.txt 

 and  
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eg2: $ grep -w -f UIvsWT_UIvsmtp_input.txt cuffdiff_trial_UI_vs_mtp/gene_exp.diff | awk -F "\t" '$10 

>= 1.5 || $10 <= -1.5 {print $10}'> UIvsWT_UIvsmtp_output_b.txt 

 

Appendix 4: Read QC 

 

1i.)        ii.) 

 

 

2i)       ii) 
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3i.)       ii.) 

 

4i.)       ii.) 
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5i.)       ii.) 

 

 

6i.)       ii.) 

 

Figure A4: FastQC output of the Illumina reads. Forward (i), and reverse (ii) reads from the 6 

libraries were generated from the RNA obtained from the 1 and 2) uninfected, 3 and 4) WT and 5 and 

6) ∆mtp-mutant infected lungs. The mean quality score across the sequence length is represented by the 
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blue line. The green, orange and pink colours represent areas of good, acceptable and bad quality scores 

respectively. 

 

Appendix 5: IPA bar graphs 
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Figure A5: IPA canonical pathways enriched from all genes, in response to the WT and ∆mtp-

mutant infection relative to the uninfected. Dark blue represents WT and light blue represents ∆mtp-

mutant (p-value < 0.05). 

 

Appendix 6: IPA functions 

 

Table A6: Functions associated with pathways enriched by SDEGs from the WT infection. 

WT infection 

Category Function Annotation p-value 

Inflammatory Response inflammation of joint 8.87E-29 

Inflammatory Response inflammation of organ 2.43E-20 

Inflammatory Response inflammation of body region 1.17E-18 

Inflammatory Response inflammation of body cavity 5.48E-17 

Inflammatory Response inflammation of respiratory system component 4.05E-16 

Inflammatory Response inflammation of intestine 3.77E-15 

Inflammatory Response inflammation of large intestine 7.60E-15 

Inflammatory Response inflammation of lung 9.36E-15 

Inflammatory Response inflammation of central nervous system 1.98E-14 

Inflammatory Response inflammation of liver 1.68E-13 

Inflammatory Response inflammation of secretory structure 6.03E-08 

Inflammatory Response inflammation of pancreas 8.04E-08 

Inflammatory Response inflammatory response 2.18E-26 

Inflammatory Response antimicrobial response 1.03E-24 

Inflammatory Response activation of leukocytes 7.62E-24 

Inflammatory Response activation of phagocytes 2.27E-20 

Inflammatory Response activation of myeloid cells 4.66E-20 

Inflammatory Response activation of antigen presenting cells 7.84E-19 
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Inflammatory Response activation of macrophages 5.48E-18 

Inflammatory Response activation of mononuclear leukocytes 5.00E-13 

Inflammatory Response activation of lymphocytes 2.04E-12 

Inflammatory Response activation of neutrophils 2.46E-12 

Inflammatory Response activation of T lymphocytes 1.00E-11 

Inflammatory Response activation of microglia 3.16E-10 

Inflammatory Response quantity of phagocytes 1.25E-22 

Inflammatory Response quantity of dendritic cells 9.67E-13 

Inflammatory Response quantity of neutrophils 4.06E-12 

Inflammatory Response quantity of macrophages 1.06E-08 

Inflammatory Response quantity of monocytes 1.45E-07 

Inflammatory Response rheumatoid arthritis 4.88E-21 

Inflammatory Response cell movement of phagocytes 5.32E-20 

Inflammatory Response cell movement of dendritic cells 1.89E-13 

Inflammatory Response cell movement of neutrophils 6.08E-13 

Inflammatory Response cell movement of macrophages 2.69E-11 

Inflammatory Response cell movement of monocytes 1.19E-08 

Inflammatory Response cell movement of bone marrow-derived 

macrophages 

4.18E-07 

Inflammatory Response immune response of leukocytes 4.61E-19 

Inflammatory Response immune response of cells 2.90E-17 

Inflammatory Response immune response of T lymphocytes 1.62E-14 

Inflammatory Response immune response of antigen presenting cells 3.09E-11 

Inflammatory Response immune response of phagocytes 1.53E-09 

Inflammatory Response immune response of helper T lymphocytes 1.24E-07 

Inflammatory Response antiviral response 1.03E-18 

Inflammatory Response experimentally-induced arthritis 3.46E-18 

Inflammatory Response accumulation of leukocytes 6.75E-18 

Inflammatory Response accumulation of mononuclear leukocytes 2.62E-16 

Inflammatory Response accumulation of lymphocytes 3.34E-16 

Inflammatory Response accumulation of T lymphocytes 3.95E-13 

Inflammatory Response accumulation of granulocytes 6.74E-11 

Inflammatory Response accumulation of myeloid cells 1.08E-09 

Inflammatory Response accumulation of neutrophils 4.69E-09 

Inflammatory Response accumulation of phagocytes 1.08E-08 

Inflammatory Response recruitment of neutrophils 1.86E-17 

Inflammatory Response recruitment of phagocytes 3.42E-17 
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Inflammatory Response recruitment of macrophages 3.97E-09 

Inflammatory Response recruitment of dendritic cells 5.46E-09 

Inflammatory Response recruitment of monocytes 1.74E-08 

Inflammatory Response migration of phagocytes 1.09E-15 

Inflammatory Response migration of dendritic cells 9.63E-14 

Inflammatory Response migration of macrophages 4.33E-10 

Inflammatory Response colitis 2.93E-14 

Inflammatory Response Encephalitis 6.10E-13 

Inflammatory Response Nephritis 2.18E-12 

Inflammatory Response chemotaxis of leukocytes 2.22E-12 

Inflammatory Response chemotaxis of phagocytes 1.08E-11 

Inflammatory Response chemotaxis of myeloid cells 4.26E-11 

Inflammatory Response chemotaxis of T lymphocytes 1.22E-10 

Inflammatory Response chemotaxis of mononuclear leukocytes 2.63E-10 

Inflammatory Response chemotaxis of lymphocytes 1.05E-09 

Inflammatory Response chemotaxis of neutrophils 1.40E-08 

Inflammatory Response chemotaxis of antigen presenting cells 2.14E-08 

Inflammatory Response chemotaxis of granulocytes 3.05E-08 

Inflammatory Response chemotaxis of dendritic cells 4.61E-08 

Inflammatory Response chemotaxis of monocytes 1.28E-07 

Inflammatory Response experimental autoimmune encephalomyelitis 2.82E-12 

Inflammatory Response innate immune response 3.22E-12 

Inflammatory Response infiltration by neutrophils 8.98E-12 

Inflammatory Response cellular infiltration of phagocytes 3.56E-09 

Inflammatory Response cellular infiltration by macrophages 7.56E-08 

Inflammatory Response glomerulonephritis 1.24E-11 

Inflammatory Response response of phagocytes 3.82E-11 

Inflammatory Response polyarthritis 4.31E-11 

Inflammatory Response chemoattraction of leukocytes 5.26E-11 

Inflammatory Response chemoattraction of phagocytes 6.49E-11 

Inflammatory Response chemoattraction of myeloid cells 7.25E-08 

Inflammatory Response chemoattraction of antigen presenting cells 5.67E-07 

Inflammatory Response mobilization of phagocytes 7.57E-11 

Inflammatory Response mobilization of neutrophils 7.84E-08 

Inflammatory Response cell-mediated response 3.05E-10 

Inflammatory Response cell-mediated response of T lymphocytes 2.24E-08 

Inflammatory Response influx of phagocytes 3.59E-10 
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Inflammatory Response influx of neutrophils 1.13E-09 

Inflammatory Response antibacterial response 9.03E-09 

Inflammatory Response fever 9.89E-09 

Inflammatory Response insulitis 3.08E-08 

Inflammatory Response antigen presentation 4.09E-08 

Inflammatory Response rejection 4.91E-08 

Inflammatory Response phagocytosis of leukocytes 6.83E-08 

Inflammatory Response phagocytosis of phagocytes 2.00E-07 

Inflammatory Response cellulitis 6.88E-08 

Inflammatory Response ulcerative colitis 7.37E-08 

Inflammatory Response Dermatitis 1.46E-07 

Inflammatory Response TH1 immune response 2.85E-07 

Inflammatory Response antibody response 4.17E-07 

Inflammatory Response adjuvant arthritis 5.32E-07 

Cellular Movement leukocyte migration 1.11E-28 

Cellular Movement T cell migration 6.12E-19 

Cellular Movement migration of antigen presenting cells 1.51E-16 

Cellular Movement Lymphocyte migration 1.72E-16 

Cellular Movement migration of mononuclear leukocytes 3.77E-16 

Cellular Movement migration of phagocytes 1.09E-15 

Cellular Movement migration of cells 2.30E-15 

Cellular Movement migration of dendritic cells 9.63E-14 

Cellular Movement migration of macrophages 4.33E-10 

Cellular Movement NK cell migration 4.30E-09 

Cellular Movement migration of myeloid cells 1.77E-08 

Cellular Movement migration of granulocytes 5.10E-07 

Cellular Movement recruitment of cells 1.84E-24 

Cellular Movement recruitment of leukocytes 1.37E-23 

Cellular Movement recruitment of myeloid cells 1.86E-18 

Cellular Movement recruitment of neutrophils 1.86E-17 

Cellular Movement recruitment of granulocytes 2.27E-17 

Cellular Movement recruitment of phagocytes 3.42E-17 

Cellular Movement recruitment of antigen presenting cells 3.67E-13 

Cellular Movement recruitment of mononuclear leukocytes 1.34E-10 

Cellular Movement recruitment of lymphocytes 1.61E-10 

Cellular Movement recruitment of T lymphocytes 1.90E-10 

Cellular Movement recruitment of macrophages 3.97E-09 
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Cellular Movement recruitment of dendritic cells 5.46E-09 

Cellular Movement recruitment of inflammatory leukocytes 1.06E-08 

Cellular Movement recruitment of monocytes 1.74E-08 

Cellular Movement cell movement of leukocytes 2.79E-24 

Cellular Movement cell movement of myeloid cells 2.25E-20 

Cellular Movement cell movement of phagocytes 5.32E-20 

Cellular Movement cell movement of T lymphocytes 1.02E-19 

Cellular Movement cell movement of mononuclear leukocytes 6.01E-17 

Cellular Movement cell movement of lymphocytes 1.21E-16 

Cellular Movement cell movement 3.66E-16 

Cellular Movement cell movement of granulocytes 4.98E-16 

Cellular Movement cell movement of antigen presenting cells 1.64E-15 

Cellular Movement cell movement of dendritic cells 1.89E-13 

Cellular Movement cell movement of neutrophils 6.08E-13 

Cellular Movement cell movement of macrophages 2.69E-11 

Cellular Movement cell movement of hematopoietic progenitor cells 6.17E-10 

Cellular Movement cell movement of eosinophils 8.65E-10 

Cellular Movement cell movement of natural killer cells 1.81E-09 

Cellular Movement cell movement of monocytes 1.19E-08 

Cellular Movement cell movement of memory T lymphocytes 1.93E-08 

Cellular Movement cell movement of helper T lymphocytes 5.67E-08 

Cellular Movement cell movement of naive lymphocytes 2.79E-07 

Cellular Movement cell movement of bone marrow-derived 

macrophages 

4.18E-07 

Cellular Movement cell movement of leukocyte cell lines 5.13E-07 

Cellular Movement cellular infiltration 7.66E-21 

Cellular Movement cellular infiltration by leukocytes 1.04E-20 

Cellular Movement cellular infiltration by mononuclear leukocytes 7.72E-17 

Cellular Movement cellular infiltration by lymphocytes 9.45E-15 

Cellular Movement cellular infiltration by granulocytes 1.62E-14 

Cellular Movement infiltration by T lymphocytes 2.92E-12 

Cellular Movement infiltration by neutrophils 8.98E-12 

Cellular Movement cellular infiltration of phagocytes 3.56E-09 

Cellular Movement cellular infiltration by macrophages 7.56E-08 

Cellular Movement mobilization of leukocytes 5.09E-16 

Cellular Movement mobilization of cells 5.83E-13 

Cellular Movement mobilization of myeloid cells 1.14E-12 
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Cellular Movement mobilization of phagocytes 7.57E-11 

Cellular Movement mobilization of granulocytes 7.73E-08 

Cellular Movement mobilization of neutrophils 7.84E-08 

Cellular Movement attraction of leukocytes 5.43E-13 

Cellular Movement attraction of phagocytes 2.08E-12 

Cellular Movement attraction of lymphocytes 5.34E-11 

Cellular Movement attraction of mononuclear leukocytes 6.49E-11 

Cellular Movement attraction of cells 1.87E-10 

Cellular Movement attraction of T lymphocytes 5.40E-10 

Cellular Movement attraction of antigen presenting cells 7.60E-10 

Cellular Movement attraction of myeloid cells 3.08E-08 

Cellular Movement attraction of neutrophils 5.55E-08 

Cellular Movement chemotaxis of cells 9.75E-13 

Cellular Movement chemotaxis of leukocytes 2.22E-12 

Cellular Movement chemotaxis of phagocytes 1.08E-11 

Cellular Movement chemotaxis of myeloid cells 4.26E-11 

Cellular Movement chemotaxis of T lymphocytes 1.22E-10 

Cellular Movement chemotaxis of mononuclear leukocytes 2.63E-10 

Cellular Movement chemotaxis of lymphocytes 1.05E-09 

Cellular Movement chemotaxis of neutrophils 1.40E-08 

Cellular Movement chemotaxis of antigen presenting cells 2.14E-08 

Cellular Movement chemotaxis of granulocytes 3.05E-08 

Cellular Movement chemotaxis of dendritic cells 4.61E-08 

Cellular Movement chemotaxis of monocytes 1.28E-07 

Cellular Movement chemotaxis of lymphatic system cells 5.67E-07 

Cellular Movement trafficking of leukocytes 2.70E-12 

Cellular Movement trafficking of mononuclear leukocytes 7.50E-12 

Cellular Movement trafficking of lymphocytes 1.05E-10 

Cellular Movement trafficking of T lymphocytes 1.76E-10 

Cellular Movement homing of cells 4.07E-12 

Cellular Movement influx of leukocytes 3.98E-11 

Cellular Movement influx of cells 5.03E-11 

Cellular Movement influx of phagocytes 3.59E-10 

Cellular Movement influx of neutrophils 1.13E-09 

Cellular Movement chemoattraction of leukocytes 5.26E-11 

Cellular Movement chemoattraction of phagocytes 6.49E-11 

Cellular Movement chemoattraction 1.00E-08 
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Cellular Movement chemoattraction of myeloid cells 7.25E-08 

Cellular Movement chemoattraction of antigen presenting cells 5.67E-07 

Cellular Movement transmigration of cells 1.36E-09 

Cellular Movement transmigration of leukocytes 1.96E-09 

Immune Cell Trafficking leukocyte migration 1.11E-28 

Immune Cell Trafficking T cell migration 6.12E-19 

Immune Cell Trafficking migration of antigen presenting cells 1.51E-16 

Immune Cell Trafficking Lymphocyte migration 1.72E-16 

Immune Cell Trafficking migration of mononuclear leukocytes 3.77E-16 

Immune Cell Trafficking migration of phagocytes 1.09E-15 

Immune Cell Trafficking migration of dendritic cells 9.63E-14 

Immune Cell Trafficking migration of macrophages 4.33E-10 

Immune Cell Trafficking NK cell migration 4.30E-09 

Immune Cell Trafficking migration of myeloid cells 1.77E-08 

Immune Cell Trafficking migration of granulocytes 5.10E-07 

Immune Cell Trafficking cell movement of leukocytes 2.79E-24 

Immune Cell Trafficking cell movement of myeloid cells 2.25E-20 

Immune Cell Trafficking cell movement of phagocytes 5.32E-20 

Immune Cell Trafficking cell movement of T lymphocytes 1.02E-19 

Immune Cell Trafficking cell movement of mononuclear leukocytes 6.01E-17 

Immune Cell Trafficking cell movement of lymphocytes 1.21E-16 

Immune Cell Trafficking cell movement of granulocytes 4.98E-16 

Immune Cell Trafficking cell movement of antigen presenting cells 1.64E-15 

Immune Cell Trafficking cell movement of dendritic cells 1.89E-13 

Immune Cell Trafficking cell movement of neutrophils 6.08E-13 

Immune Cell Trafficking cell movement of macrophages 2.69E-11 

Immune Cell Trafficking cell movement of eosinophils 8.65E-10 

Immune Cell Trafficking cell movement of natural killer cells 1.81E-09 

Immune Cell Trafficking cell movement of monocytes 1.19E-08 

Immune Cell Trafficking cell movement of memory T lymphocytes 1.93E-08 

Immune Cell Trafficking cell movement of helper T lymphocytes 5.67E-08 

Immune Cell Trafficking cell movement of naive lymphocytes 2.79E-07 

Immune Cell Trafficking cell movement of bone marrow-derived 

macrophages 

4.18E-07 

Immune Cell Trafficking cell movement of leukocyte cell lines 5.13E-07 

Immune Cell Trafficking activation of leukocytes 7.62E-24 

Immune Cell Trafficking activation of phagocytes 2.27E-20 
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Immune Cell Trafficking activation of myeloid cells 4.66E-20 

Immune Cell Trafficking activation of antigen presenting cells 7.84E-19 

Immune Cell Trafficking activation of macrophages 5.48E-18 

Immune Cell Trafficking activation of mononuclear leukocytes 5.00E-13 

Immune Cell Trafficking activation of lymphocytes 2.04E-12 

Immune Cell Trafficking activation of neutrophils 2.46E-12 

Immune Cell Trafficking activation of T lymphocytes 1.00E-11 

Immune Cell Trafficking activation of microglia 3.16E-10 

Immune Cell Trafficking recruitment of leukocytes 1.37E-23 

Immune Cell Trafficking recruitment of myeloid cells 1.86E-18 

Immune Cell Trafficking recruitment of neutrophils 1.86E-17 

Immune Cell Trafficking recruitment of granulocytes 2.27E-17 

Immune Cell Trafficking recruitment of phagocytes 3.42E-17 

Immune Cell Trafficking recruitment of antigen presenting cells 3.67E-13 

Immune Cell Trafficking recruitment of mononuclear leukocytes 1.34E-10 

Immune Cell Trafficking recruitment of lymphocytes 1.61E-10 

Immune Cell Trafficking recruitment of T lymphocytes 1.90E-10 

Immune Cell Trafficking recruitment of macrophages 3.97E-09 

Immune Cell Trafficking recruitment of dendritic cells 5.46E-09 

Immune Cell Trafficking recruitment of inflammatory leukocytes 1.06E-08 

Immune Cell Trafficking recruitment of monocytes 1.74E-08 

Immune Cell Trafficking cellular infiltration by leukocytes 1.04E-20 

Immune Cell Trafficking cellular infiltration by mononuclear leukocytes 7.72E-17 

Immune Cell Trafficking cellular infiltration by lymphocytes 9.45E-15 

Immune Cell Trafficking cellular infiltration by granulocytes 1.62E-14 

Immune Cell Trafficking infiltration by T lymphocytes 2.92E-12 

Immune Cell Trafficking infiltration by neutrophils 8.98E-12 

Immune Cell Trafficking cellular infiltration of phagocytes 3.56E-09 

Immune Cell Trafficking cellular infiltration by macrophages 7.56E-08 

Immune Cell Trafficking accumulation of leukocytes 6.75E-18 

Immune Cell Trafficking accumulation of mononuclear leukocytes 2.62E-16 

Immune Cell Trafficking accumulation of lymphocytes 3.34E-16 

Immune Cell Trafficking accumulation of T lymphocytes 3.95E-13 

Immune Cell Trafficking accumulation of granulocytes 6.74E-11 

Immune Cell Trafficking accumulation of myeloid cells 1.08E-09 

Immune Cell Trafficking accumulation of neutrophils 4.69E-09 

Immune Cell Trafficking accumulation of phagocytes 1.08E-08 
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Immune Cell Trafficking mobilization of leukocytes 5.09E-16 

Immune Cell Trafficking mobilization of myeloid cells 1.14E-12 

Immune Cell Trafficking mobilization of phagocytes 7.57E-11 

Immune Cell Trafficking mobilization of granulocytes 7.73E-08 

Immune Cell Trafficking mobilization of neutrophils 7.84E-08 

Immune Cell Trafficking adhesion of immune cells 7.91E-15 

Immune Cell Trafficking attraction of leukocytes 5.43E-13 

Immune Cell Trafficking attraction of phagocytes 2.08E-12 

Immune Cell Trafficking attraction of lymphocytes 5.34E-11 

Immune Cell Trafficking attraction of mononuclear leukocytes 6.49E-11 

Immune Cell Trafficking attraction of T lymphocytes 5.40E-10 

Immune Cell Trafficking attraction of antigen presenting cells 7.60E-10 

Immune Cell Trafficking attraction of myeloid cells 3.08E-08 

Immune Cell Trafficking attraction of neutrophils 5.55E-08 

Immune Cell Trafficking chemotaxis of leukocytes 2.22E-12 

Immune Cell Trafficking chemotaxis of phagocytes 1.08E-11 

Immune Cell Trafficking chemotaxis of myeloid cells 4.26E-11 

Immune Cell Trafficking chemotaxis of T lymphocytes 1.22E-10 

Immune Cell Trafficking chemotaxis of mononuclear leukocytes 2.63E-10 

Immune Cell Trafficking chemotaxis of lymphocytes 1.05E-09 

Immune Cell Trafficking chemotaxis of neutrophils 1.40E-08 

Immune Cell Trafficking chemotaxis of antigen presenting cells 2.14E-08 

Immune Cell Trafficking chemotaxis of granulocytes 3.05E-08 

Immune Cell Trafficking chemotaxis of dendritic cells 4.61E-08 

Immune Cell Trafficking chemotaxis of monocytes 1.28E-07 

Immune Cell Trafficking chemotaxis of lymphatic system cells 5.67E-07 

Immune Cell Trafficking trafficking of leukocytes 2.70E-12 

Immune Cell Trafficking trafficking of mononuclear leukocytes 7.50E-12 

Immune Cell Trafficking trafficking of lymphocytes 1.05E-10 

Immune Cell Trafficking trafficking of T lymphocytes 1.76E-10 

Immune Cell Trafficking influx of leukocytes 3.98E-11 

Immune Cell Trafficking influx of phagocytes 3.59E-10 

Immune Cell Trafficking influx of neutrophils 1.13E-09 

Immune Cell Trafficking chemoattraction of leukocytes 5.26E-11 

Immune Cell Trafficking chemoattraction of phagocytes 6.49E-11 

Immune Cell Trafficking chemoattraction of myeloid cells 7.25E-08 

Immune Cell Trafficking chemoattraction of antigen presenting cells 5.67E-07 
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Immune Cell Trafficking transmigration of leukocytes 1.96E-09 

Cell-To-Cell Signaling and Interaction recruitment of cells 1.84E-24 

Cell-To-Cell Signaling and Interaction recruitment of leukocytes 1.37E-23 

Cell-To-Cell Signaling and Interaction recruitment of myeloid cells 1.86E-18 

Cell-To-Cell Signaling and Interaction recruitment of neutrophils 1.86E-17 

Cell-To-Cell Signaling and Interaction recruitment of granulocytes 2.27E-17 

Cell-To-Cell Signaling and Interaction recruitment of phagocytes 3.42E-17 

Cell-To-Cell Signaling and Interaction recruitment of antigen presenting cells 3.67E-13 

Cell-To-Cell Signaling and Interaction recruitment of mononuclear leukocytes 1.34E-10 

Cell-To-Cell Signaling and Interaction recruitment of lymphocytes 1.61E-10 

Cell-To-Cell Signaling and Interaction recruitment of T lymphocytes 1.90E-10 

Cell-To-Cell Signaling and Interaction recruitment of macrophages 3.97E-09 

Cell-To-Cell Signaling and Interaction recruitment of dendritic cells 5.46E-09 

Cell-To-Cell Signaling and Interaction recruitment of inflammatory leukocytes 1.06E-08 

Cell-To-Cell Signaling and Interaction recruitment of monocytes 1.74E-08 

Cell-To-Cell Signaling and Interaction activation of leukocytes 7.62E-24 

Cell-To-Cell Signaling and Interaction activation of cells 5.43E-21 

Cell-To-Cell Signaling and Interaction activation of phagocytes 2.27E-20 

Cell-To-Cell Signaling and Interaction activation of myeloid cells 4.66E-20 

Cell-To-Cell Signaling and Interaction activation of antigen presenting cells 7.84E-19 

Cell-To-Cell Signaling and Interaction activation of macrophages 5.48E-18 

Cell-To-Cell Signaling and Interaction activation of mononuclear leukocytes 5.00E-13 

Cell-To-Cell Signaling and Interaction activation of lymphocytes 2.04E-12 

Cell-To-Cell Signaling and Interaction activation of neutrophils 2.46E-12 

Cell-To-Cell Signaling and Interaction activation of T lymphocytes 1.00E-11 

Cell-To-Cell Signaling and Interaction activation of neuroglia 2.32E-11 

Cell-To-Cell Signaling and Interaction activation of microglia 3.16E-10 

Cell-To-Cell Signaling and Interaction response of mononuclear leukocytes 4.02E-19 

Cell-To-Cell Signaling and Interaction response of lymphocytes 1.34E-17 

Cell-To-Cell Signaling and Interaction T cell response 4.85E-15 

Cell-To-Cell Signaling and Interaction response of phagocytes 3.82E-11 

Cell-To-Cell Signaling and Interaction response of helper T lymphocytes 5.26E-11 

Cell-To-Cell Signaling and Interaction response of myeloid cells 4.17E-10 

Cell-To-Cell Signaling and Interaction response of granulocytes 1.58E-07 

Cell-To-Cell Signaling and Interaction immune response of leukocytes 4.61E-19 

Cell-To-Cell Signaling and Interaction immune response of T lymphocytes 1.62E-14 

Cell-To-Cell Signaling and Interaction immune response of antigen presenting cells 3.09E-11 
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Cell-To-Cell Signaling and Interaction immune response of phagocytes 1.53E-09 

Cell-To-Cell Signaling and Interaction immune response of helper T lymphocytes 1.24E-07 

Cell-To-Cell Signaling and Interaction adhesion of blood cells 5.34E-16 

Cell-To-Cell Signaling and Interaction adhesion of immune cells 7.91E-15 

Cell-To-Cell Signaling and Interaction adhesion of endothelial cells 4.39E-07 

Cell-To-Cell Signaling and Interaction stimulation of cells 1.53E-14 

Cell-To-Cell Signaling and Interaction stimulation of mononuclear leukocytes 5.67E-12 

Cell-To-Cell Signaling and Interaction stimulation of lymphocytes 8.39E-11 

Cell-To-Cell Signaling and Interaction stimulation of leukocytes 1.00E-10 

Cell-To-Cell Signaling and Interaction stimulation of T lymphocytes 3.60E-10 

Cell-To-Cell Signaling and Interaction attraction of leukocytes 5.43E-13 

Cell-To-Cell Signaling and Interaction attraction of phagocytes 2.08E-12 

Cell-To-Cell Signaling and Interaction attraction of lymphocytes 5.34E-11 

Cell-To-Cell Signaling and Interaction attraction of mononuclear leukocytes 6.49E-11 

Cell-To-Cell Signaling and Interaction attraction of cells 1.87E-10 

Cell-To-Cell Signaling and Interaction attraction of T lymphocytes 5.40E-10 

Cell-To-Cell Signaling and Interaction attraction of antigen presenting cells 7.60E-10 

Cell-To-Cell Signaling and Interaction attraction of myeloid cells 3.08E-08 

Cell-To-Cell Signaling and Interaction attraction of neutrophils 5.55E-08 

Cell-To-Cell Signaling and Interaction chemoattraction of leukocytes 5.26E-11 

Cell-To-Cell Signaling and Interaction chemoattraction of phagocytes 6.49E-11 

Cell-To-Cell Signaling and Interaction chemoattraction 1.00E-08 

Cell-To-Cell Signaling and Interaction chemoattraction of myeloid cells 7.25E-08 

Cell-To-Cell Signaling and Interaction chemoattraction of antigen presenting cells 5.67E-07 

Cell-To-Cell Signaling and Interaction binding of mononuclear leukocytes 1.46E-10 

Cell-To-Cell Signaling and Interaction binding of leukocytes 1.87E-10 

Cell-To-Cell Signaling and Interaction binding of blood cells 2.25E-10 

Cell-To-Cell Signaling and Interaction binding of cells 2.33E-09 

Cell-To-Cell Signaling and Interaction binding of lymphocytes 6.56E-08 

Cell-To-Cell Signaling and Interaction binding of vascular smooth muscle cells 2.61E-07 

Cell-To-Cell Signaling and Interaction cell-mediated response of T lymphocytes 2.24E-08 

Cell-To-Cell Signaling and Interaction interaction of cells 2.66E-08 

Cell-To-Cell Signaling and Interaction interaction of mononuclear leukocytes 1.58E-07 

Cell-To-Cell Signaling and Interaction induction of cells 4.09E-08 

Cell-To-Cell Signaling and Interaction induction of hematopoietic cell lines 6.88E-08 

Cell-To-Cell Signaling and Interaction phagocytosis of leukocytes 6.83E-08 

Cell-To-Cell Signaling and Interaction phagocytosis of phagocytes 2.00E-07 
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Cell-To-Cell Signaling and Interaction respiratory burst of cells 2.36E-07 

Cell-To-Cell Signaling and Interaction suppression of blood cells 3.79E-07 

Humoral Immune Response production of antibody 3.83E-20 

Humoral Immune Response quantity of immunoglobulin 4.49E-20 

Humoral Immune Response quantity of IgG 5.57E-16 

Humoral Immune Response quantity of IgG1 3.23E-10 

Humoral Immune Response quantity of IgA 9.84E-10 

Humoral Immune Response quantity of IgG2a 3.13E-09 

Humoral Immune Response quantity of IgG3 1.92E-08 

Humoral Immune Response quantity of plasma cells 5.77E-08 

Humoral Immune Response morphology of germinal center 1.07E-07 

Cell-mediated Immune Response cell movement of T lymphocytes 1.02E-19 

Cell-mediated Immune Response cell movement of memory T lymphocytes 1.93E-08 

Cell-mediated Immune Response cell movement of helper T lymphocytes 5.67E-08 

Cell-mediated Immune Response T cell migration 6.12E-19 

Cell-mediated Immune Response NK cell migration 4.30E-09 

Cell-mediated Immune Response infiltration by T lymphocytes 2.92E-12 

Cell-mediated Immune Response T cell homeostasis 6.39E-11 

Cell-mediated Immune Response chemotaxis of T lymphocytes 1.22E-10 

Cell-mediated Immune Response T cell development 1.22E-10 

Cell-mediated Immune Response development of helper T lymphocytes 1.02E-07 

Cell-mediated Immune Response differentiation of helper T lymphocytes 1.74E-10 

Cell-mediated Immune Response differentiation of T lymphocytes 9.00E-09 

Cell-mediated Immune Response differentiation of Th2 cells 2.38E-07 

Cell-mediated Immune Response trafficking of T lymphocytes 1.76E-10 

Cell-mediated Immune Response recruitment of T lymphocytes 1.90E-10 

Hematopoiesis differentiation of leukocytes 7.66E-13 

Hematopoiesis differentiation of helper T lymphocytes 1.74E-10 

Hematopoiesis differentiation of mononuclear leukocytes 2.41E-10 

Hematopoiesis differentiation of lymphocytes 9.23E-10 

Hematopoiesis differentiation of T lymphocytes 9.00E-09 

Hematopoiesis differentiation of Th2 cells 2.38E-07 

Hematopoiesis development of blood cells 2.22E-12 

Hematopoiesis development of leukocytes 1.75E-11 

Hematopoiesis T cell development 1.22E-10 

Hematopoiesis development of lymphocytes 5.54E-10 

Hematopoiesis development of helper T lymphocytes 1.02E-07 
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Hematopoiesis development of hematopoietic system 4.76E-07 

Hematopoiesis proliferation of hematopoietic cells 2.57E-07 

Hematopoiesis proliferation of hematopoietic progenitor cells 4.13E-07 

Hematopoiesis maturation of dendritic cells 3.56E-07 

Hypersensitivity Response cell movement of eosinophils 8.65E-10 

Antigen Presentation antigen presentation 4.09E-08 

Cell Signaling mobilization of Ca2+ 1.64E-07 

Cell Signaling flux of Ca2+ 3.61E-07 

Cell Signaling replication of viral replicon 3.79E-07 

Cell Signaling induction of nitric oxide 4.71E-07 

 

Appendix 7: IPA functions 

 

Table A7: Functions associated with pathways enriched by SDEGs from the ∆mtp-mutant 

infection. 

∆mtp-mutant 

Category Function Annotation p-value 

Cell-To-Cell Signaling and Interaction signal transduction 3.20E-20 

Cell-To-Cell Signaling and Interaction communication of cells 1.55E-19 

Cell-To-Cell Signaling and Interaction communication 2.78E-19 

Cell-To-Cell Signaling and Interaction neurotransmission 1.24E-05 

Cell-To-Cell Signaling and Interaction synaptic transmission 1.51E-05 

Cell-To-Cell Signaling and Interaction GABA-mediated receptor currents 5.08E-04 

Cell-To-Cell Signaling and Interaction density of excitatory synapses 1.67E-03 

Cell-To-Cell Signaling and Interaction density of synapse 1.83E-02 

Cell-To-Cell Signaling and Interaction binding of lung cell lines 2.36E-03 

Cell-To-Cell Signaling and Interaction binding of blood platelets 3.07E-03 

Cell-To-Cell Signaling and Interaction developmental process of synapse 3.04E-03 

Cell-To-Cell Signaling and Interaction release of neurotransmitter 4.07E-03 

Cell-To-Cell Signaling and Interaction degeneration of synapse 7.56E-03 

Cell-To-Cell Signaling and Interaction reorganization of focal adhesions 7.56E-03 

Cell-To-Cell Signaling and Interaction detachment of tumor cell lines 8.61E-03 

Cell-To-Cell Signaling and Interaction assembly of intercellular junctions 1.13E-02 

Cell-To-Cell Signaling and Interaction adhesion of blood platelets 1.44E-02 

Cell-To-Cell Signaling and Interaction adhesion of phagocytes 1.72E-02 

Cell-To-Cell Signaling and Interaction propagation of action potential 2.00E-02 

Cell-To-Cell Signaling and Interaction action potential of cells 2.24E-02 

Cell-To-Cell Signaling and Interaction action potential of neurons 2.62E-02 
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Cell-To-Cell Signaling and Interaction action potential of interneurons 2.83E-02 

Cell-To-Cell Signaling and Interaction AMPA mediated synaptic current 2.52E-02 

Cell-To-Cell Signaling and Interaction long-term potentiation of mossy fibers 2.52E-02 

Cell-To-Cell Signaling and Interaction phagocytosis of kidney cell lines 2.52E-02 

Cell-To-Cell Signaling and Interaction inhibitory postsynaptic potential 2.60E-02 

Cell-To-Cell Signaling and Interaction abnormal quantity of norepinephrine 2.62E-02 

Cell-To-Cell Signaling and Interaction secretion of neurotransmitter 2.76E-02 

Inflammatory Response binding of blood platelets 3.07E-03 

Inflammatory Response ulcerative dermatitis 4.62E-03 

Inflammatory Response adhesion of blood platelets 1.44E-02 

Inflammatory Response adhesion of phagocytes 1.72E-02 

Inflammatory Response inflammation of joint 1.53E-02 

Inflammatory Response function of mast cells 1.68E-02 

Inflammatory Response phagocytosis of kidney cell lines 2.52E-02 

Cellular Movement innervation of outer hair cells 3.14E-03 

Cellular Movement homing of Th17 cells 4.62E-03 

Cellular Movement distribution of neurons 1.11E-02 

Cell-mediated Immune Response homing of Th17 cells 4.62E-03 

Cell-mediated Immune Response proliferation of thymocytes 1.47E-02 

Cell-mediated Immune Response formation of thymocytes 2.09E-02 

Immune Cell Trafficking homing of Th17 cells 4.62E-03 

Immune Cell Trafficking adhesion of phagocytes 1.72E-02 

Cell Signaling metabolism of cyclic AMP 8.61E-03 

Cell Signaling catabolism of cyclic AMP 1.14E-02 

Cell Signaling inhibition of cyclic AMP 1.53E-02 

Cell Signaling cell surface receptor linked signal transduction 2.58E-02 

Antimicrobial Response clearance of adenoviridae 1.53E-02 

Hypersensitivity Response function of mast cells 1.68E-02 

Humoral Immune Response lack of B lymphocytes 2.60E-02 
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151 

 

 

 

 

Figure A8: Canonical pathways enriched from the unique ∆mtp-mutant infection genes as shown 

in IPA. Red represents the genes that were up-regulated and green represents genes that were down 

regulated in the pathway.  
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Figure A9. Comparison analysis of the canonical pathways enriched from the unique genes as 

shown in IPA. Dark blue represents WT and light blue represents ∆mtp-mutant (p-value < 0.05). 

 

Appendix 10: Selected genes associated with host-pathogen interactions 

 

Table A10: SDEGs associated with host-pathogen interactions. 

 
UI vs WT UI vs Mtp 

Gene log2(fold_change) q_value significant log2(fold_change) q_value significant 

Tlr1 1,05213 0,015531 Yes -0,07803 0,925691 No 

Tlr2 1,01732 0,020848 Yes -0,37415 0,539432 No 

C3ar1 1,51365 0,001934 Yes 0,690664 0,2375 No 

Itga2b -1,06062 0,029518 Yes -3,0907 0,003917 Yes 

Itga8 -1,32416 0,00628 Yes -0,54906 0,435652 No 

Itgam 1,14451 0,01183 Yes -0,89914 0,105395 No 

C4b 1,58554 0,001934 Yes 0,06405 0,925664 No 

Igf1 1,3504 0,003475 Yes 1,18514 0,030456 Yes 

Igfbp2 -1,4404 0,001934 Yes -1,42984 0,013355 Yes 
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Igfbp3 -1,69101 0,001934 Yes -0,64387 0,265486 No 

Igfn1 -1,2349 0,043156 Yes -0,0225 1 No 

Igip 1,07011 0,030972 Yes 0,735156 0,325532 No 

Igtp 2,39848 0,001934 Yes 0,23047 0,735453 No 

Ciita 1,40541 0,001934 Yes -0,39929 0,50068 No 

Tap1 1,78121 0,001934 Yes -0,40511 0,47241 No 

Tap2 1,42327 0,001934 Yes -0,63186 0,238256 No 

Fcgr1 1,39909 0,001934 Yes -0,58635 0,441838 No 

Fcgr2b 0,907643 0,033775 Yes -1,03643 0,07617 No 

Fcgr3 0,900109 0,031517 Yes -0,89503 0,107038 No 

Fcgr4 2,73725 0,001934 Yes -0,38016 0,705959 No 

Fcgrt -0,97318 0,022433 Yes -1,18799 0,039061 Yes 

Clec12a 1,2766 0,001934 Yes -0,27309 0,70591 No 

Clec14a -1,42536 0,007545 Yes -0,66403 0,319351 No 

Clec4d 1,10329 0,044756 Yes -1,02023 0,267896 No 

Clec4e 2,23019 0,001934 Yes 0,04585 0,954277 No 

Clec4n 1,62217 0,001934 Yes -0,88743 0,210745 No 

Clec5a 1,32626 0,035129 Yes 0,642922 0,509838 No 

Clec7a 1,14075 0,008653 Yes -0,51007 0,384983 No 

Fpr2 1,06106 0,017405 Yes -0,3086 0,646696 No 

Cd14 1,53342 0,001934 Yes -0,75403 0,234637 No 

Cd163 1,03602 0,037021 Yes 0,862111 0,202033 No 

Cd163l1 1,37858 0,042631 Yes -0,48037 0,632877 No 

Cd1d1 1,75068 0,001934 Yes 1,17743 0,160803 No 

Cd209a -1,2476 0,031517 Yes -0,50808 0,526761 No 

Cd274 2,9262 0,001934 Yes 0,812163 0,136719 No 

Cd28 1,06285 0,007545 Yes 0,292245 0,665075 No 

Cd300lg -1,59795 0,001934 Yes -1,16734 0,051337 No 

Cd3e 1,38095 0,00628 Yes 0,214637 0,822679 No 

Cd3g 1,50286 0,001934 Yes 0,158937 0,821701 No 

Cd4 1,17937 0,014525 Yes -0,137 0,87704 No 

Cd40 1,2271 0,003475 Yes -0,39882 0,570013 No 

Cd40lg 2,14313 0,009667 Yes 1,52679 0,156823 No 

Cd53 1,43728 0,001934 Yes 0,100706 0,883455 No 

Cd63 1,29953 0,001934 Yes 0,196227 0,780553 No 

Cd69 1,37153 0,001934 Yes 0,071733 0,939162 No 

Cd72 1,66875 0,033775 Yes -0,90293 0,486789 No 

Cd80 1,39102 0,048456 Yes 0,174791 0,88681 No 

Cd83 0,900068 0,037021 Yes -0,73941 0,230279 No 

Cd86 1,7798 0,001934 Yes 0,661663 0,272344 No 

Cd9 -1,10082 0,012779 Yes -1,49473 0,00667 Yes 

Nlrc5 1,83406 0,001934 Yes -0,12355 0,852611 No 

 


