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ABSTRACT 

During the last decade the field of quantum information has seen considerable progress both 

theoretically and experimentally. The building block of this theory is the so-called qubit, 

the quantum counterpart of the classical bit. It turns out that spin degrees of freedom 

of quantum particles are among the most promising candidates for quantum information 

processing and computation. Thus, a deep understanding of the different processes that 

govern the dynamics of these objects is of fundamental importance. For instance, the de­

coherence process, caused the coupling of the qubits to their surrounding environment, is 

the main obstacle to quantum information processing: it leads them to lose their quantum 

coherence and thus behave classically. In addition, quantum systems exhibit correlations 

that have no classical counterpart. This phenomenon is called entanglement and is the 

vital resource for quantum teleportation and quantum computing. Decoherence and en­

tanglement dynamics were extensively studied within the framework of the Markovian 

approximation using the master equation approach. However, due to the non-commuting 

character of quantum observables, only few models are known to be exactly solvable. 

Moreover, many spin systems display a strongly non-Markovian behavior . This thesis is 

devoted to the development of new techniques for deriving the exact dynamics of spin 

qubits, coupled through Heisenberg and/or Ising interactions to spin environments that 

have internal dynamics. The basic idea behind these techniques is to use the underlying 

symmetries exhibited by the Hamitonian operators of the composite systems. This allows 

for the study of problems related to decoherence and entanglement . 
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1. INTRODUCTION 

1.1 Plan of the thesis 

The thesis consists of an introduction, six research papers, and a conclusion. The reader 

might notice that there exists an overlap between the chapters of the thesis. Neverthe­

less, they are self-consistent and can be regarded as independent from each other. As 

a consequence, we tried to arrange them in a logical order that reflects the progress of 

the investigations of the problems under consideration. The presentation we adopted is 

standard: we start each chapter with an introduction, then we introduce the model to 

be studied; this is followed by a detailed presentation of the derivations of the analytical 

solutions we are seeking. The latter are then applied to particular initial conditions which 

are of interest for applications. The chapters end with a conclusion or a summary. 

The introduction contains an overview of the necessary material needed for the under­

standing of the content of the thesis such as the principles of the theory of open quantum 

systems, decoherence and the entanglement. We begin the investigation in chapter 2 with 

the study of the dynamics of a single qubit coupled to a spin bath with internal dynam­

ics at thermal equilibrium. The third and the fourth chapters are generalization of the 

first one to the case of a two-qubit system interacting with a common spin bath; much 

attention is given to the spin star model. Note that the third chapter can be regarded as 

a special case of the fourth one. In chapter 5 ~e analytically investigate the relationship 

between entanglement and quantum phase transition in the Lipkin-Meshkov-Glick model. 

Chapter 6 presents a discussion of the partial trace over collective spin degrees of freedom, 

which is of practical relevance for the study of spin baths. In chapter 7, we generalize the 

models of chapters 3 and 4 to the case where the qubits are interacting with separate spin 

star baths at infinite temperature. A short conclusion ends the thesis. 

Note that each chapter contains its own bibliography. The list of references is not 

exhaustive; only those which have been used or are relevant for the subject under study 

were cited. For more details, the reader may consult review articles cited in this thesis. 

Note also that we have used a different representation for Pauli matrices, namely, 
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1) , CTy ( 0 
o -J 

(1.1) 

1.2 Overview of quantum mechanics 

1.2.1 Historical background 

By the end of the nineteenth century, X-rays, the electron and the radioactivity were 

already discovered. Since then it was possible to investigate properties of atoms and 

molecules. The results of a number of experiments carried out at that time, revealed that 

classical mechanics, mainly dealing with macroscopic bodies, is unable to give an account 

for phenomena taking place at the microscopic level. For instance the spectral distribution 

of thermal radiation emitted from a black body, and the low-temperature specific heat of 

solids were in direct contradiction with the results of classical mechanics [1]. The seminal 

works of Planck on the black body radiation and Einstein on the photoelectric effect led to 

the discovery of the wave-corpuscule duality of radiation: the electromagnetic radiation is 

absorbed and emitted in discrete quanta, called photons, each carrying an amount of energy 

E proportional to t he frequency of radiation v, and a momentum inversely proportional 

to the wavelength >., namely, 

E=hv, (1.2) 

where h is a universal constant called Planck's constant. The wave character of electro­

magnetic radiation manifests itself in interference and diffraction phenomena (e.g. Young's 

double slit experiment) , while the corpuscular one dominates in Compton scattering and 

the photoelectric effect . 

In their experiments on the ionization potentials of gazes, Franck and Hertz estab­

lished the discrete character of the atomic energy states. This led to the conclusion that 

the energy of atoms is quantized. The narrow lines observed in atomic emission and ab­

sorption spectra can be explained by the fact that any photon emitted by the atom carries 

an amount of energy equal to the difference between the permitted values Ei of atomic 

energies [1 , 2, 3]: 

(1.3) 

Bohr and Sommerfeld proposed a semi-classical explanation of the quantization of atomic 

level, by introducing the concept of electronic orbitals, and were able to come out with 

empirical quantizat ion rules. 
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In 1922 Stern and Gerlach discovered that the component of the angular momentum of 

electrons, along the direction of the applied magnetic field, can take on only certain discrete 

values. Later, the study of the diffraction of electrons and neutrons by Davison, Germer, 

and Thomson showed that interference patterns can be obtained for such particles. This 

confirms the hypothesis of de Broglie, in which a material particle is assigned a wave 

length A and a frequency 1/ related to its momentum p and its energy E by 

\ - ~ E = hl/. 1\ - , (1.4) 
P 

The analogy between these relations and those corresponding to photons is clear. The 

contributions cited above marked the birth of quantum mechanics, the fundamental theory 

of atomic and molecular phenomena. 

It is worth mentioning that the pattern characterizing the diffraction of monochromatic 

light observed in Young's experiment is due to the fact that the intensity of light at each 

point on the screen is proportional to the square of the amplitude of the total electric field, 

that is, the sum of the electric fields corresponding to each slit. The interference term, 

which depends on the phase difference between the fields, is responsible of the appearance 

of interference fringes . In fact a deep analysis of the double-slit experiment shows that, in 

order to give an account for the interference, one has to renounce some classical notions, 

central in Newtonian mechanics, such as the concept of particle trajectory (Heisenberg 

uncertainty principle), and to question the concept of measurement at the microscopic 

level. For instance the impossibility of determining through which slit the photon has 

passed in Young's experiment implies that quantum mechanics is essentially a probabilistic 

theory (see bellow). 

1.2.2 State vectors, operators, and the statistical interpretation of quantum mechanics 

As a result of de Broglie's hypothesis, confirmed by the diffraction experiments of Davisson 

and Germer, it has been postulated that the state of a material particle of mass m, 

subject to a potential energy V(If1, t), can be described by means of an auxiliary complex­

valued wave function, say 'Ij;(f', t), which satisfies a differential equation containing a second 

derivative with respect to the position r and a first 'derivative with respect to time t. This 

equation is known as Schrodinger's equation, which reads [2J: 

.• JJ'Ij;(f', t) = _~ a2
'1j;(f, t) V(I;;1 ).1.(- ) 

tn at 2m aT2 + TI,t 'I' T,t , (1.5) 

where Ii = h/27r. 
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One of the most important consequences of the linearity of the Schrodinger equation 

resides in the so-called superposition principle. Roughly speaking, the above principle 

states that the wave function is defined up to an arbitrary constant, and that a system 

which can be described by the wave functions 'lj;l and 'lj;2, can also be described by the 

wave function 'lj;, given by the linear combination 

(1.6) 

where Cl and C2 are complex coefficients. 

Mathematically, one says that the wave functions belong to an abstract complex linear 

vector space 1i, called Hilbert space, whose elements are termed state vectors. This 

space is equipped with a scalar product and a norm. The latter has a very important 

interpretation in quantum mechanics. For instance the square of the modulus of the wave 

function 'lj;(i, t) multiplied by the infinitesimal volume df' represents the probability of 

finding the particle, at time t, in the volume df' around the point defined by f' . 

The comparison between the classical energy equation and the Schrodinger equation 

suggests the representation of the momentum and the energy of a free particle by linear 

differential operators acting on the wave functions, namely, 

(1.7) 

This association is known as the correspondence principle. 

In general, measurable physical quantities such as position, energy, angular momen­

tum, ... etc, are represented within the theory of quantum mechanics by linear Hermitian 

operators acting in the Hilbert space corresponding to the physical system. By operator 

one means a mathematical object (more precisely a mapping) which acts on state vectors 

of the Hilbert space, to yield other state vectors belonging to the same (or different) Hilbert 

space. For finite dimensional Hilbert spaces, operators can be represented by matrices, 

written in the basis of the space. 

From here on we shall adopt Dirac's braket notation for state vectors and assume that 

the Hilbert space is finite dimensional. Within this notation, the scalar product of two 

state vectors I'lj;) and I¢) is denoted by ('lj;I¢). The action of the operator A on the state 

vector I'lj;) is denoted by AI'lj;). The notation ('lj;IAI¢) means the scalar product of the state 

vectors I'lj;) and AI¢). In particular, the quantity ('lj;IAI'lj;) is called the expectation value 

of the operator A with respect to the state vector I'lj;) 

If {'lj;n) }n=l, ... ,d is an orthonormal basis for the d-dimensional Hilbert space 1i, then 
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every state vector I<J?) E 71. can be decomposed as 

d 

I<J?) = L enl~n), 
n=l 

where the en are some constant coefficients satisfying L:n lenl2 

following decomposition applies for the operator A: 

d d 

A = L L (~nIAI~m)l~n)(~ml· 
n=lm=l 

This actually follows from the closure relation 

d 

L I~n)(~nl = II, 
n=l 

where II designates the unit matrix in 'H.. 

6 

(1.8) 

1. Furthermore, the 

(1.9) 

(1.10) 

By definition, a state vector I~n) is an eigenvector of the linear operator A if there 

exists a complex number An such that 

(1.11 ) 

We say that An is the eigenvalue associated with the eigenvector I~n). If we denote by 

A the matrix representation of the operator A, i.e., the matrix whose elements Anm are 

given by (~nIAI~m), then the eigenvalues An of A can be determined from the characteristic 

equation 

det(A - AnI) = O. (1.12) 

Note that it may happen that more than one eigenvector correspond to the same eigenvalue 

An. In this case we say that An is degenerate with a multiplicity or degeneracy equal to 

dimension of the subspace spanned by its eigenvectors. 

Let us briefly summarize the main properties of Hermitian operators. We say that the 

linear operator A is Hermitian if it satisfies 

(~IAI¢) = (¢IAI~)*, (1.13) 

where the asterisk designates the complex conjugation. In matrix language, the above 

condition implies that A is equal to the complex conjugate of its transpose, that is, A = 
(At)* = At. It follows that all the diagonal elements of a Hermitian operator, and in 

particular all of its eigenvalues, are always real. Furthermore, it can be shown that if 

An is an eigenvalue of A, corresponding to eigenket I~n), then it is also eigenvalue of At 

associated with the eigenbra (~nl. 
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Suppose that An (I'l/Jn)) and Am (I'l/Jm)), m =f. n, are two eigenvalues (eigenvectors) of the 

Hermitian operator A. Then, since the eigenvalues are real, we can write ('l/JnIAI'l/Jm) = 

An('l/Jnl'l/Jm) = Am('l/Jnl'l/Jm). It immediately follows that ('l/Jnl'l/Jm) = 0, meaning that the 

eigenvectors of a Hermitian operator corresponding to two different eigenvalues are orthog­

onal. Furthermore, with an appropriate choice of the eigenvectors within each eigenspace, 

we can in principle construct a basis for the Hilbert space. In this case the Hermitian 

operator A is said to be an observable. 

According to the postulates of quantum mechanics, the possible outcomes of the mea­

surement of a physical observable should be one of its eigenvalues. The Hermiticity condi­

tion ensures that all the eigenvalues are real. When a measurement of a physical quantity 

on the system in the state leI?) is carried out, giving the outcome An, the state of the 

system, immediately after the measurement, is given by the normalized projection of leI?) 

onto the subspace corresponding to the outcome, that is [2J, 

(1.14) 

where gn is the degeneracy of An. The probability P(An) of finding the eigenvalue An is 

given by 

(1.15) 

The Hermitian linear operator corresponding to the energy of a quantum system is 

called the Hamiltonian of the system; it is the quantum analog of Hamilton's function of 

classical mechanics. If we denote by H the Hamiltonian operator, then the Schrodinger 

equation can be written as (Ii = 1) 

i8'l/J/8t = H'l/J. (1.16) 

Thus the outcome of the measurement of the energy of a quantum system is one of the 

eigenvalues of the Hamiltonian H . 

The algebra of linear operators in Hilbert space is similar to the algebra of N x N 

matrices. In particular, operators do not necessarily commute with each other. In other 

words, if A and B are two linear operators, then in general AB =f. BA. The commutator 

of A and B is written [A, BJ-, and is defined by 

[A, BJ- = AB - BA. (1.17) 
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When [A, B]_ = 0, i.e. when A and B commute with each other, one can construct an 

orthonormal basis of eigenvectors common to the above operators. In this basis A and B 

can be simultaneously diagonalized. 

1.2.3 The density operator 

The complete description of a quantum system through (pure) state vectors corresponds 

to situations where a full knowledge of all the independent physical parameters necessary 

to assign a state vector to the system is possible [3]. When this is not case, we say that 

the system is in a mixed state. The mathematical tool that enables the description of 

quantum systems in such sates is known as the density operator, or the density matrix. 

Before giving a precise definition for the density operator, it should be noted that 

the statistical interpretation of quantum mechanics, presented in the preceding section, is 

based on the concept of statistical ensembles. These are collections of large numbers of 

identically prepared quantum systems. A mixed state can be regarded as an incoherent 

mixture of M pure states lcI>i) corresponding to some statistical ensembles Ci, each of 

which is characterized by a statistical weight 0::; Wi ::; 1 [4] . The average of any physical 

observable A on the system is given by 

M 

(A) = L Wi(cI>iIAIcI>i)· 
i=l 

Obviously, we have 
M 

LWi = 1. 
i=l 

It is easily verified that equation (1.18) can be rewritten in terms of the operator 

M 

p = L wilcI>i) (cI>il 
i=l 

as 

(A) = tr{Ap}, 

where tr denotes the trace over the Hilbert space 1i of the system, namely, 

trA = L(¢jIAI¢j), 
j=l 

where {¢j} is an orthonormal basis for the space 1i. 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

The quantity p introduced in equation (1.20) is known as the density matrix; it fully 

characterizes the state of the system, and satisfies a number of properties which we sum-

marize here: 
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• P is positive (p?: 0) and is Hermitian (p = pt) 

• trp = 1 

• trp2:::; 1, the equality being satisfied only for pure states, i.e. when p = 11/J)(1/J1 

• The convex sum Li AiPi of the density matrices Pi , where 0 < Ai < 1 and Li Ai = 1, 

is also a density mat rix. Furthermore, a pure state 11/J)(1/J1 cannot be decomposed as 

a nontrivial convex sum of density matrices. 

1.2.4 Dynamics of closed quantum systems 

In the absence of any external perturbation, the dynamics of closed quantum systems is 

completely causal. This follows from the fact that the evolution in time of the system's 

state vector 11/J(t)) is governed by the Schrodinger equation 

idl~~t)) = H(t) I1/J(t)), (1.23) 

where H(t) denotes the Hamiltonian operator of the system, and Planck's constant is set 

to one. 

In the case of a conservative system, that is, when the Hamiltonian is explicitly inde­

pendent of time (8H/8t = 0), the Schrodinger equation (1.23) can be formally integrated, 

to yield 

11/J(t)) = lU(t, to)I1/J(to)), (1.24) 

where 

lU(t , to) = exp [-iH(t - to)] (1.25) 

is known as the time evolution operator. The latter can be expanded in a power series as 

follows : 
00 (t t)n 

lU(t,to) = 2)-iH)n - ,0 
n. 

n=O 

(1.26) 

From equation (1.25) , one can see that the time evolution operator is unitary, that is , 

(1.27) 

and it satisfies the equation 
.dlU(t, to) _ HlU(t t ) 
~ dt - , 0 , (1.28) 

subject to the initial condition lU(to, to) = IT. Here IT denotes the unity operator in the 

Hilbert space associated with the system. 
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If we take the Hermitian conjugate of the Schrodinger equation (1.23)we obtain 

('!/J(t) I = ('!/J(to)I1Ut (t, to). (1.29) 

It follows that the time development of the density matrix pet), corresponding to the pure 

state I'!/J(t)), is given by 

pet) = \[J(t, to)p(to)\[Jt(t, to). (1.30) 

Using equation (1.28) , one can show that pet) satisfies the von Neumann equation 

pet) = -i[H, pet)]. (1.31) 

The latter can be rewritten in terms of the Liouville operator £. as 

pet) = -i£'(p). (1.32) 

The solution of this equation can be formally expressed as 

pet) = exp[-i£.(t - to)]p(to). (1.33) 

When the Hamiltonian operator is time dependent, it is still possible to find an operator 

\[J(t, to), such that the state of the system at any moment t is given by \[J(t, to)I'!/J(to)). This 

operator satisfies an equation similar to (1.28), except that the total derivative with respect 

to time is replaced by a partial derivative. 

1.3 Open quantum systems 

The concept of closed quantum systems is an idealization, since, in practice, one cannot 

perfectly isolate them from the remainder of the universe. Realistic quantum systems 

are in general parts of larger ones, and thus are subject to the influence of the surround­

ing through, in general, uncontrollable coupling interactions. Furthermore, measurement 

operations affect to some extent the state of the systems of interest. This leads to the 

conclusion that quantum systems should be regarded as open [4]. Generally speaking, 

the mutual interactions between the subparts of a quantum system generate quantum 

correlations that have no classical counterparts. The density matrix formalism provides 

a convenient description for the states of open quantum systems, enabling the study of 

these correlations. 
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1.3.1 Composite quantum systems, the partial trace, and the reduced density matrix 

When a quantum system possesses more than one degree of freedom, we postulate that its 

Hilbert space is given by the tensor product of the Hilbert spaces corresponding to each 

degree of freedom. This applies to single particles with various degrees of freedom as well 

as to systems composed of multiple parts. The choice of a tensor product structure for 

the composite Hilbert space is justified by the agreement between theoretical predictions 

and experimental results. A typical example is the state of the electron in the atom: its 

Hilbert space is given by the tensor product of the Hilbert space corresponding to the 

orbital degrees of freedom and that associated with its intrinsic angular momentum or 

spin. 

For simplicity let us consider the case of a quantum system C composed of two (possibly 

interacting) subsystems A and B described by the Hilbert spaces 'HA and 'HB , respectively. 

The Hilbert space corresponding to the compound system is given by 

(1.34) 

Let {I¢~)} and {I¢{)} denote orthonormal bases for 'HA and 'HB , respectively. Then the 

state vectors I¢~) 18) I¢~) form an orthonormal basis for the Hilbert space 'Hc· Any state 

vector Iw) E 'Hc can be decomposed as 

Iw) = L aijl¢~) 18)1¢~)· (1.35) 
ij 

It follows that the dimension of the Hilbert space 'Hc is given by the product of the 

dimensions corresponding to the spaces 'HA and 'HB , that is, dim'Hc = dim'HA·dim'HB· 

The tensor product of two linear operators LA and LB defined on the the Hilbert 

spaces 'HA and 'HB , respectively, is a linear operator on 'Hc , written LA 18) LB, whose 

action is defined by 

(1.36) 

Let us denote by lIA and lIB the identity operators in 'HA and 'HB· Then the operators 

(1.37) 

can be regarded as an extension of LA and LB to the Hilbert space 'Hc· Using (1.36) , it 

can be shown that 

LAC.LBC = (LA 18)1IB)·(lIA 18) LB) 

(LA.lIA) 18) (lIB·LB) 

LA 18) LB = LBC·LAC· (1.38) 
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This implies that LAC and LBC commute with each other. 

On the other hand, the elimination of the degrees of freedom corresponding to one 

subsystem can be achieved using a partial trace with respect to the basis state vectors 

associated with its Hilbert space. For instance, if Xc is a linear operator on 'Hc, then 

(1.39) 

is an operator defined on the Hilbert space 'HA , and we write 

(1.40) 

Reduced density matrix 

If the density matrix of the compound system PC is known, then tracing out the degrees 

of freedom of the subsystem B yields an operator 

(1.41) 

satisfying all the properties of density matrices. In fact PA fully characterizes the state of 

the subsystem Aj this is the reason for which it is called the reduced density matrix. For 

instance, the mean value of the observable LA is given by 

(LA) = tr{(LA ® lIB)Pc} 

trA {trB[(LA ® IB)PC]} 

trA{LAPA} . (1.42) 

Suppose now that the subsystems A and B are uncorrelated and do not interact with 

each other. Hence the density matrix of the composite system is simply given by the 

tensor product of the density matrices corresponding to its subsystems, that is, 

PC = PA ® PB . (1.43) 

It follows that the mean value of the operator LA ® LB is equal to the product of the 

mean values of the operators LA and LB evaluated with respect to the states PA and PB , 

respectively. This can be expressed as 

tr{(LA ® LB)Pc} 

tfA {LAPA}.trB{LBPB} 

(LA) .(LB )' (1.44) 
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We shall not go through all properties of the reduced density matrix. We only present the 

following obvious results: 

(1.45) 

(1.46) 

which will be used later. 

1.3.2 Dynamics of open quantum systems 

We again restrict ourselves to the case of a system C composed of two subsystems A and 

B, described by the Hamiltonian operators HA and HE, respectively. The case of larger 

numbers of subsystems follows straightforwardly. If we denote by HAB the Hamiltonian 

operator describing the interaction between the subsystems, then the total Hamiltonian 

reads: 

(1.47) 

We are interested in the case where the total system can be regarded as closed. This 

implies that the Liouville-von Neumann equation applies to the density matrix PC, namely, 

dpc . dt = -t[Hc, pc]. (1.48) 

Tracing out the degrees of freedom corresponding to the Hilbert space 'HB yields 

(1.49) 

Clearly, when HAB == 0, we recover the Liouville-von Neumann equation for the density 

matrix PA. 

The interaction picture 

When the Hamiltonian of a quantum system is the sum of a time-independent (free) term 

Ho, and an interaction term V, which may depend on time, then a convenient description 

of the dynamics may be achieved within the interaction picture. The latter is intermediate 

between the Schrodinger and the Heisenberg pictures, in the sense that in this picture both 

state vectors and operators evolve in time. 

To begin we note that state vectors in the interaction picture are related to those in 

the Schrodinger picture by 

11// (t)) = lUb(t, to)I'Ij;(t)), (1.50) 
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where, 

1lJo(t) = exp[-iHo(t - to)]. (1.51) 

For the sake of simplicity, we assume that to = 0 and we set 1lJo(t,O) = 1lJo(t) , such that 

1lJo(O) = IT. Deriving both sides of (1.50) with respect to time yields 

a l ~t/ (t) ) 
at 

a1lJb(t) 11/J (t) ) + 1lJt (t) al1/J (t) ) 
at 0 at 

= iHo1lJb(t)I1/J(t)) - i1lJb(t)(Ho + V)I1/J(t)) 

-i1lJb (t) VI 1/J ( t)). 

Consequently, using equation (1.50), we obtain 

where 

VI (t) = 1lJb(t)V1lJo(t). 

(1.52) 

(1.53) 

(1.54) 

In general, the rule for transforming an operator L, written in the Schrodinger picture, to 

the interaction picture is given by 

L -7 LI (t) = 1lJb(t)L1lJo(t). (1.55) 

Clearly, when t = 0 then I1/JI(O)) = 11/J(0)) and LI(O) = L. 

Second-order master equation, Born and Markov approximations 

Let us now apply the above results to the density matrix p corresponding to the composite 

system C = A + B (from here on we omit the subscript C for convenience) . To do so we 

set Ho = HA ® ITB + ITA ® HB, and HAB = V. In the interaction picture pI (t) and VI (t) 

are given by 

Consequently, 

dpI (t) 
dt 

pI (t) = 1lJb(t)p(t)1lJo(t), 

VI (t) = 1lJb(t)V1lJo(t). 

iHo1lJbp(t)1lJo(t) + 1lJb(t) d~~t)1lJo(t) - i1lJb(t)p(t)HollJo(t) 

i[Ho, / (t)] + llJb(t) d~~t) llJo(t) 

= i[Ho , pI (t)]- i1lJb(t)[Ho + V, p(t)]llJo(t). 

(1.56) 

(1.57) 

(1.58) 
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It immediately follows that 

dP;t(t) = _i[VI (t), l (t)]. (1.59) 

The latter equation can be put into the following integral form: 

pI (t) = p(O) - i fat [VI (s), l (s)]ds. (1.60) 

Combining equations (1.60) and (1.59), yields the following integro-differential equation 

for pI (t): 
d I(t) it -T = -i[VI(t),p(O)]- 0 [VI(t), [vI(s),l(s)]]ds. (1.61) 

The reduced density matrix describing the subsystem A, which we denote here by p~(t), 

is obtained by tracing out the degrees of freedom of the subsystem B, that is, 

dl (t) it -it- = -itrB[VI (t), p(O)]- 0 trB[VI (t), [VI (s), l (s)]]ds. (1.62) 

In most cases, solving the above equations exactly is not possible. However, it turns 

out that introducing some approximations may lead to exact analytical solutions. For 

instance, in the case of a subsystem A, weakly coupled to a very large environment B, 

it is reasonable to assume that the state of the latter is not considerably affected by the 

interaction. In other words, we assume that the density matrix factorizes into 

l(t) = p~(t) ® PB· (1.63) 

This is known as Born approximation, under which equation (1.62) becomes 

~ = -itrB[VI (t), PA(O) ® PB]- trB[VI (t), [VI (s), p~(s) ® PB]]ds. d I (t) it 
dt 0 

(1.64) 

If we further replace p~(s) in (1.64) by p~(t), we obtain the following time-local integro-

differential equation: 

~ = -itrB[VI (t), PA(O) ® PB]- trB[VI (t), [VI (s), p~(t) ® PB]]ds. d I (t) lt 
dt 0 

(1.65) 

The Markov approximation is valid for the environments in which the time scales char­

acterizing the decay of their correlation functions are much shorter that those describing 

the development of the state of the subsystem. In this case one replaces the variable s in 

equation (1.65) by t - s, such that s runs from 0 to 00, that is, 

~ = -itrB [V I (t) , PA(O) ® PB]- trB[VI (t), [VI (t - s), p~(t) ® PB]]ds. d I (t) 100 

dt 0 
(1.66) 

This constitutes the second-order Markovian master equation. Very often, especially in 

quantum optics [5], the latter equation leads to an exponential decay of the reduced density 

matrix. 
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1.3.3 Decoherence 

We have already mentioned that quantum mechanics is a theory for the infinitely small, 

in the sense that it describes the behaviour of the constituents of matter such as atoms 

and electrons. However, if one attempts to describe macroscopic bodies using the laws 

of quantum mechanics many problems immediately arise, in particular, the fact that the 

superposition principle cannot be observed for macroscopic bodies. Hence the need for 

a description of the transition from the quantum world to the classical world naturally 

emerges. 

It has been recognized that the process responsible for this transition is the deco­

herence, which, in its simplest form, refers to the destruction of quantum interferences 

(coherences) characterizing quantum systems. The decoherence has attracted much at­

tention since Schrodinger published his famous papers [6, 7]. We note here that Bohr went 

further and suggested to consider this phenomenon as an axiom for quantum mechanics. 

In the 1980s Zurek, among others, extensively investigated the decoherence and came 

to the conclusion that this process can be regarded as a consequence of the axioms of 

quantum mechanics, in contrast to what Bohr suggested. His arguments are based on the 

fact that the decoherence is the result of the interaction of quantum systems with their 

environments [8, 10, 11, 12, 13]. The latter are responsible of the dynamical destruction of 

quantum interferences, leading coherent superpositions of pure states to evolve into mixed 

states. In the course of this process, the environment becomes correlated (entangled) with 

the system, and hence acquires information about it. This leads to a reduction of the 

set of accessible states to the system, and generates some kind of quantum noise due to 

the loss of information to the environment. This process selects a class of robust states 

(pointer states) which persist in the course of time, and hence correspond to what we 

observe classically. 

All what has been said above can be better understood by investigating a simple 

illustrative model, in which the interaction Hamiltonian reads [4] 

(1.67) 
n 

Here the state vectors In) form an orthonormal basis for the Hilbert space of the system, 

and Bn are environmental operators. We further assume that the free Hamiltonian Ho 

commutes with the operators In)(nl and Bn. In this case the mean energy of the system 

is conserved. Hence the evolution in time of any initially uncorrelated state 

Iw(O)) = Lenin) ® I¢) (1.68) 
n 
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is given by 

Iw(t)) = Lenin) ® I¢n(t)), (1.69) 
n 

where 

(1. 70) 

It follows that the reduced density matrix describing the state of the system is given by 

(1. 71) 
mn 

Consequently, the diagonal elements of the reduced density matrix are unchanged, while 

the off-diagonal ones are multiplied by the overlap between the environmental states. At 

this stage it is convenient to introduce the de coherence function by 

r mn = In 1(¢m(t)I¢n(t))I. (1. 72) 

Note that since 1(¢m(t)l¢n(t))1 :::; 1, then r mn :::; O. Moreover, the time-dependence of 

the decoherence function depends on the initial state and the nature of the environment. 

In general, the irreversible character of the dynamics leads to a rapid increase of the 

decoherence function r mn corresponding to the off-diagonal element Pmn. In the case 

where the environmental operators Bn(t) are such that the off-diagonal elements vanish 

after some time scale TD , which we call the de coherence time, that is 

rmin ---t 0, t» TD, (1. 73) 

then the reduced density matrix becomes an incoherent superposition of the states In): 

(1.74) 
n 

Hence the coherences of the density matrix in the basis In) have vanished due to the cou­

pling to the environment . This local destruction of the coherences makes them inaccessible 

to any observer. It is clear from equation (1.74) that the reduced density matrix becomes 

diagonal in the set of basis state vectors In). The 'latter is known as the preferred basis. 

Measures for the decoherence 

We have seen that the main effect of de coherence consists in transforming pure states into 

mixed states. Thus a measure of the degree of mixing may also be a good measure for the 

decoherence. Recall that for any density matrix P, we have trp2 :::; 1; the equality holds 

for pure states. The quantity 

(1.75) 
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is thus a good candidate for a measure for decoherence; it is usually called the purity of 

the state p. In a d-dimensional Hilbert space, the smallest value of P corresponds to the 

maximally mixed state Pm = ~rr. In fact it is more convenient to quantify the decoherence 

using the quantity D = 1 - P instead of the purity itself. The latter quantity is maximum 

for pm and vanishes for pure states: 

1 
0< D < 1--. - - d 

(1.76) 

Sometimes it is desirable to quantify the distance between two density matrices, say p 

and p. The measure enabling the fulfillment of such a task is called the fidelity, which we 

denote by F. It is defined through the trace as follows: 

F = tr{pp}. (1. 77) 

It can be shown that 0 :::; F :::; 1. The fidelity is also used as a measure of decoherence. 

1.4 Entanglement 

1.4.1 The EPR paradox 

Entanglement refers to quantum correlations that exist between multipartite systems even 

when these are spatially separated from each other. Consider for instance the state vector 

(1. 78) 

of the bipartite system C = A + B, where ai and bi denote, respectively, the degrees of 

freedom of the systems A and B. The above state exhibits strong correlations between the 

subsystems: if we measure separately the state of each part, we can find with a probability 

~ the system A in the state lal) and B in the state Ibl), or with the same probability the 

system A in the state la2) and B in the state Ib2). In other words, if we measure the state 

of one of the systems, we can deduce with certainty the result of the measurement on the 

second one. 

Einstein, Podolsky and Rosen were the first to ppint out the apparent paradoxical char­

acter of entanglement [14J. They used the latter to show how quantum mechanics would 

contrast a realistic local theory of nature. According to EPR, quantum mechanics cannot 

be the ultimate theory of physical phenomena because of its fundamental indeterminism. 

Their arguments can be summarized as follows: There is an element of reality associated 

with the degree of freedom b, since without disturbing the system B, we can determine 
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with certitude the outcome of the measurement of b. Worse, following EPR, the analysis 

shows that it may be possible to simultaneously measure two quantities associated with 

non-commuting observables such as the x and z components of the spin of the electron. 

From the point of view of quantum mechanics, the systems A and B, taken separately, 

are not in a well defined state. What really matters is the state of the compound system. 

The EPR reasoning can be applied only to separable states for which a measurement on 

one part does not provide any information on the state of the other one, and hence there 

is no paradox. 

The work of Bell provided a direct tool for testing the validity of quantum mechan­

ics [15, 16]. He assigned to each EPR pair a hidden variable inaccessible by the observer , 

which ensures that the new presumed theory is local, in accordance with what Einstein was 

looking for. He derived some inequalities (Bell's inequalities), describing the constraints on 

the prediction of this theory. The results of subsequent experimental verifications proved 

the violation of Bell's inequalities [17]. In fact the former were in good agreement with 

what quantum mechanics predicted. This led to the conclusion that there cannot exist an 

alternative local theory for quantum mechanics. 

The above discussion shows the important role played by entanglement in the devel­

opment of the theory of quantum mechanics [18]. As we shall see bellow, it is also of great 

practical significance in the field of quantum information. 

1.4.2 Measures of entanglement 

Entanglement is considered as a fundamental resource for nature in the same level as 

energy and entropy [19]. Thus, it is important to quantify it using measures that enable one 

to know to what extent the state of a quantum system is entangled. Generally speaking, 

the state p of a bipartite system A + B is said to be entangled (or not separable) if it 

cannot be written as a tensor product of pure states of its subsystems, or as a statistical 

mixture of tensor product (uncorrelated) states, that is [20], 

p t- L CkP~ 18) p~. 
k 

A state which is not untangled is said to be separable. 

(1. 79) 

Recall that any normalized state vector I~AB) E 'H.A 18) HB can be written in the form 

of a Schmidt decomposition 

X 

I~AB ) = L JPjI¢~ ) 18) 1 ~~) , (1.80) 

j = l 
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where {I¢~)} and {lcP'k)} are, respectively, the orthonormalized eigenvectors of the reduced 

density matrices PA = trB(I'l/JAB) ('l/JABI) and PB = trA(I'l/JAB) ('l/JABI). The Pj can be shown 

to be common eigenvalues of the latter reduced density matrices. The upper limit X of the 

sum in (1.80) is called the Schmidt number. Hence, if X = 1 then the state is separable, 

i.e., not entangled. 

It turns out that, very often, the task of finding a decomposition for a given density 

matrix is computationally very hard. As a consequence, one should look for practical 

measures which enable the quantification of entanglement with a lower computational 

effort. Let us first remark that, generally speaking, an entanglement measure E is, by 

definition, a functional from the space of density matrices on the Hilbert space to the set 

of positive real numbers which satisfies the following requirements [21, 22, 23]: 

• E(p) = 0 if and only if P is separable. 

• E(p) = 1 for maximally entangled states. 

• E(Ap) :::; E(p) for any LOCC1 operation A. The equality holds when the operation 

is strictly local. 

• E(/i!>n) = nE(p) (weak additivity). 

• If Pn is a density matrix of n pairs such that limn ..... oo('l/JC8Inlpnl'l/JC8In) 

limn ..... oo [E(I'l/J)('l/JI C8In) - E(Pn)]/n = 0 (continuity). 

I, then 

Since pure states contain no classical correlation, then the von Neumann entropy of 

the subsystems 

(1.81) 

represents a convenient measure of their entanglement. When E(I'l/JAB)) = 0, then the 

state I'l/JAB) is separable, otherwise it is entangled. Note that, in general, if we denote by 

Ai the eigenvalues of P, then 

(1.82) 

It follows that 
x 

E(I'l/JAB)) = - LPj log2Pj· (1.83) 
j=1 

1 LOCC: Local Operations and Classical Communication 
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The above measure is usually called the entropy of entanglement. 

For mixed states the situation is much more complicated. Here we only consider one 

measure for bipartite systems, namely, the entanglement of formation EF [24, 25, 26]. 

The latter is obtained by taking the infimum on all possible averages of the entropy of 

entanglement with respect to the ensembles of pure states £ = {I'l/Ji) , Wi} corresponding 

to the mixed state I'l/J), that is, 

EF( I'l/J)) = i~f L WiE(I'l/Ji))· (1.84) 
i 

It turns out that the entanglement of formation assumes the following form: 

E = h(l + Vl- C(P)2) 
F 2 ' 

(1.85) 

where h(x) = -xlog2x + (x -1)log2(1- x), and C(p) is called the concurrence of the 

density matrix p. Wooters [25] proved that the explicit form of the concurrence is given 

by 

C(p) = max { yI>:; - Vi:; -~ -~, O}, (1.86) 

where A1 ~ A2 ~ A3 ~ A4 are the eigenvalues of the operator 

(1.87) 

Here CTy is the Pauli matrix, and asterisk denotes the complex conjugation. The concur­

rence can itself be used as a measure of entanglement: it is equal to zero for separable 

states and one for maximally entangled states. 

1.4.3 Entanglement and quantum critical phenomena 

Quantum phase transition refers to the abrupt changes in the properties of the ground 

states of quantum systems when some relevant parameters vary across their critical val­

ues [27]. In contrast to classical phase transitions, the quantum ones occur only at the 

absolute zero temperature. One may regard quantum phase transitions as the result of 

quantum fluctuations inherent to many body quantum systems. As an illustration, let us 

consider the transverse ID Ising model with N spins, whose Hamiltonian is given by 

N N 

H = -A L CT~CT~+1 - L CTz · (1.88) 

i=l i=l 

Here A ~ 0 is the coupling constant, and CT~, a == x, z, denote the Pauli matrices at site 

i. When A -> 00, the ground state of H is two-fold degenerate, with either all the spins 
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pointing up or all pointing down along the x direction. However, when A = 0, the ground 

state is such that all the spins are aligned ferromagnetically along the z direction. The 

magnetization, in turn, vanishes in the thermodynamic limit when A -t 00, and tends 

to one as A -t O. There exists a critical point Ac at which the magnetization displays a 

sudden change. 

It should be noted that due to the appearance of criticality, some correlations char­

acterizing many body systems may exhibit a power decay near the critical point; they, 

however, decay exponentially far from the point of phase transition. This is the reason 

which has led many authors to investigate the relation between entanglement and quan­

tum phase transitions. These studies revealed a genuine behaviour of entanglement as 

measured by the entropy and the concurrence. 

1.5 Qubits: The building blocks of quantum information 

Quantum Information (QI) is a field of current research which deals with the possible ways 

of using quantum mechanics to treat information, in a manner that is much more efficient 

compared to what classical methods do offer [19]. Let us recall that, generally speaking, 

Information Theory allows for the establishment of a framework for communications and 

information processing, and provides us with tools to quantify the information. Within 

this framework one can, for instance, derive bounds on the complexity and costs of storing 

data or sending information over a noisy channel. The unit of classical information is the 

bit. The latter can only have two possible values which are conventionally denoted by 0 and 

1. The two different voltages across a transistor on a chip, the two different orientations of 

the magnetic domain on a disc, and the two different classical light pulses traveling down 

an optical fibre are examples of the realization of classical bits. Any physical object used 

in the treatment of information is ultimately composed of atoms, and molecules. These 

should, in turn, be described by the laws of quantum mechanics, the fundamental theory 

of atomic phenomena. 

Historically, Feynman was the first to come out with the idea of using quantum me­

chanics to accomplish tasks inaccessible by standard classical methods [28]. He pointed 

out that the exponential growth of the dimension of the Hilbert space, due to the increase 

of the number of degrees of freedom, makes it impossible to simulate large quantum sys­

tems by classical computers. Feynmann introduced the concept of quantum computer by 

proposing the simulation of quantum systems by other quantum systems. This marked 

the birth of quantum information theory, whose building block is known as the quantum 
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bit or qubit [29]. This can be any two-level quantum system described by the Hilbert space 

C2
, where C denotes the field of complex numbers. As opposed to the classical bit, the 

quantum bit posses infinite number of permitted states. This follows from the superpo­

sition principle of quantum mechanics. Indeed, if we denote by {10), II)} an orthonormal 

basis for C2
, then the general form of the state of the qubit is given by 

11/1) = alO) + bll) , (1.89) 

where a, b E C, such that lal 2 + IW = 1. Taking into account this normalization condition, 

the above state can be recast, up to a trivial unitary constant, into the form 

11/1) = cos (~) 10) + ei
¢ sin (~) 11) . (1.90) 

The variables ¢ and () represents the polar coordinates of a point on a unit sphere called 

bloch sphere. 

The two main branches of quantum information theory are quantum cryptography 

and quantum computing. The first one is based on the fact that any measurement carried 

out on a quantum system inevitably disturbs its state. Hence, encoding information in 

quantum systems enables high communication security. For instance the effect of a spy on 

the quantum channel, through which a sender and receiver are exchanging information, 

can be instantaneously detected by the latter. Note, also, that classical cryptography is 

founded on the algorithmic problem of factorizing large numbers into prime integers; this 

is also the case for quantum cryptography, making it tightly related to the other branch 

of quantum information, namely, quantum computing. 

In a quantum computer, any algorithm can be regarded as a set of successive quantum 

operations on the qubits [19]. These can be written as a linear combination of the Pauli 

matrices along with the identity matrix in C2, namely, 

_ (0 1) _ (0 -i) _ (1 ° ) = (1 0) x- , y- , Z- , I . 

1 ° i ° ° -1 ° 1 

(1.91) 

In order to be able to perform quantum computing, one should add gates that act on at 

least two qubits simult aneously. The most important two-qubit gate is the CNOT gate, 

given in the natural basis {Ill) , 110) , 101) , 100)} by: 

CNcrr~ G ;) (1.92) 

The CNOT gate together with all single qubit operations constitute a universal set of 

quantum gates, in the sense that any n-qubit gate can be implemented by composing 

operations on single qubits and CNOT gates. 
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There have been many proposals for the implementation of quantum computers. The 

most successful one is based on nuclear magnetic resonance where nuclear spin states of 

atoms within the molecules play the role of qubits [30, 31]. This technique is characterised 

by a relatively long de coherence time, which enables the realization of many elementary 

quantum algorithms such as that of Deutsch-Jozsa. Trapped neutral atoms were also pro­

posed for the implementation of quantum information processing. Here the spin degrees 

of freedom of the electrons corresponding to the ground states of atoms play the role of 

qubits. The coupling between the qubits can be realized by divers mechanism, among 

which we mention dipole-dipole interactions [32] and cold collisions [33]. Another real­

ization which is close to the above one consists in using trapped cooled ions instead of 

atoms [34]. In this case, each qubit is represented by the combination of the ground state 

and an excited metastable state of the ion. The coupling between qubits is mediated by 

collective excitations of the ions. 

The rapid progress in the field of spintronics and solid state nanostructures trig­

gered the interest on spin systems as candidates for the realization of quantum com­

puters [35 , 36]. Spin systems are very promising in the sense that they offer the possibility 

of integrating qubits on a large scale. Among these, we find quantum dots in which elec­

tron qubits couple to the surrounding electrons, which can be regarded as a spin bath, 

through hyperfine interactions. The latter can be reasonably described using Heisenberg 

model. 

Entanglement is the main resource for quantum computing and quantum cryptogra­

phy [37]. Many of the known protocols are based on entanglement (e.g., see [38]) . On 

the other hand, decoherence is the major obstacle toward the implementation of quantum 

computers, since it makes quantum system to behave classically. Therefore, the study of 

de coherence and entanglement in many-body spin systems is of great importance, both 

theoretically and experimentally [39, 40, 41] . Many of the precedent studies have dealt 

with spin chains. This thesis focuses on the study of exactly solvable models for the dy­

namics of simple qubit systems interacting with the collective modes of their surrounding 

spin environments. The obtained results are applied to the investigation of the decoherence 

and entanglement evolution of the central systems. 





BIBLIOGRAPHY 

[1] L.1. Schiff, Quantum Mechanics (McGraw Hill , New York, 1949). 

[2] C. Cohen-Tannoudji, B. Diu, and F . Laloe, Quantum Mechanics (Wiley, New York, 

1977) , Vol. 1. 

[3] L. D. Landau, and E. M. Lifschitz, Quantum Mechanics (Pergamon Press, Oxford, 

1976) . 

[4] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford 

University Press, Oxford, 2002). 

[5] C. W . Gardiner, Quantum Noise (Springer, Berlin, 1991). 

[6] E. Schrodinger, Naturwissenschaften 23,807 (1935) . 

[7] E. Schrodinger, Naturwissenschaften 23, 823 (1935) 

[8] W . H. Zurek, Phys. Rev. D 24, 1516 (1981). 

[9] W. H. Zurek, Phys. Rev. D 26, 1862 (1982). 

[10] W. H. Zurek, Phys. Today 4410, 36 (1991) . 

[11] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003) . 

[12] D. Giulini, E. Joos, C. Kiefer et al., Decoherence and the Appearance of a Classical 

World in Quantum Theory (Springer-Verlag, Berlin, Heidelberg, New York, 1996). 

[13] W. H. Zurek, Progr. Theor. Phys 89, 281 (1993). 

[14] A. Einstein, B. Podolsky, and N. Rosen, Phys: Rev., 47, 777 (1935). 

[15] J. S. Bell, Physics, 1, 195 (1964). 

[16] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University 

Press, Cambridge, 1987) . 



Bibliography 26 

[17] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 49, 1804 (1982). 

[18] A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993) . 

[19] M. A. Nielsen and 1. L. Chuang, Quantum Computation and Quantum Information 

(Cambridge University Press, Cambridge, 2000). 

[20] R. F. Werner, Phys. Rev. A, 40, 4277 (1989). 

[21] G. Vidal, Phys. Rev. Lett., 91, 147902 (2003). 

[22] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275 

(1997). 

[23] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett., 84, 2014 (2000). 

[24] S. Hill and W. K. Wootters, Phys. Rev. Lett., 78, 5022 (1997). 

[25] W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998). 

[26] W. K. Wootters, Quantum Inf. Comput. 1, 27 (2001). 

[27] S. Sachdev Quantum Phase Transitions (Cambridge University Press, Cambridge, 

1999). 

[28] R. P. Feynman, Int. J. Theor. Phys., 21,467 (1982). 

[29] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys, 74 (2002). 

[30] 1. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, Nature, 

393, 143 (1998). 

[31] 1. L. Chuang, N. Gershenfeld, and M. Kubinec, Phys. Rev. Lett. 80, 3408 (1998). 

[32] G. K. Brennen, C. M. Caves, P. S. Jessen, and 1. H. Deutsch, Phys. Rev. Lett. 82, 

1060 (1999). 

[33] D. Jaksch, H.-J. Briegel, J. 1. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett . 

82, 1975 (1999). 

[34] J. 1. Cirac, and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995) . 

[35] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). 

[36] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999). 



Bibliography 27 

[37] C. H. Bennett and D. P. DiVincenzo, Nature, 404, 247 (2000). 

[38] P. Shor, Proceedings of the 35th Annual Symposium on Foundations of Computer 

Science, p. 124 (IEEE Press, California, 1994) . 

[39] W. Zhang, N. Konstantinidis , K. Al-Hassanieh, and V. V. Dobrovitski, J . Phys.: 

Condens. Matter 19, 083202 (2007) . 

[40] L. Amico et ai, Rev. Mod. Phys. 80, 517 (2008). 

[41] A. Hutton, S. Bose, Phys. Rev. A 69, 042312 (2004) . 





2. TIME EVOLUTION AND DECO~ERENCE OF A SPIN-~ PARTICLE 

COUPLED TO A SPIN BATH IN THERMAL EQUILIBRIUM 

2.1 Introduction 

The loss of quantum coherence due to unavoidable interactions of quantum systems with 

the surrounding environment is known as decoherence. It represents the main obstacle 

to quantum computing and quantum information processing [1 , 2, 3] . The environment 

destroys quantum interferences of the central system within time scales much shorter than 

those typically characterizing dissipation [4]. The unwanted effect of decoherence reduces 

the advantages of quantum computing methods by producing errors in their outcomes. 

Different strategies, such as error-correcting codes, are adopted to overcome this diffi­

culty [5, 6, 7, 8]. Great scientific effort has been devoted to the understanding of the 

process of decoherence in quantum systems, mainly focused on solid state spin nanostruc­

tures. These systems seem to be the most promising candidates that can be efficiently 

used in quantum information processing and computation [9, 10, 11]. 

Several models were proposed to study decoherence of single and multi-spin systems 

interacting with a surrounding environment [12]. Very often, the derivation of the reduced 

dynamics involves complications and difficulties that can be overcome in many cases by 

making recourse to approximation techniques. In particular, the Markovian approxima­

tion together with the master equation approach turns out to be very useful [13, 14]. 

However, any approximation method is inevitably based on some assumptions which do 

not necessarily reflect the actual properties of the composite system. Moreover, many 

realistic spin systems exhibit non-Markovian behavior for which the standard deriva­

tion of the master equation ceases to be applicable. The non-Markovian dynamics of 

a central spin-system coupled to a spin environment has been investigated by many au­

thors [15 , 16, 17,18, 19,20] . 

In general, the course of the decoherence process depends on the intrinsic properties 

of the bath such as temperature, polarizations, and quantum fluctuations. At low en­

vironmental temperatures, the dominant effect arises from the contributions of localized 
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modes such as nuclear spins [21 J. In quantum dots, the de coherence of the central spins 

is mainly caused by the hyperfine coupling with the surrounding nuclear spins. The effect 

of bath polarizations and external magnetic fields on the decoherence of electron spins in 

quantum dots has been investigated by Zhang et al [22J. 

In this chapter we study the dynamics of a spin-~ particle interacting with a large spin 

environment in thermal equilibrium. In section 2.2, we introduce the model Hamiltonian 

together with the initial states of the central spin and the environment. In section 2.3, 

we calculate the exact time evolution operator of the composite system and we derive the 

reduced density matrix of the central spin. Section 2.4 is devoted to the case of an infinite 

number of spins in the bath. We study the long-time behavior as well as the short-time 

behavior of the reduced density matrix, and we discuss the effect of the magnetic field and 

the bath temperature on decoherence. 

2.2 The model 

We consider a central spin-~ particle coupled to a spin bath composed of N interacting 

spin-~ particles in thermal equilibrium at temperature T. The spin operators correspond­

ing to the central system are denoted by Sf with i = x, y, z; those associated with the 

bath constituents are denoted by Sf, where k = 1,2, ... , N and i = x, y, z. We assume 

that the central system as well as every spin in the bath couples to all other spins through 

long-range anisotropic Heisenberg interactions. Moreover, an external magnetic field of 

controlled strength J.L is locally applied to the central spin along the z direction. Under 

the above assumptions, the model Hamiltonian can be written as 

H = Hs + HSE + HE, (2.1) 

where Hs and HE are, respectively, the Hamiltonian operators of the central spin and 

the surrounding environment. The coupling between the open system and the bath is 

described by the Hamiltonian HSE. Explicitly, we have 

Hs = 2J.LS~, (2.2) 

N N N 

2')' a '" Si 2a [so", Si SO '" Si] 
HSE = Vii Sz f=:. z + Vii x f=:. x + y f=:. y , 

(2.3) 

N N 

HE = ~ [I: (S~S~ + s~st) + 6. I: S;S~], 
iii iii 

(2.4) 

where,), and a are the coupling constants of the central spin to the environment, 9 stands 

for the strength of interactions of spins in the bath, and 6. is the anisotropy constant. The 
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coefficient 2 in front of j.L, I and a in Eqs. (2.2) and (2.3) is introduced for later convenience. 

Furthermore, we have rescaled the above interaction strengths with appropriate powers of 

the number of spins in the environment in order to ensure good thermodynamical behavior, 

namely, an extensive free energy. Obviously, a more realistic model would include site­

dependent interactions. 

Note that in the case where ,= 0, HSB reduces to Heisenberg XY Hamiltonian which 

was recently used to model the coupling of one and two qubits to star-like environments [23, _ N _ 

15,16, 17J. Moreover, when I = a we simply have HSB = JNSO ~ Si, which should be 
~=1 

compared with the Hamiltonian of the hyperfine contact coupling of electron spin to the 

nuclear spins in quantum dot. In [24], the Hamiltonian hB = ~i>j 9ij(§i§j - 3S!S~) 

was used to model the intrabath dipolar coupling between nuclear spins in quantum dot. 

If we assume uniform coupling between nuclear spins, i.e. all the gij are the same, then 

the operator hB (with rescaled coupling constant) becomes equivalent to HB in the case 

where 6. = -2. It should also be noted that the bath Hamiltonian HB is very close to that 

of the isotropic Lipkin-Meshkov-Glick model [25, 26J. There, the magnetic field globally 

applied to all spins plays the role of the anisotropy present in our model. This can be 

better seen by applying mean field approximation to the longitudinal term of HB. 

The Hamiltonian operators HB and HSB can be rewritten in terms of the lowering 

and raising operators S1 = S~ ± iS~ as follows 

(2.5) 

(2.6) 

_ N_. 
By introducing the total angular momentum of the bath J = ~ S~, together with the cor­

i=l 
responding lowering and raising operators J±, it is possible to put the above Hamiltonian 

operators into the following form 

(2.7) 

(2.8) 

Here, Jz is the z component of the total angular momentum J, and we have introduced 

the operator K = J+J_ + J_J+. From here on, we shall neglect the constant (2 + 6.)g/4 

appearing in the expression of HB since it has no effect on the dynamics of the system. 

This can be done by redefining the energy origin of the spectrum of the bath Hamiltonian. 
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The spin spaces corresponding to the central spin and the environment are given by 

C2 and (C2)i8IN, respectively. The latter space can be decomposed as a direct sum of 

subspaces Cdj each of which has a dimension equal to dj = 2j + 1 where 0 :::; j :::; If [16J( 
N 
'2 

we take N even), namely (C2)i8IN = ED v(N, j)Cdj . The degeneracy v(N, j) is given by [27J 
j=O 

v(N .) = 2j + 1 N! 
,] If+j+1(If-j)!(If+j)!' 

(2.9) 

It is worth noting that the bath Hamiltonian can be expressed in terms of the operators 

J2 and Jz as HB = ~[J2 + (ll - 1)J:J. Therefore, the operator HB is diagonal in the 

standard basis of (C2)i8IN formed by the common eigenvectors of J2 and Jz which we 

denote by /j, m) where -j :::; m :::; j . In this basis, the eigenvalues of the operator K are 

simply given by 2(j(j + 1) - m 2) (we set Ii = 1). 

2.3 Reduced dynamics of the central spin 

In this section we derive the exact time evolution of the central spin for finite number of 

environmental spins. As usual, we introduce the time evolution operator U(t) = e-iHt 

together with the total density matrix operator of the spin-bath system, Ptot(t). The 

initial value of the latter is denoted by Ptot(O). The evolution in time of the composite 

system is unitary; its density matrix at any moment of time is given by 

(2.10) 

The reduced density matrix of the central spin can be calculated by tracing Ptot(t) with 

respect to the environmental degrees of freedom, namely, 

(2.11) 

This can be explicitly written in terms of bath states as 

p(t) = Lv(N,j)(j,m!ptot(t) !j ,m). (2.12) 
j,m 

In order to solve the time evolution problem (2.10), one needs to calculate the exact 

analytical form of U(t) and to specify the initial density matrix. 

2.3.1 Initial conditions 

Initially, the central spin is assumed to be uncorrelated with the environment. The cor­

responding total density matrix is given by the direct product Ptot(O) = p(O) ® PB where 
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p(O) and PB are, respectively, the initial density matrices of the central spin and the bath. 

In the standard basis composed of the eigenvectors 1-) and 1+) of the operator S~, ps(O) 

takes the general form 

p(O) = (p~~ P~2), 
P12 P22 

(2.13) 

where Pn and P22 are positive real numbers which satisfy Pn + P22 = 1. For instance, if 

at t = 0 the central system was in the state 

17jI(0)) = al-) + bl+), (2.14) 

where a and b are complex n~mbers satisfying lal 2 +IW = 1, then P~l = lal2 and P~2 = ab*. 

Alternatively, p(O) can be expressed in terms of the components of the Bloch vector 

X = (>'1, >'2, >'3) as 

(2.15) 

with the condition IXI :::; 1; the equality holds for pure initial states. We shall use both 

representations of the density matrix throughout the paper. 

At t = 0, the spin bath is taken in thermal equilibrium at finite temperature T. Its 

density matrix is given by the Boltzmann distribution 

e-{3HB 

PB = Z;;-' (2.16) 

where {3 = liT (we set kB = 1), and ZN = trBe-{3HB is the partition function of the bath. 

Clearly, PB is diagonal in the standard basis {Ij, m)} from which it follows that [28] 

(2.17) 

and 

ZN = L v(N,j) e-1Qfj(j+l)+(~-1)m2J. (2.18) 
j,m 

In the case of the isotropic Heisenberg model, i.e., when ~ = 1, the above expression 

simplifies to 

(2.19) 
j 

In the extreme case of an infinite temperature ({3 -t 0), the density matrix of the bath 

reads 

(2.20) 

which corresponds to a completely unpolarized spin bath. In the previous expression IB 

stands for the unity matrix in the bath space. 
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2.3.2 Time evolution operator 

Let Uij denote the components of the time evolution operator U in the basis {I- ), I+)} 
corresponding to the central system space. To be precise, we stress that the operator U 

can be written in the basis { I±) ® IJ, m)} as 

U= (2.21 ) 

Here the quantities Uij ;J,J' ,m,m' are complex numbers and lei) == I±). The operator com­

ponents Uij are given by 

Therefore, we can write 

Uij = L Uij ;J,J' ,m,m,lJ, m)(/, mil · 
J,J',m ,m' 

UI- ) = Uul-) + U211+) , 

UI+) = Ud-) + U221+)· 

On the other hand, the operator U satisfies the Schrodinger equation 

i :t UI±) = HUI±)· 

(2.22) 

(2 .23) 

(2 .24) 

(2.25) 

Substituting Eq. (2.23) into Eq. (2.25) yields the following system of coupled differential 

equations 

d!u = [ - (/L + YR) + 2~ ( K + 2b.J:) ] Uu + ~ U21 , 

iU21 = ~ Uu + [(/L + YR) + 2~ ( K + 2b.J:) ] U21 ' 

Similarly, froms Eq. (2.24) and (2.25) we obtain 

Since U(O) = 12 ® lB , one gets the initial conditions 

(2 .26) 

(2.27) 

(2 .28) 

(2 .29) 

(2 .30) 

The difficulty with solving the above set of differential equations resides in the fact that the 

coefficients of the operator variables U21 and U12 are not diagonal and do not commute 

with those of Uu and U22. Nevertheless, as we shall see bellow, this problem can be 
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overcome by transforming these equations into new ones involving commuting diagonal 

operators. Indeed, by making use of the change of variables (see [19] for a similar method) 

U - -i[-(J.'+~)+2N(K+2~mltu-
11 - e vN 11, 

U - J -i[-(J.'+:r.:!i.)+2N(K+2~J;)ltu-
21- _e vN 21, 

U - -i[(J.'+~)+2N(K+2M;)lt[J-
22 - e vN 22, 

U J -i[(J.'+~)+2N(K+2~mltu-
12 = +e Vii 12, 

and taking into account the commutation relations 

. 2 
[Jz ' J±] = ±J±(2Jz ± 1) 

and 

[K, J±] = =f2J±(2Jz ± 1), 

we obtain 

(2.31) 

(2.32) 

(2 .33) 

(2 .34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

Now, the terms in front of the new operator variables Uij are diagonal in the common 

eigenbasis of J2 and Jz , whence the standard method of solving systems of differential 

equations can be easily applied. Combining the above relations leads to the following 

second order homogeneous differential equations for the operators U21 and U12 

U" + 2+ + [JR + ~(I-L~)l (J, - i) }U21 
a 2 _ 

+ N J+LU21 = 0, 

Ul2 - 2i{ M + [JR + ~ (1- L'.l]( J.+ ~) }U12 
a 2 _ 

+ N LJ+U12 = 0, 

which admit the following solutions 

U21 = 2iC1e-iFlt sin (t.;M;) , 
U12 = 2iC2e-iF2t sin (t}M;') . 

(2.40) 

(2.41) 

(2.42) 

(2.43) 
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Here, CI and C2 are some diagonal operators to be determined and we have 

FI =1'-+ [IN+ ~(l-ll)](Jz-~), 
0'.2 

MI =Ff+ NhL, 

F2 =-I'-- [IN+ ~(l-ll)](Jz+~), 
0'.2 

M2 = F1 + NLJ+ . 

Integrating the right-hand side of Eq. (2.42) gives 

U11 = -2CIe-iFlt~ [cos (t~)+ ~sin (t~)]+C3. 

35 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

The constant operators CI and C3 can be determined using the initial conditions (2.30) and 

the unitarity condition for the time evolution operator, which yield CI = -0'./(2..jN MI)lB 

and C3 = O. Hence, we obtain 

U11 (t) = e-iGlt [cos(t~)+ ~ sin (t..,IM) ], (2.49) 

U21(t) = -iJ ~e-iGltsin(t..,IM), (2.50) 

where 

Gl = - 2'!m + 2~ [(K + 2llJ;)+2(1-ll)(Jz - ~)]. (2.51) 

Following the same method, we find that 

U22(t) = e-
iG2t [cos (tvfM;) + ~ sin (t.;M;") ], (2.52) 

U12(t) = -iJ+ ~e-iG2t sin (t.jfi;) , (2.53) 

where 
(2.54) 

It is easy to see that the operators GI and G2 are diagonal in the common basis of J2 and 

Jz . Note also that all the operator under the square root symbol have positive eigenvalues. 

This is the reason for which it is permissible to safely use the usual definition of the square 

root function. 

2.3.3 Reduced density matrix 

Having determined the exact analytical form of the time evolution operator, we are able 

to calculate the reduced density matrix of the central spin. Indeed, from Eqs. (2.10) 
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and (2.11), and by making use of the trace properties of the lowering and raising operators 

J±, we find that 

P11(t) = ;N [p~ltrB(e-i3HBU11Uil)+pg2trB(e-i3HBU;lU12)]' (2.55) 

( ) 1 0 ( -i3HB U u.*) (2 56) P12 t = ZNP12trB e 11 22 . . 

Furthermore, with the help of the commutation relations (4.3.2) , we can easily prove that 

LFI = -F2L and LMI = M2L. Using the latter equalities, one can check that the 

time-dependent components of the Bloch vector are given by 

A3(t) = -~trB {a2 
J+J_ exp [- g{3 [K + 26.1'1 + (1 - 6.) (2Jz - 1)]] sin2 (ty'}:i;) 

ZN NMI 2N 

x sinh[;!(1- 6.) (2Jz -1)] }+A3(0) (1- }N trB{ (a;~_) 
x exp [-;! [K + 26.J; + (1 - 6.)(2Jz - 1)]] 

x sin2 (tJM)cOSh[;!(1- 6.)(2Jz -I)]}), (2.57) 

Al(t) = trB{ (AdO) cos(Ot) + A2(0) sin(Ot))A - (Al(O) sin(Ot) - A2(0) cos(Ot))B}, 

(2.58) 

A2(t) = -trB{ (Al(O) sin(Ot) - A2(0) cos(Ot)) A + (Al(O) cos(Ot) + A2(0) sin(Ot))B} , 

(2 .59) 

where 

2g 
o = N (6. - l)Jz , (2.60) 

A = ;N {e-~[K+2LlJ;1 [cos (ty'}:i;) cos (t;M;) + ~ sin (tJM) sin (t;M;) ]}, 

(2.61) 

B = ;N {e-~[K+2LlJ; l [~ sin (tJM) cos (t;M;) - Jk sin (t;M;) cos (ty'}:i;) ]}. 

(2 .62) 

From here on, the parameters J.L and 'Y will be given in units of the coupling constant 

a. The behavior of the component A2(t) does not significantly differ from the one corre­

sponding to Al(t). Throughout the remainder of the paper we shall deal with the latter 

component and restrict ourselves to positive values of the anisotropy constant 6.. 

Depending on the nature of interactions within the bath, we can distinguish two dif­

ferent cases. The first one corresponds to positive values of g, i.e., antiferromagnetic 
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Fig. 2.1: Time evolution of the components ).3(t) and ).l(t) for different values of the number of 

spins in the environment: N = 100 (dotted lines), N = 200 (dashed lines), and N = 400 

(solid lines). The other parameters are, = 0, 9 = 1, f3 = 0.5, t1 = 0, and f.L = Q . The 

initial conditions are ).3 (0) = ~ , ).1 ,2 (0) = ~. 

couplings between the constituents of the environment. In this case, as the number of 

spins increases, the plots saturate and a nontrivial limit exists as shown in Fig. 2.1. This 

will be investigated in the following section. The other case corresponds to negative values 

of g, i.e., ferromagnetic couplings within the bath. When ~ < 1 the components of the 

Bloch vector exhibit in general Gaussian decay accompanied by fast damped oscillations 

even when the strength of the magnetic field is very weak. In contrast to ),1 (t), the com­

ponent ),3(t) decays faster as the number of spins increases. When the latter is small , 

),3(t) may revive to decay again and so forth. The numerical simulation shows that the 

details of the time evolution of the reduced density matrix are rather complex and depend 

on the different values of the parameters of the model, including the number of bath spins. 

For example, if we set ~ = 0, we observe that the oscillations are quickly suppressed with 

the increase of the strength of the magnetic field, or the value of the coupling constant r­
In this case, the components ),2,3(t) do not vanish at long time scales; the corresponding 

asymptotic values depend, however, on N in contrast to the antiferromagnetic case. For 

large values of the coupling constant g, the component ),l(t) quickly decays whereas ),3(t ) 

oscillates around zero wit h large amplitudes (typically of the same order of magnitude as 

the corresponding initial value). We also notice that the frequencies of the damped oscilla­

tions increase with the increase of the number of bath spins as shown in F ig. 2.2. Roughly 

speaking, when ~ > 1, the behavior of the components of the Bloch vector is quite similar 

to the antiferromagnetic counterpart. For example, when 'Y = 0, the components ),i(t ) 

show saturation behavior with respect to the number of spins N; their asymptotic values 

are different from zero. 

In order to explain the differences between the behavior of the reduced density matrix 

in the ferromagnetic and the antiferromagnetic environments, we note that in the latter 
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Fig. 2.2: The Gaussian decay of the Bloch vector components A3(t) and A1(t) in the case of 

ferromagnetic interactions: (a) N=100 and (b) N=200. The plot on the left of each 

subfigure corresponds to A3(t) whereas the one on the right corresponds to A1(t). The 

other parameters are 'Y = 2a, f3 = 1, g = -5, f:l. = 0.5, 11 = 0, A3(0) = ~,and A1,2(0) = ~. 

case, the form of interactions favors antiparallel spins. This is the reason for which the 

ground state of the antiferromagnetic bath, IlliG), is equal to 10,0). On the contrary, 

ferromagnetic interactions force the spins in the bath to align along an arbitrary direction 

in the space. In this case IlliG) belongs to the subspace CN +1 spanned by the state 

vectors I~,m) corresponding to j = ~ . For instance, when !1 > I, the ground state 

of the bath turns out to be doubly degenerate, namely, IlliG) = I~, ±~). For!1 < I, 

we simply have IlliG) = I~, 0). However, when !1 = I, the ground energy of the bath is 

independent of the quantum number mj the degeneracy of IlliG) is equal to N + 1. Hence 

we conclude that the Hamiltonian HE displays quantum phase transition at !1 = 1. This 

is the reason for which the reduced dynamics depends on whether the anisotropy constant 

is less or greater than 1. Note that the mean value of j2 is close to zero in the case of 

antiferromagnetic interactions within the spin bath in contrast with the ferromagnetic case 

where (J2 ) rv N 2 . Obviously, the central spin dec~heres less if the spin bath, to which it 

couples, is characterized by a total angular momentum close to zero. At zero temperature, 

the antiferromagnetic bath occupies its ground state 10,0) which is an eigenvector of HE, 

and satisfies HSE I±) 18l10, 0) = O. Hence, the central spin remains decoupled from the bath 

if the initial state factorizes: the two-level system preserves its coherence regardless of the 
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number of environmental spins. Let us now consider the case where, = 0 and D. > l. 
At low temperatures, the total angular momentum of the ferromagnetic bath has the 

tendency to be directed along the z direction. Since the central spin couples to the bath 

through Heisenberg XY interactions (-y = 0), we end up with a situation quite similar to 

that where g > O. The above results show that properties of the bath at zero temperature 

affect the behavior of the reduced dynamics when T > O. At infinite temperature, the 

ferromagnetic and antiferromagnetic environments become completely unpolarized; the 

reduced dynamics displays the same behavior in both systems as N increases. 

2.4 The limit N --t 00 

This section is devoted to the case of an infinite number of spins in the environment, i.e., 

the case N -+ 00 . We investigate the effect of the bath temperature, the external magnetic 

field, and the anisotropy constant on the reduced density matrix of the central spin. To 

t his end it should be noted that the trace of the operators J±/VN together with Jz/VN 

is identically zero, namely, 

(2.63) 

A more general property of the trace of the lowering and raising operators can be expressed 

as 

(2.64) 

k 
where n = L: ni is positive integer; the exponent may be regarded as any unordered 

i=l 
product of ni lowering and ni raising operators (e.g., J+J+J_J+J_J_) . The trace vanishes 

for all the cases in which J+ and J_ appear with different exponents. This means that 

J±/VN are well-behaved fluctuation operators wi,th respect to the tracial state. Hence in 

the limit N -+ 00, the operator J+/VN converges to a complex random variable z with 

the probability density function [16] 

2 -21z12 
Z t--t -e . 

7r 

Here, we wish to mention the similarity that exists between relation (2.64) and 

(2.65) 

(2 .66) 
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00 2 I 
which is a special case of J t2n+le-at dt = 2a":.+1, where n = 0,1,2, ... , and the real part 

o 
of a satisfies Re(a) > 0. 

The operator Jz/VN also converges to a real random variable m (to be differentiated 

from the eigenvalue m) when N -t 00, with the probability density function 

(2.67) 

'b.!:.. J 
For example, consider the operator e -~ -.IN % and let us calculate 

N 

{ 
'b.!:.. J} . ....Jl. k tr B e -~ -.IN % = II tr e -~ v'N a % • (2.68) 

k=l 

The trace under the product in the right-hand side of the above equation can be easily 

evaluated as 2 cos( *). Consequently, 

(2.69) 

Expanding the cosine function in a Taylor series and taking the limit N -t 00 yield 

(2.70) 

On the other hand we have 

(2.71) 
-00 

which is in agreement with Eq. (2.70). In particular, we can infer that 

(2.72) 

where r(z) is Euler gamma function. We shall use the latter results when we investigate 

the short-time behavior of the reduced density matrix in the case where, is different from 

zero. 

One can check that for large values of N, 

(2.73) 

For odd powers of Jz , the left-hand side of the above relation vanishes as N increases; 

the right-hand side is always zero. Equation. (2 .73) simply implies that the operators 
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J±J~/N and Jz/ffi become uncorrelated under the tracial state at large values of N. 

Note that the above state corresponds to a bath of N independent spin- ~ particles, 

Le., the state of maximum entropy. In the limit of large number of spins such a bath 

has the tendency to behave as a classical stochastic system. The scaled bath operators 

Ja/ffi (where a == x, y, z) converge to independent commuting random variables. For 

instance, we can easily show that t he trace over the environmental degrees of freedom of 

the operator exp [~( a1Jx + a2Jy + a3JZ )]' where al ,2,3 E C and f. = y±I, is given by 

2N [cosh ( 2:iN Jar + a~ + a~) ] N. If we expand the cosh function in Taylor series and take 

the limit N ---> 00, as we did in Eq. (2.70) , we end up with the result exp[f2t (ai+a~+a~ ) ] . 

The latter can be obtained by multiple integration over three independent random vari­

ables each of which has the same probability density function as m [see Eq. (2 .71)]. It 

follows that the random variables z and m can be treated as independent in the limit 

N ---> 00. 

From the above discussion, we can conclude that 

00 

J~oo TNtrB{f(J~~, 5N)}= (~)3/2 J dm J dzdz*f(lzI 2,m) e-2(m2+lzI2), (2.74) 

-00 c 

at least for bounded functions f : C x lR ---> R The latter relation has been numerically 

checked for large number of functions; the agreement between its two sides is perfect. In 

fact, the class of functions for which the integral in the right-hand side of Eq. (2.74) exists 

contains all the functions having the form e-(alzI
2
+bm

2
) h(lzI2, m) where h is bounded and 

a and b are complex numbers satisfying Re(a) > -2, Re(b) > -2. If the latter conditions 

are not satisfied then the integral does not converge. This is the reason for which we shall 

restrict ourselves to the antiferromagnetic case where 9 and t:l. are positive. 

Under the above assumptions, it is possible to evaluate the quantity 

00 

Z = lim TN ZN = (~)3/2 J dm J dzdz*e-(2+g,BLl.)m
2
-(2+

g,B)l z I
2 

N-oo W . 
(2.75) 

-00 C 

by making use of the polar coordinates (r, ¢) where z = re icjJ
• A straightforward calculation 

yields 
_ 2V2 2 
Z- ---> ---

- (2 + g(3).J2 + gf3t:l. (2 + g(3) 
(2.76) 

when t:l. ---> O. Obviously, if gf3 = 0 then Z = 1. The agreement between the right-hand 

side and the left-hand side of Eq. (2.74) is illustrated in Table 2.1 where we display 2-
N 

ZN 

at different values of N and compare it with Z for 9 = 2, t:l. = 5, and f3 = 1; the agreement 

is clearly very good for N = 5000. 
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Tab. 2.1: 2- N Z at different values of N for 9 - 2 tl- 5 and f3 = 1· 2=0.204124. N - , - , 
N 10 100 1000 5000 

2-NZN 0.203026 0.203997 0.204111 0.204122 

0.5 

0.4 

0.3 

0.2 
~ 

0.1 
~ 

0 

-0.1 

0.15 
-0 . 2 

0 5 10 15 20 25 0 
at at 

Fig. 2.3: Evolution in time of A3(t) and A1(t) for N = 400 (dotted lines), and N -+ 00 (solid lines); 

the dashed lines correspond to the asymptotic values. Other parameters are 'Y = 0, 9 = 1, 

f3 = 5, tl = 0.5, J.L = 0040, A3(0) = ~ and A1,2(0) = ~. 

Let us now focus on the general structure of Eqs. (2.57)-(2.59). Clearly, we need to 

evaluate terms having the general form 

(2.77) 

As N -+ 00, the previous quantity tends to 

00 00 

(f) = Z-14(~r/2 J dm J rdrf(r2,m) e-2(m2+r2). (2.78) 

-00 0 

This is permissible since the functions of interest appearing in Eqs (2.57)-(2.59) fulfil 

all the conditions mentioned above. Note that the factor 4 in Eq. (2.78) appears after 

performing the integration with respect to the polar coordinate ¢ (this actually follows 

from the symmetry with respect to the z direction). It is also quite interesting to notice 

that the behavior of the central spin when -2 < g(3 < 0 and -2 < g(3!1 < 0 is similar 

to that where 9 > 0 and tl > a as indicated by the conditions on the convergence of the 

integral in Eq. (2.74). 

2.4.1 The case'""( = 0 

Let us assume that the coupling constant 'Y is equal to zero. First of all, it should be noted 

that, although the operator Jz/VN converges to a random variable, we can neglect the 
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contribution of Jz/N when N becomes very large. This means that in the limit N -> 00, 

the quantities M 1,2 do not depend on the random variable m; the sinh (sin) and the cosh 

(cos) functions appearing in Eq. (2.57) [Eqs. (2.58)-(2.59)] should be replaced by zero and 

one, respectively. We only need to integrate with respect to the random variable z since 

the integrals with respect to m occurring in the numerator and denominator of Eq. (2.78) 

cancel each other. One then concludes that the anisotropy constant D.. has no effect on the 

dynamics of the central spin when N -> 00 . This is due to the fact that HSB simplifies 

to Heisenberg XY Hamiltonian. Only transverse interactions contribute to the reduced 

dynamics when N is sufficiently large because Jz/VN and K/N (or equivalently l±J'F/N) 

become practically uncorrelated under the tracial state [see Eq.(2 .73)]. 

Hence, in the limit of an infinite number of spins within the bath we obtain 

(2.79) 

where 

(2 .80) 

Note that the time variable is now given in units of a. We show in the Appendix that the 

above function can be written as 

( ) _ () it ~{ f[Ji.(g(3 + 2) - it] _ f[Ji.(g(3 + 2) + it] } 
7J t - 1- cos 2Ji.t +2V 2+g1j er Vg(3 + 2 er Vg(3 + 2 

x e[(2+g.B)J.L2- 2~:lll - (g(3 + 2)Ji.2 e(g.B+2)J.L
2r [0, (g(3 + 2)l] +Ji(g(3 + 2) 

x e(g.B+2)J.L
2
Re{ r [0, (g(3 + 2)Ji.2 + 2Ji.it]}+Ji.2 M(t; Ji., (3), (2.81) 

where 
z 

2 J t
2 

erf(z) =..fii e- dt, (2.82) 

o 
00 

rea, z) = J t a
-

1e-t dt. (2.83) 

z 

are, respectively, the error and the incomplete gamma functions [29] . The function M is 

given by Eq. (A.10) of the Appendix. 

The remaining components of the Bloch vector are given by 

A1(t) = A1(0) [((t) + ~7J(t)] +A2(0)~(t) , 

A2(t) = A2(0) [((t) + ~7J(t)] -A1(O)~(t) , 

(2.84) 

(2.85) 
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where 

((t) = ( e-g,B(r
2
+t>m

2
) cos( 2tJ f..L2 + r2)) 

( ) 
it [(2+g,B)1'2_L l{dii{ f[f..L(g{3 + 2) + it] f[f..L(g{3 + 2) - it]} = cos 2f..Lt +- e 2+g{J -- er r:::7'J"\C'i -er r::7.i"1<l ' 
2 2 + g{3 y g{3 + 2 Y gfJ + 2 

(2.86) 

and 

The a.symptotic behavior of the reduced density matrix can be ea.sily determined a.s 

follows . Let us begin with the simplest functions namely, ((t) and e(t). Their limits when 

t ~ 00 are equal to zero which immediately follows from the Riemann-Lebesgue lemma 

lim ((t) = lim e(t) = O. 
t ..... oo t ..... oo (2.88) 

The same lemma can be applied to the function 1}(t) after some simplifications of the 

integrals of interest a.s shown in the Appendix. Only one term survives the above approach 

when t goes to infinity, namely, 

(2.89) 

where 

(2 .90) 

Hence, the a.symptotic behavior of the reduced density matrix can be expressed a.s 

lim 5:(t) = 5:0 -1}oow5:(O) 
t ..... oo (2.91) 

with 

(AI (0)) 
(~ 

0 

~) Xo ~ ~ A2~0) , W= 1 (2.92) 2 

0 -1 

The evolution in time of the components A3(t) and Al(t) is shown in Fig. 2.3 for N = 400 

spins in the environment, along with the corresponding infinite case and the a.symptotic 

limits obtained in Eq. (2.91). We can see that the off-diagonal elements of the reduced 

density matrix show partial decoherence. At low temperature, the relevant bath states are 
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those with low energies (i .e., j close to zero). In this case, the central spin is weakly coupled 

to the bath and hence preserves most of its coherence. At high temperature, the two-level 

system becomes more correlated with the bath which, however, behaves as a system of 

independent uncoupled particles. Thus quant um fluctuations within the antiferromagnetic 

spin-environment reduce the effect of the decoherence of the central spin. In the following, 

we discuss how the bath temperature and the strength of the applied magnetic field affect 

the decay of the elements of the reduced density matrix. 

\ \ 
0.3 \\ :: 0.2 \\ ~ 0 . 1 

0 ~" -0.1 1'_ 

0 

0.3 

:: 0.25 
~ 

0.2 

0.15 

, 
'. \ 
\ \ 
\ \ 

\ \ 
\ \ 

\ \ 
\ \ 
\ \ 
\ \ 
\ \ 

\ ... \., ............................................. ~=.~.::.:. :: .~.: 

o . llo-__ ;:---"':::::===?=:=:::::"-::-::-__ =---.J 
o 5 10 15 20 

a t 

Fig. 2.4: The decay of the components),3(t) and ),1 (t) for 9 = 0 (dotted lines) , 9 = 5 (dashed lines), 

and 9 = 10 (solid lines) . Other parameters are f3 = 1, "f = Do. = 0, J.L = O.la, ),3(0) = ~ 
and ),1 ,2(0) = ~ . 

Clearly, if J.L = 0, the vector component A3(t) vanishes when t -t 00 regardless of 

the bath temperature. This means that Pn (00) = P22 (00) = !, which is obviously in­

dependent of the initial state of the central system. On the contrary, the off-diagonal 

elements tend asymptotically to half of their initial values. This follows from the fact that 

the temperature-dependent quantity ryOO is proportional to the magnetic field strength. 

The latter results are mainly due to the rotational symmetry of t he model Hamiltonian 

together with the randomness of the interactions within the bath. Figure 2.4 illustrates 

the difference in the de coherence process between the case of a static bath (g = 0) and 

a dynamic bath (g i- 0) . We can see that the asymptotic value of Al(t) decreases with 

the increase of 9 in contrast to A3 (t) which assumes larger asymptotic values when 9 in­

creases. However, at short times the above components decay slower with the increase of 

g, implying that strong quantum correlations within the environment suppress the effect 

of the decoherence process [30] . As we shall see below, the decay of the reduced density 

matrix exhibits a reverse behavior with respect to the temperature of the bath. This can 

be explained by the dependence of the decoherence time constant of our model, which 

turns out to be equal to T = J2!gf3 as revealed by Eqs. (2 .81) , (2.86) , and (2.87), on 

the product gf3. Clearly, T -t 00 as 9 -t 00 or/and T -t 0, which confirms the above 
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statements. 
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Fig. 2.5: Dependence of A3(t) and A1(t) on the strength of the magnetic field in the case N -+ 00: 

J.L = 0 (dotted lines), J.L = 0.5a (dashed lines), and J.L = 2a (solid lines). The parameters 

are 'Y = 0, g{3 = 2, A3(0) = ~ and A1 ,2(0) = ~. 

Figure 2.5 illustrates the dependence of the components of the Bloch vector on the 

strength of the magnetic field. We can see that A1 (t) decays with the increase of J-L whereas 

A3(t) approaches its initial value. Indeed, by making use of the following asymptotic 

expression of the incomplete gamma function [29] 

a-1 -z[ a - I (a-l)(a-2) ] 
r(a,z)"-'z e 1+-

z
-+ z2 + ... , (2.93) 

when z --t 00 in I arg zl < 371"/2, we obtain 

lim r/~o = l. 
J.I. ,/3-+00 

(2.94) 

Therefore, if the ratio J-L/Ct. is infinitely big then the off-diagonal elements of the reduced 

density matrix tend asymptotically to zero; the diagonal ones assume their initial values. 

The above results can be explained by the fact that the effect of the bath on the dynamics 

of the central spin can be neglected when J-L is very large compared to Ct. . The evolution 

in time is thus governed by the free Hamiltonian Hs which does not affect the diagonal 

elements of the reduced density matrix. The off-diagonal elements, however, show periodic 

oscillations; the vanishing asymptotic values obtained from Eqs. (2.89) and (2.94) will 

never be reached since the decoherence time constant is infinite (Ct. --t 0). 

From Fig. 2.6 it can be seen that the bath temperature has a reverse effect on the decay 

of the reduced density matrix elements. The components A3(t) and Al(t) decay faster 

with the increase of T. Furthermore, we can see that the diagonal elements assume larger 

asymptotic values in contrast with the off-diagonal ones. In the limit of zero temperature, 

the asymptotic behavior is identical to the one corresponding to J-L --t 00, see Eq. (2.91) . 

Indeed, at zero temperature the bath and the central spin evolve independently from each 
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Fig. 2.6: Dependence of >'3(t) and >'1(t) on the bath temperature in the case N -> 00: f3 = 0 

(dotted lines), f3 = 1 (dashed lines), and f3 = 10 (solid lines). The parameters are "I = 0, 

g = 2, J-L = 0.5a, >'3(0) = ~ and >'1,2(0) = ~. 

other as we already mentioned in the previous section. Once again, we find that the 

dynamics of the central spin is governed by the free Hamiltonian Hs which preserves the 

coherence of the central system. 
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Fig. 2.7: The short-time behavior of >'3 (t) and >'1 (t) in the case N -> 00. The solid lines correspond 

to the exact solutions, the dotted lines denote the approximations (2.95-2.96). Here , 

"I = 0, gf3 = I, J.L = 0.5a, >'3(0) = ~ and >'1,2(0) = ~. 

Let us now discuss the short-time behavior of the reduced dynamics. The aim here is 

to find simple analytical expressions which describe the variation of the reduced density 

matrix at short time scales. It is clear from the expressions of the functions 1J(t), ((t), and 

~(t) that the term of interest which describes the decay of the Bloch vector components is 
~ ~ 

given by e - (9/3+2). We shall look for functions of the form e - (gl3+2) g(t) where g(t) is some 

complex-valued function of the time. In the case of the off-diagonal elements, the ansatz 

g(t) = e2ip.t can be justified by the competition of two processes, namely, oscillations due 

to the external magnetic field and damping due to the coupling with the environment. In 

the limiting case where the magnetic field is absent, it is found that for small values of 

the time, the decay is purely Gaussian. On the other hand if we assume that there is no 

coupling between the bath and the central spin, i.e., a = 0, then the dynamics is governed 
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80 

Fig. 2.8: Purity evolution for different values of the bath temperature in the case N -> 00 with 

,= 0, 9 = 1 and jJ. = O. The initial conditions are ).3(0) = .;:i, ).1,2(0) = ~. 

Fig. 2.9: Evolution in time of the purity for different values of the bath temperature in the case 

N -> 00 with I = 0, 9 = 1, and jJ. = a. 

by the external magnetic field. The component ).3 (t) is not affected by the magnetic field 

even when there is no coupling between the spin and the bath. It is shown in [15] that 

this component decays two times faster than the other ones. Consequently, the short-time 

behavior of the reduced density matrix can be described by 

(2.95) 

(2.96) 

In Fig. 2.7, the short-time behavior of the Bloch vector components ).3(t) and ).l(t) is 

shown together with the approximations (2.95) and (2.96); these are in good agreement 

with the exact solutions. 

There exist many measures that allow for the quantification of the degree of the de­

coherence due to the interaction with an environment. In this work we use the measure 
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Fig. 2.10: Evolution of >'3(t) and >'1(t) for N = 600 (dotted lines) and N -+ 00 (solid lines). The 

dashed lines correspond to the asymptotic values . Here, 'Y = 2a, 9 = 1, f3 = 1.5, t. = 1, 

J.L = 0.3a, >'3(0) = ~, and >'1,2(0) = ~ . The plots corresponding to >'3(t) are almost 

identical, the latter component saturates with respect to N faster than >'1(t). 

D(t) = 1 - P(t), where 

P(t) = tr{p(t)2} (2.97) 

is the purity of the central system. Note that in the previous expression the trace is 

performed over the degrees of freedom of the central spin. The purity takes its maximum 

value 1 at pure states; its minimum value, 1/2, corresponds to the fully mixed state 

p = 12/2. In our case, the purity can be expressed in terms of the Bloch vector components 

as 

(2.98) 

The above expression shows that the decay of the purity in the short-time regime described 

by Eqs. (2.95)-(2.96) is Gaussian which reflects the non-Markovian character of the dy­

namics. The decay process is slowed down by decreasing the temperature of the bath 

and/or applying a magnetic field of sufficient strength as illustrated in Figs. 2.8 and 2.9. 

When t -t 00, the central spin shows partial decoherence; if J.L = 0, then the asymptotic 

value of the purity is independent of the bath temperature as expected (see Fig. 2.8). 

2.4.2 The case 'Y =J 0 

The time dependence of the Bloch vector components when the constant 'Y is different 

from zero can be obtained with the same method used in the previous subsection. Since 

'Y =J 0, the quantities M1,2 are m-dependent which means that the effect of the anisotropy 

constant has to be taken into account. When'Y =J 0, we need to perform double integration 

with respect to the real variables rand m as shown in Eq. (2.74) . By making use of the 

Riemann-Lebesgue lemma, it is possible to find the following asymptotic expression for 
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the function 'T](t) obtained by replacing J.L by J.L + ,m in Eq. (2.80)(see Fig. 2.10) 

00 

lim 'T](t) = 1- _1_(2 + g(J)yi2 + gf3!:::. J (J.L + Im)2 e(JL+,ym)2(g,B+2)-(2+g,BCl.)m
2 

t-+oo "fir 
-00 
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Fig. 2.11: Dependence of >"3(t) and >"l(t) on the anisotropy constant in the case N -> 00: !:::. = 0 

(solid lines), !:::. = 5 (dashed lines), and!:::. = 10 (dotted lines) . Here, I = 2a, g{3 = 1, 

J.L = O.la, >"3(0) = ~ and >"1,2(0) = ~ . 

Obviously, the functions ((t) and ~(t) tend to zero when t -+ 00. Hence, even if 

we set J.L = 0, the asymptotic state is still temperature dependent . Nevertheless, the 

dependence of the Bloch vector components on the bath temperature is quite similar to 

the one corresponding to I = O. The influence of the magnetic field on the dynamics of 

the central spin is appreciable only when its strength is sufficiently large; this can be seen 

from the absence of oscillations in the components .Al(t) and .A3(t) displayed in Figure 

2.10. Figure. 2.11 shows that the off-diagonal elements decay slower and assume larger 

asymptotic values when the anisotropy constant!:::. increases. The opposite situation holds 

for the component .A3(t), that is, when!:::. decreases the latter component assumes larger 

asymptotic limits. 

At short times the diagonal elements of the reduced density matrix do not depend on 

!:::. in contrast with the off-diagonal ones. In the case of the Heisenberg XY model, i.e., 

when!:::. = 0, the short-time behavior of the Bloch vector components can be determined 

with the same procedure used in the case where i = O. The main difference here is that 

the contribution of the interaction V = *S~Jz has to be taken into account. Using the 

result we obtained in Eq. (2.70), we can describe the short-time behavior of the reduced 
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Fig. 2.12: The short-time behavior of A3(t) and Al(t) in the case N -+ 00 . The solid lines 

correspond to the exact solutions, the the dotted lines denote the approximations (2.100-

2.101). The parameters are 'Y = la , 6. = 0, g(3 = 1 and jJ. = Sa. The initial conditions 

are the same as in Fig.2.11. 

density matrix by (see Fig. 2.12) 

(2 .100) 

(2.101) 

For b. i- 0, the situation is much more complicated; here we only discuss the special case 

where J.L = a = 0 and b. > > 1. The last condition implies that the transverse term of 

HE can be neglected compared to the longitudinal one. Under the above assumption, 

HE simplifies to gb./NS; and thus all interactions are of Ising type. Therefore, the 

operators HSE and HE commute with each other which means that the diagonal elements 

are not affected by the coupling to the environment. The coherence of the central spin 

can be calculated as usual. Taking the limit of an infinite number of spins and using the 

probability density function corresponding to the random variable m, we find that the off­

diagonal elements decay according to the Gaussian law exp ( - 2J:~t:, ). Hence the larger 

the anisotropy constant, the slower the decay of the off-diagonal elements, which explains 

the behavior at short times of Al(t) displayed in Fig. 2.11. More details about the case of 
, 

Ising couplings can be found in [31]. To end our discussion about the short-time behavior, 

it should be noted that the deviation of the short-time expressions (2.96) and (2.101) from 

the exact solutions depends on the value of the strength of the magnetic field. For small 

values of J.L, the above relations are valid at relatively large intervals of time. However, 

as J.L increases, the domains of time for which the above approximations are valid become 

shorter. 

The variation in time of the purity in this case differs from the one corresponding to 

'Y = 0 by the suppression of the damped oscillations caused by the external magnetic field 
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Fig. 2.13: Purity evolution for different values of the bath temperature in the case N -+ 00 with 

1 = 2a, /::;. = 1, 9 = 1, and fJ. = a. The initial conditions are >'3(0) = ji, >'1,2(0) = i· 

as shown in Fig 2.13. This is mainly due to the interaction described by the Hamiltonian 

V . Consequently, the central spin decoheres less when / is equal to zero. The above result 

was expected because the longitudinal coupling vanishes: the central spin is less correlated 

to the environment and thus the destructive effect of the environment on the coherence of 

the two-level system is less appreciable. Indeed, the decoherence time constant is found 

b · I . I I 1 4+2g,6 Th·· I· 1· th t to e Inverse y proporhona to / , name y, T = Q 2+'"'I2(2+g,6)" IS sImp y Imp 1es a 

T -t a as / -t 00. 

2.5 Conclusion 

In conclusion we have investigated the dynamics of a spin-! particle, subjected to the 

effect of a locally applied external magnetic field, and coupled to anisotropic Heisenberg 

spin environment in thermal equilibrium. The reduced density matrix was analytically de­

rived for finite number of spins in the environment and arbitrary values of the interaction 

strengths. The evolution in time of the central spin depends on the nature of interactions 

within the bath. In the case of ferromagnetic environment , the decay of the Bloch vector 

components is Gaussian accompanied by fast damped oscillations. In the antiferromag­

netic case, the components of the bloch vector saturate with respect to the number of 

environmental spins and display partial decoherence. We showed that the partial trace 

over the degrees of freedom of the bath can be calculated using the convergence of the 

rescaled bath operators to normal independent Gaussian random variables. This allowed 

us to study the case of an infinite number of environmental spins, and to analytically 

derive the asymptotic behavior of the components of the Bloch vector. The above limit 

represents a good approximation for the cases with finite number of spins (N '" 100). At 
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short time scales, the decay of the off-diagonal elements is found to be Gaussian with a 

decoherence time constant given by T = J2!g(3 b = 0). This result is mainly due to the 

non-Markovian nature of the dynamics, which in turn follows from the time independence 

of the bath correlation functions and the symmetry of the bath Hamiltonian. Also, it 

has be shown that the effect of low bath temperatures on the decoherence of the central 

spin is similar to that of strongly applied magnetic fields and large bath anisotropy. The 

results obtained in this work are valid for any number of spins in the environment and 

arbitrary values of the strength of the external magnetic field and the bath temperature. 

They are in good agreement with those of [22] where the authors studied decoherence of 

electron spins in quantum dots. The model can be generalized to the case of two or more 

interacting qubits where questions related to the decoherence and the entanglement can 

be investigated. 
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3. EXACT DYNAMICS OF A TWO-QUBIT SYSTEM IN A SPIN STAR 

ENVIRONMENT 

3.1 Introduction 

Multi-qubit systems are of great importance in many fields of quantum technology. Ex­

perimental and theoretical evidences, accumulated during the last few years, indicate that 

they exhibit interesting properties that make them central subjects in quantum informa­

tion processing and quantum computation [1, 2] . The inherent dissipation and decoherence 

phenomena due to the interaction with a surrounding environment with many degrees of 

freedom, unfortunately, limit their usefulness. 

Recently, questions related to entanglement and decoherence of some multi-qubit sys­

tems have been investigated. Mainly, attention was focused on thermal entanglement, Le., 

entanglement induced by the interaction of the multi-qubit system with an environment 

at thermal equilibrium. Usually, these approaches are within the framework of a master 

equation for the reduced density matrix of the central system and within the Markovian 

approximation. The main assumption is that the characteristic times of the interacting 

systems are much longer than those of the environment [3]. The Markovian dynamics is 

known to be widely applicable in quantum optics and in the study of quantum noise [4]. 

Several investigations have shown that dynamics of multi-qubit systems shows strong 

non-Markovian behavior. Therefore, one has to seek new approaches in order to study 

them. The Ising and Transverse Ising model were first applied to the description of the 

reduced dynamics of one-qubit and two-qubit systems under a symmetry broken environ­

ment in thermal equilibrium where phase transitions occur [6, 5, 7]. Later, another model 

was proposed [8] in which the central system is immersed in an environment composed 

of N spin ~ particles arranged in a star structure'. In Ref. [9] the exact solution of the 

dynamics of one-qubit system in spin star configuration was found assuming a Heisenberg 

XY interaction. In this model, the spin bath was in an unpolarized infinite temperature 

state. 

The present chapter provides an extension of the above model to the dynamics of 
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a two-qubit system coupled to a spin star environment. The model is exactly solvable 

because of the symmetry of the structure under consideration. As mentioned in Ref. [9], 

this may represent a method to investigate the validity of approximation techniques and 

numerical methods applied to the non-Markovian dynamics. 

The chapter is organized as follows. In Section 3.2 we give a detailed description 

of the model. In Section 3.3 we derive the exact dynamics of the reduced system. In 

Section 3.4 we study the case of an infinite number of environmental spins, we determine 

the correlation functions , and we study the long-time behavior of the density matrix of 

the central system. We end the chapter with a brief conclusion regarding de coherence and 

evolution of entanglement of the two-qubit system. 

3.2 The model 

We consider a system of two non-interacting qubits coupled to a set of N independent spin 

~ particles (the environment) . We restrict ourselves to the case of a spin star configuration; 

this is a structure in which the two-qubit system is surrounded by the N spin ~ particles 

located on the surface of a sphere. The central qubits as well as the environment are 

multipartite systems living in spaces given by two-fold and N-fold tensor products of the 

local two dimensional spin spaces corresponding to the individual particles. From an open 

quantum system point of view the central system is considered as an open system coupled 

to an environment with a large number of degrees of freedom. 

The nature of the coupling between the qubits and the environment is, in general , 

complicated and depends on the details of the interaction. Nevertheless, some symmetry 

properties characterizing the spin star configuration lead to an enormous simplification 

of the model. Indeed, under some conditions [8] , the structure under consideration is 

invariant with respect to the exchange of any two outer spins. Moreover, the spin star 

configuration is a rotationally invariant system w~ich is the direct result of the isotropy of 

the environment. More details about SO(3)-invariant spin systems can be found in [14]. 

3.2.1 The qubits 

Let us first consider t he general case of a bipartite system S composed of two particles 

with spins jl and j2 ' The space CS of the composite system is given by the tensor product 

(3.1) 
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Here, di = 2ji + 1 denotes the dimension of the space Cd; corresponding to the particle 

with spin ji. The total angular momentum of the global system is defined by 

(3.2) 

where J 1 and J 2 are the angular momentum operators of the individual particles and II 

denotes the unit matrices on Cdl and Cd2 . 

The standard basis in the space Cd; is composed of the eigenvectors of the operator 

Jiz with eigenvalues mi = -ji, -ji + 1, ... , ji with i = 1,2. We denote the vectors of this 

basis by Iji, mi) to stress that on this space Jl = ji(ji + l)ll. 

The composite system admits, now, two equivalent orthonormal bases. The first one is 

formed by the common eigenvectors 1]1,12, m1, m2) of the set of operators {J?, J?, J1z , J2z }, 

they are given by the tensor products 

(3.3) 

The second one is a standard basis constructed from the simultaneous eigenstates of the 

square of the total angular momentum operator J2 and its projection along the z-axis Jz , 

namely {IJ, m >} with Ij1 - j21 :::; j :::; j1 + 12 and-j :::; m :::; j. As usual, we introduce 

the lowering and the raising operators J± = Jx ± iJy . The action of these operators on a 

vector IJ, m) belonging to the standard basis of the total space is given by (Ii = 1) 

}21J,m) = j(j + l)lj,m), 

Jzlj, m) = mlj, m), 

. J±lj, m) = Jj(j + 1) - m(m ± l)lj, m ± 1). (3.4) 

In the special case of two spin ~ particles, the total angular momentum j takes on 

either the value one or zero. One possible basis in the four-dimensional space C2 Q9 C2 

consists of the state vectors {I + +), 1+ - ), 1- +), 1- -) } which correspond to the different 

mutual orientations of the two spin vectors with respect to the z direction. The connection 

with the standard basis {Ijm)} of the composite system leads with an appropriate choice 

of the phase to 

11,1) = 1++), 

1 
11,0) = yI2(1 + -) + 1- +)), 

11,-1} = 1- -), 

1 
10,0)= yI2(I+-)-I-+)). (3.5) 
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The picture is equivalent to the decomposition of the two-qubit space C2 ® C2 into a direct 

sum of the spaces C and C3 corresponding to spin 0 (antisymmetric vectors) and spin 1 

(symmetric vectors) respectively [13] 

(3.6) 

3.2.2 The environment 

The above approach can be easily generalized to an arbitrary number of outer spins. In 

particular, the total angular momentum operator of the spin environment is simply given 

by the sum of the individual spin ~ vectors. The environment space (C2 )®N is equal to a 

direct sum of subspaces Cdj where 0 ::; j ::; !:f (We assume that N is even) . Due to the 

different possible orientations of the single spins [19], the angular momentum j will have 

a degeneracy v( N, j) . We denote t his formally as 

N 
"2 

(C2 )®N = EB v(N, j) Cdj . 
j = D 

The degeneracy v( N, j) is given by [5] 

v(j , N) = (N/~ _ J -(N/2 ~j _ 1) with (~) = O. 
Obviously, the following equality holds 

N 
"2 

L v(j , N)(2j + 1) = 2N. 
j=O 

3.2.3 The Hamiltonian 

(3 .7) 

(3.8) 

(3 .9) 

We assume that the two qubits do not interact with each other. Moreover, we will neglect 

any kind of interactions between the constituents of the environment , the main contribu­

tion to the total Hamiltonian comes from the interaction between the central qubits and 

the environment. The st rength of the interaction is supposed to be the same for any two 

interacting particles; this insures the symmetry with respect to permutations of the outer 

spins. The qubits are coupled to the environment via Heisenberg XY interactions whose 

Hamiltonian is given by 

(3.10) 
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where a denotes the strength of the interaction. In this expression, 0"1 and 0"2 are Pauli 

matrices associated with each of the central qubits and J± denote the raising and lowering 

operators of the environment which consists of N spin-1j2 particles. 

It is easily seen that the action of H on any state vector of the form 100) i8l lcll B) always 

gives a vanishing result. Taking into account this fact and the symmetry of the problem, 

it is sufficient to consider only the space C3 i8l (C2)®N . The subspace C3 is spanned by 

the vectors 11, -1) , 11,0) and 11,1). In this basis the lowering and raising operators admit 

the following representation: 

(~ 
0 

~) (~ 
1 

~) 0"+ = 0 and 0"_ = 0 (3.11) 

1 0 

Therefore, the Hamiltonian H can be written as 

H~a(~ h 

~+) 0 (3.12) 

L 

One can easily prove by induction that powers of H are given by 

(

hKn_1L 0 

H 2n = a 2n 0 K n 

LKn- 1L 0 

(3.13) 

(3.14) 

Here K denotes the anti-commutator of the operators J+ and J_, that is 

(3.15) 

Note that K is diagonal in the standard basis of (C2 )®N with eigenvalues 2(j(j + 1) _ m 2 ) ; 

it satisfies the following commutation relations: 

[K, J2] = [K, Jz] = 0, 

[K,LJ+] = [K,hL] =0. (3.16) 

Equations (3.13) and (3 .14) allow us to explicitly write out any function of the Hamil­

tonian restricted to C3 i8l (C2)®N. In particular, the explicit form of the time evolution 
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operator U(t) = exp( -iHt) reads 

U(t) = _ .sin(QtVI<lJ 
(

1 + J+ COS(QtfKl- 1 J_ 

~ VI< -
J_ cos(QtfKl- 1 J_ 

_.J sin(QtVI<l 
~ + VI< 
cos( o.tVK) 

-iJ sin(QtVI<l 
VI< 

J cos(QtVI<l-l J ) + K + 
.sin(QtVI<l J 

-~ JK + . 
1 + J cos(QtfKl- 1 J+ 

3.3 Exact reduced dynamics 
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(3.17) 

The state of the composite system is completely characterized by the total density matrix 

p(t) whose evolution in time is given by 

p(t) = U(t)p(O)ut(t). (3.18) 

Here U(t) is the time evolution operator and p(O) denotes the initial density matrix in 

the space C3 ® (C2)®N. For time-independent Hamiltonians, the operator U(t) takes the 

simple form 

U(t) = exp( -iHt) (3.19) 

and we could use the expression (3.17). 

Alternatively, one can use the Liouville superoperator .c to describe the evolution of 

the total density matrix p(t) [3]: 

.cp(t) = -i[H, p(t)]. (3.20) 

This leads to the von Neumann differential equation, 

d 
dtP(t) = .cp(t), (3.21) 

whose integral form is 

p(t) = exp(.ct)p(O). (3.22) 

Tracing over the environmental degrees of freedom in the space (C2
)®N, enables us to 

determine the dynamics of the reduced system density matrix, that is, 

(3.23) 

We have used the letters B and S to denote the environment (bath) and the qubits 

(system). Both descriptions of the dynamics are of course completely equivalent. The 

difference just consists in a regrouping of terms. We only use the Liouville operator to 

obtain a more concise description of the dynamics in (3.34) and (3.35). 
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3.3.1 Initial conditions 

We assume that the initial condition factorizes into the uncorrelated tensor product state 

p(a) = ps(a) ® PB(a), (3.24) 

where ps(a) and PB(a) are the initial density matrices describing the local state of the 

qubits and the environment, respectively. The matrices ps(a) and PB(a) are self-adjoint, 

positive and have trace one. 

Any state vector of the qubits can be written as 

l'!fi) = ,61- -) + '}'+I + -) + '}'-I- +) + 01 + +), (3.25) 

where ,6, '}'±, and 0 are complex numbers satisfying 1,612 + 1'}'+12 + 1'}'_12 + IW = 1. Using 

the relations (3.5) it is possible to rewrite l'!fi) in the standard basis of C EB C3 as 

l'!fi) = ,611, -1) + '}'11, a) + 011, 1) + '}"Ia, a), (3.26) 

where'}' = h+ + '}'-)/V2 and '}" = h+ - '}'-)/V2. Thus the initial density matrix 

corresponding to the pure state vector l'!fi) reads as follows 

1,612 ,6'}'* ,60* ,6'}"* 

ps(a) = 
'}',6* 11'12 '}'o* '}''}''* 

(3.27) 
0,6* o'}'* 101

2 o'}"* 

'}" ,6* '}" '}'* '}" 0* 1,},'12 

Here z* denotes the complex conjugate of z. 

Once again, because of the symmetry of the problem and the degeneracy of the anti­

symmetric state vector la, a), our task is reduced to the study of the dynamics of a spin-one 

particle in the space c3 . Without loss of generality, we represent the initial reduced system 

density matrix restricted to this subspace by 

( 

0 
Pn 

ps(O) = P~2 

P
o* 13 

o 0) P12 P13 
o a P22 P23 . 
0* 0 P23 P33 

(3.28) 

Obviously, one has to keep in mind that the actual normalization condition for the 

initial density matrix of the qubits reads Et=l P?i = 1, where P~4 = 11"12. Although our 

attention is focused on the subspace C3, we will investigate in parallel the evolution in 

time of the remaining density matrix elements. 
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Let us now take a look at the initial condition of the environment. It is well known 

that the density matrix characterizing a bath in thermal equilibrium at temperature T 

is given by PB(O) = (e-HB /kBT )/Z where HB is the Hamiltonian of the environment, 

kB is the Boltzmann constant and Z = trB e-HB/kBT is the partition function. In our 

model, we assume that the environment is initially in a state of infinite temperature with 

corresponding density matrix 

(3 .29) 

where ITB denotes the unity operator in the environment space. 

3.3.2 Reduced system dynamics 

The time-dependent reduced density matrix is obtained by taking the partial trace over 

the environmental degrees of freedom 

ps(t) = trB {exp( -iHt)ps(O) ® PB(O) exp(iHt)} 

= trB {exp(.ct)ps(O) ® PB(O)}. 

Expanding the exponential function (3.31) in a Taylor series gives 

00 tk 

ps(t) = L k! trB {.ckps(O) ® TNITB} . 
k=l 

(3.30) 

(3.31 ) 

(3.32) 

In the above equation, powers of the Liouville operator appear. In order to evaluate them 

we expand the unitary evolution operators in (3.30) to obtain 

.cnp = in f)-l)e (!) HepHn- e. 
£=0 

(3.33) 

For odd n 's, one gets always an extra lowering or raising operator under the trace, implying 

that 
(3.34) 

In fact, this holds for any number of central spins. This immediately follows from the 

expression (3.17) for the unitary evolution operator of the full system. 

With the help of the trace properties one can find that for non zero n 

n-l ) n-l ( ) 2n N 2n 2n 2n 2n 2n 
trB{.c ps(O) ® T ITB} = L Ck S2k - L 2k + 1 S2k+l + F , 

k=l k=O 

(3.35) 



where 

and 
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S 2n 
2k 

P~2(Fn + Pn) 

2pg2Fn 

pgj (2Fn - Pn) 

o Qn P12 k 

Here we have introduced the environmental correlation functions 

Rn. = r NtrB{(LJ+)2 K n- 2}, 

Qk' = rNtrB{J+Kk-lLKn-k}, 

Ok' = rNtrB{J+J+Kk-lLLKn- k- l}, 

Pn = rNtrB{LJ+Kn- 1}, 

Fn = rNtrB{Kn}. 
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(3.36) 

(3 .37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3 .44) 

Notice that the above correlation functions are independent for small N , they were ob­

tained with the help of the commutation relations (3.16) with which we could derive 

simple expressions relating them. Nevertheless, the number of independent functions still 

remains large since the operator K does not commute with any polynomial of the lowering 

and raising operators J±. Besides this fact, one can see that there exists some similarity 

among these correlation functions as it is the case between Rn. and Ok on one hand and 

Pn and Qk' on the other hand. 

By substitution into equation (3.32) one finds the explicit form of the various matrix 

elements of ps(t) . One can check that the diagonal elements are given by 

Pll(t) = p~1(1 + 2g(t)) + (P~l - p~3)f(t) 

+ p~3 e (t) + pg2 h(t) , 

P22(t) = pg2 + (P~l - pg3)h(t) + (pg3 - pg2)f(t) , 

(3.45) 

(3.46) 



and 
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P33(t) = p~3(1 - 2g(t)) - (P~l - P~3)J(t) - p~2h(t) 

+ (P~l - 2p~3)e(t) + (P~2 - p~3)R(t). 

The off-diagonal elements read 

P12(t) = p~2[l(t) + edt)] + p~3h(t), 

P13(t) = p~3[l(t) + J(t)], 
o - -

P23(t) = P23[R(t) + e2(t)] + p~2h(t), 

P21(t) = Pi2(t), 

P31(t) = pi3(t), 

P32(t) = P23(t). 

Here we have introduced the functions 

J(t) = TNtrB { LJ+ cos(at'{{) -1 r, 
get) = TNtrB { LJ+ cos(at'{{) - 1 }, 

h(t) = TNtrB { LJ+ sin2(~VK)}, 

( ) = TN {J J (cos(atVK) - 1)2} 
e t trB - + K ' 

R(t) = TNtrB { sin2(atVK)}, 

let) = TNtrB { cos(atVK)}. 
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(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3 .51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

The remaining functions are quite different in their analytical form from those listed 

above. They are given explicitly by 

J
-( ) = 2-N {J2 cos(atVK) --: 1 J2 cos(atVK) - I} 

t trB - K + K (3.60) 

_ N { cos(atVK) - 1 ~ } 
el(t) = T trB J+ K L cos(atv K) , (3.61) 

_ N { cos(atVK) - 1 ~ } 
e2(t) = T trB L K J+ cos(atv K) , (3.62) 

-he ) = -N {J sine atVK) J sine atVK) } 
t 2 trB + VK VK' 

(3.63) 

One has to be careful when dividing by the operator K since its eigenvalue correspond­

ing to j = 0 vanishes. To overcome this difficulty, it is sufficient to write the quantity 
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under the trace sign in the normal order, that is, to first apply the lowering operator J_ 

on the state 10, 0) which leads obviously to zero. 

In fact, the function e(t) can be expressed in terms of get) and h(t). We will leave it in 

this form in order to maintain its symmetry with the functions el (t) and e2 (t). Altogether, 

we need a set of nine real-valued functions to describe the reduced system dynamics in 

C3. In the special case of one-qubit dynamics [9] the number of independent functions is 

significantly reduced to two because of the rotational invariance of the star configuration. 

When the conditions P~l = P~3 and pg2 of. a are satisfied (one can, e.g., set f3 = 6 in 

Eq. (3.26)), the diagonal elements take the relatively simple form 

PllO(t) = 1 + (~- 1)h(t), 
Pll 

P22
0
(t) = 1 + C -~)f(t), 

P22 ~ 

P330(t) = 1 + (~- 1)(f(t) - h(t)). 
P33 

where the parameter ~ is given by pg2/ P~l' 

(3.64) 

(3.65) 

(3.66) 

It is not difficult to check that the solutions (3.45)- (3.47) as well as (3.64)-(3.66) 

ensure that the trace is preserved, that is, I:t=l Pii(t) = I:t=l P?i' This actually results 

from the fact that the time evolution operator U(t) is unitary and hence trace preserving. 

It is worth noting that the density matrix element P44 does not evolve in time, the time 

evolution operator is reduced to 1 in the space C. This is due to the symmetry of the 

Hamiltonian H. The subspace C is said to be de coherence free which was expected because 

of the degeneracy in energy of the antisymmetric state vector 100). Moreover, the density 

matrix elements Pi4, i = 1,2,3 evolve according to 

3 

Pi4(t) = TN L trB{Uik(t)} P~4' (3.67) 
k=l 

since Ui4(t) is equal to 6i4. The last relation shows that the off-diagonal elements behave 

like the components of a three dimensional state vector. Taking into account the fact that 

the partial trace of any off-diagonal element of U (t) is zero, it is not difficult to find that 

(3.68) 

Notice that the set of functions (3.54)-(3.63) can be rewritten in the standard basis of 
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the environment space (C2y~N. For example, we can write the functions f(t) and el(t) as 

f(t) = TNLV(j,N){x~~,m~ cos(atvw(j,m)) r, (3.69) 
j,m W],m 

el(t) = TN L v(j, N) tj,m) 1) cos[atvw(j, m - 1)J cos[atvw(j, m)], (3.70) 
j,m W],m-

where the quantities X(j, m) and w(j, m) are,respectively, the eigenvalues of the operators 

LJ+ and K: 

x(j, m) = j(j + 1) - m(m - 1), 

w(j,m) = 2(j(j + 1) - m 2
). 

(3.71) 

(3 .72) 

Taking the trace over the environment yields a superposition of weighted periodic func­

tions with different frequencies. Roughly speaking, this means that the time-dependent 

density matrix elements evolve anharmonically starting from their initial values. 

3.4 The limit of a large number of bath spins 

In this section, we will investigate the behavior of the solution found previously when the 

number of the environmental spins becomes very large, that is, the limit N --+ 00. 

To this end, let us anticipate and say that in the limit of large number of degrees of 

freedom, the environment has the tendency to behave as a classical system. Consequently, 

one can expect that the various operators related to the environment do commute at least 

for the case where the total angular momentum j is very large compared to the quantum 

number m. As we will see, this will enable us to determine the long-time behavior of the 

reduced system density matrix. 

3.4.1 Environment correlation functions 

The trace operation over the environmental degrees of freedom can be carried out by 

writing the lowering and raising operators in the standard basis of the environment space 

{ N i} ®i=lls) ,namely, 

(3.73) 

(3 .74) 
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the problem is reduced to the calculation of terms having the following general structure 

n n N 

An = trB {II JY>i l JY>i2 } = trB {II L a~~l a~:2 } , 
ilh il ,i2 jl ,h 

(3.75) 

where the index /'\, indicates the nature of the operator, raising or lowering. The main 

restriction here is that the lowering and raising operators J_ and J+ must appear the 

same number of times under the trace in order to insure that the result is not zero. In 

general, An leads to a polynomial of order n in the environment spins number N. The 

main contribution to such quantities comes from terms having the maximum number of 

indices labeling the operators a Y>i' This is due to the fact that these terms are characterized 

by the largest combinatorial weight and hence yield the largest exponent in N. 

It is shown in [9] that 

(3.76) 

With the help of the last relation, it is easy to compute the environment correlation 

functions for the two-qubit case. For example we have for Rn 

and thus 

Similarly, we find that when N ~ 00 then 

N nn' On T} • 
k '" .Lo.n ~ -4-' 

Q
n D ~ Nnn! 
k '" Tn ~ -2-' 

(3.77) 

(3 .78) 

(3.79) 

(3.80) 

(3.81) 

The above method does not apply for correlation functions where at least one of the 

upper or lower indices is zero. In these cases the operator K appears in the denominator 

of the correlation functions and hence the expansion (3.75) is no longer applicable. One 

alternative way to determine them is by writing the trace in the eigenbasis of Jz and J2 . 

The point here is to write down the trace over the environment in the joint standard basis 

of J2 and J zi this gives 

tr (1-J+)2 = "'v( ' N)(j(j+1)-m(m+1)? 
B K ~], 4(j(j + 1) _ m 2)2 

] ,m 

(3.82) 
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This equation can be rewritten as 

(3.83) 

where we have used the fact that 

(3.84) 

Taking into account the relation L:j,m v(j, N) = 2N , we find 

and 
2 

.0 -TN" m 
N - ~ 4(j(j + 1) _ m 2 )2· 

J,m 

(3.85) 

Similarly, we have 

(3 .86) 

With the help of Eq. (3.84), we find 

{
(J_h)2} 1 1. m2 

trB K = "2 trB {LJ+} +"2 Lv(],N) j(j + 1) _ m 2 ' 
J,m 

(3.87) 

Then, 

and 

(3.88) 

With the same method one can find that 

o 1 1 N 1 
Qo = 4 - .oN, Qo = 2 -TN and Po = "2 . (3.89) 

The quantity .oN is very small compared to 1 and can be neglected. Under this assumption 

both methods lead to the same result; this is actually the same thing as assuming that 

K = 2J_J+. Thus the environment operators behave as if they commute when N tends 

to infinity, a result which confirms the statement we gave in the beginning of this section. 
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3.4.2 Time evolution 

The dynamics of the reduced system can easily be determined in the limit N -t 00 by 

properly rescaling the coupling constant a . The substitution of the correlation functions 

(3.79)-(3.81) into equations (3.36)-(3.39) yields 

(3.90) 

where the matrices A and C are given by 

(
P~l + P~3 - 2P~2 2(P~2 - pg3) 

A = 2(P~2 - P~3) 4pg2 - 2(P~1 + P~3) 
P~3 2(P~3 - P~2) 

(3.91) 

and 

(3.92) 

Inserting equation (3.90) into equation (3.32) yields a power series with terms of the 

general form ((at)2 N)k. It is then natural to rescale the coupling constant by setting 

(3.93) 

Consider for example the function f(t) in (3.54). We have that 

The first term in the right hand side of the above equation can be written as 

Similarly, we find 
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It is then sufficient to rescale the coupling constant to find that when N ~ 00 the function 

f(t) becomes: 

where 

- 1 
f(t) = f(t) = 4((2t) - ((t), 

at at 
((t) = --D+( --) 

22' 

(3.97) 

(3.98) 

Here D+(x) denotes the Dawson function, also called Dawson's integral [19], which arises 

from the calculation of the Voigt spectral lines shape [20] . It is given by 

D+(x) = e-
x21x 

e
t2 

dt. (3.99) 

Dawson's function is related to the imaginary error function erfi(x) by 

(3.100) 

As opposed to the ordinary error function, the imaginary one is unbounded. It is given 

by the following series expansion 

2 00 x 2k+l 

erfi(x) = .Jff L k!(2k + 1)' 
k=O 

Following the same procedure, we find that 

g(t) = ((t), 
- 1 

h(t) = h(t) = -'2((2t), 

£(t) = -((2t), 

l(t) = 1 + 2((t), 

e(t) = ~((2t) - 2((t), 

el ,2 (t) = ~((2t) - ((t), 

(3.101) 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

(3 .106) 

(3.107) 

It is then sufficient to substitute the above functions into the set of equations (3.45)-(3 .50) 

to get the new form of the density matrix elements. 

Fortunately, the function ((t) is bounded and admits a limit when t tends to infinity. 

In order to determine this limit let us stress that the J±/ffi are well behave fluctuation 

operators with respect to the tracial state on the bath. From a mathematical point of 

view, the above statement means that J+/ffi converges to a complex random variable z 

with probability density function 
2 -21z12 

z~ -e . (3.108) 
7T' 
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The explicit form of the functions (3.54)-(3.63) shows that it is sufficient to calculate the 

expectation value of the function cos(,B\zl) where ,B E JR, namely 

G(,B) = ~ 1 dzdz* e-21z12 cos(,B\zl). 
7r C 

(3.109) 

In order to obtain the asymptotic state we need to take the limit ,B --+ 00, but this is 

straightforward by the Riemann-Lebesgue lemma and so we simply obtain 

lim G(,B) = O. 
{3-+00 

(3.110) 

It is easy to see that G (at) == l( t), it follows that the limit of the function ~ (t) is equal to 

-~. Moreover, we can show that the following relation holds for any value of the non-zero 

real parameter () 

Therefore, as t --+ 00 

. 1 
hm ((()t) = --2' 

t-+oo 

- 3 
f(t), f(t) --+ 8' 

1 
g(t) --+ -"2' 
- 1 

h(t), h(t) --+ 4' 
1 

£(t) --+ 2' 

l(t) --+ 0, 

3 
e(t) --+ 4' 

e1,2(t) --+ ~. 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

(3.116) 

(3.117) 

(3.118) 

Consequently, the long-time limit of the reduced system dynamics yields the following 

density matrix in C EB C3 

3(0 020) "8 Pll + P33 + "3 P22 
1 0 1 0 
4P12 + 4P23 

3 0 
"8P13 

1 0 
2P14 

ip~2 + ipgj 1(0 020) 1 0 1 0 0 
Ps = 

4 Pll + P33 + P22 4P23 + 4P12 . (3.119) 
~po* lpo* + lpo* 3( 0 0 2 0 ) 1 0 
8 13 4 23 4 12 "8 Pll + P33 + "3P22 2P34 

lpO* 0 ~pg4 0 
2 14 P44 

In Figs. 3.1-3.2, we have drawn the variation of the diagonal elements Pll(t) and 

P22(t) respectively for the pure initial state \- -). The graphs were obtained for N = 100, 

N = 400 and the limit N --+ 00. The evolution in time of the off-diagonal element P13(t) 

corresponding to the maximally entangled state ~(\ + +) + \- -)) is given in Fig. 3.3. 

The plots show that the solution corresponding to infinite number of environment spins 

N --+ 00 is almost identical to the exact solutions up to a value of time given by at ~ 3 

then the curves start to diverge. 
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-- InfinitE 

Pll (t) - - - N=lOO 

........ N = 4 0 0 

~--~~~-47----6~--~8 at 

Fig. 3.1: The time evolution of the density matrix element Pll. Initial state of the two-qubit system 

is the pure state I - -). The figure shows the plots obtained for N = 100, N = 400 and 

the limit N ~ 00. 

-- InfinitE 

- - - N=lOO 

P22 (t) 
•••..... N = 400 

0.3 
- - --=--==-~------------

2 4 6 8 at 

Fig. 3.2: The evolution in time of the density matrix element P22 as a function of time. The initial 

condition of the two-qubit system is the pure state 1--). The figure shows the plots 

obtained for N = 100, N = 400 and the limit N ~ 00. 

3.4.3 Decoherence and entanglement 

From formula (3.119) we see that the off-diagonal elements show partial decoherence. 

Indeed, the ratio between the asymptotic and the initial values of the density matrix 
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0.8 

0.6 

0.4 

2 4 

-- Infinite 

- - - N=lOO 

-------- N = 400 

6 
at 

8 

74 

Fig. 3.3: The evolution in time of the density matrix element P13' The initial condition of the 

two-qubit system is the entangled state ~ (I + +) + I - -)). The figure shows the plots 

obtained for N = 100, N = 400 and the limit N -> 00. 

element P13 is equal to i. The contribution to the final result of the two other off-diagonal 

elements, P12 and P23, is symmetrically shared by their original values with the same 

weight, namely t. This can be seen, for example, in the case where the initial condition is 

the separable state ~I-)(I+) + 1-)) or ~I+)(I+) + 1-)). In particular, if the condition 
v2 · v2 

P~2 = pg3 is satisfied, both matrix elements relax and assume half of their initial value. 

Similarly, the off-diagonal elements P14 and P13 evolve asymptotically to half their original 

values whereas the element P24 relaxes and tends to zero. 

A first look at the explicit form of the diagonal elements of the density matrix re­

veals that they only depend on the corresponding initial ones. Let us choose ~ -> 1 in 

relations (3.64-3.66) and assume that the remaining off-diagonal elements vanish. The re­

sulting density matrix corresponds to the diagonal initial state hl1, 1)(1, 11 + 11,0)(1,01 + 
11, -1)(1, -11). It is not a hard task to see that this state does not change in time. Con­

sequently, the two qubits do not feel the presence' of the environment. The same result 

holds for the entangled antisymmetric state 100) which belongs to the decoherence-free 

subspace C. 

Because of the coupling between the central system and the environment, entanglement 

between the two qubits may appear. Assume for instance that the two-qubit system was 
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initially in a pure state, I - -) or I + +) for example. This corresponds to the preparation 

of a spin-one particle in the pure states 11 , -1) and 11,1) respectively. Once the interaction 

is switched on, the system evolves into a mixed state. 

The case where the initial condition is one of the maximally entangled states ~( I + 
-) ± 1-+)), is quite special. Indeed, the latter are regarded as pure states for the composite 

system, they generally evolve into mixed states when exposed to the environment. One 

then asks whether the evolving state is entangled or separable. 

In order to quantify the amount of entanglement created between the two qubits, we 

shall use the concurrence, C(p) , as a measure of entanglement for mixed states. The 

numerical values of the concurrence range from 0 for separable states to 1 for maximally 

entangled states. According to Ref. [16], C(p) is defined as follows 

C(p) = max{O, ~ - y'>:; - A - ~}. (3.120) 

Al ~ A2 ~ A3 ~ ;'4 are the eigenvalues of the operator p(V 0 V)p(V 0 V) where V is a 

linear skew-adjoint operator in C EB C3 such that VV = -II. In our case 

0 0 1 0 

0 -1 0 0 
(3.121) V 0 V= 

1 0 0 0 

0 0 0 1 

Here we pick out some typical results: 

• The concurrence corresponding to the initial separable state I - -) is equal to 

C(p) = max{O, -P22(t)} = o. (3. 122) 

Therefore, the two-qubit state maintains its separability during time which means 

that no entanglement will be produced by the interaction with the environment. For 

the same reason, the initial state 1++) evolves into a separable state too. In fact, 

the latter result is also true for the general case of pure separable states when one of 

the qubits is in the state 1- ) (or 1+)) and the other one is at an angle, say (), from 

the first qubit . 

• If the initial state is the maximally entangled state Iw) = ~ (I + -) + I - +)), then 

the concurrence takes the form 

(3.123) 
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The time behavior of C(p) is shown in the plot of Fig. 3.4 where one can see that 

it quickly decreases and vanishes after a relatively short time. The two-qubit state 

is completely disentangled whence the asymptotic state becomes separable. Conse­

quently, the coupling between the central system, initially in the maximally entan­

gled state Iw), and the spin environment causes the qubits to lose entanglement . 

• Let us now consider the maximally entangled state 1 <1» = ~ (I - -) + 1 + +)) . In 

this case the concurrence reads 

C(p) = max{O, 2p13(t) - p22(t)}. (3.124) 

The entanglement dynamics in this case is significantly different from the one cor­

responding to Iw). Indeed, the entanglement here decays from its maximum value, 

one, and vanishes within a certain interval of the time, then starts to increase and 

tends asymptotically to COO(p) = k as shown in Fig. 3.4. Hence, the state loses its 

entanglement for a short period of time in which the state is separable, entanglement 

between the qubits will appear again whilst the asymptotic state is partially entan­

gled. Thus the effect of the environment is to decrease the amount of entanglement 

of the initial state. 

The above state is a special case of the so-called Werner states; the general form of 

the density matrix corresponding to these states is given by 

with 0 ~ p ~ 1. One can show that the asymptotic density matrix is 

and has the concurrence 

~ 0 ~ 0 8 16 

0 1 0 0 
poo = 4 

~ 0 ~ 0 16 8 

0 0 0 .!..=E 
4 

5p-4 
C(pOO) = max{O, --}. 

. 8 

(3.125) 

(3 .126) 

(3.127) 

This implies that the stationary state of the two-qubit system is entangled if p > ~. 

When the last condition is satisfied the concurrence behaves in the same manner as 

the one associated with 1<1» , i.e. decreases from its initial maximum value, vanishes 

for certain interval of time to increase asymptotically to C(pOO). Once again, we find 

that the two-qubit state becomes partially entangled. 
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• Because ofthe symmetry, the concurrence corresponding to the initial states !(I+)± 

1-))(1+) ± 1-)) and ~I±)( I +) =t= 1-)) is identically zero. The corresponding asymp­

totic states are always separable. 

C(p) 

0. 6 

0 .4 \ 
\ 
\ 
\ 
\ 
\ 
\ 0.2 
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\ , , , 
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at 

Fig. 3.4: Concurrence as a function of time for initial states 72 (I + -) + 1- +)) (solid curve) and 

~(I- -) + 1 + +)) (dashed curve). 

3.5 Conclusion 

In this chapter, we have studied the dynamics of a two-qubit system in a spin star configu­

ration. The Hamiltonian we chose describes a Heisenberg XY interaction. We obtained the 

exact analytical solution for the time evolution of the reduced system density matrix. This 

model can also describe the dynamics of a spin-one particle coupled to an environment. 

It may be used to test validity of numerical approximation techniques. 

The solution which we have obtained simplifies in the limit of a large number of 

environmental spins. The limit is carried out by rescaling the coupling constant a. The 

long-time behavior of the density matrix reveals that some of the off-diagonal elements 

show partial decoherence. The pure entangled state ~ (I + -) - I - +)) of the two qubits 

is found to be decoherence-free, the mixed state 1(11, -1)(1, -11 + 11,0)(1,01 + 11, 1)(1, 11) 

written in the standard basis of a spin-one particle does not evolve in time. In these cases 

the central system does not feel the presence of the environment. 

Any pure state of the two-qubit system evolves into a mixed state. It turns out that the 

environment has no effect on the separability of pure separable states. On the contrary, it 
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has the tendency to decrease the degree of entanglement of initially entangled states of the 

two-qubit system. This can be understood from the high symmetry of the XY interaction. 

Many scenarios are possible regarding the extension of the model. One first step 

may consist of adding a suitable term to the interaction Hamiltonian and investigate the 

production of entanglement between the two qubits. Recently the dynamics of three qubits 

in a symmetry broken fermionic environment has been exactly solved [7]. This could be 

also investigated within the framework of the Heisenberg interaction and may be extended 

to more qubit cases. Because of the high symmetry of the Hamiltonian, we expect that 

some structure will appear when the number of central spins increases [14]. It will also be 

of interest to investigate the dynamics for environments that are in coherent or squeezed 

states. 
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4. DECOHERENCE AND ENTANGLEMENT EVOLUTION OF TWO QUBITS 

COUPLED THROUGH HEISENBERG INTERACTIONS TO SPIN BATH AT 

THERMAL EQUILIBRIUM 

4.1 Introduction 

Entanglement is the most intriguing feature of quantum mechanics. It is a nonlocal cor­

relation between separate quantum mechanical systems which does not have a classical 

counterpart. Besides its fundamental importance in the foundation of quantum mechan­

ics [1, 2, 3J, entanglement is considered as a valuable resource for quantum communications 

and information processing [4, 5, 6, 7, 8, 9J since it helps speeding-up implementation of 

quantum algorithms and quantum communication protocols [10J . Considerable efforts, 

both theoretically and experimentally, have been devoted to the understanding of en­

tanglement. Recently, intense interest was given to interacting spin systems which were 

proposed as candidates to achieve gate operations in solid-state quantum computation 

processors [11, 12J. This choice is motivated by the fact that such systems can be easily 

manipulated (e.g., by t unneling potentials and energy bias), and scaled up to large regis­

ters . Hence it is important to investigate entanglement generation and dynamics in spin 

systems. 

On the other hand, quantum systems suffer de coherence because of their unwanted 

interactions with the surrounding environment. The de coherence process is indeed the 

major obstacle for quantum information processing because it directly affects quantum 

interferences and correlations (entanglement) of quantum systems, leading them to behave 

classically [13, 14, 15J . Many strategies such as error-correcting codes and decoherence 

free subspaces were proposed in order to protect fragile quantum information against the 

detrimental effect of de coherence [16, 17, 18, 19, 20, 21, 22J . A number of theoretical studies 

have dealt with bosonic environments for which the Markovian approximation along with 

the master equation approach are often used. It turns out that the main contribution to 

decoherence in many solid-state systems (e.g., quantum dots) arises from the coupling to 

localized modes like nuclear spins, which can be effectively regarded as spin baths [23J . 

Recently, attention was focused on the non-Markovian dynamics of multi-qubit systems 
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interacting with spin environments [24, 25, 26, 27, 28, 29]. In our earlier work [24], we 

have studied the reduced dynamics of two-qubit system coupled through Heisenberg XY 

interactions to spin star bath which was assumed at infinite temperature. We neglected 

the interaction between the central qubits. Later, Yuan et al [25], derived the dynamics of 

the two interacting qubits for particular initial states and finite bath temperature, using 

Holstein-Primakoff transformations expanded up to the first order with respect to the 

number of environmental spins. The elements of the resulting reduced density matrix 

were given in the thermodynamic limit by infinite series. In the following paper we derive 

the exact dynamics of the central qubits, for arbitrary number of environmental spins at 

finite bath temperature, for a particular choice of the Hamiltonian of the bath. The key 

ingredient in this case consists of the underlying symmetries of the model Hamiltonian 

which facilitate the derivation of exact analytical results. 

The chapter is organized as follows. In section 4.2 we introduce the model Hamiltonian 

of the composite system qubits-bath. In section 4.3 after we derive the analytical form of 

the time evolution operator, we calculate the reduced density matrix for both finite and 

infinite number of spins within the environment. In section 4.4, we investigate de coherence 

and entanglement evolution of the two-qubit system for different initial states. We end 

with a short conclusion. 

4.2 The Model 

The system under consideration consists of a pair of interacting spin-~ particles (qubits) 

coupled to quantum bath composed of a large number of spin-~ particles in thermal 

equilibrium at temperature T. The number of environmental spins is denoted by N. The 

Hamiltonian of the composite system is given by the sum of three operators, namely, 

( 4.1) 

Ho describes the interaction between the central spins, it is given by the anisotropic 

Heisenberg Hamiltonian 

(4.2) 

where A and n denote the strength of interactions, and a~ (with 1/ == X, y, z) is the 1/­

component of the pauli operator oriassociated with qubit number i. The corresponding 

spin-flip operators are defined by a~ = ~(a~ ± ia~). 

Similarly, the environmental spins interact with each other through long-range anisotropic 



4. Decoherence and entanglement evolution of two qubits ... 83 

Heisenberg interactions. These are described by the bath Hamiltonian 

N 

H 9 ",(Si sj Si sj + "Si sj ) 
B = N 6 Bx Bx + By By U Bz Bz ' 

i<j 

(4.3) 

where Sk ( i = 1,2, ... , N ) are the spin operators of bath constituents, 9 is the strength of 

interactions and ~ is the anisotropy constant. The central spins couple to the environment 

through Heisenberg XY interactions, the corresponding Hamiltonian operator is given by 

N N 

HI = IN [(0-; + 0-;) ~ Skx + (0-; + o-~) ~ Sky] · (4.4) 

In the above equation, a designates the coupling constant of the qubits to the bath. Note 

that the coupling constants 9 and a are rescaled by, respectively, N and IN in order to 

ensure good thermodynamical behavior. 

By introducing the total spin operator of the environment, J = ~ I:f=1 aj
, together 

with the corresponding lowering and raising operators, J± = Jx ± iJy , it can be shown 

that (up to a trivial constant) 

Clearly, the model Hamiltonian is invariant under rotations with respect to the z-direction. 

One can show by direct calculation that the operator Jz + s1 + S;, where S! = ~o-~, 

commutes with H, i.e., [H, Jz + s1 + S;l- = O. This simply implies that the z-component 

of the total spin of the composite system is conserved. 

The spin space corresponding to the central system is given by C2 ® C2 == C EB C3 . The 

subspace C3 is spanned by the state vectors 11, -1), 11,0) and 11, 1). These are related 

to the basis vectors of C2 ® C2 ( called computational basis vectors) by 11, ±1) = I±, ±) 

and 11, 0) = ~ (I - +) + I + -)) . The space C in turn is spanned by the antisymmetric 

maximally entangled bell state 10,0) = ~ (I - +) - I + -)). The above equalities fully 

determine the unitary transformation that enable us to go from one basis to the other. 

The standard basis of the bath space, (C2 ) ®N, is composed of the joint eigenvectors of 

J2 and Jz which we denote by Ij, m), where J 211, m) = j(j+1)lj, m) and Jzlj, m) = mlj, m) 

(We set Ii = 1, and assume N even). Note that 0 ::; j ::; N/2 and -j ::; m ::; j. One 

can then decompose the spin space of the environment as the direct sum of subspaces Cdj 

each of which has dimension dj = 2j + 1, namely 

N/2 

(C2)®N = EB v(N, j)Cdj. 
j=O 

(4.6) 
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Here 1I( N, j) is the multiplicity associated with j. In order to determine the explicit value of 

lI(N,j), let us introduce the subspace Fm of vectors {) E (C2)®N satisfying Jz{) = m{) [30J. 

The latter space can be decomposed as a direct sum of subspaces Ej,m formed by the 

vectors 19 for which J 219 = j(j + 1)19. Thus we simply have Fm = E9~~! Ej,m, and 

dim(Fm) = L~~! dim(Ej,m) = (.!Y~m)' From the above, it immediately follows that 
2 

4.3 Exact time evolution 

This section deals with the derivation of the exact reduced dynamics of the central qubits. 

The time dependence of the total density matrix describing the state of the composite 

system is given as usual by 

(4.8) 

where U(t) = exp( -iHt) is the time evolution operator and Ptot(O) is the initial total 

density matrix. In the following, after we introduce the initial states of the central system 

and the bath, we derive the exact analytical form of U(t), then we calculate the time­

dependent reduced density matrix p(t) for both finite and infinite number of environmental 

spins. 

4.3.1 Initial conditions 

At t = 0 the central two-qubit system is assumed to be decoupled from the environment. 

This means that Ptot(O) factorizes into the following direct product 

Ptot(O) = p(O) ® PB(O), (4.9) 

where p(O) and PB(O) are, respectively, the initial density matrices corresponding to the 

two-qubit system and the environment. 

Initially, the spin environment is taken in thermal equilibrium at finite temperature 

T. The density matrix PB(O) is simply given by the Boltzmann distribution 

(4.10) 

where ZN = trB{ e-~[J2+(~-1)Jn} is the partition function corresponding to the spin 

bath and f3 = ~ is the inverse temperature. Note that the Boltzmann constant is set to 
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one, i.e. kB = 1. The partition function ZN can be expressed as [31] 

N / 2 j 

ZN = L l/(N,j) L e-~[j(j+1)+(~-1)m2J. (4.11) 
j=O m=-j 

In particular, we have lim PB(O) = 2-N liN, where liN stands for the unity matrix in the 
(3-+00 

bath space. 

Let us now assume that at t = 0 the two-qubit system is prepared in the normalized 

state IIJ!(O)) = I: ail~i ) ' where I~i) E {II, - 1), 11,0),11,1),10,0)} and I: lai l2 = 1. There-
i i 

fore, the initial density matrix of the central spins can be written in the standard basis of 

C E9 C3 as 
4 

p(O) = LP?jl~i)(~jl, p?j = aiaj, L P?i = 1. (4.12) 
ij i=l 

The time-dependent density matrix p(t) is calculated by performing the trace with respect 

to the environmental degrees of freedom, i.e. p(t) = trB{ptot(tn. This can be rewritten 

in terms of the common eigenvectors of j2 and Jz as follows 

N / 2 j 

p(t) = L P2e L v(N, j) L (jmIU(t)l~k)pB(O)(~elut(t)lJm) . ( 4.13) 
k,e j=O m=- j 

4.3.2 Time evolution operator 

Before we proceed with the determination of the reduced dynamics, it should be noted 

that the evolution in time of the central qubits depends on the nature of interactions 

between the spins in the environment. In the case of single central spin it is found that for 

antiferromagnetic interactions within the bath, the effect of the anisotropy constant 6. can 

be neglected when the number of environmental spins becomes sufficiently large (typically 

of the order of 100) [29]. The above result is independent of the number of central qubits 

as long as their coupling to the bath does not include interactions of the form O'~ ® Jz. 

Hence, it is sufficient to investigate the isotropic case which exhibits the advantage of 

making our model exactly solvable. This is mainly due to the fact that [HB , HI] = 0 when 

6. = 1, implying that the time evolution operator reduces to exp{ -i(Ho + HI n. 

It is worth mentioning that due to symmetry, states belonging to C3 and C never mix; 

they evolve independently from each other without leaving the subspaces to which they 

belong. Thus we can write the model Hamiltonian as the direct sum of two operators living 

in the above subspaces. Indeed, the Hamiltonian operators Ho and HI can be written in 
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c3 ® (C2)®N (up to a trivial constant for Ho) as 

(

€ 0 0) (0 
Ho = 0 -€ 0 ® lIN, HI = IN L 

o 0 € 0 

(4.14) 

where € = A-O. Similarly, in the subspace C®(C2y~N we can rewrite the free Hamiltonian 

as Ho = -l\;lIN , where I\; = 30+A. Since the action of the interaction Hamiltonian vanishes 

in this subspace, it immediately follows that H n = (_I\;)n. Furthermore, it can be shown 

that in C3 ® (C 2 )®N the operator Ho anticommutes with HI, i.e. , [Ho, HI]+ = 0 and 

H2 = HJ + €2. We have shown in [24] that in C3 ® (C2 )®N, powers of HI are given by 

(4.15) 

( 4.16) 

where K = J+L + LJ+ = 2(J2 - fl). Using the above relations it is possible to derive 

general expressions for even and odd powers of H = Ho + HI· 

As an example, let us calculate Hrf. We have for n 2: 1 

( 4.17) 

Therefore, 

(4.18) 

where we have introduced a = CI./ffi for ease of notation. Using the same method we get 

(4.19) 



4. Decoherence and entanglement evolution of two qubits ... 

5:h(E2 + 5:2 K)n 

-E( E2 + 5:2 K)n 

5:L(E2 + 5:2 K)n 
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Now we have all the ingredients that enable us to derive the explicit form of the time 

evolution operator. Indeed, expanding U(t) in power series and using equations (4.19) 

and (4.20) we find that the matrix elements of the time evolution operator in the space 

C3 Ef) C are given by 

Un(t) 

U12(t) 

U13(t) = 

U22(t) 

U23(t) = 

U33(t) 

U14(t) 

U44(t) 

( .) [COS(tM)-cos(Et) .Esin(tM)-Msin(Et)]J (421) 
exp -lEt +h K -1 KM -, . 

. -J sin(tM) (4 .22) 
-l(~ + M ' 

[
COS(tM) - cos (Et) . E sin(tM) - M sin(Et)] J 

J+ K -1 KM +, 
. sin(tM) 

cos(tM) + IE M ' 

. - sin(tM) J 
-la + M ' 

( 4.23) 

(4.24) 

(4.25) 

(_.) J [cos(tM)-COS(Et)_.Esin(tM)-MSin(Et)]J (426) 
exp lEt + - K 1 K M +, . 

U24(t) = U34(t) = 0, (4.27) 

exp (ill:t), (4.28) 

where we have introduced the operator M = VE2 + a 2K/N. The remaining matrix 

elements can be found by simply taking the transpose ( not the hermitian conjugate) of 

those listed above. Taking into account the trace properties of the lowering and raising 

operators, it can be shown by virtue of equation (4.13) that the elements of the reduced 

density matrix can be written as 

Pn (t) trB{PB(O) [P~l Un (t)U{l (t) + pg2U12(t)U{2(t) + pg3U13 (t) U{3 (t)] },(4.29) 

P12 (t) = trB{PB(O) [p~2Un(t)UJ2(t) + pg3U12(t)UJ3(t)]}, ( 4.30) 

P13 (t) trB {PB (0) [p~3Un (t)UJ3 (t) ] }, (4.31) 

P14( t) tr B {PB (0) [P~4 Un (t)U14 (t)] }, ( 4.32) 

P22 (t) trB {PB (0) [P~l U21 (t)UJl (t) + pg2U22 (t)UJ2(t) + pg3U23(t)UJ3 (t)] }, (4.33) 

P23 (t) trB{PB(O) [P~2U21(t)UJ2(t) + pg3U22 (t) UJ3 (t)] } , (4.34) 

P24 (t) = trB{PB(O) [pg4U22 (t)U14 (t)] }, (4.35) 
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Fig. 4.1: Evolution in time of some elements of the reduced density matrix for different values of 

environmental spins: N = 10 (solid lines), N = 100 (dashed lines), and N = 300 (dotted 

lines) . The initial state corresponding to Pll (t) and P22 (t) is the product state I - -). 
Here we have set P?2 = pg3 ' The parameters are E = Q and 9/3 = 10. 

P33(t) 

P34(t) 

P44(t) 

trB{PB(O) [p~lu3 1 (t)Ul1(t) + pg2u32(t)U12(t) + pg3U33 (t) u13 (t)] },(4.36) 

trB{PB(O) [pg4U33(t)U14(t)]} , (4.37) 
o 

P44' ( 4.38) 

The remaining matrix elements are obtained by taking the complex conjugate of those 

listed above. 

Figure 4.1 illustrates the time dependence of some elements of the reduced density 

matrix for different values of the number of spins in the environment. We can see that the 

curves corresponding to each matrix element get more and more closer from each other as 

the number of bath spins increases. If we let N to take sufficiently large values (N rv 100) , 

then the curves saturate with respect to N and become almost identical. In the next 

subsection we study the case in which N ---t 00. All the results regarding de coherence and 

entanglement evolution will be studied in this limit . 

4.3.3 Infinite number of spins in the bath 

In order to study the limit of an infinite number of environmental spins it should be 

stressed that the operators J± as well as Jz are traceless in the standard basis formed 
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by the common eigenvectors of J2 and Jz. Moreover, the scaled lowering and raising 

operators J±/VN are well behaved fluctuation operators with respect to the tracial state 

on the bath, and satisfy 

. _ { k (hJ )ni} . -N {Ilk ( h )ni ( J~ )ni} n! 
J~oo 2 NtrB TI N ~ = J~oo 2 trB i=l VN VN = 2n' 

k 
where n = L ni and ni EN. This follows from the fact that [24, 27] 

i=l 

(4.39) 

Thus, J+/VN converges to a normal complex random variable, z, with the probability 

density function [24] 

(4.40) 

In particular, we can infer that 

lim TNtrB{f(hJ~)}= ~ ( f(lzI2)e-2Iz I2dzdz* N--+oo N 7r lc (4.41) 

provided that the integral converges. This is typically the case for the functions e-ar2 h(r2) 

where Ih(r2)1 < 00, r E lR and Re(a) > -2. Similarly, the operator Jz/VN converges to 

a normal real random variable, T, with probability density function 

T I-t ~e-2T2. (4.42) 

In this case a similar equation to (4.41) can be obtained by replacing h/VN and Iz l 

by Jz/VN and T, respectively. We have already mentioned that for antiferromagnetic 

interactions within the bath, isotropic and anisotropic Heisenberg Hamiltonian operators 

with 6. 2: 0 are completely equivalent when N --+ 00. Let us explain this a little bit. One 

can see that PB(O) always appears between two matrix elements of U(t). If we exchange 

the order of PB(t) with one of the above matrix elements, which is possible using simple 

commutation relations, we end up with extra operators of the form Jz/N. These can 

be indeed neglected when N --+ 00 . Then using the cyclic property of the trace, it is 

possible to transform any function Yijkl = UijUZi inside the trace sign into a function 

which depends on J±;jr . Hence for all 6. 2: 0 
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where we have used polar coordinates (r, ¢) to simplify the integrals with respect to the 

complex variable z = rei¢>. Clearly the latter expression is independent of t.. Using the 

above result we find that 

(Unul l ) = (Un U13) = (U33 U13) 

1 [3 1 ] 4 2 + 2f (2t) + 2cos(Et)f(t) + g(t) + 2sin(Et)l(t) , (4.44) 

(UI2 Ul2) (U12 UJ3) = (U23 UJ3) = (U32U12) = h(t), (4.45) 

(UI3Ul3) 1 [3 1 ] 4 2 + 2f (2t) - 2COS(Et)f(t) + g(t) - 2sin(Et)l(t) , (4.46) 

(Un UJ2) = ~ [~+ ~f(2t) - g(t) - il(2t) + e-iEt(i(t) - il(t))], (4.47) 

(U22 UJ2) ~ [1 + f(2t) + 2g(t)], (4.48) 

(U22U13) ~ [~+ ~f(2t) - g(t) + il(2t) + eift (i(t) + il(t))], (4.49) 

(Un) (U33) = ~ [f(t) - il(t) + e-ift], (4.50) 

(U22) f(t) + if(t). (4.51) 

Here we have introduced the functions 

where E and t are, respectively, given in units of a-I and a. Let us derive for example the 

explicit expression of l(t). We have 

i(t) 1
00 sin (tv E2 + 2r2) 

E(4 + g(3) e-(2+g/3/2)r2 rdr 
o VE2 + 2r2 
2 JOO 2 ~(4 + g(3) e7 (4+g/3) f dry e-!f(4+g/3) sin(ryt), ( 4.53) 

where we have made the change of variable ry2 = E2 + 2r2. The above expression can be 

further simplified to 

i(t)=E(4+g(3) exp[~(4+9(3)- 4~2g(3]Im{Je-82dO}, ( 4.54) 

a 

where 0 = !l.2V4 + gj3-i ~ a= -2f~-iv4t 13' and Im(x) stands for the imaginary 
v 4+g~' +g 

part of x. The latter integral is nothing but the complementary error function [32], which 
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Fig. 4.2: Comparison between the behaviour of Pll (t) obtained for finite and infinite number of 

environmental spins: N = 100 (solid line), N = 300 (dashed line), and N -+ 00 (dotted 

line) . The initial state is 1- -) with E = a and g(3 = 10. 

can be transformed into a sum of two ordinary error functions and we simply get 

iJ1rE [102 
t

2 
] £(t) = -4-J4+g,8exp '4(4+g,8)- 4+g,8 

x {erf [E/2( 4 + g,8) - it] -erf [E/2( 4 + g,8) + it] } (4.55) 
)4+g,8 )4+g,8' 

with 
2 t 2 

erf(z) = J1r io e-t 
dt . 

Following the same method we find that 

f(t) = 

g(t) 

h(t) 

where 

(4.56) 

(4.57) 

(4.58) 

( 4.60) 

is the incomplete gamma function. Note that the integral in equations (4.58) and (4.59) 

cannot be calculated analytically, we leave it in that form. 
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Using the Riemann-Lebesgue lemma it is possible to find the asymptotic behaviour 

(i.e. when t --t (0) of the above functions , namely 

f(oo) 

g(oo) 

h(oo) 

(4.61 ) 

( 4.62) 

(4.63) 

Furthermore, we can prove using the following asymptotic expression of the incomplete 

gamma function [32J 

[
a - 1 (a - 1) (a - 2) ] 

r(a, z) '" za- le- z 1 + -z- + z2 + ... , (4.64) 

when z --t 00 provided I arg zl < 37r /2, that 

lim g(oo) = ~, lim h(oo) = O. 
{3, f ->OO 2 {3 ,f->OO 

( 4.65) 

The latter results will be used below to study decoherence and entanglement of the central 

qubits . In figure 4.2 we have displayed the evolution in time of Pn (t) corresponding to 

the state I - -) for different vales of N including the limit N --t 00. 

4.3.4 Second-order master equation 

The second order master equation can be derived in the interaction picture by noting that 

t 

Ptot(t) = p(O ) 0 PB(O) - i J [HJ(s) , Ptot(s) ]ds, 

o 

where A(t) = e iHot A(t)e-iHot . It is easy to see that 

(4.66) 

(4.67) 
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Then under Born approximation, one can show that the second order master equation 

yields the following set of integro-differential equations 

pu (t) -2a2R fat COS[2E(t - s)] [pu(s) - p22(S)] ds, ( 4.68) 

P12 (t) _a2 R fat [3e2if(t-S) p12(S) - 2e2if(Hs) p23(S)] ds , ( 4.69) 

P13(t) = -2a2 R fat COS[2E(t - S)]h3(S) ds, (4.70) 

P22(t) - 2a2 R fat COS[2E(t - s)] [2p22(S) - .011 (s) - p33(S)] ds, (4.71) 

P23(t) -a2R fat [3e2k(S-t)p23(S) - 2e-2if(S+t)h2(S)] ds, (4.72) 

P33(t) = -2a2R fat COS[2E(t - s)] [p33(S) - .022 (s)] ds, (4.73) 

P14(t) _a2 R fat e2if(t-s) p14(S) ds, (4.74) 

P24(t) -2a2R fat e-2if(t-s)p24(S) ds, (4.75) 

P34(t) -a2R fat e2if(t-s) p34(S) ds , (4.76) 

P44 (t) 0, (4.77) 

where the correlation function is given by R = trB{ JjJ_ PB(O)}= trB{ J--;J+ PB(O)}. In 

the limit N -t 00, we find that R = 4';9{3 ' Clearly, pu (t) + P22(t) + P33(t) = 0, as it should 

be because p44(t) = P44(t) = P44(0) . The time-local master equation can be obtained by 

replacing the matrix elements Pij(S) in equations (4.68-4.77) bypij(t). The integration 

of the resulting first order differential equations yields solutions involving the exponential 

function. For example when E = 0, we find that 

(4.78) 

This solution is valid only at short intervals of time, it quickly diverges from the exact 

solution as t increases. Nevertheless, we can see that the Gaussian behaviour is clearly 

reproduced. It should be noted that the form of the master equation presented in the 

paper where this chapter has been published are somewhat wrong. All matrix elements 

within the integrand are, in fact, written in the Schrodinger picture, while the left-hand 

side is written in the interaction picture. We shall not solve the above equations since we 

shall encounter similar ones in chapter 6, where we obtained analytical solutions for the 

time-local master equation. 
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4.4 Decoherence and entanglement evolution 

From equation (4.38) , we can see that the maximally entangled state 10,0) does not evolve 

in time. The corresponding one-dimensional subspace C is thus decoherence-free. Taking 

into account the unitarity condition of the time evolution operator U (t) U t (t) = H4 , we 

find that the state iH3 is also decoherence-free. Hence the decoherence-free subspace of 

our model is of dimension two. The qubits prepared in any linear combination of the 

above states do not perceive the surrounding environment. On the contrary, any other 

pure state decoheres evolving into mixed one and hence loses partially or completely its 

purity. 

Generally speaking, the elements of the reduced density matrix show partial decoher­

ence. Indeed, by virtue of equations (4.61-4.63), it can be shown that the elements of the 

stationary density matrix p(oo) are given by 

Pll (00) 1 [ 0 0 0 )] P33(00) ="8 (3 + E)(Pll + P33) + 2P22(1 - E , (4.79) 

o 0 

P12(00) p23(00) = P12 + P23 (1- E), (4.80) 
4 

pdoo) 3+E (4.81) 
0 

--
P13 8 

P14 (00) P34(00) = ~ e-i(€+I<)t, (4.82) 
0 0 

P14 P34 2 

p22(00) ~ [(1- E)(P~l + pg3) + 2pg2(1 + E)], (4.83) 

p24(00) 0, (4.84) 

p44(00) 0 
P44, (4.85) 

where E = t(4+ 9/3) exp[t( 4+ 9/3)]r[0, t(4+ 9/3)]· Note that the latter quantity satisfies 

o ~ E ~ 1. This allows us to find upper bounds of the asymptotic values of the matrix 

elements Pij (00). For instance, if 2pg2 ~ P~l + pg3 then we have Pll (00) ~ ~ (P~l + pg3) and 

P13(00) ~ ~P~3' Similarly, when 2pg2 ~ P~l + pgj then pn(oo) ~ ~[2pg2 + 3(P~1 + pg3)], 

and P22 (00) ~ pg2' The matrix elements P14 (00) and P34 (00) oscillate around half of 

their initial values with period equal to 2rr / (E + K,). When E = 0, the asymptotic state is 

independent of the bath temperature. 

4.4.1 Measures of decoberence and entanglement 

Due to the decoherence process, initially pure states evolve into mixed ones. Thus it is 

natural to use the extent of mixing as a measure of decoherence. This task can be carried 
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for different values of E: E = a (solid lines), E = 0.5a (dashed lines) , and E = 2a (dotted 

lines) with g(3 = 10. 

out with the help of the quantity 

( 4.86) 

usually called linear entropy or idempotency. The above measure is effectively a monotonic 

decreasing function of the purity of the system, it vanishes for pure states and reaches its 

maximum value, Dmax = ~, for the completely mixed state t1I4. 

Although the linear entropy quantifies the decoherence, it does not provide any other 

information about the state of the system. The so-called Fidelity, which we denote by 

F(t), is a measure of decoherence that quantifies the deviation from the free evolution of 

the system, i.e., in absence of the surrounding environment [33]. Explicitly, we have 

F(t) = tr [p(t)p(t)] , (4.87) 

where p(t) describes the evolution, under the influence of the Hamiltonian operator Ha, 

of the central system initially prepared in the pure state p(O), namely 

e- ift 0 0 0 

p(t) = e-iHotp(O) eiHot , e- iHot = 0 eift 0 0 
( 4.88) 

0 0 e- ift 0 

0 0 0 eiKt 

Note that the fidelity reaches its maximum value Fmax = 1 if and only if p(t) = p(t). 

Clearly, in the case of initial pure state p(O) = IW(O))(w(O)I , where Iw(O)) is eigenvector 

of Ha, we simply have p(t) == p(O). This means that the maximum values of the fidelity 

indicate the revival of the initial state when the latter is eigenvector of Ha . We shall use 

this property when studying entanglement evolution. 
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Fig. 4.4: Time evolution of the linear entropy and the fidelity in the case of the initial state 1- -) 
at different values of g{3: g{3 = 0 (solid lines) , g{3 = 2 (dashed lines) , and g{3 = 20 (dotted 

lines) with € = Q . 

In this work we use t he concurrence as a measure of entanglement between the central 

qubits. Recall that the concurrence corresponding to the reduced density matrix p(t) is 

defined by [34J 

C(p) = max{ ~ - V>:; -.;>:; -~, O}, (4.89) 

where AI, A2 , A3 and A4 are the eigenvalues, in descending order, of the operator 

e(t) = p(t)(ay ® ay)p*(t)(ay ® ay) ( 4.90) 

written in ((;2 ® ((;2 , and p* (t) designates the complex conjugate of the density matrix. The 

values of the concurrence range from zero, for unentangled states, to one for maximally 

entangled states. Since the concurrence is invariant under unitary transformations, we 

can rewrite the operator e(t) in the basis of the space ((;3 EB ((; as 

(l(t) = p(t)V p*(t)V, V= 

o 0 1 0 

o -1 0 0 

1 0 0 0 

o 0 0 1 

(4.91) 

Bellow, we investigate de coherence and entanglement dynamics for some particular initial 

states that are of interest for applications. Other states can be studied with exactly the 

same method. 

4.4.2 Results and discussion 

Case 1: 11l1(0)) = I =F =F) . 

Let us suppose that the t ow-qubit system is initially prepared in the product state 1- -) = 

11, -1) . The corresponding time-dependent density matrix is diagonal, the idempotency 



0 . 2 

::... -0 . 2 

" 
~ N -O . 4 ., 
v -0 . 6 

4. Decoherence and entanglement evolution of two qubits ... 

5 

, , 

10 
at 

15 

-0.2 

A 
~ - 0 .4 

, 
I 

, , 

97 

--,.-

15 20 
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E = 0.5a (dashed line) , and E = 2a (dotted line) with gf3 = 10 for the figure on the left; 

ii) gf3 = 0 (solid lines), gf3 = 2 (dashed line), and gf3 = 20 (dotted line) with E = a for 

the figure on the right. The initial state is I - -). 

is then equal to D(t) = 1 - Li[Pii(t)]2. Since 1- -) is eigenvector of the Hamiltonian 

Ha, the fidelity simplifies to F(t) = pn(t). The time dependence of the linear entropy 

is shown in figures 4.3 and 4.4 for different values of the interaction strength E and the 

bath temperature T. We can see that D(t) increases starting from its initial value, zero, 

tending asymptotically to D(oo) which can be evaluated as (21-2E-3E2)/32. This limit 

assumes larger values as the strength of interactions E decreases in contrast with the bath 

temperature T. Therefore, in order to ensure lower linear entropy, and consequently to 

reduce the effect of the environment, one has to increase (decrease) the value of the ratio 

E/a. (temperature T) . Thus we set E = 1 to find that Dmin(OO) = 0.5. The fidelity shown 

in the above figures displays reverse behavior compared to that of D(t); its asymptotic 

value turns out to be (3 + E)/8 from which it follows that Fmax(oo) = 0.5. It is quite 

interesting to notice that Dmin(OO) + Fmax(oo) = l. 

The mean value of the operator a;(t) = 2S;(t) corresponding to the first spin is found 

to be 

(a;(t)) = -[cos(Et)f(t) + sin(ct)f(t)]. (4.92) 

The latter quantity decays to zero, as shown in figure 4.5, indicating that the asymptotic 

state of the qubit is a fully mixture of the eigenvectors I±). Moreover, we can see that 

(a;(t)) decays slower at low bath temperatures and large values of E. A straightforward 

calculation yields the following expression of the concurrence 

(4.93) 

It turns out that C(t) == 0 independently of the values of E and the temperature T. This 

implies that the state of the system is always separable; neither the interaction between 

the central qubits nor the coupling with the bath is able to generate entanglement. All 
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Fig. 4.6: Time dependence of D(t), F(t ), (O'; (t )) and C(t) for different values of>. in the case of 

the initial state 1- +) : >. = a (solid lines) , >. = 0.50 (dashed lines), and>' = 20 (dotted 

lines) with n = a and gf3 = 10. 

the above results apply for the state I + +) as well. 

Case2: Iw(O)) = 1- +) . 

The state 1- +) can be written as a combination of the states 11,0) and 10, 0) , namely, 

I - +) = ~ (11, 0) + 10, 0) ). In this case the diagonal elements together with P24 (t) are the 

only non-zero elements of the reduced density matrix. The idempotency, the fidelity and 

the mean value of 0'; (t) are explicitly given by 

D(t) 

F(t) 

~ - [pu (tW - [P22(t)f - [p33(t)f - 2Ip24(tW , 

~ { 1 + 2p22 (t ) + 4Re[p24 (t)e4iflt
] }, (0'; (t) ) = -2Re[p24]' 

( 4.94) 

(4.95) 

The time dependence of the latter quantities is similar to that of the above case. When 

n = 0, the asymptotic values of the linear entropy and the fidelity are , respectively, equal 

to (21-2L:-3L: 2 )/32 and (3+L:)/8. Hence we find again that Dmin(OO) = Fmax(oo) = 0.5, 

and lim (0'; (t)) = O. 
t-+oo 

The expression of the concurrence is quite long, we will not show it here for shortness. 

Nevertheless, we can dist inguish to different cases. The first one corresponds to n = 0, the 

variation in time of the corresponding concurrence is displayed in figures 4.6 and 4.7 for 

different values of A and T . We can see that entanglement between the central qubits is 
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Fig. 4.7: Evolution in time of D(t), F(t), (cr!(t)) and C(t) at different values of g{3 in the case of 

the initial state 1-+): g{3 = 0 (solid lines) , g{3 = 2 (dashed lines) , and g{3 = 20 (dotted 

line) with'>" = a and n = o. 

generated when A =1= 0 even though the initial state is separable. If there is no interaction 

between the central spins, the concurrence is always zero. We can see that the increase and 

the decay of the concurrence are faster at high temperatures and vice versa. Moreover, the 

numerical simulation shows that the concurrence never exceeds the value Cmax = 0.5: no 

maximally entangled states can be produced in this case. Note that 1- +) is eigenvector of 

the Hamiltonian Ha, in absence of the surrounding environment, the latter state remains 

always separable. Roughly speaking, the interaction with the spin bath changes the state 

of the central system so that the action of Ha produces, to some extent, entanglement 

between the qubits. 

The second case corresponds to n =1= O. Here 1- +) is not eigenvector of Ha , the action 

of the latter on this state periodically generates maximally entangled states. Hence, the 

effect of the environment consists of reducing the amount of the produced entanglement as 

shown in figure 4.8 . We can also see that the maximum values of C(t) occur at instances 

of time for which (O"~(t ) ) is equal to zero. 
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Case 3: Iw(O)) = ~(I-) + 1+))®2. 

In this case, it can be shown that 

D(t) 

F(t) 

((J;(t)) 

1 - [p22(t)]2 - 2{ [Pll(t)f + Ip12(t)12 + Ip13(t)1 2 + Ip23 (t)1
2
}, (4.96) 

~{1 + P22(t) + 2Re[pu(t)] + h[(pi2(t) + P23(t)) e-
2iet 

+ c.c]}, (4.97) 

O. (4.98) 

Hence, the asymptotic value of the linear entropy is equal to (267 + 1l4~ - 7TE,2)/256, 

from which it follows that Dmax(oo) = 19/32, Dmin = 167/256. The dependence of D(t) 

and F(t) on E is shown in figure 4.9; their variation with respect to T is quite similar to 

that of the above two cases . Since Ho induces entanglement between the central qubits, 
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we conclude that the influence of the environment consists of reducing the degree of 

entanglement of the central system. This is shown in figure 4.10 where we have displayed 

the dynamics of entanglement at different values of €. 

Case4: Iw(O)) = ~(I- +) + 1+-)) · 

If the initial state of the qubits is the maximally entangled state 11,0) then the density 

matrix is again diagonal. Since 11,0) is eigenvector of HQ, we simply get F(t) = P22(t). 

The mean value of O';(t) remains always zero. The behaviour of the linear entropy and the 

fidelity is shown in figures 4.11 and 4.12. The asymptotic values of the above measures are 

given by (5-2E-3E2)/8 and (1+E)/2, respectively. Hence, we find that Dmin(OO) = 0 and 

Fmax(oo) = 1. Note that the above values are obtained for E,(3 --+ 00. This implies that 

the state of the qubits can be protected from decohering at very low bath temperatures 

or when their mutual interactions are sufficiently strong. 

The concurrence in this case is given by relation (4.93). We can see form figure 4.11 

that for E = 0 the concurrence decays from its maximum value to vanish at certain value 

of time, the state of the two-qubit system becomes separable. This behaviour is known 

as entanglement sudden death which has been investigated for bosonic environments [35]. 

As we increase the value of the interaction strength E, the concurrence approaches its 

initial maximum value Cmax = 1. This happens when the fidelity in turn approaches 

its maximum value implying that the initial state of the two-qubit system revives. For 

example, the asymptotic value of the concurrence turns out to be 

C(OO) = E. ( 4.99) 

Since the quantity E is a monotonic increasing function of both E and (3, and satisfies 

lim E = 1, we simply obtain Cmax(oo) = Fmax(oo) = 1. When E =f. 0 the concurrence 
f,{3-+00 

O. S 

at 

Fig. 4.10: C(t) versus at at different values of E in the case of the initial state ~(I-) + 1+))0 2 : 

€ = 0.5 (solid line), € = 2a (dashed line) with gfJ = 10. The concurrence corresponding 

to € = 0 is identically zero. 
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Fig. 4.11: Time dependence of D(t) , F(t) and C(t) at different values of EO in the case of the 

maximally entangled state ~(I- +) + I + - )): EO = a (solid lines) , EO = 0.50 (dashed 

lines) , and EO = 20 (dotted line) with gf3 = 10. 

may vanish for certain interval of time then revives again to tend to its asymptotic value 

(4.99). If E is sufficiently large, the concurrence never vanishes as displayed in figure 4.11. 

Case 5: IW(O)) = ~(I + +) + 1- -)). 

In this case, the non-zero elements of the reduced density matrix are Pl1(t), P22(t), P33(t) 

and P13(t). Consequently, the mean value of cr;(t) remains always zero. The idempotency 

and the fidelity are given by 

(4.100) 

The asymptotic values of the above measures are, respectively, given by (75 - 14~ -

13~2)/128 and (9 + 3~)/16 . It follows that Dmin(OO) = 0.375 and Fmax(oo) = 0.75 

The square roots of the eigenvalues of the matrix e(t) can be easily calculated; they 

are given explicitly by P22(t) , IPll (t) + P13(t)1 and Ipl1(t) - P13(t)l · Hence the concurrence 

in this case is given by 

C(t) = max{ 0, 2 max [P22(t) , IPll (t) + P13(t) I, Ipl1 (t) - P13(t) I] 

-P22(t) -lpl1(t) + P13(t)I-lpl1(t) - P13(t)I} . (4.101) 
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Fig. 4.12: Variation in time of D(t), F(t) and C(t) for different values of g{3 in the case of the 

maximally entangled state 72(1- +) + 1 + -)): g{3 = 0 (solid lines), g{3 = 2 (dashed 

lines), and g{3 = 20 (dotted lines) with E = O. 

From figure 4.13, we can see that even when E = 0 the asymptotic value of the concurrence 

is different from zero. Indeed, by direct calculation we find 

(4.102) 

implying that 0.125 ~ 0(00) ~ 0.5. By contrast with 11,0), the maximally entangled 

state ~(II, -1) + 11,1)) does not revive, its entanglement cannot be recovered even for 

large values of E at very low temperatures of the bath. We also see that for noninteracting 

qubits, entanglement vanishes for some interval (dark period) then revives again. 

case 6: Werner states. 

Let us consider werner states 

(4.103) 

where 1<1» = ~(I- -) + I + +)), and 0 ~ p ~ 1. In' C3 (BC the above density matrix takes 

the form 
.!±E 0 E 0 4 2 

0 !.::E 0 0 0 4 Pw= ( 4.104) 
E 0 .!±E 0 2 4 

0 0 0 !.::E 
4 
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Fig. 4.13: Time dependence of D(t), F(t) and G(t) at different values of f in the case of the 

maximally entangled state ~(I- -) + 1++)): f = 0 (solid lines) , f = 0.50: (dashed 

lines) , and f = 20: (dotted lines) with g(3 = 10. 

The corresponding stationary density matrix is then equal to 

2+p (HE) 0 P (3+E) 0 
8 16 

0 1-p E 0 0 Pw= 4 (4.105) 
P (3+E) 2+p (HEl 

16 0 8 0 

0 0 0 l=£ 
4 

The maximum values of the asymptotic linear entropy and fidelity are, respectively, given 

by (6 - 3p2)/8 and (1 + 2p2)/4. The square root of the largest eigenvalue of the operator 

fiX) is equal to (4+5p+3pI:)/16 , the root squared remaining ones read (1-p)/4 , (1-pI:) ! 4 

and (4 + pI: - p)/16. The asymptotic value of the concurrence is then equal to 

G(pw) = max { 0, ~[p (3I: + 5) - 4]} . 

Therefore, the two-qubit system is entangled if and only if 

4 
p> 5 + 3I:' 

(4.106) 

(4.107) 

The minimum value of p for which the asymptotic state of the qubits is entangled is equal 

to 0.5 which corresponds to E ---t 00 and/or T ---t O. The behaviour of the concurrence in 

this case is similar to that of I <p). 

To conclude our discussion we note that in [36], the fidelity of mixed state, calculated 

with respect to a maximally entangled state, is shown to be bounded above by [1+G(t)]/2. 
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Fig. 4.14: Variation in time of D(t) and C(t) for different values of gf3 in the case of the maximally 

entangled state ~(I- -) + 1++)): gf3 = 0 (solid lines), gf3 = 2 (dashed lines) , and 

gf3 = 20 (dotted lines) with E = a. 

This fully agrees with our results as can be seen in the case of the maximally entangled state 

11,0). Indeed, when P22(t) ~ Pll(t) then C(t) = max[2p22(t) - 1,0] = max[2F(t) - 1,0]. 

The corresponding asymptotic values do satisfy the latter condition. The above equality 

implies that the concurrence is equal to the negativity [36]. The critical point at which 

C(t) vanishes corresponds to F(t) = 0.5 (see figure 4.11). These results also hold for C(t) 

and F(t) corresponding to the state ~(I + +) + 1- -)) at least at long times. In [37] 

numerical simulation was used to study entanglement dynamics of two qubits coupled to 

anisotropic bath. The authors found that concurrence can be produced in the case of the 

initial states I ± ±) if the qubits are subjected to external magnetic field. It would then 

be interesting to investigate this situation analytically. 

4.5 Conclusion 

In conclusion we have studied decoherence and entanglement dynamics of two qubit in­

teracting with antiferromagnetic spin bath at thermal equilibrium. The time evolution 

operator of the composite system was analytical derived using symmetry properties of the 

model Hamiltonian. The reduced density matrix was calculated by performing the partial 

trace over the irrelevant bath degrees of freedom. In the limit of infinite number of spins in 

the environment, N, the lowering and raising operators corresponding to the total angular 

momentum, as well as its z-component, converge to normal random variables. This en­

abled us to calculate the partial trace when N --+ 00. The above limit turns out to be very 

good approximation for finite numbers of spins. We found that the off-diagonal elements 

of the reduced density matrix show partial decoherence. The decoherence-free subspace 

in this model is spanned by the states 10,0)(0,01 and ~1I3. Using the linear entropy and 

the fidelity, we studied decoherence of the central qubits for different initial states. We 
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showed that the decay of the elements of the reduced density matrix is Gaussian, which is 

a hallmark of non-Markovian dynamics. The effect of decoherence can be reduced at low 

bath temperature and strong coupling between the central qubits . 

Entanglement behaviour depends on the initial states of the qubits . The concurrence 

remains always zero when the central qubits are initially prepared in the pure product 

states I ± ±). These remains always separable. On the contrary, the qubits become en­

tangled if they are prepared in the states I ± =f) or ~(I-) + 1+))®2. In the latter case, 

entanglement generation is due to mutual interactions between the central qubits. The 

situation is different in the case of the states I ± =f) which are eigenvectors of the free 

Hamiltonian when n = 0: this is an example of environment-induced entanglement. Ini­

tially entangled states lose partially or completely their entanglement. This behavior 

strongly depends on bath temperature and the strength of interactions between qubits. It 

is found that entanglement can be protected to some extent from decohering at low bath 

temperatures and/or strong interactions between the central qubits if they are prepared in 

the maximally entangled state 11,0). For small values of t, it is found that entanglement 

displays sudden death. I think that the results presented here help extending the class of 

exactly solvable models for spin systems. 
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5. NONZERO TEMPERATURE DYNAMICS NEAR QUANTUM PHASE 

TRANSITION IN THE ISOTROPIC LIPKIN-MESHKOV-GLICK MODEL: AN 

OPEN QUANTUM SYSTEM APPROACH 

5.1 Introduction 

Quantum Phase Transitions (QPTs) are associated with qualitative changes in the ground 

states of many-body quantum systems, at the absolute zero temperature, when some 

relevant parameters vary across their critical values [1]. Their manifestation in many 

experimental results on the cuprate superconductors and organic conductors stimulated 

much attention during the last decade. Recently, the relation between the entanglement 

and the quantum phase transitions has been the subject of many studies [1, 2, 3, 4, 5, 6, 

7, 8, 9, 10]. The critical behaviour of the former was proposed as a tool for detecting the 

presence of QPTs in multi-spin systems. Most of the investigations have dealt with the 

zero-temperature dynamics near the critical point at which the transition occurs. However, 

it is believed that quantum phase transitions leave their fingerprints at temperatures close 

to the zero absolute. Generally speaking, at such low temperatures, the long-time collective 

dynamics of a quantum many-body system is investigated using the concepts of order 

parameters and quasiparticles which lead, however, to a semiclassical description of the 

dynamics [11]. Moreover, at nonzero temperatures, quantum correlations are suppressed 

by the thermal fluctuations: there exits a threshold temperature above which the thermal 

entanglement ceases to exist. Thus a deep understanding of the dynamics of multi-spin 

systems at low temperatures is of theoretical and experimental significance. 

The Lipkin-Meshkov-Glick (LMG) model [12, 13, 14], initially introduced in nuclear 

physics, has found many physical applications such as the Josephson effect and the two­

mode Bose-Einstein condensate [15, 16, 17] . This model was extensively used to investigate 

the connection between the zero-temperature entanglement and QPTs [18, 19, 20, 21, 22, 

23]. The Hamiltonian of the isotropic LMG model with N spins subjected to a magnetic 

field of strength h is explicitly given by 

N N 

H = 2~ L(a~a~ + a~at)+% L a~, 
i<j i 

(5.1) 
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where 9 is the coupling constant and (Ji = 2§i is the Pauli operator corresponding to the 

particle labeled by i. The above Hamiltonian can be cast, up to an additive constant, into 

the form 

(5.2) 

where j = I:f" §i is the total angular momentum of the multi-spin system. The standard 

basis of H is composed of the state vectors Ij, m) common to .:J2 and .:Jz such that 0 ::; j ::; 

N12, and -j ::; m ::; j (we set n = 1). In the ferromagnetic case, i.e. 9 < 0, the ground 

state and the first exited state belong to the subspace CN +1 spanned by the eigenvectors 

INI2, m). The model Hamiltonian displays a second order phase transition at the critical 

point Ihel = -g. Indeed, for Ihl > Ihel, the ground state is unique and is equal to the fully 

polarized state INI2, -sign(he)NI2) (symmetric phase), where sign(x) designates the sign 

of x. On the contrary, in the domain Ihl < Ihel, the ground state depends on the coupling 

constant 9 ( symmetry broken phase); its explicit form is given by INI2,I(~~)), where 

I(x) denotes the round value of x. 

In this chapter, we apply the general formalism of open quantum systems to investigate 

the dynamics at low temperatures near the critical point of the isotropic LMG model. 

The idea consists of deriving the reduced density matrix of a central spin system which 

is coupled to a spin bath governed by the Hamiltonian (5.1) . In section 5.2 we derive the 

one-qubit and two-qubit thermal reduced density matrix and we investigated the pairwise 

thermal entanglement. In section 5.3, we study the time evolution of the coherence and the 

entanglement of, respectively, a single and a two spin ~ particles coupled via Heisenberg 

or Ising interactions to the LMG spin bath. We end the paper with a short summary. 

5.2 Thermal reduced density matrix 

Let PN(O) denote the tot al density matrix of the multi-spin system whose dynamics is 

governed by the Hamiltonian (5.1). The state of any subsystem with m spins is fully 

described by its reduced density matrix, obtained by eliminating the degrees of freedom 

corresponding to the remaining N - m particles . Note that H is invariant with respect to 

the exchange of sites; it follows that the reduced density matrix should be independent of 

the choice of the central particles. In the following we assume that our multi-spin system 

is in thermal equilibrium at arbitrary temperature T. The corresponding total density 

matrix is given by the Gibbs thermal state 

exp (-HIT) 
PN(O) = trN{ exp( -HIT)}' 

(5.3) 
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where the Boltzmann constant is set to one, and Z = tr N { exp( - HIT)} is the partition 

function. Here, trN designates the trace with respect to the full set of the eigenvectors of 

H . In the following we derive the reduced density matrix for both one and two central 

qubits . Without loss of generality we suppose that 9 = -1, and we only consider positive 

values of h since the spectrum of H is odd. 

5.2.1 The one-particle reduced density matrix 

First of all, it should be noted that the reduced density matrix can be obtained by directly 

calculating the mean values of the operators J2 and Jz, with respect to the thermal state 

[24]. However, we shall proceed differently and use an other method which allows us to 

investigate, in a straightforward manner, the time evolution of a central qubit coupled to 

the isotropic LMG bath (see the next section). Furthermore, one is usually seeking new 

techniques that lead to exact analytical results. 

Let us choose one arbitrary particle, whose spin vector operator is denoted by 8, and 

call it central spin. The remaining N - 1 particles can be viewed as a spin bath with a 

total angular momentum 1. At this stage it is useful to decompose the total spin vector 

of the full system as the sum of those corresponding to the central particle and the bath, 

namely 

j = 8 + J, Jz = Sz + Jz. (5.4) 

Then, one can easily show that the isotropic Lipkin-Meshkov-Glick Hamiltonian can be 

rewritten in terms of the new spin operators as 

(5.5) 

where L± = Lx ± iLy . Hence the full system is equivalent to a central qubit coupled to a 

spin bath through Heisenberg XY interactions. Similarly, the spin space of the composite 

system, (C2)®N, can be decomposed as 

where [25] 

N-l 
-2-

c2 ® (C2)®N-l = C2 ® [EB v(N - 1,j)C2j+l], 
j 

v(N,j) = (N N .) - (N ~ 1)' 
2- J 2- J -

(5.6) 

(5.7) 

The basis of the latter space is formed by the vectors Ik) ® Ij, m), where Szlk) = _ (_;)k Ik) 

(k E {O,l}), J21J,m) = j(j + l)lj,m), and Jzlj,m) = mlj,m). Note that in equation 

(5.6), the summation over j takes into account whether N is odd or even. Also, due to 
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the last term in the right-hand side of equation (5.5), the Hamiltonian operator H is no 

longer diagonal in this new basis. 

The method we adopt here is based on the fact that the operator Q = Z PN(O) = 

exp [-,8H] satisfies the following equation 

(5.8) 

In the standard basis of C2
, the above operator can be written as Q = Lk.£Qk£lk)(ll. 

Consequently, equations (5.8) and (5.5) yield a set of four coupled first-order differential 

equations, namely 

(5.9) 

(5.10) 

(5.ll) 

(5.12) 

The latter can be transformed into diagonal ones by introducing the following transfor­

mations [26]: 

Qll exp{ _,8[~(J2 - J; +~) + h(Jz - ~)]} Vll , (5.13) 

Q21 L exp{ _,8[~(J2 - J; +~) + h(Jz - ~)]} V21, (5.14) 

Q22 exp{ -,8[~ (J2 - J; + ~) + h(Jz + ~)]} ~2 , (5.15) 

{?12 
{ [g 2 2 1 I]} J+ exp -,8 N(J - Jz + 2) + h(Jz + 2) V12 . (5.16) 

Using the commutation relations [Jz,1±] = ±1± and [J:, ±] = ~J±(2Jz ± 1), it can be 

shown that the operator variables Vij satisfy 

8 9 9 -V21 = --Vll - -(2Jz -1)V21 
8,8 N N ' 

(5 .17) 

8 9 9 
-V12 = --V22 + -(2Jz + 1)V12. 
8,8 N N 

(5.18) 

Combining equations (5.17) leads to the following second-order differential equation 

(5.19) 

It is worth mentioning that lim Q = lim Q = ITN, where ITN denotes the 2N -dimensional 
T-+oo j3-+o 

unit matrix. Therefore, Vii(,8 = 0) = ITN-l and Vij(,8 = 0) = 0 for i t= j . Taking into 
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account the last conditions, it is easy to show that the general form of the solutions of 

equation (5 .19) is given by 

(5 .20) 

where A is a yet-to-be-determined diagonal operator. It is then sufficient to integrate the 

right-hand side of the first equation in (5.17) to obtain the exact form of VB. Taking into 

account the values ofVij at f3 = 0, one can find that A = -V(g/N)2[(Jz - 1/2)2 + J+LJ/(2g), 

and thus by virtue of the transformations (5.13)-(5.14) we obtain 

(5.21) 

Q21 

where G1 = !:r(J2 - J; - 1/2) + (h + !:r )(Jz - ~), and sign(g) designates the sign of the 

coupling constant g. 
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Fig. 5.1 : The dependence of the mean value of Sz on the strength of the magnetic field at different 

values of the number of spins: N = 10 (solid line), N = 20 (dashed line), and N = 30 

(dotted line) with T = 0.01. 

Similarly, it can be shown that V12 satisfies 

.. g( 1) . (g)2 
Vi2- 2

N JZ +2" Vi2- N LhV12=O. (5.23) 



5. Nonzero temperature dynamics near quantum phase transition in ... 114 

Following the same method presented above, we find that 

(5.24) 

In order to obtain the reduced density matrix corresponding to the central spin-~ 

particle, we need to perform the trace in the space spanned by the common eigenvectors 

of J2 and Jz. This task can be carried out with the help of the relation 

j = trN- df(J2
, Jz)} = L v(N - 1, j)f[j(j + 1) , m], (5 .26) 

j ,m 

where f is some function of J2 and Jz. Since the trace of the lowering and raising operators 

is identically zero, we can immediately infer that the reduced density matrix is diagonal 

in the standard basis of (:2, namely 

_ ~ (ell 0) p- , 
z 0 e22 

(5.27) 

where the elements eii are calculated using equation (5.26). It follows that the mean value 
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Fig. 5.2: The dependence of the mean value of the purity of the reduced density matrix on the 

strength of the magnetic field at different values of the number of spins: N = 10 (solid 

line) , N = 20 (dashed line), and N = 30 (dotted line) with T = 0.01. 
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of Sz, the purity and the von Neumann entropy corresponding to p are, respectively given 

by (Sz) = 2i (Q22 - iin), P = trp2 = .p(iifl + ii~2)' and S(p) = -Wll/Z) log2(iill/Z) -

(ii22/Z ) log2(ii22/Z ). 
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Fig. 5.3: The von Neumann entropy as a function of the strength of the magnetic field at different 

values of the number of spins: N = 10 (solid line), N = 20 (dashed line), and N = 30 

(dotted line) with T = 0.01. 
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Fig. 5.4: The mean value of S z as a function of the strength of the magnetic field at different values 

of the temperature: T = 0.1 (solid line), T = 0.4 (dashed line), and T = 0.8 (dotted line) 

with N = 300. 

Figures 5.1-5.3 display the variation of the ~bove quantities as a function of the 

strength of the magnetic field at different values of the number of spins. We can see 

that (Sz) vanishes for h = 0 regardless of the values of N and T. This follows from the 

fact that, when h is equal to zero, the operator H reduces to Heisenberg XY Hamiltonian, 

which is invariant under rotations with respect to the z direction. The above operator is 

clearly even function of Jz , which is also the case for the corresponding density matrix, 
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Fig. 5.5: The dependence of the purity on the strength of the magnetic field at different values of 

the temperature: T = 0.1 (solid line) , T = 0.4 (dashed line), and T = 0.8 (dotted line) 

with N = 300. 

PN(O): the thermal average of Jz is identically equal to zero. 

From the above figures one can also see that , in the symmetry broken phase, starting 

from some value ho in the neighborhood of the critical point he = 1, the von Neumann 

entropy vanishes whereas (Sz) and P become identically equal to -1 and 1, respectively. 

This means that all the spins are pointing in the direction of the magnetic field. Obviously, 

the above quantities maintain these values in the symmetric phase since the ground state 

of the spin system is equal to the fully polarized state vector IN /2, - N /2). Furthermore, 

it can be seen that the variation of (Sz), P and S(p) is accompanied in the broken phase 

by some kind of oscillations which become appreciable at small values of N. This can be 

explained by the dependence of the ground state IN/2, -I(hN/2)), which exhibits at low 

temperatures the largest statistical weight, on the strength of the magnetic field . Clearly, 

the quantity I(hN /2) has the structure of a step function with respect to hj as T increases, 

the mean value of Sz slightly deviates from -I(hN/2)/N. A similar behaviour can also 

be observed for the purity and the von Neumann. entropy. As we increase the number of 

spins and/or the temperature T, the oscillations completely disappear. Also, we observe 

that ho -t he for N -t 00 and T -t 0, as expected, since in this limit I(hN/2)/N ~ h/2 . 

The behaviour of the above quantit ies at large N is shown in figures 5.4-5.6. 

5.2.2 The two-particle reduced density matrix, pairwise thermal entanglement 

Next, consider entanglement properties of the isotropic Lippkin-Meshkov-Glick model 

at temperatures close to the zero absolute. The relevant quantity we shall look for 
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Fig. 5.6: Variation of the von Neumann entropy with the strength of the magnetic field at different 

values of the temperature: T = 0.1 (solid line) , T = 0.4 (dashed line), and T = 0.8 (dotted 

line) with N = 300. 

is the two-spin reduced density matrix, p. A knowledge of the latter enables one to 

quantify the pairwise thermal entanglement between the pairs of spin-~ particles. The 

simplest measure we can use is the concurrence, which is explicitly defined by C(p) = 
4 

max{ 0,2 max [ A] -Ii A} [27], where the Ai are the eigenvalues of the operator p( a y ® 

ay)p*(ay ®ay). It is worth mentioning that due to the invariance with respect to exchange 

of sites, the two-spin reduced density matrix in the space ((:2 ® ((:2 takes the form 

a_ 0 0 0 

0 b c 0 
p= (5.28) 

0 c b 0 

0 0 0 a+ 

where, a±, b, and c are real numbers. The fact that c is real ensures that the re-

duced density matrix is diagonal in the space ((:3 EB ((: == ((:2 ® ((:2 spanned by the vectors 

{II , -1), 11,0),11 , 1) ,10, 0)}[25J . The method presented in the previous subsection can also 

be applied here to derive the explicit form of p; we find that in ((:3 EB ((:, the first two 

diagonal elements of {! read 

{!11 = M4: M2 exp {_,8[~(J2 - J; + 1) + h(Jz -1)]} 
x {[hL + 4(J+L)2 - 2Jz - 12Jz J+L + 10J; + 12J+J_J; 

-16J; + 8J!]cosh(g,8M/N) - Msinh(g,8M/N) 
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x [3hL - 2Jz - 4JzJ+L + 6f; - 4J;] 

+ [J+L + 4(hL)2 - 4J+LJz + 4J+LJ~]e1Q}, (5 .29) 
s.£ 

e22 M:e: M2 {[J+L + 4(J+L)2 - Jz - 8J+LJz + 4f;J+L 

+4J;(1- Jz)] cosh (g,8M/N) - Msinh(g,8M/N) [J+L - Jz + 2J;] 
+e1Q [4J+LJ; + J; + 4J;(Jz - I)]} 

x exp { -,8 [~ (J2 - J; + 2) + h(Jz)] } (5.30) 

where M = /1- 4Jz + 4J; + 4hL. Due to the symmetry, the explicit form of the 

matrix element e33 can be obtained from the expression of ell by simply making the 

substitution h -+ -h. Moreover, since J±/O,O) == 0, then the fourth diagonal element 

corresponding to C is simply given by 

(5.31) 

Then the elements of the two-spin reduced density matrix are given by 

1 
Pii = Z LV(N - 2,j)(j,m/eii/j,m). (5.32) 

1,m 

One can check their equivalence with the results of reference [24], where the elements of 

the density matrix (5.28) are shown to be explicitly given by 

a± 
N 2 - 2N + 4(J';) ± 4(N - 1) (.1z) 

(5.33) 
4N(N -1) 

b 
N 2 - 4(J';) 

(5.34) 4N(N -1) , 

c = 
(:h.1- + .1-.1+) - N 

(5.35) 
2N(N -1) 

where the thermal average is defined as (L) == trN{LpN(O)} . 

The main aim here is to investigate the pairwise thermal entanglement in the Lipkin­

Meshkov-Glick model. From figures 5.7 and 5.8, we can see that, even at nonzero tem­

perature, the concurrence is still sensitive to the phase of the system. Clearly, the above 

quantity strongly depends on both the temperature and the number of spins of the sys­

tem. It turns out that, at sufficiently low T (N), there exists a threshold No (To) above 

which the pairwise concurrence becomes identically zero. The values of No and To depend, 

however, on the temperature and the number of spins, respectively. Moreover, the con­

currence displays, in the broken phase, oscillations in the form of steps whose amplitudes 

increase with the increase of h. Within the latter phase, C(p) also exhibits a peak which 
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Fig. 5.7: The pairwise thermal entanglement as a function of h at different values of N: N = 10 

(dotted line), N = 15 (dot dashed line), N = 30 (dashed line), and N = 50 (dotted line) 

with T = 0.01. 

rapidly falls to zero in the neighborhood of the critical point he. At slightly higher T, 

we can see that the accompanying oscillations together with the peak disappear; in this 

case the concurrence is a monotonic decreasing function of the strength of the magnetic 

field. As N increases, C(p) decreases until it becomes practically independent of h in the 

symmetry broken phase. For sufficiently large h, the concurrence is obviously zero since 

the state of the system is, to a good approximation, equal to its fully polarized ground 

state. Finally, note that the behaviour of the mean value of Sz, the purity and the von 

Neumann entropy is quite similar to that of the one-particle case. 

At zero temperature, the derivative of the concurrence with respect to h is expected to 

display divergence at the critical point. However, for small N, even at zero temperature, 

the concurrence vanishes at ho and not at he = g. This is illustrated in figure 5.9 where 

the variation of D(p) = d~k') as a function of h is shown for N = 10 and T = 0.001. 

Notice that the concurrence vanishes in the neighborhood of h = 0.9, which is exactly 

the value of ho in this particular case when T -+ O. It is worth mentioning that the 

behaviour of ground state entanglement (Le., zero-temperature entanglement) of multi­

spin systems displaying quantum phase transition can be treated within the framework of 

density functional theory as explained in reference [28]. 

5.3 Coherence and concurrence dynamics 

In this section we investigate the dynamics of the central spin system, assuming that its 

coupling constant to the bath, which we denote by a, is different from g. The former 
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Fig. 5.9: The derivative of concurrence as a function of h for N = 10 and T = 0.001. 

will be rescaled, as usual, by ..jN to ensure an extensive free energy. The Hamiltonian 

operator describing the interaction between the two systems reads 

(5.36) 

where Sa stands for the spin operator vector of the central system. Here we use the 

notation J for the total spin instead of j for convenience. In order to determine the exact 

analytical form of the time evolution operator, U(t), governing the unitary dynamics of 

the full system, we note that it satisfies the equation [29] 

dU(t) 
i----;{t = (Ho + HI + H)U(t), (5.37) 

with Ho = hS~. Then the matrix elements of U(t) can be determined, for both one and 

two central spins, using the same method presented above. However, we shall not go 
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through the details of the calculations since it is sufficient to make the replacement 

{3 ~ i t, (5.38) 

and to take into account the fact that the coupling constants are different. In the case of 

a single central spin one can find that in (:2, 

(5.41) 

(5.42) 

The coherence of the central system, which is assumed to be initially decoupled from the 

bath, is given by 

where 

(5.44) 

In the case of the two-qubit central system, we only consider the evolution in time 

of the maximally entangled state 11,0) = ~(IOl) + 110)); other cases can be treated in 

exactly the same manner. It can be shown that the time-dependent reduced density matrix 

corresponding to the above initial state is diagonal in (:3, with the matrix elements [25] 

pu(t) = trN[UnPN(0)U12] where 
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(5.45) 

(5.46) 

V2a . [91 ( 2 2 3 e
rkt 

[( 9 ) ] U32(t) = - . 'IV Le-1t 
N J -J.)+hJ. j L H N (1 + 2/;) - irk. 

v l V k=l k 
(5.47) 

Here, Hk = (-!i) 2 (1 - 4J:) - 4a2/N(J+L - Jz) + 4i-!irk - 3r~; the quantities rk are the 

solutions of the equation 

r3 - 2ig/Nr
2 + [(~ r (4J; -1) + 4 ~ (J+L - Jz)]r + 4ia2g/N3(Jz - 2J; - J+L) = O. 

(5.48) 

They are explicitly given by 

rl 3~ [2iRg/N - (K - R2)], 

r2 6~ [4iRg/N + (1 + iV3)(K + iR2)] , 

r3 = 6~[4iR9/N+(K-R2)-iV3(K+R2)], 

where 

and 

with 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

The concurrence corresponding to the sate 11,0) is simply given by [25 , 30] C(t) = 

max{O, 2 max[P22, JPllP33] - P22 - 2JpllP33}. The evolution in time of both C(t) and 

the absolute value of <I>(t) is shown in figures 5.10 and 5.ll. Clearly, the behaviour of 

the above quantities depends on the phase of the system even though the temperature is 

different from zero. This actually becomes more clear as N increases in contrast to the 

thermal pairwise entanglement which exists only for small values of N. The change of 

the behaviour of the concurrence and the coherence is related to the change of the ground 

state of the bath at the critical point. Once again we recall that the ground state is 

characterized by the largest statistical weight at low temperatures, which means that any 
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Fig. 5.10: Time dependence of 1<I>(t)1 for different values of h with N = 100 and T = 0.01 . The 

time variable is given in units of a. 

perturbation of the latter state affects the time evolution of the central spins. It can be 

checked that at high temperatures, the behaviour of the reduced density matrix is exactly 

the same in both phases. 

So far we have only considered Heisenberg XY interactions between the central system 

and the bath. Let us briefly investigate the case where the couplings are of Ising type. 

The corresponding interaction Hamiltonian operator is given by HI = 7NS~Jz ' where >. 
is the coupling constant. One can easily see that the Lipkin-Meshkov-Glick Hamiltonian 

(5.1) commutes with HI, that is [H, HI] = O. Therefore, in the case of a single central 

spin, the coherence is proportional to the function 

1 Ut 
A(t) = z L v(N, j) exp { 2ih t - f3[g/N(j(j + 1) - m 2

) + h m] + r,;:rm} 
. yN 

],m 

(5.55) 

whose dependence on the time and the strength of the magnetic field is illustrated in figure 

5.12. This reveals that, at low temperatures, the absolute value of A(t) is equal to one in 

the symmetric phase independently of the values of h. In the case of two central spins, the 

bell state 11,0) is found to be decoherence-free: its concurrence does not evolve in time. 

However, the behaviour ofthe concurrence corresponding to the maximally entangled state 

~(11 , 1) + 11, -1)) is identical to that of A(t) , except that it decays twice faster than the 

above function . Once again, we find that the dynamics of the central system depends on 

the phase of the bath. As a final remark, note that the sudden change of the concurrence 

at the critical point above which it vanishes is quite similar to entanglement sudden death 

[31, 32]. One should not take this comparison too seriously since entanglement sudden 
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Fig. 5.11: Contour plot showing the time dependence of C(t) for different values of h with N = 100 

and T = 0.01 . The time variable is given in units of a./vI2. 

death corresponds to the time dependence of entanglement. In our case, however, the 

parameter that controls the variation of entanglement is the strength of the magnetic 

field, externally applied to the spin bath. What really matters is the difference in the 

behaviour of the dynamics in both phases rather than the vanishing of the entanglement 

itself. 

5.4 Summary 

In summary we have investigated the nonzero temperature dynamics of one and two central 

qubits coupled to an isotropic Lipkin-Meshkov-Glick bath near its critical point. We 

showed that the reduced density matrix of the central spin-system can be exactly derived 

using an operator technique that makes use of the underlying symmetries of the model 

Hamiltonian. It is found that , at sufficiently low temperatures, the dynamics is sensitive 

to the phase of the bath. This is simply due to the fact that the main contribution to the 

thermal state of the bath comes from its ground state. For small values of the number 

of spins, the pairwise thermal entanglement clearly signals the existence of the critical 

point at which the transition occurs. However, above some threshold values of both the 

temperature and the number of spins within the bath, the pairwise thermal entanglement 

ceases to exist . This turns out to be not the case when the central spin-system is not 

part of the bath, i.e. its coupling constant is different form those of bath spins; here we 
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Fig. 5.12: Time dependence of IA(t)1 at different values of h with N = 100 and T = 0.01; the time 

variable is given in units of A. 

find that the differences between the behaviour of the concurrence within the two possible 

phases of the bath become more clear at large values of the number of spins. 
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6. ON THE PARTIAL TRACE OVER COLLECTIVE SPIN DEGREES OF 

FREEDOM 

6.1 Introduction 

In recent years there has been an increasing interest in the description of the dynamics of 

small quantum systems interacting with their surrounding [lJ . This was motivated by the 

necessity of understanding the phenomenon of decoherence in quantum systems [2, 3, 4, 5], 

and the attempt to build quantum devices that enable the implementation of quantum 

algorithms [6J . However, the main difficulty one faces in such a task consists in dealing 

with the large number of environmental degrees of freedom, which makes most of the 

proposed theoretical models impossible to be solved analytically even for finite sizes of the 

surrounding. 

Among the promising candidates to quantum information processing and quantum 

computing, spin systems seem to be the most suitable for the construction of quantum 

gates [7, 8J. Recently, it has been shown that exact analytical solutions can be obtained 

for the dynamics of few central qubits coupled to spin baths of finite and infinite sizes [9, 

10, 11J . There, the interaction Hamiltonians together with the baths Hamiltonians are 

functions of the collective spin operators of the environments. In order to derive the 

reduced density matrix of the central qubits, the partial trace over the environmental spin 

degrees of freedom was carried out within the subspaces corresponding to the different 

values of the total angular momentum of the surrounding. 

Recall that the state space of single spin-~ particle is given hy (:2, where (: denotes the 

field of complex numbers. The corresponding basis is formed by the eigenvectors {I-), I+)} 

associated with the eigenvalues ±~ of the operator S z = ~O'z, where O'z designates the z­

component of the Pauli operator ii. In general, th~ state space of a system of N qubits is 

given by the N-fold tensor product of the state spaces of the individual particles, namely, 

(:2®N. One possible basis of the latter space consists of the state vectors ®f I€i), with 

€i = ±. These are eigenvectors of the collective spin operator Jz , where J = ~ 2:[:1 ai. 
Alternatively, one can construct new basis composed of the common eigenvectors of the 
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operators J2 and J zj we shall denot e them by Ij, m) such that K, ::; j ::; N / 2 and -j ::; m ::; 

j, as imposed by the laws of addition of angular momentum in quantum mechanics [12]. 

In the above, K, = 0 for N even, and K, = 1/ 2 for N odd. Note that the scalar product 

of state vectors corresponding to different values of j vanishes. This means that the total 

space C2181N can be decomposed as the direct sum of subspaces C2j+1 , that is 

N 
"2 

C2181N = EB v( N , j)C2j+1. 

j=K 

(6.1) 

The quantity v( N, j) is the multiplicity corresponding to the value j of the total angular 

momentumj its exact form reads [13] 

v N . = ( N ) _ ( N ) = 2j + 1 N! 
(,J) N/2-j N / 2-j-l ~+j+l(~-j)!(~+j)!· (6.2) 

Hence, given any operator G(1) on C2I81N, its trace can be written as 

N . 
"2 J 

tr G = L v(N,j) L (j, mlGlj, m) . (6.3) 
j=K m=-j 

Following the general ideas of the theory of open quantum systems, the problem of 

finding a relation between the multiplicities of the subspaces C2181Ni and that of C2I81N, 

where l:i Ni = N , naturally arises. In this work we illustrate how this problem can be 

solved, in the case N = Nl + N2, using the invariance of the trace. The latter property 

will also be used to describe the dynamics of two qubits in separate spin baths. 

6.2 A decomposition law for the degeneracy lJ(N, J ). 

Let us denote by Iji , mi) the basis state vectors in the space C2181Ni (i = 1, 2). Hence the 

trace of G(J) can also be expressed as 

N2 / 2 j2 

L L v (N I ,jI)lJ(N2 , i2)(jI, 12, mI, m2 1GljI , j 2, mI , m2). (6.4) 

On the other hand we have [14] 

jl+h 

Ijl,j2 , mI , m2) = L 
J=lj l -h l 

J L (_I)jl-h+M yl2J + 1 

M=-J 

J ) IJ,M), 
-M 

(6.5) 
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where the quantity in matrix form denotes Wigner 3j-symbol; obviously, the condition 

ml + m2 = M along with the triangle rule Ijl - 121 ~ J ~ jl + j2 must be satisfied. By 

equations (6.4) and (6.5), we can write: 

jl+h J J' 

trG = L L II(Nl , jd ll (N2,h) L L L 
jl ,ml h,m2 J,J'=\jl-h \ M=- J M'=-J' 

x ";(2J + 1)(2J' + 1) (jl j2 J ) 
ml m2 -M 

x (~, J' ) 
-M' 

(J', M'IGIJ, M), (6.6) 

where we have used the fact that 3j-symbols are real. The operator G is arbitrary; it can 

be chosen such that it satisfies (J' , M'IGIJ, M) = (J, MIGIJ, M)OJJ,OMM" In this case 

equation (6.6) reduces to 

(6.7) 

The lower and upper limits of the sum over J in the above equation are, respectively, 

Ijl - j21 and jl + j2. For J < Ijl - j21 , or J > jl + j2, the triple (jl , j2, J) does not satisfy 

the triangle rule and hence the corresponding Wigner 3j-symbol vanishes. Consequently, 

the right-hand side of equation (6.7) will not be affected if we take NltN2 as an upper 

limit, and K, as a lower limit for the sum over J such that K, = 0 for Nl + N2 even and 

K, = 1/2 for Nl + N2 odd. This effectively allows us to exchange the order of the sums in 

the above equation. Then by comparing the resulting equation with (6.3), we obtain 

(6.8) 

Herein, we have replaced M by its maximum value J (or equivalently by -J because of 

the symmetry) since the sum does not depend on this quantum number; once again the 

condition ml + m2 = J is implied. 
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Equation (6.8) can be regarded as a decomposition law for the degeneracy; many useful 

relations satisfied by the latter can be easily obtained from it. Let us first begin by noting 

that 
N 

t v(N, J) = (t!. ~ tc) ' 
J=K. 2 

(6.9) 

N 
"2 

I)2J + 1)v(N, J) = 2N. (6.10) 
J=K. 

The first equation can be readily proved by expanding the sum over J. The second one 

simply expresses the fact that the sum of the dimensions of the subspaces C2j+1 is equal 

to the dimension of the total state space, C2®N. Furthermore, if we let J to take the value 

NttN2 in equation (6.8) , we obtain 

jt,mt j2,m2 

~)}2= _Nt+N2 l. 
2 

(6 .11) 

Now let us suppose that J = 0, which is possible only when Nl and N2 are either 

both even or both odd positive integers. Here it should be noted that the denominator 

of the corresponding Wigner 3j-symbol contains the product (jl - i2)!(j2 - jl)! [14]; but 

since x! = 00 for x < 0, we conclude that when J = 0, the quantity under the sum sign 

in the right-hand side of equation (6.8) is nonzero only when jl = j2. In fact one should 

have [12, 14J 

(6.12) 

By inserting the latter expression of Wigner 3j-symbol into equation (6.8) , and performing 

the sum over i2 and m2, we obtain 

min{~ , !?- } 

L 
j 

min{~ , !?-} 

L V(Nl,j)v(N2,j), (6.13) 
j 

where we have used the fact that L:!n=-j( _1)2m = (_1)2j (2j + 1). It immediately follows 

that 
N/2 . 2 (2N)! 
Lv(N,J) = (N + 1)(N!)2· 

J 

(6.14) 
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The above procedure can be easily generalized to further decompositions of the total 

number of spins. 

6.3 Dynamics of two qubits in separate spin baths. 

As a second application, let us investigate the dynamics of two qubits coupled via ising 

interactions to separate spin environments of the same size, N. The total angular mo­

mentum operators of the latter are denoted by J and j. The full Hamiltonian of the 

composite system is given by 

H = A(o"~o"; + O"~O"~) + 80";0"; + iN (O";Jz + O";:Tz) + IL(O"; + 0";) + HBI + HB2. (6.15) 

Here, A and 8 are the strengths of interaction of the central qubits with each other, 'Y is 

the coupling constant to the baths, and J.L is the strength of an applied magnetic field. 

The operators HBi' with i = 1,2, denote the Hamiltonians of the spin baths. One can 

show that the interaction Hamiltonian describing the coupling of the central qubits to the 

environments is diagonal in the standard basis of ((:2 0 ((:2, namely, 

HI = iNdiag(-Ez,-~z,~z,Ez), (6.16) 

where we have introduced the operators ~ = J + j and is = J - j. Then it can be shown 

that the model Hamiltonian is given by the direct sum of the Hamiltonian operators HI 

and H2, where 

(6.17a) 

(6.17b) 

with HB = HBI + HB2 and ][2 is the 2 x 2 unit matrix. Note that the basis vectors of the 

subspace corresponding to HI are given by 

I!) = 1- -), 

I j) = 1++); 

those associated with H2 are given by 

10) = 1- +), 

11) =1+-)· 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

Thus the system under consideration can be mapped onto two pseudo two-level systems 

8 1 and 8 2 whose dynamics is governed by the operators HI and H 2 , respectively. Each one 
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is coupled to a spin environment consisted of 2N spin-~ particles with the only exception 

that 81 and 82 see different compositions of the total angular momentum, namely ~z and 

6.z , respectively. Notice that the above pseudo systems become completely independent 

from each other if the initial density matrix of the qubits takes the form 

0 
Pll 0 0 0 

P14 

0 0 0 0 
p(O) = P22 P23 (6.22) 

0 0 0 P32 P33 0 

0 
P41 0 0 0 

P44 

In such a case, it is sufficient to investigate the coupling of each pseudo system separately. 

For a reason that will become apparent bellow, we set HB = HBl + HB2 = h(Jz - Jz), 

where h is the strength of an applied magnetic field. Moreover, we assume that the baths 

are initially in thermal equilibrium at temperatures T1 = T2 = T (we set kB = 1); the 

corresponding total initial density matrix is given by 

(6.23) 

where f3 = l/T is the inverse temperature and Z = [2 cosh (hf) ] 2N is the partition 

function. Under the above assumptions, the contributions of the coupling constant 0 can 

be neglected. 

The dynamics of 82 is quite trivial since the corresponding time evolution operator is 

diagonal. Indeed, it is easy to show that Pll(t) = P~l and P44(t) = P~4' Moreover, 

P14(t) = Z-lp~4 L L V(N,j1)V(N,12) 
jl,ml12,m2 

In the special case when h = 0 or T -+ 00, we can write 

P14(t) = T2N p~4e4it,.. L v(2N, J) e2-/2it"(M/..f2N 
J,M 

. "(t )2N = p~4e4tt,.. cose
lN 

. 

(6.24) 

(6.25) 

For arbitrary values of hand T, the right-hand side of equation (6 .24) can be evaluated 

within the computational basis; this yields 

o _ 4it,.. [ cos2("(t/.,fN) - 1] N 
P14(t)/ P14 - e 1 + cosh2(hf3/2) . 

(6.26) 
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Then, by expanding the cosine function in Taylor series and taking the limit N -+ 00, we 

obtain the Gaussian decay law: 

I
PI4 (t)I { ,,/2t

2 
} 

P~4 = exp cosh2(h/3/2)· 
(6.27) 

This means that the decoherence time scale is given by TD = cosh(h/3/2)/bl· Obviously 

TD -+ 00 as T -+ 0 or h -+ 00. 

As a measure of entanglement, we use the concurrence defined by [15] 

4 

C(p) = max{O,2max[A]- L A}, (6.28) 
i=1 

where the quantities Ai are the eigenvalues of the operator p(O"y ® O"y)p*(O"y ® O"y). In our 

case, when applied to p(t), the above definition of the concurrence leads to the evaluation 

of the eigenvalues of the operator p(t)O"xp(t)*O"x where p(t) is now restricted to the subspace 

of HI. A straightforward calculation yields 

C(t) = 2IPI4(t)l. (6.29) 

An example of the evolution in time of the real value of PI4(t) along with the concurrence 

C( t) corresponding to the initial state (I - -) + I + +)) / V2 is shown in Figure 6.1. We 

notice the revival of the concurrence in the case of finite number of spins. At short times, 

the curves corresponding to N -+ 00 coincide with those of finite N. 

1.0 \ 1\ 

1\ / ,\ 
0.5 

i\ 

f\-.. AI ~ vv vV Vv 0.0 

-0.5 

-1.0 
o 10 15 20 25 

Time 

Fig. 6.1: Evolution in time of the real part of P14 (t) / P~4 (oscillating curve) and the concurrence 

(enveloping curve) corresponding to the initial state (1- -) + 1 ++) )/.12. Here, N = 100, 

'Y = 2, hj3 = 1, and J.L = 4. For t < 10, the curves coincide with those of the limit N -+ 00. 
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It should be stressed that when the Hamiltonian of the composite spin bath is given 

by HB = h(Jz + Jz) = h"'E.z, then 

The existence of the sine function makes it not possible to find a relation similar to (6.27) 

when N -+ 00. However if we rescale the coupling constant 'Y by N instead of "fN, that 

is [16], 
'Y 'Y 
--+-
"fN N' 

(6.31 ) 

exact analytical expression can be derived for the case of an infinite number of spins, 

namely, 

P14(t) = P~4 exp{ -it[4J..t + 'Y tanh(h.B/2)]}. (6.32) 

Consequently the central qubits preserve their coherence, since the decoherence time scale 

in this case is infinite, as indicated by formula (6.32). With the new scaling of 'Y, the 

larger the number of spins to which the qubits are coupled, the less appreciable is the 

decoherence. 

The Hamiltonian operator H2 can be diagonalized by dealing with the operator 6..z as 

a scalar. This yields the following matrix elements in (;2: 

Here we have omitted the contribution of HB = h6.. z since it simply introduces a global 

unitary term to the dynamics. 

Let us consider the case when the qubits are initially prepared in the maximally en­

tangled state I'¢) = ~(I- +) + I + -)).( the case of the singlet state displays a similar 

behavior.) Clearly, the density matrix p(O) = I'¢)('¢I belongs to the subspace corre­

sponding to the Hamiltonian H2. Using the fact that iU22(t)12 + IU23(tW = HB, and 

U22(t)UJ3(t) + U23(t)UJ3 = 0, it can be shown that the elements of the above density 

matrix evolve in time according to P22(t) = ~[1- g(t)], P23 = ~[1- f(t)], where 

4>''Y 6..ze-h{3t::. z sin2 (tv 4>.2 + 'Y2 6..~/ N) } 
g(t) = [2 cosh(h,B/2)J2N tr{"fN 4>.2 + 'Y26..~/N ' (6.36) 
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and 

(6.37) 

Figures 6.2 and 6.3 display the behavior of the concurrence as a function of time for some 

particular values of the model parameters. We can see that for h{3 = 1 ( i.e. at relatively 

high temperature) the concurrence shows damped oscillations and converges to a certain 

asymptotic limit which can be analytically derived, as we shall see bellow, only for h = 0 

and/or {3 = O. As h{3 increases, the oscillations disappear and the concurrence converges 

to lower asymptotic values as shown in Figure 6.2. 

~ 
~ 

LO ., 

0.8 

G 0.6 . 
<3 

0.4 

Time 

Fig. 6.2: Concurrence as a function of time in the case of the initial state (I - +) + I + -)) / /2 
for N = 100, 'Y = 4, h(3 = 4, and A = 2. 

In what follows we focus our attention on the infinite temperature limit, i.e, (3 -) O. 

In this case the reduced density matrix takes the form 

p(t) = -1 ( 1 
2 1 - f(t) 

(6.38) 

whereas the function f(t) simplifies to 

(6.39) 
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0.92 

10 15 20 
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Fig. 6.3: Concurrence as a function of time in the case of the initial state (I - +) + 1 + -))/-/2 

for N = 100, "I = 1, hf3 = 1, and), = 2. 

Notice that 0 ~ f(t) ~ 1 , in accordance with the general properties of density matrices 

in ((:2. This enables us to derive the following explicit expression for the concurrence: 

1 
C(t) =2"[y' f(t)2 - 4f(t) + 4 - f(t)] 

=1 - f(t) . (6.40) 

In the thermodynamic limit, N ~ 00, the function f(t) can be expressed as 

(6.41) 

Some comments are in order here: We have shown in [9] that the operator Jz/VN 
converges to a real normal random variable a with the probability density function 

F(a) = y'2/7rexp{ -2a2}; this is also the case for the operator .Jz/VN. Thus we are 

led to the task of finding the probability distribution function L(a) of the sum of two 

independent random variables al and a2 characterized by F(ad and F(a2) , respectively. 

(note that the probability distribution function of aa, where a is nonzero real number, is 

equal to (l/lal)F(a/a) .) The function L(a) is simply given by the convolution of F(a) 

with itself, which yields L(a) = (1/y'7T)exp{-a2} . This becomes apparent from the 

change of variable a ~ V2a carried out in equation (6.41). An other way to see that 

is to simply notice that D. z /(V2N) converges to the random variable a f-4 F(a). From 

equation (6.41) it follows that 

A,x2 A 
lim f(t) = 1- 2y'7T_e4~ erfc(2-), 
t~oo 'Y "I 

(6.42) 
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where erfc(x) denotes the complementary error function. By virtue of equation (6.40), we 

obtain 
>.),2 (>') 

C(oo) = lim C(t) = 2v11f-e
4
? erfc 2- . 

t-+oo 'Y 'Y 
(6.43) 

1.00 

0.99 

0.98 

0.97 

0.96 

0.95 

10 15 20 25 

Time 

Fig. 6.4: Concurrence as a function of time in the case of the initial state (1- +) + 1 + -))/-/2 

for N = 100 (coincides with that of the limit N ---+ 00), 'Y = 1, h(3 = 0, and A = 2. The 

straight line corresponds to the asymptotic limit. 

In Figure 6.4 we have plotted the concurrence as a function of time in the limit N ---+ 00 

along with the asymptotic value given by formula (6.43). The behavior of C(oo) as a func­

tion of >. and 'Y is shown in Figures 6.5 and 6.6. As one may expect, lim C(oo) = 1, 
'>'-'00 

and lim C(oo) = O. This confirms the results of [10J where it is shown that strong cou-
,"(-'00 

pling between the central qubits reduces the effect of the environment on their dynamics. 

Finally it is worth mentioning that due to the XY interaction between the central spins, 

entanglement will be generated between them when the initial state is I ±=F). However, the 

corresponding off-diagonal elements of the reduced density matrix vanish at long times, 

making the asymptotic state of the qubits unentangled. 

6.4 Summary 

In summary we have used the invariance of the trace to derive analytical properties of 

the degeneracy v(N, j) , and to describe the dynamics of two qubits embedded in separate 

spin baths. We have shown that when the baths have the same size, the form of the model 

Hamiltonian enables us to map the full dynamics onto the evolution in time of two pseudo 

two-level systems coupled to a spin bath whose size is twice larger than the physical ones. 

This allowed us to derive the limit of an infinite number of spins within the environments 
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Fig. 6.5: C(oo) as a function of >. for 'Y = 2. 
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Fig. 6.6: C(oo) as a function of 'Y for A = 2. 
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and to analytically calculate the asymptotic state. The results of this work provide more 

evidences regarding the role played by the mutual interactions between the central qubits 

in diminishing the effects of their coupling to the surrounding spin environments. 
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7. AN EXACTLY SOLVABLE MODEL FOR THE DYNAMICS OF TWO 

SPIN-~ PARTICLES EMBEDDED IN SEPARATE SPIN STAR 

ENVIRONMENTS 

7.1 Introduction 

Exactly solvable models play a very useful role in various fields of physics. They help 

improving our understanding of physical processes and allow us to gain more insight into 

complicated phenomena that take place in nature [1]. One may recall for instance the 

usefulness of exactly solvable models such as the harmonic oscillator, the nuclear shell 

model and the Ising model, to mention but a few. From a practical point of view, exactly 

solvable models serve as a very convenient tool for testing the accuracy of numerical 

algorithms, often used in the study of problems that cannot be analytically solved due to 

the complexity of the systems under investigation. This is usually the case in the field 

of open quantum systems, where one faces the uncontrolled degrees of freedom of the 

environments. 

Let us recall that realistic quantum systems are influenced by their surrounding through, 

in general, complicated coupling interactions, leading them to lose their coherences [2] . 

This refers to as the decoherence process, which is the main obstacle to quantum informa­

tion processing [3, 4, 5]. The latter can be improved by exploiting the entanglement, i.e. 

the nonlocal quantum correlations that exist between quantum systems [6]. This resource 

has no classical analogue, and it turns out to be of great importance in quantum teleporta­

tion and quantum computing [7, 8, 9, 10, 11 , 12]. It is worth mentioning that over the last 

years many proposals have been made for the implementation of quantum information pro­

cessing. Solid state systems are very promising [13, 14] and have been the subject of many 

investigations. Much attention was devoted to the study of the de coherence and the entan­

glement of simple qubit systems that are coupled to spin environments [15 , 16, 17, 18, 19]. 

Thus new exactly solvable models describing the dynamics of qubits within spin baths 

are highly welcome. Recently, the spin star configuration, initially proposed in [20] , has 

been extensively investigated [21, 22, 23, 24, 25]. An exact treatment of the dynamics of 

two qubits coupled to common spin star bath via XY interactions is presented in [26, 27]. 



7. An exactly solvable model for the dynamics of two spin-~ particles embedded... 143 

In this chapter we propose to investigate analytically the dynamics when the two qubits 

interact with separate spin star baths (see [28] for a similar situation) . 

The chapter is organized as follows. In section 7.2 the model Hamiltonian is introduced. 

In section 7.3 we present a detailed derivation of the time evolution operator and we 

investigate the dynamics of the qubits at finite N for some particular initial conditions. In 

section 7.4 we study the thermodynamic limit , in which the sizes of the spin environments 

become infinite. Section 7.5 is devoted to the second-order master equation. 

7.2 Model 

The system under study consists of two two-level systems ( e.g. , spin-~ particles) each 

of which is embedded in its own spin star environment composed of N spins-~. The 

central particles interact with each other through a Ising interaction; the corresponding 

coupling constant is equal to 46, where the factor 4 is introduced for later convenience. We 

shall assume that each qubit couples to its environment via Heisenberg XY interaction 

whose coupling constant is a, which is, in turn, scaled by N 1
/

2 in order to ensure good 

thermodynamic behavior. The spin baths will be denoted by Bl and B2. The Hamiltonian 

for the composite system has the form 

where 

and N N 
a i '" i k i '" ik HSiB i = ,IN(S+ ~ S_ + S_ ~ S+), 

k==l k==l 

(7.1) 

(7.2) 

(i = 1,2). (7.3) 

Here §1 and S2 denote the spin operators corresponding to the central qubits , whereas §k 

denotes the spin operator corresponding to the k~h particle within the i t h environment. 
- N - - N - . Introducing the total spin operators J = :Ek=l Slk and J = :Ek=l S2k of the enVIronments 

Bl and B2 , respectively, one can rewrite the full Hamiltonian as 

(7.4) 

The dynamics of the two-qubit system is fully described by it s density matrix p(t) 

obtained, as usual, by tracing the time-dependent total density matrix Ptot(t) , describing 
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the composite system, with respect to the environmental degrees of freedom, namely, 

p(t) = trBl+B2[Ptot(t)] 

trBl +B2 [U(t)Ptot (O)ut (t)] , (7.5) 

where U(t) and Ptot(O) designate the time evolution operator and the initial total density 

matrix, respectively. 

At t = 0 the central qubits are assumed to be uncoupled with the environments; the 

latter are assumed to be at infinite temperature. This means that the initial total density 

density matrix can be written as 

1 1 
Ptot(O) = p(O) ® 2N ® 2N ' (7.6) 

Here p(O) is the initial density matrix of the two-qubit system, and 1 is the unit matrix 

on the space C2®N. The former can be written as p(O) = Lk,e, PZeIXk)(xel, with Ixe) E 

{I - -), I - +), I + -), I + +)} for £ = 1,4. Similarly, we introduce the basis state vectors 

Ij, m) of C2®N, such that K, :::; j :::; N/2 (K, = 0 for N even and K, = 1/2 for N odd), and 

-j :::; m :::; j. The time-dependent reduced density matrix can be expressed as 

p(t) = T2N L pZe L L v(N, j)v(N, r)(j, r, m, sIU(t)lxk)(xeIUt(t)lj, r, m, s), (7.7) 
k,e j,m r,s 

where Ij, r, m, s) = Ij, m) ® Ir, s), and v(N, j) = (N/~-j) - (N/2~j-l) [29]. Hence, our task 

reduces to finding the exact form of the matrix elements of the time evolution operator 

U(t) = exp( -iHt) (Ii = 1). This will be the subject of the next section. 

7.3 Derivation of the exact form of the time evolution operator 

The time evolution operator can be expanded as 

00 ( l)nen 00 ( 1)nt2n+1 
U(t) = L - I (H)2n - i L - I (H)2n+1. 

n=O (2n). n=O (2n + 1). 
(7.8) 

In order to derive analytical expressions for even and odd powers of the total Hamiltonian 

H let us notice that Ho anticommutes with HS1Bl + HS2B2' that is, 

(7.9) 

This can easily be shown using the following properties for spin-~ operators: SzS± = ±S±, 

and S±Sz = =t=S±. Moreover, it is easily seen that Hgn == c52n , which simply implies that 

for n ~ 0, 

(7.10) 
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In the standard basis oH:::2~C2, it can be shown that powers of HSIBI and HS2B2 are 

given by 

(J+L)k 0 0 0 

H 2k (lNrk 0 (J+L)k 0 0 
SIBl 

0 0 (LJ+)k 0 

0 0 0 (LJ+)k 

0 0 J+(LJ+)k 

H2k+1 (IN rk
+

1 0 0 0 
SIBl L(J+L)k 0 0 

0 L(hL)k 0 

(:h:T_)k 0 0 0 

H2k (lNrk 0 (:T_:h)k 0 0 
S2 B2 

0 0 (:h:T_)k 0 

0 0 0 (:T_:T+)k 

0 .J+(:T_:T+)k 0 

(lNrk+l :T_(:T+.J_)k 0 0 
H2k+1 = 82B2 

0 0 0 

0 0 :T_(:T+:T_)k 

It follows that 

where 

and 

Dlk = diag[(J+L)k(.J+:T_l-k, (J+L)k(:T_:T+)l-k, 

(LJ+)k(:T+:T_l-k, (Lhl(:T_:T+)l-k] 

(7.11) 

0 

J+(LJ+)k 
7,12) 

0 

0 

(7.13) 

0 

0 
) (7.1 

:T+(.J_.J+)k 

0 

(7.16) 

Llk = antidiag[J+:T+(Lh)k(.J-.J+l-k-l, J+:T_(J_J+)k(:T+:T-l-k-l, 

L:T+(J+L)k(.J_:T+l-k-l, L:T+ (J+L)k (:T+:T_l-k- 1
] . (7.17) 
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Using the fact that 

~ (2£) k l-k 
6 2k x y 
k=O 

(7.18) 

l-1 ( ) ~ 2l xk l-k-l 
6 2k+ 1 Y 
k=O 

2.)xy [( Vx + ,jY)2l - (Vx - ,jY)2l] , (7.19) 

one obtains 

x 

where 

o 

o 
J .J F1-

- - ,jJ+J-':h,j-

o 

Fi 
J .J F2-

- + ,jJ+L,j_,j+ 

o 

o 
J .J Fa-
+ - ,jLJ+,j+,j_ 

Fi 
o 

J+J+ F4-
,jLJ+,j_ ,j+ 

o 

o 
F+ 

4 

Ft = ~ [( .J hL + .J J+J- fl±( .J hL - .J J+J- fl], (7.21) 

Fi" = ~ [( .J J+L + .J J-J+ fl ± ( .J J+L - .J .1-:h rl (7.22) 

Ff = ~ [( .J Lh + .J .1+.1-) 2l±( .J Lh - .J .1+.1-) 2l], (7.23) 

FI = ~ [( .J LJ+ + .J .1-.1+ rl 
± ( .J LJ+ - .J .1-.1+ fl (7.24) 

Inserting equation (7.20) into equation (7.10), yields 

H 2n = ~ 
2 

(Mt)n + (Ml)n 

o 

o 

where 

1-:1+ (Mt)n_(M,)n 
"jJ+J_.:f_.:f+ 

o 

o 
(M+)n_(M-)n J:J 3 3 

+ - "jJ_J+.:f+.:f_ 

(Mj)n + (M;)n 

o 

1+:1+ (Mt)n_(M 4 )n 
"jLJ+.:f_.:f+ 

o 

o 

(Mt)n + (Mi)n 

(7.26) 

(7.27) 

(7.28) 

(7.29) 
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The above operators satisfy 

Mt 2':1+ = .1+Mt 4' , , 

MtJ+.1+ = J+.1+Mi, M~h.1- = J+.1-Mt· 

Furthermore, one can show that the matrix elements of H2n+1 are given by 

(7.30) 

(7.31) 

(H2n+1)1l = ~8[(Mtt + (M1t], (7.32) 

(H2n+1h2 = .1+2JN~_.1+ [(J..7-.1+ + JJ+L)(Mtt (7.33) 

+ (J ..7-.1+ - J J+L) (M2T]' (7.34) 

(H2n+lh3 = J+
2JN

;_J+ [( J .1+.1- + J LJ+)(Mt)n (7.35) 

+ (J LJ+ - J .1+.1-)(M3"t], (7.36) 

(U2n+l) = (8/2)J 'T (Mt)n - (Mi)n (7.37) 
14 +J+ JLJ+.1-.1+ ' 

(H2n+lh1 ..7- a [( J .1+.1- + J J+L)(Mt)n 
2JN..7+.1-

(7.38) 

+ (J .1+..7- - J J+L)(M1t], (7.39) 

(H2n+1h2 -~8[(Mtt + (M 2T]' (7.40) 

(H2n+lh3 -(8/2)h.1- (Mt)n - (M3")n, 
JLJ+.1+.1-

(7.41) 

(H2n+1h4 J+ a/2 [(J.1-.1+ + JLh)(Mtt 
JNLJ+ 

(7.42) 

+ (J LJ+ - J .1-..7+) (Mit], (7.43) 

(H2n+lh1 L J:~~L [(Jh L + J.1+.1_)(Mt)n (7.44) 

+ (J J+L - J .1+..7_)(Ml)n], (7.45) 

(H2n+1h 2 
(Mt)n - (Ml)n 

-(8/2)L..7+ JJ+LJ-:h ' 
(7.46) 

(H2n+1h 3 -~8[(Mt)n + (M3"n, (7.47) 

(H2n+1h4 .1+ a/2 [( J .1-.1+ + J LJ+)(Mtt 
IN..7-.1+ 

(7.48) 

+ (J .1-..7+ - J LJ+)(Mit], (7.49) 
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(H2n+1 )41 (8/2)LJ- (Mi)n - (M1)n, 
ylJ + L J + J-

(7.50) 

(H2n+l)42 a/2 ~.;Y;I. ( +)n L ylNJ+L [( J-J+ + J+L) M2 (7.51) 

+ (J J+L - J J-J+) (M2tJ, (7.52) 

(H2n+1 )43 .J. a/2 [( J :1+:1- + J LJ+)(Mt)n 
ylNJ+J-

(7.53) 

+ (J :1+:1- - J Lh)(M3)nJ, (7.54) 

(H2n+1 )44 ~8[(Mt)n + (Mitl. 
2 

(7.55) 

Having in hand the explicit expressions of powers of the total Hamiltonian, it can eas­

ily be verified that the elements of the time evolution operator, obtained by inserting 

equations (7.25) and (7.32)-(7.55) into equation (7.8), are given by 

(7.56) 

(7.57) 

(7.58) 

(7.59) 

(7.60) 

(7.61) 
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(7.62) 

(7.63) 

(7.64) 

(7.65) 

(7.66) 

(7.67) 

(7.68) 

(7.69) 
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It should be noted that the above components of the operator U(t) can also be derived 

by solving the Schrodinger equation [22] 

For instance, we have 

idU(t) = HU(t). 
dt 

(7.72) 

(7.73) 

(7.74) 

(7.75) 

(7.76) 

This set of differential equation can be solved by introducing the following transformations: 

Un (t) -+ e-icStUn (t) , 

U21(t) -+ e- icSt.:T_U21 (t), 

U31(t) -+ e-icStLU31 (t), 

U41(t) -+ e- icStL ® .:T-U41 (t). 

(7.77) 

(7.78) 

(7.79) 

(7.80) 

The resulting differential equations involve diagonal terms; they can be solved by taking 

into account the initial conditions: 

( 
{

I for i = j , 
Ui j 0) = 

o for i =f. j. 
(7.81 ) 

Following the same procedure, it is possible to derive the remaining matrix elements of 

the time evolution operator. 
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There exist many measures for entanglement. Here we shall use the concurrence, 

defined by [30] 
4 

C(p) = max{0,2max[y':\]- L ~} , (7.82) 
i =1 

where the quantities .Ai are the eigenvalues of the operator p(t)(uy ® uy)p(t)*(uy ® uy). 

The above measure is equal to one for maximally entangled states, and is equal to zero 

for separable states. On the other hand, as is well known, due to the decoherence process, 

pure states evolve into mixed ones while the degree of mixing of mixed states increases. 

A suitable measure for decoherence is the purity P(t), given by the trace of the square of 

the reduced density matrix of the central two-qubit system, that is: 

P (t) = trp(t)2 . (7.83) 

The above measure is equal to t for maximally mixed states, and is equal to 1 for pure 

states. 

It turns out that the density matrices corresponding to the initial product states 1101102 ), 

where Ei == ±, are always diagonal. The analysis of the dynamics in this case, reveals that 

if the qubits are prepared in one of t he above states, they remain unentangled regardless of 

the values of Nand 0, in contrast to the case of common bath where entanglement may be 

generated in the case of the initial product states I±, =t=). Furthermore, it is found that for 

finite values of Q, the purity decreases slower with the increase of the interaction strength, 

o. This decay is of Gaussian nature, as expected for non-Markovian spin dynamics [19](see 

t · ??) sec IOn .. . 

Pltl 

0.8 
cet) 
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0.2 

0 .0~~~~---'.~========:7===~ 
10 IS 20 

nl 

Fig. 7.1 : The evolution in time of the concurrence (solid curve) and the purity (dashed curve) 

corresponding to the singlet state for 6 = a: and N = 10. 
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Fig. 7.2: The evolution in time of the concurrence (solid curve) and the purity (dashed curve) 

corresponding to the singlet state for 8 = 40 and N = 10. 

The matrix elements of the reduced density matrices corresponding to the states le±) = 

~ (I - +) ± 1 + -)) are explicitly given by: 

Pll(t) T(2NH)trB1+B2{ U12(t)Ut2(t) + U13(t)Ut3(t)}, (7.84) 

P22(t) T(2NH)trB1+B2{ U22(t)UJ2(t) + U23(t)UJ3(t)}, (7.85) 

P23(t) = ±T(2N+l)trB1+B2{ U22(t)UJ3(t)}, (7.86) 

P33(t) T(2NH)trB1+B2{ U32(t)UJ2(t) + U33(t)UJ3(t)}, (7.87) 

P44(t) = T(2N+l)trB1+B2{ U42(t)U12(t) + U43(t)U13(t)}. (7.88) 

Those associated with Iv±) = ~(I- -) ± 1 + +)) read: 

Pl1(t) T(2NH)trBl+B2 {Ull(t)Utl (t) + U14(t)Ut4(t)}, (7.89) 

P22(t) T(2NH)trBl +B2 { U21 (t)UJl (t) + U24(t)UJ4(t) }, (7.90) 

P14(t) ±T(2N+l)trB1+B2{ Ull(t)U14(t)}, (7.91) 

P33(t) = T(2N+l)trB1+B2{ U31(t)UJ1(t) + U34(t)UJ4(t)}, (7.92) 

P44(t) T(2NH)trB1+B2{ u41(t)Ul1(t) + U44(t)U14(t)}. (7.93) 

The evolution in time of the concurrence and the purity corresponding to the above 

maximally entangled states is practically the same. This is in clear agreement with [18] 

where, with a different model Hamiltonian, it is shown that all Bell's maximally entangled 

states display the same behaviour when the two qubits are located in different spin environ­

ments. The author also concluded that if the qubits interact with the same spin bath, then 

we can distinguish between the behaviour of the concurrence of the states ~ (1-+) ± 1 + - ) ) 



7. An exactly solvable model for the dynamics of two spin-~ particles embedded... 153 

on the one hand and that corresponding to the states ~ (I + +) ± 1- - )) on the other hand. 

In [27] we have shown that the singlet state is decoherence free whereas the concurrence 

of all the other Bell states decay in time. However, we found that the state le+) is less 

sensitive to the effect of the environment than the states Iv±). This implies a dependence 

of the behaviour of the concurrence on the relative orientation of the two qubits if they 

interact with the same bath. The above factor has no effect on the dynamics in the case 

of separate environments. In what follows, we only present the results obtained for the 

singlet state. 

It is found that, for fixed 0, the concurrence and the purity saturate as the number 

of spins increases. This naturally suggests the investigation of the case N --+ 00 (see the 

next section). In figures 7.1 and 7.2 we have plotted the concurrence and the purity, 

obtained from the analyt ical solution for, respectively, 0 = a and 0 = 4a with N = 10 

in both cases. We see that for small values of the coupling constant, the concurrence 

decays from its initial maximum value Cmax = 1, then vanishes at a certain moment of 

time (i .e. entanglement sudden death [31]). For sufficiently large 0, the purity and the 

concurrence decay less, displaying fast oscillations. At long times they converge to certain 

asymptotic values which increase with the increase of the strength of interaction. Notice 

that it may happen that the concurrence revives at later time which depends, of course, 

on the parameters of the model. It is also interesting to mention that at short times the 

concurrence and the purity are identical. The intervals at which this occurs are longer for 

large o. The invest igation of the short-time behaviour will be carried out in section ?? 

through the solutions of the second order master equation. Finally let us remark that, 

although we only have considered infinite temperature, we can ensure that for long-range 

antiferromagnetic Heisenberg interactions within the baths, low temperatures will have the 

same effect on de coherence and entanglement of the qubits as strong coupling constants. 

7.4 Thermodynamic limit 

In the thermodynamic limit, N --+ 00, the operators J J±J~/N converge to the positive 

real random variable r whose probability density function is given by 

( ) 
2r2 r ~ f r = 4re- , r ~ O. (7.94) 

Indeed, it has been shown in [25, 26] that the operator J+/.Jiii converges to the complex 

normal random variable z with the probability density function 

2 -21z12 
z~ -e . (7.95) 

7l" 
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Expressing z in terms of the polar coordinates rand ¢, i.e. , z = rei¢ , simply gives Izl2 = r2 . 

Then integrating the corresponding probability density function over the variable ¢ from 

o to 27r yields 

dP(r) = f(r)dr 

from which (7.94) follows. 

Hence we can ascertain that 

271" 

~ J d¢ r dre-
2r2 

o 
4re-2r2 dr , 

00 00 

(7.96) 

J~oo T2N trB1 +B2 n ( J hJOf/N, J .:T±JOf/N ) = 16 J J r s e-2(r
2
+s

2
)n(r, s)drds, (7.97) 

o 0 

where nCr, s) is some complex-valued function for which the integrals in the right-hand 

side of equation (7.97) converge. 

Using the above result, one can express the nonzero elements of the reduced density 

matrix corresponding to the initial state ~ (1- +) - 1 + - ) ), in the thermodynamic limit , 

as 

Pll (t) 

P22(t) 

P23(t) 

1 
P44(t) = 4[A+(t) + A_(t)], 

1 
P33(t) = 4[Y +(t) + Y -(t) + 3+(t) + 3_(t)], 

1 -SlY +(t) + Y _(t) + 3+(t) + 3_(t) + 2W(t)], 

where ( we set a = 1 for the sake of shortness) 

00 00 

(7.98) 

(7.99) 

(7.100) 

A±(t) = 16 J J rs e-2(r2+s2) (52 ~ ~ ~2s)2 sin2 (tJ52 + (r ± s)2 )drds, (7.101) 
o 0 
00 00 

Y±(t) 16 J J rs e-2(r2+S2)COS2(tJ52 + (r±s)2)drds, (7.102) 

o 0 
00 00 

3±(t) 16/ /rse-2(r2+s2 ) 52+(~±s)2sin2(tJP+(r±s)2)drds , (7.103) 
o 0 
00 00 

wet) 16 / / rs e-2(r
2
+S

2
){ cos (tJ52 + (r + s)2)cos(tJ6"2 + (r _ s)2) 

o 0 

2 sin ( t J 52 + (r + s) 2) sin ( t J 52 + (r - s) 2 ) 

+ 6" 2 }drds. (7 104) 5 +(r+s)2 6"2+(r-s)2 . 



7. An exactly solvable model for the dynamics of two spin-~ particles embedded.. . 155 

Unfortunately the above functions cannot be evaluated analytically; one should make 

recourse to numerical integration. This task can be significantly simplified by transforming 

the double integration into single one, which is much easier to carry out. To do that notice 

that the analysis of the expressions of the functions A± (t), Y ± (t), and 2± (t) leads to the 

evaluation of the probability density functions Q(J.L) and R(TJ) corresponding, respectively, 

to the random variables J.L = r + sand TJ = r - s (see [32] for a similar situation). 

Let us begin with the variable J.L; its probability density function is simply given by 

the convolution of f(r) with itself: 

J.L 
Q(J.L) = 16 J (J.L - r)re-2(J.L-r)2_2r2 dr. (7.105) 

o 

Note that the upper limit of the integration over r is J.L because the quantity J.L - r should 

be positive. The evaluation of the integral is somewhat lengthy, but elementary; one finds 

that 

(7.106) 

where erf(x) designates the error function [33]. 

Now consider the variable TJ = r - s. One should be careful when using the definition 

of the convolution, since, in this case, T) belongs to the interval] - 00,00[. We have to 

distinguish between two cases, namely, TJ ~ 0 and TJ ~ O. In the first case r E [0,00[, and 

hence 

R(TJ ~ 0) 

00 

16 J (TJ + r)re-2(r+s)2 _2r2 dr 

o 

~{2TJ + v;Te1)2 (1 - 2TJ2)[1 - erf(TJ)]}e-2
1)2. 

2 

When TJ ~ 0, then r E [-TJ, 00[, which implies that 

00 

R(TJ ~ 0) = 16 J (TJ + r)re-2(r+s)2_2r2 dr 

-1) 

1 2 2 -2 2 
-{ - 2T) + v;Te1) (1 - 2TJ )[1 + erf(TJ)]}e 1). 

2 

(7.107) 

(7.108) 

Combining (7.107) and (7.108) , we obtain the following expression for the probability 

density function of TJ over the real line: 

R(TJ) = ~ {2ITJI + v;Te1)2(1- 2TJ2)[1- erf(ITJI)]}e-2
1)2 . (7.109) 

The above functions are depicted in figures 7.3 and 7.4. Clearly, R (TJ) is an even function 

of its argument; it takes its maximum value at the origin, that is , max{R(TJ)} = R(O) = 
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0.886227. The maximum value of Q(J.L) occurs at J.Lo = 1.142088, such that max{Q(J.L)} = 

Q(J.Lo) = 0.859664. 

Q()J) 

0.8 

0.6 

0.2 

2 3 4 

Fig. 7.3: The probability density function Q(J.L). 

-4 -2 2 
." 

4 

Fig. 7.4: The probability density function R(1)). 

As a simple application let us prove the following: 

Theorem 1: The moments around origin of the random variables J.L and 1) are given by: 

(J.L2n) = ~ [1 + 2n
+ln 2Fl (1 + n,~;~; -1)], 

( 2n+l) r(~ + n) [ 1 n (3 1 3 )] 
J.L = 2n y'2+2 (2n+1) 2Fl 2+n'2;2;-1 , 

(TJ2n) = (J.L2n) - ny'7fr G + n), 
(TJ2n+l) = 0, 

(7.110) 

(7.111) 

(7.112) 

(7.113) 
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where f(x), and 2Fl(a, b; c; d) denote the Gamma and the hypergeometric functions , re­

spectively. 

Proof. Relation (7.113) is obvious since the function R(ry) is even. Let us prove (7.110). 

We have that 

where 

00 

(p,2n ) J p,2nQ(p,) dp, 

o 
2In+1 - In + 2Yn, 

00 J v7fj.L2ne-p.2 erf(p,) dp" 

o 
00 J p,2n+1 e- 2p.2 dp,. 

o 

To calculate Yn and In, introduce the functions of the real variable x > 0: 

00 

Yn(x) = J p,2n+le-P.2(1+~)dp" 
o 

00 

In(x) = J v7fp,2ne-P.2 /xerf(p,) dp, . 

o 
The first integral can be easily evaluated: 

Yn(x) = ~ C~x r+1 J Xne-xdX = ~! C~x r+l. 
The second integral satisfies 

o 

dIn(x) _ 1 1 . ( ) 
---2 n +1 x . 

dx x 

(7.114) 

(7.115) 

(7.116) 

(7.117) 

(7.118) 

(7.119) 

(7.120) 

Integrating by parts the RHS of (7.118) with respect to p" and using (7.119) , yield 

x(2n + 1) xn! ( X )n+l 
In+l(X) = 2 In(x) + 2 x + 1· (7.121) 

Here we have used the fact that erf(x)' = 2e-
x2 //1f. 

Let In(x) = n!xn+1gn(x). Then from (7.121) we have 

1 
2(n + 1)gn+l(X) = (2n + l)gn(x) + (x + 1)n+l· (7.122) 
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On the other hand equation (7.120) implies that 

x dgn(x) + (n + l)gn(x) = (n + l)gn+l(X). 
dx 

(7.123) 

Combining the last two equations yields the following first order differential equation for 

the function gn (x): 
dgn(x) 1 
2x~ + 9n(X) - (x + l)n+l = O. 

Differentiating both sides of (7.124), and again using (7.122), we obtain 

[ 
d2 ( 3 n + 1) d n + 1 ] () 0 

dx2 + 2x + x + 1 dx + 2x(x + 1) 9n x = . 

By setting y = -x, and hn(y) = 9n( -x), we obtain 

[ 
d2 ( 3 n + 1) d n + 1 ] 

dy2 + 2y + y - 1 dy + 2y(y _ 1) hn(y) = 0, 

which should be compared with the hypergeometric equation 

[ 
d2 ( C 1 + a + b - C) d ab] 

dy2 + Y + Y -1 dy + y(y -1) 2Fl(a,b;c;y) = O. 

Thus 

a = n+ 1, 

It follows that 

Putting x = 1 yields 

Also, using (7.121), we obtain 

b- 1 
- 2' C -~ - 2' 

n! 
Yn = 2n+2 ' 

(7.124) 

(7.125) 

(7.126) 

(7.127) 

(7.128) 

(7.129) 

(7.130) 

from which (7.110) readily follows. The other moments can be evaluated with a similar 

method. • 
The functions (7.101)-(7.103) can easily be expressed in terms of the functions Q(Jl) 

and R(TJ). For example, we have: 

(7.131) 

(7.132) 
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It should be noted that in contrast to rand s, the random variables 'rJ and J.L are not 

independent. The function w(t) can not be further simplified, and should be evaluated 

using the double integration over the variables rand s. Nevertheless, using the Riemann­

Lebesgue lemma, we can infer that 

lim w(t) = w(oo) = o. 
t-+oo 

(7.133) 

In a similar way, the remaining functions tend asymptotically to: 

(7.134) 

(7.135) 

(7.136) 

(7.137) 

(7.138) 

Notice that 

(7.139) 

independent of the values of 8. It follows that the asymptotic density matrix can be 

expressed as 
II 0 0 0 "4 

0 2-II 2-II 0 
p(oo) = 

-4- --s-

O 2-II 2-II 0 - -s- -4-

(7.140) 

0 0 0 II 
"4 

where 

II = A+(oo) + A_(oo). (7.141) 

Before we study the general case let us have a look at the two extrem cases: 8 = 0 and 

8 = 00. It is easily seen that 

(7.142) 

The corresponding asymptotic reduced density matrix reads 

1 0 0 0 "4 

0 1 1 0 
P(00)6=O = 

"4 -8 (7.143) 
0 1 1 0 -8 "4 

0 0 0 1 
"4 
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which has a concurrence and a purity identically equal to zero and 9/32, repectively. 

On the contrary, in the limit of strong coupling between the central qubits, 

1 
lim 3±(00) = -2' lim A±(oo) = O. (7.144) 

8-+00 8-+00 

Consequently, 

0 0 0 
1 1 

P(00)8=00 = 
0 '2 -4 

0 1 1 -4 '2 

0 0 0 

A straightforward calculation shows that 

1 
lim C(p(oo)) = -2' 

8-+00 

0 

0 

0 
(7.145) 

0 

(7.146) 

We observe that the asymptotic concurrence and purity obtained here coincide, when 

o -+ 00, with those obtained for the states Iv±) in the case of common spin bath. They 

are however different from the asymptotic values corresponding to the state le+) which 

are identically equal to 1 (the state Ie) is stationary). 

In general , since 0 :::; J.L2/(J.L2 + 02) :::; 1, then 

o :::; n = ~ 1000 
Q(J.L) il!1-2 dJ.L + ~ I~oo R(J.L) 8it!1-2 dJ.L 

:::; ~ 1000 
Q(J.L)dJ.L + ~ I~oo R(J.L)dJ.L = 1. (7.147) 

This allows us to find the following explicit form of the asymptotic value of the concurrence: 

{ 
2 - 3TI} C(oo) = max 0, -4- . 

The latter can also be rewritten as: 

{ 

2-3TI 

C(oo) = 0-4-
for 0:::; TI :::; ~ , 

for ~:::; TI :::; 1. 

(7.148) 

(7.149) 

The variation of the asymptotic concurrence as a function of 0 is shown in figure 7.5. 

It can be seen that C(oo) remains zero up to a critical value Oc after which it increases, 

to tend asymptotically to ~. The value of Oc can be evaluated numerically: 

Oc = 0.342842, TI16=8c = 0.666666. (7.150) 

At the critical point, the density matrix reads 

1 0 0 0 6 
0 1 1 0 

Pc(oo) = 3' -6 
with P(Pc(oo)) = ~. 

0 1 1 0 -6 3' 
(7.151) 

0 0 0 1 
6 
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10 

Fig. 7.5: The variation of C(oo) as a function of the coupling constant O. The inset shows the 

critical point oc. 

7.5 Second-order master equation 

The aim of this sect ion is to study the short-time behaviour of the dynamics. This will be 

achieved by investigating the second-order master equation under Born Approximation. In 

the interaction picture, the above yield the following set of integro-differential equations: 

t 

P11 (t) = _a2 J (2.011 (s) - p22(S) - p33(S)) cos[2o(t - s)] ds, 

o 
t 

P12(t) = _a2 J (2p12(s)e2i5(t-S) - .034 (s)e2i5(t+S) ) ds , 

o 
t 

P13(t) = _a2 J (2p13(s)e2i5(t-S) - .024 (s)e 2i5(t+s ) ) ds , 

o 
t 

P14(t) = -ci J 2p13 (S) cos[2o(t - s~] ds, 

o 
t 

P22(t) = _a2 J (2p22(S) - .011 (s) - p44(S)) cos[2o(t - s) ] ds, 

o 

(7.152) 

(7.153) 

(7.154) 

(7.155) 

(7.156) 
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Fig. 7.6: The variation in time of the the matrix element Pu (t) corresponding to the singlet 

state. The solid curve represents the exact solution, and the dashed curve represents the 

approximate solution (7.162). The parameters are N = 10 and 6 = a. 

t 

P23(t) = _a2 J 2p23(S) cos[2<5(t - s)] ds, 

o 
t 

:. () 2 J (2 - () 2io(s-t) - () -2iO(t+S)) d P24 t = -a P24 s e - P13 s e s , 

o 
t 

P33(t) = _a2 J (2P33(S) - pll(S) - P44(S)) cos[2<5(t - s)] ds, 

o 
t 

P34(t) = _a2 J (2P34(s)e2iO(S-t) - P12(s)e-2iO(HS)) ds, 

o 
t 

P44(t) = _a2 J (2P44(S) - p22(S) - P33(S)) cos[2<5(t - s)] ds, 

o 

(7.157) 

(7.158) 

(7.159) 

(7.160) 

(7.161) 

Here the tilde designates the interaction picture, namely p(t) = eiHot p(t)e-iHot . It is 

worth mentioning that the integro-differential equations corresponding to the off-diagonal 

elements ( except P13) obtained from the second-order master equation in [27] are some­

what wrong; the matrix elements under the integral sign are, in fact, expressed in the 

Schrodinger picture. 

Clearly, the above equations do not depend on the number of spins within the bath. In 

fact it is found that at short times, the exact solution discussed in the precedent sections, 

gives the same result with fixed <5 no matter what the value of N. This explains the results 
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of [25 , 26, 27]. Of course the solutions quickely diverge from each other as we increase the 

time. 

Equations (7.152)-(7.161) can be solved under a time-local approximation in which the 

matrix elements Pij(S) are replaced by Pij(t) . One can find that (a is set to one) 

P11 (t) = ~ {I + [-1 + 2(P~1 + P~4)] exp{ :2 [cos(25t) - 1] } 

+ 2(P~1 - P~4) exp{ 2~2 [cos(2c5t) - I]} } , 

P22(t) = ~ { 1 +- [-1 + 2(pg2 + pg3)] exp{ 1512 [cos(2c5t) - 1J} 

+ 2(pg2 - pg3) exp{ 2~2 [cos(2c5t) - I]} }, 

P33(t) = ~ { 1 + [-1 + 2(pg3 + pg2)] exp{ 1512 [cos(2c5t) - I]} 

P44(t) = ~ { 1 + [-1 + 2(P~4 + P~l)] exp{ :2 [cos(2c5t) - 1J} 

+ 2(P~4 - P~l) exp{ 2~2 [cos(2c5t) - 1J} } , 

Pl4(t) = P~4 exp{ :2 [cos(2c5t) - I]} , 

P23(t) = P~3 exp{ ;2 [cos(28t) - I]}. 

(7.162) 

(7.163) 

(7.164) 

(7.165) 

(7.166) 

(7.167) 

These solutions describe approximately the dynamics at short times (see figure 7.6). In 

fact, the smaller the coupling constant 15 , the better these solutions are. 

when 15 = 0 (i.e., nonlocal dynamics) , then 

n = 1, 2. (7.168) 

Thus the second order time-local master equation shows that the nonlocal dynamics, or , 

in general, the short time behavior follow a Gaussian decay law. Note that the solutions 

corresponding to the diagonal elements reproduce the asymptotic values for N ~ 00, 

namely Pii (00) = 1. However, those corresponding to the off-diagonal elements fail to 

reproduce the steady state, since, for example, equation (7.167) implies that P23(t) ~ o. 



7. An exactly solvable model for the dynamics of two spin-! particles embedded... 1'64 

To end our discussion let us remark that equations (7.153), (7.154), (7.158) and (7.160) 

can be analytically solved only when 8 = O. For instance (see figure 7.7), 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

1 [0 0 ) -t2 /2 (0 0 ) -3t2 /2] P12(t) = 2' (P12 + P34 e + P12 - P34 e . 

0.0 0.5 1.0 1.5 

(J't 

-_ .... -_ ...... ------­
.,. ... ",.",.. .... 

~,~~'~'----------------

2.0 2.5 3.0 

(7.169) 

Fig. 7.7: The variation in time of the the matrix element P12(t) corresponding to the singlet 

state. The solid curve represents the exact solution, and the dashed curve represents the 

approximate solution (7.169). The parameters are N = 10 and t5 = O. 

7.6 Summary 

In summary we have investigated the dynamics of two qubits coupled to separate spin 

star environment via Heisenberg XY interactions. We have derived the exact form of 

the time evolution operator and calculated the matrix elements of the reduced density 

operator. The analysis of the evolution in time of the concurrence and the purity shows 

that decoherence can be minimized by allowing the central qubits to strongly interact 

with each other. The short-time behavior, studied by deriving the second-order master 

equation, is found to be Gaussian. The next step may consist in considering more central 

qubits, and then investigate whether the above results still hold. 
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8. CONCLUSION 

In this work the focus was on the investigation of exact solutions for the dynamics of 

simple qubit systems which are coupled to their surrounding spin environments. We have 

mainly considered Heisenberg XY interactions with long-range uniform couplings. The 

coupling of the central qubits to the environment is equivalent to the interaction with a 

single giant spin, described by the collective spin operator of the spin bath. The nature of 

the interactions allowed us to use the underlying symmetries of the Hamiltonians of the 

compound systems, together with operator techniques and known commutation relations 

satisfied by the components of the total angular momentum, to derive the exact analytical 

forms of the reduced density matrices. 

One of the main results of this work consists in providing a strong evidence and clear 

verification of the quantum central limit theorem for tracial states. Indeed, we have shown, 

both analytical and numerically, that the scaled components of the total angular momen­

tum converge to classical, identically distributed, commuting normal random variables. 

The exact form of the corresponding probability density function is derived from simple 

analytical considerations. This result was successfully applied to the study of the ther­

modynamic limit, that is , the limit of an infinite number of environmental spin. Here 

the trace over the environmental spin degrees of freedom simplifies to an integration over 

Gaussian random variables having continuous probability functions with relatively small 

variances. As a consequence, the numerical investigation becomes easily accessible for 

very large sizes of the environments , breaking the constraints imposed by limited capaci­

ties offered by computers, for which the investigation of environments with sizes as small 

as 103 may need a huge amount of resources. This allowed us to compare the behavior 

of the qubits for finite and infinite numbers of spins within the environments. Moreover, 

using the above results, it was possible to find analytical expressions for the asymptotic 

reduced density matrices; the study of the second order master equation shows that the 

dynamics of qubits is non-Markovian in contrast to the case of bosonic environments, 

where the decay of the elements of the reduced density matrix is essentially exponential, 

i.e., Markovian. 
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It has been shown that in the case of a single central qubit, strong applied magnetic 

fields help reducing the effect of decoherence, which is also the case for low temperatures 

of the bath with antiferromagnetic interactions. The same result was obtained for the case 

of two central qubits, where strong coupling between the qubits plays the same role on the 

decoherence as low temperatures and strong magnetic field. The study of entanglement 

through the concurrence showed that the former can be preserved by allowing the qubits 

to strongly interact with each other. In the case of the Lipkin-Glick-Meshkov model, we 

showed that although the concurrence describing the pairwise entanglement detects the 

presence of the critical point, it does not give the expected value of the latter. This can be 

explained by the fact that in order to obtain a sharp characterization of the critical point, 

one has to consider the thermodynamic limit. However, we found that the concurrence 

vanishes as the number of spins increases. 

It is well known that mathematics is the language of physics. This relation is, in 

fact, collateral, since many interesting mathematical results are originally the outcomes 

of physical investigations. In this work we were led, while studying the case of separate 

spin baths, to the derivation of analytical properties for both Wigner 3j-symbols and the 

degeneracy entering the decomposition of the space c2®n into direct sum of the subspaces 

C2j+1, where j denotes the possible values of the total spin resulting from the addition 

of n spin-~ particles. We also derived the probability density functions of the sum of two 

independent variables each having the probability density function 4xe-2x2
. This enabled 

us to analytically calculate their moments around the origin at arbitrary order. 

We feel that this subject is very interesting, and much work has still to be carried 

out. In particular, one has to check whether the effect of strong coupling between the 

qubits will persist as their number increases. Up to now the thermodynamic limit in 

the case of ferromagnetic interactions between the spins in the environment is not well 

understood. The difficulty resides in the fact that when the coupling constant is negative, 

the integration over the normal random variables diverges. Hence other techniques should 

be developed. 



APPENDIX 





A. DERIVATION OF THE ANALYTICAL FORM OF TJ(T) 

This appendix is devoted to the derivation of the asymptotic behavior and the analytical 

form of the function T)(t) appearing in Eq. (2.81). Explicitly we have (~= 0) 

8 /00 2 r3 ( ) T)(t) = -= e-(gl3+2)r sin2 tJ J.L2 + r2 dr. 
Z J.L2 + r2 

(A.l) 

o 

By making the following change of variable r2 = 82 - J.L2 and taking into account the 

trigonometric equality sin2 x = ~ [1 - COS(2X)] , we can rewrite the above function as 

~(,) ~ ~ ,('+opj.' (1 dv' e - ('+gpj.' [1 - cas(2v') 1 
J.L2 

- 2~'{1 ~>-('+oP).' [1- cas(2V')]}). (A.2) 

J.L 

The Riemann-Lebesgue lemma implies that the second and the fourth terms involving the 

cosine function in the above expression vanish when t ~ 00. The first term can be easily 

evaluated and we simply get 

(A.3) 

The third term reads 

00 00 
2/ dvv e-(2+g,B)1I

2 = / dv
2 

112 r [( (3) 2] ~e- = 0, 2 + 9 J.L , (A.4) 

J.L J.L2(2+g,B) 

where we have made the change of variable (2 + g(3)v2 ~ v2. Taking into account the 

expression of Z in Eq. (2.76) we obtain the asymptotic expression of T)(t) displayed in 

Eq. (2 .90) . 



A . Derivation of the analytical form of 1J(t) 171 

The second term simplifies to 

where c5 = ';2 + g{3(J..L + 2~~.B) ' One can easily check that 

1 [ t
2 

] ( ) Re (h) = 2 + g{3 exp -(2 + g(3)J..L2 + 2 + g{3 cos 2J..Lt . (A.6) 

The second integral is given by the complementary error function, namely 

y'1rit [( it)~] h = 3 erfc J..L + --{3 Y 2 + g{3 . 
(2 + g(3 ) '2 2 + 9 

(A.7) 

It is then sufficient to use the property 2 1m erfc( a + it) = i [erf( a + it) - erf( a - it)], 

where a is real and Im(x) stands for the imaginary part of x, to get the first three terms 

appearing in the right-hand side of Eq. (2.81). 

Similarly, we have 

where we have introduced the new variable s = (v + V2~g(3)';2 + g{3. By multiplying the 

numerator and the denominator of the quantity under the sign of integral by s + .j2~9/3 

we get two new integrals. The first one is given by 

where 02 = (2 + g(3 )J..L2 + 2J..Lit . The remaining integral defines the function M, namely, 

00 2 

t2 J -s 
M(t;J..L,{3)=exp{ -[---(2+g{3)J..L2]}Re{2ity'2+9{3 2 e t2 ds}. (A.10) 

2 + g{3 6 s + 2+g{3 

The analytical expressions of the functions ~(t) and ((t) can be determined with the same 

method. In the case , # 0 we should replace J..L by J..L+,m and then perform the integration 

with respect to m . For practical investigation, numerical integration is used. 
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