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ABSTRACT 

Introduction 

Alzheimer's disease (AD) is the most common form of neurodegenerative disorder that results in 

dementia. It currently affects 75 million people worldwide and is predicted to affect as many as 135 

million people by 2050. Despite considerable research, current medication provides only modest relief 

to symptoms and does not cure the underlying disease.  The delay in identifying a definitive cure is 

probably due to the scant knowledge of the cellular and molecular mechanisms implicated in its 

pathogenesis. However, the role of neuroinflammation has been acknowledged. Neuroinflammation is 

generally due to sustained activation of the brain's resident immune cells, including microglia and 

astrocytes. Although the importance of amyloid-beta (Aβ) in the aetiology of AD has recently come 

into question, there is still consensus that Aβ is closely related to AD. Therefore, a reappraisal of the 

amyloid hypothesis focusing on the role of neuroinflammation will open new avenues for identifying 

novel targets for AD treatment. In this study, we sought to assess neuroinflammation and identify 

possible biomarkers in an Aβ(1-42) rat model of AD over a progressive period of time. 

Materials and Methods 

Male Sprague-Dawley rats were used in all experiments. The animals were randomly divided into a 

vehicle group of rats that were infused with phosphate-buffered saline (PBS) and an Aβ(1–42) group 

that was lesioned with the Aβ(1–42) peptide. Each group was further sub-divided into four groups (Day 

3 group: animals euthanised 3 days after infusion; Day 7 group: animals euthanised 7 days after 

infusion; Day 10 group: animals euthanised 10 days after infusion, and Day 14 group: animals 

euthanised 14 days after infusion). Animals were subjected to neurobehavioral tests pre and post-

infusion. The Morris water maze test was used to assess spatial learning and memory and the fear 

conditioning test was used to assess associative fear learning and memory. After euthanisation, whole 

blood sample acquired aseptically from both the vehicle and Aβ(1–42) lesioned group of rats was 

collected into ethylenediaminetetraacetic acid (EDTA) coated tubes for cytokine, oxidative stress 

markers and microRNA assays using multiplex immunoassay, spectrophotometric and real-time 

polymerase chain reaction analysis respectively. The excised whole brain was post-fixed in 10% neutral 

buffered formalin (NBF) for immunofluorescence and immunohistochemical analysis. Other brain 

tissue was placed in frozen 0.9% saline slush before the hippocampus was carefully dissected out and 

placed in a bio-freezer at -80 ºC post dissection. The tissue was later used for messenger RNA analysis 

using the real-time polymerase chain reaction technique.   

Results 

We observed impaired spatial and reduced contextual fear memory, which was exacerbated as the post-

lesion days increased. Our results also showed increased expression of ionized calcium-binding adaptor 

molecule 1 (IBA-1), glial fibrillary acidic protein (GFAP), and  beta-site amyloid precursor protein 

cleaving enzyme1(BACE1) antibodies and upregulated mRNA expression levels of cluster of 

differentiation 33  (CD33) and triggering receptor expressed on myeloid cells 2 (TREM2) genes in the 
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hippocampus, as well as downregulated expression of miRNA107 in the plasma. In addition, our results 

showed a positive relationship between the activated glial cell markers and lipid peroxidation. 

Furthermore, elevated plasma concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) 

with a concomitantly lowered levels of the anti-inflammatory cytokine (IL-10) in the Aβ(1–42) lesioned 

rats was observed when compared to the vehicle groups. A negative correlation between the decline in 

spatial memory and plasma levels of the pro-inflammatory cytokines and a positive correlation between 

the decline in spatial memory and plasma concentration of the anti-inflammatory cytokine was 

observed. 

Conclusion 

Our findings implicate cellular and molecular mechanisms, as shown by prolonged and progressive 

activation of the glial cells, resulting in a bidirectional interplay between neuroinflammation and 

oxidative stress. These interconnections result in the concomitant release of brain cytokines as a 

secondary response to the hallmarks of AD, which impacts both neural circuit activity and expression 

of microglial genes regulating neuroinflammation, indicating dynamic crosstalk between the immune 

and nervous systems. These interactions facilitate the understanding of AD's pathogenesis and provide 

the basis for an integrative approach to validate the role of neuroinflammation in memory processes 

and, importantly, identify a potential biomarker for the early diagnosis of Alzheimer's diseases. As a 

contribution to knowledge, this study unveils the connection between memory decline and plasma 

cytokine concentration, as well as the relationship between genes regulating neuroinflammation in AD. 

Therefore, it is incontrovertible that neuroinflammation holds a pivotal role in AD pathology. 

Keywords: Alzheimer’s disease; Neuroinflammation; Glia; Cytokines; Microglial genes; Memory. 
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CHAPTER 1 

Introduction and Literature Review 

1.1 Background 

Alzheimer’s disease (AD)  which is the most common form of neurodegenerative disorder leading to 

dementia, currently affects 75 million people worldwide with a predicted increase to 135 million people 

by 2050 (Shi et al., 2018, Leidinger et al., 2013, Brookmeyer et al., 2007). Due to the high prevalence 

and the generation of a substantial socioeconomic burden, Alzheimer’s disease is one of the significant 

unmet health concerns in the 21st century (Hurd et al., 2013). Alzheimer’s disease is perceived as a 

biological and clinical continuum. It starts with the preclinical stage, manifesting with molecular 

alterations in the absence of clinical dementia (Anand et al., 2014, Cummings et al., 2016), progresses 

through mild cognitive impairment (MCI), prodromal Alzheimer’s disease  towards mild, moderate and 

severe dementia stages (Aisen et al., 2017, Jack Jr et al., 2018).  

Currently, there are several forms of Alzheimer’s disease with early-onset (before age 65) accounting 

for up to 5% of all cases (Bettens et al., 2013). Most of the early-onset cases are familial, a rare form of 

Alzheimer’s disease caused by mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1) 

or PSEN2 genes (Bettens et al., 2013). Patients with non-familial (sporadic) early-onset Alzheimer’s 

disease have no reliable family history. Usually, they have an older age of onset than patients with 

familial early-onset (Joshi et al., 2012). Late-onset sporadic Alzheimer’s disease (from 65 years of age) 

is the most common form, accounting for about 95% of all cases. The pattern of molecular alterations 

and associated neurodegeneration in the brain changes during the disease progression, with the 

hippocampus being the earliest and most severely affected (Dhikav and Anand, 2007, Frisoni et al., 

2010). The main pathological hallmarks of Alzheimer’s disease are senile plaques (SPs) consisting of 

accumulated β-amyloid peptides (Aβ) and neurofibrillary tangles (NFTs) primarily containing highly 

phosphorylated tau protein (Baranello et al., 2015). The two most commonly accepted hypotheses, the 

Aβ and the tau hypotheses, are also based on these two pathological characteristics.  

Despite considerable amount of research, current medication provide only modest relief to symptoms 

and does not cure the underlying disease (Yiannopoulou and Papageorgiou, 2013). This failure is 

probably due to the scant knowledge of the cellular and molecular mechanisms implicated in AD 

pathogenesis. However, it is now well recognized that AD is a multifactorial disorder impacted by other 

factors in its pathogenesis and progression. These include prominent activation of inflammatory and 

innate immune responses (Heppner et al., 2015, Zhao and Lukiw, 2018) as well as calcium 

dyshomeostasis, oxidative stress, mitochondrial damage, and alterations in the cell cycle regulatory 

mechanisms (Zhao and Lukiw, 2018, Pchitskaya et al., 2018, Wojsiat et al., 2018). Among these, the 

role of neuroinflammation has been confirmed (Ferreira et al., 2014, Prokop et al., 2013, Heneka et al., 

2014, Kim et al., 2018). This role is not exclusively attributable to innate immunity which is constituted 
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by microglia in the brain. It is also caused by other brain resident cells like the astrocytes which are 

found throughout the central nervous system and diverse and critical roles in both homeostasis and 

pathophysiology of the central nervous system (Verkhratsky et al., 2014, Lecuyer et al., 2016, Steardo 

Jr et al., 2015).  

 

Although the primacy of Aβ in the aetiology of AD has been questioned (Morris et al., 2018), there is 

still consensus that Aβ is linked to AD pathology (Murpy and LeVine III, 2010). Therefore,  a 

reappraisal of the amyloid hypothesis focusing on the role of neuroinflammation in a beta-amyloid 

model of AD will open new avenues for identifying biomarkers for early diagnosis and therapeutic 

targets.  

 

1.2 Epidemiology 

Alzheimer’s disease accounts for 60 to 80% of dementia cases (Barker et al., 2002). Other common 

causes of dementia include Parkinson’s disease, Lewy body dementia, vascular dementia, and 

frontotemporal lobar degeneration, with each of these accounting for between 5 and 10% of cases 

(Barker et al., 2002). Alzheimer’s disease is a financially devastating and debilitating disease expected 

to increase into the middle of the century, and it is estimated that more than 135 million individuals will 

be affected by 2050 (Shi et al., 2018, Leidinger et al., 2013, Brookmeyer et al., 2007). Aging is the most 

substantial risk factor for Alzheimer’s disease; every 6.3 years, the incidence for all dementias doubles 

from 3.9 per 1000 for ages 60–90 to 104.8 per 1000 above age 90 (report, 2015, Nelson et al., 2011). 

The prevalence is estimated at 40% for those over the age of 80 and 10% for individuals over 65 years, 

while life expectancy varies from 7 to 10 years for patients whose conditions are diagnosed in their 60s 

and early 70s to about 3 years or less for patients whose conditions are diagnosed in their 90s (Zanetti 

et al., 2009).  

 

1.3 Aetiology and Pathogenesis of Alzheimer’s Disease 

The rare familial form of Alzheimer’s disease accounts for less than 1% of cases and is due to mutations 

in the amyloid precursor protein (APP), presenilin 1 (PSEN1), or PSEN2 genes (Ryman et al., 2014). 

Dominantly inherited FAD can present as early as age 20, with the average age of onset being 46.2 years 

(Ryman et al., 2014). Early-onset Alzheimer's disease (EOAD) presents atypically before age 65 in 

cases (Mendez, 2017). This form of Alzheimer’s disease is slightly more common than FAD cases and 

accounts for fewer than 5% of the pathologically diagnosed Alzheimer’s disease cases (Bettens et al., 

2013). The late-onset Alzheimer’s disease (LOAD) is sporadic, although genetic risk factors have been 

identified, most notably the apolipoprotein E gene (APOE) (Hardy and Higgins, 1992). Age, APOE4 

genotype, and family history in a first-degree relative, present  the most significant risks of developing 

Alzheimer’s disease (Verghese et al., 2011). The pathophysiology of Alzheimer's disease is linked to 

several factors, such as cholinergic dysfunction, amyloid/tau toxicity, neuroinflammation, and oxidative 
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stress/mitochondrial dysfunction (Mohamed et al., 2016).	 	Among these factors, the critical role of 

neuroinflammation has been confirmed (Ferreira et al., 2014, Prokop et al., 2013, Heneka et al., 2014, 

Kim et al., 2018).  

 

1.4 The role of neuroinflammation in the pathogenesis of Alzheimer’s Disease 

The activation of different brain cells drives the neuroinflammatory pathophysiology of Alzheimer’s 

disease (Verkhratsky et al., 2015). Evidence suggests that glial cells are primarily involved in this 

phenomenon, as they immediately respond to brain injuries, restoring brain physiology by activating a 

series of repair mechanisms (Verkhratsky et al., 2015). These cells are highly heterogeneous and are 

responsible for many essential brain functions (Verkhratsky et al., 2015). Microglia are the first 

responders for immune defence in the brain, while astrocytes are an essential neuro-supportive cell type 

(Fakhoury, 2018). Astrocytes control the environment by regulating pH, ion homeostasis, oxidative 

stress, and blood flow (Deitmer and Rose, 1996, Iadecola and Nedergaard, 2007). Also, astrocytes 

modulate information processing and signal transmission, synaptogenesis, regulate neural plasticity, 

provide trophic and metabolic support to neurons (Perea et al., 2009, Khakh and Sofroniew, 2015). 

Interestingly, human autopsy and data from animal models showed that senile plaques and 

neurofibrillary tangles cause an immune response in the brain and co-localize around the activated glial 

cells (Verkhratsky et al., 2014). 

 

 Astrocyte and microglia acquire a reactive phenotype (Verkhratsky et al., 2014) and rapidly act in 

response to pathology undergoing essential changes in their morphology, molecular presentation ( and 

functioning (Sofroniew and Vinters, 2010, Scuderi et al., 2013). Such activation is fundamentally a 

protective response aimed at removing injurious stimuli (Sofroniew and Vinters, 2010, Scuderi et al., 

2013). Astrocytes create a protective barrier around plaques by modulating neurotoxicity, degrading, 

internalising, and removing Aβ (Paradisi et al., 2004, Thal, 2012, Mathur et al., 2015). However, 

uncontrolled activation beyond physiological control causes detrimental effects and override the 

beneficial ones (Mrak and Griffinb, 2001, Tuppo and Arias, 2005). At this stage, the synthesis of 

different cytokines and mediators by glial cells promotes neuroinflammation (Mrak and Griffinb, 2001, 

Tuppo and Arias, 2005) (see Figure 1). This is a characteristic event of AD brains and is called reactive 

gliosis (Fakhoury, 2018). Studies have demonstrated relevant action of glial cells from an early stage 

of the pathogenic process, with indications that the cycle becomes independent on Aβ presence, neural 

dysfunction, cell death, and disease progression (Gandy and Heppner, 2013, Sudduth et al., 2013, 

Holmes et al., 2009). Chronic inflammation caused by the release of proinflammatory molecules acts 

both in an autocrine and paracrine way (Fakhoury, 2018). This action is by fostering the perpetuation 

of reactive gliosis and neuronal death (Scuderi et al., 2014, Block and Hong, 2005). The release of 

inflammatory mediators and reactive oxygen species result in neuronal death (Christov et al., 2004). 
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Figure 1: Detrimental effects of glial-mediated inflammation. Activation of microglia and astrocytes 

by Aβ or following a signal of damage leads to the secretion and release of inflammatory chemokines 

and cytokines, including IL-1, IL-6, and TNF-α. These pro-inflammatory elements trigger a cascade of 

events, such as oxidative stress, demyelination and apoptosis, which eventually lead to 

neurodegeneration and cognitive decline. Reactive astrocytes also contribute to scar formation around 

injured tissue by accumulating around amyloid plaques. Adopted from (Fakhoury, 2018). 

1.4.1 Cell mediators of neuroinflammation 

Microglia and astrocytes are the major glial cell types that respond to disease stressors by innate immune 

responses such as the production and release of inflammatory mediators (Verkhratsky et al., 2015).  

Initially regarded merely as structural support for neurons, evidence indicates that glial cells are active 

and responsive to environmental changes (Fakhoury, 2018). Their processes become hypertrophied 

when activated and produce multiple inflammatory factors, including cytokines (Heneka and O'Banion, 

2007). Reactive glial cells are associated with plaques and tangles in AD (Serrano-Pozo et al., 2011). 

Generally, activation refers to an enhanced ability of a cell to perform a function beyond that present in 

the basal state (Kettenmann and Verkhratsky, 2008). The activation of microglia and astrocytes is multi-

dimensional; that is, they proliferate, phagocytose, and release proinflammatory cytokines or growth 

factors (Kettenmann and Verkhratsky, 2008). The cross-talk between activated glial cells and neurons 

has also become an area of focus. The neuron can activate glia via various neurotransmitters or 

modulators, such as glutamate, fractalkine and nitric oxide (Liu et al., 2006, Verge et al., 2004). 
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Conversely, the activated glial cells affect neuronal function and contribute to the development of 

various diseases such as Alzheimer’s disease (Liu et al., 2006, Verge et al., 2004). 

1.4.1.1 Microglia  

Microglia which constitute around 10–20% of all glial cells, are derived from bone marrow precursors, 

and represent the brain's internal immune system (Czeh et al., 2011). They are the resident macrophages 

and are  thus considered the first line of defence (Czeh et al., 2011). In physiological conditions, 

microglia are ramified and have highly motile processes, surveying the microenvironment in the CNS 

(Nimmerjahn et al., 2005). Furthermore, microglia exist at all stages of brain development (Ginhoux et 

al., 2013). Destruction of invading pathogens, debris elimination, tissue repair, and homeostasis are 

their main functions in maintaining host defence. (Glass et al., 2010). Swift release of cytokines on 

activation of microglia is due to their role as inflammatory regulators in the CNS (Block et al., 2007). 

Their morphology changes from small cell bodies with fine processes to large cell bodies with amoeboid 

processes upon activation (Fakhoury, 2018). They also undergo rapid proliferation in order to increase 

their number for the upcoming battle, demonstrated by the upregulation of complement receptor type 3 

(OX42) immunostaining (Kim and de Vellis, 2005). In vitro studies have shown that cytotoxic 

substances such as cytokines, reactive oxygen intermediates, neurotrophic factors and various 

arachidonic acid derivatives are released from microglia (Harry and Kraft, 2012).  

Significantly increased activated microglia were observed in a triple-transgenic model of AD compared 

to non-transgenic controls (Rodriguez et al., 2010). The activated microglia were closely associated 

with Aβ plaque formation, smaller Aβ deposits, and Aβ plaques (Rodriguez et al., 2010). A study by 

Griciuc et al. revealed an increased CD33 level and CD33-positive microglia in AD brains, while mice 

lacking the gene had less AD pathology, revealing the role of microglia in Aβ clearance (Griciuc et al., 

2013). Microglia are also strongly activated early in the emergence of senile plaques, to limit their 

growth and reduce inflammatory damage to brain components (Scheffler et al., 2011). Besides, 

microglia also secrete proteolytic enzymes such as insulin-degrading enzyme, matrix metalloproteinase, 

and plasminogen–plasmin complex that degrade Aβ, and promote phagocytosis by the expression of 

receptors for advanced-glycosylation end products (Leissring et al., 2003, Li et al., 2011, Du Yan et al., 

1996, El Khoury et al., 1998). Moreover, microglia can secrete several soluble factors such as glia-

derived neurotrophic factor which plays a role in promoting neuronal survival (Liu and Hong, 2003). 

Although there is evidence to support a role for microglia in neuroprotection and Aβ clearance, 

continuous Aβ accumulation and progression of AD pathology despite continued microglia activation 

and recruitment remain unanswered. Possible explanations would be the overload that microglia 

become subjected to by a large amount of Aβ production, uncontrolled generation of Aβ  (Hickman et 

al., 2008) and the diminished activation of these cells in the later stages of plaque formation (Scheffler 

et al., 2011). Interaction between microglia and Aβ is age-dependent, and a decrease in this  interaction 
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leads to loss of phagocytotic ability (Floden and Combs, 2011); thus, the uptake and degradation of Aβ 

are reduced. Primary microglial functions progressively decline with the appearance of Aβ plaques in 

AD, and lowering Aβ burden could reverse this functional impairment (Krabbe et al., 2013b). 

Proliferation and activation of microglia and neuronal damage result in a vicious cycle in AD (Hanisch 

and Kettenmann, 2007). Most importantly, the microglia role in the neuropathophysiology of AD could 

be viewed as a double-edged sword. Therefore, to be able to estimate the effect of potential therapies, 

it is crucial to understand the activation of microglia at different stages of AD.  

1.4.1.2 Astrocytes 

Astrocytes account for approximately 35% of CNS cell population and are found all over the CNS 

(Sherwood et al., 2006). They are derived from the neuroectoderm and are morphologically 

heterogeneous (Chan et al., 2007). These star-shaped cells have a central cell body, approximately 15–

17 μm in diameter, and long processes extending in all directions (Sherwood et al., 2006). A network 

of coupled astrocytes is formed from contacts of processes from different cells via gap junctions 

(Blomstrand et al., 1999, Cornell-Bell et al., 1990, Guthrie et al., 1999, Nedergaard et al., 2003). The 

extension of these processes envelope synapses of neurons and makes contact with capillary vessels 

(Sherwood et al., 2006). Therefore astrocytes are the bridge for all cells in CNS, including neurons, 

oligodendrocytes, microglia, endothelia, and astrocytes themselves (Sherwood et al., 2006).  

Removal of toxins from the cerebrospinal fluid, maintenance of redox potential, production of trophic 

factors, regulation of neurotransmitter, and ion concentrations are some of the functional roles of 

astrocytes (Blomstrand et al., 1999, Cornell-Bell et al., 1990, Guthrie et al., 1999, Nedergaard et al., 

2003). Functional impairment associated with the injury of astrocytes during physiological reactions 

can trigger or exacerbate neuronal dysfunction (Sidoryk-Wegrzynowicz et al., 2011). When there is 

injury or trauma, astrocytes often withdraw their arms and slack off on their stabilizing chores resulting 

in weakening or disappearance of their role as neuronal partners (Sidoryk-Wegrzynowicz et al., 2011). 

However, they also release neurotrophic factors such as transforming growth factor-beta (TGF-β) and 

nerve growth factor (NGF) (Escartin and Bonvento, 2008). These neurotrophic factors are beneficial 

for the repair, proliferation, and filling up the space to form glial scar replacing the cells that cannot 

regenerate (Escartin and Bonvento, 2008). Another notable characteristic of activated astrocytes is 

elevated intracellular calcium (Ca2+) (Haydon, 2001). Through the diffusion of inositol triphosphate 

(IP3)  by gap junctions and extracellular adenosine triphosphate (ATP) signaling, astrocytes signal each 

other in the form of a calcium wave, resulting in elevation of Ca2+ concentration in adjacent cells          

(Haydon, 2001). Increased Ca2+ binds to various molecular targets, trigger or contribute to intracellular 

signal transduction pathways including dependent phospholipases such as phospholipase C and 

phospholipase A2 as well as downstream calcium-dependent elements (phosphatases and protein 

kinases), some of which contribute to the rapid motility and morphological changes of astrocytes 
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(Scemes, 2000). Additionally, the calcium wave can also propagate to neighbouring microglia (Schipke 

et al., 2002). 

Interferon-γ can induce Aβ production by human astrocytes or astrocytoma cells in combination with 

IL-1β or TNF-α (Blasko et al., 2000). Proinflammatory factors secreted by astrocytes contribute to the 

level of expression of secretases and increase the conversion of APP to neurotoxic Aβ (Yu et al., 2009, 

Tang, 2009). Reactive astrocytes express BACE, the enzyme responsible for the generation of Aβ, 

suggesting that they may promote Aβ accumulation in aged transgenic AD mice model (Hartlage‐

Rübsamen et al., 2003, Robner et al., 2005). Sporadic AD patients have increased levels of presenilin-

1 astrocytes, the catalytic component of the γ-secretase complex that is involved in the formation of Aβ 

(Weggen et al., 1998). As the largest number of brain cells, activated astrocytes may represent a 

significant source of Aβ during neuroinflammation in AD (Zhao et al., 2011).  

On the other hand, by providing trophic support to neurons and forming a protective barrier between 

neurons and Aβ deposits, astrocytes are known to promote the Aβ clearance and degradation (Roßner 

et al., 2005). Thus, astrocytes undergoing modifications and chronic inflammation might suffer a 

deleterious transformation, acquire the capacity to generate Aβ, and lose the ability to remove and 

degrade them (Rossi and Volterra, 2009). Astrocytes are intimately involved in inflammatory and 

immunological events occurring in the CNS. This involvement is due to their ability to secrete and 

respond to a vast number of inflammatory cytokines, such as TNF-α, IL-1β, IL-6, IL-8, IL-10, 

transforming growth factor (TGF)-β, interferon-γ, and interferon-β (Qin and Benveniste, 2012). The 

mechanisms of astrocyte activation in response to Aβ may include NF-κB–mediated and inflammatory 

gene expression (Carrero et al., 2012). In vitro, Aβ42 triggered senescence, driving the expression of 

positive senescent astrocytes. Senescent astrocytes produce several inflammatory cytokines, including 

IL-6, and an accumulation of senescent astrocytes may be associated with increased risk of sporadic 

AD with advancing age (Bhat et al., 2012). 

1.4.2 Cytokines and neuroinflammation  

Cytokines are small, non-structural proteins produced by a broad range of cells (McGeer and McGeer, 

1997).Their molecular weights range from 8,000 Da to 40,000 Da (McGeer and McGeer, 1997). 

Cytokines can stimulate the secretion of several proteins found in senile plaques (McGeer and McGeer, 

1997). The biological effects induced by cytokines include the stimulation or inhibition of cell 

proliferation, cytotoxicity/apoptosis, antiviral activity, cell growth and differentiation, inflammatory 

responses, and upregulation of expression of surface membrane proteins (Meager, 2006). Chronic 

neuroinflammation by cytokines released from activated microglia and astrocytes is recognised as one 

of the significant mechanisms of AD neuropathology (Meager, 2006). Cytokines are extremely 

pleiotropic (Guzmán et al., 2010) and exhibit extensive redundancy, with many distinct proteins 
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exerting overlapping effects (Liu et al., 2013). Some cytokines promote inflammation and are called 

proinflammatory cytokines, whereas other cytokines suppress the activity of proinflammatory 

cytokines and are called anti-inflammatory cytokines (Liu et al., 2013). The downstream effects of 

cytokines differ depending on the presence of other cytokines and specific cell types (Lund et al., 2006, 

Norden et al., 2014).  

 

1.4.2.1 Cytokines modulate memory 

Both the anti- and pro-inflammatory responses mediated by cytokines modulate memory (Donzis and 

Tronson, 2014). The most commonly studied cytokines in the brain are Interleukin 1β (IL-1β), 

Interleukin 6 (IL-6), and tumour necrosis factor-α (TNF-α)  (Capuron and Miller, 2011, Goehler, 2008). 

They increase in circulation after systemic inflammatory events such as surgery (Terrando et al., 2011), 

peripheral injuries and LPS injection (Skelly et al., 2013). Besides, these cytokines are appropriately 

suited to modulate memory as they are highly expressed in the hippocampus after manipulations in the 

periphery (Burton et al., 2011) or brain (Belarbi et al., 2012). Memory processes, such as acquisition 

(the process of copying the contents of physical memory for preservation), consolidation (the narrowing 

down process through which short term memory is converted into the long term) or retrieval (the process 

of remembering information stored in long-term memory), involve specific cytokines (Donzis and 

Tronson, 2014). Peripheral IL-6 levels correlate with memory retrieval (Elderkin-Thompson et al., 

2012), while IL-1 disrupts consolidation of context fear conditioning after post-training injection of 

LPS (Pugh et al., 1998). However, most studies demonstrating the roles of cytokines in the modulation 

of learning and memory use an acute or chronic injection of cytokine, inflammatory stimulus models, 

or transgenic models injection before training (Pugh et al., 1998).	

The feed-forward nature of cytokine expression indicates that many of the effects on learning and 

memory attributed to any individual cytokine are more likely due to the cumulative effect of all active 

cytokines (See Figure 2). For instance, IL-1β is not increased in isolation; it leads to increases in TNF-

α, IL- 6, IL-1 family proteins, and cytokine receptors (Anisman et al., 2008, Moore et al., 2009) across 

multiple brain regions (Anisman et al., 2008, Moore et al., 2009). Similarly, targeting either TNF-α or 

IL-6 leads to changes in the expression of other inflammatory cytokines (Balschun et al., 2004, del Rey 

et al., 2013). This dependent nature among cytokines provide answers to discrepancies that arise in the 

action of some cytokines because activation of these cytokines results in altered expression of a variety 

of additional cytokines including IL-10 (Platzer et al., 1995, Steensberg et al., 2003) and IL-4 (Nolan 

et al., 2005). Rather than direct effects on memory, cytokines indirectly exert their effects via network 

properties of inflammatory signaling (Donzis and Tronson, 2014). For example, IL-1β has been shown 

to both enhance (Goshen et al., 2007) and impair (Gonzalez et al., 2013, Gonzalez et al., 2009) context 

fear conditioning. 	
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The modulation of learning and memory by commonly studied inflammatory markers is likely due to 

indirect effects via a network of inflammation-related signals (Donzis and Tronson, 2014).	Consistent 

with a regulatory role, IL-4 and IL-10 attenuates the deleterious impact of inflammatory processes on 

memory and plasticity (Lynch et al., 2004, Richwine et al., 2009). Both IL-4 and IL-10 can abrogate 

learning and memory deficits observed in inflammatory models of Alzheimer's disease (Kawahara et 

al., 2012, Kiyota et al., 2012a, Kiyota et al., 2010). Therefore, cytokine network interactions are not 

limited to regulation of, and between IL-1β, TNF-α, and IL-6. Rather, activation of these cytokines 

results in altered expression of a variety of additional cytokines (Donzis and Tronson, 2014).	

 

 

Figure 2: Modulation of learning and memory by networked activation of cytokines. IL-1b, TNF-

α, and IL-6 indirectly modify memory processes via interactions and regulation of cytokines and 

chemokines with similar and opposing effects. The state of the cytokine network is therefore more 

predictive of the effect on memory than the level of any single cytokine. Arrows represent excitatory 

connections, bars represent inhibitory connections. IL-1β Interleukin 1 β; TNF-α Tumour Necrosis 

Factor α; IL-6 Interleukin 6; IL-4 Interleukin 4; IL-10 Interleukin 10; CCL2 C-C-motif ligand 2. Arrows 

represent positive influence. Blocked head represents negative regulation. Adopted from (Donzis and 

Tronson, 2014).	

1.5 Microglial genes regulating neuroinflammation 

Genome-wide association studies have identified a set of single nucleotide polymorphisms (SNPs) 

associated with AD risk (Lambert et al., 2013, Hollingworth et al., 2011). Several of the genes 
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underlying these SNPs such as TREM2 and  CD33 encode proteins relevant to microglial function and 

inflammation (Malik et al., 2015). Before these studies, inflammation was recognized to occur in AD 

with an agreement that anti-inflammatory agents may be helpful. However, the specific aspects of 

inflammation that were beneficial or detrimental remained unidentified (Akiyama et al., 2000, Wyss-

Coray and Rogers, 2012). These recent genetic studies pinpoint the contributions of specific proteins 

and associated pathways in AD risk. Consideration of APOE4, the prototypical AD genetic risk factor, 

along its pro-inflammatory, indicates that AD risk is reduced by processes that suppress inflammatory 

cytokine signaling and enhance debris clearance, including amyloid.  

 

1.5.1 Cluster of Differentiation 33 (CD33)  

Cluster of differentiation 33 is a type 1 transmembrane protein expressed mainly in microglial cells of 

the brain (Varki and Angata, 2006). CD33 is a member of the sialic acid-binding immunoglobulin-like 

lectin (SIGLEC) family of receptors (Griciuc et al., 2013, Malik et al., 2013). CD33 ligands include 

sialylated cell surface proteins acting in cis as well as other sialylated agents (Malik et al., 2015). CD33 

just like other inhibitor SIGLECs limits immune activation in response to "self" macromolecules that 

bear a "self-associated molecular pattern" of sialylation (Schwarz et al., 2015). Hence plaque vicinity 

rich in sialylated agents, including gangliosides and apoE stimulates CD33 thus concealing amyloid 

plaques from microglia (Salminen and Kaarniranta, 2009). Sialic acid-binding activates CD33 and 

results in phosphorylation of the CD33 immunoreceptor tyrosine-based inhibitory motif (ITIM) 

domains and activation of the SHP-1 and SHP-2 tyrosine phosphatases (Ulyanova et al., 1999, Walter 

et al., 2008) (see Figure 3). The action of these phosphatases on diverse substrates, including spleen 

tyrosine kinase (Syk), inhibits immune activation (Reth and Brummer, 2004). Consequently, CD33 

activation yields increased SHP-1 and SHP-2 activity that antagonizes Syk, inhibiting ITAM-signaling 

proteins, possibly TREM2/DAP12 (Linnartz and Neumann, 2013). Following this possibility, long-

term CD33 inhibition (by antibodies or siRNA) induces the production of cytokines such as IL1β, 

TNFα, and IL-8 (Lajaunias et al., 2005). CD33 as a possible target for AD prevention or therapy is 

currently an active research area. Studies with CD33 deficient mice develop normally and yet have 

reduced amyloid accumulation (Griciuc et al., 2013, Brinkman-Van der Linden et al., 2003). This 

suggests that more robust CD33 inhibition may reduce AD risk further.  

 

1.5.2 Triggering receptor expressed on myeloid cells 2 (TREM2) 

Triggering receptor expressed on myeloid cells 2 is a type 1 transmembrane receptor protein expressed 

on myeloid cells, including microglia and osteoclasts, bone-marrow-derived macrophages and 

monocyte-derived dendritic cells (Bouchon et al., 2001). TREM2 is expressed by microglia in the brain, 

found abundant in the vicinity of plaques in APP mice (Bouchon et al., 2001). It controls two signaling 

pathways: regulation of phagocytosis and suppressing inflammatory reactivity (Neumann and 

Takahashi, 2007, Frank et al., 2008, Melchior et al., 2010). TREM2 expression increased during the 
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alternative activation of microglia on exposure to IL-4 (Turnbull et al., 2006). TREM2 ligands include 

anionic lipids and perhaps other unknown elements from apoptotic neurons (Hsieh et al., 2009, Wang 

et al., 2015c). TREM2 possesses an immunoglobulin-like extracellular domain, a transmembrane 

region, and a short cytoplasmatic tail lacking an extended cytosolic domain (Malik et al., 2015). It 

signals through the immunoreceptor tyrosine-based activating motif (ITAM) of its co-receptor, DAP12 

(Bouchon et al., 2001) (Figure 3). Activated TREM2 stimulates DAP12 through an intramembrane 

lysine residue, resulting in phosphorylation of the DAP12 ITAM, and activation of the kinase Syk 

(Bakker et al., 1999). This leads to the activation of PI3K, resulting in actin rearrangement and 

phagocytic cup formation for target engulfment (Rougerie et al., 2013). TREM2-activated phagocytosis 

occurs without a commensurate activation of cytokine production (Takahashi et al., 2005). Indeed, 

TREM2 activation decreases cytokine production in response to Toll-like receptor (TLR) activation 

(Takahashi et al., 2005). Altogether, TREM2 stimulation via apoptotic neuronal fragments or TREM2 

antibodies appears to result in the activation of microglial phagocytosis with minimal changes in 

cytokine levels.  

 

 

Figure 3: Interactions between the AD risk genes involved in inflammation. TREM2 signals 

through the ITAM of DAP12 to activate microglial phagocytosis; however, TREM2 expression has 

also been shown to dampen pro-inflammatory cytokine production activated by TLRs. Activated CD33 

recruits SHP-1 and SHP-2 to inhibit Syk signaling; CD33 has also been shown to antagonize 

CD14/TLR4 signaling. Sialylated apoE, which complexes with Aβ, may serve as a CD33 ligand. 

Adopted from (Malik et al., 2015). 

1.6 Animal models of neuroinflammation in Alzheimer’s Disease 
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Several experimental animal models have been developed that mimic the pathophysiology of AD in 

humans, most of which share many features with AD in humans (Orta-Salazar et al., 2016). These 

models have suitable features to understand the aetiology and progression of AD better, as well as to 

pharmacologically screen potential drugs for better treatment options. The aetiological factors that 

contribute to human AD include activation of inflammatory and innate immune responses (Heppner et 

al., 2015, Zhao and Lukiw, 2018), as well as calcium dyshomeostasis, oxidative stress, mitochondrial 

damage, and alterations in the cell cycle regulatory mechanisms (Zhao and Lukiw, 2018, Pchitskaya et 

al., 2018, Wojsiat et al., 2018).  

Studies have shown that a single animal model may not have all the answers to the pathogenesis and 

treatment of AD, as its aetiopathology is multifactorial (Gong et al., 2018, Iqbal and Grundke-Iqbal, 

2010). However, each model explains a particular pathway for the progression of AD, and the studied 

model is therefore associated with the aetiology and possible identification of biomarkers. The current 

animal models for neuroinflammation in AD are categorised based on the mechanism of their creation, 

such as immune challenge-based, neurotoxin-induced, and transgenic models (Nazem et al., 2015). 

Examples of the neurotoxin-induced neuroinflammatory model of AD include the amyloid-beta (Aβ), 

streptozotocin, okadaic acid, and colchicine induced models. 

1.6.1 The amyloid-beta induced neuroinflammatory model of AD 

The discovery that amyloid-beta (Aβ) is the main constituent of the amyloid plaques in the brains of 

AD patients (Glenner and Wong, 1984, Masters et al., 1985) and is toxic to neurons (Yankner et al., 

1989, Pike et al., 1991) led to in vivo studies on the effects of Aβ in the brain. The acute 

neurodegenerative effect of Aβ and amyloid cores from the brains of AD patients was demonstrated in 

vivo when these substances were injected into the brain of two different rat models (Kowall et al., 1991, 

Frautschy et al., 1991). In both cases a significant induction of abnormal tau phosphorylation was 

observed in the immediate vicinity of the Aβ immunoreactive sites. Subsequently, several laboratories 

reported contradictory results from acute injections or continuous infusion of Aβ directly into the rat 

brain.  

 

Whereas many groups demonstrated neurotoxicity, AD-like astrogliosis, tau hyperphosphorylation 

(Nitta et al., 1994, Weldon et al., 1998, Nakamura et al., 2001) and/or memory decline in the 

experimental models (McDonald et al., 1994, Sweeney et al., 1997, Oka et al., 1999), others showed no 

significant effect of the peptides (Winkler et al., 1994, Clemens and Stephenson, 1992). Much of the 

variance in the results obtained depended on the nature of the peptide (fibrillated or soluble Aβ) or 

solvent used, the concentration of the solution and manner of introduction (single injections or 

continuous infusions over different periods into rat ventricles, hippocampus or septum), age of the 

treated animals (young versus old) and the time frame when the effects were assessed (immediate or 
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long-term). More models demonstrating a deteriorating effect of Aβ in vivo followed in the 2000s, 

proving that this is still a viable approach for modelling different aspects of AD pathology. These 

models have been used for testing the protective effects of ginkgo biloba extracts, docosahexaenoic 

acid (DHA), ginseng, oestradiol, green tea, synthetic cognitive enhancers or antioxidants (Yamada et 

al., 1999, Hruska and Dohanich, 2007) and the deteriorating effects of chronic stress (Srivareerat et al., 

2009) on memory in Aβ infused rats. (Takata et al., 2007), showed that exogenous microglia 

transplanted into the brains of rats microinjected with Aβ, participate in Aβ clearance.  

 

1.6.2 Amyloid-beta as a cause and consequence of neuroinflammation in AD 

Amyloid-beta (Aβ) peptides, the main constituents of amyloid plaques, are derived from the proteolytic 

cleavage of APP (Citron, 2010, De Strooper et al., 2010). Diverse lines of evidence suggest that Aβ and 

APP contribute to the pathogenesis of AD causally. The conversion from preclinical AD to clinical AD 

is associated with widespread Aβ plaque deposition and NFT pathology and the appearance of various 

soluble/dispersible Aβ aggregates in the neuropil (Thal et al., 2013). Aβ regulates synaptic and neuronal 

activities and Aβ accumulation in the brain leads to an exciting combination of synaptic depression and 

aberrant network activity (Palop and Mucke, 2010). For neuroinflammation, Aβ plaques are frequently 

associated with the activation of microglia and astrocytes (Thal et al., 2013). Aβ induces the expression 

of inflammatory cytokines and inflammatory enzymes such as COX-2 and iNOS (Chen et al., 2012, 

Chami et al., 2012). Inflammatory cytokines (such as TNF-α and IL-1β), in turn, enhance APP 

production and the process of APP proteolytic cleavage to increase the production of Aβ42 peptide 

(Citron, 2010, De Strooper et al., 2010). Aβ can stimulate NF-κB and MAPK signaling pathways (Chen 

et al., 2012, Chami et al., 2012). Both these signaling pathways are associated with the transcription of 

inflammatory mediators. Also, NF-κB participates in Aβ production through regulation of APP and 

BACE and γ-secretases; NF-κB/p65 is closely related to BACE1 expression, cleavage and Aβ 

production (Chen et al., 2012, Chami et al., 2012). Aβ can disrupt gliotransmitter release and astrocytic 

calcium signaling and alter synaptic plasticity which are vital processes for astrocyte-neuron 

communication (Vincent et al., 2010). Thus, Aβ can be viewed both as a cause and consequence of 

neuroinflammation in AD.  

 

1.6.3 The amyloid-beta hypothesis 

The amyloid hypothesis considers Aβ deposition to be the causative event of AD pathology; 

neurofibrillary tangles, cell loss, vascular damage, and dementia occur as a consequence of this event 

(Hardy and Allsop, 1991). It suggests that the imbalance between the production and clearance of Aβ 

is the key trigger of a cascade of events that leads to AD (Baranello et al., 2015). Many observations 

supported the evolution of this hypothesis. One of the most persuasive arguments for the amyloid 

hypothesis came from genetic studies which brought to light many FAD cases that resulted from 

inherited APP or PS1 mutations leading to increased deposition of Aβ in plaques (Bertram et al., 2010). 
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Moreover, transgenic models of AD harbouring APP mutations develop age-dependent pathology 

similar to that seen in AD (Philipson et al., 2010). Also, the fourth allelic variant (ε4) of the 

apolipoprotein (APOE) polymorphism, which represents the most important genetic risk factor for the 

sporadic form of AD, is associated with Aβ accumulation and reduced clearance (Castellano et al., 

2011). 

On the other hand, mutations in tau lead to tauopathies and not AD, thereby suggesting that NFTs occur 

after Aβ aggregation(Castellano et al., 2011). Soluble oligomers and intermediate amyloids are the most 

toxic forms of Aβ (Walsh and Selkoe, 2007), which can cause neurotoxicity, neuron apoptosis, 

inflammation and mitochondrion dysfunction (Walsh et al., 2005, Hauptmann et al., 2006, Klyubin et 

al., 2008). Although this hypothesis has been questioned, there is still consensus that Aβ is closely 

related to AD. Therefore,  a reappraisal of the amyloid hypothesis focusing on the role of 

neuroinflammation in a beta-amyloid model of AD will open new avenues for identifying targets for 

AD treatment. 

 

1.7 MicroRNAs as biomarkers for early diagnosis of AD 

MicroRNAs are a class of non-coding RNAs acknowledged as essential regulators for post-

transcriptional gene expression by either repressing translation or degrading the target messenger RNAs 

(Maoz et al., 2017). MicroRNAs have been identified as the most frequently implicated regulators in 

many critical biological events such as neurodegenerative processes, development, growth, and 

differentiation (Huang et al., 2011, Hammond, 2015). A single microRNA can target several genes, and 

a single gene can be regulated by numerous microRNAs, granting microRNAs the power as potential 

tools to investigate multifactorial diseases like AD (Iqbal and Grundke-Iqbal, 2010). Depending on the 

algorithm used, bioinformatics predicts that miRNAs regulate 30% of human genes (Lewis et al., 2003, 

Lewis et al., 2005) to as much as 92% (Miranda et al., 2006). Expression profiling has provided essential 

insight into miRNA biology. Microarray studies have helped describe which miRNAs are expressed 

during various normal and abnormal brain states, including in brain diseases (Babak et al., 2004, Ciafre 

et al., 2005, Nelson et al., 2006, Perkins et al., 2007). 

 

MicroRNA expression analyses can provide ground-breaking data for this new research field, however, 

profiling it benefits from the parallel use of more than a single technique. Previous work confirmed that 

understanding cellular level expression patterns is vital for brain microRNA studies (Nelson et al., 

2006). In situ hybridization pinpoints exactly where specific microRNAs are expressed, whether in 

neurons, astrocytes, oligodendrocytes, microglia, or vasculature. Neurodegenerative diseases tend to 

affect distinct cell populations (Nelson et al., 2006). Hence, knowing which microRNAs are expressed 

in which cell populations can facilitate the identification of disease-relevant microRNA genes and their 

messenger RNA targets (Zhang et al., 2018). MicroRNAs, unlike messenger RNAs, are stable enough 

in biological fluids including serum, plasma, and CSF (Zhang et al., 2018). Besides, many of them 
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target genes directly involved in AD pathophysiology such as presenilin, beta-site amyloid precursor 

protein cleaving enzyme1 (BACE-1) and amyloid precursor protein (Liu et al., 2014).  

 

MicroRNA107 is implicated in AD-related phenotypes in early phases of the disease (Wang et al., 2010, 

Nelson and Wang, 2010, Wang et al., 2008) and is especially dysregulated in the brain as well as in the 

blood of patients with AD, making it an ideal candidate biomarker (Wang et al., 2008, Wang et al., 

2015a, Leidinger et al., 2013). MicroRNA107 targets BACE1, an enzyme that cleaves the amyloid 

precursor protein, creating the neurotoxic β-amyloid peptide, Aβ(1–42) (Stratman et al., Haniu et al., 2000, 

Vassar et al., 1999). BACE1 is the initiating and putatively rate-limiting enzyme in Aβ generation 

(Fukumoto et al., 2002, Li and Südhof, 2004). While its inhibition blocks the production of Aβ and 

prevent the development of Aβ-associated pathologies, overexpression of this enzyme has been shown 

to initiate or accelerate AD pathogenesis (Fukumoto et al., 2002, Li and Südhof, 2004). Studies have 

shown that the dysregulation of BACE1 directly contributes to the pathogenesis of AD (Dominguez et 

al., 2004, Durham and Shepherd, 2006, Guo and Hobbs, 2006, John, 2006).  

 

1.8 Motivation and rationale of the study 

At present, AD is incurable. Despite the considerable amount of research, current medications provide 

only modest relief to symptoms and do not cure the underlying disease. This failure is probably due to 

the scant knowledge of the cellular and molecular mechanisms implicated in AD pathogenesis. 

However, it is now well recognized that AD is a multifactorial disorder impacted by other factors in its 

pathogenesis and progression. Among these, the role of inflammation has been affirmed. Although the 

inflammatory process is aimed at controlling injuries through several mechanisms to repair tissues, the 

sustained immune response in the brain accelerates other core pathologies. Hence, it is clear that there 

are many characters involved in this inflammatory process. Therefore, a better understanding of the 

fundamental role of neuroinflammation in AD can be an excellent jump-off point for the development 

of viable therapeutic targets. 

 

1.9 Aim of the study 

The aim of this study is to assess the role of neuroinflammation and to identify possible biomarker in a 

progressive Ab(1-42) rat model of AD.  

 

1.10 Study objectives 

The objectives of this study are to assess the effects of Ab(1-42) lesion progressively on: 

• learning and memory using Morris water maze and fear conditioning test. 

• the activity of microglia and astrocytes as neuroinflammatory markers using immunofluorescence 

technique. 
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• plasma lipid peroxidation and glutathione levels as biomarkers of oxidative stress using 

spectrophotometric analysis. 

• cytokine levels (interleukin 1-beta, interleukin 6, interleukin10 and Tumour necrosis factor -alpha) 

in the plasma with the aid of multi-plex immunoassay. 

• the expression some microglial genes (TREM2 & CD33) regulating neuroinflammation using real-

time polymerase chain reaction. 

• the feasibility of plasma based miRNA-107 as a possible biomarker of AD. 

1.11 Brief overview of methodology and study design  

To accomplish the objectives, standardized laboratory methods and protocols were strictly adhered to, 

as illustrated in Chapters 2, 3, 4 and 5. Animal experimental work was conducted as per the approval 

of the Animal Ethics Committee of UKZN (Ref: AREC/015/018D) according to the guidelines of 

National Institutes of Health for the Care and Use of Laboratory Animals, South Africa.  

 

1.12 Potential benefit of this research  

This study is the first to showcase the role of neuroinflammation in a beta-amyloid model of AD, hence 

reappraising the amyloid hypothesis. It unravels the significance of neuroinflammation as an early 

entity in the pathogenesis of AD, offers new avenues in the search for improved therapeutic approaches 

for the disease. Therefore, the outcomes from this study are novel and also contribute to the global 

understanding of the pathophysiology of AD, which will serve as a precursor for the development  of 

possible targets for AD treatment in relation to neuroinflammation.  
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PROLOGUE 

Chapter 2 of this study examines the level of reactivity of glial cells such as microglia and astrocytes in 

the hippocampus, and the correlation between these activated glial cells and lipid peroxidation, a marker 

of oxidative stress as evident in the circulation of a progressive Ab(1-42)  rat model of AD. This chapter 

is prepared in manuscript format, currently under review in the Journal of Inflammation and the format 

used is according to the journal specification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

CHAPTER 2 

Progressive interdependence between neuroinflammation and oxidative stress in an amyloid-

beta (1–42) rat model of Alzheimer’s disease 

Oluwadamilola F. Shallie*, Musa V. Mabandla 

Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of 

KwaZulu-Natal, Westville Campus, Durban 4000, South Africa. 

*corresponding author: 217082125@stu.ukzn.ac.za/ damieshallie@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 40 

ABSTRACT 

Cellular players involved in the neuroinflammatory process associated with Alzheimer’s disease (AD) 

include astrocytes and microglia. Together with oxidative stress, these activated cellular players are key 

in the development of neuroinflammation. In this study, we examine the level of reactivity of glial cells 

in the hippocampus, and the interdependency between these glial cells and lipid peroxidation, as evident 

in the circulation of a progressive Ab(1-42) model of AD. Eighty male Sprague-Dawley rats were 

randomly divided into two groups, euthanised on days 3, 7, 10, and 14 post-lesion, following stereotaxic 

infusion of amyloid-beta (5 µg/5 µl) for the AD group and phosphate-buffered saline infusion for the 

control group. Reactive levels of astrocytes and microglia were measured using immunofluorescence 

and oxidative stress level was assessed by quantification of lipid peroxidation and reduced glutathione 

concentration. Increased expression of  ionized calcium-binding adaptor molecule 1 (IBA-1) and glial 

fibrillary acidic protein (GFAP) proteins in the hippocampus was observed, as marker for microglia and 

astrocytes respectively. This study shows a progressive  and prolonged activation of glial cells, resulting 

in reciprocal interaction between microglia and astrocytes. We also observed a positive relationship 

between the activated glial cells and lipid peroxidation, a marker of oxidative stress. This interaction 

may facilitate the understanding of the pathogenesis of AD, resulting in a strategy directed at controlling 

neuroinflammation and oxidative stress in developing therapeutics for AD.     

  

Keywords: Neuroinflammation; Alzheimer’s disease; Amyloid-Beta; Microglia; Astrocytes; Oxidative 

stress 
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1. Introduction 

Neuroinflammation represents an active process in the pathogenesis of Alzheimer’s disease (AD), as 

supported by the functional deficit observed following glial reactivity associated with the progression 

of the disease (Krabbe et al., 2013a, Olabarria et al., 2010). Its contribution is equal to or greater than 

that imposed by the amyloid plaques and neurofibrillary tangles in the advancement of the disease 

(Zhang et al., 2013). 

The cellular players involved in this process are the microglia and astrocytes, found closely associated 

with the amyloid plaques in AD animal models (Heneka et al., 2015, Olabarria et al., 2010). Although 

microglia are the resident neuroimmune cells primarily concerned with phagocytosis of pathogens and 

are the first line of defense, the contributions of astrocytes in maintaining normal neuronal functions 

cannot be underestimated (Sarma, 2014, Jiang and Cadenas, 2014, Kabba et al., 2018). Just like 

microglia, they can discern and magnify signals of inflammation, thereby initiating a cascade of 

inflammatory responses, which destroy the connection between nerve cells hence eliciting neuronal 

functional deficit (Vincent et al., 2010, Carrero et al., 2012, Lim et al., 2013).  

The presence of amyloid-beta is the main driver for microglial activation and migration to the plaques  

which results in phagocytosis (Baik et al., 2016, Yuyama et al., 2012, Tamboli et al., 2010). However, 

prolonged activation leads to this phagocytotic power being subdued and microglia being unable to 

clear amyloid-beta, thereby leading to increased accumulation and exacerbation of AD pathology 

(Kinney et al., 2018, Hickman et al., 2008). This prolonged activation of microglial cells results into 

the production of cytokines, as reported in our previous study (Shallie et al., 2020). Activated expression 

of microglia is marked by the protein ionized calcium-binding adaptor molecule 1 (IBA-1), which 

distinctively classifies cells engaged in routine surveillance from those activated in response to 

inflammation (Korzhevskii and Kirik, 2016). On the other hand, astrocytes being the most abundant 

cells in the brain also perform essential functions and their pathological response is represented by 

reactive astrogliosis, characterized by increased glial fibrillary acidic protein (GFAP) (Sofroniew, 2015, 

Messing and Brenner, 2003, Sochocka et al., 2017).  

During the inflammatory process, the activated phagocytic cells produce large amounts of reactive 

oxygen species (ROS) and reactive nitrogen and chlorine species including superoxide, hydroxyl free 

radical, nitric oxide, hydrogen peroxide,  and hypochlorous acid to kill the invading agents (Fialkow et 

al., 2007). These activated phagocytotic cells may incite exaggerated generation of reactive species and 

some of those reactive species diffuse out of the phagocytic cells and can induce localized oxidative 

stress and tissue injury (Fialkow et al., 2007).  A major contributor to oxidative stress in the brain are 

the microglia (Loane and Kumar, 2016). However, apart from the direct production of reactive species 

by the professional phagocytic cells like microglia, the non-phagocytic cells can also produce reactive 
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species in response to pro-inflammatory cytokines (Li et al., 2015). Studies support an interdependent 

relationship between inflammation and oxidative stress (Mittal et al., 2014, Yauger et al., 2019). 

 

The amyloid-beta (1-42) (Ab(1-42)) model of AD has been investigated by several studies, with emphasis 

on the hippocampus due to its vulnerability to neurodegeneration (Facchinetti et al., 2018, Frautschy et 

al., 1996, Cioanca et al., 2014, Karthick et al., 2019). The hippocampus plays a role in the acquisition 

and retrieval of information  (Wiltgen et al., 2006, Yang et al., 2018). However, to the best of our 

knowledge, no study has elucidated the progressive reactivity of these glial cells and their relationship 

to oxidative stress in a progressive model of AD.  

Therefore, the current study examines the level of reactivity of glial cells in the hippocampus and the 

interdependency between these glial cells and the incited oxidative stress as evident in circulation of a 

progressive Ab(1-42) model of AD. 

2. Materials and methods 

2.1. Study Design and Animal Grouping 

The experimental protocol for this study was per the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and approved by the Ethical Review Board of the University of 

KwaZulu-Natal (AREC/015/018D). Eighty male Sprague–Dawley rats obtained from the Biomedical 

Resource Unit of the University of KwaZulu-Natal were used in this study. They were housed under 

standard laboratory conditions and a 12-h light/dark cycle (lights on at 06h00). Food and water were 

available ad libitum. The animals were randomly divided into a vehicle group of rats (n = 40) that was 

infused with phosphate-buffered saline and an Aβ(1–42) group (n = 40) that was infused with the Aβ(1–42) 

peptide. Each group was further sub-divided into four groups  (Day 3 group: animals euthanized 3 days 

after infusion; Day 7 group: animals euthanized 7 days after infusion; Day 10 group: animals euthanized 

10 days after infusion, and Day 14 group: animals euthanized 14 days after infusion) (n = 10/group). 

The group size is based on findings extrapolated from the pilot study, as statistical power distinguishes 

an actual effect from one of chance. The animals were weighed before all experimentsal intervention 

and were brought to the holding area outside the experimentation room, 1 hour before commencing 

behavioural tests.  

 

 

2.2. Drugs and Reagents 

Procurement of Aβ(1–42) peptide was from DLD Scientific (Durban North, KZN, South Africa). 

Ketamine, xylazine, and temgesic were obtained from Sigma (ST. Louis, MO, USA). Vectafluor Excel 

R.T.U Antibody kit DyLight 488 Anti-Mouse IgG (DK-2488) was purchased from Vector Laboratories 
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(ST. Louis, MO, USA), Anti-IBA-1(SAB2702364) was acquired from Sigma (ST. Louis, MO, USA) 

and Anti-GFAP antibody (ab10062) was purchased from AbCam (Cambridge, MA, USA).  

 

2.3. Aβ(1–42) rat model of AD 

Before infusion of the Aβ(1–42) peptide, rats were anesthetized with ketamine (100 mg/Kg, 

intraperitoneally) and xylazine (5 mg/Kg, intraperitoneally) solution (Bagheri et al., 2011). The head of 

the animal was shaved and carefully positioned in the stereotaxic apparatus (David Kopf instrument, 

Tujunga, USA). Biotane was used to disinfect the skin covering the scalp before a midline incision was 

made to expose the skull. Following drilling of a hole into the skull, Hamilton syringe was used to 

infuse Aβ(1–42) (5 µg/5 µl) dissolved in 0.01M of Phosphate-buffered saline into the dorsal hippocampus 

bilaterally at the following co-ordinates: anteroposterior (AP) = −4.8 mm; mediolateral (ML) = ±3.4 

mm; dorsoventral (DV)  = −3.0 mm) over 10 minutes (Paxinos and Watson, 2006). Lesion sites were 

confirmed by physical examination at the point of sacrifice followed by cresly violet counterstaining. 

To maximize the diffusion of the neurotoxin Aβ(1–42), the needle was kept in this region of the dorsal 

hippocampus for 1 minute before the injection and for 2 minutes following the injection. The incision 

was sutured and cleaned before the animals were placed under a heating lamp to prevent hypothermia 

during recovery. Thereafter, the animals were injected with Temgesic (0.05 mg/kg subcutaneously), a 

postoperative analgesic before being returned to their home cages. The same procedure was followed 

for the phosphate buffered saline group.  

 

2.4. Euthanization and Sample Preparation  

All animals were sacrificed by deep anesthesia with pentobarbital (80mg/kg, i.p.). The brains were 

transcardially perfused and fixed with phosphate buffered saline (PBS) and 10% neutral buffered 

formalin (NBF) (Alese and Mabandla, 2019). Whole blood sample (3 ml) acquired aseptically from 

both the vehicle and Aβ(1–42) lesioned group of rats was collected into ethylenediaminetetraacetic acid 

(EDTA) coated tubes. The blood samples were centrifuged at a speed of 2000 x g for 10 minutes at 4 

°C in a refrigerated centrifuge (Z326, Lasec, South Africa). Plasma samples were transferred into cryo-

tubes and stored at -80 °C after blood sample collection.  

 

2.5. Immunofluorescence of IBA1 and GFAP 

Immunofluorescence of IBA1 and GFAP was performed according to the protocol of Im et al. (Im et 

al., 2019). Excised whole brain fixed in 10% NBF were histologically processed using the automated 

tissue processor (Leica TP1020, Wetzlar, Hesse, Germany) to ensure adequate dehydration, clearing, 

and infiltration and subsequently embedded in paraffin wax. Coronal sections (3 μm thick) of paraffin 

blocked hippocampal regions were cut using a rotary microtome (Leica RM2145 Wetzlar, Hesse, 

Germany), placed in a water bath (Leica HI1210, Wetzlar, Hesse, Germany)  set at 37 °C to produce 
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sections free of folds. The sections were transferred to pre-coated slides and gently blotted to avoid 

formation of  wrinkles and the slides were finally heated on the hot plate (Leica HI1220, Wetzlar, Hesse, 

Germany) set at 54 °C  to ensure proper adherence of tissue sections unto the slide, hence hindering 

possible fall-off during subsequent treatments (Guo et al., 2016). Sections were deparaffinised and 

rehydrated through xylene and descending series of ethanol and immersed into preheated Vector antigen 

unmasking solution H-3300, incubated for 20 minutes at 97 °C, and allowed to cool at room 

temperature. Sections were then washed in 0.01 M phosphate buffered saline (PBS) for 5 minutes. 

Protein blocking was performed by incubating sections for 20 minutes with 2.5% Normal horse serum, 

with the excess serum from sections being tipped off. This was followed by incubation with primary 

antibodies, mouse Anti-IBA-1 for I hour and Anti-GFAP overnight, diluted at 1:150 and 1:100, 

respectively. Sections were washed for 5 minutes in PBS and incubated for 15 minutes with amplifier 

antibody. The sections were re-washed for 5 minutes in PBS and incubated for 30 minutes with 

VectaFluor reagent. Sections were then washed for 5 minutes twice in PBS and mounted in VectaShield 

mounting media containing 4’,6-diamidino-2-phenylindole (DAPI), and then allowed to cure at room 

temperature. Negative controls were processed likewise but the incubation with primary antibodies was 

omitted. 

 

2.6. Photomicrography and Image quantification 

Sections were viewed and images captured with an Axioscope A1 microscope (Carl Zeiss, Jena, 

Germany) around the CA3 region of the hippocampus. Photomicrographs were  analysed using custom-

written scripts for Fiji/ImageJ (NIH, Bethesda, MD, USA). The corrected total cell fluorescence 

(CTCF) was calculated using the formula: CTCF = Integrated Density – (Area of selected cell C Mean 

fluorescence of background readings) (Guichet et al., 2016).  A tissue section was analysed per animal 

and a total of 10 sections were assessed in each experimental group. 

 

 

2.7. Oxidative Stress Biomarkers 

2.7.1. Determination of lipid peroxidation levels 

Lipid peroxidation levels of the samples were determined by measuring thiobarbituric acid reactive 

substances (TBARS), expressed as malondialdehyde (MDA) equivalent. Using the protocol by 

Chowdhury and Soulsby, and Janero (Chowdhury and Soulsby, 2002, Janero, 1990). One hundred 

microliters of the plasma samples were mixed with an equal volume of 8.1% sodium dodecyl sulfate 

(SDS) solution, 375 μL of 20% acetic acid, 1 mL of 0.25% thiobarbituric acid (TBA), and 425 μL of 

distilled water. The reconstituted mixture was heated at 95°C for 1 h in a water bath. Thereafter, 200 

μL of the heated mixture was pipetted into 96-well plate, and absorbance read at 532 nm. Samples were 
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run in duplicate and a standard curve was generated from the absorbance of standard MDA, from which 

the TBARS concentration was extrapolated. 

 

2.7.2. Determination of reduced glutathione (GSH) concentration 

An important cellular antioxidant that responds to lipid peroxidation (LP) is the reduced form of 

glutathione (GSH). Reduced glutathione (GSH) concentration was determined by the Ellman’s method 

(Ellman, 1959), which is based on the oxidation of GSH by 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) 

to form the yellow derivative 5′-thio-2-nitrobenzoic acid (TNB).  Reduced glutathione standards were 

prepared from GSH stock in increasing concentrations of  0.025, 0.05, 0.1, 0.2 and 0.4 mM in duplicates. 

Their absorbance was read at 415 nm and plotted against the concentration to get the standard curve. 

The plasma samples were deproteinize with an equal volume of 10% TCA and then centrifuged at 3500 

rpm for 5 mins at 25OC. Thereafter, 200 µL of the supernatant was pipetted into a 96 well plate. 50 µL 

of Ellman reagent was then added and allowed to stand for 5 mins. Absorbance was read at 415 nm. 

The GSH concentration was then extrapolated from the standard curve of plotted GSH concentrations. 

 

2.8. Statistical analysis 

Data were analysed using Student t-test, one-way or two-way ANOVA followed by Tukey’s post-hoc 

test where applicable using the GraphPad Prism version 7.0 (GraphPad Inc, USA) statistical software 

package. Pearson’s correlation coefficient was used to assess the correlation between data sets, where 

“r” indicates the strength of the relationship. Shapiro-wilk test showed that all data were normally 

distributed. Results are expressed as mean ± SEM and p < 0.05 was considered significant. 

 

 

3. Results 

3.1. IBA-1 expression in the CA3 region of the hippocampus. 

There was a significant (p < 0.0001) increase in corrected total cell fluorescence of positive IBA-1 

microglia in the hippocampus of Aβ(1–42) groups when compared with the vehicle-infused groups 

irrespective of the post-lesion day. One-way ANOVA showed a positive significant [F (3, 36) = 18.92, 

p < 0.0001] difference between post-lesion days. Day effects were observed with specific positive 

significant (p < 0.0001) differences between the post-lesion Aβ(1–42)  day 3 versus day 10 & day 14  and 

between the post-lesion Aβ(1–42)  day 7 versus day 10 & day 14 as shown in figures 1 and 2.  
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Figure 1: Immunofluorescence in the rat CA3 region of the hippocampus of Vehicle-infused and the 

Aβ(1–42)  lesioned rat model of AD. Representative images of positively stained microglia with IBA-1 in 

the Vehicle, Aβ (1-42) Day 3, Aβ (1-42) Day 7, Aβ (1-42) Day 10 and Aβ (1-42) Day 14 groups.  (LPO 
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Figure 2: Mean corrected total cell immunofluorescence of IBA-1 in the hippocampus of (A) Vehicle-

infused and the Aβ(1–42) lesioned rat model of AD irrespective of the days (B) Aβ(1–42) rat model of AD 

across post-lesion days. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001,  (student t-test and 

one-way ANOVA followed by Tukey’s post-hoc test). All data are expressed as means ± SEM (n = 10/ 

group). 

3.2. GFAP expression in the CA3 region of the hippocampus. 

There was a significant (p < 0.0001) increase in corrected total cell fluorescence of positive GFAP 

astrocytes in the hippocampus of Aβ(1–42) groups when compared with the vehicle groups irrespective 

of the post-lesion days. One-way ANOVA showed a significant [F (3, 36) = 18.9, p < 0.0001] difference 

between post-lesion days. Day effects were observed with specific significant differences between post-

lesion Aβ(1–42)  day 3 versus day 10 & day 14 (p < 0.0001); between  post-lesion Aβ(1–42)  day 7 versus 

day 10 (p < 0.01); between  post-lesion Aβ(1–42)  day 7 versus day 14 (p < 0.0001) as shown in figures 3 

and 4. 
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Figure 3: Immunofluorescence in the rat CA3 region of the hippocampus of Vehicle-infused and the 

Aβ(1–42) lesioned rat model of AD. Representative images of positively stained astrocytes with GFAP in 

the Vehicle, Aβ (1-42) Day 3, Aβ (1-42) Day 7, Aβ (1-42) Day 10 and Aβ (1-42) Day 14 groups.  
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Figure 4: Mean corrected total cell immunofluorescence of GFAP in the hippocampus of (A) Vehicle-

infused and the Aβ(1–42) lesioned rat model of AD irrespective of the days (B) Aβ(1–42) rat model of AD 

across post-lesion days.  * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001,  (student t-test and 

one-way ANOVA followed by Tukey’s post-hoc test). All data are expressed as means ± SEM. (n = 

10/ group). 

3.3. Correlative expression of IBA1 and GFAP in the CA3 region of the hippocampus 

Strong positive correlations were observed between the corrected total cell fluorescence (CTCF) of 

IBA1 and GFAP on post-lesion day 3 (r = 0.8980, p = 0.0004) (Fig. 5a); post-lesion day 7 (r = 0.8635, 

p = 0.0013) (Fig. 5b); post-lesion day 10 (r = 0.7852, p = 0.0071) (Fig. 5c) and post-lesion day 14 (r = 

0.7728, p = 0.0008) (Fig. 5d) in the Aβ(1–42) lesioned rat model of AD (Fig. 5).  
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Figure 5: XY scatters plots of corrected total cell immunofluorescence in the hippocampus of positively 

stained cells with IBA-1 and GFAP on (a) post-lesion day 3 (b) post-lesion day 7 (c) post-lesion day 10 

and (d) post-lesion day 14 in the Aβ(1-42) rat model of AD. “r” indicates strength of the relationship. A 

value of p < 0.05 was considered as statistically significant for the number of rats (n = 10) in each group.  

3.4. Lipid peroxidation (MDA) concentration in plasma 

We observed a significant interaction [F (3, 48) = 21.59, p < 0.0001] between lesion and day. A lesion 

effect was found for lipid peroxidation quantified as MDA concentration, as this marker increased in 

plasma of Aβ(1–42) lesioned groups [F (1, 48) = 194.8, p < 0.0001] when compared to the corresponding 

vehicle groups, with specific significant increase on post-lesion day 7 (0.0058), day 10 (p < 0.0001) 

and day 14 (p < 0.0001). A day effect was observed as lipid peroxidation quantified as MDA 

concentration increased progressively in post-lesion day 3 to day 14 of Aβ(1–42) lesioned groups [F (3, 

48) = 3.175, p = 0.0324], with specific significant increase (p < 0.0001) on post-lesion day 3 versus  14 

group, day 7 versus day 14 (p < 0.0001), day 3 versus day 10 (p = 0.0086), day 10 versus day 14 (p = 

0.0339) (Figure 6). 
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Figure 6: Plasma lipid peroxidation levels in vehicle and Aβ(1–42) lesioned rats at post-lesion day3, 7, 

10 and 14. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, a = ** , β = ****  (two-way 

ANOVA followed by Tukey’s post-hoc test). All data are expressed as means ± SEM. (n = 7/ group). 

 
3.5. Reduced Glutathione concentration in plasma 

We observed a significant interaction [F (3, 48) = 48.56, p < 0.0001] between lesion and day. A lesion 

effect was found for plasma reduced glutathione concentration, as this antioxidant was reduced in 

plasma of Aβ(1–42) lesioned groups [F (1, 48) = 492.1, p < 0.0001] when compared to the corresponding 

vehicle groups, with specific significant decrease (p < 0.0001) on post-lesion day 7, day 10 and day 14 

groups. A significant day effect was also observed [F (3, 48) = 28.51, p < 0.0001] for plasma reduced 

glutathione level in the vehicle group (Figure 7). 
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Figure 7: Plasma reduced glutathione levels in vehicle and Aβ(1–42) lesioned rats at post-lesion day3, 7, 

10 and 14. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, β = **** (two-way ANOVA 

followed by Tukey’s post-hoc test). All data are expressed as means ± SEM. (n = 7/ group). 

 

3.6. Correlation between IBA1 expression and plasma lipid peroxidation concentration in Aβ(1–42) 

lesioned rats 

Positive correlations were observed between IBA1 expression in the hippocampus  and lipid 

peroxidation level in plasma on post-lesion day 3 (r = 0.9292, p = 0.0095) (Figure 8a); post-lesion day 

7 (r = 0.9893, p < 0.0001) (Figure 8b); post-lesion day 10 (r = 0.8228, p = 0.0230) (Figure 8c) and post-

lesion day 14 (r = 0.9671, p = 0.0004) (Figure 8d) in the Aβ(1–42) lesioned rat model of AD (Figure 8).  
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Figure 8: XY scatters plots of IBA-1 expression and lipid peroxidation level on (a) post-lesion day 3 

(b) post-lesion day 7 (c) post-lesion day 10 and (d) post-lesion day 14 in the Aβ(1-42) rat model of AD. 

“r” indicates strength of the relationship. A value of p < 0.05 was considered as statistically significant 

for the number of rats (n = 10) in each group.  

4. Discussion  

In this study, we examined the level of reactivity of glial cells in the CA3 region of the hippocampus 

by evaluating the expression of ionized calcium-binding adaptor molecule 1 (IBA-1) and glial fibrillary 

acidic protein (GFAP) proteins in a progressive Aβ(1–42) model of  AD. The protein IBA-1 is a marker 

of activated microglia, it distinctively classifies cells engaged in routine surveillance from those 

activated in response to inflammation. On the other hand,  the GFAP protein is a standard stain for 

reactive astrocytes., characterized by increased glial fibrillary acidic protein. We further evaluated 

oxidative stress levels in plasma and correlated its expression with activated microglia  cells which are 

the resident immune cells in the brain. Although, the CA1 region of the dorsal hippocampus was 

lesioned, we however analysed the reactivity of glial cells in the CA3 region to avoid bias that could 

result from mechanical damage during stereotaxic surgery to this region. Besides, the CA3 region plays 

specific role in memory processes and is susceptible to neurodegeneration (Cherubini and Miles, 2015).  

We observed a significant increase in the reactivity of microglia and astrocytes in the Aβ(1-42)  model of 

AD when compared to their respective vehicle-infused groups. This increase is probably due to the 

toxic impact of aberrant deposits of the extracellular protein Aβ, which activates these glial cells and 
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initiates neuroinflammation (Reed-Geaghan et al., 2009). The progressive increase observed in this 

study at all timepoints post-lesion is facilitated by the ongoing formation of Aβ and possible positive 

feedback loops between inflammation and Aβ, which compromises the cessation of inflammation and 

exacerbates further accumulation of Aβ (Krabbe et al., 2013a). Activated microglia trigger the 

recruitment and proliferation of astrocytes that actively bolster the inflammatory response to 

extracellular amyloid beta deposits (Matsuoka et al., 2001, Murgas et al., 2012). This 

neuroinflammatory response in AD is further characterized by a local pro-inflammatory cytokine 

accumulation. All these factors, either alone or in concert, contribute to neuronal dysfunction and the 

eventual death that occurs in AD. Previous studies have shown the appearance of activated microglia 

and reactive astrocytes under pathological conditions (Matsuoka et al., 2001, Murgas et al., 2012).  

Although both glial cells were activated at all timepoints and correlated positively in this study, we 

however, observed an overall 4.7% increase in expression of IBA-1 compared to GFAP. These results 

shed light on the relationship present in the process of their activation. Being the resident immune cells 

of the brain, microglia are activated earlier than astrocytes (Krabbe et al., 2013a). They are responsible 

for immune surveillance function as they can detect danger and instruct nearby astrocytes through 

the release of cytokines like interleukin-1. Release of this cytokine activates astrocytes and recruits 

more microglia in a feed-forward manner that leads to neuroinflammation (Giulian et al., 1994, Shallie 

et al., 2020, Liu et al., 2011).   

The increase in microglia expression can also be explained from a functional point of view, as microglia 

represent a hybrid between immune-competent cells and glial cells with neuronal-supporting functions 

(Wake et al., 2009). Although the nature and function of the interactions between microglia and 

neuronal circuits are only hypothesized, studies have demonstrated that microglia do not represent only 

‘‘dormant’’ resting macrophages, but actively exert neuroprotective actions on neuronal population 

(Battista et al., 2006, Ziv et al., 2006, Ekdahl et al., 2009). This surveying role is likely to be an 

important factor in homeostasis maintenance during ‘‘microdamage’’ that commonly occurs in the 

brain (Ekdahl et al., 2009). It has been proposed that, in the adult brain, microglia take part in synapse 

remodeling and, probably, in neurogenesis. In vivo evidence also suggests microglial regulation of 

neurogenesis in the hippocampus (Battista et al., 2006, Ziv et al., 2006) and in the adult subventricular 

zone, at least after stroke (Thored et al., 2009). Recent studies highlight the molecular constituents of 

neuro-immune system interaction reciprocally shared between the two systems (Chavan et al., 2017, 

Shallie et al., 2020). These constituents  include microglia, astrocytes, toll-like receptors (TLRs), the 

expression of pattern recognition receptors (PRRs) receptors, and cytokine receptors. All these provide 

a molecular substrate for concurrent regulation of immune and neuronal function by cytokines, 

pathogen-associated molecular patterns (PAMPs), and other immune molecules. This  repository is 



 55 

deployed in the integration of neural circuits and immune response set-off by infection or injury 

(Chavan et al., 2017, Shallie et al., 2020). 

Microglia have been implicated as the major contributor to oxidative stress in the CNS via the release 

of a number of reactive species (Cotran et al., 2004). We therefore, determined oxidative stress by 

quantifying plasma MDA, a marker of lipid peroxidation (LPO) and reduced glutathione level, a 

primary antioxidant defense of the central nervous system in our model of AD. Our results showed that 

Aβ(1–42) lesioned rats had higher lipid peroxidation levels than vehicle rats at all post-lesion intervals. 

The significantly higher MDA levels indicate the implication of ROS-mediated damage (Cotran et al., 

2004). These results are in agreement with (Krishnan and Rani, 2014) who showed that plasma lipid 

peroxidation levels were elevated in AD patients who also indicated an age-dependent increase in the 

levels of MDA. We also found that reduced glutathione concentration, an important cellular antioxidant 

that responds to LPO  was decreased in the Aβ(1–42) lesioned rats while we observed increasing levels 

in the vehicle rat over the post-lesion day intervals. The reduction in levels of GSH in the Aβ(1–42) 

lesioned rats could be attributed to the detrimental effect of excess reactive oxygen species, since GSH 

system effectively maintains the redox balance and is also important in scavenging of hydroperoxides 

independently (Nazıroğlu, 2009). The initial reduction seen in the vehicle on Day 3 could be due to the 

stress induced by stereotaxic surgical procedure. This reduction is seen to be followed by an increase 

in the subsequent days as the effect of the stress wanes.  

 

We correlated activated microglia and lipid peroxidation to further understand the association between 

neuroinflammation and oxidative stress. Our results showed a positive relationship. This indicates that  

an increase in IBA1 expression leads to increase in lipid peroxidation level as microglia can modulate 

the inflammatory response through reactive oxygen species (ROS) (Loane and Kumar, 2016). We 

therefore postulate that the possible initial impact of neuroinflammation is followed by oxidative stress, 

which will further accentuate neuroinflammation. Conversely, if oxidative stress is the primary event, 

neuroinflammation will develop as a consequence which will further exaggerate oxidative stress (Vaziri 

and Rodríguez-Iturbe, 2006). Therefore, identification of primary abnormality and the confounding 

factor/s could be of great clinical importance, as the treatment of the primary disorder is likely to ensure 

a sustained relief from the problem. 

 
 
5. Conclusion 

Neuroinflammation in the Aβ(1–42) model of  AD was initiated due to the prolonged and progressive 

activation of the glial cells, resulting in a bidirectional interaction between neuroinflammation and 

oxidative stress. This interaction may facilitate the understanding of the pathogenesis of AD, resulting 

in a strategy directed at controlling neuroinflammation and oxidative stress in developing therapeutics 

for AD.     
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PROLOGUE 

Chapter 3 elucidates the effect of amyloid-beta (1-42) on memory and how cytokines as inflammatory 

markers respond to this model of AD. Formats used in this chapter are according to the journal 

specifications. This manuscript has been published in the journal of Neurobiology of Learning and 

Memory. See appendix IV. 
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ABSTRACT 

Dysregulation of inflammatory markers like cytokines is implicated in the pathophysiology of 

Alzheimer’s disease (AD). Altered level of these cytokines show that pathogenesis of AD is beyond 

dysfunction of neurons resulting from amyloid beta accumulation but involves neuroinflammatory 

mechanisms elicited by the neuroimmune cell. In this study, we investigated the effect of  amyloid-beta 

(1-42) (Aβ(1–42)) on memory and how inflammatory markers respond to this model of AD. 

Male Sprague-Dawley rats were used for this study. The animals were randomly divided into four 

groups euthanized on day 3, 7, 10 and 14 post-lesion with amyloid-beta (5 µg/ 5 µl) while corresponding 

control groups were stereotaxically injected  with  a vehicle (5 µl  of 0.01 M phosphate- buffered saline). 

The Morris water maze (MWM)  test to access learning and memory was conducted pre and post-lesion 

and blood was collected through cardiac puncture on day 3, 7, 10 and 14 post lesion. 

Multiplex immunoassay was performed to determine the plasma levels of IL-1β, IL-6, IL-10 and TNF-

α. Our results showed impaired spatial memory and elevated plasma levels of pro-inflammatory 

cytokines (IL-1β, IL-6 and TNF-α) with a concomitantly lowered level of the anti-inflammatory 

cytokine (IL-10) in the Aβ(1–42) lesioned rats when compared to the vehicle groups. This study shows a 

negative correlation between the performance in spatial memory task and plasma levels of the pro-

inflammatory cytokines IL-1β, IL-6 and TNF-α and positive correlation between performance in spatial 

memory task and the anti-inflammatory cytokine IL-10. In conclusion, this study most importantly 

demonstrated an association between progressive decline in spatial memory and increased plasma 

cytokine level induced by the infusion of Aβ(1-42).  

 

Keywords: Alzheimer’s disease; Amyloid beta; Glial cells; Inflammatory cytokines; Memory; 

Neuroinflammation 
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1. Introduction 

Alzheimer's disease (AD) is an escalating neurodegenerative disease that represents a major factor for 

the prevalence of dementia in the aged population worldwide (Mohajeri et al., 2015). Dementia 

currently affects an estimated number of 50 million people worldwide, and this population has been 

projected to rise to 152 million by 2050, thereby making it an indubitable public health mandate 

(Organization, 2018). Cumulative evidence indicates that Alzheimer’s disease is caused by the toxicity 

resulting from the buildup of amyloid beta (Hardy and Selkoe, 2002, Eckman and Eckman, 2007). 

However, neuroinflammation is presently being proposed as a possible mechanism for neuronal death 

observed in the disease progression (McKenzie et al., 2017, Ahmad et al., 2018). This is supported by 

the presence of abundantly activated glial cells observed in postmortem evaluation of AD brains and 

by the recurrent failure of drugs that only target amyloid plaques in the disease (Kametani and 

Hasegawa, 2018, Hopperton et al., 2018). The hippocampus is the main seat of memory and one of the 

earliest parts of the brain affected in this disease (Morris and Baddeley, 1988, Bondi et al., 2008, 

Webster et al., 2014). Therefore, an impaired memory that deteriorates with disease progression is a 

core clinical manifestation in AD (Perry et al., 2000, Stopford et al., 2012). Neuropathological 

characterization of AD is based on the occurrence of intracellular neurofibrillary tangles and 

extracellular plaques,  while the main component of this plaque is amyloid beta-protein (Domingues et 

al., 2017). Amyloid-beta 1-42 (Aβ1-42) is the most toxic form of this peptide, it is derived from β-amyloid 

precursor protein (βAPP), and triggers AD pathogenesis by quickening age-related memory decline 

(Ferreira et al., 2015, Sasmita et al., 2018). 

Cytokines are inflammatory markers that contribute significantly to the pathophysiology of AD (Alam 

et al., 2016). They are synthesized in response to inflammation by microglia, the resident neuroimmune 

cells tasked with maintaining homeostatic balance in the brain (Ransohoff and Brown, 2012, Norris and 

Kipnis, 2019). Deposition of amyloid-beta 1-42 (Aβ1-42) in the brain activates the microglia, which in 

turn incites the surrounding brain tissue and triggers the expression of inflammatory mediators 

including cytokines such as interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor-α (TNF-α). These 

secreted cytokines in turn act to either exacerbate or attenuate the inflammatory state and progression 

of the disease (Block and Hong, 2005, Glass et al., 2010, Shastri et al., 2013). Their action is dependent 

on one another,  as no particular cytokine can mediate inflammation alone (Platzer et al., 1995, 

Steensberg et al., 2003, Donzis and Tronson, 2014). Our aim was therefore to investigate the effect of 

Aβ(1–42)  on memory and to assess cytokine response to this model of AD, also, we further examined the 

response of these markers in association with the state of memory in Aβ(1–42) lesioned rat model of AD. 

2. Materials and methods 

2.1. Animals 
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All procedures were reviewed and approved by the Animal Research Ethics Committee of the 

University of KwaZulu-Natal (AREC/015/018D). Fifty-six (56) male Sprague-Dawley rats weighing 

between 300 and 350g (8/9 weeks of age) were obtained from the Biomedical Research Unit of the 

University of KwaZulu- Natal and kept under standard laboratory conditions with food (Rodent Ripe 

Pellets, Meadow, South Africa) and water freely available. The animals were randomly divided into 

four groups (Day 3 group: animals  euthanized 3 days after lesioning; Day 7 group: animals euthanized 

7 days after lesioning; Day 10 group: animals euthanized 10 days after lesioning, and Day 14 group: 

animals euthanized 14 days after lesioning) (n = 14/group). Each group was further sub-divided into a 

vehicle group of rats (n = 7) that were injected with phosphate buffered saline and an Aβ(1–42) group (n 

= 7) that were injected with the neurotoxin Aβ(1–42) peptide (Lonappan et al., 2017). The animals were 

weighed prior to all experiments and were brought to the experimentation room 1 hour before 

commencing behavioral tests.  

 

2.2. Drugs and reagents 

 Aβ(1–42) peptide was purchased from DLD Scientific (Durban North, South Africa). Ketamine, xylazine, 

and temgesic were obtained from Sigma (ST. Louis MO, USA). Bio-Plex Pro™  Rat Cytokine assay kit 

(catalogue number: 10014905) was purchased from Bio-Rad Laboratories (CA, USA). 

 

2.3. Behavioral test 

The Morris water maze (MWM) test commonly used to assess spatial learning and memory in rodents 

was used in this study (Morris, 1984, Garthe and Kempermann, 2013, Cassim et al., 2015). The 

procedure was performed as previously described by (Cassim et al., 2015). Animals were trained in a 

water maze (diameter: 1m) filled with water (23 ± 1 ◦C). The pool was divided into four virtual 

quadrants, each with a cue to assist the rat in finding the hidden platform, the  platform was submerged 

in the middle of one of the four quadrants. Each rat was placed in a quadrant other than where the hidden 

platform is located, facing the wall of the pool and was given 120 seconds to find the platform and 15 

seconds to stay on it. Animals that did not find the platform were gently guided and placed on it during 

the learning test. Learning was assessed pre-lesion, it measures  the time taken for the animal to locate 

the hidden platform (escape latency) while the time spent in the quadrant of the hidden platform is 

regarded as the ability to remember (memory), which was assessed post-lesion.  

 

2.4. Alzheimer’s disease rat model (Aβ(1–42)  lesion) 

Rats were anesthetized with ketamine (100 mg/Kg, intraperitoneally) and xylazine (5 mg/Kg, 

intraperitoneally) solution before being placed in the stereotaxic apparatus (David Kopf instrument, 

Tujunga, USA) (Bagheri et al., 2011). After complete anaesthesia was observed following the absence 

of hind paw reflex on pinching, animals were bilaterally injected using a Hamilton syringe coupled to 
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a 25 G needle, with either 10 μL (5 μL on each side)  solution of Aβ(1–42)) peptide or an equal volume 

of phosphate buffered saline solution (Vehicle) into the CA1 field of the dorsal hippocampus (dCA1) 

according to the following stereotaxic co-ordinates referenced in millimeters from bregma: 

Anteroposterior (AP) = −4.8 mm; mediolateral (ML) = ±3.4 mm; dorsoventral (DV)  = −3.0 mm) 

(Watson and Paxinos, 1986, Paxinos and Watson, 2006). The needle was kept in the dCA1 for 1 min 

prior to the injection and for 2 min following the injection to maximize diffusion. The incision was 

thereafter sutured, cleaned, and the animals were placed under a heating lamp to prevent hypothermia 

during recovery. Animals were injected with Temgesic (0.05 mg/kg subcutaneously) a post-operative 

analgesic before being returned to their home cages. Post-lesion behavioral test was conducted before 

the animals were euthanized on days 3, 7, 10 and 14, according to previous study in our laboratory 

(Lonappan et al., 2017). 

 

2.5. Decapitation and neurochemistry 

All rats were euthanized on post-lesion days 3, 7, 10 and 14 by halothane overdose. Blood  (4 ml) 

acquired aseptically through cardiac puncture from both the vehicle and Aβ(1–42) lesioned rats were 

collected into ethylenediaminetetraacetic acid (EDTA) coated tubes, which were then centrifuged at 

1000 ´ g for 15 minutes at 4 ◦C  in a refrigerated centrifuge (Z326, Lasec, South Africa). In order to 

completely remove platelets and precipitates, the acquired plasma sample was centrifuged again at 

10,000 ´ g for 10 minutes at 4 ◦C. Plasma were transferred into Eppendorf vials, quickly snap frozen 

in liquid nitrogen and stored at – 80 ◦C
 
 until analysis. 

 

 
Fig. 1. Experimental timeline. Rats received bilateral intra-dCA1 infusion of  Aβ(1–42) or vehicle solution 

after pre-lesion MWM test. On 3,7,10 and 14 days post-lesion, separate cohorts of rats belonging to 

Aβ(1–42) or vehicle-infused groups were tested for spatial memory function and euthanized 1 hour after 

each probe trial depending on the post-lesion group. 
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2.6. Multiplex assay 

Plasma samples stored at -80 ◦C were thawed and used for the measurement of the cytokine levels (IL-

1β, IL-6, IL-10, and TNF-α). Multiplex immunoassay was performed using a Bio-Plex Pro™  Rat 

Cytokine assay kit (catalog number: 10014905) in accordance with the manufacturer’s instructions. 

Using a 96-well flat bottom assay plate, coupled magnetic beads (50 µl) were added into each well of 

the assay plate followed by washing twice using Bio-plex wash buffer (100 µl). Four-fold serial 

dilutions of both the standard and sample (50 µl) were then prepared and dispensed into designated 

wells followed by washing thrice using Bio-plex wash buffer (100 µl). Incubation on shaker at 850 ± 

50 rpm at room temperature for 1 hour allowed for the interaction of the antigen with the coupled 

magnetic beads. Biotinylated detection antibodies (25 µl) (IL-1β, IL-6, IL-10, and TNF-α) were also 

added to the plates with subsequent incubation on shaker at 850 ± 50 rpm at room temperature for 30 

minutes and washed thrice using Bio-plex wash buffer (100 µl). The addition of streptavidin-

phycoerythrin (SAPE) (50 µl) incubated on shaker at 850 ± 50 rpm at room temperature for 10 minutes 

to complete the reaction was also concluded with washing thrice using Bio-plex wash buffer (100 µl). 

Plates were suspended in assay buffer (125 µl) on a shaker at 850 ± 50 rpm at room temperature for 30 

seconds and read on a Bio-Plex® MAGPIX™ Multiplex system (Bio-Rad Laboratories Inc., USA).  Data 

from the multiplex analysis was obtained using the Bio-Plex Manager™ version 4.1 software. 

 

2.7. Statistical analysis 

GraphPad Prism (version 7, Software Inc.) was used to analyze the data. Descriptive statistics 

for continuous data were reported as mean ± standard error of mean (SEM). Shapiro-Wilk 

normality test was used to assess distribution of data. Two-way analysis of variance (ANOVA), 

followed by Tukey’s post-hoc test for multiple comparisons were used to assess statistical 

significance within the study population. Pearson’s correlation coefficient was used to assess 

the correlation between spatial memory and interleukin level, where “r” indicates the strength 

of the relationship. A value of p < 0.05 was considered statistically significant in all analyses. 

 

3. Results 

3.1. Spatial learning and memory 

There was a significant day effect on spatial learning [F (3, 208) = 337.9, p < 0.0001] indicated by a 

decrease in time to locate the hidden platform (escape latency) over the training days for all groups 

(Fig. 2a). We also observed a significant day effect [F (3, 208) = 6.404, p = 0.0004] with specific 

significance between day 3 vs. day 10 (p = 0.036) and between day 7 vs. day 10 (p = 0.0037). Significant 

day effect within groups were observed: In Day 3 group: On day 1 vs. day 3 (p < 0.0001); on day 1 vs. 

day 4 (p < 0.0001); on day 2 vs. day 3 (p = 0.002); on day 2 vs. day 4 (p < 0.0001) and on day 3 vs. day 
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4 (p = 0.0012). In Day 7 group: On day 1 vs. day 3 (p = 0.0031); on day 1 vs. day 4 (p < 0.0001); on 

day 2 vs. day 3 (p = 0.021); on day 2 vs. day 4 (p < 0.0001) and on day 3 vs. day 4 (p < 0.0001).  In 

Day 10 group: On day 1 vs. day 3 (p = 0.0005); on day 1 vs. day 4 (p < 0.0001); on day 2 vs. day 4 (p 

= 0.0003) and on day 3 vs. day 4 (p = 0.0031).  In Day 14 group: On day 1 vs. day 3 (p = 0.0015); on 

day 1 vs. day 4 (p < 0.0001); on day 2 vs. day 3 (p = 0.0006); on day 2 vs. day 4 (p < 0.0001) and on 

day 3 vs. day 4 (p = 0.0234) (Fig. 2a).  

Fig. 2b shows a significant lesion effect of intrahippocampal injection of Aβ(1–42) on spatial memory [F 

(1,  48) = 234.2, p < 0.0001] with decreased time spent in the quadrant of the hidden platform on post-

lesion day 3 (p < 0.01), day 7 (p < 0.0001), day 10 (p < 0.0001) and day 14 (p < 0.0001) when compared 

to the corresponding vehicle injected groups. A significant day effect was observed within the Aβ(1–42) 

lesioned groups [F (3, 48) = 2.2, p = 0.0954] differing with increasing significance from post-lesioned 

day 3 vs.  day 7 (p = 0.0176), day 3 vs. day 10 (p = 0.0097) and day 3 vs. day 14 (p = 0.0052). We also 

observed a significant interaction [F (3, 48) = 5.7, p = 0.0020] between lesion and day (Fig. 2b).  

Fig. 2c shows a significant lesion effect of intrahippocampal injection of Aβ(1–42) on time taken to locate 

the quadrant of the hidden platform [F (1,  48) = 684.7, p < 0.0001] between the vehicle and their 

corresponding Aβ(1–42) lesioned groups. A significant day effect was also observed within the Aβ(1–42) 

lesioned groups [F (3, 48) = 27.42, p = 0.0001]. With specific significance between (Day3Aβ(1–42) vs. 

Day7Aβ(1–42), p < 0.0001), (Day3Aβ(1–42) vs. Day10Aβ(1–42), p = 0.0001), (Day3Aβ(1–42) vs. Day14Aβ(1–42), p < 

0.0001), (Day7Aβ(1–42) vs. Day14Aβ(1–42), p =  0.0001) and (Day3Aβ(1–42) vs. Day14Aβ(1–42), p = 0.0328).  

Table 1 shows the swimming speed and duration of time spent in opposite quadrant, expressed in cm/sec 

± SEM and sec ± SEM respectively. 
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Fig. 2. (a)Time taken to locate the hidden platform for all rats of day 3, 7, 10 and 14 groups pre-lesion 
in the MWM. Values are expressed as Mean ± SEM (n = 14/group). (b) Time spent in the quadrant of 
the hidden platform for all groups at post-lesion days 3, 7, 10 and 14 in the MWM. **(Day3vehicle vs. 
Day3Aβ(1–42), p < 0.01), ****(Day7vehicle vs. Day7Aβ(1–42), p < 0.0001 ),  ****(Day10vehicle vs. Day10Aβ(1–42), p 

< 0.0001 ), ****(Day14vehicle vs. Day14Aβ(1–42), p < 0.0001 ), *(Day3Aβ(1–42) vs. Day7Aβ(1–42), p = 0.0176 ), 
**(Day3Aβ(1–42) vs. Day10Aβ(1–42), p = 0.0097), **(Day3Aβ(1–42) vs. Day14Aβ(1–42), p = 0.0052). (c) Time taken 
to locate the quadrant of the hidden platform for all groups between pre-lesion and post-lesion days 3, 
7, 10 and 14 in the MWM is significant at  **** (p < 0.0001). ****(Day3Aβ(1–42) vs. Day7Aβ(1–42), p < 

0.0001), ****(Day3Aβ(1–42) vs. Day10Aβ(1–42), p = 0.0001), ****(Day3Aβ(1–42) vs. Day14Aβ(1–42), p <  0.0001), 
***(Day7Aβ(1–42) vs. Day14Aβ(1–42), p =  0.0001), **(Day3Aβ(1–42) vs. Day14Aβ(1–42), p = 0.0328). Statistical 
analysis made by two-way ANOVA followed by Tukey’s post-hoc test for multiple comparisons.  
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                                                                     Speed (cm/sec)                   Duration in the opposite 
                                                                           ± SEM                               Quadrant (sec) ± SEM 

Day 3 group          Aβ(1–42) 
                              Vehicle 

18.82 ± 1.21                          36.5 ± 4.33                           
17.69 ± 0.60                          40.8 ± 3.75 

Day 7 group          Aβ(1-42) 
                              Vehicle 

17.97 ± 0.98                          19.4 ± 2.65                           
17.69 ± 0.60                          38.9 ± 3.07 

Day 10 group       Aβ(1-42) 

                             Vehicle  
18.32 ± 0.76                          21.3 ± 1.21                           
17.69 ± 0.60                          42.6 ± 3.15 

Day 14 group       Aβ(1–42) 
                              Vehicle                                                                                      

19.03 ± 0.87                          34.4 ± 4.21 
19.54 ± 1.03                          44.5 ± 3.80  

 
Table 1. Speed to reach the target quadrant and the time spent in the quadrant opposite to the target 
quadrant. Data represents the average swimming speed (cm/sec ± SEM) and the average time spent (sec 
± SEM) in the quadrant opposite to the target quadrant in the Morris water maze during the probe tests 
conducted 3 days, 7 days, 10 day and 14 days post infusion.                                      
 
 
3.2. Cytokine levels in the plasma 

Pro-inflammatory cytokines level in the plasma are illustrated in Figure 3a-c.  

A lesion effect was found for pro-inflammatory cytokine IL-1β, as this cytokine increased in plasma of  

Aβ(1–42) lesioned groups [F (1, 48) = 75.17, p < 0.0001] when compared to the corresponding vehicle 

groups, with specific significant increase (p < 0.0001) on post-lesion day 3 and 7 groups. A day effect 

was found as IL-1β levels decreased progressively in post-lesion day 3 to day 14 of Aβ(1–42) lesioned 

groups [F (3, 48) = 17.86, p < 0.0001], with specific day decline between day 3 versus 10 (p < 0.0001), 

day 3 versus 14 (p < 0.0001), day 7 versus 10 (p = 0.0009) and day 7 versus 14 (p < 0.0001) (See Fig. 

3a). We also observed a significant interaction [F (3, 48) = 13.38, p < 0.0001] between lesion and day. 

Similarly, a lesion effect was found in plasma IL-6 levels as Aβ(1–42) lesioned groups [F (1, 48) = 29.43, 

p < 0.0001]  increased when compared to the vehicle groups, with specific significant (p < 0.0001) 

increase  in post-lesion Aβ(1–42) day 14 compared to its control. A significant day effect [F (3, 48) = 

27.97, p < 0.0001] was also found with specific significant (p < 0.0001) differences between post-lesion 

Aβ(1–42)  days 3, 7, 10 versus day 14  (See Fig. 3b). A significant interaction [F (3, 48) = 22.28, p < 

0.0001] was found between lesion and day for IL-6 levels in plasma. We also found a significant lesion 

effect in plasma TNF-α levels as the Aβ(1-42)  lesioned groups [F (1, 48) = 38.1, p < 0.0001] increased 

when compared to the vehicle groups, with specific significant (p < 0.0001 & p = 0.0093) increase in 

post-lesion Aβ(1–42) day 3 compared to its control and  day 10 compared to its control respectively. A 

significant day effect [F (3, 48) = 3.39, p = 0.0253] was also observed. A significant interaction was 

observed [F (3, 48) = 7.32, p < 0.0004] between lesion and day for TNF-a levels (See Fig. 3c). 

Anti-inflammatory cytokine level in plasma is illustrated in Figure 3d. 
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 A significant lesion effect was observed in  plasma IL-10 levels as Aβ(1–42) lesioned groups [F (1, 48) 

= 141.8, p < 0.0001] decreased when compared to the vehicle groups, with significant  decrease (p < 

0.0001) observed in post-lesion Aβ(1–42) days 7 and 14 groups when compared to their respective 

controls. A significant day effect [F (3, 48) = 172.7, p < 0.0001] showed progressive increase of IL-10 

on days 3-14  post-lesion in both vehicle and  Aβ(1–42) injected groups, with a significant (p < 0.0001) 

increase in Day 3 versus Day 7,  Day 10, and Day 14; as well as Day 7 versus Day 14; and Day 10 

versus Day 14 in the vehicle injected rats; and Day 3 versus 10; Day 3 versus 14; Day 7 versus 10 and 

Day 7 versus 14 in the Aβ(1–42) lesioned rats. (See Fig. 3d). We observed a significant interaction [F (3, 

48) = 57.63, p < 0.0001] between lesion and day for IL-10 levels in plasma. 

 

 

Fig. 3. (a) Plasma IL-1β levels in vehicle injected and Aβ(1-42) lesioned rats. ****(Day3vehicle vs 
Day3Aβ(1–42), p < 0.0001), **** (Day7vehicle vs Day7Aβ(1–42), p < 0.0001 ),  ****(Day3Aβ(1–42) vs Day10Aβ(1–42), 

p < 0.0001), ****(Day3Aβ(1–42) vs Day14Aβ(1–42), p = 0.0014), ***(Day7Aβ(1–42) vs Day10Aβ(1–42), p = 0.0009), 
****(Day7Aβ(1–42) vs Day14Aβ(1–42), p < 0.0001). (b) Plasma IL-6 levels in vehicle injected and Aβ(1-42) 
lesioned rats. ****(Day14vehicle vs. Day14Aβ(1–42), p < 0.0001),  ****(Day3Aβ(1–42) vs. Day14Aβ(1–42), p < 

0.0001), ****(Day7Aβ(1–42) vs. Day14Aβ(1–42), p < 0.0001), ***(Day10Aβ(1–42) vs. Day14Aβ(1–42), p < 0.0001). 
(c) Plasma TNF-α levels in vehicle injected and Aβ(1-42) lesioned rats. ****(D3vehicle vs D3Aβ(1–42), p < 

0.0001),  **(D10vehiclevs D10Aβ(1–42), p = 0.0093). (d) Plasma IL-10 levels in vehicle injected and Aβ(1-42) 
lesioned rats. ****(Day7vehicle vs. Day7Aβ(1–42), p < 0.0001),  ****(Day14vehicle vs. Day14Aβ(1–42), p < 
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0.0001), ****(Day7Aβ(1–42) vs. Day14Aβ(1–42), p < 0.0001), ***(Day10Aβ(1–42) vs. Day14Aβ(1–42), p < 0.0001). 
Values are expressed as Mean ± SEM (n = 7/group). Statistical analysis made by two-way ANOVA 
followed by Tukey’s post-hoc test for multiple comparison. 

 

 3.3. Correlation between memory decline and plasma cytokine levels in Aβ(1-42) lesioned rats. 

 The results presented in Fig. 4a-d depicts the correlation between memory decline expressed as time 

spent in the quadrant of the hidden platform of the Morris water maze and the plasma levels of cytokines 

in Aβ(1-42) lesioned rats. This statistical analysis was performed in order to determine whether there was 

a relationship between the progression of the disease with respect to memory decline and the  

fluctuations in the plasma cytokine levels.  

A strong negative correlation was observed between the time spent in the quadrant of the hidden 

platform and plasma IL-1β level (r = -0.6772, p < 0.0001) in the Aβ(1–42) lesioned rat model of AD (Fig. 

4a). Negative significant correlation was also observed between the time spent in the quadrant of the 

hidden platform and plasma IL-6 levels (r = -0.5027, p = 0.0064), in the Aβ(1–42) lesioned rat model of 

AD (Fig. 4b). Furthermore, there was a strong significant negative correlation between the time spent 

in the quadrant of the hidden platform and plasma TNF-α level (r = -0.646, p = 0.0002) in the Aβ(1–42) 

lesioned rat model of AD (Fig. 4c). However, we observed positive significant correlation between the 

time spent in the quadrant of the hidden platform and plasma levels of IL-10 (r = 0.7780, p = 0.0001) 

in the Aβ(1–42) lesioned rat model of AD (Fig. 4d). 
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Fig. 4.  (a) XY scatter plots of the time spent in the quadrant of the hidden platform and plasma levels 
of IL-1β for post-lesion day 3 to post-lesion day 14 groups of the Aβ(1-42) lesioned rat model of AD. (b) 
XY scatter plots of the time spent in the quadrant of the hidden platform and plasma levels of IL-6 for 
post-lesion day 3 to post-lesion day 14 groups of the Aβ(1-42) rat model of AD. (c) XY scatters plots of 
the time spent in the quadrant of the hidden platform and plasma levels of TNF-α for post-lesion day 3 
to post-lesion day 14 groups of the Aβ(1-42) rat model of AD. (d) XY scatters plots of the time spent in 
the quadrant of the hidden platform and plasma levels of IL-10 for post-lesion day 3 to post-lesion day 
14 groups of the Aβ(1-42) rat model of AD. The degree and nature of the correlation between the time 
spent in the quadrant of the hidden platform and the plasma parameter are given by the value of r 
(Pearson’s correlation coefficient). A value of p < 0.05 was considered as statistically significant for 
the number of rats (n = 28) in each group. 
 
 
3.4. Correlation between memory decline and plasma cytokine levels in the vehicle-infused (Control) 

rats. 

The results presented in Fig. 5 depicts the correlation between memory decline expressed as time spent 

in the quadrant of the hidden platform of the Morris water maze and the plasma levels of cytokines in 

the vehicle-infused (Control) rats. This statistical analysis was performed in order to determine whether 

the relationship observed in Aβ(1-42) lesioned rats with respect to memory decline and the fluctuations 

in the plasma cytokine levels was not due to the stress associated with the stereotaxic surgery. 

Weak correlations were observed between the time spent in the quadrant of the hidden platform and: 

(5a) plasma IL-1β level (r = -0.08508, p < 0.6669) in the vehicle-infused (Control) rats; (Fig. 5b) plasma 

IL-6 levels (r = -0.09363, p = 0.6356) in the vehicle-infused (Control) rats; (Fig. 5c) plasma TNF-α 
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level (r = -0.08631, p = 0.6623) in the vehicle-infused (Control) rats; (Fig. 5d) plasma levels of IL-10 

(r = -0.05747, p = 0.7714) in the vehicle-infused (Control) rats. 

 
 
Fig. 5. (a) XY scatter plots of the time spent in the quadrant of the hidden platform and plasma levels 
of IL-1β for post-lesion day 3 to post-lesion day 14 groups in the vehicle-infused (Control) rats. (b) XY 
scatter plots of the time spent in the quadrant of the hidden platform and plasma levels of IL-6 for post- 
lesion day 3 to post-lesion day 14 groups in the vehicle-infused (Control) rats. (c) XY scatters plots of 
the time spent in the quadrant of the hidden platform and plasma levels of TNF-α for post-lesion day 3 
to post-lesion day 14 groups in the vehicle-infused (Control) rats. (d) XY scatters plots of the time spent 
in the quadrant of the hidden platform and plasma levels of IL-10 for post-lesion day 3 to post-lesion 
day 14 groups in the vehicle-infused (Control) rats. The degree and nature of the correlation between 
the time spent in the quadrant of the hidden platform and the plasma parameter are given by the value 
of r (Pearson’s correlation coefficient). A value of p < 0.05 was considered as statistically significant 
for the number of rats (n = 28) in each group. 
 

4. Discussion 

This study aimed to mimic Alzheimer’s disease progression following Aβ(1-42)  infusion into the 

hippocampal region of rat. Aβ(1-42)  infusion into the hippocampal area of the brain has been shown to 

elicit cognitive deficits as a result of its deleterious role in memory processing (Wang et al., 2017, 

Christensen et al., 2008). In our study we firstly investigated the effect of Aβ(1-42) on memory and 

secondly evaluated how Aβ(1-42) influences plasma levels of pro- and anti-inflammatory markers. We 

further concluded by highlighting the  relationship between the decline in spatial memory and plasma 

levels of  these inflammatory markers.  
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In the MWM test, we observed that all rats learnt to  locate the hidden platform as indicated by a 

decreased escape latency over the training period of days, this shows that spatial learning was not 

affected pre-lesion. We however observed  a lesion effect following infusion of Aβ(1-42), as  the rats spent 

lesser time in the quadrant of the hidden platform indicating a deficit in memory. The lesion effect was 

prolonged as the post-lesion day 14 group of rats also showed memory deficits. Our findings are in 

agreement with studies that showed that intrahippocampal Aβ(1-42)  infusion results to impaired spatial 

memory (Wang et al., 2017, Christensen et al., 2008). Cognitive impairment was observed in our study 

following a single bilateral intrahippocampal injection of Aβ(1–42), resulting into a time-dependent 

impairment, thereby establishing our model. We also observed differences in time spent in quadrant of 

hidden platform between the vehicle and Aβ(1–42) lesioned rats in the post-lesion Day 3, 7, 10 and 14 

groups. Impairment of spatial memory in animals tested at delayed time-points following Aβ(1–42) 

injection into the dorsal hippocampus has been reported by some studies (Hruska and Dohanich, 2007, 

Christensen et al., 2008). 

 

Markers of neuroinflammation such as IL-1β, IL-6, TNF-α and IL-10 have been shown to have direct 

effects on cognition and memory (Gibertini et al., 1995, Swardfager et al., 2010, Khemka et al., 2014). 

In order to illuminate the interaction between these cytokines and how the resultant synergistic effect 

modulates memory, we engaged the use of multiplex assay and found that  Aβ(1–42) infusion led to IL-

1β, IL-6 and TNF-α elevation in the plasma of the post-lesion day 3, 7, 10 and 14 group of rats when 

compared to the respective vehicle group of rats. The elevated plasma levels of these pro-inflammatory 

cytokines (TNF-α, IL-1β, IL-6) observed in this study, is an indication of the unguarded inflammatory 

response in the progression of the disease. This is perhaps due to the induced expression of pro-

inflammatory genes, which could result into loss of neurons as well as the clustering of phosphorylated 

tau (Von Bernhardi et al., 2010).  

 

We propose that the initial upsurge in plasma level of IL-1β may be due to its role in initiating immune 

response to neuro-inflammatory cascade and this initial stimulus for elevation is likely the result of 

microglia activation to the lesioning effect of Aβ(1–42) (Simard et al., 2006). The plasma level of IL-6 

showed a clear upsurge as observed in the post-lesion day 14 group suggestive of its role as a critical 

cytokine controlling the transition from innate to acquired immunity, which is imperative for dealing 

properly with injured or infected CNS tissue (Swartz et al., 2001). Studies also suggest that the 

detrimental influence of IL-6 on memory processes is potentiated over a progressive period of time in 

animals, this may therefore account for the late elevation of this cytokine as observed in this study. This 

age-dependent effect is demonstrated by showing progressive memory decline in mice that had 

increased levels of  IL-6, while a gradual memory improvement is observed in mice with reduced levels 

of IL-6 (Heyser et al., 1997, Braida et al., 2004). TNF-α levels in the plasma of Aβ(1–42) lesioned rats 

was also elevated, causing  a decline in memory, although this effect is less robust than the effects of 
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IL-1β and IL-6. This statement is true of our findings as there was a transient increase in the TNF-α 

levels in the lesioned rats compared to the vehicle injected rats. The process through which TNF-α 

mediates decline in long term potentiation (LTP) is quite alike to the process involved in the deleterious 

effect of IL-1β on LTP. Just like IL-1β,  TNF-α prompts the activation of  p38 mitogen-activated protein 

(MAP) kinase in the dentate gyrus (Butler et al., 2004). The observed significance in the day 3 Aβ(1–42) 

lesioned rats when compared to the days 7, 10 and 14 groups can be associated with the ability of p38 

mitogen -activated protein (MAP) kinase to only moderates primarily the initial inhibitory effect of  

TNF-α on LTP. Another suggestive cause for the observed fluctuations in plasma TNF-α level is the 

TNF receptor deprivation and attenuation of its expression mediated by IL-10 in a bid to reduce cellular 

response.  

 

Our results are in agreement with studies by  (Wang et al., 2015b) that demonstrated that peripheral 

inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, traverse the blood brain barrier to prompt 

neuro-inflammatory reactions under pathologic conditions. However, the observed decline in plasma 

level of IL-1β across the post-lesion day 3, 7, 10 and 14 groups is suggestive of the counteracting effect 

of IL-10 to limit inflammation by reducing the synthesis of IL-1β, subduing expression of the receptor 

for IL-1β and by hindering activation of the associated receptor in the brain (Strle et al., 2001). 

 

Concomitantly, we found that the plasma level of anti-inflammatory cytokine IL-10 decreased in the 

lesioned rats from post-lesion day 7 to the post-lesion day 14 groups. IL-10 is an anti-inflammatory 

cytokine that brings to bear surfeit immunomodulatory functions during an inflammatory response. The 

degree of pathology in the brain determines IL-10 expression, with the aim of promoting survival of 

neurons and glial cells, and dampening of inflammatory responses through signalling pathways (Strle 

et al., 2001, Garcia et al., 2017). IL-10 limits inflammation by reducing the expression of cytokine 

receptors and inhibiting activation of receptors (Strle et al., 2001, Garcia et al., 2017). However, the 

significant increase in the plasma levels of IL-10 in the vehicle-infused groups could be due to  cellular 

stress in this case suggestive of induced by traumatic brain injury (TBI) resulting from the stereotaxic 

surgery. Previous studies have described overexpression of IL-10 in association with cellular stress (Le 

Moine et al., 1996). Our results showed a progressive time-based increased in the level of IL-10 in the 

vehicle groups from day 3 to day 7 followed by decrease in the day 10 group, with the uptrend 

continuing in day 14 group. The increase recorded in the vehicle-infused groups may be associated with 

increase expression of IL-10 mRNA immediately following TBI, which correlated with increase in IL-

10 protein as reported by (Kamm et al., 2006).  

 

These findings suggest that the surge in IL-10 levels may be due to an increase in local IL-10 synthesis 

rather than systemic IL-10 entering through a compromised blood-brain barrier (BBB). Early reports 

found that plasma IL-10 levels peak within the first 3 hrs (Hensler et al., 2002, Hensler et al., 2000), 
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while a later study showed the peak is between 5 and 6 days post-injury (Helmy et al., 2012). Other 

studies state that IL-10 levels may remain elevated for up to 22 days (Csuka et al., 1999, Maier et al., 

2001) or even up to 6 months (Caplan et al., 2015). Cases of a second peak in concentration have also 

been reported, this may explain the slight decrease noticed on day 10 giving rise to the second peak on 

day 14 (Csuka et al., 1999, Hensler et al., 2000). However, there is inconsistency in the literature as to 

whether IL-10 levels are more increased in the CSF or serum following TBI (Csuka et al., 1999, Maier 

et al., 2001), rendering it difficult to determine the source of increased IL-10 levels. It has been reported 

that IL-10 can abrogate memory deficit observed in models of Alzheimer’s disease (Kawahara et al., 

2012, Kiyota et al., 2012b) probably via downregulating the elevation of the pro-inflammatory 

cytokines. 

 

Overall, the correlative test showed that increase in the peripheral levels of IL-1β, IL-6 and TNF-α in 

Aβ(1–42) lesioned rats was associated with  a decrease in the time spent in the quadrant of the hidden 

platform. On the other hand, decrease in anti-inflammatory cytokine IL-10 was associated to  a decrease 

in the time spent in the quadrant of the hidden platform and vice-versa. From what has already been 

stated from our results, we can infer that plasma cytokine levels reflect the state of the central nervous 

system. This goes further to indicate that there is a suggestive breakdown of the blood brain barrier, 

hence the pathway of communication between the central nervous system and peripheral immune 

system (Wilson et al., 2002, Dantzer et al., 2008). 

 

Based on previous findings by (Faucher et al., 2016), we can infer that the progressive spatial memory 

decline observed in our study is not due to the occurrence of amyloid plaques but caused by the 

molecular alterations elicited following the infusion of Aβ(1–42). This suggestive evidence depicted by 

the altered peripheral cytokine level in this study clearly shows a role for IL-1β, IL-6 and TNF-α in the 

modulation of memory, despite the variations across groups for each cytokine. As reflected in our 

results, these cytokines most likely exert an indirect synergistic effect on memory, rather than acting 

independently as postulated by (Donzis and Tronson, 2014). For instance, the observed increase in IL-

1β is not in isolation as increase in IL-6 and TNF-α are also observed along with a decrease in IL-10.  

 
5. Conclusion 

This study is consistent with a growing body of literature that implicates inflammatory cytokines in AD 

pathology. The present study demonstrated that peripheral pro-inflammatory cytokines such as IL-1β, 

IL-6 and TNF-α are over-expressed in Aβ(1-42) lesioned rat, indicating a profound involvement of 

neuroinflammation in initiating and exacerbating AD pathology. Our results also suggest that the 

release of brain cytokines is a secondary response to the hallmarks of AD, occurring over a progressive 
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phase of the disease. This study most importantly demonstrated that memory decline may be associated 

with cytokine dysregulation. 
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PROLOGUE 

Chapter 4 focuses on the impact of microglial genes (CD33 and TREM2) regulating 

neuroinflammation, and their correlation with post-training recall in a progressive beta-amyloid model 

of AD. Formats used in this chapter are according to the journal specifications. This manuscript has 

been published in the journal of Behavioural Brain Research. See appendix V. 
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ABSTRACT 

Emerging evidence indicates that the pathogenesis of Alzheimer’s disease (AD) is not confined to 

neuronal disruptions but robustly communicates with the brain’s immune system. Genome-wide 

analysis suggests that several genes, which increase the risk for AD, encode for factors that regulate the 

glial clearance of misfolded proteins and the inflammatory reaction. This study reappraises the amyloid 

hypothesis by focusing on the impact of neuroinflammation in a beta-amyloid model of AD, how this 

possibly exacerbates the progression of the disease and the correlation between genes regulating 

neuroinflammation (CD33 and TREM2) with post-training recall. Male Sprague-Dawley rats were used 

for this study, randomly divided into a vehicle group of rats (n = 40) that were injected with phosphate-

buffered saline (PBS) and an Aβ(1–42) group (n = 40) that were injected with the neurotoxin Aβ(1–42) 

peptide. Fear conditioning test (FCT) to assess fear memory was conducted pre and post-lesion. The 

polymerase chain reaction was performed to determine the expression levels of CD33 and TREM2 

genes. Our results show that Aβ(1–42) lesion of the rat CA1 hippocampal subregion significantly reduces 

contextual fear memory, and this reduction was exacerbated as the post-lesion days increased. We also 

observed an increase in the expression levels of CD33 and TREM2 genes in the Aβ(1–42) lesioned groups 

when compared to their corresponding vehicle groups. Taken together, the behavioral and gene 

expression data provide inferential evidence that Aβ(1–42) infusion impairs contextual memory by 

disrupting cellular pattern separation processes in the hippocampus, thus linking neuroinflammation to 

specific neural circuit disruption and cognitive deficit. 

 

Keywords: Alzheimer’s disease; Fear conditioning; Cornu ammonis 1; Contextual memory; Microglial 

genes; Amyloid beta  
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1. Introduction 

The cornu ammonis 1 (CA1) is a subregion of the hippocampus, crucially involved in learning, spatial 

orientation, and different memory functions, including the recall of remote episodic memory and the 

strength of integrated memories (Bartsch et al., 2011, Amaral and Lavenex, 2007). It represents the 

primary output of the hippocampus, can thus deliver information about temporally ordered events, such 

as specific item–position conjunction within the sequence and specific alterations of a known sequence 

(Barrientos and Tiznado, 2016). Apart from being the primary output of the hippocampus, the CA1 

integrates information from the entorhinal cortex (EC) to the CA1; a direct projection and an indirect 

EC projection through cornu ammonis 3 (CA3) and dentate gyrus (Van Strien et al., 2009, Jarsky et al., 

2005, Bittner et al., 2015). The ensued matching or mismatching of information from these two 

projections elicits a representation of familiar or novel items (Barrientos and Tiznado, 2016).  

Studies have shown that CA1 is one of the most affected regions in Alzheimer’s disease (AD), mainly 

at early stages presented as neuronal alterations (Llorens-Martín et al., 2014, Gómez‐Isla et al., 1997, 

Yang et al., 2018). Alzheimer’s disease (AD) is the most ubiquitous cause of dementia, accounting for 

50%  to  70% of all cases of dementia (Winblad et al., 2016). The neuropathology of AD includes the 

presence of plaques of amyloid-beta (Aβ) peptides and intracellular neurofibrillary tangles (NFTs) of 

hyperphosphorylated forms of microtubule-associated tau protein in the neurons (Hyman et al., 2012). 

Aβ is implicated as a central pathogenic event in AD, due to impaired clearance rates in AD patients. 

In contrast, its production rates remain unaltered when compared with those in healthy controls 

(Mawuenyega et al., 2010). Due to these changes, synaptic degeneration and death of selected 

populations of nerve cells take place, being accompanied by pronounced inflammation of the affected 

brain regions (Martucci et al., 2014, Goedert, 2015).  

Genome-wide association studies implicate innate immunity in susceptibility to Alzheimer’s disease 

(AD), with over 30 genetic loci for AD identified, many related to immune response and microglia. 

Among these are CD33 - Cluster of Differentiation 33 (Bertram and Tanzi, 2008, Hollingworth et al., 

2011, Naj et al., 2011) and TREM2 -Triggering Receptor Expressed on Myeloid cells 2 (Guerreiro et 

al., 2013, Jonsson et al., 2013) which are exclusively expressed in the brain by innate immune cells.  

CD33 encodes for Cluster of Differentiation 33, a type I transmembrane protein belonging to the class 

of sialic acid-binding immunoglobulin-like lectins, which mediates the cell-cell interaction and inhibit 

normal functions of immune cells such as phagocytosis (Crocker et al., 2007). In the brain, CD33 is 

mainly expressed on microglial cells, and compelling evidence indicates that CD33 facilitates Aβ-

related pathology in AD by impairing microglia-mediated Aβ clearance (Bradshaw et al., 2013b, 

Malpass, 2013). Increased CD33 expression by microglia appears to result in significantly reduced 

amyloid-beta (Aβ) peptide phagocytosis as microglia lacking CD33 were able to phagocytose 
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significantly greater amounts of Aβ peptide than microglia expressing CD33 at normal levels (Griciuc 

et al., 2013).  

TREM2 encodes for the Triggering Receptor Expressed on Myeloid cells 2 (TREM2), a protein highly 

expressed on the surface of microglia in the brain (Neumann and Takahashi, 2007). It has been 

suggested that mutated TREM2 is less effective in lipid signaling and thus may induce microglial 

activation leading to neuroinflammation (Yeh et al., 2016). TREM2 has been ascribed a multitude of 

cellular functions, including regulation of phagocytosis, inhibition of inflammatory signaling, and 

promotion of cell survival (Colonna, 2003). Its function in phagocytosis is particularly relevant in AD 

as a mechanism for clearing of pathogenic proteins, such as Aβ, thereby leading to a reduction in Aβ 

pool. TREM2 is also important for the microglial response to amyloid pathology and impairment of 

TREM2 function may alter plaque morphology and increase plaque-associated toxicity (Ulrich et al., 

2017). Moreover, data from several animal models show that TREM2 takes part in the microglia 

response to Aβ plaques (Ulrich et al., 2014, Ulland and Colonna, 2018). These results suggest that both 

TREM2 and CD33, which are involved in the innate immunological response, are important for AD 

development. Hence, it confirms the significant role of neuroinflammatory processes in the 

pathogenesis of AD. 

Most studies on the effects of neuroinflammation on cognition have examined the effect on memory 

acquisition or consolidation. In contrast, there are relatively few reports on whether neuroinflammation 

affects memory retrieval. Therefore, this study reappraises the amyloid hypothesis by focusing on the 

impact of neuroinflammation in a beta-amyloid model of AD, how this possibly exacerbates the 

progression of the disease and the correlation between genes regulating neuroinflammation (CD33 and 

TREM2) with post-training recall.   

 

2. Materials and methods 

2.1 Animals 

All protocols involved studies on male Sprague-Dawley rats and were approved by the University of 

KwaZulu-Natal Animal Care Ethics Committee (AREC/015/018D). The animals were housed under 

controlled conditions of temperature (25 ± 1◦C) and luminosity (12/12 h light/dark cycle, with lights, 

turned on 7:00 a.m. and turned off 7:00 p.m.). Food and water were provided ad libitum. The animals 

were randomly divided into a vehicle group of rats (n = 40) that were infused with phosphate-buffered 

saline (PBS) and an Aβ(1–42) group (n = 40) that were infused with the neurotoxin Aβ(1–42) peptide. Each 

group was further sub-divided into four groups (Day 3 group: animals euthanized 3 days after infusion; 

Day 7 group: animals euthanized 7 days after infusion; Day 10 group: animals euthanized 10 days after 

infusion, and Day 14 group: animals euthanized 14 days after infusion) (n = 10/group). Before all 

procedures, animals were allocated to the experimental room for habituation, and all efforts were made 
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to minimize pain, suffering, or animal discomfort. All behavioral experiments were conducted in the 

mornings, beginning at 8:00 a.m. 

 

2.2 Ab(1−42) lesion of CA1 hippocampal subregion (Neuroinflammatory model of AD) 

The relevance of using intrahippocampal Ab(1−42) as an animal model of AD has been reviewed by 

(McLarnon and Ryu, 2008, Shallie et al., 2020), and overall procedures employed in the use of this 

model are detailed by (Jean et al., 2015). After anesthesia with ketamine/xylazine cocktail at 100 mg/kg 

ketamine and 5 mg/kg xylazine by injecting intraperitoneally (IP), the depth of anesthesia was 

confirmed by the loss of toe pinch reflex. The animals were subjected to stereotaxic surgery for Ab(1−42) 

peptide (5 µg/5 µl) or control 0.01M phosphate-buffered saline (PBS) infusion bilaterally into dorsal 

hippocampus subregion CA1 from bregma (AP: −4.8 mm; ML: ±3.4 mm and DV: −3.0). The 

coordinates were chosen according to a rat brain atlas (Paxinos and Watson, 2006), and microinjections 

were performed using a 10 μL microsyringe (Hamilton Company, Reno, NV, USA) connected to a 26-

gauge steel needle into the brain sites. Temgesic was administered subcutaneously for pain relief. 

 

2.3 Drugs and Reagents 

Aβ(1–42) peptide was purchased from DLD Scientific (Durban North, South Africa). Ketamine, xylazine, 

and temgesic were obtained from Sigma (ST. Louis MO, USA). Real-time PCR kits were purchased 

from Bio-Rad Laboratories (CA, USA). 

 

2.4. Assessment of fear learning and memory 

The behavioral paradigm used to assess fear learning and memory in this study is the contextual and 

cued fear conditioning test (Crawley, 2007, Fanselow and Poulos, 2005, LeDoux, 2000). In this test, 

animals are exposed to a pairing of an auditory cue (neutral or conditioned stimulus - CS) with an 

electric foot shock (aversive or unconditioned stimulus - US). They respond to the fear-producing 

stimulus by displaying freezing behavior, measured as an index of associative fear learning and memory 

(Maren, 2001, Fanselow, 2000). The contextual and cued Fear Conditioning test was performed as 

described by (Shoji et al., 2014) in a 26 × 32 × 21 cm operant chamber. In this study, the chamber was 

equipped with a speaker and a stainless-steel rod floor through which a foot shock was administered.  

On day 1, training consisted of placing the rat in a conditioning chamber, and the rats were accorded 

free access in the chamber for 3 mins. After that, the auditory cue (tone) was presented as a CS for 30 

sec, and a (1.0 mA) foot shock was given to the rats as a US during the last 2 sec of the sound. The 

presentation of the CS-US pairing was repeated three times per session (120, 240, and 360 sec after the 

beginning of the conditioning) to strengthen the association. The rats were left in the chamber for a 

length of time (90 sec) after the last presentation to further establish the association between the context 
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of the chamber and the aversive experience. Context test was measured 24 hours after conditioning 

(regarded as day 2a, see figure 1); the rats were returned to the same conditioning chamber and allowed 

to explore the chamber for 3 mins freely without CS and US presentations. They were scored for 

freezing behavior to measure contextually conditioned fear. The cued test was conducted on the same 

day (regarded as day 2b, see figure 1) as the context test. In this test, rats were placed into another 

testing chamber with different properties, providing a new context that was not related to the 

conditioning chamber for another 3 min. At the end of the initial 3 min, the auditory cue that was 

presented at the time of conditioning was given to rats for 3 min in the novel context environment. In 

this protocol, the cued test was performed a few hours after the context test. Rats were given free access 

in the chamber for 360 sec. During this first 3 min, neither a CS nor US was presented, and after that, 

a CS (a 55 dB white noise) was presented for the last 3 min. Rats (n = 10/ group) were trained and tested 

for two consecutive days before lesioning and post-training recall was assessed for all groups (see figure 

1).  

2.5. Euthanization and Neurochemical Analysis  

Animals were euthanized via deep anaesthesia using the halothane chamber. The excised brain tissues 

were immediately placed in frozen 0.9% saline slush before the hippocampus was  carefully dissected 

out and quickly frozen in a bio-freezer at -80°C.   

 

 

 

Figure 1. Experimental timeline. 

 

2.6. Real-time quantitative PCR (qPCR) analysis for CD33 and TREM2 mRNA levels  

Hippocampal tissue was suspended in lysis buffer at a ratio of 1:6, the samples were homogenized using 

a Tissue Sonicator (CML-4, Fisher, USA), and total RNA isolation was carried out as per 

manufacturer’s protocol (ZR RNA MiniPrepTM, USA). A NanoDrop Spectrophotometer (A260: A280 

ratio), was used to determine the quality and concentration of the total RNA, purity of 1.7–2.1 

recommended for use in the construction of cDNA was maintained. Total RNA was reverse-transcribed 

into cDNA using the iScriptTM cDNA synthesis kit and run in duplicate in a 20 μl reaction volume in a 

96-well plate format, containing 500 nM of each oligonucleotide primer and SYBR Green PCR Master 

Mix (Bio-Rad). The primers (Table 1) were synthesized by Inqaba Biotech (Pretoria, South Africa), 



 87 

with Gapdh serving as the reference gene. Primer sequences were reconstituted in RNA nuclease-free 

water according to the manufacturer’s report and were added to a master mix comprising of SYBR 

green dye and nuclease-free water. PCR was performed using Lightcycler 96 consisting of denaturation 

at 95°C for 10 seconds, and then 20 seconds of primer annealing at 60°C  (for TREM2), 60°C (for 

CD33) and 60°C (for Gapdh), followed by final elongation at 72°C for 20 seconds. The glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) was used as an internal control to normalize the expression of 

the target (Guo et al., 2013). We ensured that all qPCR reactions produced a single peak with the melt 

curve analysis. Relative expression levels were calculated after normalization against the reference gene 

GAPDH using 2−DDCT method, and results were expressed as 2−(gene of interest mean Ct value − 

control gene mean Ct value) for the qRT-PCR experiments (Livak and Schmittgen, 2001). Our qPCR 

analyses followed the most recommended criteria for minimal information for publication of 

quantitative real-time PCR experiments (MIQE) (Bustin et al., 2009). 

 

Gene                                Forward                                                        Reverse 

TREM2    5¢-AAGATGCTGGAGACCTCTGG-3¢           5¢-GGATGCTGGCTGTAAGAAGC-3¢ 

CD33       5¢-ATGAGAGAGCTGGTCCTGGT-3¢            5¢-CCCATGTGCACTGACAGCTT-3¢ 

GAPDH   5¢-TGTGAACGGATTTGGCCGTA-3¢            5¢-ATGAAGGGGTCGTTGATGGC-3¢ 

 
Table 1. Nucleotide sequence of primers used  for real-time PCR.  

 

2.7. Statistical Analysis 

 The data were analysed using the software program GraphPad Prism (version 7.0, San Diego, 

California, USA). The Shapiro-Wilk test was used to test for normality of distribution and where data 

met requirements, parametric test was used. The main factors in each analysis included lesion and day. 

Two-way analysis of variance (ANOVA) was used. A p-value < 0.05 was considered significant in all 

analysis. Significant main effects were followed by Tukey’s post hoc test. 

 
3.  Results 

3.1. Aβ(1–42) lesion of CA1 reduces contextual fear memory  

Contextual fear memory was assessed pre-lesion and post-lesion with Aβ(1–42) on days 3, 7, 10 and 14. 

A significant interaction (F (3,72) = 5.894, p = 0.0016) was observed between lesion and day, the post-

lesioned Aβ(1–42) group of rats showed reduced freezing behavior relative to the pre-lesioned group when 

placed in the context, as measured by the mean percent of time freezing across all three minutes (main 

effect of lesion : (F (1,72) = 82.22, p < 0.0001). Freezing also varied significantly as a function of day 

across the post-lesion days in the context (main effect of day: (F (3,72) = 8.806, p <  0.0001) (Figure 

2). 
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Figure 2. Mean percent freezing time in pre and post-lesion Aβ(1–42) contextual fear test. 

3.2. Aβ(1–42) lesion of CA1 unalters cued fear memory  

Cued fear memory was assessed on the same day as the contextual fear memory, pre-lesion and post-

lesion with Aβ(1–42) on days 3,7,10 and 14. No significant difference in freezing was detected between 

the Aβ(1–42) post-lesioned group and the pre-lesion group of rats. (main effect of lesion: F(1,72) = 

0.02609, p = 0.8724); main effect of day: F(3,72) = 0.7217, p = 0.5439), nor an interaction (F(3,72) = 

0.2348, p = 0.8717) was detected, therefore post hoc tests within each group were not performed (Figure 

3).  

 

   
 

Figure 3. Mean percent freezing time in pre and post-lesion Aβ(1–42) cued fear test. 
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3.3.  Hippocampus modulates contextual but not cued memory in Aβ(1–42) rat model of AD 

A positive significant (F (3,72) =9.143, p < 0.0001) interaction was observed between the vehicle-

treated and Aβ(1–42) lesioned rats in the contextual but not in the cued tests. In addition, we observed a 

main effect of lesion (F (1,72) = 10.15, p < 0.0001) was observed between the vehicle-treated group 

and the post-lesion Aβ(1–42) group in the context test but not in the cued test, furthermore, a significant 

day effect (F (3,72) = 105.5, p < 0.0001) between the vehicle-treated and the post-lesion Aβ(1–42) group 

in the context test was observed (Figure 4). 

 

 

Figure 4. Mean percent freezing time in (a) contextual and (b) cued fear test across post-lesion days 3, 

7, 10 and 14 for the vehicle-treated and Aβ(1–42)  lesioned groups. 

3.4. Upregulated mRNA CD33 and TREM2 expression 

Significant lesion effect of intrahippocampal injection of Aβ(1–42) on relative CD33 gene expression was 

observed [F (4, 45) = 90.79, p < 0.0001], with upregulated expressions on post-lesion day 3 (p < 0.0001), 

day 7 (p < 0.0001), day 10 (p < 0.0001) and day 14 (p < 0.0001) when compared to the control(day 14 

PBS-lesioned group) group. Significant downregulated day effect was observed within the Aβ(1–42) 

lesioned groups at post-lesioned day 7 vs day 14 (p = 0.0483) and day 3 vs. day 14 (p = 0.0083) (Figure 

5A). Significant lesion effect of intrahippocampal injection of Aβ(1–42) on relative TREM2 gene 

expression [F (4, 45) = 39.5, p < 0.0025] with upregulated expressions on post-lesion day 3 (p = 0.0002), 

day 7 (p < 0.0001), day 10 (p < 0.0001) and day 14 (p < 0.0001) when compared to the vehicle injected 

group was observed. Significant upregulated day effect was also observed within the Aβ(1–42) lesioned 

groups at post-lesioned day 3 vs day 10 (p < 0.0001); day 3 vs. day 14 (p < 0.0001); day 7 vs day 10 (p 

= 0.0004) and day 7 vs. day 14 (p < 0.0001) (Figure 5B). 
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Figure 5(A). Relative CD33 (B) TREM2 expression in the hippocampus of  Aβ(1–42) lesioned rats across 

different post-lesion days. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (two-way ANOVA 

followed by Tukey’s post-hoc test). All data are expressed as means ± SEM. (n = 10/ group) 

3.5. Correlative expressions of CD33 and TREM2 genes 

Strong negative correlations were observed between the relative expressions of CD33 and TREM2 

genes on post-lesion day 3 (r = -0.9664, p < 0.0001) (Fig. 6a); post-lesion day 7 (r = -0.8777, p = 0.0008) 

(Fig. 6b); post-lesion day 10 (r = -0.9060, p = 0.0003) (Fig. 6c) and post-lesion day 14 (r = -0.8649, p 

= 0.0012) (Fig. 6d) in the Aβ(1–42) lesioned rat model of AD (Figure 6).  

 

BA
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Figure 6. XY scatter plots of the relative expressions of CD33 and TREM2 on (a) post-lesion day 3 (b) 

post-lesion day 7 (c) post-lesion day 10 and (d) post-lesion day 14 with Aβ(1–42). A value of p < 0.05 

was considered as statistically significant for the number of rats (n = 10) in each group. 

 
3.6. Correlation between CD33 mRNA expression with contextual freezing time. 

Strong negative correlations were observed between the relative expressions of CD33 mRNA and 

contextual freezing time on post-lesion day 3 (r = -0.9285, p < 0.0001) (Fig. 7a); post-lesion day 7 (r = 

-0.9047, p < 0.0003) (Fig. 7b); post-lesion day 10 (r = -0.9328, p < 0.0001) (Fig. 7c) and post-lesion 

day 14 (r = -0.9339, p < 0.0001) (Fig. 7d) in the Aβ(1–42) lesioned rat model of AD (Figure 7).  
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Figure 7. XY scatter plots of the relative expressions of CD33 and contextual freezing time on (a) post-

lesion day 3 (b) post-lesion day 7 (c) post-lesion day 10 and (d) post-lesion day 14 with Aβ(1–42). A value 

of p < 0.05 was considered as statistically significant for the number of rats (n = 10) in each group. 

 

3.7. Correlation between TREM2 mRNA expression with contextual freezing time. 

Strong positive correlation was observed between the relative expression TREM2 mRNA and 

contextual freezing time on post-lesion day 3 (r = 0.9829, p < 0.0001) (Fig. 8a); post-lesion day 7 (r = 

0.9093, p < 0.0003) (Fig. 8b); post-lesion day 10 (r = 0.8550, p < 0.0016) (Fig. 8c) and post-lesion day 

14 (r = 0.9046, p < 0.0003) (Fig. 8d) in the Aβ(1–42) lesioned rat model of AD (Figure 8).  
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Figure 8. XY scatter plots of the relative expressions of TREM2 and contextual freezing time on (a) 

post-lesion day 3 (b) post-lesion day 7 (c) post-lesion day 10 and (d) post-lesion day 14 with Aβ(1–42). 

A value of p < 0.05 was considered as statistically significant for the number of rats (n = 10) in each 

group. 

 

4.  Discussion 

In this study, we assessed the impact of Aβ(1–42) lesion of CA1 neuronal activity, as a model of AD, on 

fear memory after acquisition. We further investigated the expression of some microglial genes 

regulating neuroinflammation, such as CD33 and TREM2 and correlated these expressions to post-

training recall. Our observed data provide credible reinforcement for a compelling interaction between 

immune system activation and neural circuit activity. Notably, this occurred when levels of IL-1β, TNF- 

α and IL-6 were elevated in the dorsal hippocampus of Aβ(1–42) lesioned rats as opposed to the vehicle 

infused rats (Shallie et al., 2020), a structure highly mandatory for behavioral context discrimination 

(Czerniawski and Guzowski, 2014).  

We observed a difference in the behavioral outcomes after CA1 lesion at all post-lesion intervals, 

observed as decreased freezing in context fear memory but not in cued fear memory. This decreased 

freezing indicates that the Aβ(1–42) lesioned rats have impaired memory for the context test but not the 

cued test. These results are indicative of the specified actions of CA1 as reported by previous studies, 

where context fear conditioning has been shown to require the activity of neurons in the hippocampus, 

specifically in CA1 region, for context encoding (Goshen et al., 2011, Muller et al., 1997, Zelikowsky 

et al., 2014), while cued fear conditioning requires activity from auditory regions and amygdala 
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structures but do not usually require the hippocampus (Phillips and LeDoux, 1992, Muller et al., 1997). 

These latter studies are suggestive reasons for the unaltered cued fear memory in Aβ(1–42) lesioned rats 

as observed in this study, as both vehicle-infused and Aβ(1–42) lesioned rats exhibited similar levels of 

memory in the cue test. Previous studies have also shown that neurons in the dorsal CA1 region of rats 

have strong spatial properties, with well-defined place fields capable of encoding a context (Jung et al., 

1994, Moser et al., 2008). Hence, lesions to or inhibition of the dorsal hippocampus impair context fear 

memory (Hunsaker and Kesner, 2008, Wiltgen et al., 2006), as observed in the dorsal CA1 of this 

model. 

Aβ(1–42) lesion of the CA1 subregion of the hippocampus is known to elicit neuroinflammatory changes 

as a result of prolonged activation of microglia cells, causing subsequent secretion of inflammatory 

cytokines (Shallie et al., 2020). Our results showed that mRNA levels of  TREM2 and CD33 were 

increased at all intervals in the hippocampus of Aβ(1–42) lesioned rats relative to the respective vehicle-

infused rats. We observed a significant 2.8 fold increase of CD33 expression in the day 3 Aβ(1–42) 

lesioned group of rats relative to control, with a slight decrease over the subsequent post-lesion 

intervals, probably due to the counteracting increased expression of TREM2. The increased mRNA 

CD33 expression in Aβ(1–42) lesioned rats denotes phagocytotic inhibition, indicating that there is an 

impaired microglial mediated Aβ clearance. Our results of increased expression of CD33 is consistent 

with the previous study by (Griciuc et al., 2013), which showed increased mRNA levels of CD33 in 

AD patients. Expression of TREM2, on the other hand, showed a progressive increase across the post-

lesion intervals with an initial significant 1.8 fold increase in the Aβ(1–42) lesioned rats relative to the 

control. TREM2 expression increase in the Aβ(1–42) lesioned rats indicates a heightened state of 

microgliosis, as microglial cells are over-activated to facilitate phagocytosis. Our results suggest that 

TREM2 mediates Aβ-induced microglial response, as supported by previous study by (Zhao et al., 

2018). Although mRNA levels may not be an accurate estimate of protein level since gene expression 

is controlled at different stages and in many different ways. However, the ability to quantify the level 

at which a particular gene is expressed provides much valuable information as reliance on mRNA 

measurements can be traced both to the relative ease of availability of mRNA compared to protein data 

(Vogel and Marcotte, 2012, Maier et al., 2009). Moreover, the mRNA expression levels can be used to 

deduce the functionality of genes with the implicit assumption that differentially expressed mRNAs 

impact their respective experimental conditions via differences in proteins. 

 

Correlative expression of both genes shows an inverse relationship, depicting an interactive platform 

and a possible explanation to the crosstalk between these genes, as reported by Griciuc et al., 2019. The 

correlative mRNA expression of the genes with contextual fear freezing time reflects the role of these 

genes in memory. The negative correlation of CD33 mRNA expression level with contextual freezing 

time indicates an impaired memory as mRNA CD33 expression increases. A study by Griciuc et al., in 



 95 

which the T allele of SNP rs3865444, which led to the reduction of CD33 levels in the brain, was found 

to be linked with decreased amyloid plaque burdens in the brain cortex of AD patients supports our 

finding (Griciuc et al., 2013). Further corroborating this finding, Bradshaw and colleagues showed that 

the C allele of SNP rs3865444, which caused the elevation in CD33 levels, was associated with a higher 

burden of fibrillar amyloid in older asymptomatic individuals (Bradshaw et al., 2013a). Animal models 

of AD have also provided more direct evidence on the association between CD33 and Aβ pathology, as 

amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice lacking CD33 exhibited significant 

lower Aβ levels as well as reduced amyloid plaque burden in the brain (Griciuc et al., 2013). These 

observations indicated a pathogenic role of CD33 in the facilitation of Aβ pathology. More so, the 

deletion of CD33 in APP/PS1 transgenic mice did not alter the APP processing or the levels of pro-

inflammatory cytokines in the brain, implying that CD33 contributed to Aβ pathology by interfering 

with Aβ clearance rather than promoting its generation (Griciuc et al., 2013).  

 

The positive correlation between TREM2 mRNA expression level and contextual freezing time 

indicates that memory is enhanced as TREM2 mRNA level increases since increased freezing time 

interprets to greater learning ability, as the better the memory, the more time the animal spends in 

freezing behavior. Studies supporting our results by Jiang et al., using APPswe/PS1dE9 mice compared 

to wildtype resulted in spatial learning and memory deficit when subjected to the Morris water maze 

test, were reversed with subsequently observed improved performance on insertion of TREM2 vector 

into these mice (Jiang et al., 2014, Jiang et al., 2016). Lee et al., also validate the role of TREM2 in 

memory using the 5XFAD mice, which demonstrated impaired contextual memory as opposed to 

5XFAD/TREM2 OE and APPPS1/TREM2 OE which had similar performance to the wildtype, 

indicating that TREM2 overexpression improves cognition in amyloid mouse models since TREM2 

overexpression alone did not affect performance (Lee et al., 2018).  

 

5.  Conclusion 

Our findings lend support to the knowledge that neuroinflammatory response resulting from Aβ(1–42) 

lesion CA1 impacts both neural circuit activity and expression of microglial genes regulation 

neuroinflammation, indicating a dynamic interaction between the immune and nervous systems. This 

integrative approach can be used to query the role of neuroinflammation in memory processes, and, 

importantly, to identify the possibility of blocking the immune response in the brain to restore cell 

network activity and cognitive function.    
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PROLOGUE 

Chapter 5 investigates the feasibility of microRNA-107 as a plasma biomarker for AD by correlating 

its expression with BACE1 levels in the brain tissue. Formats used in this chapter are according to the 

journal specifications. This manuscript has been accepted by the journal of Neurotoxicity Research. 
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ABSTRACT 

Alzheimer’s disease (AD) is the most common cause of dementia and one of the fastest-growing major 

disease burdens, yet there are no available treatments to alter the natural history of this disease. The 

barriers to effective therapies include the lack of a specific biomarker for the early detection of this 

disease before the onset of clinically apparent cognitive impairment. This study investigated the 

feasibility of microRNA-107 (miRNA107) as a plasma biomarker for AD by correlating its expression 

with Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) levels in brain tissue. The BACE1 

enzyme is the enzyme that initiates the generation of amyloid beta, the main component of amyloid 

plaques found in AD brains which destroys nerve cells. Consequently, BACE1 is an attractive target in 

AD prevention and treatment. Male Sprague-Dawley rats were used in this study and AD-like 

symptoms induced via intrahippocampal injection of amyloid-beta 1-42 (Aβ(1–42)) while phosphate-

buffered saline was administered as the vehicle. The Morris water maze test was used to evaluate spatial 

learning and memory. BACE1 expression in the CA3 region of the hippocampus and plasma miRNA 

were measured using immunohistochemistry and real-time PCR techniques respectively. Our results 

show impaired memory in the Aβ(1–42) model of AD, associated with the upregulated expression of 

BACE1, which inversely correlated progressively with the downregulated expression of miRNA107 in 

the plasma. This bi-directional interdependence between BACE1 and miRNA107 makes miRNA107 a 

potential biomarker for the early diagnosis of Alzheimer’s diseases. 

Keyword: Biomarkers; Alzheimer’s disease; MicroRNAs; Amyloid-beta; BACE1; Hippocampus 
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1. Introduction 
  

Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder leading to dementia 

(Ulep et al., 2018). The disease currently affects 75 million people worldwide and predicted to increase 

to 135 million people by 2050 (Shi et al., 2018, Leidinger et al., 2013, Brookmeyer et al., 2007). The 

Alzheimer’s Association and the National Institute on Aging, developed new diagnostic guidelines for 

Alzheimer’s disease (Albert et al., 2013), containing an updated classification of the phases of 

Alzheimer’s disease. These guidelines provide recommendations for the diagnosis of preclinical mild 

cognitive impairment, mild cognitive impairment, and Alzheimer’s disease dementia and stress the lack 

of and urgent need for reliable biomarkers that can be used for detection of mild cognitive impairment 

and preclinical phases of Alzheimer’s disease. Therefore, this prompts the urgent need for an ideal 

diagnostic biomarker. A good biomarker must be sensitive and specific, can identify the disease at a 

considerable time before the onset of symptoms, with adequate reliability and, low-cost, minimally 

invasive, and easy to be applied for mass screening (Dallé et al., 2020). All this provides preliminary 

evidence for the inclusion of plasma-based biomarkers. 

 

MicroRNAs (miRNA) are small non-coding RNA, typically 22–23 nucleotides, that control gene 

expression by binding to the 3′-untranslated region (UTR) in messenger RNA (mRNA). Through this, 

they suppress translation or induce degradation of the target genes (Ha and Kim, 2014). Unlike mRNAs, 

miRNAs are stable enough in biological fluids, including serum, plasma, and CSF (Zhang et al., 2018). 

Many of them target genes directly involved in AD pathophysiologies such as presenilins, beta-site 

amyloid precursor protein cleaving enzyme 1 (BACE1), amyloid precursor protein (APP) (Liu et al., 

2014) and brain-derived neurotrophic factor (BDNF) (Croce et al., 2013, Keifer et al., 2015). Analysis 

of miRNAs in body fluids is a relatively simple procedure (Kalogianni et al., 2018) and a non-invasive 

approach. A comparison of miRNAs to conventional protein-based biomarkers of AD shows that the 

level of sensitivity achieved for miRNAs due to amplification by PCR is far superior to what is currently 

available for proteins (Kumar et al., 2017). Besides, the cost of miRNA quantification is far lower than 

that of established biomarkers, such as the positron emission tomography (PET) for molecular 

neuroimaging and the structural magnetic resonance imaging (MRI). These miRNAs secreted into the 

extracellular space are in micro-vesicle encapsulated form or exosomes (Liang et al., 2014, 

Turchinovich et al., 2013). The demonstration of miRNA alterations between AD patients and age-

matched controls is of further support to this proposition (Goodall et al., 2013). For this purpose, many 

miRNAs appear to be promising. 

 

MicroRNA107 is implicated in AD-related phenotypes in early phases of the disease (Wang et al., 2010, 

Nelson and Wang, 2010, Wang et al., 2008). MicroRNA107 is especially dysregulated in the brain as 

well as in blood of patients with AD, making it an ideal candidate biomarker (Wang et al., 2008, Wang 
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et al., 2015a, Leidinger et al., 2013). MicroRNA107 targets BACE1, an enzyme that cleaves the amyloid 

precursor protein (APP), creating the neurotoxic β-amyloid peptide (Aβ(1–42)) (Stratman et al., Haniu et 

al., 2000, Vassar et al., 1999). BACE1 is the initiating and putatively rate-limiting enzyme in Aβ 

generation. While its inhibition would block the production of Aβ and prevent the development of Aβ-

associated pathologies, overexpression of this enzyme has been shown to initiate or accelerate AD 

pathogenesis (Fukumoto et al., 2002, Li and Südhof, 2004). Studies have shown that the dysregulation 

of BACE1 appears to directly contribute to the pathogenesis of AD (Dominguez et al., 2004, Durham 

and Shepherd, 2006, Guo and Hobbs, 2006, John, 2006). 

 

Currently, bio-fluid derived markers like miRNAs are being explored as possible biomarkers due to 

their stability and RNase resistant ability for pre-clinical AD diagnosis, because it is in these initial 

stages that modifying therapies are likely to have the greatest chance of impact. However, the clinical 

diagnostic application in the use of miRNA as biomarkers has not been evaluated thus far, in a way that 

validates the status as evident in the brain, thus providing a bi-directional translational 

approach.Therefore, this study aims to investigate the feasibility of miRNA107 as a possible plasma 

biomarker by correlating its expression with BACE1 levels in the brain tissue. 

 

2. Materials and methods 

2.1. Experimental design and animals 

The experimental protocol for this study was approved by the Ethical Review Board of the University 

of KwaZulu-Natal (AREC/015/018D). A total of 80 male Sprague–Dawley rats weighing between 300 

and 350 g (8/9 weeks of age) obtained from the Biomedical Resource Unit of the University of 

KwaZulu-Natal were used in this study (Figure 1). The animals had shelter under controlled temperature 

(21 ± 2 ◦ C) and humidity (55–60%), a light-controlled room with an alternating 12-hour light to 12-

hour dark cycle, with free access to food and water. The animals were subjected to pre-lesion behavioral 

test (Morris water maze test) and then randomly divided into a vehicle group of rats (n = 40) that were 

stereotaxically infused with phosphate buffered saline and an Aβ(1–42) group of rats (n = 40) that were 

infused with the neurotoxin Aβ(1–42) peptide. Each group was further sub-divided into four groups (Day 

3 group: animals euthanized 3 days after Aβ(1–42) or vehicle infusion; Day 7 group: animals euthanized 

7 days after Aβ(1–42) or vehicle infusion; Day 10 group: animals euthanized 10 days after Aβ(1–42) or 

vehicle infusion, and Day 14 group: animals euthanized 14 days after Aβ(1–42) or vehicle infusion) (n = 

10/group). At post-lesion day 3, 7, 10 and 14, the post-lesion behavioral test was conducted and blood 

was collected for analysis before whole brain excision. We set our sample size according to a previous 

study by (Shallie et al., 2020). 



 104 

 

Figure 1. Experimental design. PLD- Post lesion day, PBS- Phosphate buffered saline, Aβ(1–42)- Amyloid-beta 
1-42, miRNA107- MicroRNA 107, BACE1- Beta site amyloid precursor protein cleaving enzyme 1, IHC- 
Immunohistochemistry. 

2.2. Stereotaxic infusion of Aβ(1–42) lesion  

The rats were anesthetized with a ketamine (100 mg/Kg, intraperitoneally) and xylazine (5 mg/Kg, 

intraperitoneally) solution before being placed in the stereotaxic apparatus (David Kopf instrument, 

Tujunga, USA) (Bagheri et al., 2011). After complete anesthesia was observed following the absence 

of hind paw reflex on pinching, animals were bilaterally infused using a Hamilton syringe coupled to a 

25 G needle, with either 10 μL (5 μL on each side) solution of Aβ(1–42) peptide (DLD Scientific, South 

Africa) or an equal volume of phosphate-buffered saline solution (Vehicle). Infusion was made into the 

CA1 field of the dorsal hippocampus (dCA1) according to the following stereotaxic coordinates 

referenced in millimeters from bregma: Anteroposterior (AP) = −4.8 mm; mediolateral (ML) = ±3.4 

mm; dorsoventral (DV) = −3.0 mm) (Paxinos and Watson, 2006). The needle was kept in  for 1 min 

prior to the infusion and for 2 min following the infusion to maximize diffusion. The incision was 

thereafter sutured, cleaned, and the animals were placed under a heating lamp to prevent hypothermia 

during recovery. Animals were injected with Temgesic (0.05 mg/kg subcutaneously; Sigma, USA), a 

postoperative analgesic before being returned to their home cages. 

2.3. Behavioral test  

The Morris water maze (MWM) test was used to assess spatial learning and memory in this study. The 

procedure was performed as previously described by (Vorhees and Williams, 2006). All animals were 

trained in a water maze (diameter: 1 m) filled with water (23 ± 1 °C). The pool was divided into four 

virtual quadrants, each with a cue that was kept constant throughout the experiment to assist the rat in 

finding the hidden platform. During pre-lesion training, the platform was kept in the centre of the pool 
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and exposed one inch above the surface, so the rat knows that it’s there. Each rat was placed in a 

quadrant other than where the hidden platform is located, facing the wall of the pool and was given 120 

s to find the platform and 15 s to stay on it. Rats that did not find the platform were gently guided and 

placed on it during the training. An inter-trial interval of at least 2 minutes was maintained for 

uniformity in training for all rats. The pool was cleaned out periodically to ensure that the platform is 

in place and to check water temperature. After all rats completed their trials, they each performed one 

probe trial, in which the platform was removed from the pool. The probe trial is performed to verify the 

rat’s understanding of the platform location, and observe the strategy that the animal follows when it 

discovers the platform is not there. Memory was assessed post-lesion in the probe test as the time spent 

in the target quadrant. When all the probe trials were complete, the animals were dried off and the pool 

was drained. Video recorded sessions were analysed for each rat.  

2.4. Sample Preparation  

Whole blood sample (3 ml) acquired aseptically from both the vehicle and Aβ(1–42) lesioned group of 

rats was collected into ethylenediaminetetraacetic acid (EDTA) coated tubes. The blood samples were 

centrifuged at a speed of 2000 x g for 10 minutes at 4 ◦C in a refrigerated centrifuge (Z326, Lasec, 

South Africa). Plasma samples were transferred into cryo-tubes and stored at -80°C within 2 hours from 

blood sample collection. Brain tissues were transcardially perfused and fixed with phosphate-buffered 

saline (PBS) followed by 10% Neutral buffered formalin (NBF) (Ijomone et al., 2019). The excised 

brain tissues were then post-fixed in 10% NBF until further analysis.  

2.5. Immunohistochemistry of BACE1  

Serial brain sections cut at 3 μm thickness were mounted on positively charged glass slides (leica® 

slides, Germany) for immunohistochemical staining using primary antibody: beta-secretase enzyme 1 

(BACE1) (Cell Signalling, diluted 1:100), together with a secondary “Ultravision detection system” 

(ThermoScientific, USA).  Brain sections were deparaffinized and hydrated in xylene and graded 

descending concentrations of alcohol, respectively, then incubated with a  blocking solution (3% 

hydrogen peroxide, ThermoScientific, USA) for 15 mins. Incubation of slides was achieved in a 

humidified light-protected chamber at room temperature, and slides were continuously kept wet. Slides 

were washed twice in phosphate buffer, incubated in antigen retrieval solution (pepsin), and rewashed 

4 times in phosphate buffer. The ultra V block (ThermoScientific, USA) was applied and incubated for 

5 mins. The primary antibody was applied unto the sections, and each was incubated for 30 mins. 

Sections were then washed, and biotinylated goat antipolyvalent antibody (secondary antibody) was 

applied for 10 mins, rewashed, followed by streptavidin peroxidase for 10 mins and washed after. The 

reaction was developed with a drop of DAB Plus chromogen added to 2 ml of DAB Plus substrate 

(Vector Labs, USA), mixed and applied on tissues for 5–15 mins. Sections were then rinsed in water 
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and counterstained with Mayer’s hematoxylin. A coverslip was applied using Dibutyl Phthalate Xylene 

(Dako, Denmark) as the mounting media. A positive reaction appeared as brown color. Negative 

controls were processed likewise, but the incubation with primary antibodies was omitted.  

The immunostained slides were digitized using the Leica SCN400 Slide Scanner (Leica Microsystems, 

Wetzlar, Germany). Six to ten random non-overlapping areas of the hippocampus were snapped at X40 

using the Lecia SlidePath Gateway software. Using the Rat Brain Atlas (George and Charles, 2007) as 

a reference, CA3 area of the hippocampus was examined. Images were imported on the NIH-sponsored 

ImageJ software for analysis. Immunoreactivity of BACE1 expression was quantified by intensity 

measurements, as previously described by (Ijomone et al., 2019). The optical density was obtained by 

converting the intensity numbers in the results window to an optical density (OD) with the following 

formula OD = log (max intensity/Mean intensity), where maximum intensity = 255 for 8-bit images. 

2.6. Real-time quantitative PCR (qPCR) analysis for miRNA107  

Thawed plasma samples were re-centrifuged at 3000 x g for 15 mins at room temperature before 

microRNA purification to reduce contamination from possible residual platelets (Binderup et al., 2016). 

MicroRNA purification of plasma samples was carried out using Nucleospin®miRNA Plasma 

(Macherey-Nagel, Düren, Germany) according to the manufacturer’s protocol. NanoPhotometer® 

NP80 (IMPLEN, A260: A280 ratio) was used to determine the quality and concentration of the total 

RNA, purity of 1.7–2.1 was recommended for use in the construction of cDNA. Total RNA was reverse-

transcribed into cDNA using the iScript
TM cDNA synthesis kit and run in duplicate in a 20 μl reaction 

volume in a 96-well plate format, containing 500 nM of each oligonucleotide primer and SYBR Green 

PCR Master Mix (Bio-Rad). The primers were synthesized by Inqaba Biotech (Pretoria, South Africa), 

with U6 serving as the reference gene (See table 1). Primer sequences were reconstituted in RNA 

nuclease-free water according to the manufacturer’s report and were added to a master mix comprising 

of SYBR green dye and nuclease-free water. We ensured that all qPCR reactions produced a single 

peak with the melt curve analysis. Relative expression levels were calculated after normalization against 

the reference gene U6 using 2−DDCT method, and results were expressed as 2−(gene of interest mean 

Ct value − control gene mean Ct value) for the qRT-PCR experiments (Livak and Schmittgen, 2001).  

 

Table 1. Primer sequences for RT-qPCR 

 

Primer sequence           Forward (5’- 3’)                                   Reverse (5’- 3’) 

miRNA107   GCCAAGCCCACTCAGCTGCCAGCC     GGCTGGCAGCTGAGTGGGCTTGGC 

U6                 CTCGCTTCGGCAGCACA                        AACGCTTCACGAATTTGCGT 
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2.7. Statistical Analysis 

Data were analyzed using the software program GraphPad Prism (version 7.0, San Diego, California, 

USA). The Shapiro-Wilk test was used to test for normality of distribution, and where data met 

requirements, a parametric test was used. One-way or Two-way analysis of variance (ANOVA) was 

used followed by Tukey’s post-hoc test where applicable. Pearson’s correlation coefficient was used to 

assess the correlation between data sets, where “r” indicates the strength of the relationship. A p-value 

< 0.05 was considered significant in all analyses.  

3. Results 

3.1. Aβ(1–42) lesion of CA1 decreases time spent in target quadrant of the MWM  

A significant interaction [F (3, 48) = 5.7, p = 0.0020] was observed between lesion and day and a 

significant lesion effect of intrahippocampal injection of Aβ(1–42) on spatial memory [F (1, 48) = 234.2, 

p < 0.0001] with decreased time spent in target quadrant on post-lesion day 3 (p < 0.01), day 7 (p < 

0.0001), day 10 (p < 0.0001) and day 14 (p < 0.0001) when compared to the corresponding vehicle-

treated groups. A significant day effect was observed within the Aβ(1–42) lesioned groups [F (3, 48) = 

2.242, p = 0.0954] differing with increasing significance from post-lesion day 3 vs. day 7 (p = 0.0176), 

day 3 vs. day 10 (p = 0.0097) and day 3 vs. day 14 (p = 0.0052) (Figure 1). 

 

 

Figure 2.  Time spent in the target quadrant for all groups on day 3, 7, 10 and 14 in the MWM. * p < 0.05, ** p 
< 0.01, *** p < 0.001, **** p < 0.0001 (two-way ANOVA followed by Tukey’s post-hoc test). All data are 
expressed as means ± SEM. (n = 10/ group). 
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3.2. Aβ(1–42) lesion of CA1 increases BACE1 expression progressively over the post-lesion days. 

Significant lesion effect of intrahippocampal injection of Aβ(1–42) on relative BACE1 expression was 

observed [F (4, 45) = 104.3, p < 0.0001], with upregulated expressions on post-lesion day 7 (p < 0.0001), 

day 10 (p < 0.0001) and day 14 (p < 0.0001) when compared to the vehicle injected group. Significant 

upregulated day effect was also observed within the Aβ(1–42) lesioned groups at post-lesioned day3 vs 

day 7 (p < 0.0083); day 3 vs day 10 (p < 0.0001); day 3 vs. day 14 (p < 0.0001); day 7 vs day 10 (p = 

0.0004) and day 7 vs. day 14 (p < 0.0001); day 10 vs. day 14 (p < 0.0001) (Figure 2). 

 

Figure 3. (I) Representative photomicrographs of BACE1 immunostaining intensity in (a) vehicle-treated rat (b) 
Aβ(1–42) lesioned rat at post-lesion day 3 (c)  Aβ(1–42) lesioned rat at post-lesion day 7 (d)  Aβ(1–42) lesioned rat at 
post-lesion day 10 (e)  Aβ(1–42) lesioned rat at post-lesion day 14. Scale bar  for all images represent 50μm. (II) 
Relative BACE1 immunostaining expression in the hippocampus of vehicle-treated  and Aβ(1–42) lesioned rats 
across different post-lesion days * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (one-way ANOVA 
followed by Tukey’s post-hoc test). All data are expressed as means ± SEM. (n = 10/ group). 

 

3.3. BACE1 expression negatively correlates with time spent in target quadrant in Aβ(1–42) lesioned rats. 

Negative correlations were observed between BACE1 immunostaining expression and time spent in the 

target on post-lesion day 3 (r = -0.6900, p = 0.0270) (Fig. 3a); post-lesion day 7 (r = -0.9319, p = 

0.8680) (Fig. 3b); post-lesion day 10 (r = -0.8660, p = 0.0012) (Fig. 3c) and post-lesion day 14 (r = -

0.8750, p = 0.0009) (Fig. 3d) in the Aβ(1–42) lesioned rat model of AD (Figure 3).  
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Figure 4. XY scatter plots of BACE1 expression and time spent in the target quadrant on (a) post-lesion day 3 (b) 
post-lesion day 7 (c) post-lesion day 10 and (d) post-lesion day 14 with Aβ(1–42). A value of p < 0.05 was 
considered as statistically significant for the number of rats (n = 10) in each group. 

 

3.4. Aβ(1–42) lesion of CA1 decreases miRNA107 expression progressively over the post-lesion days. 

Significant lesion effect of intrahippocampal injection of Aβ(1–42) on relative miRNA107 expression in 

plasma was observed [F (4, 45) = 239.8, p < 0.0001], with downregulated expressions on post-lesion 

day3 (p < 0.0001), day 7 (p < 0.0001), day 10 (p < 0.0001) and day 14 (p < 0.0001) when compared to 

the vehicle injected group. Significant downregulated day effect was also observed within the Aβ(1–42) 

lesioned groups at post-lesioned day 3 vs day 7 (p < 0.0001); day 3 vs day 10 (p < 0.0001); day 3 vs. 

day 14 (p < 0.0001); day 7 vs day 10 (p < 0.0001) and day 7 vs. day 14 (p < 0.0001); day 10 vs. day 14 

(p < 0.0001) (Figure 4). 
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Figure 5. Relative miRNA107 expression in plasma of Aβ (1–42) lesioned rat model of AD in vehicle-treated 
and Aβ(1–42) lesioned rats across different post-lesion days * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
(one-way ANOVA followed by Tukey’s post-hoc test). All data are expressed as means ± SEM. (n = 10/ group). 

 

3.5. Downregulated expression of miRNA107 negatively correlates with BACE1 expression. 

Negative correlations were observed between miRNA107 expression in plasma and BACE1 expression 

on post-lesion day 3 (r = -0.7680, p = 0.0095) (Fig. 5a); post-lesion day 7 (r = -0.8930, p = 0.0005) 

(Fig. 5b); post-lesion day 10 (r = -0.9170, p = 0.0002) (Fig. 5c) and post-lesion day 14 (r = -0.6100, p 

= 0.0612) (Fig. 5d) in the Aβ(1–42) lesioned rat model of AD (Figure 5).  
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Figure 6. XY scatter plots of the relative expressions of miRNA107 and BACE1 expression on (a) post-lesion 
day 3 (b) post-lesion day 7 (c) post-lesion day 10 and (d) post-lesion day 14 with Aβ(1–42). A value of p < 0.05 was 
considered as statistically significant for the number of rats (n = 10) in each group. 

4. Discussion 

This study investigated the diagnostic feasibility of miRNA107 as a possible plasma biomarker by 

correlating its expression with BACE1 levels in the brain tissue. Several reports have proposed the 

detection of circulating miRNAs as a potentially valuable tool for early prediction of AD (Geekiyanage 

et al., 2012, Grasso et al., 2014, Cogswell et al., 2008, Lugli et al., 2015, Tan et al., 2014).  

In our study, we evaluated the impact of Aβ(1–42) lesion of CA1 region of the hippocampus on spatial 

memory, we observed that the Aβ(1–42) lesioned rats spent lesser time in the target quadrant when 

compared to the vehicle-treated rats. This indicates a deficit in memory resulting from the 

intrahippocampal infusion of Aβ(1-42), possibly due to the expression of inflammatory mediators that 

exacerbate progression of the disease, ultimately leading  to loss of memory. This result is supported 

by a study that also reported impaired spatial memory following intrahippocampal infusion of Aβ(1–42) 

(Wang et al., 2017).   

We further observed an increase in the expression of BACE1 in the hippocampus as the disease 

progressed. This indicates that there is a continuous increase in the production of amyloidogenic AβPP 

processing that likely plays a role in this intractable disease. Since BACE1 is critical for Aβ 

biosynthesis, it is likely that factors that elevate BACE1 may lead to increased Aβ generation and 

promote AD. In high-order association brain regions affected by Aβ deposition, BACE1 protein levels 
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and activity were increased significantly in AD brain compared to non-demented control brain (Yang 

et al., 2003, Holsinger et al., 2002). An AD feedback loop has long been surmised, whereby Aβ(1-42) 

deposition in AD causes BACE1 (and possibly APP) levels to rise in nearby neurons. Increased Aβ 

production may then ensue, initiating a vicious cycle of additional amyloid deposition followed by 

further elevated BACE1 levels. Given the elevation of BACE1 around Aβ(1-42)  plaque cores it seems 

possible that Aβ(1-42) somehow triggers the BACE1 increase. Additionally, it has been shown that 

exogenous administration of Aβ(1-42)  causes increase in BACE1 level (Li et al., 2019). 

As memory deficit constitutes the core symptom of AD, we correlated the time spent in the target 

quadrant of the MWM to BACE1 expression in the hippocampus and observed that an increase in 

BACE1 expression leads to decline in memory. This inverse relationship suggests that increased 

BACE1 expression may be an antecedent to other pathophysiologic changes that arise during the 

disease. This is possibly because BACE1 catalyses the rate limiting step in the production of Aβ, the 

principal component of plaque pathology in AD and the excessive production of which may possibly 

be a primary cause of cognitive dysfunction in AD. Besides considerable evidence indicates that Aβ 

production is critical to the deterioration related to Alzheimer’s disease (Stockley and O’Neill, 2008). 

Detection of dysregulated miRNA expression by relative qRT-PCR in the plasma of AD subjects has 

been previously reported (Kayano et al., 2016, Nagaraj et al., 2017, Zirnheld et al., 2016). Our study 

shows a time-dependent difference in the expression of miRNA 107. We observed a downregulation of 

miRNA in Aβ(1–42) lesioned rats when compared to the vehicle infused rats and the expression decreases 

over the post-lesion days. This downregulated expression of miRNA107 implies that the corresponding 

target gene (BACE1) would be expressed in higher abundance owing to the release of the inhibitory 

effect of miRNAs on the target genes being regulated. Our result is consistent with other studies that 

reported a downregulated expression of  plasma miRNA107 in AD patients (Leidinger et al., 2013, 

Yılmaz et al., 2016). Studies have shown that exogenously administered miRNA107 mimics prevents 

the neurotoxicity and blood brain barrier dysfunction induced by  Aβ (Liu et al., 2016, Shu et al., 2018). 

Although the exact mechanism of action of exogenously administered miRNA107 mimics were not 

elucidated in the present study. We can however infer that the negative correlation of BACE1 

expression in the hippocampus with plasma miRNA107 level of Aβ(1-42) lesioned rats observed in our 

study shows that an increase in the miRNA107 expression would confer neuroprotection and also 

provide evidence for its feasibility as a plasma based biomarker of AD.   

 

5. Conclusion 

Our result shows that Aβ(1–42) lesion causes memory deficit in a time-dependent manner and this 

validates our model of AD, this lesion also caused dysregulation of plasma miRNA107 expression. We 
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also observed progressive upregulation of BACE1 expression which correlates with decreased 

miRNA107 expression as the disease progressed. This bi-directional interdependence between tissue-

based BACE1 expression and plasma miRNA107 level makes miRNA107 a potential biomarker for 

the early diagnosis of Alzheimer’s diseases. 
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CHAPTER 6 

Synthesis and Conclusion 

 

6.1 Synthesis 

Alzheimer's disease (AD) is a multifactorial disorder with memory impairment as its most common 

presenting symptom and is currently incurable. It is said that the prevalence of Alzheimer's disease is 

as high as 75 million people worldwide and is predicted to increase to 135 million people by 2050. 

Cumulating evidence suggests that the amyloid-beta theory, currently thought to be the predominant 

mechanism underlying AD, needs re-evaluation, considering all treatments and new drug trials based 

upon this theory have been unsuccessful. The delay in identifying a definitive cure is probably due to 

the scant knowledge of the cellular and molecular mechanisms implicated in its pathogenesis. However, 

the role of neuroinflammation has been affirmed. Neuroinflammation is the brain's response to 

irritations caused by various cues, including toxic metabolites such as Aβ(1-42). Neuroinflammation is 

generally chronic due to sustained activation of the brain's immune cells, including microglia and 

astrocytes. The brain is typically shielded from harmful toxicants by the blood-brain barrier, a 

specialised structure composed of astrocytes and endothelial cells. However, this barrier may become 

compromised, allowing for communication between peripheral immune cells, neurons, and glial cells, 

thereby perpetuating the immune response. Although the immune response aims to protect the brain, 

sustained glial cell activation can become toxic, resulting in widespread neuroinflammation. Therefore, 

a better understanding of the fundamental role of neuroinflammation in Alzheimer's disease can be an 

excellent pointer for developing viable therapeutic targets and possible identification of biomarkers. 

 

To respond to these challenges, we designed the study to assess the role of neuroinflammation and 

identify possible biomarkers in an Aβ(1-42) rat model of Alzheimer's disease over a progressive period. 

The specific neuroinflammatory roles were evaluated 3, 7, 10, and 14 days post-Aβ(1-42) infusion, and 

our findings are summarised in Figure 1. Our model's validity was confirmed by evaluating memory-

like behaviour pre- and post-lesion with Aβ(1-42) using tools such as the Morris water maze and the 

fear conditioning test. The Morris water maze was used to test for spatial learning and memory while 

the fear conditioning test assessed associative fear learning and memory, a form of Pavlovian learning 

that involved making associations between stimuli and their aversive consequences. Our Alzheimer's 

disease model showed deficits in memory using both forms of learning and memory tests, hence, 

validating the model.  
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Figure 1: Role of neuroinflammation in a beta-amyloid model of Alzheimer’s disease. Amyloid-
beta infusion excites BACE1 feedback expression leading to glial cell activation, oxidative stress, and 
pro-inflammatory cytokines release. The release of cytokines exaggerates oxidative stress, induce 
chronic inflammation, and stimulate neuroinflammatory genes (CD33 and TREM2) with the resultant 
memory decline. In contrast, glial activation inhibits anti-inflammatory cytokine (IL-10) to enhance 
memory and regulate neuroinflammatory genes, which in turn triggers chronic inflammation and 
memory decline. An increase in BACE1 expression inhibits miRNA107 leading to memory decline. 
Arrows represent excitatory connections; Bars represent inhibitory connections; BACE1 (beta-site 
amyloid precursor cleaving enzyme 1); Aβ(1-42) (amyloid-beta 42); miRNA107 (MicroRNA107); 
CD33 (Cluster of differentiation 33); TREM2 (Triggering receptor expressed on myeloid cells 2); IL-
1β (Interleukin 1β); TNF-α (Tumour Necrosis Factor α); IL-6 Interleukin 6; IL-4 Interleukin 4; IL-10 
Interleukin 10. Triangle shapes represent upregulation, and inverted triangles represent downregulation.  
 
 

The cellular players involved in the neuroinflammatory process associated with Alzheimer's disease are 

the microglia and astrocytes found closely associated with the amyloid plaques. We examined the level 

of reactivity of these glial cells in the hippocampus in a progressive post-lesion interval and observed 

an increase in their reactivity level using the immunofluorescence technique. Although both glial cells 

were activated at all time points and correlated positively in this study, we observed an overall increase 

in microglia activity compared to astrocyte activity. Evidence shows that microglia are implicated in 

the brain's first-line immunity and may be responsible for their increased activity. Microglia cells have 

also been implicated in exaggerating neuroinflammation by secreting oxidative substances to wade off 

the Aβ(1-42). These oxidative substances which induce cellular stress and exacerbate the immune 

response are referred to as oxidative stressors. We observed a positive relationship between microglia 

marker (ionized calcium-binding adaptor molecule 1) and a marker for oxidative stress (lipid 

peroxidation) in plasma, indicating an interdependence between the two factors. The observed 
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interaction may facilitate the understanding of Alzheimer's disease pathogenesis, resulting in a strategy 

directed at controlling neuroinflammation and oxidative stress, in developing therapeutics for AD.   

 

The confirmation that our AD model showed progressively increased activation of cells involved in the 

immune response and its relationship to oxidative stress led to further evaluation of the cytokines' 

plasma concentration in our animal model. Cytokines are produced by sustained activation of the 

cellular players of inflammation. These substances may damage the blood-brain barrier and increase 

permeability through activation and destruction of tight junctions of microvascular endothelial cells. 

Our study showed an increase in concentration of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-

α) and a decrease in anti-inflammatory cytokine (IL-10) concentration in plasma. The implication of 

cytokines in controlling memory recall led to our evaluation of their possible relationship with learning 

and memory. We observed that the increase in the concentration of pro-inflammatory cytokines was 

related to a decrease in memory recall, while an  increase in the anti-inflammatory cytokines was related 

to an increase in recall. These results demonstrated an association between memory and plasma 

cytokine concentration and shed light on the importance of these inflammatory markers and the need to 

evaluate genes regulating their synthesis. 

 

Quantification of the level of gene expression provides valuable information as reliance on messenger 

RNA measurements can be traced to the relative ease of availability of messenger RNA compared to 

protein data. Moreover, the messenger RNA expression levels can provide information on gene 

functionality with the implicit assumption that differentially expressed messenger RNAs impact their 

respective experimental conditions via protein differences. Hence, the mRNA expression levels of 

microglia genes such as CD33 and TREM2 regulating neuroinflammation were evaluated. CD33 is 

likened to the "on switch", while TREM2 is the "off switch" for neuroinflammation. While both genes 

were upregulated in our AD model compared to the control, we observed a decrease in the expression 

of CD33 throughout the experimental period. This was accompanied by a corresponding increase in 

trem2, suggesting that this was counteracting the CD33 effect. Contextual fear memory assessed 

following CA1 lesion decreased progressively throughout the observation, indicating that the dorsal 

CA1 region of rats has strong spatial properties, with well-defined place fields capable of encoding a 

context. Increased expression of the CD33 gene, which is the driver gene for inflammation in the brain 

in our AD model, showed an inverse relationship with the contextual freezing time, which implies that 

the gene's increased expression is related to a decline in memory. Therefore, sustained 

neuroinflammatory response resulting from Aβ(1–42) lesion of CA1 region of the hippocampus may 

impact both neural circuit activity and expression of microglial genes regulating neuroinflammation, 

indicating a dynamic interaction between the immune and nervous systems. As a contribution to 

knowledge, we suggest that this integrative approach may be used to investigate the role of 
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neuroinflammation in memory processes and, importantly, to identify the possibility of stalling the 

brain's immune response to restore cell network activity and cognitive function.  

 

The observed impacts of neuroinflammation in our Aβ(1–42) AD model led to the need to identify a 

biomarker, bearing in mind that it had to be easily accessible, cost-effective, and, most importantly, 

reflecting the status of disease progression in the brain.  We investigated the potential feasibility of 

microRNA107 as a plasma biomarker by correlating its expression with BACE1 levels in the brain. The 

identification of microRNA as a possible biomarker stems from its ability to control gene expression, 

through which it suppresses translation or induces degradation of target genes. MicroRNA107 targets 

genes directly involved in AD pathophysiologies such as BACE1. BACE1 is the initiating and 

putatively rate-limiting enzyme in Aβ generation. Although its inhibition would block the production 

of Aβ and prevent the development of Aβ-associated pathologies, overexpression of BACE1 enzyme 

has been shown to initiate or accelerate Alzheimer's disease pathogenesis. In our study, we evaluated 

the plasma concentration of microRNA107, which is known to regulate the expression of BACE1. 

Firstly, the expression of BACE1 was analysed in hippocampal tissue, we observed an upregulated 

progressive expression of this enzyme. MicroRNA107 evaluation in plasma showed downregulated 

expression over the progressive post-lesion day intervals, which correlated negatively to BACE1 

expression. This bi-directional interdependence between BACE1 and microRNA107 makes 

microRNA107 a potential biomarker for the early diagnosis of Alzheimer's disease. 

 

6.2 Conclusion 

It is incontrovertible that neuroinflammation holds a pivotal role in AD pathology. Our findings 

implicate cellular and molecular mechanisms in neuroinflammation, as shown by prolonged and 

progressive activation of glial cells, resulting in a bidirectional interplay between neuroinflammation 

and oxidative stress. These interconnections resulted in the concomitant release of brain cytokines as a 

secondary response to AD's basis, which impacted both neural circuit activity and expression of 

microglial genes regulating neuroinflammation, indicating dynamic crosstalk between the immune and 

nervous systems. These interactions will facilitate the understanding of AD's pathogenesis and hold the 

potential for an integrative approach to validate the role of neuroinflammation. These interactions also 

pave the way for establishing innovative early diagnostic biomarkers for therapeutic design and policies 

geared toward reducing this devastating disease's socio-economic burden. 
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6.3 Future Recommendations 

Our results highlight some emerging mechanisms that provide deeper insights into AD pathogenesis 

and may serve as novel diagnostic and therapeutic targets for AD. However, there is a need for further 

study to: 

• Include female rats, which were excluded to prevent experimental bias due to hormonal 

changes. Nevertheless, this exclusion did not affect our results; however, the long-held 

assumption that female rodents' oestrous cycle renders them more variable than male rodents 

requires a reappraisal. Sex differences are, in any case, incompletely explained by the actions 

of sex hormones. Therefore, future studies should incorporate both sexes in the experimental 

design and possibly evaluate the different sex responses. 

• Include a different age bracket since the rats used in this study were 8 to 9 weeks old at the 

study's commencement. Although it may appear that these subjects were around mid-

adulthood, we considered the fact that normal aging of the brain is described by hippocampal 

volume loss and increased demyelination, which contributes to learning and memory deficits 

as well as the possible motor decline leading to functional limitation. Therefore, we sought our 

research subjects within the mid-adulthood age because all these factors could cause 

experimental bias.  

• Investigate other brain regions, particularly considering that soluble oligomeric Aβ(1–42)  can 

diffuse into all parts of the brain. 

• Investigate other AD models that replicate the spectra of AD to clarify the mechanisms of the 

interactions between neuroinflammation and oxidative stress. This will enhance the 

development of blood-based AD biomarkers, which are of utmost importance in the early 

diagnosis of AD. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 122 

Appendix I 

 

 
 



123 

Appendix II 



124 

Appendix III 



 125 

Appendix IV 

 
 

 

 

 



 126 

 
 

 

 

 

 



127 



 128 

 
 

 

 

 

 



 129 

 
 

 

 

 

 



130 



 131 

 

 
 

 

 

 



 132 

 
 

 

 

 

 



 133 

 
 

 

 

 

 



134 

Appendix V 



 135 

 

 
 

 

 

 



136 



137 



 138 

 
 

 

 

 

 



139 



140 



141 




