
University of KwaZulu-Natal

New exact solutions for neutral and charged
shear-free relativistic fluids

SFUNDO CEBOLENKOSI GUMEDE



New exact solutions for neutral and charged
shear-free relativistic fluids

by

SFUNDO CEBOLENKOSI GUMEDE

Submitted in fulfilment of the academic

requirements for the degree of

Doctor of Philosophy

in the

School of Mathematics, Statistics and Computer Science,

University of KwaZulu-Natal,

Durban,

November 2022

As the candidate’s supervisors, we have approved this thesis for submission.

Signed: Professor S. D. Maharaj Date:

Signed: Professor K. S. Govinder Date:

Sunil Maharaj
2/2/2023

Sunil Maharaj
2/2/2023



Abstract
We study shear-free gravitating fluids in general relativity. We first analyse the integrability of the

Emden-Fowler equation that governs the behaviour of shear-free neutral perfect fluid distributions.

We find a new exact solution and generate a new first integral. The first integral is subject to an

integrability condition which can be expressed as a third order differential equation whose solution

can be expressed in terms of elementary functions and elliptic integrals. We extend this approach

to include the effect of the electromagnetic charge. The Einstein-Maxwell system for a charged

shear-free matter can be reduced to a generalized Emden-Fowler equation. We integrate this

equation and find a new first integral. For this solution to exist two integral equations arise as

integrability conditions. The integrability conditions can be solved to find new solutions. In both

cases the first integrals are given parametrically. Our investigations suggest that complexity of a

self-gravitating fluid is related to the existence of a first integral. For both neutral and charged

fluids the general form of the parametric solution depends on a cubic and quartic polynomial

respectively. The special case of repeated roots leads to simplification and this regains earlier

results. We also study relativistic charged shear-free gravitating fluids in higher dimensions. Two

classes of exact solutions to the Einstein-Maxwell equations are found. We obtain these solutions

by reducing the Einstein-Maxwell equations to a single second order nonlinear partial differential

equation containing two arbitrary functions. This generalizes the condition of pressure isotropy

to higher dimensions; the new condition is functionally different from four dimensions. The new

exact solutions obtained in higher dimensions reduce to known results in four dimensions. The

presence of higher dimensions affects the dynamics of relativistic fluids in general relativity.
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Chapter 1

Introduction

The Einstein theory of general relativity is very useful in describing gravitational interactions be-

tween bodies. Before general relativity was proposed, gravitational interactions between bodies

was mainly described using the classical Newtonian theory. However, the Newtonian theory could

not explain certain astronomical observations, hence the need to create a new gravitational theory.

In general relativity the gravitational field of a body can be described by the curvature of space-

time rather than just a force that attracts objects to one another. Spacetime is considered to be a

four dimensional differentiable manifold endowed with a non-degenerate metric tensor field. The

spacetime geometry is described using the Einstein tensor, which is defined in terms of the metric

tensor, the Ricci tensor and the Ricci scalar. The Einstein tensor is a very important quantity in

general relativity as it is used to generate the Einstein field equations. The Einstein field equations

are a system of nonlinear partial differential equations that relate spacetime curvature and the mat-

ter content. The matter content is expressed in terms of the energy momentum tensor containing

the energy density, pressure, heat flux and anisotropy. In the presence of the electromagnetic field,

the Einstein field equations can be extended to the Einstein-Maxwell equations. The action inte-

gral of general relativity can be extended to include higher order curvature connections and scalar

fields.

Exact solutions to the Einstein field equations are used to model many astrophysical and cos-

mological processes. Well known solutions to the field equations include the Schwarzschid inte-

rior solution (Schwarzschild 1916a), the Schwarzschid exterior solution (Schwarzschild 1916b),

1



the Reissner-Nordström solutions (Nordström 1918, Reissner 1916), the Vaidya solution (Vaidya

1951) as well as the Kerr solution (Kerr 1963). Spherical geometry is of specific interest. In gen-

eral, spherically symmetric spacetimes are expanding, accelerating and shearing. The absence of

shear in spherically symmetric spacetimes simplifies the field equations and is a special case of

physical interest. Stephani et al. (2009) provide various categories of shear-free spherically sym-

metric solutions. These solutions include those obtained by Stephani (1983), Srivastava (1987)

as well as Maharaj et al. (1996) amongst others. The exact solutions have been obtained using

various methods from differential equations including the group theoretical approach.

A primary aim of this study is to seek exact solutions to the Einstein field equations for spherically

symmetric shear-free fluid distributions. We achieve this by reducing the system of field equations

to the single Emden-Fowler equation

yxx = f(x)y2

under a certain transformation. Kustaanheimo and Qvist (1948) were the first to find a general

solution to this equation in general relativity. Various techniques have been used to analyse this

Emden-Fowler equation. These involve the Lie symmetry analysis (Maharaj et al. 1996) as well

the Noether symmetry approach (Wafo Soh and Mahomed 1999). We adopt an adhoc method of

Maharaj et al. (1996) of analysing integrability conditions to obtain new solutions. Incorporating

the electromagnetic field, the field equations are supplemented by Maxwell’s equations to form the

Einstein-Maxwell equations. The charged system of field equations reduce to the generalization

of the Emden-Fowler equation

yxx = f(x)y2 + g(x)y3

under a specific transformation as given by Faulkes (1969). In this thesis we study the integrability

of this equation using the approach of Kweyama et al. (2012) which is a charged generalization
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of the study of Maharaj et al. (1996).

Another objective of this study is to investigate the role of dimensions in gravitating fluids. Ex-

act solutions to the Einstein field equations have been investigated by a number of researchers in

higher dimensional spacetimes. The concept of higher dimensions in general relativity was first

introduced by Kaluza (1921) and Klein (1926). The existence of higher dimensions is important

in the description of dynamics of stellar objects. A number of exact solutions in four dimen-

sions have been generalized to higher dimensions. For example, the Schwarzschild spacetime was

generalized to higher dimensions by Tangherlini (1963). Myers and Perry (1986) studied black

hole solutions to the Einstein field equations in higher dimensions, generalizing the Reissner-

Nordström as well as the Kerr spacetimes. The Vaidya spacetime was later generalized by Iyer

and Vishweshwara (1989) and Chatterjee et al. (1990). Banerjee et al. (1992) provided classes of

higher dimensional exact solutions to the Einstein field equations for shear-free uncharged fluids

by first reducing the field equations to a single second order partial differential equation. The

effect of higher dimensions has been shown to be crucial in the study of modified gravity the-

ories. For example, Brassel et al. (2019) recently studied higher dimension black holes in the

Einstein-Gauss-Bonnet (EGB) gravity. Gravitational collapse and the formation of singularities

in modified gravity theories depend on spacetime dimension. In this thesis we generalize the ap-

proach of Banerjee et al. (1992) by including the effects of the electromagnetic field. We reduce

the consequent Einstein-Maxwell equations to a single partial differential equation which depends

on the spacetime dimension. We present new classes of exact solutions for charged shear-free rel-

ativistic fluids in higher dimensions.

This thesis is organised as follows:
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In this chapter we give the general background on general relativity and the Einstein’s field equa-

tions. We discuss some examples of exact solutions to the Einstein field equations for uncharged

matter as well as for the Einstein-Maxwell equations for charged matter. We also provide the

outline of this thesis.

In Chapter 2 we show that the Einstein field equations for neutral shear-free fluids reduce to a

second order partial differential equation of Emden-Fowler type. We use an approach utilized by

Maharaj et al. (1996) to solve this equation. In our treatment we first multiply the Emden-Fowler

equation by an integrating factor and apply integration by parts. We generate a new first integral

which is subject to an integrability condition that is different from that of Maharaj et al. (1996).

We reduce the integrability condition to a third order ordinary differential equation which we solve

to obtain new solutions which do not reduce to known solutions.

In Chapter 3 we include the effect of the electromagnetic charge in the field equations. We show

that the Einstein-Maxwell equations can be reduced to a single second order differential equation

which is a generalization of the Emden-Fowler equation. This equation has been studied exten-

sively using various approaches by Wafo Soh and Mahomed (2000) and Kweyama et al. (2012)

among others. We adopt the approach of Kweyama et al. (2012). However, in our treatment

we first multiply the master equation by an integrating factor. We obtain a new first integral

which is subject to two integrability conditions that we solve, leading to new exact solutions to

the Einstein-Maxwell equations for charged shear-free relativistic fluids. Our new solutions do

not have an uncharged limit. We conclude the chapter by showing that our new first integral is

independent of the Kweyama et al. (2012) result.
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In Chapter 4 we analyse the charged condition of pressure isotropy for shear-free relativistic fluids

in higher dimensions. We reduce the Einstein-Maxwell equations in higher dimensions to a single

second order differential equation which depends on the spacetime dimension N. We present two

new classess of exact solutions to the Einstein-Maxwell equations in higher dimensions. We find

new gravitational potentials which depend on N. We show that when N = 4 the new solutions

reduce to the known solutions obtained by Gürses and Heydazarde (2019). We also regain the so-

lutions of Shah and Vaidya (1968). We conclude the chapter by graphically illustrating the effect

of dimension in the field equations.

In Chapter 5 we provide a summary of results presented in this thesis.
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Chapter 2

First integrals of shear-free fluids and com-

plexity

2.1 Introduction

In many studies the concept of complexity has been applied to topics such as entropy and infor-

mation. An intriguing approach is to also utilize this concept in self-gravitating systems. Herrera

(2018) suggested that complexity in gravity would be studied by the definition of a minimal com-

plexity factor. This approach may also be applied to dissipative fluids in general relativity with

applications to compact stars, neutron stars and radiating objects in the strong gravity regime.

Several investigations have been initiated involving the concept of complexity in self-gravitating

systems in general relativity and some modified theories of gravity (Casadio et al. 2019, Her-

rera et al. 2018, Herrera et al. 2019, Herrera et al 2020, Herrera et al 2021, Sharif and Butt

2018a, Sharif and Butt 2018b, Sharif and Butt 2019, Sharif and Tariq 2020, Sharif et al. 2019).

Jasim et al. (2021) studied a strange star model in a special case of Lovelock theory, namely

Einstein-Gauss-Bonnet gravity, and showed that such theories are consistent with the concept of

complexity. General matter distributions including dissipative effects are necessary to analyze rel-

ativistic self-gravitating fluids. Shear-free matter distributions arise as a special case, and deserve

special attention because of their applicability to stellar models, and they have been used to model

both static and radiating stars. Therefore in this investigation we consider the behaviour of shear-

free fluids in a spherical spacetime. Our results indicate that it is possible to find new first integrals
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which provide insight into the behaviour of the self-gravitating fluids. Our approach may help in

generating a general relationship between first integrals, extended to a general shearing relativistic

matter and complexity of a self-gravitating relativistic fluid.

Seeking exact solutions to the Einstein field equations has been the subject of study in many as-

trophysical and cosmological applications. Such solutions may be used to model inhomogeneous

processes in systems of galaxies and the broader universe (Krasinski 2006). Exact solutions to

the field equations have also been used to model and investigate properties of observable phenom-

ena such as relativistic stars (Shapiro and Teukolsky 1983) as well as expanding and contracting

spherical stars (Santos 1985). Dissipative fluids in general relativity are of particular importance

because of various applications in astrophysics and the description of radiating stars. The gen-

eral framework for the study of physically acceptable dissipating systems in spherical symmetry

was undertaken in several studies (Barreto and Da Silva 1999, Barreto et al. 2007, Di Prisco et al.

2007, Herrera et al. 2011, Sharif and Bashir 2012). Some particular exact models have been found

using this framework (Mahomed et al. 2020a, Mahomed et al. 2020b, Sharif and Iftikhar 2015,

Thirukkanesh and Govender 2013). The special case of vanishing shear provides new insights

into the behaviour of gravity, and some particular radiating stellar models have been generated

(Charan et al. 2021, Pinheiro and Chan 2013, Shah and Abbas 2018, Sharif and Bhatti 2013).

Our approach in this chapter is to find a general result, namely a first integral, in a shear-free fluid

without having to specify the gravitational potentials.

When seeking exact solutions to the Einstein field equations, it is usual to assume spherical sym-

metry for spacetimes and the absence of shear for the matter distribution. These assumptions

greatly simplify the field equations while ensuring that the results are still physically meaningful.
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Spherically symmetric shear-free solutions have been used to model many physical applications.

Some of the classes of these solutions were obtained by Maharaj et al.(1996), Srivastava (1987),

Stephani (1983) as well as Sussman (1988a, 1988b). Brassel et al. (2015) found gravitational

potentials for shear-free heat conducting fluids in terms of elementary functions in a recent treat-

ment. However, it is important to note that most of the known exact solutions to the Einstein field

equations are not shearing (Stephani et al. 2009). This is largely due to the fact that the shear-free

condition introduces an additional equation which needs to be solved. The Einstein field equa-

tions for spherically symmetric shear-free neutral matter comprise a system of nonlinear partial

differential equations. We will show how this system of equations can be further reduced to the

single, Emden-Fowler, equation

yxx = f(x)y2.

The first general solution to this Emden-Fowler equation in general relativity was found by Kus-

taanheimo and Qvist (1948) for a specified form of the function f(x). Other classes of solutions

were found later by Srivastava (1987) and Stephani (1983). Maharaj et al. (1991), Sussman

(1988a) and Wafo Soh and Mahomed (2000) found further classes of solutions by assuming that

the spacetime is invariant under a conformal Killing vector. Another recent treatment of this prob-

lem was given by Maharaj et al. (1996).

The shear-free condition is often applied in the study of radiating stars, gravitational collapse,

and relativistic astrophysical processess. The vanishing shear assumption leads to simplification

of the field equations. Note that the homogeneous expansion rate and shear-free condition are

the classical analogue of homologous fluids in the Newtonian limit. This means that the shear-

free assumption in general relativity is well justified. However, it is important to point out that

the shear-free fluids may be unstable due to pertubations arising from anisotropy and dissipation.
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Herrera et al. (2010) investigated the conditions when an initial shear-free configuration continues

to be shear-free as the system evolves. Pressure anisotropy and dissipation affect the propagation

of the relativistic fluid. These quantities play a role in realistic modelling involving gravitational

collapse and should be contained in a stable model

In this chapter we analyse the integrability and find exact solutions to the Emden-Fowler equation

using an ad hoc method that was previously shown to be useful (Maharaj et al. 1996). In Section

2.2 we show how the field equations for the spherically symmetric nonstatic shear-free metric

reduce to the equation

yxx = f(x)y2.

We obtain its first integral in Section 2.3. This first integral is subject to the integrability condition

which we study in Section 2.4. In Section 2.5 we find the functional form the function f(x) and

give the corresponding first integral.

2.2 Shear-free fluids

The Einstein field equations follow from variation of the Lagrangian

L =
1

2
R + Lm,

where R is the Ricci scalar and Lm represents the matter source. Variation of the Lagrangian L

leads to the Einstein field equations

Rab �
1

2
Rgab = (µ+ p) uaub + pgab,

for a perfect fluid source with energy density µ and pressure p.
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The metric for a shear-free, perfect fluid in the comoving and isotropic coordinate system

(xa) = (t, r, ✓,�) is given by

ds2 = �e2⌫(t,r)dt2 + e2�(t,r)
⇥
dr2 + r2(d✓2 + sin2 ✓�2)

⇤
, (2.2.1)

where e2⌫ and e2� are the gravitational potentials. The Einstein field equations take the form

µ = 3
�t

2

e2⌫
� 1

e2�

✓
2�rr + �2r +

4�r
r

◆
, (2.2.2a)

p =
1

e2⌫
�
�2�tt � 3�2t + 2⌫t�t

�

+
1

e2�

✓
�2r + 2⌫r�r +

2⌫r
r

+
2�r
r

◆
, (2.2.2b)

p =
1

e2⌫
�
�2�tt � 3�2t + 2⌫t�t

�

+
1

e2�

✓
⌫rr + ⌫2r +

⌫r
r
+
�rr
r

+ �rr

◆
, (2.2.2c)

0 = ⌫r�t � �tr. (2.2.2d)

The quantities µ and p represent the energy density and pressure, respectively. The subscripts r

and t in equations (2.2.2) above represent partial derivatives with respect to r and t, respectively.

The condition of pressure isotropy is obtained by equating (2.2.2b) and (2.2.2c). The resulting

equation can be easily integrated once with respect to time which results in an arbitrary function

of integration, g(r). We can also integrate (2.2.2d) once with respect to r and obtain another

arbitrary function of integration, h(t). Using these simplifications we can now write the system
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(2.2.2) in the form

µ = 3e2h � e�2�

✓
2�rr + �2r +

4�r
r

◆
, (2.2.3a)

p =
1

�t


e�2�

✓
�2r +

2�r
r

◆
� e2h

�

t

, (2.2.3b)

e⌫ = �te
�h, (2.2.3c)

e�
✓
�rr � �2r �

�r
r

◆
= �g(r). (2.2.3d)

The functions h and g need to be specified in order to find exact solutions for the field equations.

Thereafter, the metric function � can be obtained by solving (2.2.3d), while the remaining metric

function ⌫ then follows directly from (2.2.3c). Equations (2.2.3a) and (2.2.3b) then define the

energy density µ and the isotropic pressure p, respectively. It is clear that the pivotal equation is

(2.2.3d).

Using the transformation

x = r2,

y(x, t) = e��,

f(x) =
g

4r2
,

equation (2.2.3d) reduces to

yxx = f(x)y2, (2.2.4)

as first shown by Kustaanheimo and Qvist (1948). Equation (2.2.4) is the master equation govern-

ing the gravitational dynamics of a shear-free fluid in general relativity.
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There have been a number of studies seeking solutions of the field equation (2.2.4). However, the

solution is known for only a few forms of f(x). The solution with

f(x) =
�
a+ bx+ cx2

��5/2
,

was given by Kustaanheimo and Qvist (1948). Solutions with

f(x) = x�20/7, x�15/7, ex,

were found by Stephani (1983). General analyses of the equation (2.2.4) were completed by

Maharaj et al. (1996), Stephani et al. (2009) and Wafo Soh and Mahomed (2000). A charged

generalization was studied by Kweyama et al. (2012).

Our approach mirrors Maharaj et al. (1996), who extended an idea of Srivastava (1987). We

briefly outline that approach here. We can integrate the left hand side of (2.2.4) once directly and

the right hand side by repeated applications of ‘integration-by-parts’. This eventually yields the

first integral (Maharaj et al. 1996)

 0(t) = �yx + fIy
2 � 2fIIyyx + 2fIIIy

2
x + 2[(ffII)I � 1

3K0]y
3, (2.2.5)

where  0(t) is an arbitrary function of integration, K0 is an arbitrary constant,

fI =

Z
fdx (2.2.6)

and we have the integrability condition

2ffIII + 3(ffII)I = K0. (2.2.7)

This equation was then throughly analysed by Maharaj et al. (1996) to find new exact solutions

including the explicit forms of f(x) given by

f(x) =
48

343

✓
�7b

2

◆6/7

(x� x0)
15/7, (2.2.8)

which led to (2.2.5). Note that b and x0 are arbitrary constants of integration.
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2.3 A new first integral

We now apply the approach of Maharaj et al. (1996) but with one important difference. We

observe that when (2.2.4) is multiplied by x, it becomes

xyxx = xfy2. (2.3.1)

If we now define

f̄ = xf,

then we can write (2.3.1) in the form

xyxx = f̄y2. (2.3.2)

We can still integrate the left hand side explicitly once while the right hand side of (2.3.2) is simply

the right hand side of (2.2.4) with f relabelled as f̄ . Thus the Maharaj et al. (1996) integration

will apply to the right hand side of (2.3.2) as well. We obtain

xyx � y = f̄Iy
2 � 2

Z
f̄Iyyxdx� �1(t), (2.3.3)

where for convenience we have used

f̄I =

Z
f̄dx, (2.3.4)

and �1(t) is an arbitary function of integration. Note the subtle difference between (2.2.6) and

(2.3.4).

Integrating f̄Iyyx by parts and using (2.2.4) we obtain

xyx � y = f̄Iy
2 � 2f̄IIyyx + 2

Z
f̄IIy

2
xdx+ 2

Z
ff̄IIy

3dx� �1(t). (2.3.5)

Integrating ff̄IIy3 and f̄IIy2x, by parts again, we obtain

xyx � y = f̄Iy
2 � 2f̄IIyyx + 2f̄IIIy

2
x + 2(ff̄II)Iy

3
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�2

Z
[2ff̄III + 3(ff̄II)I ]y

2yxdx

�
� �1(t). (2.3.6)

The integral on the right hand side of (2.3.6) can be evaluated if

2ff̄III + 3(ff̄II)I = K1, (2.3.7)

where K1 is a constant. This equation can be written as a differential equation which still needs

to be solved (see later.).

We now have the expression

�1(t) = y � xyx + f̄Iy
2 � 2f̄IIyyx + 2f̄IIIy

2
x

+2


(ff̄II)I �

1

3
K1

�
y3, (2.3.8)

where �1(t) is an arbitrary function of integration. We then observe that (2.3.8) is another, new,

first integral of (2.2.4) provided that condition (2.3.7) is satisfied. (It is important to emphasize

that (2.3.7) is different from (2.2.7) since f̄I =
R
xf(x)dx.)

2.4 Integrability conditions

To complete the analysis we need to determine the form of the function f(x) (or f̄(x)). In an

attempt to seek the form of the function f , the integral equation (2.3.7) can be transformed into an

ordinary differential equation. It is easier to solve the differential equation rather than the integral

equation. Differentiating (2.3.7), we obtain

2fxf̄III + 5ff̄II = 0, (2.4.1)
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which can be written as

2


f̄x �

1

x
f̄

�
f̄III + 5f̄ f̄II = 0, (2.4.2)

which contains f̄ only. Now setting

L̄ ⌘ f̄III ,

we eliminate f̄ in (2.4.2) to give the differential equation

2


L̄xxxx �

1

x
L̄xxx

�
L̄+ 5L̄xL̄xxx = 0. (2.4.3)

We can integrate (2.4.3) once to obtain

L̄xxx = C0xL̄
�5/2, (2.4.4)

where C0 is a constant of integration.

We observe that the third order ordinary differential equation (2.4.4) is equivalent to the integrabil-

ity condition (2.3.7). Integrating (2.4.4) repeatedly we find L̄, and hence f̄(x). Below we indicate

how the equation (2.4.4) can be integrated, giving L̄.

The nonlinear differential equation (2.4.4) may be written as

L̄L̄xxx = C0xL̄
� 3

2 .

The left hand side can be expressed in the exact form

(L̄L̄xx)x � L̄xL̄xx = (L̄L̄xx)x �
1

2
(L̄2

x)x.

Integrating we obtain

L̄L̄xx �
1

2
L̄2
x = C1 + C0

Z
xL̄� 3

2dx,

15



where C1 is constant. Again, focussing on the left hand side we can write

xL̄� 3
2

✓
L̄L̄xx �

1

2
L̄2
x

◆
= x(L̄

1
2 )xx =

h
x(L̄

1
2 )x
i

x
� (L̄

1
2 )x,

and so we have the equation

h
x(L̄

1
2 )x
i

x
� (L̄

1
2 )x = C1xL̄

� 3
2 + C0xL̄

� 3
2

Z
xL̄� 3

2dx,

where we have absorbed the factor of 1
2 in C0 and C1. This can be easily integrated to yield

x(L̄
1
2 )x � L̄

1
2 = C2 + C1

Z
xL̄� 3

2dx+
1

2
C0

✓Z
xL̄� 3

2dx

◆2

, (2.4.5)

where C2 is a new constant. The equation above is not in standard form. However, it is still

possible to make progress. When multiplied by a factor xL̄� 3
2 , equation (2.4.5) above can be

written as

1

2
x2L̄�2L̄x � xL̄�1 = C2xL̄

� 3
2 + C1xL̄

� 3
2

Z
xL̄� 3

2dx

+
1

2
C0xL̄

� 3
2

✓Z
xL̄� 3

2dx

◆2

.

The left hand side can be written as a total derivative, and we have

✓
�1

2
x2L̄�1

◆

x

= C2xL̄
� 3

2 + C1xL̄
� 3

2

Z
xL̄� 3

2dx

+
1

2
C0xL̄

� 3
2

✓Z
xL̄� 3

2dx

◆2

.

The integral of this equation is

�1

2
x2L̄�1 = C3 + C2

✓Z
xL̄� 3

2dx

◆
+

1

2
C1

✓Z
xL̄� 3

2dx

◆2

+
1

6
C0

✓Z
xL̄� 3

2dx

◆3

,
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where C3 is constant. This can be simplified to

x2L̄�1 = �2C3 � 2C2

✓Z
xL̄� 3

2dx

◆
� C1

✓Z
xL̄� 3

2dx

◆2

�1

3
C0

✓Z
xL̄� 3

2dx

◆3

.

Redefining the constants in the above equation, we can write it as

x2L̄�1 = C̄3 + C̄2

✓Z
xL̄� 3

2dx

◆
+ C̄1

✓Z
xL̄� 3

2dx

◆2

+C̄0

✓Z
xL̄� 3

2dx

◆3

, (2.4.6)

where C̄3 = �2C3, C̄2 = �2C2, C̄1 = �C1 and C̄0 = �C0
3 . Therefore the third order equation

(2.4.4) has been integrated to yield the solution (2.4.6).

In general we can write the solution parametrically. For convenience, we let

u =

Z
xL̄� 3

2dx,

so that (2.4.6) becomes

x2ux =
�
C̄3 + C̄2u+ C̄1u

2 + C̄0u
3
� 3

2 .

In the above equation the variables separate, and we can write

x0 �
1

x
=

Z
du

�
C̄3 + C̄2u+ C̄1u2 + C̄0u3

� 3
2

, (2.4.7)

where x0 is constant. Now the function f̄(x) must be found satisfying the integrability condition

(2.3.7). In order to find f̄(x) satisfying this integrability condition, it is convenient to express the

solution in the parametric form

f̄(x) = L̄xxx,
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ux = xL̄� 3
2 ,

x0 �
1

x
= p(u),

where

p(u) =

Z
du

�
C̄3 + C̄2u+ C̄1u2 + C̄0u3

� 3
2

.

The evaluation of the integral is determined by the values of the constants C̄0, C̄1, C̄2 and C̄3.

In summary, we have found a new first integral of (2.2.4) given by (2.3.8) where f in (2.2.4) is

obtained via L after evaluating the integral in p(u).

2.5 Particular solutions

The evaluation of the integral in (2.4.7) has five cases depending on the nature of the factors of the

polynomial C̄3 + C̄2u+ C̄1u2 + C̄0u3. (Since the coefficients are arbitrary, the discriminant does

not help us to reduce the options.) The five cases are:

Case I One order-three factor

Case II One order-one factor and one order-two factor

Case III Three order-one (non-repeated) factors

Case IV One linear factor and one quadratic factor

Case V No factors

In order to illustrate the process we provide the details of the calculation for some of these cases.
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Case I: One order-three factor

This is the simplest case as the factors are repeated. If C̄3 + C̄2u + C̄1u2 + C̄0u3 has one factor

repeated three times then we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = (A+Bu)3,

with B 6= 0. In this case, the integral in (2.4.7) can be evaluated to give

x0 �
1

x
= � 2

7B
(A+Bu)�7/2,

so that

L̄ = x2/3ux
�2/3 = x2

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆6/7

.

Differentiating L̄ three times we obtain

f(x) =
48

343x5

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆�15/7

. (2.5.1)

After reparametrisation, f(x) can be written as

f(x) ⇠ 1

x5

✓
1� 1

x

◆�15/7

. (2.5.2)

Note that in this case the function f(x) can be found explicitly. This functional form is different

from (2.2.8) in the approach of Maharaj et al. (1996). Hence the first integral (2.3.8) for this

case is a new solution to the Emden-Fowler equation. For applications this form of the solution is

probably easier to utilize in modelling as f(x) has a simple explicit form. Now we can write the

first integral (2.3.8) in terms of x as follows

�1(t) = y � xyx + 2

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆6/7

y2

+
12

7x

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆�1/7

y2
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� 6

49x2

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆�8/7

y2

�4x

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆6/7

yyx

�12

7

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆�1/7

yyx

+2x2

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆6/7

y2x

+

"
192

343x4

✓
� 2

7B

◆�12/7✓
x0 �

1

x

◆�9/7
#

I

y3

+

"
576

2401

✓
� 2

7B

◆�12/7✓
x0 �

1

x

◆�16/7
#

I

y3

�2

3
K1y

3. (2.5.3)

The subscripts I in the equation (2.5.3) denote a remaining integration which we have omitted for

brevity. It can be observed that this first integral is different from the first integral obtained by

Maharaj et al. (1996).

In addition to the analysis performed by Maharaj et al. (1996), we substitute the function given

in (2.5.1) into the integrability condition (2.3.7) in order to find restriction(s) on the constant K1.

This substitution implies that K1 = 0 in the first integral (2.5.3). Similarly, in the Maharaj et. al

(1996) solution, substituting (2.2.8) into the integrability condition (2.2.7) yields K0 = 0 in the

first integral (2.2.5).
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Case II: One order-one factor and one order-two factor

If C̄3 + C̄2u+ C̄1u2 + C̄0u3 has one factor repeated then we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = (A+Bu)(u+ C)2,

with B 6= 0. In this case, the integral in (2.4.7) can be evaluated using Gradshteyn and Ryzhik

(1983) to obtain

p(u) =

✓
15B2

4(A� BC)3
+

5B

4u(A� BC)2
� 1

2u2(A� BC)

◆
1p

A+Bu� BC

+
15B2

8(A� BC)3

Z
du

u
p
A+Bu� BC

, (2.5.4)

where the integral can be expressed in terms of elementary functions depending on the sign of

A� BC. For this case it is not possible to obtain the function u(x) explicitly, as it is not possible

to evaluate the integral on the right hand side of (2.5.4). Therefore the solution can only be given

parametrically. However, the integral on the right hand side of (2.5.4) can be evaluated in special

cases; for example A = 0 and C = 0. If A = 0, we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = Bu(u+ C)2.

Using the computer package Maple (Monagan et al. 2005) to evaluate the integral in (2.4.7), we

obtain

p(u) = �7

4

p
Bu

BC3(BC +Bu)
� 15

4

arctan
⇣p

Bup
BC

⌘

BC3
p
BC

� 1

2

p
Bu

c2(BC +Bu)2

� 2

BC3
p
Bu

.

If C = 0, then we have that

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = (A+Bu)u2.
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We evaluate the integral in (2.4.7) using Mathematica [104] to obtain

p(u) =
15B2u2 + 5ABu� 2A2

4A3u2
p
A+Bu

�
15B2 tanh

⇣p
A+Bup

A

⌘

4A7/2
.

We observe that even for these special cases of A and C, it is not easy to perform the inversion in

order to obtain the function u(x) explicitly.

Case III: Three order-one (non-repeated) factors

If C̄3 + C̄2u+ C̄1u2 + C̄0u3 has three non-repeated factors, then we can write

C̄3 + C̄2u+ C̄1u
2 + C̄0u

3 = D(A� u)(B � u)(C � u),

with D 6= 0. In this case, with the aid of Mathematica (Wolfram 2007), the integral in (2.4.7) can

be written in terms of elliptic integrals to obtain

p(u) =
2[C(A� C) + B(A� B)� u(2A� C � B)]

D3/2(A� B)(A� C)(B � C)2
p

(A� u)(B � u)(C � u)

+
2[(B � C)(A+B � 2C)F (↵, �)]

D3/2(A� B)2(B � C)2
p

(A� C)3

�2[(A2 +B2 + C2 � AB � AB � BC)E(↵, �)]

D3/2(A� B)2(B � C)2
p
(A� C)3

,

where we have set

↵ = arcsin

r
A� C

A� u
,

and

� =

r
A� B

A� C
.

In this form of the solution, the quantities F (↵, �) and E(↵, �) are elliptic integrals of the first

and second kind, respectively. In this case of non-repeated factors, we also cannot obtain u(x)
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explicitly and hence the solution can only be given in parametric form.

In cases IV and V, the integral (2.4.7) can also be evaluated using elliptic functions. However,

the subsequent expressions are lengthy and, since we cannot obtain f(x) explicitly, we omit those

results here.

2.6 Discussion

The Emden-Fowler equation yxx = f(x)y2 governs the behaviour of spherically symmetric shear-

free uncharged fluid distributions. In this chapter we investigated the integrability of this equation

and found a new class of exact solutions. This equation has several applications in general rel-

ativity and other areas of mathematical physics. We multiplied the Emden-Fowler equation by

an integrating factor x and used integration by parts to obtain the first integral which is given by

(2.3.8) subject to the integrability condition (2.3.7). The first integral and the integrability con-

dition are different from the corresponding ones given in Maharaj et al. (1996). We were able

to solve the integral equation (2.3.7) by first transforming it to a third order ordinary differential

equation (2.4.4) whose solution was given by (2.4.6). For convenience we wrote the solution of

(2.4.4) parametrically, which enabled us to find f(x). One form of the function f(x) was given by

f(x) ⇠ 1

x5

✓
1� 1

x

◆�15/7

,

in (2.5.2) so that the first integral could be written parametrically as (2.5.3). Remarkably we have

obtained a new solution of the Emden-Fowler equation (2.2.4) with a new functional dependence

of f(x) given in (2.5.2). Note that the solutions by Maharaj et al. (1996), Srivastava (1987) and

Stephani (1983) are not regained from our solution. Thus, our results complement those and to-

gether, constitute a more complete analysis of (2.2.4). This first integral may be related to the
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geometrical structure of the Emden-Fowler equation. The complexity of a self-gravitating rela-

tivistic shear-free fluid has been shown to be related to a first integral arising from the integration

of the Emden-Fowler equation in our treatment.

Extensions of the approach in this chapter to include charged matter distributions may also lead to

useful results. In the presence of charge, the Emden-Fowler equation (2.2.4) becomes

yxx = f(x)y2 + g(x)y3, (2.6.1)

where g(x) is related to the charge distribution (see Wafo Soh and Mahomed (2000)). Equation

(2.6.1) arises from the analysis of the Einstein-Maxwell field equations. It may be possible to

consider extensions of this work to include anisotropy and dissipation, in addition to the electro-

magnetic field. For this physical scenario, the generalization of (2.6.1) will involve terms contain-

ing the heat flux and anisotropic pressure. The subsequent analysis of the resulting differential

equation will involve an extension of the approach developed in this chapter. For a recent analysis

of charged fluids with anisotropy and dissipation relevant to radiating stars, see the analysis of

Abebe and Maharaj (2019), where the geometric approach of Lie symmetries provided new so-

lutions. The complexity of a self-gravitating relativistically charged, anisotropic, and dissipative

fluid will then be related to a first integral arising from the integration of the generalized Emden-

Fowler equation; we will show this in the next chapter. This suggests that there may be a deeper

connection between general matter fluids, first integrals and complexity. This deserves further

investigation.
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Chapter 3

Charged shear-free and complexity in first

integrals

3.1 Introduction

The concept of complexity was introduced by Herrera (2018) for self-gravitating systems in gen-

eral relativity. This approach has proved to be useful in studying the behaviour of highly dense

stars, neutron stars and radiating stars in strong gravitational fields. Complexity has been studied

in spherical systems, cylindrical systems, axial systems and hyperbolic systems by various re-

searchers (Arias et al. 2022, Casadio et al. 2019, Herrera et al. 2019, Herrera et al. 2020, Herrera

et al. 2021, Jasim et al. 2021, Maurya and Nag 2022, Maurya et al. 2022, Sharif and Butt 2018a,

Sharif and Butt 2018b, Sharif and Butt 2019, Sharif and Tariq 2020) showing its applicability in a

variety of applications. Apart from general relativity the concept of complexity has been studied

in extended theories of gravity including Einstein-Gauss-Bonnet gravity, Lovelock gravity, f(R)

gravity and other generalizations (Abbas and Nazar 2018, Arias et al. 2022, Sharif et al. 2019,

Yousaf 2020, Yousaf et al. 2020a, Yousaf et al. 2020b, Zubair and Azmat 2020). It is important

to obtain a deeper insight into the behaviour of relativistic self-gravitating fluids, including dis-

sipative effects. Charged shear-free relativistic fluids have been applied to many stellar systems

including radiating stars with the Vaidya geometry describing the external atmosphere. In this

study we focus on charged shear-free fluids with spherical symmetry. A new first integral is iden-

tified. This suggests a deeper connection between first integrals, charged dissipative distributions

25



and the complexity of self-gravitating relativistic fluids in general. Observe that it is difficult to

obtain first integrals directly from the field equations for the condition of pressure isotropy. Also

note that first integrals are unique. In our treatment we show that a second first integral can be

found, and we believe that this should be reflected in the complexity as defined by Herrera (2018),

of the charged shear-free gravitating fluid. In a future study we intend to seek a general structure

relating complexity to first integrals and gravitating relativistic fluids.

Exact solutions to the Einstein-Maxwell equations are important in relativistic astrophysics and

cosmology as they are used to investigate properties of physical phenomena. The Einstein-

Maxwell equations may be used to describe charged compact objects with strong electromagnetic

effects (Kweyama et al. 2012). There has been substantial research in seeking exact solutions to

the Einstein-Maxwell equations. This research include treatments of Ivanov (2002), Kweyama et

al. (2012), Sharma et al. (2004) and Srivastava (1992) among others. Assumptions of spherical

symmetry in spacetimes and shear-free matter distribution are usually made when seeking exact

solutions to the Einstein field equations with uncharged matter. This simplifies the Einstein field

equations to a single partial differential equation

yxx = f(x)y2

which can be transformed into an ordinary differential equation. Classes of solutions to this or-

dinary differential equation have been found by Kustaanheimo and Qvist (1948), Maharaj et al.

(1996), Srivastava (1987), Stephani (1983) and Stephani et al. (2009). Similarly, when seeking ex-

act solutions to the Einstein-Maxwell equations with charged matter, spherical symmetry and the

absence of shear is usually assumed. These assumptions simplify the Einstein-Maxwell equations

to a single partial differential equation

yxx = f(x)y2 + g(x)y3.

26



This equation consists of an additional term g(x)y3 compared to its uncharged counterpart. This

term is due to the presence of the electromagnetic field. Kweyama et al. (2012) investigated in-

tegrability and found exact solutions to this equation using an approach suggested by Srivastava

(1987). Krasinski (2006) provide a review of charged solutions with a Friedmann limit. Sussman

(1988a, 1988b) performed a detailed physical analysis of the Einstein-Maxwell equations. The

condition of vanishing shear has been applied to different physical applications in cosmology and

astrophysics.

Vanishing shear leads to simplification of the Einstein-Maxwell equations. An important reason

to consider the shear-free condition and homogeneous expansion rate is the connection to the

analogue of homologous fluids in the classical Newtonian limit. This implies that the shear-free

restriction has a meaningful basis in general relativity, and other gravity theories. It should be

noted that shear-free fluids may become unstable because of pertubations due to anisotropic ef-

fects and dissipative effects. The stability of shear-free configurations, and general dissipative

matter in relativistic astrophysics, has been studied in the treatments (Herrera 2020, Herrera et al.

2010, Herrera et al. 2011, Herrera et al. 2012, Noureen et al. 2015, Pinheiro and Chan 2013). As

observed in these studies pressure anisotropy and dissipation are effects that should be studied,

including the stability of the configuration, as the relativistic fluid evolves from the isotropic state.

These quantities play an important role in models of gravitational collapse.

In this chapter we investigate the integrability properties and find exact solutions to the charged

field equation

yxx = f(x)y2 + g(x)y3

using an ad hoc approach adopted in Maharaj et al. (1996). In Section 3.2 we show how the
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Einstein-Maxwell equations reduce to this master equation and briefly discuss the results obtained

by Kweyama et al. (2012). We obtain our new first integral in Section 3.3. This first integral

is subject to two integrability conditions which are integral equations. We solve these integral

equations in Section 3.4. We find restrictions on the functions f(x) and g(x) in Section 3.5. Our

results indicate that first integrals are obtainable for charged shear-free fluids extending the result

of Gumede et al (2021).

3.2 Charged shear-free fluids

The set of the Einstein-Maxwell equations follow from variation of the Lagrangian

L =
1

2

✓
R� 1

4
FabF

ab

◆
+ Lm, (3.2.1)

where R is the Ricci scalar, Fab is the electromagnetic field tensor and Lm represents the matter

source. Variation of the Lagrangian L leads to the Einstein-Maxwell equations

Rab �
1

2
Rgab = (µ+ p) uaub + pgab

+2

✓
Fa

cFbc �
1

4
gabFcdF

cd

◆
, (3.2.2a)

Fab;c + Fbc;a + Fca;b = 0, (3.2.2b)

F ab
;b =

1

2
Ja, (3.2.2c)

for a perfect fluid source with energy density µ and pressure p. Note that Ja = �ua where � is the

proper charge density and ua is a timelike fluid 4�velocity.
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We consider a spherical spacetime with the metric

ds2 = �e2⌫(t,r)dt2 + e2�(t,r)
⇥
dr2 + r2(d✓2 + sin2 ✓�2)

⇤
, (3.2.3)

for a charged perfect fluid. The Einstein field equations for the line element (3.2.3), for a shear-free

and charged matter distribution, can be written as

µ = 3
�t

2

e2⌫
� 1

e2�

✓
2�rr + �2r +

4�r
r

◆
� E2

r4e4�
, (3.2.4a)

p =
1

e2⌫
�
�2�tt � 3�2t + 2⌫t�t

�

+
1

e2�

✓
�2r + 2⌫r�r +

2⌫r
r

+
2�r
r

◆
+

E2

r4e4�
, (3.2.4b)

p =
1

e2⌫
�
�2�tt � 3�2t + 2⌫t�t

�

+
1

e2�

✓
⌫rr + ⌫2r +

⌫r
r
+
�rr
r

+ �rr

◆
� E2

r4e4�
, (3.2.4c)

0 = ⌫r�t � �tr. (3.2.4d)

These quantities are measured relative to the comoving fluid 4�velocity ua = e�⌫�a
0. The gravi-

tating equations are supplemented with the Maxwell equations

E = r2e��⌫�r, (3.2.5a)

Er = �r2e3�. (3.2.5b)

(The subscripts r and t represent partial derivatives with respect to r and t, respectively.) The term
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�r = F10 is the only nonzero component of the electromagnetic field tensor Fab = �b;a��a;b with

�a = (�(t, r), 0, 0, 0). Note that � is the proper charge density and E is the electric field intensity

which represents the total charge of the distribution.

The Einstein-Maxwell system of equations (3.2.4) and (3.2.5) can also be written in the equivalent

form

µ = 3e2h � e�2�

✓
2�rr + �2r +

4�r
r

◆
� E2

r4e4�
, (3.2.6a)

p =
1

�te3�


e�
✓
�2r +

2�r
r

◆
� e3�+2h � E2

r4e4�

�

t

, (3.2.6b)

e⌫ = �te
�h, (3.2.6c)

e�
✓
�rr � �2r �

�r
r

◆
= �⇢(r)� E2

r4e4�
, (3.2.6d)

� = r�2e�3�Er, (3.2.6e)

where h = h(t) and ⇢ = ⇢(r) are arbitrary functions of integration. The functions h and ⇢ need

to be specified in order to find exact solutions for the field equations. The quantity E = E(r) is

also a function of integration. The metric function � is obtained from the condition of pressure

isotropy (3.2.6d) which has been generalized to include electromagnetic effects. The remaining

metric function ⌫ then follows from (3.2.6c). The energy density µ and the isotropic pressure p

can be calculated using equations (3.2.6a) and (3.2.6b). Using the transformation

x = r2,
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y(x, t) = e��,

and setting

f(x) =
⇢

4r2
,

g(x) =
E2

2r6
,

we can rewrite (3.2.6d) as

yxx = f(x)y2 + g(x)y3. (3.2.7)

The partial differential equation (3.2.7) is the master equation governing the gravitational dynam-

ics of a shear-free charged fluid in general relativity. Since there are no temporal derivatives in

(3.2.7) we can treat it as an ordinary differential equation but note that the arbitrary quantities

that arise from integration are functions of t. If the function g = 0, then the equation reduces to

yxx = f(x)y2 for a neutral fluid. The neutral case has been studied by many researchers including

Gumede et al. (2021), Kustaanheimo (1948), Maharaj et al. (1996), Stephani (1983), Stephani et

al. (2009) and Wafo Soh and Mahomed (1999).

A recent analysis of the master equation (3.2.7) was performed by Kweyama et al. (2012) where

they found its first integral by directly integrating this equation using integration by parts. They

found the first integral of (3.2.7) to be

⌧0(t) = �yx + fIy
2 + gIy

3 � 2fIIyyx + 2fIIIy
2
x

+2


(ffII)I �

1

3
C0

�
y3 + [2(gfII)I � C1]y

4, (3.2.8)

subject to the integrability conditions

C0 = 2ffIII + 3(ffII)I +
3

2
gI , (3.2.9a)
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C1 = gfIII + 2(gfII)I , (3.2.9b)

where C0 and C1 are constants, ⌧0(t) is an arbitrary function of integration, fI =
R
fdx and

gI =
R
gdx. The form (3.2.9) is difficult to analyse as they are integral equations. They can be

converted to nonlinear differential equations. Solving the integral equations (3.2.9) gives specific

forms of f(x) and g(x) in terms of elementary functions. In one instance, these functions are

given by

f(x) =
24

75
(5b)4/5(x� x0)

�11/5,

and

g(x) = C0(5b)
�12/5(x� x0)

�12/5,

where b is an arbitrary constant and x0 is a constant of integration.

We use a similar approach to obtain a new first integral of the charged generalization (3.2.7)

subject to different integrability conditions to obtain different forms of f(x) and g(x) in the next

section.

3.3 A first integral

In order to obtain (3.2.8), Kweyama et al. (2012) adopted a method first suggested by Srivastava

(1987), and subsequently extended by Maharaj et al. (2012). The approach was simple to apply

– the left hand side of (3.2.7) was integrated directly and the right hand side integrated by parts.

However, note that the difficulty that arises is that the process yields integral equations which need

to be solved to complete an exact solution. Observe that it is difficult to explicitly find first inte-

grals in practice. There is no algorithm that generates them systematically. Here we show that a
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new first integral arises, in a simple approach, by adapting a previous method. We multiply equa-

tion (3.2.7) by a function to generate a new differential equation, eventually leading to a new first

integral. There is no guarantee that this approach will work in general; we find that this simple

idea is effective for a relativistic charged gravitating fluid.

We multiply (3.2.7) by x to obtain

xyxx = f̄y2 + ḡy3, (3.3.1)

where for convenience we have let

f̄ = xf,

and

ḡ = xg.

We observe that the left hand side of (3.3.1) can still be integrated directly, and we can apply

integration by parts to the right hand side. This yields

xyx � y = f̄Iy
2 + ḡIy

3 � 2

Z
f̄Iyyxdx� 3

Z
ḡIy

2yxdx�  1(t), (3.3.2)

where we have let
Z

f̄dx =

Z
xfdx = f̄I ,

and
Z

ḡdx =

Z
xgdx = ḡI ,

for convenience, and  1(t) is a function of integration. Integrating f̄Iyyx and using (3.2.7), we

obtain

xyx � y = f̄Iy
2 + ḡIy

3 � 2f̄IIyyx + 2

Z
f̄IIy

2
xdx+ 2

Z
ff̄IIy

3dx
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+2

Z
gf̄IIy

4dx� 3

Z
ḡIy

2yxdx�  1(t). (3.3.3)

Integrating ff̄IIy3, gf̄IIy4 and f̄IIy2x and substituting in (3.3.3), we obtain

xyx � y = f̄Iy
2 + ḡIy

3 � 2f̄IIyyx + 2(ff̄II)Iy
3 + 2

�
gf̄II

�
I
y4 + 2f̄IIIy

2
x

�2

3

Z (
2ff̄III + 3(ff̄II)I +

3

2
ḡI

�✓
d(y3)

dx

◆)
dx

�
Z ( ⇥

gf̄III + 2(gf̄II)I
⇤✓d(y4)

dx

◆)
dx�  1(t). (3.3.4)

The integrals in (3.3.4) can be evaluated if

K0 = 2ff̄III + 3(ff̄II)I +
3

2
ḡI , (3.3.5a)

K1 = gf̄III + 2(gf̄II)I , (3.3.5b)

where K0 and K1 are arbitrary constants. A first integral of (2.2.4) is then given by

 1(t) = y � xyx + f̄Iy
2 + ḡIy

3 � 2f̄IIyyx + 2f̄IIIy
2
x

+2


(ff̄II)I �

1

3
K0

�
y3 +

⇥
2(gf̄II)I �K1

⇤
y4, (3.3.6)

subject to the integral Equations (3.3.5). Note that (3.3.6) is a new first integral of (3.2.7) subject

to new integrability conditions. Thus, the first integral exists for new functions f(x) and g(x)

for a charged shear-free matter distribution. We show in Section 3.6 that this new first integral is

independent of the charged first integral found by Kweyama et al. (2012).
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3.4 Integral equations

The two equations in (3.3.5) are integral equations that need to be solved. To complete the analysis

we need to determine the form of the functions f(x) and g(x). In an attempt to seek the form of

the functions f and g, we rewrite the integral equations (3.3.5) as ordinary differential equations

as these are (usually) easier to solve. Setting

L̄ = f̄III

and differentiating (3.3.5b) we obtain

�
gL̄
�
x
+ 2gL̄x = 0,

whose solution is given by

g = K2L̄
�3. (3.4.1)

In the equation above, K2 is a constant of integration.

Differentiating (3.3.5a) and using (3.4.1) we obtain

fxL̄+
5

2
fL̄x = �3

4
K2xL̄

�3

which can be written as the fourth order differential equation

✓
1

x
L̄5/2L̄xxx

◆

x

= �3

4
K2xL̄

�3/2, (3.4.2)

since f = 1
x f̄ = 1

x L̄xxx.

Below we show how (3.4.2) can be integrated repeatedly to obtain L̄.
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Integrating (3.4.2) once we obtain

1

x
L̄5/2L̄xxx = K3 �

3

4
K2

Z
xL̄�3/2dx.

Multiplying this equation by xL̄�3/2 and writing the left hand side as a total derivative we obtain

�
L̄L̄xx

�
x
� 1

2

�
L̄2
x

�
x
= K3xL̄

�3/2 � 3

4
K2xL̄

�3/2

Z
xL̄�3/2dx,

which integrates to

L̄L̄xx �
1

2
L̄2
x = K4 +K3

Z
xL̄�3/2dx� 3

8
K2

✓Z
xL̄�3/2

◆2

.

Multiplying this equation by xL̄�3/2 we can rewrite it as

x
�
L̄1/2

�
xx

= K4xL̄
�3/2 +K3xL̄

�3/2

Z
xL̄�3/2dx

�3

8
K2xL̄

�3/2

✓Z
xL̄�3/2

◆2

. (3.4.3)

Since

x
�
L̄1/2

�
xx

=
⇥
x
�
L̄1/2

�
x

⇤
x
�
�
L̄1/2

�
x
,

equation (3.4.3) can be written as

⇥
x
�
L̄1/2

�
x

⇤
x
�
�
L̄1/2

�
x

= K4xL̄
�3/2 +K3xL̄

�3/2

Z
xL̄�3/2dx

�3

8
K2xL̄

�3/2

✓Z
xL̄�3/2

◆2

,

and integrated to obtain

�
L̄1/2

�
x
� L̄1/2 = K4xL̄

�3/2 +K3xL̄
�3/2

Z
xL̄�3/2dx

�3

8
K2xL̄

�3/2

✓Z
xL̄�3/2

◆2

.
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Multiplying the equation above by xL̄�3/2 and writing the left hand side as a total derivative we

obtain

✓
�1

2
x2L̄�1

◆

x

= K4xL̄
�3/2 +K3xL̄

�3/2

Z
xL̄�3/2dx

�3

8
K2xL̄

�3/2

✓Z
xL̄�3/2

◆2

.

Integrating yields

x2L̄�1 = K6 +K5

Z
xL̄�3/2dx+

K4

2

✓Z
xL̄�3/2

◆2

+
K3

6

✓Z
xL̄�3/2

◆3

� K2

32

✓Z
xL̄�3/2

◆4

, (3.4.4)

where K3, K4, K5 and K6 are constants of integration and we absorbed a factor of �1
2 into the

Ki’s.

The solution of (3.4.4) can be written parametrically in general. The constant K2 is related to the

charge. For neutral fluids K2 = 0 and the polynomial in p(u) is third order. For charged fluids

K2 6= 0 and the polynomial in p(u) is fourth order. Hence the presence of the electromagnetic

field changes the nature of the exact solutions that are permitted when compared to neutral matter.

It is convenient to define

u =

Z
xL̄�3/2dx,

so that (3.4.4) becomes

x2ux =

✓
K6 +K5u+

1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4

◆3/2

.
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This equation is separable and can be integrated to obtain

x0 �
1

x
=

Z
du

�
K6 +K5u+ 1

2K4u2 + 1
6K3u3 � 1

32K2u4
�3/2 , (3.4.5)

where x0 is a constant of integration. The evaluation of the integral on the right hand side of (3.4.5)

above depends on the nature of the roots of the polynomial K6+K5u+
1
2K4u2+ 1

6K3u3� 1
32K2u4.

In order to find f̄(x) and ḡ(x) satisfying the integrability conditions (3.3.5), it is convenient to

express the solution in the parametric form

f̄(x) = L̄xxx,

g = K2L̄
�3

ux = xL̄� 3
2 ,

x0 �
1

x
= p(u),

where

p(u) =

Z
du

�
K6 +K5u+ 1

2K4u2 + 1
6K3u3 � 1

32K2u4
�3/2 . (3.4.6)

3.5 Particular solutions

The evaluation of the integral in (3.4.5) can be reduced to nine cases depending on the nature of

the factors of the polynomial

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4

that appear in p(u). The nine cases correspond to

Case I: One order-four linear factor
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Case II: One order-three linear factor

Case III: One order-two linear factor and one order-one quadratic factor

Case IV: One order-two linear factor and two order-one linear factors

Case V: Two order-two linear factors

Case VI: Four non-repeated linear factors

Case VII: One order-two quadratic factor

Case VIII: Two order-one quadratic factors

Case IX: One order-one cubic factor.

We discuss these cases below.

Case I: One order-four linear factor

If K6 +K5u+ 1
2K4u2 + 1

6K3u3 � 1
32K2u4 has one linear factor repeated four times then we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ bu)4,

with b 6= 0. The integral in (3.4.5) or (3.4.6) can be evaluated to obtain

p(u) = � 1

5b
(a+ bu)�5 ,

so that

L̄ = x2

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆4/5

.

Differentiating L̄ three times and using (3.4.1) we obtain

f(x) =
24

125x5

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆�11/5

, (3.5.1a)

g(x) =
K2

x6

✓
� 1

5b

◆12/5✓
x0 �

1

x

◆�12/5

. (3.5.1b)
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Hence the functions f(x) and g(x) can be found explicitly in this Case I. After reparametrisation

we can write

f(x) ⇠ 1

x5

✓
1� 1

x

◆�11/5

, (3.5.2a)

g(x) ⇠ 1

x6

✓
1� 1

x

◆�12/5

. (3.5.2b)

This is the simplest form. The first integral (3.3.6) becomes

 1(t) = y � xyx + 2

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆4/5

y2

+
8

5x

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆�1/5

y2 � 4

25x2

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆�6/5

y2

+

"
K2

x5

✓
� 1

5b

◆12/5✓
x0 �

1

x

◆�12/5
#

I

y3 � 4x

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆4/5

yyx

+
8

5

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆�1/5

yyx + 2x2

✓
� 1

5b

◆�4/5✓
x0 �

1

x

◆4/5

y2x

+2

"
48

125x4

✓
� 1

5b

◆�8/5✓
x0 �

1

x

◆�7/5

+
96

625x2

✓
� 1

5b

◆�8/5✓
x0 �

1

x

◆�12/5
#

I

y3

+2

"
2K2

x5

✓
� 1

5b

◆8/5✓
x0 �

1

x

◆�8/5

+
4K2

5x6

✓
� 1

5b

◆8/5✓
x0 �

1

x

◆�13/5
#

I

y4

�2

3
K0y

3 �K1y
4, (3.5.3)

where the subscripts I denote the remaining integration. This first integral is a new solution to

the Einstein-Maxwell equations for the functions f and g given in (3.5.2). It corresponds to a
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shear-free spherically symmetric charged fluid. Interestingly, there is no corresponding neutral

solution as we must have b 6= 0 (equivalently K2 6= 0) otherwise the polynomial in (3.4.6) is not

fourth order. This means that charge is always present.

As a final check on our results, we substitute the forms (3.5.1a) and (3.5.1b) into the integrability

conditions (3.3.5) in order to find any restrictions on the constants K0 and K1. In this case, we

find that these constants are both equal to zero. We note that the same restriction occurs in the

Kweyama et al. (2012) model though this was not observed at that time.

Case II: One order-three linear factor

If K6 +K5u+ 1
2K4u2 + 1

6K3u3 � 1
32K2u4 has one order-three linear factor, then we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ bu)(u+ c)3.

We can evaluate the integral in (3.4.5) with the help of the package Mathematica (Wolfram 2007),

to obtain

p(u) =
2
p

(a+ bu)(u+ c)

35(a� bc)5


35b4

a+ bu
+

93b3

u+ c
� 29b2(a� bc)

(u+ c)2

�

+
2
p

(a+ bu)(u+ c)

35(a� bc)5


13b(a� bc)2

(u+ c)3
� 5(a� bc)3

(u+ c)4

�
.

We observe that in this case, the integral in (3.4.5) can be expressed in terms of elementary func-

tions. However, it is not straightforward to perform the inversion to find u(x), and find f(x) and

g(x) explicitly as in the previous case.
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If we let g = 0, K2 = 0 and b = 0, then

p(u) =
2

7
a�3/2 (u+ c)�7/2 ,

L̄ = a2/7
✓
2

7

◆�4/2✓
�2

7

◆�2/3

x2

✓
x0 �

1

x

◆6/7

.

After reparametrisation, f(x) can be written as

f(x) ⇠ 1

x5

✓
1� 1

x

◆�15/7

,

which was found previously in the case of a shear-free spherically symmetric uncharged fluid

(Gumede et al. 2021). The corresponding uncharged first integral is given by

 1(t) = y � xyx + 2

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆6/7

y2

+
12

7x

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆�1/7

y2

� 6

49x2

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆�8/7

y2

�4x

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆6/7

yyx

�12

7

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆�1/7

yyx

+2x2

✓
� 2

7B

◆�6/7✓
x0 �

1

x

◆6/7

y2x

+

"
192

343x4

✓
� 2

7B

◆�12/7✓
x0 �

1

x

◆�9/7
#

I

y3

+

"
576

2401

✓
� 2

7B

◆�12/7✓
x0 �

1

x

◆�16/7
#

I

y3
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�2

3
K1y

3. (3.5.4)

as established earlier in Chapter 2.

Case III: One order-two linear factor and one order-one quadratic factor

If K6 + K5u + 1
2K4u2 + 1

6K3u3 � 1
32K2u4 has one order-two linear factor and one order-one

quadratic factor, then we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ bu+ cu2)(u+ d)2,

with b2 � 4ac < 0. We evaluate the integral in (3.4.5) with the aid of equations (2.266) and

(2.269.6) in Gradshteyn and Rhyzhik (1983) to obtain

p(u) =

⇢
15(b� 2cd)4 � 62c(b� 2cd)2(a� bd+ cd2) + 24c2(a� bd+ cd2)2

2(a� bd+ cd2)[4c(a� bd+ cd2)� (b� 2cd)2]

+
c(b� 2cd)[15(b� 2cd)2 � 52c(a� bd+ cd2)]u

2(a� bd+ cd2)�

� 1

(a� bd+ cd2)u2
� 5(b� 2cd)

2(a� bd+ cd2)u

�
1

2
p
(a� bd+ cd2) + (b� 2cd)u+ cu2

+
15(b� 2cd)2 � 12c(a� bd+ cd2)

8(a� bd+ cd2)3

Z
du

u
p

(a� bd+ cd2) + (b� 2cd)u+ cu2
, (3.5.5)

where � = 4(a � bd + cd2)c � (b � 2cd)2. The exact form of the integral on the right hand side

of (3.5.5) depends on the signs of � and a� bd+ cd2.
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Specific examples of the constants a, b or d make the integral on the right hand side of (3.4.5)

easier to write in terms of elementary functions. For example, if a = 0, then we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (bu+ cu2)(u+ d)2,

which can be evaluated using [equation (2.269)](Gradshteyn and Ryzhik 1983) to obtain

p(u) =
2

7

⇢
� 1

(b� 2cd)u3
+

8c

5(b� 2cd)u2
� 16c2

5(b� 2cd)3u
+

64c3

5(b� 2cd)4

+
128c4u

5(b� 2cd)5

�
1p

(b� 2cd)u+ cu2
.

As a second example if b = 0, then we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ cu2)(u+ d)2.

Using Mathematica (Wolfram 2007) and evaluating the integral in (3.4.5) yields

p(u) =
1

2

⇢
�a3 + 2c3d3u(d+ u)3 � a2c(10d2 + 11du+ 3u2)

a(a+ cd2)3(d+ u)2
p
a+ cu2

+
ac2d(6d3 + 6d2u� 14du2 � 13u3)

a(a+ cd2)3(d+ u)2
p
a+ cu2

� 3c(a� 4cd2) log[d+ u]

(a+ cd2)7/2

+
3c(a� 4cd2) log[a� cdu+

p
(a+ cd2)(a+ cu2)]

(a+ cd2)7/2

�
.

Thirdly if d = 0, then we have that

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ bu+ cu2)u2.

With the aid of Mathematica (Wolfram 2007), we evaluate the integral in (3.4.5) to obtain

p(u) =
1

8a7/2(�b2 + 4ac)u2
p

a+ u(b+ cu)

⇢
� 2

p
a[8a3c+ 15b3u2(b+ cu)
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+abu(5b2 � 62bcu� 52c2u2)� 2a2(b2 + 10bcu� 12c2u2)]

�3(5b4 � 24ab2c+ 16a2c2)u2
p

a+ u(b+ cu) log[u]

+3(5b2 � 24ab2c+ 16a2c2)u2
p

a+ u(b+ cu) log[2a+ bu+ 2
p
a
p
a+ u(bu+ c)]

�
,

expressed in terms of elementary functions. As a fourth example if d = b = 0, then (3.4.5)

becomes

p(u) =
�
p
a(a+ 3cu2)� 3cu2

p
a+ cu2

�
log[u]� log[a+

p
a
p
a+ cu2]

�

2a5/2u2
p
a+ cu2

.

Finally, we study the case where a = d = 0. In this case, evaluating the integral in (3.4.5) yields

p(u) =
2(�5b4 + 8b3cu� 16b2c2u2 + 64bc3u3 + 128c4u4)

35b5u3
p

u(b+ cu)
.

We observe that if the polynomial K6 + K5u + 1
2K4u2 + 1

6K3u3 � 1
32K2u4 has one order-two

linear factor and one order-one quadratic factor, it is difficult to obtain f(x) and g(x) explicitly as

the expressions for p cannot be inverted to obtain u.

Case IV: One order-two linear factor and two order-one linear factors

If the polynomial K6+K5u+
1
2K4u2+ 1

6K3u3� 1
32K2u4 has one order-two linear factor and two

order-one linear factors, then we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ bu)(c+ du)(u+ e)2.

In this case, the integral in (3.4.5) can be expressed completely in terms of elementary functions

and can be obtained using Mathematica (Wolfram 2007). However we do not include it here due

to its length, and the fact that u cannot be obtained explicitly.
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Case V: Two order-two linear factors

With two order-one linear factors, we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ bu)2(u+ c)2.

The integral in (3.4.5) may be evaluated to obtain

p(u) =
3b2

(a� bc)4(a+ bu)
+

6b2 log[u+ c]

(a� bc)5
+

1

2(a� bc)3(a+ bu)2

�6b2 log[a+ u]

(a� bc)5
� 1

2(a� bc)3(u+ c)2
+

3b

(a� bc)4(u+ c)
.

Setting the constants a = 0 or c = 0 simplifies the result. For example, if c = 0, then we have

p(u) =
3b2

a4(a+ bu)
+

6b2 log[u]

a5
+

b2

2a3(a+ bu)2
� 6b2 log[a+ bu]

a5

+
3b

a4u
� 1

2a3u2
,

while for a = 0 we have (Monagan et al. 2005)

p(u) =
6 log[u]

b3c5
� 6 log[u+ c]

b3c5
+

3

b3c4u
+

1

2b3c3(u+ c)2

+
3

b3c4(u+ c)
� 1

2b3c3u2
.

However, due to the combination of logarithmic terms and powers of u, one cannot invert in order

to obtain u(x) explicitly.

Case VI: Four non-repeated linear factors

With four non-repeated linear factors, we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = e(a+ u)(b+ u)(c+ u)(d+ u)
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with e 6= 0. The integral in (3.4.5) is given by

p(u) =
2e�3/2

(a� b)
p

(a+ u)(b+ u)(c+ u)(d+ u)

⇥

(a+ u)(b+ u)

(b� c)(a� d)

� 
2

(b� d)2
1

(b� d)(c� d)
+

1

(a� c)(c� d)

�

+


(a+ u)(b+ u)

(b� c)(a� d)

� 
2(d+ u)(b+ u)

(a� b)(a� d)2
1

(b� c)(b� d)(a� c)

�
� b+ u

(b� c)(b� d)(a� c)

�

� 4e�3/2

(a� b)
p
b� d


1

(a� d)2(c� d)
p
a� c

+

p
a� c

(a� b)(b� d)(b� c)2

�
E(↵, p)

� 4e�3/2

(a� b)
p
b� d


a� b� c+ d

(b� c)(c� d)2(a� c)3/2

�
E(↵, p)

+
2e�3/2

(a� d)(b� c)(a� c)3/2(b� d)3/2
⇥

2(a+ b� c� d)2

(b� c)(a� d)

�
F (↵, p)

+


(a� b� c+ d)2

(a� b)(c� d)

�
F (↵, p), (0 < d < c < b < a). (3.5.6)

In the above

↵ = arcsin

s
(a� c)(u+ d)

(a� d)(u+ c)
, p =

(b� c)(a� d)

(a� c)(b� d)
,

and F (↵, p) and E(↵, p) are the elliptic integrals of the first and second kind, respectively (see

also Kweyama et al. (2012)). We did not include the special cases in this case because they do not

simplify the integral, which are still in terms of elliptic integrals and they do not have an uncharged

limit.
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Case VII: One order-two quadratic factor

With one order-two quadratic factor, we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ bu+ cu2)2.

Using equation (2.173.2) in Gradshteyn and Ryzhik (1983), the integral in (3.4.5) may be evalu-

ated to obtain

p(u) =
b+ 2cu

4ac� b2


1

2(a+ bu+ cu2)2
+

3c

(4ac� b2)(a+ bu+ cu2)

�

+
6c2

(4ac� b2)2

Z
du

a+ bu+ cu2
,

where the integral on the right hand side depends on the sign of 4ac � b2. In the special case of

a = 0 we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (bu+ cu2)2,

so that

p(u) =
4b2cu� b3 + 18bc2u2 + 12c3u3

2b4u2(b+ cu)2
+ 6c2

log[u]� log[b+ cu]

b5
.

For b = 0 we have

K6 +K5u+
1

2
K4u

2 +
1

6
K3u

3 � 1

32
K2u

4 = (a+ cu2)2,

which yields

p(u) =
5au+ 3cu3

8a2(a+ cu2)2
+

3 arctan[u
p
cp
a ]

8a5/2
p
c

.

Cases VIII and IX

In cases VIII and IX, the integral in (3.4.5) can also be evaluated using Mathematica (Wolfram

2007). The solution can be expressed in terms of elementary functions as well elliptic integrals
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but are omitted due to space considerations.

We therefore conclude that it is only in the case where K6 +K5u + 1
2K4u2 + 1

6K3u3 � 1
32K2u4

has one linear factor repeated four times where we can easily use the integral in (3.4.5) to obtain

specific functional forms of f(x) and g(x) that satisfy the integrability conditions (3.3.5).

3.6 Independence of the first integrals

In this section, we explore the possibility of both our first integral (3.3.5) and that of Kweyama

et al. (2012) existing simultaneously. We note that those two first integrals exist subject to the

integrability conditions (3.3.5) and (3.2.9). Differentiating equations (3.2.9b) and (3.3.5b) leads

to

2gfII + (gfIII)x = 0, (3.6.1a)

2gf̄II +
�
gf̄III

�
x
= 0. (3.6.1b)

The general solution of (3.6.1a) is given by

g = K4 (fIII)
�3 . (3.6.2)

Now, if we substitute (3.6.2) into (3.6.1b) we obtain the fourth order integral equation

3fIIIIfII � 2 (fIII)
2 = 0, (3.6.3)

whose solution is

fIIII =
1

27
(K7x+K8)

3 . (3.6.4)
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Differentiating fIIII four times leads to f = 0. In order to find the form of g that corresponds to

f = 0, we substitute f = 0 in (3.2.7) to obtain

yxx = gy3, (3.6.5)

whose first integral is given by

yx = gIy
3 � 3

Z
gIy

2yxdx

= gIy
3 � 3

Z
gI
1

3

✓
dy3

dx

◆
. (3.6.6)

The integral on the right hand side of (3.6.6) can be evaluated if gI = C̄0, hence g(x) = 0. Sim-

ilarly, if we let f = 0 in (3.3.1), the resulting first integral can be evaluated if ḡI = C̄1; that is if

g = 0 as before.

Thus, the requirements of both sets of integrability conditions, arising for (3.2.9) and (3.3.5) force

f = g = 0. This implies that the first integrals (3.2.9) and (3.3.5) are independent of each other.

3.7 Discussion

In this chapter we studied the equation yxx = f(x)y2 + g(x)y3 which is a charged generalization

of the Emden-Fowler equation. This equation is a consequence of the Einstein-Maxwell system of

field equations, and it is important for describing the evolution of a relativistic charged shear-free

matter distribution. We multiplied the charged Emden-Fowler equation by an integrating factor

and obtained a new first integral (3.3.6) which is subject to consistency conditions (3.3.5). We

emphasize that the conditions (3.3.5) are integral equations. Note that earlier charged first inte-

grals are not contained in this solution. In particular we do not regain the result of Kweyama et al.
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(2012). Thus our results complement existing treatments, and provide an independent analysis of

the charged Emden-Fowler equation (3.2.7). Therefore charged shear-free fluids display desirable

features of complexity in our treatment.

We summarize the results that have been obtained for the equation (3.2.7) in terms of first integrals.

For neutral matter with g(x) = 0 interesting results were obtained by Gumede et al. (2021),

Maharaj et al. (1996), Srivastava (1987), Stephani (1983) and Wafo Soh and Mahomed (1999).

Some simple forms of the function f(x) that were identified correspond to

f(x) ⇠ x�15/7,

and

f(x) ⇠ 1

x5

✓
1� 1

x

◆�15/7

.

For charged matter g(x) 6= 0 and first integrals were obtained by Kweyama et al. (2012) and the

results in this paper. The functional forms of f(x) and g(x) are given by

f(x) ⇠
✓
1� 1

x

◆�11/5

, g(x) ⇠
✓
1� 1

x

◆�12/5

,

and

f(x) ⇠ 1

x5

✓
1� 1

x

◆�11/5

, g(x) ⇠ 1

x6

✓
1� 1

x

◆�12/5

.

The charged solutions arise as repeated roots of a fourth order polynomial. Note that the charged

models do not have an uncharged limit since the polynomial then becomes a cubic which is a

contradiction. Our results indicate that complexity of the system is affected by the presence of

the electromagnetic field. In future work it would be interesting to investigate complexity in

general dissipative fluids, including electromagnetic effects, and to consider geometries with less

symmetry such as cylindrical and axial spacetimes.
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Chapter 4

The role of dimensions in charged relativis-

tic shear-free fluids

4.1 Introduction

Investigations of gravitating bodies in an electromagnetic field in general relativity include several

early studies (Chatterjee 1984, Faulkes 1969, Nduka 1976, Shah and Vaidya 1968, Vaidya 1967) in

spherical symmetry. Solutions to the Einstein-Maxwell equations for charged spherically symmet-

ric bodies are important in studies of self-gravitating spheres, gravitational collapse, the formation

of singularities and many other astrophysical processes. General methods have been developed

to generate self-gravitating spheres, including static and nonstatic potentials. Some interesting

approaches to find interior metrics in charged perfect fluid spheres are given by Fatema and Mu-

rad (2013), Ivanov (2002, 2021), Kiess (2012) and Murad and Fatema (2013, 2015). Choosing a

generalized form of one of the metric functions leads to series solutions in terms of elementary

and special functions. This approach has been utilized by Komathiraj and Maharaj (2007) and

Thirukkanesh and Maharaj (2009). On physical grounds a barotropic equation of state is often

imposed relating the isotropic pressure to the energy density. Over the years models have been

found with several types of equations of states: linear (Thirukkanesh and Maharaj 2008), quark

(Murad 2016), quadratic (Mafa Takisa et al. 2014) and polytropic (Mafa Takisa and Maharaj 2013,

Mardan et al. 2020, Noureen et al. 2009, Ray et al. 2003). Nonlinear and linear equations of state

were studied by Varela et al. (2010). The role of charge in superdense stars with several layers,
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forming core-envelope and multi-layered astronomical objects, has been studied in recent times.

These studies indicate that charged layered objects are stable and physically acceptable (Lighuda

et al. 2021a, Lighuda et al. 2021b, Mardan et al. 2021). Exact solutions to the Einsten-Maxwell

system of differential equations are therefore of critical importance to study physical features of

relativistic fluids, the spacetime geometry and physical processes in strong gravity fields.

If the spacetime is shear-free with isotropic pressures, then the solution of the Einstein-Maxwell

system reduces to a single nonlinear differential equation, the charged condition of pressure

isotropy. In the presence of charge this differential equation has been studied by Srivastava (1992)

and Sussman (1988a) in four dimensions. Gürses and Heydazarde (2019) recently found simple

forms of exact solutions using elementary methods. Lie and Noether symmetries were analysed,

in relation to the condition of pressure isotropy, by Kweyama et al. (2011). First integrals were

also generated, using a simple integration technique, by Gumede et al. (2022) and Kweyama et

al. (2012).

The condition of pressure isotropy can also be found in N dimensions. The existence of higher di-

mensions is important in modelling charged stars in general relativity. For static stars the mass of

a relativistic star changes with dimension as established by Paul (2001). Wafo Soh and Mahomed

(2000) studied the higher dimensional condition of pressure isotropy equation with Noether sym-

metries which contains earlier results. Banerjee et al. (1992) found particular exact solutions in

simple form. Maharaj and Brassel (2021) showed that the boundary condition for a nonstatic radi-

ating star changes in different dimensions. The consequences of extra dimensions in the Einstein-

Maxwell equations on some physical phenomena such as on the structure and a mass of a star

have also been discussed extensively in Liddle et al. (1990). The effects of extra dimensions has
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also been studied in modified gravity theories such as the f(R) theory (Buchdahl 1970), Lovelock

gravity theory (Lovelock 1971), supergravity (Nath and Arnowitt 1975), Jackwick-Teitelboim

gravity (Mann et al. 1990) and de Rham-Gabadadze-Tolley (dRGT) massive gravity (de Rahm

and Gabadadze 2010). It is therefore necessary to consider the role of dimension in the charged

condition of pressure isotropy.

In this chapter we analyse the charged condition of pressure isotropy for shear-free fluids in higher

dimensions N. We show that the form of the master equation governing the behavior depends on

the spacetime dimension N. This feature has been neglected in some earlier treatments. Exact

solutions of the Einstein-Maxwell equations are presented, and we point out those cases which

reduce to known N = 4 models. We derive a new form of the charged condition of pressure

isotropy in N dimensions. The form is related to that of Gürses and Heydazarde (2019) when

N = 4. New solutions in higher dimensions are found. The effect of dimensions on the new

solutions is demonstrated graphically.

4.2 Field equations in higher dimensions

The Einstein-Maxwell field equations can be written in the form

Gab = NTab, (4.2.1a)

Fab;c + Fbc;a + Fca;b = 0, (4.2.1b)

F ab
;b = AN�2J

a, (4.2.1c)
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where G is the Einstein tensor, T is the energy momentum tensor, F is the Faraday tensor and J

denotes the current. In the above the quantity

N =
2 (N � 2) ⇡(N�1)/2G

c4 (N � 3)
�
N�1
2 � 1

�
!

is the coupling constant, and

AN�2 =
2⇡

N�1
2

�
�
N�1
2

� ,

is the surface area of the (N � 2)-sphere. Note that both N and AN�2 depend on the dimension

N. Consequently the nature of the solutions of the field equations (4.2.1) are dependant on N.

When N = 4, we have 4 = 8⇡G
c4 and A2 = 4⇡.

The matter distribution is a combination of barotropic and charged components. The total energy

momentum tensor is given by

Tab = (⇢+ p) uaub + pgab + Eab.

The energy density ⇢ and the isotropic pressure p are measured relative to u. The vector u is a

unit, timelike comoving N -velocity. The electromagnetic energy momentum tensor Eab is defined

by

Eab =
1

AN�2

✓
Fa

cFbc �
1

4
F cdFcd

◆
. (4.2.2)

A choice has to be made, on physical grounds, for the electromagnetic potential �a which then

generates Eab in (4.2.2) through the Faraday tensor Fab = �b;a � �a;b. For the current we have

Ja = ⇠ua, (4.2.3)
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where ⇠ is the proper charge density.

We consider the N -dimensional shear-free nonstatic spacetime. The spacetime metric has the

form

ds2 = �e2⌫dt2 + e2�
⇥
dr2 + r2 (d⌦N�2)

2⇤ , (4.2.4)

in the comoving and isotropic coordinate system. We are utilizing spacetime coordinates

(xa) = (t, r, ✓1, ✓2, ..., ✓N�2). The (N � 2)-sphere is

(d⌦N�2)
2 = (d✓1)

2 + sin2 ✓1 (d✓2)
2 + sin2 ✓1 sin

2 ✓2 (d✓3)
2 + · · ·

+sin2 ✓1 sin
2 ✓2 sin

2 ✓3 · · · sin2 ✓N�3 (d✓N�2)
2

=
N�2X

i=1

"
i�1Y

j=1

sin2(✓j)

#
(d✓i)

2 .

The metric functions have the dependence ⌫ = ⌫(t, r) and � = �(t, r). For a spherically symmet-

ric charged fluid the comoving N -velocity has the form

ua =

✓
1

e⌫
, 0, 0, · · · , 0

◆
. (4.2.5)

The total charge Q within the (N � 2)-sphere of radius r is given by

Q = AN�2

Z r

⇠e(N�1)�dr. (4.2.6)

Note that Q = Q(r) and is independent of the timelike coordinate t, and satisfies the conservation

of current requirement Ja
;a = 0.

Then the Einstein-Maxwell equations for the shear-free line element (4.2.4) take the form

N⇢+
N

2AN�2
· Q2

(re�)2N�4 =
(N � 2)

e2⌫
�̇2 +


(N � 3)(N � 2)

2

� 
1

r2e2�
+
�̇2

e2⌫

!
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� (N � 2)

e2�


�00 + �02 +

2

r
�0 +


N � 3

2

�✓
1

r2
+

2

r
�0 + �02

◆�

�

N � 3

2

�✓
�0

r
� �02

◆
, (4.2.7a)

Np�
N

2AN�2
· Q2

(re�)2N�4 =
(N � 2)

e2⌫


��̇2 � �̈� (N � 3)

2
�̇2 + �̇⌫̇

�

+
(N � 2)

e2�


(N � 3)

�0

r
� (N � 3)

2
�02 +

⌫ 0

r
+ �0⌫ 0

�
, (4.2.7b)

Np+
N

2AN�2
· Q2

(re�)2N�4 =
(N � 2)

e2⌫

⇣
��̈+ �̇⌫̇

⌘
+

(N � 3)

e2⌫

✓
�0

r
+ �00 +

⌫ 0

r

◆

+
(N � 3)

e2⌫
2�̇2 +

1

e2⌫
�̇2 � (N � 4)

e2⌫


(N � 3)

2
�̇2
�

+
(N � 4)

e2�


�0⌫ 0 +

(N � 3)

2
�02
�
+ (N � 3)

�0

r
, (4.2.7c)

�̇⌫ 0 � �̇0 = 0, (4.2.7d)

⇠ =
Q0

AN�2 (re�)
N�2 . (4.2.7e)

The primes and dots in equations (4.2.7) above represent partial derivatives with respect to r and

t, respectively. This is a system of nonlinear equations in ⌫,�, ⇢, p and Q (or ⇠). It is possible to

obtain a single differential equation containing � and Q from the system (4.2.7).
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From (4.2.7d), we obtain

⌫ 0 =
�̇0

�̇
. (4.2.8)

Equating (4.2.7b) and (4.2.7c), we eliminate p to find

1

e2�


⌫ 0

r
� ⌫ 02 � ⌫ 00 + (N � 3)

�0

r
+ (N � 3)�02 � (N � 3)�00

�

= � N
2AN�2

· Q2

(re�)2N�4 . (4.2.9)

Using (4.2.8) in (4.2.9) yields

�̇0

�̇

1

r
�

⇣
�̇0
⌘2

�̇2
� �̇00

�̇
+

⇣
�̇0
⌘2

�̇2
+ 2

�̇0�0

�̇
+ (N � 3)

�0

r
+ (N � 3)�02 � (N � 3)�00

= � N
AN�2

· Q2

(re�)2N�4 , (4.2.10)

which contains only the potential �. Equation (4.2.10) is a third order nonlinear differential equa-

tion. It can be integrated to yield a second order differential equation. This is the master equation

governing the evolution of a charged gravitating relativistic shear-free fluid in N dimensions.

4.3 Pressure isotropy

Equation (4.2.10) is called the charged condition of pressure isotropy. It can be written in simpler

form as described below.

We multiply equation (4.2.10) above by ��̇e(N�3)� to obtain

N
AN�2

· Q2

r2N�4
· �̇e(N�3)� = e(N�3)��̇00 + (N � 3)e(N�3)��̇�00
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� 1

r
(N � 3)e(N�3)��̇�0 � 1

r
(N � 3)e(N�3)��̇0

� 2e(N�3)��0�̇0 � (N � 3)e(N�3)��̇�02. (4.3.1)

This is a third order nonlinear equation; however it can be written as a total derivative with respect

to t yielding

@

@t


e(N�3)�

✓
�00 � �02 � �0

r

◆
+

N
AN�2

· Q2

r2N�4
· 1

N � 3
· e�(N�3)�

�
= 0. (4.3.2)

Integrating (4.3.2) with respect to t and multiplying by the factor e�(N�3)�, we obtain

�00 � �02 � �0

r
= �F̃ e�(N�3)� +

N
AN�2

· Q2

r2N�4
· 1

N � 3
· e�2(N�3)�, (4.3.3)

where F̃ = F̃ (r) is a constant of integration. Equation (4.3.3) is now multiplied by

�e�(N�3)� 1
4r2 to yield

1

4r2

✓
�02 +

�0

r
� �00

◆
e�(N�3)� =

N
AN�2

· Q2

r2N�2
· 1

N � 3
· e�3(N�3)�

+
F̃

4r2
e�2(N�3)�. (4.3.4)

We now introduce a set of new variables that transform �. Using the transformation

x = r2, (4.3.5a)

y = e�(N�3)�, (4.3.5b)

f(x) =
(N � 3)F̃

4r2
, (4.3.5c)
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g(x) =
N

AN�2
· Q2

r2N�2
, (4.3.5d)

(4.3.4) becomes

yxx �
(N � 4)

(N � 3)

1

y
y2x = f(x)y2 + g(x)y3. (4.3.6)

Note that equation (4.3.6) is similar to the form that arises in four dimensions with an additional

term (N�4)
(N�3)

1
yy

2
x which shows that the value of N influences the dynamics. The functions f(x) and

g(x) depend on N. This form of the charged condition of pressure isotropy is new. When N = 4,

we obtain

yxx = f(x)y2 + g(x)y3, (4.3.7)

which has been widely studied. In Section 4.4 we find exact solutions to (4.3.6) by assuming that

the gravitational potential is a series of separable functions, which is a method that was utilized by

Gürses and Heydazarde (2019) in their four-dimensional treatment. The extension of the method

in Gürses and Heydazarde (2019) to higher dimensions is not obvious because of the appearance

of the term containing 1
yy

2
x. The resulting differential equation (4.3.6) is functionally different

when N � 5, and cannot be mapped to the form contained in (4.3.7). Equation (4.3.6) has to be

solved separately.

4.4 Higher dimensional solutions

It is difficult to solve equation (4.3.6) in general. We demonstrate that simple classes of exact

solutions are possible. We seek solutions with a particular analytic form: a finite sum of separable

functions in the variables t and x. We suppose that

e(N�3)� =
1

y
=

MX

m=0

↵m(x)�m(t), (4.4.1)
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where ↵m(x) and �m(t) are independent functions of x and t, respectively, and M is a finite natural

number. Then substituting y, yx and yxx in (4.3.6) and multiplying by
⇣PM

m=0 ↵m(x)�m(t)
⌘3

gives

f(x)

 
MX

m=0

↵m(x)�m(t)

!
+ g(x) = �

 
MX

m=0

↵m(x)�m(t)

! 
MX

m=0

↵m(x)�m(t)

!

xx

+ ⌘

" 
MX

m=0

↵m(x)�m(t)

!

x

#2
. (4.4.2)

Note that we have set

⌘ = 2� N � 4

N � 3
,

for convenience. Equation (4.4.2) can be solved for specific values of M. Below we present

solutions that correspond to these values.

4.4.1 Case I: M = 0

With M = 0, equation (4.4.2) reduces to

↵0f(x)�0 + g(x) =
h
�↵0↵0

00 + ⌘ (↵0
00)2
i
�2
0 , (4.4.3)

which leads to trivial solutions.

4.4.2 Case II: M = 1

If M = 1, then equation (4.4.2) becomes

↵0f(x)�0 + ↵1f(x)�1 + g(x) =
h
�↵1↵1

00 + ⌘ (↵1
0)2
i
�1

2 +
h
�↵0↵0

00 + ⌘ (↵0
0)2
i
�0

2

+ [�↵0↵1
00 � ↵1↵0

00 + 2⌘↵0
0↵1

0] �0�1. (4.4.4)
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If we try to solve (4.4.4) in full generality we are forced to set f = g = 0. To avoid this situation,

we let �0 = 1 in (4.4.4) and equate coefficients of powers of �1 to obtain

�1
2 : 0 = �↵1↵1

00 + ⌘ (↵1
0)2 , (4.4.5a)

�1 : ↵1f(x) = �↵0↵1
00 � ↵1↵0

00 + 2⌘↵0
0↵1

0, (4.4.5b)

�1
0 : ↵0f(x) + g(x) = �↵0↵0

00 + ⌘ (↵0
0)2 . (4.4.5c)

From (4.4.5a), we have the solution

↵1 = B (C1x+ C2)
1

1�⌘ , (4.4.6)

where C1 and C2 are arbitrary constants of integration and

B = (1� ⌘)
1

1�⌘ .

From (4.4.5b), we find the function f(x) to be

f(x) =
2⌘↵0

0

1� ⌘

C1

C1x+ C2
� ⌘↵0C2

1

(1� ⌘)2
(C1x+ C2)

2⌘�1
1�⌘ � ↵00

0. (4.4.7)

From (4.4.5c), we obtain

g(x) = ⌘ (↵0
0)

2 � 2⌘↵0↵0
0

1� ⌘

C1

C1x+ C2
+
⌘ (↵0)

2 C2
1

(1� ⌘)2
(C1x+ C2)

2⌘�1
1�⌘ . (4.4.8)

The gravitational potentials e� and e⌫ for the line element (4.2.4) are then given by

e� =
h
↵0 +B�1 (C1x+ C2)

1
1�⌘

i 1
N�3

, (4.4.9a)

e⌫ =
q3(t)

N � 3

h
↵0 +B�1 (C1x+ C2)

1
1�⌘

i�1
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⇥B�̇1 (C1x+ C2)
1

1�⌘ , (4.4.9b)

respectively, where q3(t) is an arbitrary function of integration. The functions ↵0(x), �1 and q3(t)

are arbitrary functions. We observe that the potentials ⌫ and � are affected by dimension N. If we

set N = 4, then we get

e� = ↵0 �
�1

C1x+ C2
, (4.4.10a)

e⌫ = q3(t)
�̇1

�1 � ↵0 (C1x+ C2)
, (4.4.10b)

which was obtained by Gürses and Heydazarde (2019) for charged shear-free fluids.

4.4.3 Case III: M = 2

If M = 2, then equation (4.4.2) becomes

↵0f(x)�0 + ↵1f(x)�1 + ↵2f(x)�2 + g(x) =
h
�↵1↵1

00 + ⌘ (↵1
0)2
i
�1

2

+
h
�↵0↵0

00 + ⌘ (↵0
0)2
i
�0

2

+
h
�↵2↵2

00 + ⌘ (↵2
0)2
i
�2

2

+ [�↵0↵1
00 � ↵1↵0

00 + 2⌘↵0
0↵1

0] �0�1

+ [�↵0↵2
00 � ↵2↵0

00 + 2⌘↵0
0↵2

0] �0�2
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+ [�↵1↵2
00 � ↵2↵1

00 + 2⌘↵1
0↵2

0] �1�2.

(4.4.11)

We let �0 = 1 and �2 = 1
�1

in (4.4.11) and equate coefficients of powers of �1 to obtain

�1
2 : 0 = �↵1↵1

00 + ⌘ (↵1
0)2 , (4.4.12a)

1

�1
2 : 0 = �↵2↵2

00 + ⌘ (↵2
0)2 , (4.4.12b)

�1 : ↵1f(x) = �↵0↵1
00 � ↵1↵0

00 + 2⌘↵0
0↵1

0, (4.4.12c)

1

�1
: ↵2f(x) = �↵0↵2

00 � ↵2↵0
00 + 2⌘↵0

0↵2
0, (4.4.12d)

�1
0 : ↵0f(x) + g(x) = �↵0↵0

00 + ⌘ (↵0
0)2 � ↵1↵2

00 � ↵2↵1
00

+2⌘↵1
0↵2

0. (4.4.12e)

From (4.4.12a), we have the solution

↵1 = B (C1x+ C2)
1

1�⌘ , (4.4.13)

where C1 and C2 are arbitrary constants of integration. From (4.4.12b), we have the solution

↵2 = B (C3x+ C4)
1

1�⌘ , (4.4.14)

where C3 and C4 are arbitrary constants of integration. We eliminate f(x) from (4.4.12c) and

(4.4.12d) and integrate to obtain the function ↵0. It has the form

↵0 = �

q
(C1x+ C2)

1
1�⌘

q
(C3x+ C4)

1
1�⌘ , (4.4.15)
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where

� =
2⌘

q
A (1� ⌘)1�2⌘ (C1C4 � C2C3),

and A is a constant of integration with A (1� ⌘)1�2⌘ (C1C4 � C2C3) > 0. From (4.4.12c), we

obtain the function f(x) to be

f(x) = �� (2C1C3x+ C2C3 + C1C4)
2

4 (1� ⌘)2

q
(C1x+ C2)

4⌘�3
1�⌘ (C3x+ C4)

4⌘�3
1�⌘

� �
C1C2

1� 2⌘

q
(C1x+ C2)

4⌘�3
1�⌘ (C3x+ C4)

2⌘�1
1�⌘

+
�⌘C1

1� ⌘

q
(C1x+ C2)

4⌘�3
1�⌘ (C3x+ C4)

2⌘�1
1�⌘ (2C1C3x+ C2C3 + C1C4)

� �⌘C2
1

(1� ⌘)2
(C1x+ C2)

2⌘�1
1�⌘

q
(C1x+ C2)

1
1�⌘ (C3x+ C4)

1
1�⌘ . (4.4.16)

From (4.4.12e) and (4.4.16), the function g(x) is given by

g(x) =
⌘�2 (2C1C3x+ C2C3 + C1C4)

2

4 (1� ⌘)2
(C1x+ C2)

2⌘�1
1�⌘ (C3x+ C4)

2⌘�1
1�⌘

� ⌘B2

(1� ⌘)2

h
C1 (C1x+ C2)

⌘
1�⌘ � C3 (C3x+ C4)

⌘
1�⌘

i2

� ⌘C1�2

(1� ⌘)2
(C1x+ C2)

2⌘�1
1�⌘ (C3x+ C4)

⌘
1�⌘ (2C1C3x+ C2C3 + C1C4)

+
⌘�2C2

1

(1� ⌘)2
(C1x+ C2)

2⌘
1�⌘ (C3x+ C4)

⌘
1�⌘ . (4.4.17)

The gravitational potentials e� and e⌫ for the line element (4.2.4) are then given by
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e� =


↵0 +B�1 (C1x+ C2)

1
1�⌘ +

B

�1
(C3x+ C4)

1
1�⌘

� 1
N�3

, (4.4.18a)

e⌫ =
q4(t)

N � 3


↵0 +B�1 (C1x+ C2)

1
1�⌘ +

B

�1
(C3x+ C4)

1
1�⌘

��1

⇥
"
B�̇1 (C1x+ C2)

1
1�⌘ � B�̇1

�2
1

(C3x+ C4)
1

1�⌘

#
, (4.4.18b)

respectively, where q4(t) is a function of integration. The functions ↵0, �1 and q3(t) are arbitrary

functions. The dimension N influences the possible forms of the potentials ⌫ and �.

It is remarkable that simple analytic forms of the potentials ⌫ and � are possible in higher dimen-

sions. It is important to note that for all values of M, the potentials e� and e⌫ reduce to those of

Gürses and Heydazarde (2019) in four dimensions. If we set N = 4 in (4.4.18) we get

e� =
�p

C1x+ C2

p
C3x+ C4

� �1
C1x+ C2

� 1

�1 (C3x+ C4)
, (4.4.19a)

e⌫ =
�̇1q4(t) [(C1x+ C2)� �2

1 (C3x+ C4)]h
�2
1�
p

(C1x+ C2) (C3x+ C4)� �3
1 (C3x+ C4)� �1 (C1x+ C2)

i , (4.4.19b)

where � = 4
p
C2C3 � C1C4. The result in (4.4.19) was obtained by Gürses and Heydazarde (2019)

in their analysis of charged shear-free fluids. Note that when C1 = 0, C3 6= 0 in (4.4.19) then we

get

e� =
�p

C2 (C3x+ C4)
� �1

C2
� 1

�1 (C3x+ C4)
, (4.4.20a)

e⌫ =
�̇1q4(t) [C2 � �2

1 (C3x+ C4)]h
�2
1�
p

C2 (C3x+ C4)� �3
1 (C3x+ C4)� �1C2

i , (4.4.20b)
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which was first obtained by Shah and Vaidya (1968) in four dimensions. Alternatively we could

have set C3 = 0, C1 6= 0 to obtain the result of Shah and Vaidya (1968).

It seems that we could extend this approach for other values of M. However for M � 3, we obtain

an overdetermined system of equations which lead to inconsistencies. Hence, this approach yields

solutions only for M = 1 and M = 2.

4.5 Dimension

Our results show that the gravitational potentials ⌫ and � in (4.4.9) and (4.4.18) depend critically

on the spacetime dimension N. The matter variables ⇢, p and ⇠ are also affected by dimension N.

Other physical quantities and parameters can take on different values as the dimension N changes.

In static spheres, Paul (2001) showed that the mass-radius ratio, determining the compactness of

a uniform density star, increases, reaches a maximum for N = 9, and then decreases. Dimension

also affects the evolution of a charged shear-free fluid. We demonstrate the effect of changing N

on the quantities f(x) and g(x) in (4.3.5c) and (4.3.5d). Note that f(x) affects the gravitational

potential � and g(x) depends on the charge Q as pointed out by Srivastava (1992). We plot f(x)

and g(x) for dimensions N = 4, 5, 6, 7 for increasing values of r. The sketches are given below

in Figure 4.1 and Figure 4.2 respectively. We have fixed F̃ = Q2 = 1 as they do not depend on

N. From Figure 4.1 we observe that f(x) is a decreasing function for all values of N. The values

of f(x) increase as N increases. The behaviour of f(x) is determined by f ⇠ r�2 in (4.3.5c).

From Figure 4.2 we note that g(x) is a decreasing function for all values of N. The values of g(x)

decrease as N increases. The quantity g(x) becomes rapidly smaller because of g(x) ⇠ r2�2N in

(4.3.5d) which dominates the behaviour. It is clear that the dimension N affects the profile of the

physically relevant quantities.
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Figure 4.1: Graphs of the function f(x) for N = 4, 5, 6, 7.

Figure 4.2: Graphs of the function g(x) for N = 4, 5, 6, 7.

4.6 Discussion

In this chapter we found new classes of exact solutions to the Einstein-Maxwell equations for

charged shear-free fluid distributions in an N -dimensional spacetime. We first showed that the

Einstein-Maxwell equations can be reduced to the single second order partial differential equation

yxx �
(N � 4)

(N � 3)

1

y
y2x = f(x)y2 + g(x)y3.
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This shows that the dynamics of the spacetime depends on the dimension N. We solved this

equation by assuming that one of the gravitational potentials is a sum of products of separable

functions. Two classes of exact solutions were found. Explicit forms of the gravitational po-

tentials were found in terms of elementary functions. Our N -dimensional results reduce to the

4-dimensional results obtained by Gürses and Heydazarde (2019) and Shah and Vaidya (1968).

The effect of dimensions on the functions f(x) and g(x) was demonstrated graphically. In future

work we intend to apply our results to a charged star in general relativity. It would also be in-

teresting to consider shear-free fluids in modified gravity theories such as Einstein-Gauss-Bonnet

gravity or general Lovelock gravity models. In such theories both the dimension N and new

contributions from the curvature should lead to interesting dynamics.
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Chapter 5

Conclusion

The aim of this thesis was to generate new exact solutions to the Einstein field equations for shear-

free uncharged relativistic fluids, as well as exact solutions to the Einstein-Maxwell equations for

charged shear-free fluids in a four dimensional spacetime. We also investigated the role of dimen-

sion in the field equations for charged shear-free fluids. We performed this latter investigation

by finding new exact solutions to the Einstein-Maxwell equations in higher dimensions. We used

different techniques in generating solutions. Standard methods for solving nonlinear differential

equations do not apply to the Emden-Fowler type equations that arise in this study.

We now summarize the contents of this thesis and highlight the results obtained. In Chapter 1

we provided background and some history of Einstein’s theory of general relativity and the field

equations. We discussed some well known examples of exact solutions to the Einstein field equa-

tions and the Einstein-Maxwell equations with emphasis on the spherically symmetric shear-free

solutions.

In Chapter 2 we studied integrability of and found new classes of exact solutions to the Emden-

Fowler equation

yxx = f(x)y2,

which is a master equation that governs the behaviour of spherically symmetric shear-free un-

charged relativistic fluids. It has several applications in different areas of mathematical physics.

We multiplied the Emden-Fowler equation by an integrating factor x and used integration by parts
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to obtain the first integral (2.3.8). This first integral is subject to the integrability condition (2.3.7),

which is an integral equation. In order to solve the integral equation (2.3.7), we first transformed

it to a third order ordinary differential equation (2.4.4) whose solution is given by (2.4.6). For

convenience we wrote the solution of (2.4.4) parametrically, which enabled us to find a new form

of the function f(x). One form of the function f(x) was given by

f(x) ⇠ 1

x5

✓
1� 1

x

◆�15/7

,

in (2.5.2) so that the first integral could be written parametrically as (2.5.3). This form of the

function is different from those obtained previously. The existence of different first integrals sug-

gests a connection to complexity in self-gravitating systems in general relativity. We noted that

the complexity of a self-gravitating relativistically neutral fluid is related to a first integral that

arises from the integration process of the Emden-Fowler equation.

In Chapter 3 we extended the approach used in Chapter 2 by including the effect of the elec-

tromagnetic charge. In the presence of the electromagnetic charge, the Emden-Fowler equation

(3.2.7) becomes

yxx = f(x)y2 + g(x)y3,

where g(x) relates to the charge distribution to the Einstein-Maxwell equations for charged shear-

free relativistic fluids. As in Chapter 2 we multiplied the charged Emden-Fowler equation by

an integrating factor and obtained a new first integral (3.3.6). This first integral is subject to

integrability conditions (3.3.5) which are integral equations. This approach led to new functional

forms of f(x) and g(x) which are given by

f(x) ⇠ 1

x5

✓
1� 1

x

◆�11/5

, g(x) ⇠ 1

x6

✓
1� 1

x

◆�12/5

,

which are different from those obtained previously. However, if g = 0, then the first integral

(3.3.6) reduces to the first integral (2.3.8) obtained in Chapter 2. We demonstrated that the new
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first integral obtained is independent of that previously obtained by Kweyama et al. (2012). We

concluded that the complexity of a self-gravitating fluid is affected by the electromagnetic charged

and is related to the first integral for charged shear-free fluids.

In Chapter 4 we investigated the role of dimension in the behaviour of charged relativistic shear-

free fluids. We found new classes of exact solutions to the Einstein-Maxwell equations in a higher

dimensional spacetime. We first showed that the field equations can reduced to a second order

differential equation

yxx �
(N � 4)

(N � 3)

1

y
y2x = f(x)y2 + g(x)y3.

This is a new result. This form of the equation show explicitly that the dimension N affects the

dynamics of the spacetime in general relativity. To find solutions we used the method of separation

of variables by assuming that the gravitational potential is a sum of products of separable functions

e(N�3)� =
1

y
=

MX

m=0

↵m(x)�m(t),

which is a generalization of the approach used by Gürses and Heydazarde (2019) in four dimen-

sions. We found new classes of solutions for different values of M. For M = 1, we found the

potentials to be

e� =
h
↵0 +B�1 (C1x+ C2)

1
1�⌘

i 1
N�3

,

e⌫ =
q3(t)

N � 3

h
↵0 +B�1 (C1x+ C2)

1
1�⌘

i�1

B�̇1 (C1x+ C2)
1

1�⌘ .

If M = 2, then the potentials are given by
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e� =


↵0 +B�1 (C1x+ C2)

1
1�⌘ +

B

�1
(C3x+ C4)

1
1�⌘

� 1
N�3

,

e⌫ =
q4(t)

N � 3


↵0 +B�1 (C1x+ C2)

1
1�⌘ +

B

�1
(C3x+ C4)

1
1�⌘

��1

⇥
"
B�̇1 (C1x+ C2)

1
1�⌘ � B�̇1

�2
1

(C3x+ C4)
1

1�⌘

#
.

We found that M � 3 leads to a system of overdetermined equation, hence exact solutions can

be found only for M = 1 and M = 2. Our new classes of solutions reduce to those obtained

by Gürses and Heydazarde (2019) for N = 4. The earlier model of Shah and Vaidya (1968) is

regained as a special case. A graphical analysis indicates that the model is well behaved.

The results of our analysis are of relevance in gravitational physics and mathematical physics.

Firstly, the role of dimension affects the dynamics of relativistic fluids. Our work shows that

the master equations governing the dynamics of the fluid have to be derived with dimension N

as additional nonlinear terms arise. The dynamical evolution of the system changes. This also

applies to applications in cosmology. Even in the simple case of a homogeneous and isotropic

spacetime the evolution of the model in higher dimensions is different from the case when N = 4.

This needs to be studied in spacetimes with less symmetry than Robertson-Walker metrics. In

relativistic astrophysics the spacetime dimension affects the evolution of the stellar boundary as

demonstrated in a number of recent works. The implication of this feature needs to be pursued in

relation to luminosity, temperature profiles, stability and other quantities of physical importance.

In conclusion the exact solutions to the Einstein-Maxwell equations found in this thesis have sev-

eral interesting features. They can be related to complexity of self-gravitating systems as first
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suggested by Herrera (2018). The presence of higher dimensions influences the dynamical be-

haviour of the fluid.
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