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ABSTRACT

In this thesis a model for saturated tearing mode islands is developed. The equations for
the mode amplitudes are essentially those of R B White et al., after a pertubation
expansion has been made. It is well known that these equations are not then analytic at
the mode rational surface. In our model this problem is overcome when a suitable choice of
the axisymmetric current density perturbation is added to the unperturbed equilibrium
current density profile. The modelled axisymmetric current density perturbation flattens
the unperturbed profile locally at the rational surface and is sufficient to induce an island.

No modelling in the interior of the island is necessary.

The axisymmetric perturbation has a free variable which adjusts the amount of local
flattening. However, when the boundary conditions are taken into account, this free
parameter is determined, and the problem becomes an eigenvalue problem. The boundary

condition thus determines the amount of local flattening at the rational surface.

The saturated island widths are determined using a A’(W) criterion. The model allows
for non—axisymmetric plasma surface in a simple way, requiring careful choice of A(W).

The different criteria are compared to establish the validity of the use of such criteria for

perturbed boundaries.

In the cylindrical approximation, one or two modes may be included in the model. In the
case of two modes, non—linear coupling via the current density profile is introduced.
Toroidal coupling between modes can also be simply introduced. Two modes that are

toroidally coupled are considered, but mode—mode coupling is ignored.
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The emphasis falls in large part on the boundary conditions. Various boundary conditions
can be considered because distortion of the plasma surface can be Gxed by wall effects,
plasma rotation, external DC coil currentis, plasma rotation with external coil currents, etc.
Of particular interest is the case of toroidally coupled modes, coupled in turn to these

external conditions as this is the first study of such a nature.

Results flowing from the study include among others that:

. for the special case of circular boundaries the model agrees reasonably with the

results of R B White et al.

. No significant difference was found between the A’/(W) criterion of P H
Rutherford, which is valid for circular boundaries, and that of A H Reiman, which is

also valid for perturbed boundaries, when the boundary is perturbed significantly.

. Toroidally coupled islands do not increase in size if the boundary condition of that
particular mode is not changed. If a coil current of particular helicity is switched

on, it will only affect the mode of that particular helicity.

. Toroidally induced sideband islands have approxamately the same width as natural

tearing islands when the size of the natural island is large.
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CHAPTER 1
INTRODUCTION
11 General Introduction

The study of tearing modes has been going on for many years. It originated when
instabilities other than ideal MHD instabilities were observed in magnetic
confinement devices. The theoretical ground work for the study of these modes was
laid in 1963 by Furth, Killeen and Rosenbluth [1]. They also developed a stability
criterion. Only the first phase in the development of tearing modes was studied at

this stage within linear theory and lead to estimates of exponential growth rates.

In 1973 Rutherford [2] extended this work to include the next phase in the tearing
mode development. In quasi-linear theory the exponential growth changes to
algebraic growth when the tearing island reaches the size of the so—called resistive
layer — a region defined in the linear theory in which resistivity is of importance.
This work was then built upon by White et al. [3] in 1977 when they studied small
saturated islands which exceed the size of the resistive layer. For the first time it

was possible to model saturated tearing modes as observed on Tokamaks.

In parallel with the analytic modelling of tearing modes, time dependant numerical
codes were developed. They were used to study coupling between modes and mode
overlapping and proved the validity of the theory. Important Tokamak phenomena,

were also investigated like the major and minor disruptions.



Another field of interest that was studied over the last few years, is the effect of
boundary conditions on the teating modes. External coils (both AC and DC) were
installed on many Tokamaks to do experiments in this regard. This thesis will,
among other things, concentrate on the effect of boundary conditions as this is
relevant to the Tokoloshe experiment on which low m—number DC coils have been

installed. This experiment will be much used in this thesis.

1.2 The Tokoloshe experiment

Tokoloshe is a medium sized Tokamak with major radivs of 48 cm and a minor
radius of 24 cm. Although fusion—like parameters cannot be obtained on such a
small machine, relevant experiments can be done to investigate phenomena that are
obsetved on all machines. In particular the physics of the tearing mode, the minor
and major disruptions, the internal kink mode and edge phenomena were studied in

the last few years.

In an attempt to influence the behaviour of the tearing modes, coils of similar
helicity were installed on the outside of the vacuum chamber. Experiments with

DC coil currents were performed with m=3,2 and 1 helicity coils.

An interesting feature of Tokoloshe is that it has a very large inverse aspect ratio
(minor over major radius) of about 0.5. This however, makes it very difficult to use
perturbation theory to study the physics on Tokoloshe. In this study we will
assume a larger aspect ratio than that of Tokoloshe which will thus only enable us

to do a qualitative study of Tokoloshe phenomena.



1.3 An Overview of this Thesis

We will now present a summary of the chapters. In chapter 2 the relevant
literature on tearing modes is reviewed. This includes linear and non—linear tearing
mode theory, equilibrium studies, numerical analysis and the studies on the effects
of external conditions. Of particular interest to our studies are the
time—independent reduced MHD equations which are used to do non-—linear
equilibrium studies with saturated tearing modes embedded in the plasma in the

presence of a variety of different boundary conditions.

In chapter 3 the toroidal reduced MHD equations are derived following Izzo [4].
From these the cylindrical equations are deduced for Cartesian, cylindrical and
helical coordinates. Finally the time independent equations are presented. In the
case of one mode in the cylindrical approximation the flow automatically disappears
from the magnetic flux equation. This simplifies the modelling of one tearing mode
significantly. For two modes the parameter S = TR/TA (r

3

scale and 7, the Alfen time scale) has to be set to o to exclude flows from the

is the resistive time

magnetic flux equation.

The case of one mode in cylindrical coordinates is discussed in chapter 4. A new
model is developed in which the axi—symmetric perturbed current is modelled. The
mode] is based on the work of White et al. [3] and that of Sykes and Wesson [5]-
Our approach resembles that of Sykes and Wesson in the modelling of a flat region
at the position of the saturated island, and also resembles White et al. [3] who
expressed the perturbed current density inside the island as a function of the helical
magnetic flux. Advantages of our model include the fact that no agsumptions are
made about the final current density profile in the island which can in principle be

found accurately depending on the number of terms in the perturbation expansion



that is included. Another advantage is that no complicated inner or outer island
regions are specified — the island in the plasma automatically arises by allowing for

non—axisymmetric boundary perturbations.

Chapter 5 deals with the boundary conditions for cylindrical tokamaks. Boundary
conditions are derived for the case of
¢ A non—conducting wall at the plasma edge surrounded by vacuum or a

coil in the vacuum.

* An infinitely fast rotating plasma with a resistive wall, or superconducting

wall. A vacuum region can be included between the plasma and the wall.
» A rotating plasma with a vacuum region outside the resistive wall.

* A rotating plasma with an external coil in the vacuum region outside the

resistive wall.

(A constant frequency is assumed for a particular situation to allow for our

time—independent treatment). Only the last case appears to be new.

When the model of chapter 4, for one saturated tearing mode in a plasma, is coupled

to the various external situations described in chapter 5, 1t is possible to generate

results. These are presented in chapter 6.

An eigenvalue problem for the free parameters of the model arises. The external
situation thus self—consistently determines the degree of local flattening of the
unperturbed axisymmetric current profile at the rational surface. When the
A’(W) criteria are included in the problem it is possible to fix the saturated island

width as well as the perturbation of the boundary.



In chapter 7 we expand the cylindrical model of chapter 4 to include two toroidally
coupled modes. The boundary conditions developed in chapter 5 were found to be

valid in this case too.

The model of chapter 7 enables us to study a situation similar to that on Tokoloshe
where both a (2,1) and (3,1) mode are present. With the correct boundary
conditions the interaction of these modes with external coils can now be studied. It
is the first time that toroidally coupled modes have been studied in conjunction with

such a variety of boundary conditions.

Finally in chapter 8 we present the results of the toroidal model. The effects of
toroidal coupling, plasma rotation and external coils are studied for a Tokoloshe
relevant profile. The relation of a natural (3,1) tearing island to a toroidally

induced one is also studied as a case of particular interest on Tokoloshe.

In summary, we have developed both a cylindrical and toroidal model of saturated
tearing modes, coupled to a variety of external situations. The model enabled us to
do a qualitative study of Tokoloshe phenomena which could not be studied with the

normal linear theory. It is thus of particular relevance to the Tokoloshe experiment.



CHAPTER 2
2. AN OVERVIEW OF TEARING MODES IN PLASMAS
2.1 Introduction

The purpose of this chapter is to give a broad overview of the work that has been
done in the field of tearing modes. Linear and non-—linear tearing mode theory,
equilibrium studies, numerical analysis and studies on the effect of external

conditions are reviewed.
2.2 Ideal MHD—theory

The phenomena taking place in a plasma can be divided into those taking place on a
small scale (e.g. microscopic collisions described by kinetic theory) and those taking
place over larger scales (e.g. macroscopic fluid type behaviour described by
hydromagnetic (MHD) theory). Macroscopic phenqmena are of great importance in
plasma confinement because they can cause a dramatic loss of the plasma out of the

confinement device.

The first and most obvious approach in understanding the macroscopic behaviour of
plasmas, is to consider the high electrical conductivity limit (resistivity -+ 0). This

is called the ideal MHD approach.

If a plasma in equilibrium is displaced with a small perturbation, it will either
return to the original or some other equilibrium (be stable), or keep growing
(become unstable). In 1958 Bernstein et. al. [6] derived an energy principle which

can distinguish between stable and unstable plasma equilibria. According to this



principle, a system is stable if a certain energy integral W(£) is positive for every
displacement ¢ satisfying the boundary conditions, and unstable (ideal instabilities

will grow) if there exists a £ for which W(£) is negative.

The energy integral is given by

W(E) = +[d3x{Q2+J.EAQ + (WHLEWP + 1P(7.6)2) (2.1)

where Q = VA(£AB), 7 the specific heat, J the plasma current density, B the
magnetic field strength and P a scalar plasma pressure. The most straightforward
way of applying the energy principle is to impose a conveniently chosen
normalization condition on ¢ and then to minimize W(£) with respect to £; the

system is then stable if the minimum value is positive and unstable if it is negative.

If the energy integral W({) can be minimized with respect to ¢y and ¢, where

(1,0,2) are cylindrical coordinates, W can be reduced to a one—dimensional form

wie) = "2 [rdr A 9, - (22)

where ¢ is an abbreviation for the radial component ¢; and /\ is a certain
quadratic formin ¢ and d{/dr with m and k as parameters. It is assumed that
{r, g and i, are real functions of r in cylindrical geometry multiplied by

exp i{mf + kz), k the wavenumber of the mode in the z—direction. This important

work was done by Newcomb [7].



Equation (2.2) can be integrated by parts to give

wie) = "2 [ ar (gD e (2.3)

where  and g are functions with m and k as parameters. The function that

minimizes this integral, is given by the Euler—Lagrange equation

g;(f%%) - gl =0, (2.4)
This equation has a singular point wherever { vanishes, which happens when

kr B; + mBy =0. (2.5)
This will be important below.

From equation (2.4) it is possible to derive Suydam’s stability condition [7,8]:
dpP r B ,1dq.? :
~ar <5 % Gar) (26)
where q is called the safety—factor and is just %1 where ¢ is the rotational
transform, i.e. the angle moved through in one toroidal circuit of the magnetic field

as it encircles the cylinder. In the cylinder it can be written as

q = f{ (2.7)

I

which reduces to q=m/n at the rational surface, i.e. where equation (2.5) is valid.
We now assume a large aspect ratio "tokamak" where kz = ny ,ie. ¢ periodic

and the ends of the cylinder are identified.



According to equation (2.6) the configuration is stable with respect to high—m
interchange instabilities if %—;1 is big enough. This change in the helicity of the

magnetic field with radius is called shear.
2.3 Tearing Modes

An important result of early fusion research was that instabilities were observed in
configurations where the ideal hydromagnetic theory predicted stability. To gain
insight into this problem we follow Bateman [9]: Define B (x) = B(x)~Bgmm(x)
where for simplicity we work in a cartesian coordinate system. Assume the mode
rational surface (i.e. where equation (2.5) is valid) to be at x=0 and use a series

expansion of B_ . in the neighbourhood of this surface

?

B(x) = B x. . (2.8)

Now include only one harmonic of the magnetic feld perturbation in the

x—direction
B: (x,y) = B sin kyy . (2.9)

It is now possible to describe the total magnetic field by a flux function Wx.y)

which ensures V.B =0

_ i) il
By = — a%f By = 92, (2.10)
Y = % +4By x2+ (Bi/k,)coskyy. (2.11)

This can be illustrated as follows:
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FIGURE 2.1 The combination of B* and By leads to the formation of an island

structure. Contours of constant magnetic field are shown. W denotes
the island width.

Taking this approach of Bateman a little further, the following formulae for the

island width can be derived:

Bi
0

with B, the perturbed radial magnetic field.

Bateman and Morris [10] showed that this expression is valid for large island widths
in Tokamaks. They found a 2 % deviation for W/a =02 and 4 % for

W/a =0.3, with a the minor radius of the Tokamak.

The flux function defined in equation (2.10) is proportional to the poloidal magnetic

flux. The poloidal and toroidal flux can be written as follows in toroidal geometry:

Yeor = .f;dS.B = flux the long way round (2.13)
tor
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Yool = fs dS.B = flux the short way round . (2.14)
pol

The subscripts denote the toroidal and poloidal directions.

With this in mind we can see that Figure 2.1 implies that the flux—surfaces (and
thus also the magnetic field lines) on tokamaks are designed to have the same
topology which are broken in the sense that their topology has changed because of
disconnection and reconnection [11]. The perturbation (2.9) thus predicts a
magnetic structure in which the magnetic field lines tear. In the ideal MHD case
the field and fluid are coupled, and it is impossible to disconnect it. Finite
conductivity (resistivity) can be included in the MHD theory to allow for this

disconnection, and the formation of a tearing mode.

The above discussion suggests the possible occurrence of other instabilities (called
resistive instabilities) not found in the ideal fluid description of a plasma. Apart
from the tearing mode (from the tearing of the magnetic field lines into islands)
which was discussed above, there are also the rippling and gravitational
(interchange) modes [1] which will not be discussed further in this study. Prior to
this study of reconnection in magnetic confinement devices, resistive studies had

been made in relation to the earth’s magnetosphere, most significantly by Sweet

[12), Parker [13] and Petschek [14].

The reconnection rate is defined as the time rate of change of the magnetic flux, 1,

at the X—point (the point where the magnetic islands are the narrowest) and is

given by (see e.g. [15])
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W~ A/ (2] (2.15)
The Sweet—Parker model assumes t=0 (¥ q*} and the Petschek model t=1

(s ~ n8) [15). In the case of the tearing mode, reconnection initially occurs at the

rate 1 3% when the island is small, but then slows down to [16]
!-nﬁa Ll I {llﬁ:l
when the island size gets large.

During the linear phase, the growth rate of the tearing instability increases with

magnetic shear, i.e.
' pa)?l® (2.17)
r o~ (2 fg™, ;

with 4 the growth rate. The magnetic shear that stabilizes the ideal MHD

instabilities (equation (2.6)), destabilizes the tearing mode!

24 Linear Tearing Mode Theory

Although resistive modes had been investigated by Dungey [17], Murty [18], Aithen
et al. [19] and Kadomtsev et al. [20] prior to 1963, the first complete discussion of
the linear theory of resistive modes was published in that year by Furth, Killeen and

Rosenbluth [1]. They separated the plasma into two regions:
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(1) a marrow central region around the rational surface where (finite
conductivity permits relative motions of field and fluid, and where

geometric curvature may be neglected,

(2) an outer region, where field and fluid are coupled as in the infinite
conductivity case, and where generalizations to non—planar geometry can

be introduced as desired.

In this approach it is assumed that resistivity is only important in the vicinity of
the rational surface where the resistive mode can grow and therefore where the field
lines must be allowed to reconnect. Only in this small region around the rational
surface is resistivity included in the MHD equations. Manheimer et al, [21] derived
this set of two second order differential equations in a very elegant way, following
the approach of Coppi et al. [22). Across the boundaries these equations are then
matched with the ideal MHD equations which are valid in the outer region further

away from the rational surface,

An important result obtained by Furth et al. [1] was a stability criterion for tearing

modes. This is defined as

.1 i dyp
i [:—[“‘frﬁﬂ—;f,ﬁ_, <0 (2.18)

A
where 4 is a perturbed magnetic flux function, ry the radius of the rational
surface and 2¢ the width of the resistive layer. If A’ is greater than zero, the

perturbation will grow and form a tearing mode. The marginally stable tearing
mode is defined by A‘ = 0.



Manheimer et al. [21] have given a physical interpretation of A’ as follows. The
power per unit area released in the outer region is given by

2 | Bx (x=0) | " A” + constant, (2.19)

from which it can be seen quite easily that there will only be energy available to be
released if A° > 0. In the formation of the tearing mode, this energy released in
the outer region is dissipated by Ohmic heating in the inner region. Alternatively
the energy released can also result in the acceleration of electrons [23,24,25) (an
electron inertia—driven tearing mode) or be dissipated by viscous dissipation, i.e.

without resistivity. It is thus possible to get reconnection without resistivity also,

When the caleulation of tearing modes is extended to the collisionless regime
(recognizing that fusion and magnetospheric plasmas were likely to be virtually
collision—{ree) and electron and ion gradient drifts are included, the theory leads to
the drift—tearing mode [26]. When Hazeltine et al. [27] unified all the previous
caleulations (electron inertia, gradient drifts) by carrying out a kinetic theory
approach including the full electron—electron and electron—ion collision operators,

they found that the tearing mode could also be driven unstable by temperature
gradients [28].

From the infinile—conductivity equation [1]

dn —} i,.{§,,+rla_(n r}] =, (2.20)
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m
F - k-ﬂzkﬂz'b'?Bgl
H = r3{k¥?+mi,
m2-1 )1F? kir? dP 2(krB, — mBy)
g = { ) + [2-—+IF=+F ],
kirl 4 md k2r? 4+ mt dr kir? + m?t

valid in the outer region, an energy integral can be formulated [26]:

,d g dF
w.= [ dr[H{aﬂu )+ i (&/F + P L HE) (2.21)
2 (IgTE
= w -lim |H2dE ¥ (rs), (2.22)
® el [5—F

where FIH =1, W_=2W(¢), £="Yo/F and  W(¢), ¢ aredefined in
equation (2.3). Note that F- occurs in W, . We have pointed out above that

Firs) = 0, indicating a singularity in W,

The integrals are to be interpreted in the sense

S, = tim [_j;[rf+fh

(2.23)
Fgte

g+

The point b represents a perfectly conducting outer wall. The quantity —W.,,
given by W, = H{rs)¥} (rs) &', represents the magnetic driving energy of the
tearing mode (it is similar to (2.19)). The infinite conductivity equation (hereafter
called ICE) derived by Furth et al. [1] and the Euler equation (2.4) is the same

except that the one derived by Furth et al. [1] is in terms of 4, rather than ¢{.
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To determine tearing—mode stability, the ICE can be solved for the functions ¥y(r)
and 9¥y(r) in the respective ranges 0 <1 < 1y and 15 < r < b, and with the
respective boundary conditions ¥, » rmt at t =0, ¥(rs) = ¥a(rs), ¥2(b) =0. In
general, the derivative ¢/ will be discontinued at 15, and by evaluating A’ it
will be clear whether a tearing mode will grow or not {29]. Robinson [30] rewrites

the ICE as follows:

dy?
aT‘;.|. Ay, =0 (2.24)

3
by defining Yp = _17b(r) where by is the perturbed radial magnetic field and
(m2+k2r2)

A is a function of r, m and k and is singular at r=r;. Equation (2.24), also
called the tearing mode equation, need not only be derived in the process of
searching for the perturbation which minimizes the magnetic potential energy of the
system; it can also be calculated from pressure balance considerations as Ellis did
[31). We will return to consider this equation below as it applies 10 the equilibrium

of a perturbed system.

2.5 Non—linear Theory

In 1973 Rutherford [2] showed that, as the island edge approaches the boundary of
the tearing layer in its linear growth phase, non-linear effects become important.
Sizeable non-linear eddy currents arise, producing forces which oppose the growth
of the mode and which quickly assume the role played in the linear theory by the

inertia. At this point the exponential growth in time is replaced by algebraic

growth on a much slower time scale.



17

In Figure 2.2 [9] the magnetic field, longitudinal current density, and flow pattern of
a tearing mode are shown together with the separatrix of the induced magnetic
island. It can be seen that the velocity {ield can drive a second order contribution
V;, Bl to the electric field, which, in turn, can drive a second order current density
along the magnetic islands. This current (J{») produces a new J{® B force

which opposes the V| flow everywhere [9].

FIGURB 2.2 The magnetic field, current density and flow pattern of a tearing
island are shown [9].

The growth of the teéring mode is now given by

d ,
Tre b (2.25)

where W is the island width.

In 1977 White, Monticello, Rosenbluth and Waddell [3) made a quasi-linear
extension of the work of Rutherford. They noted from numerical analysis that the

current inside the island (Jp) can be-modelled accurately by a linear function of )
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(with B =Vy A2z —kr/m Bf) within the island, written as
-1

Iu(¥) = a+b¥(r0).

The work of White et al. [3] will be discussed in more detail in chapter 4, but we
may note for future reference the use of a model for non—axisymrmetric perturbed

current in the island.

Together with a perturbation expansion of the current in terms of the fundamental

harmonic on the outside of the island, they found

I = 1667 (rs) [D4(W) —aW]. (2.26)
In this equation they used

AW) = (P =) [ i (ts) (2.27)

where 9, is the first harmonic of the perturbed % and the +,— refers to the
island edges. The e—term in equation (2.26) is a numerical constant depending on
the resistivity profile. It is practically negligible if the resistivity profile is
increasing radially with a scale length given by the minor radius (32]. For typical
resistivity profiles the mode saturates approximately when A’(W) vanishes, and

the saturated island width can be determined by a numerical evolution of A% (W).

Generally we can thus write

% » 1.66 7(r5) AY(W) . (2.28)

This is in agreement with the linear theory where the energy available in the outer
region for island formation is given by equation (2.19). If all the available energy is

dissipated P must vanish, and this implies that A/ must go to zero.
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Numerical codes have confirmed this relation (2.26) for islands up to about
W02 (a the minor radius) [3] and for experimentally relevant q profiles the
i

results agree within 20 % [33].

Kutvitskii and Yurchenko [34] derived a result very similar to equation (2.26).

They found
g#: 1.24 (A’ + 0.4 ug;W &n (4/W)), (2.29)

where u, and u; are the components of the velocity of the resonant magnetic
surface which results from the gradients of the conductivity and of the corrent,
respectively, Equation (2.29) is only valid for narrow islands. It is, according to
the authors, an improvement on (2.26) since (2.26) cannot explain the effect of the
conductivity profile on the island growth because it was derived assuming that the

equilibrium current is steady and is thus applicable only in the case of an ohmic

equilibrium, J,(r) ~ ::_Eﬂ ;
1]

The A’ criterion is affected by pressure—gradient and torcidal—curvature effects
[35,36], radial flow [37,38] and viscosity [39]). Equilibrium shear flow also has an
effect on the A’ criterion. When the flow shear is larger than the magnetic shear
of the magnetic null plane, the flow freezes the magnetic field and stabilizes the
tearing mode [40]. Inclusion of finite Larmor radius effects does not change the

saturation width but causes a mode rotation at the diamagnetic {frequency [41,42].

In their analytic modelling Hahm and Kulsrud [16] were able to follow the
development of a tearing mode through its different phases providing a smooth

transition {rom the linear to the non-linear theory for the case of a perturbed

boundary.
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These results were all remarkably successful [32,33]. Present work focuses on the

boundary conditions and other effects like toroidicity.

2.6 Equilibrium Stodies

In 1957—59 Grad [43], Shafranov [44] and Liist and Schliiter [45] derived an equation
describing the equilibrium for a axisymmetric toroid.  This 1is called the
Grad—Shafranov equation. By specifying the pressure (P = P(¢)) and flux (1=
I()) functions, together with boundary conditions or externally imposed constraints

on 9, the equilibrium flux {unction can be derived.

When a plasma possesses a nearby state of lower magnetic energy which is
inaccessible  without  magnetic  reconnection, the  asymmetric  ideal
magneto—hydrodynamic equilibrium with magnetic surfaces consisting topologically
of nested tori, will go to that lower—energy state which possesses one or more
magnetic islands [11]. Kotschensreuther et al. [36] were able to modify the

Grad-Shafranov equation to describe the MHD equilibrium with small magnetic

islands present.

On tokamaks it was found that the characteristic linear and non—linear growth
times are often much smaller than the time scale for changes in the general
equilibrium. The tearing instabilities will thus be saturated and their time
development will be determined by changes in the general equilibrium. Such an
approach was taken by Sykes and Wesson [5]. They included a flat in the
equilibrium conductivity profile, simulating a saturated tearing island. This has the

effect of removing the singularity in the equations. A relaxation procedure was then

used to find the {inal island width.
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In section 2.5 on the non—dinear work, we referred o the work of While el al. [3].
When ﬁ-\# is put to #ero, the equation Lhey derived (equation (2.26)) describes the
time—independent situation of a saturated island. They studied the island size as a
[unction of various current densily profile types. In Figure 2.3 we present one of
Lhear graphs in which a peaked profile (g(r) = C(I + ﬂ,-'r.ﬂ'_l was used  We will use a

profile very similar Lo this in cur sludy.

Saluration Width

201 peqked Current Model nlr "ﬁ;]
16l qf,].c[“r!hﬁ!]
W qlrg)=m o

A2

08

L Tu’.E‘

04

0 | 2 3 4 5 6 1 8 .9
ISLAND LOCATION r,

FICURE 2.3 Sateration width predicted wsing the quasilinear model for m=2. The
points are results of Lime stepping the Full non=lisear code [3].

Carreras et al. [16] later showed that their results do not differ very much from the

simple Lime independent Rutherford equation {equation (2.25) with %I!% = {1}.
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2.7 Numerical Analysis

Although the full three—dimensional set of resistive MHD equations had been solved
numerically [47,48,49], a more common approach to the problem was, and is, to
solve a reduced set of equations. In 1974 White et al., proposed a set of numerical
techniques for investigating the full non—linear unstable behaviour of low—m kink
modes of given helical symmetry in tokamaks {50]. When the equations are
expanded in the inverse aspect ratio (e = a/R0 — the minor over the major radius),
the terms can be ordered to exclude higher order terms. The equations were
reduced to helical coordinates by Rosenbluth et al. [51] and cartesian coordinates by
Strauss [52] (which made it applicable to non—circular cross—sections). In 1983
Holmes et al. [53] compared the full and reduced sets of magnetohydrodynamic
equations for resistive tearing modes in cylindrical geometry and found good
agreement. A comparison for the m=2 magnetic island width, using these

different equations, is shown in Figures 2.4 and 2.5. A profile of the form
|
220
q = qo[1 + (r/15)""]

sizes with small ¢ < 0.5 and peaked profiles (X = 3.5).

was used. We note the good agreement for saturated island

Since 1975 the reduced set of equations has been used extensively to study plasma
phenomena. When Kadomtsev and Pogutse [54] proposed that major disruptions
(an experimentally observed phenomenon in which plasma can be lost from the
confinement device) were a consequence of the non~linear development of ideal kink
modes, these vacuum bubbles were indeed found, but it was shown that when
magnetic shear is included, the modes were stabilized (51,55). The interaction of
modes of different helicity has been studied by many people [56,33]. When modes
overlap a stochastic region is formed resulting in fast plasma transport to Lhe outer
region. The possibility of this being the reason for the major disruption has been

studied extensively (33,57,58,59]. When Goeler [60] and Kadomtsev [61) suggested
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that the disruption is caused by the m=1 instability, it was investigated using the
reduced MHD equations [62]. The effects of toroidicity and finite pressure have also

been looked into [63].

Although plasma pressure has been found to have little effect on the linear growth
rates of tearing modes, the non—linear aspects are affected severely. The pressure
has an effect on the current—driven tearing modes as well as on the pressure—driven
ballooning mode. Because of the lack of appropriate physical damping mechanisms
in the reduced tokamak equations, the saturation of the pressure—driven modes was
found to be very difficult [64]. These modes can be eliminated by excluding pressure
perturbations for all harmonics. If equilibrium pressure is included [65] it is found
that the saturation level of the non—linear harmonics increases monotonically with
the pressure for the otherwise equal equilibria. The stochastic magnetic field region
alt the saturation time increases with pressure. The entire plasma region can be
stochastic if the pressure is large enough. When the plasma resistivity is small, the
stochastic field region is not large and the m=2 tearing island increases

monotonically with the plasma pressure.

The drawback of the non—linear tearing mode theory is that it is derived for small
islands. In solving the reduced MHD equations it is possible to look into the
behaviour of large islands. Carreras et al. [66] have confirmed that the m=2 island
width grows slowly (algebraically) from the time it exceeds the tearing layer width
until it saturates, irrespective of the value of § = TR/TA — as the non—linear theory

predicts. (TR is the resistive time—scale and 7, the Alvén time—scale). The island

A
they looked at obtains a maximum width of 0.48a, relaxes, and eventually safurates

at 0.37a (a = minor radius).

In chapter 3 we discuss the reduced MHD equations in more detajl.
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2.8 Toroidicity

Toroidicity has been included in the reduced MHD equaﬂons by various authors
[4,67]. They found that the m=1, n=1 mode can strongly destabilize the m=2,
n=1 and m=3, n=1 modes [63], that the size of the m=2, n=1 saturated island
is reduced (by approximately 12 %) [4], that an m=2, n=1 mode can drive an
m=3, n=1 mode in equilibria that could not otherwise support an m=3, n=1
island [10] among other results. Bateman and Morris [10] studied the following: (1)
the breadth of the global current profile, (2) local peaking or suppression of current
within the magnetic island being considered, (3) toroidal aspect ratio, (4) elongation
of the plasma cross—section, (5) harmonic coupling caused by toroidicity and
elongation, and (6) the influence of multiple magnetic islands on each other through

the background current profile [10].

A toroidal A’—criterion was proposed by Connor et al. [68] and Zakharov et al.

[69], given by

B = lim [ (V)| y— (Pl

I=Ip—¢ J ?

with 3, the perturbed flux function. Conner et al. [70] showed that the MHD

equations do not specify any particular set of App , only a relation between them

given as
|IE-A] =0,

with E a matrix. Just as the single quantity A’ contains all the information
needed from the ideal MHD solution in order to determine the eigenvalue of the full

problem in the cylinder, so the E matrix contains all the information needed in a

torus [70].
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2.9 Boundary Conditions

The external conditions can vary {rom a superconducting wall or a resistive wall
with some form of plasma rotation, to the inclusion of external coils. The effects of
plasma rotation on island stabilization have been studied by Gimblett [71] and
others. Persson and Bondeson [72,73,74] were especially interested in the effect of

wall stabilizatlion on the major disruption.

Any perturbed magnetic field at the boundary can have an effect on the plasma,
being able to force reconnection from outside. This phenomenon, where tearing
mode stable equilibria (A’ < 0) can be driven unstable {from outside (using
external coils) was studied by Reiman [75], Ellis [31], Lee et al. [76] and others. In
such a case the energy needed for island formation is not released in the outer region
as 1s the case with a natural island, but is made available from outside the plasma.

This can be expressed as (75]
’ — ’ — €1 ’
Aﬂ(W) = A/(W) ) & (W) (2.30)

where A’él(W) is the A’-criterion with an external perturbation ¢, A’(W) is
the same criterion when ¢ =0 and §(W) is a function of solutions of the tearing

mode equation. The term ?)—Erls-j 6’(W) now expresses the extra energy made
1

available from outside.

Such a perturbed magnetic field can be caused by gaps in the conducting shell, coils,
errors in the installation of coils or by external helical coils installed for this
purpose. To illustrate island formation using external coils we follow an explanation

of Karger [77]. On the rational surface field lines close on each other after rotating



around the torus a number of times. The field lines just outside a rational surface
have a rotational transform i which is just bigger than that of a field line on the
rational surface becanse it encircles the torus a little slower. The line would thus
tend to move downward on a surface which is just outside the previous rational
surface. This is illustrated in Figure 2.6. The opposite would be true on the inside
of the rational surface.

J T, B
- successive crossing points

i \ / /] T~ on & cu
\ L A f;c-. "‘H,.u.,..h.,.,..:.r,

e x s o

7N

L rational surface

FICORE 2.6 A graph shoving the szccessive crossieg polsts on & cat in the torus.

Now an external winding can be added and the field lines followed. Stari on the
inside of the rational surface. The next time the field line crosses the cut in the
torus, it would not only be above the previous crossing but also a little to the right
because of the field component of the external coil on the right side of the lorus as
shown in Figure 2.7. [If this procedure is continued, the field line will eventually
cross the rational surface. This time the next crossing would be below the previous

one, but still shifted to the right. The end result is an island formed around the
rational surface.
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7 external coil

AN N
e forced island formation
== ' N rational surface
~ plasma boundary
FIGURR 2.7 An external coil causes the formation of a magnetic island,

When Park et al. [15] modelled external coil driven reconnection, they found a finite
jump in B;p at the rational surface accompanied by a sharp current spike. The

reconnection rate was found to satisfy the modified Sweet—Parker scaling:
o Kol bt

with u the viscosity and K a constant. No quasi—steady. state was found for

nY &, but for ¢ g it was found that
b o=t : (2.31)

which is slightly different from the natural tearing mode case, i.e. 7¥/® as was

discussed before (Before equation (2.16)).

The MHD—equations can be adapted to include external windings by merely
changing the boundary conditions. In this case the internal perturbed magnetic

field includes the external induced field as well as Lhe plasma response.
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In 1985 J J Ellis [31] used the pressure balance equation
jAB — Vp = 0

to derive equation (2.24). He dealt with the steady state phenomena, looking at an
equilibrium which is perturbated by the magnetic islands induced {rom outside. He
also looked into the time dependent situation (following Dibiase [78,30]) and showed
the equilibrium of the time independent steady case is the same as when the

external field has fully penetrated the plasma.

Using equation (2.28) makes it possible to calculate the width of the tearing island if
the perturbed equilibrium is tearing mode unstable (A’ > 0). In this case it is
assumed that the island will grow until A’ = 0 and that the f{ield line topology

outside the island is not changed in the process. Figure 2.8 illustrates this method:
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FIGURE 2.8 The plasma response when an external coil is included. Qutward
iteration (from r = rg) is used to find the island edge where
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In 1992 Hansen et al. [79] used the abovementioned method to study the effects of
external coils on the Tokoloshe tokamak. Some of their findings were that the
(2.1)-mode is not really affected by the external coils, whereas the locking of the
(3,1)-mode (using a resonant external coil) does not lead to saturation of this mode.
Both these results were observed on Tokoloshe — the last one in the form of minor

disruptions. Similar work has been done elsewhere by Yamada et al. [80].

An important contribution of Hansen et al. is the derivation of a stability criterion

for equilibria with external coils. The equilibria are stable to tearing modes when

B (rs } [ B (re ]
[ vaclls vaclIc >0, (2'32)
with r; the coil radius, and subseript vac denoting vacuum magnetic fields.

Experimental studies on the effect of external DC coil currents were performed by
several groups. The effect on plasma stability has been studied, among others, by

Karger et al. [81], McCool et al. [82] and Roberts et al. [83,84].

The effect of external AC coils on the plasma was studied theoretically by various
authors including Hender et al. [85] and Nave and Wesson [86]. Feedback loops had

also been proposed by some authors [87,88] and can be used to reduce islands [89] in

experiment.
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2.9 Conclusions

We will build upon various aspects of tearing mode studies that have been reviewed
in this chapter. The non-linear and equilibrium studies are of major importance
and provide a theoretical framework for the study of saturated tearing modes. The

A’(W) criteria will be used extensively.

The equations to be used will be based on the reduced MHD equations which will be
discussed in more detail in the next chapter. Boundary conditions for these
equations have to some extent been developed by the various authors that have
been referred to under the section on external conditions. We have developed some

for our specific application on Tokoloshe.
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CHAPTER 3
THE REDUCED MED EQUATIONS
31 Introduction

Since Strauss [52] and Rosenbluth et al. [51] derived the reduced MHD equations,
they have been used extensively by many authors. In this chapter we will present
the derivation of the more general reduced equations of [zzo et al. [4] in toroidal
geometry. From these the Strauss and Rosenbluth equations can be derived. There
is nothing new in this chapter. It is only included for completeness forming an
important foundation for the rest of the thesis. We will use the reduced MHD
equations in cylindrical as well as toroidal geometry. In cylindrical coordinates we
include one mode in the plasma, ignoring all coupling. This introduces a model and
is done in chapter 4. In chapter 7 we use the toroidal reduced equations when two
modes are included in the plasma. In this case we use the model to consider toroidal

coupling between these modes.

In these equations it is assumed that the inverse aspect ratio, ¢ = a‘/Ro , 1s much
smaller than one (a is the minor plasma radius and R, the major radius of the
device). This is not really the case on Tokoloshe where ¢ ~ 0.5, With nothing

better available, we decided to use it while keeping this limitation in mind.

Another important feature of the equations that we are going to use, is that a
low—beta tokamak ordering is assumed, i.e. the pressure is small (O(e2)). We will

ignore the effect of pressure in this study.
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32 Deriving the Reduced MHD Equations in a Torus

In this section we will follow the approach of Izzo et al. [4] in the derivation of the

reduced MHD equations.

Begin with the resistive MHD equations in rationalized electromagnetic units:

A NEAAT (3.1)
oV

p— = -VP +IAB (3.2)
at

B

— = -VAE 3.3
At - (3:3)
%% = -7PVYV (34)
E = nJ-VAB (3-5)
] = B (3.6)

where
& - 9Ly,

and p is the mass density, V is the fluid velocity, J is the plasma current, B is
the magnetic field, P is the thermodynamic scalar pressure, -y is the ratio of

specific heats, and 7 is the plasma resistivity.

Use the inverse aspect ratio, ¢ ~ a/Ry << 1, as an expansion parameter, where a

1s the minor plasma radius and R, the major radius of the torus.



4

The following ordering is assumed:
8,B,, ¥ ~O(e)

V,B, % B3 YR~0O(g

L

P, V,, (1/R)V(RB,), V.V ~ O(el)

where the subscript 1 denotes components perpendicular to ¢, working in a

cylindrical coordinate system (R,g,2). Third order terms will be neglected.

Assume a perturbation of the toroidal magnetic field of order €2 The toroidal field

can thus be writlen as
B, = I/R = (I + T)/R, (3.7)
with I, constant {of 0(¢ ")) and I~ €1,

The perpendicular magnetic field can be written as the cross product of two Euler
potentials [80]:

B, = RTyavp (3.8)

or written in terms of a stream function ¥ as

.= R/RVag,
with

$ = Rip. (3.9)
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Thus,

B = RJ/RWAP+(I,+1)Vp. (3.10)
Using

T = %fu 1/R-§%fp+ g%z
we get

Voap = SFi-PR (3.11)
Now, using equations (3.11) and (3.7) in (3.10), we get
B = RO[I/R(—%R+%®]+RB@V¢. (3.12)

Now using this, it is possible to derive the current density components from

equation (3.6):

1<~

R 50 10 0 (10 0 (10 -
= e = "R ARG R - [ mEW+EED]| R
+1me 9 z] + V(RB,) A ¥
Jyp 02 o) MY
because VA(yVyp) = V9 A Vp giving VA (RB)Vyp = V(RB,) A V.
d Y 4 .
But %[I/R%R+ I/R-g:fz] ~ 0(€?) .
The resulting current density is
_ Rojp A%
J = /R A7 9p + V(RB,)AVy (3.13)

with A% = RO (29 + 2
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Thus
I, = -R,/RAYy (3.14)
and

] = WRBAVp = 1/RV(RB,)AG . (3.15)

Substituting equation (3.10) into Faraday'’s law (3.3) gives

B
— = - VAnpJ + VA(VAB)
ot

or
aI -
Bormy a4 }1{5°¢+ SOl % = UAnY + TA(VAB) + TaTg,

with VAV =0 and ¢ a scalar.

Using the fact that I, is constant and 11{% < 0(e?), this equation can be written
as
Ro/R VA g% ® = -VAnd + VA(VAB) + VAV,

using VA = VA gp.

This reduces to

ARo/R) GE & = —TAnS + TA(VAB) + WAV, (3.16)
where terms of O(¢?) have been dropped.

From equation (3.16) we get

MR %o = s+ VAB + 74 (3.17)
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1f the cross product with ¢ is taken
Roym S8 onp = -ninp+ (VAB) Ap + Tonp
we are left with
0 = -nlag+ (VAB)Ap+ VA .
But JAp = -J R+ 1.
resulting in [[JAg]l = |[J || where ||A] denotes the magnitude of the vector A .
Using the ordering of terms, we get from
1, = 1/RY(RB) Ap~ (),
that
I~ O(e) .
If we assume 5 € O(e¢), we get
A £ O(e?) .

Now we are lefl with

0 = (VAB) Ap + Téap (3.18)

which is valid if we are away from the rational surface where the effect of resistivily
15 negligible.



Further,

(VAB) Ap = ~(ViB,Z+ V. B,R)

reduces equation (3.18) to

0

it

—YLB¢+V¢A¢.
If we assume that

6 = BU (B, = "/Ry),
equation (3.19) changes to

V B, = VBUA Q.

From

B, = (I, + )/R , T~ ¢x,

we have

v (or+ Tm) = vlomung.

But

V. /R~ 0(ed) if 1y O(et)

(3.19)

(3.20)

(3.21)



39
Now we have from equation (3.21) that

v ("m) = v—ap

Bm vuave. (3.22)

=g
[

It is thus clear that U is a flow potential.

If equations (3.10), (3.20) and (3.22) are substituted into the @—component of
equation (3.17) we get

Ry &y

o = nlg+ (VAB), + 7B, (3.23)

The term (VAB),, can be wrillen as

(V, + V) A (B, +B) | = (v,AB,), .
Now, after using equations (3.22) and (3.8) in the above expression, we gel

(VAB )

il
pr—

:R,m,vm@] A [Hf,-"ﬂ'?#in: ].;p

VU(pA)78 — VU (5099)3]

= VoApVU, (3.24)
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changing equation (3.23) to
Ro/R ¥ = —ni, + W9 A 29U +7,B,U
= i, + VU ARIU + (Bo/R) 55  (3.25)

When equation (3.14) is substituted into this, it results in

% - (R/Ro)::Vszfp.V]U +Bo/r g%— nle]

= (R/Ry)[[7915 + B3| YU+ 2t (3.26)

This is one of two important equations that are derived in this chapter. It gives an

expression for the magnetic flux .

To proceed further we multiply the momentum equation (3.2) by R? and then we

take the ip—component of the curl:

dVv .
@V A R ar = @VARA(-VP + JAB)

~\ 7~

- 2 ; 2
=PV R2VP L IA(RYAB) (3.27)

3 3

Term A can be written as

o dY dv dv A\
B2p.VAp I 2R p at_z , (VR2Ap d—t.(p = -2Rp aTZ)

_ R D au V,
= —pR2( /RO)[—d—tWUmﬂRoHV?U]—QRpgt— (3.28)



41

from Appendix A. Note that

g-[ - %-I—'!'l.'.

Term B reduces to
-R3pVATP —pFR2A VP

= -IRPVRAVP. (3.29)
Term C can be analyzed as follows:
Recall from equations (3.10), (3.7) and (3.13) that

1 = ~(Ry/R)A*Wp+ W(RB) A /R

B = (R/R)WWAp+(/R)p.

Now we get

w8 = [ -(Ry/mA"Y (Ry/R) G-/ G (R |
- [—fﬂ—“’{nm}%-b R2 ¥ & ;
— (R, Ry/R2 3 T (RB,) | &
B, 1 ay 2
+ [—Euuﬂ}—ftafmaa*xn]z
= (e ) - Riymaney O i s TR 29

_Rnfﬂg_ggﬁiﬂﬁmﬁﬂ_.ﬂgfﬂl.%ﬂ‘ﬁi : (3.30)
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using
i = 1;3[-%{&5,,]R+§H[RB¢]&]

B, = R/R[-Jr+ 3R]
When equation (3.30) is substituted into term C, it results in
pVARYIAB) = Rj [ SR T N0

= -RRBY(A"H).
From equations (3.28), (3.20) and (3.31) we get
~oRH"/Ry)| Gy V2 —2/R, Ui | 2k p $2
= -2R{.VR A VP — RR,B.(VA*9).

If we allow R% = R}p,, we get
p,[ D-vw —2/m, Xy ] = 2/R,pVRAVP + (BV)A*y.

The term

20 RoyR1 3V2 L 0(et) and can be neglected.

(3.31)
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If the pressure is neglected we get (from equations (3.32) and (3.26))
oo (2 WU —2/R, SV 920) = Ro/m(ven i + Bop)va’y, (3.33)

the velocity equation, and

% = "R, ( (VoA g+ Bnﬁ"ﬂlW] + b, (3.34)

the magnetic flux equation,

These are the final equations as derived by Izzo et al. [4). The important feature of
these equations in common with reduced MHD equations in general, is that only

two independent variables, ¥ and U, are involved.

For high beta equations where only terms of order O(¢) are included, the Pressure
is included explicitly [64,65]. Equations (3.32) and (3.34) are used in Appendix B to
derive the total encrgy of the plasma column in a torcidal configuration. We will

make use of this energy in section 5.10.

3.3  The Reduced MHD Equations in the Cylindrical Approximation

The cylindrical reduced MHD equations will now be derived from the toroidal

equations.

The cylindrical coordinate system describing the above toraidal configuration can be
wrillen as

R=R,+rcosd

£ = rsnf

v = 8/R,
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where s is the toroidal arc length.

Make the substitution

x =rcosd, y=rsinf.

The result is
R=Ry+x
3=y
v = s/R.

We want to look at the simplified case of a cylinder. To do this we re—order Lthe
terms as follows:

IR~ O(e) (R~ R~ O(et)) with Ry>>x.

& 55 0(1) (xy ~ O(1))

o

g 0.

From this we get

/R = mrﬁ = 1R, —x/R2 4 .

= (R +x)=Y/RG G+ /Ry /R G + 22,
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Now equations (3.33) and (3.34) become

24 Hi{g,;uﬁ %}] = (791§ + BE)IGY + 5 (3.35)

B~ (9 + BEIU+ Gy + 58, (3.36)

o= UG =F=¥5=9

-1
n

and the following was assumed (as before):
Vi OB ]~ O(e) , VU~ OV )~ Ole), 7 0], BT~ O(e) .

Terms of O(¢3) were dropped in these equations. [t can be noted that all torcidal
effects have been removed and that these equations are thus valid for a straight

cylinder.

Equations {3.35) and (3.36) can be rewritien as

oy 5 VAU = (VNS + BLE).0Vay (3.37)

G0 — (VNS + BLE).TU + vy (3.38)

where 72 isin the (x,y,5) coordinate system. The definitions of B, V and J; can
now be adapted to

B = VgAs + Bji
‘u’l = VU As

Iy = Vi,
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34 The Strauss Equations [52]
If the resistivity is neglected in equations (3.37) and (3.38), we get the ideal
three—dimensional, non—linear approximate tokamak equations of motion in
cartesian coordinates, first derived by Strauss [52]:

p GV = (VyAz + By3) 9729 (3.39)

3 — (Vyz + By3). U (3.40)

o1, as he gave them

N2y
== VIVULBINA, =L (3.41)
oA

where s -z in equations (3.39) and (3.40) with % = A.

35 The Equations of Rosenblath et al. [51]

Rosenbluth et al. [51] derived these reduced MHD equations in helical geometry.

This will now be discussed.

Equations (3.42) can be written as

aT = BJ.'VJ_U + Bz-VzU

Il

~V.9A+B, 90
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or

Se+VIA = B 5. (3.43)
Equations (3.41) and (3.43) can be simplified if helical symmetry is assumed. Let
r = md-kz , k = n/R.

Now m and n are the mode numbers of the original perturbation, which has the

form f(r)exp[#m@-kz)]. For 7= constant we get

mdd = kdz

or
d

)

0
%5 =

3| =

using (r,0,z) instead of (x,y,z) as coordinate system.

Equation (3.43) becomes

dA _ g koU
dt = C*rm 3l
B,k
= om Y, (3.44)

from V.9r? = 2rV.9r = 2rV,

= 2t(VU A 2),

au
= 2~a—g.
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Substituting § = A —B.krif2m into equation (3.44) we get

WiviP =0
ar
2 o,
where B, is just B, . (3.45)

When 4 is substituted into the expression for B , now given by

itg
I

VAAZ + By |

_ 15 = ¥ kr
T
These equations satisfy (B.9)y = 0 implying that ¢ is a fux function.

Equation (3.41) can be written s

d
E'I.'FIU = E.F?EA . (3.46)
But
B,,k
1 = = (R ]
VA = Vg e

= vij+2tn, (from L& (L& r) =4). (3.47)
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When equation (3.47) is substituted into (3.46), we get
2 _ 2.
V.U = B.V(V 1Y)

— B (V) + (TA A D)Y (V2)

B, kr

= B, g (0%) - T (V) + (T, (029 (3.48)

3
k)l
,.,|,_.

d
a0

using (¥Az).9

Equation (3.48) can now be writien as

TV = (V)T (V)
= V(VP) A Ve, (3.49)

using the identity (AAB).C = (Ca

12
1=
fTos

In summary, equations (3.45) and (3.49) can be written as

D

=0 (3.50)
F VU = —VIVIU) + VVPATPZ . (3.51)

These are the same equations that were originally derived by Rosenbluth et al. [51]

in helical symmetry.
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3.6 The Equations of Waddell et al. [57]

If resistivity is included in equations (3.41) and (3.42) (using equations (3.37) and
{3.38)), we get

SVU = BIVA, p=1 (3.52)

9 = BVU+nVA, (3.53)

Using equation (3.47) in the expression for the current, i.e.,

Jz = —?ff'-.

Eives

I, = Vp-"%mp, . (3.54)

When the transformations

t = YEm/(BK)
A = AJ(krZ By/myp)
ro= e

¥ = ¢f{krlBy/m),

are used in equations (3.52), {3.53) and (3.54), and the bars are dropped, these

equations can be writlen as

Dyjdt = —nl,

TP = 1A ()

Jo = —Pip—2
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where 1y is the wall radius.

It is convenient to replace 3 by % — Et where E is the constant electric field at

the wall, so that the boundary condition on ¢ becomes ¥(rw,8,z,t) = 0. Then we

get
%—? = -7, +EB (3.55)
Dyy = -v 2
& = T YAT (29) (3.56)
Jo = —Vp—2, (3.57)

which are the equations used by Carreras et al. [66), White et al. [91] and Waddell
et al. [57].

3.7 Rewriting the Reduced Toroidal Equations in (r,0,p) Coordinates

The reduced toroidal equations were derived in section 3.2 and are given below.

D L
o3 VU = 2/Ry G2 720y = RoyR(vg a p+ B vty + TR AR o

R, ¥
(3.32)
% = YR, [(W Ao+ Bos“o)-VU] + nA*y. (3.34)

It 1s interesting to note that equation (3.33) is an explicit function of the z

coordinate in cylindrical geometry.
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We use the following normalization, with a bar specifying the normalized value,

o = <

[

T X U >

z

m

n

o=
<1

7 7 (7 a typical resistivity)
r, b with 7 = a%/7 the resistive time scale
a BO 7’ )

B, B,
B,/ad,
70

1/azk* |

with a the minor plasma radius.

Now, dropping the bars, the equations can be rewritten as

i}

FVU + VY

(v20) —2¢ JLVIU = $2/n(VgAp+D).TA®Y + €S2 VRAVP . &

(3.58)
W[(VPAp+).TU] + nd*y (3.59)
R/R0 = 1+ ercos
.

R/TA , T§=a,2p/B§ ,

1
/Rq,
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7, tbe Allven time scale. In these equalions we have two variables y and U (n

and P Lo be prescribed) and two explicit parameters ¢ and 5 .

In this study we will use the time independent equations to study saturated islands

in the equilibrium. These are given by
iy 51 nin . "
VIV =257 VU = S0 (Vg ip) TA*Y + SIWRATP ¢ (3.60)
h(Veni+ @)U + nA*y = 0. (3.61)

These equations are in the (R, @z)-system. The relation with the (r,0,¢)-system,

shown in Figure 3.1, is given by

R = Hy+rcosf
# = rind
p o=y

with

sind =

-

- .
F -
o ) -
) e I )/ED
e’ -

FICURE 3.1 The (., o " coordisate ayslem,
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We need the following to do the transformation between systems:

% = sginf (3.62)
%r{ = cos @ - (363)
%ﬂ _ %COS& (3.64)
ggc = —%sin() . (3.65)
Further,
sy = nGh g+ 3d
= —yr Ly (3.66)

%- phoBY

= Co§ O-glré——% sin 0% : (3.67)

Py = R [rRCRPRgEraR RG]
iy = %%(r%)+%§%+;{(cosg%-—%sin0%). (3.68)

Thus, substituting equation (3.67) in equation (3.66), and writing V2 in

coordinates (r1,6,¢), using equation (3.68), we get
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. 1

A¥y = —2/R(cos0%—%81n0%)+%%(r%)+;5%
+ﬁ(cos€§%—%sin0§%)

—efn(cos 098 Lin g8 L 1O B LW (349)

Using equations (3.62) and (3.64) we find

g% = g%%‘i+g%.gg = sin (Qg%+%cos Og% A (3.70)

Another quantity in equation (3.60) is

oP -
VRAVP — 5o

= —{sin 0-3— +1 = Co8 0-3-5) (3.71)

The perpendicular velocity is

R . 100 . ’
V. = T/R,VUAp = h(E}ﬂTI_'g% 9) ,
giving
_ 10 1900 ¢ du1lo
We can also write
10U 8
VY(VU) = n LT (V2U) —h gg%gp (v2U) (3.73)

because
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vﬂlgg@ v O(e?) and V20 ~ O(e) .

The Laplacian is now, using equation (3.68),

2 :
%E(r gg) + %, + (¢ /h) o2 U + ¢/h(cos B-g%—% sin Og%) :

(3.74)

1
72U = =

Now the final time independent equations can be written in the (r,6,9) coordinate
system by substituting equations (3.73), (3.70), {3.69) and (3.71) into equations
(3.60) and (3.61).

gv(WU — 2¢(sin 93_ + cos 0-5—0)V7U

r—z|v—-

SEETAY:
G G - LG A+ Gara))
~e52(sin 092 + Los 09T (3.75)
ni oYU 108U, em aU)+ DA%y = 0. | (3.76)

where V2 and A* are given by (3.74) and (3.69) respectively.

When V2U and A*yp are substituted into the above equations, (using equations

(3.74) and (3.69)), it is possible to see from inspection that

U(O»W) = —U(‘a‘“ﬂo) (377)
?})(0,(/)) = w(—g)_w)‘ (378)

We can now expand (see Appendix C)
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[¢0]

Yy = 2 dmn ei(ma_n‘p)
E;
m »
U = 2 ibmn ez(mo_n¢) )
i

where a Fourier expansion is done in 4 and ¢ . These expressions can now be
substituted into equations (3.75) and (3.76) to get a system of ordinary differential

equations for apn and by, . This has been done in Appendix D.

3.8 The Cylindrical Reduced MHD Equations
Let
2
Jmn = a»:]'m + % 4mnn % dmn

, _ 1 ., 1 m? m? _,
Jan = B 3%t T+ 2Ty 200 — 17 2o
1 m?
—_ i /
Kmn - bmn+fbmn_T§bmn '

After the Fourier expansions have been carried out (in Appendix D), we get

(DR

mo

+ A, | cos (mé—ny) = 0,

with

Ap = éndy +efJ

€2
Diign = — (- (m—k) apy,,0 by + Xk 444 D)



for the magnetic fux equation, and

(PR

mn

+ Amn] sin (mf—np) = 0,
with
A = —neSA
Dyjun = T € [ (m—k) 2p40m1 Jio = K" pgern1 J ]
+ & [ (1K) by ot K = kb7 5 pon 4 Kig ]
for the momentum equation. In 2ll these coefficients the ¢ has been made explicit.

Let

L£(x,y) = (m=k) X004 Yid — K¥pa0na Y -

This gives

)y [ l -F S(a,b>] + by + eme} cos (m0-ag) = 0
k

mn

2 [ [ 3% oa,0) + £ 8(b,K)
k

- nei’S?Jmn} sin (mény) = 0,

or, since sine and cosine are a complete linearly independent set,
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neb 2(ab) = ~ 1 Vmn  (3.79)

=l

mn

V m,n (3.80)

ll
[l et
o
b
=
~—~
o
~
-

0Tgn— Y, £L(33)

kl k]

with

R = zgn(b,x).

kl

The J,, terms may be regarded as the mn Fourier coefficients of the current
density, using equation (3.14) for J,. Equation (3.79) is the primary equation to

determine b and equation (3.80) to determine a_, .

mr

3.9 Mode Couplbng in the Equations

The 2 terms in equations (3.79) and (3.80) give the coupling between modes
i1 :

since they are quadratic in mode amplitudes. Let us, for reasons of simplicity,

examine equation (3.79) further.

For any mode (m,n) this equation can be written as

€ 7 7
Umn + nebmn _E 2[(m_k)am-k»n-l bkl - ka’m-k)n-l ka] =0 '
kl

(3.81)

with p substituted for r .
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To look at the coupling between the (m,n)—mode and the (m-r,n+s)—mode, we do

the following substitution:

k = m+r ,

{ = n+s .
Since k = 0,1,2 ... we have r=-m, -m+1,-m+2 ... (see Appendix C).

For s, just as for n, we have

8! [—m,m]A

By the symmetry defined in equations (3.77) and (3.78), we also have
b = —b

a = a -ae -n mn '

-m?-n mn

(This is done in Appendix C).

Using these relations in equation (3.81), gives

o
6 / / l
{‘]mn + nébmn + E Z [ra'rs bm‘rm +S + (m+r) a'l'S bm*r’n‘s\ = 0 :

r“-m

S -p
In this équation we get coupling of bmn tO bmir,nis through ags .

As a practical example, we can take the coupling between the (2,1) and (3,1) modes
which are, together with the (1,1)-mode, the dominant modes in Tokoloshe. These

two modes are coupled to a secondary mode — the (5,2)-mode. The equations for

these modes are
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o
Uzt + Eb2i + % 2 [ra‘rs b/2trll~s + (2+r) a';s bbr)l‘s] =0
r=-2

§=-

s ]

L]
fJq + fb:n'*‘%E [rag b§+rn1~s+(3+r) g bamhs] =0
r=-1

5= -o0

fJg, + 2¢ebg, +

®
4 / —

E Z (rars bls*pzvs + (5+1‘) a';'s Brr2dis 0.
rs-%

5%

Other modes have been neglected in these equations. The coupling term is the same

for Ampere’s Equation (3.80).

More generally, ranking the modes, we get

If terms of O(e3) are neglected, it is clear that the first five modes will be the ones
observed in a Tokamak plasma, where the (4,1)-mode falls outside the Tokoloshe

plasma when the safety factor at the boundary is less than 4.

Also note that the coupling of dominant modes to themselves gives coupling to a
higher order harmonic of that mode. For example the (2,1)—mode would via itself

couple to the (4,2)—mode.



3.10 Interpreting the Reduced Time Independent Equations
When the resistivity is dropped in the magnetic field equation, we get

neb - z’ %E{u,h} = 0 ¥ m,n. (from equation (3.79))
k

This 18 exactly the same as

BIU = 0. (3.82)
as can be seen from equation (3.61), remembering that

B = Virg+ .
We now introduce a function ¥ which satisies B.¥¢ = 0. Then ¢ = const

defines the magnetic surfaces where they exist. The magnetic fieldlines are now on

these surfaces,

Equation (3.82) is analogous o B¢ = 0. For B.YU = 0, the streamlines would
now also be on the magnetic surfaces. Equation (3.82) is thus telling us that the

streamlines would be on magnetic surfaces if there is no resistivity, and that

resistivity will brake this effect.
If 5%+ &, equation (3.80) reduces to

ned,, - I{;E[a.n =0,
k
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This is exactly the same as

BV =0 . (3.83)

as can be seen {rom equation (3.60) with P =0and -A*p=J,=1J.

Thus, as above, it is clear that the current stays on the magnetic surfaces, and that
this relation is broken by the introduction of the magnetic Reynolds number, that is
by finite resistivity. In the case of only one perturbed mode, equation (3.80) will
automatjcally reduce to (3.83) because by, = 0. Thus, for one dominant mode in

the plasma, the current will follow flux surfaces, whether there is resistivity or not.

3.11 Corclusions

In this chapter we derived the toroidal reduced MHD equations following lzz0 et al.
[4]. From these equations it was possible to derive the cylindrical equations in
helical, cartesian and cylindrical coordinates, with and without' resistivity. We also
discussed the effect of resistivity as well, as >, ie.S-w.

When only one mode is included in the plasma, equation (3.83) describes the
equilibrium physical situation with or without resistivity. This will be the topic of

the next chapter. In chapter 7 we will use the toroidal rendering of equation (3.83)

to describe the situation with two modes in the plasma.
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CHAPTLER 4
EQUATIONS FOR ONE TEARING MODE IN CYLINDRICAL GEOMETRY
4.1 Introduction

In this chapter we include one mode in cylindrical geometry in the
time—independent reduced MHD equations. The reason for including only one mode
is that the equations simplify significantly as was discussed in the previous chapter.
Although the situation of one saturated mode in a perturbed plasma equilibrium has
been discussed before [3) our work differs from earlier studies for the reason that a
different model is developed. This model makes perturbation theory work in the
vicinity of the rational surface. It is done by flattening the current profile in a way
very similar to that used by Sykes and Wesson [5]. It differs from White et al. [3],
because they only use perturbation theory outside the island, modelling the total
current profile inside the island as a linear function of the magnetic flux. Further,
we are going to apply it 10 Tokoloshe. To model the exiernal windings on
Tokoloshe, the model will be extended to include various boundary conditions (the

topic of the next chapter).

The effect of the resistive profile will be discussed. A resistive profile of the form
7= 1(r,0,¢) « 1/J, is used to exclude flow from the problem. A simple resistive

profile of the form 7 = (1) is then discussed.
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4.2 The Reduced Equations for One Mode
42.1 Basic expressions defined

Assume the following directions for quantities used in this chapter:

The directions of the important physical quantities are shown.

FIGURB 4.1
Let
B = WAp+d (4.1)
with % of the form
P = ayy + 3gn COS MN
(4.2)

= a,(r) + a\(r) cos mn
where mn denotes mé—nep .
The current J = J¢ can also be written as

J = Jpp + jun COS mn

= jo(r) + jl([) COS mn . (43)



fifi

From #= % v+ % (using helical symmetry when only one mode is included) it is
clear that Af= % Ap.
Thus

1 _ A8 _d8| _ 1 _ 1
ﬁ'r-;'ﬁ_wlh Tyl @ B'lr. Toa %ﬂ,“

where r, denotes the rational surface, q Lhe safety factor, and use is made of the
field line equation

rdg _ Rodv
= ]
By B,
in the form 5;—:=%dw where R, =-£i and B is normalized o By = B r=0 "

From the above we have

agl +e r,%:ﬂ (4.4)
Is

for an axisymmetric unperturbed equilibrium with T the q—value at r = r,, The
derivative (*) denotes 3

=0
422  ‘The helical equilibrium flux
Define a surface function i{r.l.q:r} such that

By =0, (4.5)

¥ = %+ ¢,cosmn, (4.6)
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This 4 is not the same as the function ¢ that was used to express the magnetic
field in equation (4.1) and which is not in general a magnetic surface. When

equation (4.1) is substituted into the above equation, we get

Y] y / n '
Vo = Baap+a ) (4.7)
{b’l = a’[il)l/a, (first harmonpic) . (4.8)
For the axisymmetric unperturbed equilibrivm we know that B, = iglé = - a]
y p q 0, = Tt = 5 -
At the rational surface we have B% =—ajl = 51 from equation (4.4).
Ig Is

Making these substitutions in equation (4.7) gives

) .

Iy

&’6 = - 1;bl/"‘l (Beo — By

The equation for the first harmonic, given in equation (4.8), can be solved

analytically, giving 1:01 =aa. I a ischosenas 1, we get

So— n ‘
Yy = ap+ €T (4.9)
v o= a (4.10)
and thus
v = —(Bp, — By, rﬂ) : (4.11)

This is just the helical magnetic flux for the unperturbed equilibrium [4]. This

formula is also derived by an independent argument in Appendix E.
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423 Rewriting the current density equation

As we have seen in Chapter 3, the equation

BV = 0 o (4.12)
is valid when only one mode is included in the plasma, for any value of S.

Using the expressions for B and J (i.e. (4.1) —(4.3)) in equation (4.12) gives

_a'mﬂj(’]o + a'(l]o jmn + er %jmn = 0. (413)

This is exactly the same as when ore mode (m,n) is used with the zero—order

equilibrium quantities in equation (3.80).

It will now be shown that, instead of using equation (4.12), we can just as well use

the expression J(ib), where 9 is the helical magnetic {lux.
Noting from equation (4.3) that equation (4.13) can be writien as

o= Qe+ e /a (4.14)

and substituting equation (4.7) in here gives

I agjp [ (ag+ er %)

= iy [ b5 (4.15)



69
Using
i = (Yojan)iy
in equation (4.15) results in
o= % Yosdiy. (4.16)

We know from equation (4.12) that the current is along flux surfaces, which enables

~

us to write J = .]({p). Let us now make a perturbation expansion of J(%) about

J({po), This gives

X L. dd(%y)
) = @)+ b —

cos mn + ... . (4.17)
di,

When only the first harmonic is included, we get
W) = Jo(r) + j(r) cos mn .

This gives j, = ¥ djo/d{po, just as in equation (4.16). Instead of equation (4.12)
we can now use (4.17) to get the same result. Stating it differently: instead of
using the equation B.VJ = 0, we can just as well define J = J({p), with 9 as in
equation (4.6).

This result is not new, and was also stated by previous authors [5]. [m the

derivation of these equations, however, we did not follow any particular author.
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424 A closed set of equations

‘I'he above discussion leaves us with the following equations:

Ay + 1 ag P, (4.18)
dj
vk e 00 : (4.19)
all + —al— =8, = -3 — :
; T 39,
b= sl (i34
with
¥ = a,+a cos(md-ny)

§ o= 4, + a;co8 (md— ny)
. o d3(wy)
) = )+ — Y cos {mf — ny)
di,

_ djy
= jy+ a,—cos (mf —ny).
0

Equations (4.18) and (4.19) are the same as (3.14) in cylindrical coordinates as was
discussed at the end of section 3.3 and follow from ‘i'fi,'.'l =—J{4). In the above
equations the axisymmetric current profile j(r) is prescribed. This leaves us with
three equations and three unknowns (a, a,, ib,:,] to solve for. This enables us to

determine a,, and thus also ¥, If djﬂfd{&'ﬂ is known, a, can be solved for.
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4.2.5 Problems of a perturbation expansion for J(4)

The problem with a first order perturbation expansion of J(¢) is that

dI(9)/de, ” blows up. This can easily be seen when equation (4.14) is written as

7 djo /
jo = di—(ap+egr)/a
d#f,
dj,
= (a.,o + ¢ % r)——
a4,
dj, .
d,
using equations (4.16), (4.10) and (4.9). We know that 93| = 0. For | #0,
I's Ig
as is the case with any original unperturbed axisymmetric profile, d-lo/dibD - o in

Is
equation (4.21).

The behaviour of J() at rg can be illustrated with the following simple example:

Let

J = 1-—r12, (422)

Thus

" ]- 7
ag t+ 1 ag = —1+r2. (4.23)

using equation (4.18).
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Now we have

- =

d . d
HT(IHY&O) = r1—1
which we can integrate to give

ap = %r3—%r+l{/r :

The constant K is zero because By =-ag ~r2t20 as r- 0.

When {pg = ayter % is substituted in equation (4.24), we get

M8 (e D22 +16(k—4) = 0

This gives

o= 4 (eh-pealer-p - (k)]

%
When this is substituted into equation (4.22), we get
_ n - 1,2 -
Jo= ~l+dediafe -0 (k-
At 1 =0 we have 1:/)0=k and at r = 1, ¢O=k+§e%—3/.5.

For fpo:k+%€%—3/w we get

— 1
Jo = Oor -2+82¢.

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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The rational surface ry is where ';/»6 = 0, resulting in

(using equation (4.4)).

Now we have, when this is substituted into equation (4.24),

1 3
S

n 1
—Ersﬁ = I[ ""‘2‘1‘3,

giving
\ n
Ig = 2 — 4¢— .

This gives, from equation (4.25),

€ +k.

1 n n
— _Z+_£_(_
Iy

Drawing J, as a function of {00 , we get

3 r=1
348 DL
m RS
‘_\\
.
_le
. IT=T
—I+4c%-_____.-._._>.. R ’
//: - =0
On__ c s = . —
n n
() af-(af)Q—;lf+k

PICURE 4.2 The graph of —J, = r—1 against ¥,
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From this graph it is clear that i . ~a . It should be noted that J, is double

dy,'®
valued for a range of ¢, values. This behaviour is in general true for physical

profiles.

4.3 Modelling a Perturbed Flattened Current Profile

43.1 Sykes and Wesson [5]

From equation {4.16) il is clear that dﬂ <o is the same as | -wo fora
dyy'rs s
well—behaved {.DI . This divergence—problem is overcome in the linear theory of
tearing modes where the equations are solved for |r—rg| > ¢, ¢ Lhe resistive layer
width. They are then connected over the inner region using the A’—criterion. In

this way the dynamics of the inner region are ignored. In the non—linear theory the

A (W )—criterion is used instead [79).

If we take into account that the linear growth times are often substantially less than
the time-scale for changes in the general equilibrium, it 15 expected that the tearing
modes will be saturated most of the time. A possible approach is thus to ignore the
first stages of learing mode development, and to model the final saturated state by
including a flat at the rational surface. Using energy relaxation, the saturation

equilibrium can be determined. This approach has been used by Sykes and Wesson

[5]-

They used a conductivity profile o of the form

g = E{a_f'_wj} in region i
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RN i . . .
o = (357 in region
[-W . .
o = f(ﬁ) in region iii ,

where { has the form [ = 00(1—x2)a,

and the regions are shown in Figure 4.3. The quantities a and w denote the

minor radius and island width.

FIGURB 4.3 This graph is Laken from Sykes and Wesson [5]. In (a) the typical
form for f(x) is shown and in (1) the typical conductivity profile
for a plasma with a tearing mode present.

A relaxalion procedure on a polar mesh was then used to solve the equilibrium

equation

v2£[) = —0‘(‘&}) +2 )

with the functional form of the conductivity o({b) included in the equation. This

equation is similar Lo equations (4.18) and (4.19), with (4.20) substituted therein.
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White et al. [3] introduced another way to solve this problem. They assumed a
linear form in ¢ for the final flattened equilibrium profile inside the island
modelled on numerical calculations. In introducing J(¢) = a + b v, they were
able to overcome the problems associated with the initial current profile as

explained below.
4.3.2 The White et al. model [3]

White et al. [3] used the same approach as in the linear theory in distinguishing
between an outer and an inner region. In the outer region they made use of the fact
that the introduction of an island causes the current to change in two ways, that is
because of the change in ¢ and due to the change in the functional form of J
itself. This gives J(9) = Ja(¥, + A¥) + AJ(¢, + Ay), where #, and J, are the
solutions of ¥2¢ = -J(¢) — 2 in the absence of an island and AJ is the change in
the functional form of J.

If a perturbation expansion is made in the outer region in terms of the fundamental

harmonic ¥, the following expressions are arrived at:

¥ = Plr) + ¢ ¥y(r) cos mO + €2 (2 cos 2mh + ) + ..
b= Ja(¥y + AY) + e ATV (g + AY) + AT (g, + Ag) + ...
Substituting this in

= -J(§)-2 (4.29)
gives

ﬂ-” | - ]

v = —(Pyapi,,

as usual.
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This approach is not used in the inner region because of the fact that alaj il aa
I's

-

i.e. J{) is not analytic at the singular surface.

In the inner region, that is inside s (where 4 is the value of ¥ on the

separatrix), J is assumed to be Jyu(y). The motivation behind this functional
dependence was discussed in section 4.2.3. They then proceeded to model Ju().
To quote them, "An N-—parameter model of the current in the island interior,
Ju{4), along with a truncation of the harmonic expansion of {r,f) with N
harmonics then gives through eguation (4.29) a set of N integral—differential
cquations for the harmonies g, with the parameters of Jyu(4) serving as

eigenvalues. Specifically, they take the form
oy = - (&) -4y,
'&‘: = [mifrijﬁl]—%éﬁl—,]“

where the harmonics of the current are given by

o = 2 a0, (4.30)
2m 1/m r
Jir) = T—fn dd cos md J(4) (4.31)
and
&, - Ju{r]_-]u{’;ﬁu{r” "[3]. (4.32)

From numerical codes [3] they noted that the current Ji(9) is accurately described

by a linear function of .
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[For ib(r,()), the flux function in Lhe island interior, they uscd

Wr,0) = (r) + edi(xy) (1 + sx) cos md (4.33)
(¥ = a+bynd), EENCET)
where 1 = 1y + x, where ry i§ the position of the X—point, and s the slope of

Pi(r) in the island interior given by ¥ (r<)/%,(t,). Their curreat profile is shown

below.
BN
|
[ Jp
{
|
|
J () \ l
| [
1 |
[ [
[ [
1 ]
Yo f l
J I
L |
0 ¥{0) Ve
v
FIGURRB 4.4 The current profile used by White et a). [3].

It should be stressed that they did not use perturbation theory in the inner region,

and Lhey thercfore did nol have the problem of singularitics at the rational surfacc.
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In their analytic work, they used the expression for A’ {0 connect the inner and

outer equations across the island. They also used

W = 4 [-y(re)/Pi(xs)] (the island width),
to calculate
W = 166 n(rs)(A" (W) — aW] ,

a a constant given by some expressions they derived.

44 An Alternative Approach
441 A new model

In our approach we do not distinguish between an inner and outer region of the
plasma solving different equations in the different regions. The equations we solve
are thus valid in the whole of the plasma region. We can do this since the definition

of the inner region flows naturally from the problem. It is just the island interior.
As above, we carry out a Fourier expansion of the helical magnetic flux, given by

¥ = Py(r) + Py(r) cos (mh— ny) (4.6)

where only one mode 1];, is included in the plasma.
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We then make a Taylor expansion about the perturbed current profile to give

) S dJ(%,)
J(¥) = J(%) + ¥ cos (ml— ny) o + ...,

0

where J(4,) is the first order axisymmetric part of the current. Now we will model
J(%,) such that dJ(4,)/d%,- is finite. This can be done by adding an axisymmetric
perturbation 6J to the unperturbed axisymmetric profile J,(r) such that

Ju(r) + &J is analytic at the rational surface.

In the same way as the set of equations in 4.2.4 were derived, we can now derive

ay +1ap = - (%) (4.35)
dJ (%)
wo Loy 2 0
a1+?al—% = -a, . (4.36)
¥y = ap+eg, | (4.37)
with
Y = a5+ acos (ml-ny) (4.38)
P = P+ a cos (mh- ny) (4.39)
. : dJ (%)
I = I +a1—— cos (ml - ng) (4.40)
dh,

= Jo(r) + j(r) cos (md —ny) . (4.41)
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In these equations J{ir,'_l is not the unperturbed axisymmetric profile Jy(r) , but a
perturbed axisymmetric profile.

dJ(¥,)

dy,
approach to that of White et al. is patent. Instead of their linear function for J(¥),

| a, = j, as was derived in equation (4.16). The relation of our

we use a perturbation expansion for J[ir] in the expressions given by equations
(4.30) and (4.31). This gives

e = 2 Pa03E) = ) = i (442)

s o m{iﬂ]
L !m m = i _— .l I . 1-“
Ifr) = - J; df cos m@ J(¢) : ﬂi'q. ifr) (4.43)

where J(r) and J(r) are their functions, and j,(r} and jfr) our functions.

From equation (4.32) it is clear that

& (r) Jy(r) = Ju(9ylx))

I(¥) — Julr) (4.44)

Il

where J,(r) denotes the unperturbed axisymmetric original current profile. We

now model &), and thus indirectly J(%,), where White et al. [3] model J(4) .
43 (¥)
de, 1

difficulty at the rational surface. The reason for modelling J{v,) instead of J{4)

The perturbation &, will be modelled such that # o , removing the

is that no assumptions of the final functional form of the current density J(9) have

1o be made.
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It is important o note in our theory that the axisymmetric equilibrium quantities
a,, ¥y, J(#,) do not refer to the unperturbed equilibrium as in section 4.2 4, but to
an axisymmetric perturbed equilibrium.  Further, it should be noted thai
&1, # 0(¢?) and that il is not part of the perturbation expansion. If this perturbed

axisymmetric current has ﬁ # w these equations (4.35) — (4.37) can be solved

without the singularities which are inherent in the unperturbed case. This can be

assured by forcing | ~0 insucha way that J°/¢; is finite. This is
dr'rg

immediately obvious from equation (4.21), where j, 15 now a perturbed

axisymmetric current.

In solving the above equations, .]{1:51[,] must be prescribed. Because J[‘;!-'n] = jolr),
we can just as well preseribe jo(r) = J(r). This J{r) we get by including a

perturbation & on the unperturbed current profile, such that gir = (), This will
[z

force i; w. With J(r) known, gi can be caleulated and i = gi,.f&:;, can
dif, ! de, '

also be calculated easily. The given set of equations (4.35) — (4.37) can now be

solved without problems.

It is important to note that the perturbation £], can cause J(r) to be double
valued in the island. In that case the radial points with equal J(r) must also fall
on equal values of ﬁlu to keep J = J{iﬂln}. This is not easily accomplished. For
reasons of simplicity we decided not to allow J(r) to be double valued in this

model. To keep J(r) from being double valued, we can just ensure that J"| . =0
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442 The effect of the higher order terms in J(%)

Instead of writing J(%) as in equation (4.40), we could have included higher order

terms to give

X L dI(%y) d2I ()
J(¥) = J(¥) + ¥, ——— cos mn + p —
d9, d29,

cos?2mn + ... .  (4.45)

In this expression the higher order derivatives of the current J(ibo) with respect to

9, areincluded. We can rewrite the n—th/order derivative of J(9,) as

dn'](ib) n-\ .
— = L)1
dwg dzfzﬁ'
= T By 3y
0?,()’3'7

= ((96)™ (W) ™ {(wg) M(wg) 7 (0] () Byr | yrem e
(4.46)
where <i> | 1= 1,2 ... n, denotes the order of the derivative.
If we take into account that
[({bf,)“ J’] has an order one pole

(ibé)'l[(i%)‘l J’] has an order three pole

(12)6)-1{({06)-1[(':06)"' J’],]I has an order five pole,
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a°J ()
a9}

it is clear that the term has a pole of order 2n-1.

We can thus write the term with the highest order pole on the right—hand side of

equation (4.46) as

J’ g N Jnogm o
Gy W 33,

with m = n—1.
Assuming J’) =0, wecan apply L'Hospital's rule to this term, getting
)

lim 1 (2m4+1)13" )

r_'IS({ba)QmH ( ,;p(t))mn

If we want to proceed using L'Hospital’s rule, we must have J" g = 0. In that

case we can define a new function f, which contains poles of order less than 2m

and write

Wy o0
w3 mIM R

ey ()

Other terms of similar form are grouped together and handled in similar fashion. If
this process is repeated 2(n—1)+1 times, making all the derivatives of J up to the
2(n—1)+1 th one zero, we can remove all the poles. It is thus always possible to
get a non—divergent value for the n-th derivative of J (’:bo) to ’;bo» if L’Hospital’s
rule can be applied ﬁ(n—1)+1 times.
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If all the derivatives of J are made zero at the rational surface, all the higher order
terms of J(%) will be zero at r =rs and thus well behaved. Sykes and Wesson [5]
managed to define exactly such a profile by including an absolute flat for the inner

region in their profile.

4.5 Resistivity

4.5.1 Resistivity as a fuaction of r

If the resistivity is included as a function of r, 7 = 7(r), we can get an expression

for the perturbed velocity potential b, from equation (3.61), which is the same as

B.YU = 7J in the cylindrical approximation. This gives

by = = nj/¥- (4.47)

from the definitions of B and U as given at the end of section 3.7.

From this it is clear that by| - if j)

# 0. To keep by finite, j; must be

Ig Is

zero at the rational surface. For j; to be zero at rg, djo/dib0 must be zero at g
[using (4.16)]. It is thus clear that de/d{bo must not only be finite (as was
discussed in section 4.2.5) but zero if velocity perturbations are included as well as
7(r). This result is not stated in previous work as far as we are able to determine,

and is compatible with the White et al. {3) model in which j(rs) was zero and 7 =

(1) .
Applying L'Hospital’s rule to

dj, i
de, ¥}
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we get
3
lim -— = 0.
-Ig ¥y

With ! e # 0, itis clear that jj s must be zero to have dJO/d{po zero at the

rational surface.

We poted previously that

g% $ 0 = di - o for the unperturbed profile
Is d'wo I's
%% = 0 = Q is finite for a perturbed axisymmetric profile.
I d1,b0 Ig
Now we also have
%%; =0= di = ( for a perturbed axisymmetric profile with 7{r).
I's dwo Ig '

d?J

It is now important that g% = 0 is not enough, bat ar? = 0 is required to
I

Is s

have a well behaved set of equations if flow perturbations are allowed, together with

finite 7(r).

Lastly, we know that 9§ =aj + e1 . Because aj = - By and By 20 as 10,

it is clear that {p;,

= 0. This implies that
0
dJ
dr

0 0, (4.48)

using equation (4.21).
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452 Resistivity depending on § and ¢

Let n=n, + n, cos (m@ — nyp). This gives

by = L(hime+mi)/(@i+erg), (4.49)

using (3.61) in the cylindrical approximation. If B.¥y = 0 (just like B.VJ = 0), we
get my = w nj [ ¥;. This means that the resistivity is along flux surfaces, just like
the current. A resistive profile of the form n{r) ~ 1fJ,{r) is often used [4]. The
form we specified allows for p{¢) ~ .lll:_ﬂ , lollowing from equation (2.5) with no
flow and constant E. Equation (4.49) can now be written as

[ R g d‘in . 0 o
b = _E{ﬂ’;@:q°+iiﬁhjiﬁn

- ij Go ma) / ¥ - (1.50)
L]

The only condition for finite b, in this case is that :—;—{jﬂuﬂ} =0 at ry.
[

dl, dn,
On the other hand, if —| = 0 and — = 0, b; will also be well
dﬂl‘n Iy dﬁ;’u Iy

behaved.

Il nyj, = const, weget by=0 for all r. This is consistent with equation (3.5),

where weget E=nl for V=0 (assuming E = constant),

We used both 5= g(r) and p(r,0,¢) in our model.
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4.5.3 Expected features of the plasma as time evolves

From the previous discussions, we can get some understanding of the plasma

bebaviour as time proceeds.

If the equilibrium is tearing mode unstable, and a tearing mode can evolve at a
rational surface, the following features can be expected: The original unperturbed

current profile j, has jj ot 0 which causes the perturbed current j, to grow
8

djy .
very strongly. This can easily be seen {rom the relation j, = —— ¢, and the fact
0

thai d‘io/d’{bo - o for j;

#0. If 5 is a function of r the fact that j| #0
I's I's Iy

will cause a strong localized flow al 15 (from equation 4.47). As the current profile

fattens (j;

= 0), the perturbed current will go to zero in the case where
S

n = n(r). The strong flow al rs will then also disappear. In the case where 7 =
7(r,0,¢) the perturbed current j, will not necessarily go to zero, and if 7, =

ConSt‘/jo there will be no flows.

4.6 Conclusions

A simple model for the case of one tearing mode in a cylindrical plasma has been
developed. It is simple in the sense that first order perturbation theory 15 used. No
difficult numeric schemes are needed to solve the equations. No model of the island

shape is included, which follows of its own accord.

The model developed here has similarities with Sykes and Wesson [5] and White et
al. [3]. It is similar to that of Sykes and Wesson in the sense that we also include a

flattening of the profile and look only at time independent final saturated island
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situations, It differs from them because we do not include an inner and outer
region, instead only demanding a local flattening at rg, and also, as we shall see,
because our model reduces to an eigenvalue problem. This will be discussed in
chapter 5. The model is similar to that of White et al. [3] in the sense that the
perturbed current profile is modelled in the island region as a function of ¢ (the
magnetic flux). It differs therein that theirs is an exact function of ¥ where ours is
a Fourier series where only the first order perturbation has been included, making it
an approximate function of 4. If higher perturbations were included, it would be
an exact function of 9. Instead of using harmonic analysis as they do, we used a
combination of harmonic analysis and perturbation theory. It differs from White et
al. in the sense that we make perturbation theory work at the rational surface,
whereas they only ose perturbation theory outside the island. They also use an
inner and an outer region, something we do not do. Although we do not have these
different regions, we must still use a A’ (W) criterion across the island. It should
be noted that White et al. [3] did analytic work, whereas we only solve the

equations numerically.

The model we developed will be used in conjunction with different boundary

conditions discussed in the next chapter. The results of the model will be presented

in chapter 6.
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CHAPTER 5
BOUNDARY CONDITIONS
51 Introduction

In this chapter we discuss the boundary conditions for equations (4.35) to (4.37), i.e.
for the new proposed model. The aim is to consider the effect of dilferent physical

situations, i.e.

o the plasma is locked and coupled to a vacuum region outside

» the plasma is locked and coupled to an external coil current in the vacuum
region

s the plasma is rotating infinitely fast with a partly conducting wall or the
wall is superconducting

o the plasma is rotating at some frequency and is coupled to an external
vacuum region

o the plasma is rotating at some frequency and is coupled to an external coil

current in the vacuum region.

In the first section (i.e. 5.2) the boundary conditions on the plasma edge are
derived. These are totally general and will later be related to the outside
conditions. An important parameter in these boundary conditions is 4, the surface
deformation of the plasma edge. If 6= 0, conventional tearing mode solutions are
obtained, but §# 0 allows for the wide variety of situations mentioned above. This
perturbation is chosen to be consistent with the internal mode, i.e. for an internal
mode modelled by a perturbation ¥, cos (mf —nyp), a surface perturbation of & cos

(mf —nyp) is assumed.
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The first configuration discussed is for the plasma touching a non—onducting wall.

A coil current can also be included in this configuration, placing it in the vacuum

outside the wall. In such a situation the plasma boundary conditions are coupled to

the solutions in vacuum across the wall. This coupling makes it possible to derive
d)

an expression for — for the case of a locked mode-(i.e. no time
a | plasma boundary

dependence is included) or for an infinitely fast rotating mode with a partly

conducting wall, which is similar to a superconducting wall, in which case

3! = 0. This parameter &} is directly proportional
27| plasma boundary ) P a7 | plasma boundary y prop
to B:/Bg | and will be of major importance in the rest of the study.

i

plasma boundary

When the rotation frequency is included explicitly, the configuration is changed
slightly. A vacuum region is included inside the resistive wall. It is shown that this
solution agrees with the previous one when this vacuum region is reduced in size.

An external coil is also included with this configuration.

The work done in the first part of this chapter on boundary conditions is not new
and has been done elsewhere (75,86]. The approach followed is not that of any
author in particular. The results are given in a form which is compatible with our
model. The work done in the last part of the chapter, where a rotational plasma is

coupled to an external coil current, appears to be new.

5.2 Non—homogeneous Boundary Conditions

For equations (4.35) — (4.37) we need a;

,a| , Y
g’ Clg”

. The sign
] J 8

denotes "at the boundary of the plasma".
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The value of 3,| may be chosen freely because B =V P A p — allowing us to
0

add any constant Lo a, We also know, from equation (4.9), that
Yy = a0+§e%r2+k (5.1)
where k is a free constant.

From section 4.2.1 we know that

in zeroth order.

Thus a’| = -cr/q| :
°ls 3

as was shown in equation (4.4).

With expressions for the boundary values for aj, a, and ¢, known, we can

proceed to get expressions for a’

and 31| . When a perturbation expansion is
0 0

made about J, at the boundary, using the expression for the boundary,
0 _
r° = 1, + §cos mn, (5.2)
we get to first order in §

Jo = jo(ra) + jl(ra) c0s mn (from equation 4.3))

= Jo(rg) + dcos mn ji(r,) + ji(r,) cos mn .
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When .]:2 = 0, and the coefficients of linearly independent functions are grouped

together, we get
Jo(re) = 0 (cos (0)) (5.3)
5is(ry) = -~ iilry) (cos mn). (5.4)

The second of these equations can be substituted into equation (4.14) giving

) ne
a(rg) = - 6(ag(ry) + —19) . (5.5)
The quantity aj| = Bel| must be chosen such that Bgl - 0 for modes with
0 a 0
m > 2. This follows from the fact that B9| ~ -t . The notation ‘ denotes "at
0 0

I=0".

If we carry out a Taylor expansion about any quantity of order § (like a; or a%)

at the boundary, we get

A‘ = A, + bcosmn A’ 4+ ..
3 Ty Lo

Dropping terms of 0(42) gives

Ay = Al 59
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If we remind ourselves that r, = a (the plasma boundary), and r is normalized to

a, we can replace r, with 1. In summary we get

W, = (acbitrary) (5)
W, = k (using equation (5.1)) (5.8)
M|, = ek (a=q)) (5.9)
n,|1 = —E{a;,]1+ e Z) (5.10)
a'||] = chosen (shooting value). (5.11)

Note that By = % 535 = - ? a; sin (mf —ng). If a is known, By 18 known.

Using mi = { (§), we see that the perturbation of the boundary is directly related
I
to the radial magnetic field on the boundary. It i3 also immediately clear that,

hecause E“‘u|l is included in the expression for a, g this perturbed quantity is

normalized if B“u is normalized. ‘These boundary conditions are thus
non—homogeneous. Becapse of this fact, amplitudes are fixed, unlike the case of

linear tearing mode theory.

These boundary conditions are completely general. They are valid for any § .

They are also valid for § - 0. This follows from perturbation theory, § being a
perturbation of a circular boundary.
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5.3 Effects of istands on the boundary shape

When an island is present in the plasma, there will be an accompanying perturbed
magnetic field Br — otherwise the fieldlines will be circular at any angle ¢ . This
magnetic field would not be able to penetrate the wall if the plasma is rotaling

infinitely fast with a partly conducting wall or when the wall is superconducting.

Using the fact that B, = B,, where 1,2 stand for inside, outside [following from

(B, — B,,).n = 0] it is immediately clear that B_| is zero in these cases, agreeing
i

with § =0 as was discussed in the previous section. This means that the boundary
is circular. It was assumed above that ry, = 1, i.e. that the plasma touches the

wall at the wall radius ry .

When the plasma is locked somehow, the perturbed field can peneirate the wall. In

such a case B,| is non—zero resulting in a perturbed boundary. This corresponds
L

io the free—boundary situation which can be illustrated schematically as follows:

~

S ERTRNN :
s SO - - Limiter
e N
\(\\ —- plasma boundary
\

N N e . " ' ' .
\\\ The L -
~ " - ¢
. .

FIGURE 5.1 When B; l = 0, the boundary will be circular. Otherwise it will be

perturbed according Lo the internal mode.
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In our approach we include a local axisymmetric flat in the current profile, and al
the same time perturh the boundary in a resonant way. The flainess of the current
profile, and ultimately the island width, can now be related to the external
perturbed boundary, arising either because of a natural tearing island or because of

an externally induced one (using external coils), or both.

On Tokoloshe we attempt o influence the natural tearing modes by an external coil

current. This can be understood easily in the following way:

Assume the natural tearing mode (with mode numbers m,n) has a perturbation of

the form
1 By t:ﬂ:m b-nyp) ;
Let y = mf—ng toget sin (m0—nyp) = sin x .

In the case of a cylinder, where no side bands are present, this tearing mode can be

affected by a perturbation of the same form, resonating with the inside mode. This

is possible if four windings are put helically around the cylinder as in Figure 5.2:

FIGURE 5.2 The configuration with a [2,1) external winding. The value of (7 is taken

to be zero for simplicity,
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It is now easy to see that the form of B is approximately K sin x, K < 0, when

¢ is varied at a specific r on the inside of the plasma in Figure 5.2.
The configuration of coils can be expressed as

0 = ap+ (k-1)%, k=1,2...¢,
with ¢ the polarity of the winding and a a constant.

The way to solve the tearing mode problem with external helical coil currents is to
include these currents in the boundary conditions of the reduced MHD equations as

will be discussed in the next section.

5.4 Including coil currents in the problem
Assume a configuration of the following form:

non—conducting wall,

plasma helical
boundary coils
plasma vacuum vacuum
region I region II region 11
r=0 r=r3 =T

FIGURE 5.3 A configuration where the plasma boundary touches the wall. An external

coil is applied in the vacuum region outside.
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In region I equations (4.35) — (4.37) pive the expressions for the magnetic field.

Regions II and [II are vacuum and therefore in these two regions,

YAB, = 0, (5.12)
with B, the perturbed magnetic field given by

B, = (Bur)i + By(r)d + B r) ) eml—n¢)

Substituting this in equation (5.12) gives

VAB, = (=B, + ineBg)i — (B}, + inB,)d
E'L[Il , m .
+ {_[-I—Elﬂ_l-_Er:I“
= {,
resulting in
m
Em = —m HJ:E {5-13}
i l w.
B:|' = _'{ﬁﬂu EE"'M}
By .
; im
T t B = —B. (5.15)
From
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ar after using equations (5.13) — (5.15),
v L 1lg, _md =
E1|z+fH:la_TEB:;_{mFE:|; = 0. (5.16)
The general solution of this equation 15

B = CI(enr) + CK (enr),

giving (via equations (5.13) — (5.15))

—iB, = Gl (enr) + Cy K (enr) (5.17)
—-By = % [Ci1a (enr) + Cg Kgq (enr)] (5.18)

in region 11 (derivatives with respect to enr), and

—iBy = C3 K] (enr) (5.19)
—By = o= CiKq(enr) (5.20)

in region 1II because I_{enr) and I;{enr) are divergent when t - w.
Connecting these solutions, we get at the vacuum—plasma interface [[:rﬂ:l
&

-8 - o1z (ne?)+ G K2 (e (5.21)

-BY = B [C 1y (ner?) 4 €1 K (ner?Y] (5.22)
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where 133 is the solution of the plasma equations (i.e. (4.35) to (4.37)) at the

boundary (discussion in section 5.2).
At the coils we get

Ci 1. (nexre) + C3 K (nere) = Cs K (nexe) 5 (5.23)

mer; C1 Ka(nere) + o [Cy In(nere) + Cz Ka(nere)]

= j,(mm (5.24)
where use is made of
gl _ (5.25)
¢
I _ Bl 2=0 (5.26)
(B‘lill‘Bgi) 5= 0 (5.27)
(B5, ~Bg)| = s (fomn A (B,~B)=1), (528)

c

and },(™™ is the (m,n) fourier component of the surface current density of the

colls.

From equations (5.23) and (5.24) we get

Co = -~ S5 [l enre)/Ky{ ente) ~ In{ente) /K o enr)] K enro)}

(5.29)
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When substituted into equation (5.21) we get a relation between the magnetic field

at the plasma boundary and the coil current.

We will first look at the situation with zero coil current. In such a situation it is

only the constant C, that needs to be calculated. In the plasma we have

B, = L0 mi,, (5.30)
0a y
By = _3?1' = —-a}. (5.31)

In the vacuum (using the expression for B, used in equation (5.12))

B, = #Cy K/ (enr) (5.32)
By = "?II']:—[CQ K’ (enr) . (5.33)
Now we get

B  _ imay _ i CiKg(enr) -

By [8 —ray r(’) Er:[ C4Kn(enr) [8 ‘
or

a 0 , 1o}

at| o = e Ka (e )/Kn (enc?), (5.35)

with 7 = ro + & cos x .
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If a Taylor expansion is done about 1o, we get

[ai(ry) + 6 cos x ai(ry)}(Kn(enrg) + 6 cos x K/ (enrg))m?

= en(ry, + &cos x)[Ky(enry) + 8 cos x K"(enr,)|[a(r,) + & cos x a'j(1y)] -
Terms of order ¢ yield

:l 1) - r;_r,}K,{n(m)/l{,n(cn) , Ty = 1. (5.36)
1

As an example we get (for ¢ =0.1)

-0.501 when (m,n) = (2,1I) (5.37)

2/ (1) ~
and
2101) — 03336 wh = (3,1
o) = 0 when (m,n) = (3,1).
Lazzaro and Nave [92] found a similar result given as %}- = —1/m. This is just
1

the value found when only the first order terms in the series expansion of Kp(enr)

is included. Their result is thus valid when ¢ << 1.

For any perturbation §,, which agrees with a no—coil situation, C; can be

calculated from equation (5.34) or C, = —méy(ag] + ;—n)/K;ﬂ(en).
t
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and B[ with an external coil current

5.5 Deriving expressions for B,
1 t

Equations (5.21) and (5.22) can be rewritten as

= z'mali = ¢[C,I.(en) + C, K/ (en))  (5.38)
i

= - a,"|1 = —%[Cllm(en) + C, K(en)], (5.39)

where use is made of the plasma solutions for B? and B?e i.e. equations (5.30)

and (5.31). Equations (5.38) and (5.39) can now be rewritten as

ma
1

I/(en)
Ki(a) = CRgayt G (540)
€ n a-ll ] o Im(en) . _
—m  K_(en) - YLK (en) + G (5.41)

Subtracting equation (5.41) from (5.40) gives

- 3} IZ(en) 1 (en)
i ¢n L _ ¢ m ol €
Rey ~w K@) = O | Ko wge)

(5.42)

When C, (i.e. equation (5.29)) is substituted in this equation, we get

m a, a
I ¢n b _enrcj(m,n,Len 1
Km’(eni m Km( €n) m “z €nr,) K (enr,)’

(5.43)
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with
I/(x I _(x
= s w0

“{en r s(myn) en
2 Kalen) ¢ [1_ Ja L(en) Kqlen) ] (5.45)

ay L(enr.) K (enr)

When  j{™™ = 0, we get

/
2 ~ K/ (en) en
ajl, — K {en)m®’

which has been derived as equation (5.36) for the no—coil situation. The parameter

o

a,_’l'| is of major importance in the rest of the study. It should be remembered that
i

L

it is proportional to Br/B 4| .
1

5.6 Deriving the coil current in the cylindrical approximation

On the cylinder we shall use the coil winding law (83]

0 = az+(p-1)"/t, p=1,2.., 22 with {=2 (5.46)
and let
I = {(n02) 6(r—r) 6 (0~ az—(p-1)("/2), (5.47)

where {(r,0,2) js to be determined.



On Tokoloshe tokamak, the windings are not perfectly helical, but have an
additional term to account for the shift of field lines due to toroidicity. The general
winding law is 0= ap + 4, sin 0 + %(p—].). The current density may be modelled
in the present cylindrical case by [83)

I = {(1.02) §r-1.) 60~ ez —(p-1)7) . (5.48)

The current in the coil is just

I, = [i.ds (5.49)

Any surface through which the whole current flows can be used in the above

equation:
I, = [ I xdrdo
= [ G 6 (1) 6(0-g(a)) 1dr do
= 1,4, (b, 0= g(z), 2) (5.50)
or I, = fJ,drdz
= [ 1)(z.02) 6 (0~g(2)) ez (5.51)
with g(z) = oz + (p-1)7/¢.

Let

(5.52)
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Now we have, from equation (5.52),
%dm = dy or adz=dy.
Equation (5.51) now becomes
= [ iglrata) 6(0-y) Gy
= [p(raf=yaly)la (§x)=d-=x)) . (5.53)

From equations (5.50) and (5.53) we get f,=al, and L = Iifrc- The current

density can now be written as
J = (0o I:‘." Ifj'rt'_l 8(r—r,) &(0-glz))

= IE {D1ﬂ'|[”:¢” J{r_'c] & [ﬂ_ e & — [P_I] Il'rﬂ :
I:E.E-Il]

In the above calculations we used an external coil Lo generate 3 magnetic field which
18 of the same helicity as the tearing mode that we want to affect.
5.7 The {m,n) Fourier component of J;

To be able to solve for B',a (with coil current), we need the Fourier mode ji™™' in

equation (5.24).



10T

Express 1, as a Fourier sum:

m
'y Real ('™ giml—ng)y
T il -

n=-m =0

m
=%

We know that

27 2
c(mny _ 3 J E—u:mﬂ—m,::-] diide .
(5.55)
for mn#0.
Using equation {5.54) , we get
3 1 1 $H Ty o mi-ng)
B = 2y Yr 6 (i-r,) fa:n J:ﬂ=uﬁ[ﬂ—ua—{p—l} j)e didg
- T
= Ly, AP G™ (5.56)

with o . &= Ry w, k the wave number.

gl=

This is true if only one coil is used. In a sitwation like Tokoloshe, we have four coils

for the =2 case. The configuration was shown in Figure 5.2.

4
. we
- -]}
Now, with IEI.LI'. ‘L‘I: 1P Ly, we get
p=1
I; 4
: o X m(p—1)w
R = N A (5.57)

k=1
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The sum in (5.57) gives 2¢ if n is odd and zero if n is even. The resulting

current density component is just

I
& f m 5.58
-I:{'l ny = {_l}m-nlw_rlr:'ﬁ . ( )

When the A, sin # term {in equation (5.48)) is included in the calculations, an
expression can be derived modelling the situation on a Tokamak (Appendix F).

This was done by Hansen [79]. In that case the expression for j,'™"' is given by
1
. £ m
j,_‘ mil = (-])jwul _“Tc = Ju_m{n-fﬂt} i {ﬁ-ﬁﬂl_l

where J__, is a Bessel function. In the case of the (2,1) coil the value of A, is
about 48° and for the (3,1) coils it is 0%, on Tokoloshe.

5.8 Including the rotational frequency in the boundary conditions

In the previous sections it was assumed that there was a non—conducting wall
between the plasma and the vacuum. For such a configuration it was possible to

derive an expression for 21| in the case of no external coil as well as when one was
i

included. Both these calculations excluded time dependence, reducing it to a time

independent situation, i.e. when the plasma is locked and non—rotating.

Another case that can be studied is the one where the plasma rotation frequency is

infinite with a partly conducting wall or, equivalently, when a super—conducting

wall is included. Then :—} =

0. This was discussed in section 5.3. No external
AN

coil is assumed to exist in this case.
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When finite rotational frequency is included in the above case, where the plasma
touches the non—conducting wall, difficulties arise [93]. However, when a vacuyum
region is included between the plasma and the wall, the expression derived by

Gimblett [71] can be used at the wall. This is

; id

WiT Br = B’ (?ut's.l e (560)
Ty inside

B;nside - B?utsule ) (5.61)

assuming a "thin" wall approximation, with w the mode frequency, 74 = rwlu/7w
the resistive wall time, and 1y the position of the resistive wall, &, the wall
thickness and 7y the wall resistivity. The frequency can be written as w,m — wan

where w, is the poloidal rotation and w, the toroidal rotation. This is found when
_ 0B, 9B,
is used in —— = 75—y, and 0= (L), ¢ = ¢(t). The following

configuration is now assumed

Blei(m(l-ngo)

plasma resistive
boundary wall
plasma vacuum vacuum
regionl region II region III
= r=1 I=r

FIGURE 5.4 The configuration used when finite rotational frequency in included.
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From the equations (5.17), (5.18), (5.30), (5.31) we have the following expressions

B£ = 1 % a,
I /
By = —aj
BII _ , ,
N = 1[C, I/ (enr) + C,K/(enr)]
IT _ m e K
Bl = ~m[ { In(enr) + C,K (enr)]
BIL = icKi(enr)
I m
Big = T enr C 4K y(enr)
Now we have
Bl| = pll
( s
I 11
Big = By 1

at the plasma edge and

Bl = BT

r

W r

w

WTy w11l 111 1T
- WBr r, = (Br _Br )

I

w w

at the thin wall.
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Let wry = {1. Then, with a, and a evaluated at r=1, we get

ma, = C,Iy(en) + C, Kyen) (5.62)

ai = T (Cl,(en) + CK,(en) (5.63)

C lyfenr,) + CKplenr,) = CjKi(ent,) (5.64)
M okyfenr,) = [C4KL(enr,) = Clifenr,) = CKienr,)]en (5.65)
This results in

- C, I en) + C.K/( en)

al, ~ M (C I (en) + CKy(en)) 5
from equations (5.62) and (5.63).
From equation (5.64), we get
L 4(enr,)
Cikriamey * €2 = Cs. (5.67)

Rewriting equation (5.65) results in

n Ki(enr.) I12(enc,)
i1 o W = W
C [rw en K enr, 2! ] = -0, =G T (5.68)
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When equation (5.67) is substituted in this equation, we get

1 .(enr,) in K {enr,) 13(enr,) i Balenr,)

S K fenr ] | reen K[enr, ] K':{F} 1:,:&3’:[:"[_]

which can als¢ be written as

r an:[m'} [Il;i{m'J[ il Ky (enr,) l] N l;{mr,]]

@ = =7 Ky, © | Karn) | foa Kyfar,) ~ !+ Kyfar,)
- AC,, (5.69)
with
; mK“{cnt Palen,) o o Ko(enr) Ienr,)
A = -3 Kl{enr,) [K,{mr,} [ fwéll Kplenr) ] T E,"{mr,i] :
(5.70)
"This results in
I;(en) + A K.(en)
24 - { [ ; (5.71)

di B (g () + A K (en))
using equation (5.66).

Equation (5.71) can be rewritten as

5{* o DEEr (5.72)
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] ] K {en)

I J{enr,)
D = -T-% I:lr.{ﬂ'lll - R;I?nm K.uff"} ]
s Kifenr,) 1L(enr) I tenr,)
b8 = ( K7[ent,) K(enr,) — K[
b7 Knlenr,) Ig(ent,)
B = "™ | grany Ken,) -

it .
The magnitude of 5‘7' is thus
Ly

In the case of {1 — 0, we get from equation (5,72)

a, o K (en)
al|, = m? K_[en]

IT.I.r
I[mr ]] Knlen) -

(5.73)

which was derived earlier for the case of a locked mode (i.e. equation {5.36)). When

&
{1 — @ , equation {5.73) reduces to 5—:—
1l

=0 when ry — 1.

This is in agreement

with the situation where the mode is rotating infinitely fast and there is no vacuum

on the inside of the resistive wall, i.e. when the wall is seen by the plasma as

superconducting. This was discussed in section 5.3.

When ! — o and r# 1, we get

I L[ en) I;(enty) |

a, en Kalem) | Kg(en) K enry) |
at|, ~ m® K Jen) [ T [en] TN

ml ¢h Kof enry)

(5.74)
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using equation (5.72}.

2

When y — 1,it reducesto | =0,and when re — e we get
111

a, en Fmlen)
w7, = ™ Ka)

as in the case of no wall. This result 15 arnved at when the asymptotic solutions of

I (x) and K;(x) are used and L'Hospital’s rule is applied.

In the following table the values of :'71 are tabled in the case of ¢ = 0.1 and 0.5,
Lbl

(m,n) = (2,1) and with r(wall radius) = 1.1 and 1.01 where r=1 is the plasma

radius,
| e=0.1 ' €= 0.5
1 fwe=1.1 Iy = 1.01 =11 Tw= 101
-
0 ~{1.h01 ={.501 ~.527 —.527
1 =), 452 0447 —.489 ~.474
2 {1,384 -0.353 —41.411 =377
5 ~0.227 4. 185 —. 246 ={).2
| 10 0. 146 -0.104 —{.158 -0.106
20 =0.110 .05 118 {1054
m =414 001 .1 —0.011
Table 5.1

It is also shown graphically in Figure 5.5.
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e=Q.1 ---- g=0.1 -—--= £=0.5 - e=05
r.=1.1 r.=1.01 r=1.1 r =101
—0.50
\"\\
W\
W\
\\
—0.40 | '\
WA\ N\
VAL
VAL
A\
VAL
-0.30 - A\
v\
v\\
a. | \ - \\
a'_rl 1 B N
_020 ol \\ \\\
-0.10 -
0.00 : : : : |
0 ) 12 18 24 30
0
FIGURE 5.5 The graph of 2%1-| against 0 for ry = 1.1 and 1.01. When the
(1
distance between the plasma boundary and the wall increases, the value of
%;l-| deviates further from zero.
1l
‘The values

a R . . .
of E’l'\ increases in magnitude when the vacuum region between the
1y

plasma boundary and the wall is increased. The parameter ¢ does not have a

significant effect.

Lazzaro and Nave [86] found a result similar to equation (5.73). They found, in the

case of a resistive wall,

’
a'l

aly

_m{l & {(1/ra)")
(1 = 1(1/r0))

(5.75)
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with
wir, — wmwr,
(ed7d +m3) *

T, = pobtef,

o the vessel conductivity.

For a perfectly conducting wall they found (f=1)

8l _ _m{l+ ()™
e (1 — (1/1s)™)
ay
When ry =1 this reduces to —| =0. When ry is shifted away from r=1, this

1V

value increases (with negative sign) as was shown in Figure 5.5. When f=0

é

a
(agreeing with £ = 0) in equation (5.75) we get Ei
1

=— !,I"lﬂ , which agrees with

aj
our locked results. For different {requencies the value of =
|

varies between these
L

two extremes in a similar fashion to what has been shown in Figure 5.5.

5.9 Including an external coil with rotational frequency

When an external coil is included in the vacoum region outside the resistive wall in
Figure 5.4, the following equations are valid in the different regions (with region IV

on the outside of the coil):



1T

BE = 1T4,
BI“ = =i
B! = i[C, Ii(enr) + C, Kyfenr)]

B = M [C,I(er) + C, K (emr)]

Bl = e, 1(enr) + C, K(enr)]

By = 2R (C,l{em)+ C, K (enr)]
BlY = ic,K:fenr)
BP{ = ‘E—I:iiﬂlﬁn{mr}.

These equations can now be coupled across the different boundaries, giving

By, = B,
El;ﬂ o Bllg
1 1
T
o
B, = BY|.
T ———
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which can be written as

ma, = C I/(en)+ C,K.(en) (5.76)
cap = R[C,Ty(em) + C, Kyen) ()
C,1/(enry) + C, K (enrg) = C,I.(enry) + C, K/ (enry) (5.78)

Tw m

— C, [}(enry) — C, Ki(¢nry) ] en (5.79)

W [C,Ia(enry) + Cy Ki(¢nry)] = [[C3 In(enry) + C, K'(enry))

CyIz(enre) + C, Ky(enrg) = C, K/ (enrg) (5.80)

~C I (enry) = C, K(enre) + C, K (enrg) = ﬁ‘ﬂj(m;n) _

m Z
(5.81)
The quantities a, and a} are evaluated at r=1.
From equations (5.76) and (5.77)
a, Cy [g(en) + C, K. (¢n)
7, < (5.82)

T—ﬁ [C, I(en) + C, K_(en)]

From equation (5.78) we get

I/(enry)

m

7(enry [C=Cy = C,-C,. (5.83)



Fquation (5.79) can be written as

i I Jlenrs) Ki(enre) I 2(enra)

e |C+Kiare) * © Kfewre)] = Kifans) (O Cal + Cr €y

with

1 = wr, as before

From equation (5.80) we get

1;(ent:)

= C.—LC
1V Kent, 5V

and from equation (5.81)

I, (enre)
~Cygrarg = — m " (Kalenrd) + C=Cy

Now, if equations (5.85) and (5.86) are added, we get

I enre) 1 _(emre) jimm
[K.{mr] R“{mrc]] %#K:{Fnﬁ]'

If equations (5.84) and (5.63) are added in the same way, we get

I.(enry) 13(enry) Q 1.(enry)
{cr{:‘][ﬂuﬂr.}_]{:{mr,] o t’l:-l'. clm'!'—ct

(5.84)

(5.85)

(5.86)

(5.87)

K(enry)

Nl

(5.88)
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When C, is substituted from equation (5.87) in here, we get

ENT & 1 i
m K_{enr:) L{ent,)

I plenre) Dg(enre) .o Ign(enta)

|| Kylenre) ~ Kolenfa) Twen Kglenty) *

1/ (enty) Io{enry)
[ K(enra)  Kilenry] ]

ifl K/ (enry)

= “imnr, KW eary) ! (5-80)
with
Ta(X)  T4X)
LX) = K7X] " KJX) (6.90)

This can also be written as

_E:{mr.] n  lulents) b
Ca = A R || Sm50)~ L iy | O+ B ey

f{%ﬂ } ; (5.91)

wilh
a(X)  T3(X)
5(X) = K7IX] ~K9X) (5.92)
or
C, = AC,+Bj™™ (5.93)
with
Iwth Kalenre) 1 (enry)
A = "o Kilenr,] [S{M']hﬁ:?_.m (5.94)
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i reen Kal®) e 1 S(enr

We can also write equation (5.76) as

e [ o(en)

Kyt = kg * C

and equation (5.77) as

If equation (5.97) is subtracted from (5.96), it results in

ma, I_{tl‘l'_i I (en)
~gm -~ xge = & (K@ -
= L{e)C,
or
8, ¢ Kalm) ul€n)
" m? K ) = TL{:“}C

When equations (5.93) and (5.99) are substituted into (5.76), we get

ma, = C,I(en) + AC, Ky(en) + B ji™™ KZ(en)

ma | a, [m

= K e | & —rm][ltmnamm}

+B "™ K (en)

il Kjfenr,] m K Jenr ] L{enr.]

l

(5.95)

|5.96)

(5.87)

(5.08)

(5.99)
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or
a' a'mm KT_I I A K )]
= [_7 T -—7 o Imn ] [ (en) + 2(en
: , 1
+ B jy™" Kyfen) ma’
a
- (2 £n ) { taten) + A Ky(en)
alK’Ienj |§ien§ K ieniEi eni
im0 Ky en)
Iy , r
0 A2 Km(fn) + u; BlT (5100)
with
I/ (enrw) K}(enty)
N | Kalenra) S(ent
B, = (o) "

= "m K {enr;) K (enty) L{enre)

Now, rewriting (5.100) results in

a‘i a9

mr(—j _Tm)-f(f_nj] lll’n(cn) + A, K/ (en) ]

a
rw 1

= [ alK7ienim _I}Kjﬁjr(%j K/(en)

( myn)

+B1—,—K( )].
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Ky enry)

I;%E.'{l‘{niﬂ:_nf_ﬁx_{_.lm] I:[i_n:l' mﬁﬁﬁ{mr.} K’ [",}

380 K. {lll] K2 [fﬂ[.} 5[{5[_} Jilil'l.
T mt K alente) Klenre ] Llenr,] —af
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Equation (5.101) can also be wrilten as
I:!IEI:I
ﬁ'l A+ B+ C——
it H i
To = T (5.102)
i D+ E
a3l
ot
Jlg-ln. Q0
a, B + C T - iE Yo
ar ' 5.1
il iD ﬁ; = (5-109)
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The magnitude of ;.lrl is thus
Ly

.'l
—y —_ i By Wl § 5_1[“
‘tl- - [B+cia,l—]‘+[r:¥-_-} (6104)
(D) + A
imam)

where ii‘"_ has been treated as a real quantity, as was found in eguation (5.45).
1

Now, using equation (5.103), we can test this result. When {1 = 0, we get

'i‘]_ lli-I-:‘

= = --I[B+C—.r )

ill K [en) K (em) L{en) ji™=
[ e K Jenrc) Lienre] 2] )

as was found in equation (5.45). When (1 — o, we get

1.[!'-'-} 1! [ﬂlIl']
ay 3 E ~ Kg(en) { Kﬂ_ﬁi]
2Tl - "D~ In K] l I.{m] 1 Jenry) !
- Kilenry)
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as in equation (5.74), from which the case of no wall can be found directly. When
ji™® =0, we get equation (5.72) as can be expecied Now, from equation

(5.102), we get

jI:-!-I'l! .'|_
B4+C 5 +Ag|
=, - (5.105)
e B
a i

Close examination of the equations of this section will show that the coll current
and tearing island magnetic fields are considered to be in phase with each other.
This means that the coil is rotating with the plasma which is not the situation we

have on Tokoloshe, although it might be relevant to future work.

When the external coil is fixed in a certain configuration, and the plasma is
rotating, the tearing island will move in and out of phase with the coil as it rotates.
Il we now assume that the tearing mode stays saturated during the rotation, this
model gives an approximation to maximum island size when the island is in phase
with the external coil. The model clearly breaks down when the rotation is slow

because island oscillation can come into play.

Out of phase situations can also be considered by changing the sign of the current
density of the coil current and gives an estimate of minimum island size. An

arbitrary phase angle can also be incuded.

This is the first time as far as we were able to determine, that boundary conditions
for the case of plasma rolation with an external DC coil current have been derived

in the presence of a resistive wall.



510  Minimizing the Energy with respect to §

It was thought that the energy of the equilibrium could be minimired with respect
to § and thus fix the value of §. The energy can be expressed as

a

I’Biﬂi o gF T
_j; J‘; j; v, ¥ yrdrdide, (5.106)

4rd

E=1/2

as was shown in Appendix B (neglecting pressure and flows).

Let
dA 1 A
A = A COE mn ens? mn
{l’a] {1} + E a_l' I+EF 1 ?ET ; [51“7}

with

Ar) = _j;l?*ga.v*w dr

and again using mn = (mfd — ny),
If & is included explicitly in the expression for o, we get

¥ = a;+ §acos mn .

From

Ve = %E+lh%ﬁ
we get

Vol ¥ = (a; + fa) cos mn)? + 'i,—]: al i sin? mn



127

This is now substituted into the expression for E, to get

E=K J:“ _[;ﬂ [ ful r[ (aj)2 + &(a})? cos? mn + 2aga) § cos mn +

7 a3 8 sin? mn] dr

+ [(a5)" + 2252’ 6 cos mal| & cos mn

+ [(ag)? + 2agag 1

E'ml*mn] dddy, (5.108)
i

with K a normalization constant.
Thus the resulting energy is of the form

E=A+BI#f#.

To minimize E with respect to §, we must have g% = (). The only solution is
§ = 0, which is not in general the case for situations considered here. Thus § is to

be determined in some other way. This is done in the next chapter.

5.11 Conclusions

Boundary conditions for the proposed model of chapter 4 were derived. [t is now
possible to have a saturated island with any of the situations of a locked or rotating

plasma, with or without an external coil current, with or without a resistive wall.

The value of the basic model proposed in chapter 4, with respect to these different
situations will now be studied in chapter 6.



128

CHAPTER 6
THE RESULTS OF THE ONE MODE MODEL
6.1 Introduction

In this chapter the axisymmetric perturbation & in the new proposed model of
section 4.4 is modelled. An unperturbed current model which has been used with
some success on the Tokoloshe tokamak [04] is used, together with two possible
functional forms for £&]. No significant difference was found between the two
models.

The width of the local flattening caused by & is specified by a parameter w. This
parameter has very specific values for different boundary conditions — reducing the
theoretical modelling to an eigenvalue problem. Boundary conditions considered are
for a superconducting wall, no—wall and external coils. Findings are presenied for
(2,1) and (3,1) modes.

The parameters of the unperturbed current profile are changed allowing flattening
or peaking of the overall profile. It is found that peaking of the profile can lead to a
bifurcation where there are no tearing modes present whem B, = 0 al the

boundary, but where a tearing mode does exist for some B, # 0 at the boundary.

The first part of this chapter contains the general results for rotating or locked
modes, i.e. with B, = 0 at the boundary as well as B, # 0 at the boundary. It

does not include the effects of external coils, which are discussed in the last part of
this chapter.
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6.2 The Functional Form of &(r)

In the consideration of possible functional forms for &1, the following constraints
need to be satisfied:

(a) The total corrent must stay onchanged. This condition can be expressed
mathematically as

[faar =0 (6.1)
L]

(b) If only the first term is included in the expansion for J(¢), that is

. dd(w,) _ |
¥ v cos mn, it is clear from equation (4.21) that J'(r] must be
Yo
gero al = 1y to keep % finite. {The prime denotes derivatives with
o fs

respect to r and J(r) denotes the modelled axisymmetric current profile

J{ﬁ[r‘j‘]. To have J{r) as a single valued function of &'u , the second
derivative of J(r) must also be zero, as was discussed at the end of section
44,

A simple functional form that satisfies equation (6.1) if ry is not too close to the
wall, is
P i
i = gp e ) . (6.2)
where

p = r-'l+d|
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with g, d and w parameters to be determined. This funclional {orm allows for
the position where 8] = 0 to be shifted a distance d away from the ralional

surface as was found by White et al. [3]. Their form for 6J is shown i» I'iguce 6.1.

0.1

00

-0.1
0.

FIGURE 6.1 The functional forms of 6J(r) and j,(r) as vas found by White et al.
[3]. The point &J(r) =0 is shifted a small distance {rom ry.

In this chapter an unperturbed profile J,(r) of the form
Jo(r) = ge(1-r?)® (6.3)

is assumed. This is done because a similar profile has been used with some success
on Tokoloshe, and we want (o relate our resulis to experiment. ‘The profile used on

Tokoloshe js the one given in equation (6.3), but only valid [rom r=0 to r=t, whcre
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L is chosen on the ingide of r=1 (i.e. t < 1). From r=t to r=1 itis assumed that

Ju(t) = 094].

For the perturbed axisymmetric profile the values of g and d will be fixed when

the two equations flowing {rom .J’[r}\ =0 and J'r)] = 0 [{constraint b
T

above) are solved. From J‘[r]\ = [ we gel
Iy

g = 2bgrg(1-rA)*!

and from J"(r)| =0 weget
Ty

ay+ aqd +adi+d = 0,

with
1, wt
dj =—EAE
az =—§w?
_ g Wi

1
A= 2(b—1)r2(1=rl) =1,

When the normal procedure to solve a cubic equation is followed, it is found that all
three roots are real. One is always close to zero.  Of these the only realistic current
density profile is the one with negligible shift d. The other two result in  J'(r)
becoming positive in the region to the right or left {depending on the root being
positive or negative) of the rational surface. This can be illustrated by an example.

For =05, w=005and b =26 the following roots were found:
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d =-0.0004
d = 9.0608
d = —0.0616 .

The only useful root is d = —0.0004 The different forms of the current profiles for

different d's look as follows:

0.2
i = —0.0004
——=d = 0.0608
0 d = 00616
0
FIGURE 6.2 The three possible profiles agreeing with the three values of o for

r = 0.5, v =005 and b= 2.0

As was shown in the above example, we found d ~ 0.0 for profiles of the form given
in equation (6.3). There is thus no shift away from the rational surface in the

position where &) = 0 as in the case of White et al, [3]

Another possible functional form for & 15

T O e - T (6.4)
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For a current profile of the form given in equation (6.3), we get

8 = —gy((1-r2)" ~ (l—r'b%)"]c_(r;/rs)

(6.5)

Tins profile also has the feature thal Lhe first and second derivalives are z¢ro. The
diflerent forms of 8] given by equations (6.2) and (6.5) are shown in Figure 6.3
betow. They are so similar thal no differences can be detected. This also explains

the fact that no significant difference was found between the results.

0.02 [
) —f
~0.02
0 r 1
FICORE 6.3 The forms of 4J(r) for equations (6.2) and (6.5) are indistin—
guishable.
6.3 Determining the Equilibrivm and Perturbed Quantitics

Wlen either of these forms for  §J  (equation (6.2) or (6.5)) is included in the

prescribed profile, J(r) = Jy(r) + 8J(r), there are four unknowns that must be
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determined, i.e. g, b, fs, w. The first two are linked to the overall profile form
(peaked, rounded, flat), the last one (i.e. w) is the eigenvalue of the problem giving
the local flatness of the profile at the rational surface, and 1z i8 to be found

iteratively.

It is easy to show that, for an unperturbed profile of the form given in eguation

(6.3), we have

Ea 2efq . (6.6)

and

TR {qll}f{‘l\uj_l = Yifq, -1, (6.7)

where q is the safety factor given by

q =-"/a;. (6.8)

The notation

denotes "at r=0". For reasons of simplicity we write g u a8 q
o

and q] as g, in the case of the safety factor. This does not hold for other
1

quantities where the "0" refers to equilibrium and the "1" to perturbed quantities.

The profile given in equation (6.3) has been used with some success on Tokoloshe.
During a typical shot the plasma is first in the so—called high MHD phase,
corresponding to q, = 3.6 and 13 < q, < 1.6, and then reaches the so—called low
MHD phase, corresponding to q, = 3.6 and g, < 1 (as signalled by the onset of
sawteeth). Tn Figure 6.4 below it is shown how the plasma is first in the high MHD

phase and then in the low MHD phase during the natural evolution, without

external coils, as the current peaks.
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FIQURE 6.4 The typical evolution of a Nirsov signal through the bigh asd low EED

phases.

When the perturbation & is added to Ju(r) o give the perturbed axisymmetric
current profile, the relations given by equations (0.0) and (6.7) do not hold any

MoTe.

As the total current is fixed, the g—value at the boundary must stay unchanged, as

can be seen from the expression

1fa,= [ f] S| - (8.9)

After q, and q, are chosen, we use equation (6.7) 1o get the parameter b which

specifies our profile type (peaked, rounded, fiat). It is important to nole that this is
just a simple way to determine a useful b. The correct q, will be calculated later

and q, is included implicitly via the boundary condition n;l = —n_."q,l , Eiven in
i 1

equation (5.9).
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For any value of w, Lhe profile would be fully specibied once g, is known. To
=0 form?3)»2 The

determine g, we make use of the fact that B'-l = g
] 4

parameter g, 5 now varied until Lhis condition is satished With g, q, and b
known (for any value of w), we can calculate the corrected value of q, f{rom

equation (6.8).

We know that ¥)| = 0 (from equations (4.9) and (4.4)). Remember that ) is
Is

related to the helical magnetic flux. This enables us to determine the value of r,
This value is adapted during every iteration in the process of finding g, . Once g,

is known, 1, is also known.

The final current profile can now be caleculated for any value of w. It has the form

shown in Figure 6.5.

0.1 _
0.4 |
J(r) N
W,
",
005 | Ny
!
ﬁ
0.0 | | L ey
0.0 0.2 0.4 0.6 0.8
r (norm unils)
FIGURR 6.5 The forms of the pertarbed and wapertsrbed Axisymmelric current

density profiles. For this graph we used the §) specified in
equation (6.5) with w=0_1128, b= 1.25, q;= 3.6 and q; = 1.6,
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Using this profile in equation (4.35) cnables us to calculate a; and thus the helical
magnetic fux ¢, (using equation (4.37)), which has the form given below. The
graph of the safely factor for a perturbed and unperturbed profile is shown in Figure
6.7.

o073
w072 |
g
2
E
B
'}
[ =4
0071 |
e
0.07 | J I I I |
0.0 0.2 0.4 0.c 0.0 1
r {norm units)
FIGURE 6.6 The graph of ¥, for b=1.25 and w=0.1132. The value of g, was
3.6 and qy was 1.6.
4
3 L
; q(r) — perturbed
_-_-__,ndﬂ:_f::
q(r) — unperturbed
1 | | | | |
0.0 0.2 0.4 0.6 0.0 I
I
FIGUKE 6.7

The graph of g for the perturbed and unp
current demsity profile.

qy = 3.0 and gg = 1.6,

erturbed axisymmetric
The parameters wers w = 0.1275, b= 1.77,
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All the equilibrium quantities are now known. The next step is to calculate the

perturbed quantities, 3, and a{. This can be done using equation (4.36), but this

requires the further axisyrmetric quantity dJ($)/d¢, . This is rewritten as

1" /%;. Both these quantities (J’ and ) are shown in Figure 6.8. In both these

cases the unperturbed quantities are also shown. It is clear that the effect of &J is

to make J’ zero at the rational surface. For these calculations the model specified

in equation (6.5) is used.

0.0

FIGURR 6.8

002 _
0.0} -
{ba(r)— perturbed
0.0 Y
{lif,(r) — unperturbed
l |

: -0.0 J ] |

0.8 ) L6 0.2 0.4 0.6 . v
r
(a) (b)

(a) The graph of J’(r) for both the perturbed and unperturbed
axisymmetric profiles. (b) The graph of 12’6 for both the perturbed

and axisymmetric unperturbed profiles. The parameters are
w=0.1275, b = 1.77, q;=3.6 and qq = L.6.



139

The factor dJ(?”/)<>)/d1:,/)0 can now be constructed by dividing 3’ by 4 . For this
factor to be well—behaved the rational surfacc must be calculated very accurately to
ensure that both J’ and 1;/)6 are zero at rg . If this is not the case the mentioned

factor will blow up because J’| # 0 will be divided by 1])6 = 0. TFrom Iigure
Is Ig
6.9 it is clear that it is indeed well-behaved.

Using the boundary conditions specified by equations (5.10) and (5.11), we can now

solve equation (4.36) to get results for the (2,1) or (3,1) modes.

100

—
0.0
—
dJ (,) \ -
dv,
-J00 | _
-200 | — ] | | |
0.0 0.2 0.4 0.6 0.8 l
t {norm unijts)
FIGURL G.9

dJ < -
The graph of “"/d9, . It is generated by dividing J' (r) by g .



140

6.4 Solving for the eigenvalue of the problem

6.4.1 Determining the local flatness of the current density profile with a

saturated tearing mode present

In this section we will show that the local flatness of the current density profile (at

the rational surface) expressed in terms of the parameter w, is dependent on the

a B
quantity —!I which is proportional to B'r_ﬂ' . Every value of w can be related
a"l 1 1811

a
to a specific value of —'—l . It is now important to recall that different external
ai'l

physical situations, i.e. superconducting wall, partly conducting wall with a rotating
8y

plasma, no—wall, external coil etc. are related to different expressions for —| as
aj'l

was discussed in chapter 5 (equations (5.36), (5.45), (5.71), (5.104)). This means

that these different external situations are related to different values of w.

When ai/a,| is plotted as a function of w, we get the graph in Figure 6.10 for a
1

(2,1) tearing mode during the high MHD phase (q, = 1.6, q,'= 3.6) on Tokoloshe.
(The 6J perturbation used is given by equation (6.5)). Figure 6.11 illustrates a
similar graph for the (3,1) mode with q, = 2.0 and q, = 4.5. In Figure 6.12 the
(2,1) and (3,1) modes are compared for g, = 1.75 and q, = 3.6 i.e. during the
high MHD phase. When b is changed and thus the functional form of the profile,
the vertical asymptote is shifted to the left or right.

The value of w where the vertical asymptote occurs is much smaller for the (3,1)
than for the (2,1) mode. This was generally found to be true for the overall current
profile form of equation (6.3). It means that the (3,1) island size is much smaller

than the (2,1) for this profile. (We will show later that w « W(island size)).
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FIGURE G.12 Both the (2,1) and (3,1) modes arc shown on this graph for q = 3.0
and gy =1.75. The value of v nbout which the asymptote occurs in
mich larger for the (2,1) than for the (3,1} mode.

It is important to note that it has been found numerically that the graphs are

a

independent of § (the parameter of the boundary condition r~ = 1 4 & cos mn).

This can be seen {rom the fact that a, is an explicit function of § (from equation
(5.10)). When & and r are independent of each other, then aj would also be a

function of §. This is implicit here since we do not use an analytic expression for
l'
a) —it is a shooting value. From these arguments it is clear that l—l should be
1F

independent of §.
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For a certain value of § the value of at! can immediately be calculated using
1

equation (5.10). This will then give a graph of a’

1 or 31‘ 1 against w —enabling
us to get a well—determined value of a{ for all w. The same reasoning is valid
(

for ¢. It was thus also found that the graph is independent of the value of €.

a'I
We will now use Figure 6.10, which shows the general behaviour of a—l against
1y

w, to discuss the general features of the results. An interesting feature is that the

top—left part and the bottom—right part have two different types of solutions for

al([).

The solutions of a,(r) are shown in Figure 6.13, and are representative of the (2,1)
or (3,1) mode. Solution Type I is presented in Figure 6.13(a) and Type II in Figure

6.13(b) and 13(c). In the case of solution II the value of a’| can be positive
i

(Figure 6.13(b)) or negative (Figure 6.13(c)), giving rise to a slight diffetence in the

form of the solution.

These solutions (Types I and II) agree with those found by Ellis (31], using linear
perturbation theory as we do. Using the criterion developed by him and adapted by
Hansen [79) (i.e. if the curve of a; cuts the a, = 0 line inside the plasma, the
profile is unstable to tearing modes, otherwise it is stable), it is clear that the Type
I solution corresponds to a tearing mode unstable situation. As w is increased, we
go from a Type I (tearing mode unstable) to a Type II (tearing mode stable)
solution. The effect of an increasing w is thus to drive an unstable equilibrium

stable as was also found by Ellis [31]. Another feature of the graph shown in Figure
6.10, is that the point where the a"l/a.l

~+ + o, agrees with a,
1

=0 (ie
1

B, = 0). The point where al/a.l‘ = 0 corresponds to a
L

1 I ¢
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FIGURE 6.13 () Type I solution. This agrees with a tearing mode umstable

situation whick is found to the left of the vertical asymptote on

Figure 6.10. (b) Type IT solution with af| positive. This isa

L
tearing mode stable situation and is found to the ripht of the

wvertical asymptote. (c) Type II solution with "t negative,
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These results are totally general and any set of external conditions (Jike an external

coil for example) can be coupled to a'l/al :
(

When the plasma is rotating infinitely fast (the rotation frequency w- w) and the
wall is partly conducting or in the case of a superconducting wall, the radial

= 0 when
(

magnetic field is not allowed to penetrate the wall, giving rise to B,

the plasma touches the wall. It is thus clear that the point where al/al

5+ o
i

gives the eigenvalue w of the problem in such a case. The physical interpretation
of this is that the local flatness of the current profile at r = 1y (expressed
mathematically as w) is now given for the case of a fast rotating plasma (or
superconducting wall). This position on Figure 6.10 agrees with marginally stable
equilibria — lying between the stable and unstable equilibria as was discussed in the

previous paragraph.

In the case when the plasma is non—rotating —~ allowing B to fully penetrate the
wall — the eigenvalue w will be determined by the external conditions, i.e. whether
an external coil is switched on or not. 1In the case of I# = 0 we have

VEY = —0.501 (for ¢ = 0.1) for a (2,1) tearing mode as was shown in equation

(5.37). When an external coil is switched on, al/aL’l is dependent on the value of
{

i{™™ a5 was shown in equation (5.45)

We can now see why it is an eigenvalue problem. For any boundary condition

a] :
l/a, | we have one discrete value of w. The boundary conditions thus determine

the "eigenvalue" of the problem, i.e. what amount of local flattening at r = 14

(described mathematically as w) is associated with that specific perturbation of the

boundary.
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Another important feature of Figure 6.10 s that this gives all the possible values of
w for different 31fa,| which can be associated with different degrees of flattening
1

in the process of island growth. When growth occurs in an adiabatic way because of
external perturbations (i.c. changing 1/a, ). this graph gives all the possible

saturated islands associated with a particular everall current density profile.

There is a lasl point to mention. The vertical asymptotes occur at a much smaller
w for the (3,1) mode than for the (2,1) mode as can be seen from Figure 6.12 for
qy; = 1.75, g, = 3.6. This was found to be a general feature of the profile defined in
equation (6.3). For any value of ‘rl,"il : the value of w will thus be much

smaller, meaning thal the same outside physical situation will lead o a
comparatively smaller (3,1) island (it will be shown that w ~ W{island size)).
Because of this we will only focus on the (2,1) mode for the rest of this chapter, for
which the current profile is ideally suited.

6.4.2 An analytic approach to the problem

The solution of the equation for the perturbed magnetic flux has beem found

numerically in the previous section. In this section we show that the same type of

solution can be found when the factor d‘][*"};dib, is modelled, and the equation
solved analytically, This serves as a check on the previous work.

The form of the factor d']{#'ﬂ'}f&i&u it shown in Figure 6.9. This form can be
modelled with three simple functions
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plr) = bﬁin[:;i’], -X<T<Ti+ X
= [by ] (re2y)]r, [ < fs—Xp
= [by/ (Irstxa))](e-1) [>Ty + X

with

T W] 1

X = 17 ¢ h]sbﬁiﬂ[—:l—l].

Tt is shown in Figure 6.14. (Ounly the first three terms of the expansion for

sin [:—“} have been included in the series),
i

100

—100

FICURE 6.14 The graph of " fdt, as nodelled by pir).
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These functions p{r) can now be substituted into equation (4.36) and solved
analytically by the method of Frobenius assuming

E
L e
A = Iilithr"
n=0
and m=2.

The solution in the region r < ry—x, is

xi

3
8 = -+ -],

by

l'i— .R.l:

and the solution in the region r > 1, + x, is

b b b
a = T,{I’j +H—-|—x= 1'“—21—;:! Is—m 4 .. ] .
with

I: = 1-{Ii+1].j'

The solution of the middle part, which is more complicated than the solutions of the
side parts, is given below:

A/2 - A,
}

a = 1,[r3—{""l.flz} r'+[""=_.-"ﬂ] 4 [_"ﬂ'_ rt

+ [%ﬁ, Az 4+ A.],Mﬁ 4+

[- Ay [Hji;i] +AYn + AjA f12 - ﬁ;],-'mr'
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+ [—Al[%g%AlA2+A4]/45+A2[A%/2-A3]/32

— Ar A2l — A Ag12 4+ A.,]/77 o

Ay = - L) T (stw)
fo = =L 35 ag) - B (s

Ay = %{%{_ 105 (51w)

A= e 1055, (51w3)

As = s
Ag = - e (6.10)
8 = ‘W- -

This solution is not matched smoothly to the one in 1t > 15 + x,, because of the

neglected higher order terms. However, it can be seen from Figure 6.15 that the

solutions agree qualitatively with those found numerically. The marginally stable

solution is found at w, ~ 0.133. For w, = 0.131 the unstable solution {in

qualitative agreement with Figure 6.13a)) is given in Figure 6.15a), and for w, =

0.136 the stable solution (in qualitative agreement with Figure 6.13b)) is given in
Figure 6.15b).

This relatively direct way of obtaining analytic estimates for stability emphasizes

the possible power of the model, and should be persued in the future.
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PLGURE 6.15 (a) The analytic solution a (r) for w = 0.13L. This agrees with
the unstable solution. (b) The analytic solution a (r) for
#,=0.136. This agrees with the stable solution.
6.5 The Island Width

6.5.1 A mcihod to determine the island width in gencral

In detcrmining the width of the island, we make use of the fact that the helical
magnetic flux will have the same value at both the X—point and at the island edge
at the position of the O—point. This is the same assumption that has been used to

determine the well—known approximate formula for the island width [3], i.e.
Al ‘;'
W= dl-a\(r)/¥p(rs)]” - (6.11)

The total Ninctions ib(r,(),,cpo) and {p(r,()g,cpo) can be drawn as functions of r, where
0, is the poloidal angle corresponding to the position of the X—point and 0, the

poloidal angle at the O—point (¢, is any chosen toroidal angle, taken to be zero in



151

this case). These functions have a minimum at the radial point where the X—point
occurs (in the case of ¥(x,0,,9,)) or at the radial point where the O—point occurs (in

the case of ¥(r,02,9,)). This is shown in Figure 6.16, where 0, = % and 0, =0.

Using the fact that P X—point) = #island edge in line with O—point), the istand

width (W) can easily be determined as shown in Figure 6. 16.

The values of ¥ at the O and X—points can be calculated. They are

b = D) au(rs) < 0
() -2, a(r) > 0

point (1) + alr) a\(ts) > 0
(Yo(r) —as(r)) ., ay(rs) < 0.

min

We assume that the island perturbation is of the same phase as the outer boundary
(ra =1 + § cos {(mé-ny)), as has been done by Reiman [75] and Hahm and Kulsrud
[16). AT the X~—point the value of 9 s just 9= 126 (minimum) and at the
O—point =1 + 6 (maximum). It is now clear that the solution a,(rs) < 0
corresponds to § > 0, and a,(rs) > 0 to 6§ < 0. When the sign of 6 is changed, the

value of a;| changes sign and the solution also changes sign. A change in the sign
L

of & thus corresponds to changing the orientation of the island.

This method makes it unnecessary to go through the time—consuming process of
fieldline tracing to calculate the island structure. When points of similar % are

connected, a contour plot of zp can be drawn showing the island structure clearly.
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FIGURR 6.16 The graph of ;{) st 0= 7|-/2 and =0 agreeing wvith the poloidal

angles where the X—point and the O—~point occur. The value of ¥ at

the Y—point is the same s that of 1 &t the island edge at the
0—point. From this information it is possible to determine the
island width (¥) =as shown.

This is done in the next section. Another point of interest is of course that the

plama response is included in the calculations.

We can at this stage make some estimate of the errors involved in the calculation of
the island size. Using the same method as was applied to calculate the island width
formula, we can assume that the W ~ (a, rs)i relationship will hold. We know
that the error involved in our expressions is O(e3), i.e. one order smaller than a,

which is O(e?) . Theerror in W is thus [0(63)]i , which is clearly small.
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6.5.2 Using A’(W) =0 to calculaie the saturation width

Although it is now possible to calculate the island width for any value of Br(rg), it
is still not clear what the final saturation width would be for a natural (or
externally induced when I #3& 0) island since & remains undetermined. We now
adopt the method of White et al. [3]. They found %¥ = 1.66 n(1s)[A’ (W) — aW],
with

A(W) = —— [9]

_ 1:/,/[
Py(rs)

[T 4

1, (6.12)

w-

where w* is the outer edge and w~ the inner edge of the island (1:/)[ = 3y), and o
a parameter depending on the resistive profile among other things. This A’(W) is
calculated over the island width which is also their "inner region". Although we do
not have an inner and outer region in our approach, we do have a saturated island in
the plasma over which the abovementioned A’(W) can be calculated. Once the

island is saturated (% = 0), their expression reduces to A’(W) — a W=0.

When 7~ 1/J, the form of A’(W) - aW is very similar to that of A’(W) [3).
This is shown in Figure 6.17 which is taken from their publication [3]. In another
publication it was shown that the effect of a is indeed negligible [46). This is
shown in Figure 6.18. In a simple approach A’(W) =0 can thus be assumed for a

saturated island, which is the form originally derived by Rutherford (2).
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FICURE 6.17 This in taken from White et al. [3]. The island growth rate in the
Rutherford regime againal vidth is shown.

The approach of White et al. is however, only valid when a superconducting wall is
present, When a perturbed boundary is allowed, their formula has Lo be adapied.
Reiman [75] defined a criterion that is slightly different from that of White et al. 1t

16 given as:

ﬂh[W} = [r,. a'“""t] =Ly "}r{""j]”rl 'i‘ﬂri}] - (6.13)

IL can also be written as [75]
A (W) = /(W) = [afra)lfo" (W), (6.14)

where (W) is a function depending on W, ¢ = y(1), and A‘(W) refers to
8 (W) with ¢ =0,
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FICORR 6.18 This is taken from Carreras et al. [45]. Their resvlts arc compared
with that of ¥hite at al. [3] for their peaked model.

The following relations now hold [75]:

[im A/(W) = A7, . (6.15)
Y

where A’ is the linear rendering (irst derived by Turth et al. (1. We will use this

generalized form of A’( (W) in our work which includes external perturbations.
1

We can now get important information from Figure 6.10. As was discussed earlier,

a'l
the ratio — can be related to diflerent external physical situations, i.e.

an
ay

superconductling wall, partly conducting wall with rotating plasma, no wall, external

coils with a rotating or locked plasma. This was discussed in chapter 5. This value
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a 5 - .
of | can now be chosen according to the external situation, i.e. if the plasma 18
aflt
a, ' ‘
locked with no wall, —| = —0.5 for a (2,1) mode (using equation (5.37)). When
ai't
the physical situation has been chosen, there is a certain w value corresponding to

it (from Figure 6.10).

The way to set—up the numerical program, is to define w as input parameter.

There are then many possible values that 6 (and thus a,| — using equation
1

(5.10)) can have. We can now vary & until A’GI(W) = 0, which determines the §
corresponding to the saturaied island width. Every value of w is thus related to a

value of 6 using the A’E1 criterion.

a‘l
In some of the expressions of —| the value of a’l\ is also needed, i.e. equation
a"l ] ]
3y
(5.45), (5.71), (5.104). This is now known because —| as well as a| is known.
a"l ] ]

This is important because we are now able to determine Brl (from all ) as well
1 1 .

as By (from a{|) for a saturated island with a perturbed boundary. It is not
i 1

straight forward to calculate both these quantities in other models.

We can now look ai the effect of a change in boundary conditions. H § is increased
for some reason (not important for this discussion), the value of w will increase
and with it the current profile would become more flattened. We will show that
this corresponds to an increase in island size. Figure 6.10 thus gives all the possible
islands (parameterized as w) for any boundary condition that a specific equilibrium
current profile can have access to if changed in an adiabatic way, and assuming our

model is valid. To our knowledge this concise picture has not been shown before.
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Contour plots for .]H.-‘] and 1;!.1 with a (2,1) tearing mode present are shown in
Figures 6,19 and 6.20. The cases for a (3,1) mode are given in Figure 6.21 and 6.22.
In these the island widths have been determined by varying & (the edge
perturbation) until :l:_]l[W]l = (. The corresponding graphs for ¢{r) and jy(r)
{and &J(r)) as a function of r are shown in Figures 6.23 and 6.24 in'the case of a
(2,1) mode present, and in Figures 6.25 and 6.26 in the case of a (3,1) mode. For
the (2,1) mode the plasma parameters are g, = 1.6, g, = 3.6 and in the case of the
(3,1) mode q; = 2.0 and q, = 4.5, The relation of j(r) to &J{r) is determined by
the island width which is dependent on ar.) . When a(r.] increases, j(r) will

also Increase because it is a function of a(r.), as was shown in equation (4.16).
653  The form of the total current J(¢) inside the island

In our model it was assumed that the total current J is a function of . This

J{¥) function will now be discussed both inside and outside the island.

(a) Outside the island: On the outside of the island J(%) is double valued,
as was shown in Figure 4.2 for the case of no island. . Although it looks as
if J(y¥) has two values at the same 9, it is actually two values of J(9)

corresponding to two different flux surfaces having the same value of .

This can be seen from the form of ¢ in Figure 6.16.

(b) Inside the island: J(r) has the same value at different r inside the island
as is shown in Figure 6.27 for a (2,1) mode with q, = 1.6 and q, = 3.6.
The two radial points at which J{r) has the same value, correspond {o
the same flux surface, having the same value of % . This means that

J(¥) will be single valued inside the island as was shown in Figure 4.3,
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FICURE 6.20 A contour plot of ir with 2 (2,1) sode presest.
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A contour plot of .](12)) with a (3,1) mode present. The island 18
saturated and the profile has 95 = 2.0, q;=4.5.
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FIGURB 6.23 The graph of 13) at both the X and 0—points. A (2,1) mode is present.

As before 1 at the Y—point is the upper of the graphs.
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FIGURR 6.24 Both 4J(r) and j (r) are shown for a (2,1) mode.
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FIGURE 6. 26 Both

63(r) and j,(r) are shown for a (3,1) mode.
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—paint.

When only first order terms are included in J(¥), an error of O(¢?) is included:

di(¥
dy,

Iy) = J{i‘n} T i’: cos mn + O{e?) .

The result of whis error is that B.¥J = O{¢?). The current will thus not be exactly

along flux surface and will thus also not be exactly single valued inside the island.

In Figure 6.28 J(4) is shown as calculated by our model. ‘The error in J(¢) in the |
island can be detected. If all the terms were to be included in the perturbation
expansion, this error would be excluded from the problem.
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FICURE 6.28 The graph of total J{'Eﬁ",l with an inland present. Because ol error
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When the position of the sepatrix of the saturated island is calculated at the O—point using
the schematic current profile of Figure 6.29, we assume that r = W, is where J/'(r) = 0
and J"(r) > 0. The value of r = W_ is then found using the fact that J(W,) = J(W ),
From the form of J(r) as shown in Figure 6.29, it is clear that an error of 0{¢¥) would
not move r= W_ too [ar from the correct value calculated using the helical magnetic flux
because of the steep slope of J(r) at r= W_. On the other hand, r= W, can be shifted
quite a bit from the correct value if J(W,) has an error of 0(¢?), From this it is clear
that using the current is not a good way to calculate the island width in this model.

It is probably possible to f[orce B.F.f = 0 with the right choice of &) consistent with
: re # 0. To accomplish this a more complicated form of & would be needed, which,
coupled Lo some iteration scheme, would make B.¥) = 0, i.e. J(¢) single valued inside
the island. We did not investigate this possibility further.



166

0.1
o
_‘—\____\_\-\-\--\-\-\-\-\--\.-\-
0.1 \\
(e} _ _ _ __ . _ . \\ e
[F-~—==%%=7 e
() 5
|
Ko
0.05 | | |
I : |
I
|
|
I
0.0 | | L i .
0.0 0.2 0.4 w W00 0.0 |
- [ L]
r (norm unils)
FICURE 6.29 A schenatic diagram of the carrent dennity profile, A small error in

the valee of J(r) can cause a nignificant error in the calculation
of the island sige.

6.5.4 The validity of the island width formulae

As was discussed in the beginning of section 6.5.1, the island width formula (given
by equation (6.11)) is an approximation to the real island width, which can be
calculated accurately as was described in that section. The values calculated {rom
the model are compared below to those calculated using the formula. The % error

between these calculations is also presented,

§ {3 1.5{3 Wiodel Wiormula % error
0.01 0.1 0.75 0.61 0.77 20
0.005 0.071 0.53 0.48 0.54 13
0.001 0.032 0.24 0.24 0.24 0
0.0005 0.022 0.17 0.17 0.17 0
0.0001 0.01 0.08 0.08 0.08 0

(given for (m,n) = (2,1), q, =13, q,= 3.6 with a locked mode).
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From the above results it is clear that the island formula is a good approximation

when the island width is smaller than about 0.3 of the minor plasma radius.

We also tested a relation of the form W ~ [? and found good agreement, especially
with the island width formula. The constant of proportionality, calculated to be 7.5

in this case, will change when the profile is changed.

6.6 Calculating Flows

A resistive profile of the form

7o) = 1/Ju(r), (6.16)

where J,(r) is the unperturbed current profile, was included in the model. Such a
model is used quite often [3,4]. The motivation for this type of model was discussed
in sections 4.5.1 and 4.52.  This resistive model can be interpreted as an
approximation to the resistive profile w(r,0,i) = 1/J(r,f,p) which makes use of
Ohm's law where V (the velocity) = 0. When the flow is now calculated for a
resistive profile of the form given in equation (6.16) (using equation 4.47)), this flow
can be interpreted as the flow error involved when the unperturbed current profile is
used instead of the perturbed current profile in equation (6.16) ie. when the
resistive profile is not relaxed as is done with the current profile. The flow pattern

for the abovementioned resistive profile is shown in Figure 6.30,



168

.0 o — - = .;f_ a2
| N /
;'E-ullj .]_ ]
'8
§ =
E /
£l /
= I,l'll
- = ) r{'
-1.0 | SE— | - | L |
0.0 0.2 0.4 0.6 0.0 1
r (norm units)
FICULE G.30

The [low pattern for & reaistive profile of the form n =

I'.I[r'_i:t,-'.]u[r}‘ The paramcters of the model are b = 1.25 amd
w=0.1128, =

This is not the only way to interpret this Jow. When the resistive profile is
assumed 10 be like the one in equation (6.16) then this is what the flow would look
like, Using the velocity expression V = VUAp (i.e. equation (3.22)), we can see
that the flow in Figure 6.30 is the radial flow (V. = mb;). The poloidal flow
changes sign at about 15, using the fact that Vg = b} .
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6.7 Equilibrium Effects

We assume that the equilibrium current profile has the form given in equation (6.3).
The value of the safety factor q, can now be varied implicitly by changing b

(using equation (6.7)), giving rise Lo a very peaked profile where q, ~ 0:7, q, = 3.6

and a more rounded profile with q,~ 1.3, q, = 3.6.

6.7.1 Driving a tearing mode stable situation unstable with mode locking

For both rotation and non—rotation the local flatness of the current density profile
at the rational surface with a (2,1) mode present, first increases and then decreases
when the on—axis current of the profile increases (q, gets smaller). This is shown in
Figure 6.31. From this figure it is also clear that the profile is {latter at r = rg

when the plasma is locked than wher il is rotating.
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FIGURR 6.3 The graph of‘ the parameter w (i.e. the flattening of the current
profile) against the profile type expressed in terms of 9p- ¥hen q

i1s small the profile is very peaked. When 9y 1s large (i.e. 1.6)

the profile is round. Also shown are the values of w for the case of
an infinitely fast rotating plasma with a partly conducting wall, and
the case when the plasma is locked.
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In the next figure a similar graph is shown for the island width. It is immediately
clear that there is no rea) difference between the w  (the (lainess parameter in

equation (6.5)) and W (the island width) behaviour. The relation between W

and w is discussed in seclion 6.7.2.

0.20
0.16
&~
~~ // ‘--b‘\
£ // “\\
= ’ ~ .
2 ot ¢ T -—- rotation
kS ) ~..
° 1’ \\‘\‘
5 / LTI ~—— T —&- locked
£ 008 l' ,// T
1 //
= N e
I
) 1
004t
! I
I
I
I
000 —*

0.60 0.80 1.00 1.20 1.40 1.60

%

The graph of the island width against the current profile type. The

FIGURB 6.32 ’
effect of locking is the largest vhen q5~ 0.8.

A schematic graph very similar to Figure 6.32 was presenied by Reiman [75]. In his
approach he specified a profile parameter < which is related to A’ |, ie 4~

increases monotonically with -y . For ¢ (i.e. {bl ) = 0 a bifurcation point is
i

found at A’ = 0. When A’ < 0 there is a unique solution, corresponding to a

cylindrically stable equilibrium. When A’ > 0 there are two possible stable

-

solutions agreeing with non—axisymmetric equilibria with islands (¥,(rs) can be

positive or negative). This is shown in Figure 6.33, taken from his publication.
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When ¢, # 0, the situation changes. The island width is now not zero at the point

A’ = 0. This is shown in Figure 6.34, also taken {rom this publication (75].

stable

A
v, (1)
stable unstable
Y—
stable
PIGURE G.33 The graph of ’q-{)l(rs) against a profile parameter 7y which is

directly related to A’ . At A’ =0 there is a bifurcation point.
To the right of this bifurcation point we find the two possible

gituations with a saturated island present, i.e. with ¢l negative

and positive.

In our approach, the fast rotating case (2 - w) agrees with ¢,=0 and the locked
case with ¢;# 0. The parameter g, is used to change A’. As q, decreases from
qe = 1.0, A’ decreases as can be seen from the island width calculations in Figure
6.32. Our q, thus relates to his 4. The point where W - 0 for the rotational
case agrees with Reiman’s A’ = 0. It is clear from Iigure 6.32 that W # 0 for the

locked case at this same gq, (i.e. A’(l # 0). This is also what Reiman found as was

shown in Figure 6.34.

We will now use Figure 6.31 for the rest of the discussion taking the similarity to

Figure 6.32 into account.
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FIGULE 6.4 The graph ¥ against 7. The case of €)= 10 is given as Lthe dotted
ling — apresing wikh Figure B.33. When £ # 0, the situation
changes to the dark line.

When g, is aboul 0.7, the value of w goes Lo sero in Lhe case of rotation for a
(2,1) mode. In the case of a locked mode this happens when q, is about 0.6. For a
(3,1) mode the value of q, where this happens is larger al about 0.8 for a fasi
rotating mode and 0.7 for a locked mode. Nole w — 0 means that there is no
Mattening of the profile. 1t also leads to the disappearance of the type | solution in
Figure G.10 — as a resnll of which there are no tearing mode unstable situations
possible. Equilibria with g, < 0.7 are thus stable to a fast rotating (2,1) tearing
mode. This is qualitatively in agreement with Ellis [31] who found in general that

all equilibria with g, < 0.6 are stable to (2,1) tearing modes.

Between Lhe graph for an infinitely [ast rotating tearing mode and that for a locked
one in Figure 6.32, there are Jots of possible sitpations where B | has penctrated

the wall Lo some extent, but not fully. To each point on this graph we can then

associate a rotation [requency.
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While the profile is in the process of peaking with q, decreasing, it will reach the
position where no eigenvalue for a fast rotating mode exists (i.e. q, < 0.7). It can
then be in some stage of locking with a mode present (w > 0) or with no mode
present (w = 0). This possibility, that a mode can be present for a perturbed
boundary although none is possible for a superconducting wall as boundary (or fast
rotating made with a partly conducting wall, i.e. Q -+ ), can be seen from Reiman’s

equation

B (W) = A"(W)— o (W)/9(r) (6.15)

€l

which was discussed in section 6.5.2.

For A’(W) =0 (i.e. when ¢ = 0) it is still possible to have A’EI(W) > 0,
indicating a tearing mode. It is also in agreement with the work of Gimblett [71]
where it was shown that the removal of a superconducting wall can lead to a stable

mode becoming unstable.

From Figure 6.32 it is further clear that, although the locking has lead to mode
growth, it has not lead to disruptive growth. This is in agreement with other work
with parabolic current profiles (86]. What is needed for distuptive growth (i.e. very

large islands) is not only profile peaking, but steepening. Generally, steeper profiles

result in larger saturated islands.
6.7.2 The relation between flatness of the profile (w) and the island width (W)
The present tearing mode model is only valid when 0.15 > w > 0.01. When

w < 0.01, the quantities to be measured (like the island width) are smaller than the

error bars within which the island can be measured. When w s large, the total
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current is not preserved because 6J is non—zero at the boundary. In spite of the
fact that it is not possible to calculate the physical quantities, the trends are

consistent at the extremes of w.

If an analytic relation between w and the island width could be found, it would be
possible to predict an island width outside the region where it can be numerically
calculated. If it is assumed that the parameter w (i.e. the local flatness of the
profile at 1 = ry) is directly proportional to the island width, and since W is zero

when w is zero, a relationship of the form W = hw can be tested with the data.

It was found that

W = hwig, (6.16)

fits the data quite well if q, is kept fixed. The constant h is found to be 1.6
giving W = 1.6 w{q, for the (2,1) island. The largest error found with this

formula is about 1 % of the minor radius.
6.7.3 The perturbation of the boundary

The perturbation of the boundary (Figure 6.35) follows the change in island width
(presented in Figure 6.32) for different current profiles, i.e. different Qy - This

means that larger islands will perturb the boundary more than small islands.

In Figure 6.35 we show the change in Bgy,| for fast rotating modes as well as the
|

change in § for locked modes — both with changing q,. The results are for a (2,1)

mode.
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PIGURR 6.35 The graph of Dg and 0 against current profile parameter q
l

Larger islands perturb the boundary more as is clear when this is

compared with Figure 6.32.

The deeper the island is, inside the plasma, the smaller the effect of the boundary

perturbation on it. This can be seen from Figure 6.36. In this graph we compare

a .
l against w for two profiles where q, = 3.6 but q, = 1.75 and

the values of —
aily

0.8. The rational surface is at ry = 0.45 when q, = 1.75 and at ry = 0.73 when

It can be seen that the eccentricity of the "hyperbole" is much smaller

q = 0.8.
when rs is deep inside the plasma than when it is more to the outside. This was
a
§
found to be generally true. This means that the effect of a changein —| on w is
1l
When it 1s

much smaller when the rational surface is deep inside the plasma.

a

(
remembered that a7
i1

island width (W), it is clear that the island width becomes rather insensitive to the
Clearly, this is

is related to the outside physical situation and w to the

external situation when the island is deeper inside the plasma.

physically reasonable and was found to be true on Tokoloshe [84].
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FIGURE §.36 The graph of E,:-| against w for q5= 1.75 (rg=0.45) and q4=10.8
1t

(rs= 0.73) with q, = 3.6. The value of v becomen rather
2

insensitive to —r
1

when rg pget smaller.
L

6.8 The Effect of Rotation on the Island Width

4,
In chapter 5 the effect of rotation on the parameter —| was discussed. It was
il

shown (in Figure 5.5) how this parameter changes with wry . Using the :}.*EL[W}

criterion of Reiman, it is now possible to calculate the saturated island width for

2
any value of D¢ o
1

i '
{ i;| (locked mode), i.e. for any rotational frequency. From
1 Al :

this calculation a boundary perturbation § is immediately known (as was discussed

in section 6.5.2) which allows us to calculate a,

1.e. B
i T

, [rom equation (5.10).
!

We can thus plot figures of B

and EE|| against wry . This is dore in Figure
1 1
6.37 and 6.38 for a (2,1) mode with ry = 1.01. Figure 6.37 is for the high MHD
phase (q; = 1.3, q, = 3.6) and Figure 6.38 for the low MHD phase (q, = 0.8, q, =
3.6). Note that the amplitude of B, ! 1s much larger during the high MHD phase
il

than during the low MHD phase
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The radial magneltic field reduces when the mode frequency increases. The reason is

simple and was discussed in section 5.3 — the time for field penetration reduces

when the mode frequency increases. The perturbed poloidal magnetic field (le‘)

does the opposite, increasing with mode frequency.

(E-4)

0.40

0.32

0.24

0.16

0.08

0.00

FIGURE 6.37

(E-3)

FIGURE G.38
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WTw
The graph of B, and By, against wry . When w7, decreases, i.e.
the mode slows down, the radial magnetic field increases (as does
6), but the perturbed poloidal magnetic field decreases.
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The behaviour of B and ﬂm when the mode slows down

(WTy

decreases) during the low WD phase.
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In Figure 6.39 we present the island width against wry for the same parameters, It
is now possible to see how the island evolves i[ the rotating mode is locked,
assuming adiabatic changes in the equilibrium. The island width increases when the
mode frequency decreases for both high and low MHD phases, The effect on the

island size is, however, bigger during the low MHD phase (i.e. q, = 0.8).

015 l
TR B
on \\ — =13

¥ -4+ QFOB
009 -
.07
0.05 = - : :

0 10 20 30 40 a0
Wy
FIGURE 6.39 The island width increases vhen the mode freguency decreases for both

high and low NI phases.

6.9 The Different A’(W) Criteria Compared

In this section we compare the different A’'({W) criteria. We will lirst discuss the

case of B,| =0, The criteria of Rutherford (2], White et al. [3] and Reiman [75]
i

were discussed in section 6.5.2. Tt is shown in Figure 6.40 that the criterion of
Rutherford predicts a slightly larger island than that of Reiman. This is because
the criterion is defined differently as is clear from equations (6.12) and (6.13), The
effect of the a parameter in the criterion of White et al. (see section 06.5.2) is to
reduce the island size from that predicted by the Rutherford criterion, bringing it

more in line with that of Heiman.
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FPIGURB 6.40 Comparing the criteria of Rutherford with that of Reiman in the case
of a superconducting vall, for varying equilibrium parameter gq,-

When an external perturbation (B,| # 0) is included in the problem, that is the
i

case with decreasing wry (i.e. ), the criteria of Reiman and Rutherford can be
compared to determine what error is involved in using Rutherford instead of
Reiman for cases where external perturbations are included as has been done by
Hansen [79]. This difference in island width is shown in Figure 6.41 for a (2,1)
mode. It is clear that, although the island size is larger when the Rutherford
criterion is used, Ithe effect of mode locking is qualitatively the same irrespective of

the type of criterion used.
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FICURE 6.41 The island size esing the A'(¥) criteria of Reiman and Dutherford

is compared for differest rotational frequencies.

6.10 Fxternal Coils
G.10.1  The eflect of the external coils on Lhe island size

For this section il is important to remember the plasma current direction ghown in
Figure 4.1, Il is now possible to choose the external coil configuration in line with
the plasma current direction (as was done in Figure 5.2), or in opposite direction,
When it is chosen in line with the plasma current direction, i.e. [ > 0, the radial

magnetic field is of the form By{r,0,9) = By{r) sin y , with BJ{r) <0,
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When the magnetic fields associated with such a configuration (Ie > 0) are drawn,
it is immediately clear where the islands will form. This is shown in Figure 6.42.
On the inside of the rational surface the ficlds arc in the anti—clockwise direction.
When the poloidal magnetic field at the rational surface is subtracted to give the
helical magnetic {ield, the poloidal field on the outside of the rational surface will be
in the clockwise direction. Together with the fields of the coils, it is clear that the

islands will form in the positions shown. T

islang

-~ limiter

" rational surface

FICURR G.42 The formation of islands with Ie > 0.

For this configuration we have § < 0, which corresponds to a, > 0 (from the

discussion in section 6.5.1). Thus B(r,d,¢) = % 3r = — % a, sin y gives

m ’ . . . .
Bir) = — T 3 <0 as was discussed earlier in this section.

From equation (5.59) we know that J™™ > 0 when I, >0 fora(2,i) mode. We

can now in summary state that
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I,>0, Lm0 a,>0, Br <0 (6.17)

and

[, <0, i <0, 2, <0 B> 0, (6.18)

which is valid i{ the mode is always in phase with the external coil. "When these

different configurations are substituted into equation (5.45) we find that an increase

a

1
(either positive or negative) will always change —| such that w will

in ‘j;m)n)
a !t

increase (keeping Figure 6.10 in mind). This means that when the island is locked

in phase with the coil, a DC coil current will always lead to an increase in island

size.

We will now ook in more depth at this increase in w caused by an in—phase
external coil. In the case of w - ® the equilibrium is at point 1 on Figure 6.43

(which is just the inverse of Figure 6.10). Once it is locked, it is at point 2 with

ay

rs
a

= —0.501 as was discussed earlier. The effect of 2 coil current is now to drive
l

a‘/a'l| along the arrow on the graph shown in Figure 6.43.
1.00

0.80
0.60 |
0.40
0.20 = ----mee

a7, 0.00 sl

-0.20 |

L 4

2
2
Y
~0.40 | \j
—0.60 L T

e

[-4

FIGORB 6.43 This graph shows hov w will change when —

¢

is changed because of

i

an external coil current. The effect of the current is to drive w
larger.
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Equation (5.45) can also be written as

a.l

(
. (myn) _ 1 Kalenre L (30093 _quKm €n) aq -1 ] (6 19)
3z oI, m{ €N 5 enK]gen;?{ { ' '

For any %}\ we can calculate the saturated island width from Reiman’s criterion
1t

(given in equation (6.13)). Once this is found, both 31|[ and a,’l\l are known

(a%| 1is known because it is the shooting value, and al\ because 4 is known —
L 1
see equations (5.10) and (5.11).). The values of %}- and ai| can now be
1t L

substituted into equation (6.19) to obtain the coil current which must be associated

with that specific %} .
1t

In Figure 6.44 the relation of j{™™ to %}- is shown for a (2,1) mode with
th

e=0.1 . It is clear, when compared with Figure 6.43, that an increase in coil
current leads to an increase in the value of w . Our configuration is such that the

coil current is only switched on when the mode is already locked, 1.e. 411 = —0.501
. 1

for the (2,1) mode.

6.10.2 The relation between W and It

As was already mentioned, the value of a’1\ (and thus B91| ) and a,
( (

(and thus
t

B;

) can be calculated for any 2—}
! i

with a saturated island present. We can now
1

draw B,

as was illustrated

L and Belll against ji™™ (which is related to %}-
L

|

in Figure 6.44). This is done in Figure 6.45. It is clear that B,| isincreasing with

1

increasing j;™" . From section 6.7.3, we know that larger islands perturb the
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boundary more, leading to an increase in [!,l
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The effect of JL™™ on the quantity E}| . The values of ji™*™
Lt

are pegative becaune § was chosen Lo be positive.

. The increasing coil current will
1

thus lead to an increase in island size. In Figure 6.46 we illustrate this for a (2,1)
mode during the high MHD phase (g, = 1.3, q, = 3.6) and in Figure 6.47 during the

low MHD phase (q, = 0.8, q,= 3.6). Weused ¢ = 0.5 and r_= 1.2. This was

done to be able to relate the results to Tokoloshe where

¢ ~ 0.5 One should

remember thal the island width W is normalized to the plasma radius.

FICULE §.45

{E~-3)

0.20 '
0.15
0.10 — B2
B
005t -
0.00 e
3
"ﬂ.ﬂﬁ i i i A
-0.40 =032 -024 -06 =008 0.00
jlaihll (E=13)

The graph of B, and By, sgainat L The value of B,

increases with current. As the coil current in increaned in magnitude
(going from right to left) the imitinlly ssnll valwe of By
1

decreases, goes through zero and then increasen in the upponlibe sense,
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FIGURR 6.46 An increase in coil current leads to island growth. The parameters are
q,=3.6, q3=1.3 and € =0.5 (high MD regime). This € is chosen
because of the large value on Tokoloshe (~ 0.5).
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FPICURB 6.47 The island grows witl an increase in coil current. The parameters are

9 = 3.6, q; = 0.8, ¢ = 0.5 (lov HID regime). The islands are,

hovever, smaller than those for the high MIID regime for the same cojl
current,
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The current density j'™*®' used in these calculations is in normalized units. We

know that (from section 3.7)

| man ey B FHL
B = ffapy )35,

with j.™™ the normalized current, a the minor radius and B, the on—axis
toroidal magnetic field. In chapter 3 we used p, = 1, which is not assumed in the

above equation. From equation (5.59) we have

= (TG R ey,

with the quantities not normalized. This gives

B
— Tle ® Fimmy
1! 0.412 = g i ot .
]
with

.l"."l.E = (.838, and J,(1.676) ~ 0.412.
for the (2,1) mode as was observed on Tokoloshe.

A configuration with B, =06 T, a =024 m, r, = 0.288% m and (m,n) = (2.1)
Bives

]E = 370 800 ji™™

As an example we can take it™® = 0.001 which corresponds to a coil current of
370 A.

The same island width variation as shown in Figures 6.46 and 647 was also found
by Hansen [79] as shown in Figure 6.48. Our model, however, predicts smaller
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islands. For 370 A we get an (2,1) island of aboul T cm (Figure 6.47) against his 11
em. This difference in island size can be due to the fact that lansen [79] used a

non—linear &°(W) criterion, but did ol consider proGle changes (i.e. flattening)
caused by the saturated island.

W2 (cm)

FICULE G.48 The variation of island size with coil currest as vas found by Hamsen

[19] for the low WD phase. S5alid line — nomlincar, short dashes —
wacwun, medien dashes — linear plasma response field.

6.10.3  The effect of rotation [requency

In this seclion we assume a situation where the plasma is rolaling al some
frequency, and an external coil current is applied outside. A resistive wall is
included between the plasma and the coil with a small vacuun region on the inside
of the wall. It is now assumed that this is a time independent situation, i.e. that
the rotational frequency of the plasma is constant for each equilibrivn. We can

thus associate some frequency with a particular equilibrium.

In the previous section we saw thal Lhe island size increases wilh increasing coil
current for locked modes, i.e. 0 = 0. This is also true lor any given rotational
frequency as can be seen in Figure 6.49.
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The effect of rotational frequescy on island width for different DC
coil currents. The parameters used are q, = 3.6, g,=0.B, €=10.1,
rg = 1.1, re=1.3 (low MHD regime) .

It is interesting to note that changes in 1 do not have any significant effects on the

island size when 0 is large. However, when 0 is small, a small change in {1 can
have a significant eflect on the island size.

The rotational {requency was related Lo the A‘—criterion by Hansen [79] without

coil current. It was also used in conjunction with an AC coil current by Nave and
Wesson [86]), This is however, the first tume, as far as we are able to determine, that

it is used with & DC current in time independent equoilibrium studies.

6.10.4  Equilibrium effects

In Figure 6.32 we showed the difference in island size when the island is locked or
rotating infinitely fast for different equilibria

During the high MHD phase
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(parameterized by g, = 1.6) we [ound wo significant diflerences between locked and

fasl rolaling cases.

This changed (or the low MIID phase (parametcrized by

q, = 0.8), for which the difference is larger.

We now include the effect of an external DC coil current. ‘This is shown in I'igure

6.50. I is clear Lthat the ellect of a coil cucrent is much larger during the high MIID

phase, i.e. when the profile is flat. When the profile geis very llat (g, ~ 1.0) it can

have a large cflect on the island size — leading possibly to islaud overlap with the

limiter. The dillerences in Lehaviour of the graphs for high q, are probably due to

details of the chosen profile.
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FIGURR G.50

The island width as.n function of profile type (

parameterized by ag)

for rotating and locked modes.
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It is now possible to take into account the effect of rotational plasma frequency,
together with external coils. This is shown in Figure 6.51. [n this graph we show
the effect of rotational frequency on the island width for different current profiles
(i.e. q,=0.8, 1.3, L5). The island sizes of the high MHD phase (g, = 1.3/1.5) are
consistently larger than those of the low MHD phase (g, = 0.8). This is Lhe same as
to say that island size widens with broadening profiles (q, = 0.8 — peaked, g, = 1.5
flat) as was found before (shown in Figure 6.48). It is true for all realistic rotational
frequencies (wry < 50).

Figure 6.51 can be used in an interesting way when it is assumed that each
equilibrium is associated with a particular rotational frequeacy. ‘This is in
agreement with observations on Tokoloshe. The typical toroidal frequency during
the low MHD phase (i.e. a very peaked profile) on Tokoloshe is 15 kHz. For the
high MHD phase this changes to 8 kHz (i.e. for a flat current profile). One possible
explanation for this can be found in the conservation of angular momentum. When
the body of the plasma contracts (i.e. the profile peaks), the rotational frequency
speeds up. On the other hand, when the body of the plasma expands (i.e. the profile

flattens), the rotational frequency reduces.
Let 1,, = [ Ridm
= [RiMdV

with I, the moment of inertia about the axis of the lokamak, dm the unit
element, M the mass density and dV  the volume element, For a  time
independent situation we have
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with A the angular momentum and w the rotational frequency. Let us further
propose thalt the current densily profile and the density profile are very similar
(preliminary experimental results are in agreement with this) and further that the
mass density M, does not change. Then we have

1
ks = 4n R]J: My(1 - )P r dr

for the profile type given by equation (6.3).

The solution of this integral is just

A = maamnﬂ{;nw.

Now we get
b = 35 : A = Tg%
b = 26 A = Tyrg
b = 177 A = Tf’ﬁ
b = 12§ A = Typ

with T=40 R} M, .

The parameter b=3.5 agrees with q, = 0.8, q, = 3.6 and the parameter b=1.25
with q, = 1.6, g, = 3.6. According to this model the rotational frequency will
double when the plasma goes from the high MHD (g = 1.3) Lo the low MHD phase
(qq = 0.8). This is in agreement with observations on Tokoloshe.
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FIGURB 6.51

Let us assume that Q = 20 during the low MHD phase (q, = 0.8). If this rotational
frequency is halved (Q = 10) when the plasma moves to the high MAD phase (as is

observed on Tokoloshe) when g, = 1.5, the island size will grow from W = 0.12 to

0.28. This is a rather large increase in island size. This is qualitatively in

agreement with observations on Tokoloshe [94].

6.10.5  The relation between By, and 2

When no external coil currents are applied outside the plasma, the relation between
By, and Q is of the form By, ~ 0 (1 < 20) as was shown in Figure 6.37. This
gituation is changed when coil currents are switched on. In Figure 6.52 we show
Bgy against Q0 for T, = 1000 A. For small velocities we found a relation of

Bo, ~é , and for larger ones By, ~ Q (see Figure 6.52). On Tokoloshe we found
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Bg, ~ ) where V_ is now related to Q [94]. This relation is shown in Figure
i J [
[0} .

6.53. This was true even (or no external coil current, suggesting error fields in the

ohmic heating and other cails.

-0.80

~0.17
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PIGURE 6.52 The relation of By, to 2 for 9,=3.0,q,=0.8, b=3.5.
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FIGURRB 6.53 The relation of By, to le for a typical Tokoloshe shot without

external coils. Quantities are in normalized units,
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6.10.6 The relation between the Reiman and Rutherford criteria

In this section we explore the relation between the Rutherford and Reiman A ‘(W)
criteria given by equations (6.12) and (6.13). We will first look at the effect of the
profile type on the different criteria. In Figure 6.54 we show the effect-of rotational
frequency on the island size as calculated by both these criteria for a Jow MHD
peaked profile. The lower the rotational frequency (), the closer the island sizes

predicted by the different criteria gets.

The difference between the island sizes predicted by the Rutherford and Reiman
criteria for high frequencies, are in agreement with the differences found earlier (see
Figure 6.41). The differences are caused by the difference in the Rutherford and
Reiman expressions for A’(W) as given in equations (6.12) and (6.13). They can
possibly be reduced if the a—like terms (see the eipression of White et al. {3] before

equation (6.12)) are included in the Reiman expression.

In figures 6.55 and 6.56 we show the same situation for g, = 1.3 and L.5 i.e. high
MHD, broad profiles. As before it can be seen that the island size for 2 =0 (a
locked mode) increases when the profile flatiens, i.e. q, increases. From these
graphs it is clear that the criteria predict islands of similar size as 0 is decreased.

For W > 0.24 the two criteria do not predict significantly different island sizes.

It is now also possible to look at the effect of the coil current on the predicted island
sizes using Rutherford and Reiman’s criteria. As in Figure 6.54, we choose the
value of q, = 0.8, but we have changed the coil current to [, =1000 A in Figure
6.57. ‘The effect of increasing coil current is the same as the broadening of the
current proble. It leads not only to larger islands when € = 0, but also to

insignificant differences in the island sizes predicted by both criteria when

W > 0.24.
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and IJ" = 200 &.
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and IZ =200 A.

We can thus conclude that the different A’/(W) criteria will predict different
island sizes when W < 0.24 of the minor plasma radius. When § is large
(W > 0.24), there are no significant differences between the criteria of Rutherford
and Reiman. This justifies the use of the Rutherford criterion when the boundary is

perturbed as was done by Hansen [75].

These relationships between the Reiman and Rutherford criteria have not been

studied before in the presence of an external DC coil current.
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6.11 Out of Phase Situations

All the cases discussed up to now involve a tearing island locked in phase with the

external coil, or, when the plasma is rotating, only the in—phase sitvations. We will

now also consider out of phase situations.

The plasma cannot be locked out of phase with the external coil because it is an
unstable equilibrium [85]. When the plasma js rotating however, the island moves
out of phase with the external coil and this calculation gives an estimate of the
minimum island size during rotation. Let us, then, consider such a hypothetical

steady—state case where the plasma island is locked out of phase with the coil.
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When the island is out of phase with the external coil, we can again evaluate the
island behaviour from Tigure 6.43. Instead of moving along the arrow to the right

as shown in Figure 6.43, an out—of—phase coil current will move along the arrow to
a'l
the left as shown in Figure 6.58. The effect is that —-| will decrease from —0.501
111 .

(for a (2,1) island) to zero and will then start increasing positively as the value of w

decreases.

From equation 5.105 the cases of rotation can now be investigated. When the

plasma is rotating very fast, which is similar to a superconducting wall, the value of

Q - w. This means that

When the plasma is touching the wall, i.e. 1y -1, the value of E is just zero as

can be seen from the expression for E presented under equation (5.103). Thus
a

! : : : .
37| =0 inthe case when Q-0 and the plasma is touching the resistive wall.
(s

All the intermediate frequencies of € will fall between the locked case, and the

a
. . 1

case when Q - o . When the coil current is large, and i
(

a'l
IS positive, —
i 2

will

t
decrease with increasing rotation frequency to zero for the case of the plasma

. - . . a
touching the resistive wall. When the coil current is small and a?l-| 1§ negative
1l

a, a
[ |?-| | € 0.501 for a (2,1) island |, the value of —ral
1 1

will also decrease with
1

increasing rotation frequency to zero.
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FIGURR 6.58 This graph shows how w will change when YA is changed because of
Lht

an out—of—phase coil current.

When the out—of—phase coil current is increased {rom zero, we have already shown

a4,
that the value of —| starts decreasing from —0.501 {following the arrow on Figure
il

6.58. Now, the value of a, is also decreasing. This means that § would also
decrease. Once 6= 0 is reached, it will again start increasing in magnitude as a,
increases. However, now the sign of § would be different and a, would thus also
change sign. This can be seen {rom equation (6.19) when the procedure of

increasing j{2'" is followed through.

As an example we will now investigate a profile with q, = 3.6 and q, = 1.6. In

a
. , . l . . ‘
Figure 6.59 we show j{®" asa function of 77| - ltis clear that j{®»" increases
tl
a

as o7 1 gets smaller, goes through zero, and then increases positively.
i
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il
equilibrivm are q;=3.6, q;=1.6, ry=1.1, re=1.3.

dy
In Figure 6.60 we show the rotational {requency as a function of 7T for two

il
a’l
different coil current densities, one agreeing with —| <0 (j{?P = 0.175 x 10-5)
il

a
and one with I’| >0 (ji¥"Y = 0.466 x 10"1). When the rotational frequency
th

a
. {
increases, both these curves show —

- ~0.084 which agrees with r, = 1.1. If
(

1

a'l
Iw = 0, this value of Erl would also go to zero.
(1
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1t

We can now plot the island width against current density for both the high

(g, = 1.6) and low (q, = 0.8) MHD phases (q, is 3.6 for both cases). This is done in

Figure 6.61. It is immediately clear that the coil current will reduce the (2,1) island

much more during the high MHD phase.

Finally, we can combine the results of the in~phase and out—of—phase situations.

When the plasma is rotating, and a fixed coil current is applied on the outside, the

1island will move in and out of phase with the external coil current. This will cause

the island to increase (when in—phase) and to decrease (when out—of—phase). A
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time—dependent treatment will thus show the island increasing and decreasing in

gize at a fixed (requency when the plasma is rolating at a fixed frequency. We

however, only considered the in—phase and out—of-phase cases. The island—-width

will thus vary between these two extreme values (maximum when in phase and

minimum when out of phase). In Figure 6.62 we present a graph showing these

exbreme values for a variety of rotational frequencies for the low MHD case. A coil

current density of 0,14 x 109 is applied to an equilibrium with q, = 3.6, q, = 0.8,

b= 35 As belore the islands are assumed to be saturated. This assumption will

break down when (1 gets too large or when the difference between the minimum

and maximum values gets too big.
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Conclusions

The parameters are q, = 3.6, q; = 0.B, b = 1.5,

In this chapler the current perturbation &1 has been modelled for a prescribed

overall current profile. The eigenvalue w specifies the width ol the perturbation

al. No significant difference was found between the results of the two models used

for &l



An unperturbed profile similar to the one used with success on Tokoloshe [84] was
used in this study, We did, however, not include a second small flat region on the
outside of the profile as was done when the profile was used to explain experimental
results. This explains why we found that the profile did not predict the (3,1) island
behaviour correctly, but only the (2,1) behaviour. The (3,1) island as calculated

with the profile we have used, is too small.

We also tried to model the (1,1) mode, Taking into account that 1;.’11 ~ o e, that

B.| =0, but not By,| , we attempted the caleulation by shooting with a, instead
0 0

of a) as was done for the other modes (i.e. equation (5.11)). In spite of this we
were not able to find any eigenvalues. The reason for this may be that the assumed

& or J, profiles were not applicable to (1,1) mode modelling.

The model does allow the form of the profile to be changed [rom peaked to flat when
the parameters are changed. It can thus be used to study different situations in the
slow time evolution of a shot. It was found that a Jocked island is larger than the
fast rotating one, although the difference is small for certain flat profiles. For
certain profiles we found that a superconducting wall (or rotation) can stabilize a

tearing mode unstable equilibrium. An external DC coil leads to mode growth,

These results are consistent with other linear and non—linear work that has been
done, as was discussed earlier in the chapter. The Reiman .-l;h criterion was of
importance in this study because non—superconducting walls were included in the
problem. It enabled us to apply our model to a wide variety of boundary
conditions, The Reiman and Rutherford criteria were also compared in the study.

No significant differences were found when W > 0.24 of the minor plasma radius.
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Results that appear to be new include:
a-l ; B . L .
. The graph of i’[ (i.e. “*/By,| ) against w giving all possible island
L'l 1

widths for any external situation. Only parts of this graph were

previously described mathematically by Lazzaro and Nave [02].

. Finding both values of B,

; and Bﬂ'l for saturated islands with
1

perturbed boundaries.

. Investigating the effect of external coils on rotating plasma for Tokoloshe
type profiles.
. The finding that broad profiles have very large islands in the presence of

small external coul corrents.

. A very simple model of angular momentum conservation coupling profile

type to rotational frequency.

. Comparison of the A‘—criteria of Rutherford and Reiman for perturbed
and unperturbed boundaries.
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CHAPTER 7
A TOROIDAL MODEL WITH TWO MODES PRESENT
7.1 Introduction

In this chapter the cylindrical one—mode model of chapter 4 is extended to include
iwo modes with toroidal coupling between them. As before, a perturbation
expansion is used for a “toroidal current density" (not J, but (1 + er cos 9)J,)-
The current density profile is flattened at both rational surfaces using two
axisymmetric periurbations, parameterized by  wy, w2 which again form
eigenvalues. This makes perturbation theory work and keeps the equations analytic
for all values of radins. The boundary is perturbed in phase with the two modes,
with amplitude 6, 6, determined by the Rutherford criterion. The one mode 1§

dominant and the other is assumed smaller.

Our work is related to that of Bateman and Morris [67] in the sense that their
quasilinear model considers the asymptotic time limit of the reduced MHD
equations as we do. They also consider saturated tearing islands with toroidal
coupling. They used a simple approximation for ithe pressure and current density
within a magnetic island. This modifies the background equilibrium and removes
the singularity from the linearized MHD equations, as in our case. To find the
saturated island width, they used a computer algorithm to f{ind neighboring
equilibna. This however, does not solve the problem of island width determination
satisfactory as they state: "Since the saturated magnetic island width and even its
existence depends {0 a large extent on the local current density profile, knowledge of
the global current density profile may not be sufficient to predict magnetic island

behaviour.  Unless the current density profile can be measured accurately or
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externally controlled, the prediction of the saturated magnetic island width may, by
necessity, take on a probabilistic nature" [67]. We overcome this problem using

boundary conditions as was discussed in the previous chapter.

Bateman and Morris [67] studied profile related effects predominantly, whereas we
concentrate on boundary effects. All the external situations discussed in Chapter 5
are considered. To our knowledge it is the first time that toroidal coupling has been

studied with the emphasis on boundary conditions.

7.2 Defining a "current" Density that follows Flux Surfaces

The equations we solve are (3.60), (3.14), (3.10), and are repeated here. Note now

that ¥ and A are the full toroidal operalors.

oU

V.I920 — 2¢ 5= V70 = (SHh)(VPA P+ p).VATY (7.1)
J, = —1/h A% | (7.2)
B = 1/n(VAd+ ) (7.3)
h = 1+ercosd, (7.4)

with everything normalized according to the normalization of section 3.7. When S - ,

equation (7.1) can be written as
BVK = o0,

— *_
K = -A% = hJ,



208

K a "toroidal current density".

The assumption of § -+ = is made because of the fact that the role of resistivity is small
when saturated islands are considered. (Carreras et al. [46] have shown that the «
term of White et al. [3), which contains the details of the resistive profile, can be

neglected — see section 6.5.2). Equation (7.5) can now be written as

i 99 g% —hgfwﬂra— 0, (7.7)

where use is made of the expression for B in equation (7.3). Let us now assume

Fourier expansions for ¢ and K i.e.
P = alr) + a,(r) cos (mf-ng) + a,(r) cos [m+1)0 —nyp + x| (7.8)
K = K, t]+k[r)cos (minyg) + kyr) cos [[me1)d —np+ 5, (7.9

where x, denotes a phase shift between the a, and a, perturbations which are both
of 0(¢) smaller than a,. We only considered two perturbations with poleidal mode
numbers m and m+1, but with the same toroidal mode number n. The reason for
this was to simplify the model and to model a situation similar to that on Tokoloshe
where only the (2,1) and (3,1) modes are dominant during the high MHD phase. When

only two modes are included in the problem, those modes are coupled by toroidicity.

We ignore non—linear mode—mode coupling as discussed in section 3.9

When the Fourier expansions (7.8) and (7.9) are substituted into equation (7.7), we get

the following equations for the modes and their harmonics:



sin (mf-nyp):
Ki (ma, + i{m+l] era, cos x,) = ag(mk, + %[m+1} ek, cos x,) + emk;  (7.10)

sin ((m+1)8-np+x):
K; ((m+1)a; + 5 mera, cos x,) = aj((m+1)k, + 5 merk, cos x,) + ek, (7.11)

sin 2(mé-ny): aki = kaj (7.12)
sin 2((m+1)f-np + x,): aky = kag (7.13)
Terms of 0{¢¥) have been dropped. Only modes of interest have been included. The °
denotes derivatives to r.

73 The Magnetic Flux Defined for Two Modes

The flux surfaces § = constant may again be usefully defined by the equation

B. : (7.14)

When the flux is written as
¥ = i!"n * i"; cos (mi-ng) + i': cos ((m+1)0—np+ x,) , (7.15)

and substituted into equation (7.14), we can proceed in exactly the same way as with
BVK =10 toget

Yi(ma, + %{m%—l] era, cos x,) = aj{my, + é (m-+1) eryhy cos x,) + erng), (7.18)
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Pi((m+1)a, + %m:ra., cos x,) = aj{(m+1)y, + émcrﬁh, cos X,) + emy, (7.17)
a9, = %] (7.18)
¥ = % (7.19)

Equations (7.16) and (7.17) can now be written as

a‘uiﬁ, (m + % (m+1) er ﬂ cos x,) + erniy
{b:‘ i ¥ (7.20)

(ma, + % (m+1) era, cos y,)

and

alwy [ (m+l) + %!- mEr -?1 cos x,) + ernyy

-11* = ﬁ : 791
ﬂ’g {[m+1]a,+%mcm1ms X L

where superscripts | and I are used to distinguish between the two equations flowing

from the two harmonics.
From equations (7.18) and (7.19) we know that
B, = T (7-22)

a; = .:ll.‘l-,ﬁ!:I {TEE'}

with 7 and A integration constants.

Let us now assume that 4 = A = 1 for this model, This will be discussed in more

detail later in this chapter. Then we have

a, = ¥ (7.24)
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i o (7.25)

We can now rewrite equations (7.20) and (7.21) as

;,Ulu & B —,|" lrr|.+1! H.z  cos xu) (7.26)
{,ﬁInI = ag+er {_ij: (1 + % €r lﬁ—j EEUS Xy - (7.27)

If we assume that :i ~ (1), expand the denominators and drop terms of 0(e?), we get
1
4 L n
Vo = dgterg (7.28)

W= al 4+ frtﬁﬁ (7.29)

which are just the cylindrical helical magnetic flux functions for the iwo modes,
However, if terms of 0{e?) are nol dropped in the expressions for ‘u!lul and ;i:gl as given
by equations (7.26) and (7.27), then cach of these expressions also contains the
information about the other via the a, or a, variables respectively. Equations (7.26)
and (7.27) can thus be interpreted as functions of ) written either in terms of the

s

m—harmonic parameters {-r‘!%r] or in terms of the m+1 — harmonic parameters hugl ).

We will thus drop the superscripts.
Let x = 4, —a} . We can now write equations (7.26) and (7.27) as
¥(ma, + é— er(m+1) a, cos ;) = erna, (7.30)

x((m+1)a, +é (rna, cos x,) = erna, . (7.31)
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From equation (7.31) we can get

—% €rma, cosy, X

((m+1) x - ern)

When this expression for a, is substituted into equation (7.30), it results in

1 2
x’—(er%+ cr(_—fjmi +I(“)QCOSQXI)X+L(_})m€x;i =0
to give
= |ai+ a2 +lf_r)’o2 +J5 2
X = m (m+71) 1'( CO8% X4 /

S = (24

n 1 2 2 2 1

- [ﬂ(.n,_ n )] [l+%€[(2m+l) m (M) copa

NP

We thus have the solutions for y ,

I 1

_ 1
X = ffma(m[MHw“m]

and
II 1

X = Qernm[2m+l—M] ,

R, = %H (2m+1) m (m+1)

2
o cos?

and the terms of ~ 0(e3) have been dropped.

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)
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When cos x, = 0 (i.e. when the modes are % out of phase), the problem reduces to the
pure cylindrical one in that the modes do not interact. This is immediately clear from

equations (7.26) and (7.27). We can now also see this in equations (7.36) and (7.37).

When cos x, =0 we have R, =0 and the equations reduce to

X = €=

or

AII _ , n

W = 3t
and

T n

X = ImrD
or

~ T/

, n

which are just the cylindrical helical magnetic flux equations for the two modes (see

equation 4.9). Thus the toroidal mode—coupling corrections play a role if and only if

cos x, # 0.

Equations (7.37) and (7.38) can be integrated to give

% = ay+ Dem1)r+ D%—i[é(\/_l‘i“R[)s‘%‘(\/l'i'Rl)s] (7.39)
- D
W= ag+ JOman)er =D &y | JUFR) - Yoy (7.40)
with
c = %szﬂ) o (m+1) cosy,
D = le n
b sy (7.41)

and the integration constants chosen to be zero.
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However, when we attempted to solve the final set of equations (given in section
7.6) we found numerical iteration to be difficult. We then instead of equations
(7.39) and (7.40) used the normal cylindrical equations (i.e. R = 0). This can be
justified because of the small difference between the cylindricat {I)D and the fpo
where toroidal corrections have been included. The only restriction is that the outer
island must not be to close too the boundary in whlich case the effect can become

large. Toroidal terms in the first order equations are however retained.

In Figure 7.1 below we compared the cylindrical ¢, with one for which toroidal

corrections have been included. It was done for a typical current profile of the type

to be discussed in section 7.8.

(a) (b)

PIGURE 7.1 The cylindrical ¥, (left graph) compared with the &% vhere toroidal

corrections have beer included for (a) a (2,1) mode (b) a (3,1) mode.
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T4 A Perturbation Expansion of K

The solutions ﬂrr and @P' as defined in equations (7.20) and (7.21) can now be

substituted into the expressions for K] in equations (7.10) and (7.11). This gives

atk, (m + % erfm+1) E cos x,) + em k

e R

| 5 er{m+1) a, cos x,

') .1 k .I-'
kl[ ap(m + 5 er{m+1) ﬁ cos x,) + emn ]#’u
ff‘l[ ap(m + % er{m+1) ¥ cos X + emn ]

¥
and
kz] ag((m+1) + % EXTI E-i cos x,) + ern ]w‘ul
H"} = | .2

'?;5;[ ap{(m+1) + % erm -.? cos x,) + emn ]
2

We can now write equations (7.12), (7.13), (7.18) and (7.19) as

a‘L a"j Ej
ai W k'

|
i

and
%3 ¥ ks

ag Vi Kk

Il
I

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)
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b = By, (7.47)

and @, f integration constants.

For our model we will now choose a = to get

Y
- lﬁ;l . (7.48)

2

This modelling will be justified at a later stage.

Equation (7.48) can now be substituted into equations (7.42) and (7.43) to give

A T ¢
Ky = A_l%
b
or
. 3K,
ky = ¢— (7.49)
v,
and K = X2yl
(2
or
k , 7
: = Yy (7.50)
e

From equations (7.49) and (7.50) it is clear that K, is a function of both wID and wgl ,

i.e.

Ky = Koy, %) (7.51)
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Equation (7.9) can now be written as

o - 0K 0K,
K = K%, %)+ ¥, P cos (m0-ny) + 9, W cos ((m+1)0-ne + x,), (7.52)
0 0

using equations (7.49) and (7.50). This is just a first order Taylor expansion of two

independent variables, i.e.

It is now clear that, within this model, the equation B.VK = 0 (i.e. equation (7.5)) can

be represented by

K = K(g,3'), (7.53)

with

Po= wg + 1, cos (mf-ng) (7.54)

{bu = %I + {/}2 cos ((m+1)8-np + x,) - (7.55)
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7.5 Solving K = -A*y

We will now investigate equation (7.6). This equation can be written as

fﬂmﬂg?-émnﬂgg—% r—h6? tﬂja = hK. (7.56)

When the Fourier expansions for 9 and K have been substituted into equation (7.56),

we gel

al + - a} = -K, (7.57)

1_, _m? X m+1)?
a'}+Fal-—?,al—-§ca.,cusxl—(—jylagcosxl
2
+ %ercﬂsx]{ag+%a;— m-:_-l a,)

- 0K
= -9, —2- rf.b 7 €08 X 7.58
Ié‘ti% :aw N (7.58)

v 1., (m+1)2 o 1 '
a':+?aa-[—ﬂ)‘“t‘ffal°°5x1+2f'”1°°”l

1 2
+ g ercos x,(a) +%a’,—%al]

Ky 1
= - '¢r €r 1() 1 €08 X 7.59
3;{.',, R 31{!0 o (7.59)

When equation (7.59) is substituted into equation (7.58), it results in

1 mi

1 1
al + T ai—T78,—5€a; s X, — 5+ (m+1)a,cos x,

e
161,,‘:% (7.60)
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when terms of 0{¢?) are neglected. In the same way equation (7.59) can be written as

) 1)1 1 ., 1
l*,'+%l,~[%1—a,-!{n,tmx.*g':f'“l:mxn

= -3 Ky (7.61)
¥ PR

1.6 A Closed Set of Toroidal Equations

Finally the equations in the toroidal approximation can be written down as

aj + 3 aj = -K, (7.62)

2
u'l‘ + %g"t --r'E! alué €dy CO8 xl—%f:{lﬂ't-l} dy CO8 X,

= -y 2K (7.63)

F m+41)2 |
l';+Fal—{—r‘-}-h-gultﬂix|+é-:-m:]l:mxt

= —p Ky

b (1.64)
H* _ .a+;{mﬂ;‘—+l—]—ii‘m+l+MJ (7.85)
1| L 1 1 [

W= at gy | mel - VI (7.66)

Xy -
[where a, and a, clearly coupled by roroidicity).

R, = :1!" (2m+1) t;: (m+1) il

The rationale behind putting 7= A=1 and a=g may now be examined,



(i) a = I When this assumption is made, we get

K = K,+k cos (mfnp)+ kycos ((m+1)f—np + x,)
= K+ ¥ cos {mﬂ-nw];ﬁ—.ﬁ + ¥, cos ((m+1)0—ny + xﬂﬁv—‘[’[r
& o

which means that the Fourier expansion of K i5 compatible with the perturbation
expansion of K in terms of the functions ' and ¢ as defined in equations (7.36)
and (7.37).
(i) += A = 1: This assumption leads to

. P & n

u:"u = En -+ ¥I E + El{f.i]
where ¢, signifies any of 1;'.'1,]I or '}L‘r and myg the particular poloidal mode number
{m or m+1). This reduces to the cylindrical helical magnetic flux when terms of 0f¢?)
are dropped and equations (7.26) and (7.27) are decoupled.
Thus each of these assumptions contributes to the sell'—mnsisteﬁuy of the model,

7.7 The Toroidal Safety Factor

The safety factor (q) can now also be defined for this case where toroidal coupling

i8 included in the model. From the feldline equation for (r,0,) coordinates

rdg A9
By B,

and the toroidal quantities E’n and B, (given by equations (3.8) and (3.7)), we get
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J.dqi+ﬂ'l:ﬂﬂ-l = - riﬁ'rﬂiﬂ'-

Define
df

“ = .rl + ¢f cos 0

1o get
5
W= —mrtu,. (7.67)

with W an integration constant,

in the absence of no non—axisymmetric perturbations. A new safety factor can now be

delined as

Auy 8y
4 = xp= 5 (7.68)

-

When this is substituted into equations (7.65) and (7.66), it is immediately clear tha
ﬁ'ﬁr = 0 defines the rational surface at r=r_ and ialul’ = (1 deflines the rational

surface at r = T

78 The Model for K,(r)

Closer inspection of equations (7.49) and (7.50) shows that

7K, gk b

< = Ki/#, «s il Kj#0atr=r (7.69)
Mo Lt o,
ﬂ_'i'F = Kifw, - if K;$0 at r=ro.. (7.70)
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We will now proceed in exactly the same way as in the cylindrical case to prescribe K,
in equations (7.62) to (7.66). From its definition we know that X, is a function of T.

We must also demand that K| =0 and Ki| =0 (from equations (7.69) and
sl sl

(7.70). We will thus model two axisymmetric perturbations 6K, and 0K, to flatten

the profile of X(r) at both rs[(rsl) and rSII(rS2).

The function K({bl,{bn) is similar to the cylindrical J(¢). In chapter 6 we used a
parabolic current density profile with only one free variable as was specified in equation

6.3. We will now use a two parameter model for X,(r} of the form

Kyolr) = g(1 10 (171)

[t is now easy to show from equation (7.62) that

€ f
gy = = —— 7.72
’ % B(b+1, %) (7.72)
and
2
q = B_E (7.73)

where B(b+1,12-) denotes the Beta function with parameters b+1 and %, and q the

safely factor as specified by equation (7.68) using the normal notation as was discussed

after equation (6.8).

For any choice of the parameters b and f in the expression for K, (1) (i-e. equation

(7.71)), it is thus possible to ind 8, and q, when q, is specified.

Equation (7.71) specifies the unperturbed equilibrium profile. We will now proceed to

include two axisymmetric perturbations 6K, and éK, at the two rational surfaces.
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Let
X))  = gl (g oD (r7a)
and
-Ts 3 ds)
K = - g+ ay e (113)

We assume that the one island is dominant and is located at r,,. The other island
located at r,, is smaller. The larger island will thus affect the flatness of the smaller
island at 1, but not the other way round. The variable j, can mow be specified in
such a way that, when the effect of K (r) is included, K} £ is ze10, where

Kel) = Kyolt) + 5K (1) + 8K,(r) (7.76)
As before (see constraints {a) and (b) in section 6.2) we force
K; =0 . {7.77)

Tez

K3(r)

0. (7.78)

T

The constraints I{;'t =0 and K§| =0 will automatically be satisfied if Lbe effect

5l 1]

of 8K, is megligibleat r=r,, .
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Equation (7.77) results in

Iy 2‘1'51)2

e o L SRR A (SR

+ 284(T5yT5) er [(1 - Igz)b - (L = ra{-x)b e_(rSQ;IISI ) ]

d2 2
i) (1 -2 Gy
(7.79)

Equation (7.78) gives
ag+ axds+adi+dy = 0 (7.80)
with

23 = Bwi/(tiA)

a3 = —6 w3/4
a; = - 2B W%/(4A)
b- ¢ _(TSQ_fsl)2
A= by (T-rhy)* g (L—e W,
\ (s 27Tsn?
— 2 go(15, — 1)) Wl [ (1- rgz)b'_ (1- rsfx)b ¢ ( SWI %)

Is 2'1'51)

B = b(b-1) gy(L —1f)>2 (11f;)? (1 — e Cw,

Is9—Tg(y2
~ bgy(1— )P (1) x5 (1 e O )
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r!r.r§1]z

gy (=) iy 1 1) e e,

EL?"_rﬁ_l-f
w L

+ EEu'lﬂt (1—rft = (1-rf)® et [1'2{%&}23'

As before (section 6.2) we can now solve for d,. Now, with j, and dz known, we can
substitute the expression for K,(r) (equation (7.76)) into equation (7.62) and solve for
the equilibrium values of a, and a; as well as L and ¥i1 . As before (in the
cylindrical case) the value of g, will change slightly when the perturbations K, and
$K, are included in  Kgy(r). The real value of g, can be found by forcing

B
Hu

—_
= 3'u

= 0. The rational surfaces r5; and rg; can be found iteratively from
0

the expressions ;!léJ

n #
t:Lllﬂmud ﬁj =0 .

[s [z

quations (7.63) and (7.64) can now also be solved because 252 as well as 950 are
iy thpry

analytic for all 1.
7.9 Boundary Conditions for the Torvidal Equations

We know that K = 1{{1}1[,, {.EIIDIJ. Now assume as before that the boundary has the

same form as yj or -i!ugr, ie.

L Ty + dy cos (mf-ny) + 6 cos ((m+1)0—np + x,) . (7.81)

Therefore K will follow the boundary such that

(7.82)



If we make a perturbation expansion of K(r) about the boundary, we get

K? = Ky(t%) + k(r) cos (mb-ng) + ky(c?) cos ((m+1)0 - ng + x,)

Kofra) + Ky (ey) [5, cos (méong) + & cos (m1)0 - np + )|
+ ky(ry) cos (mi-ngp) + ky(ry) cos ((m+1)8 —np + x,)
+ K(cy) cos (mf-np) [ 5, cos (m+1)0 + 6, cos ((m+1)0— np + x,}]
+ kjny) cos ((ma1)0—ngp + x,) | & cox (mi-ng) + & cos (m+1)-npry,)]
= [J.
From the Fourier components cos{mf-ny) and cos{({m+1)f —ng + x,} we get
kit = - 6Kj(x,) (7.83)
kolrg) = - 6,Kq(r,) . (7.84)

The expression for ki(ry) and kj(r,) in equations (7.49) and (7.50) can now be
substituted into the above equations to give

kiry) = - bk, 'i‘:*f"i. Ty

biry) = - 69} (t,) (7.85)
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and
ky(ry) = - bk, 'ﬂrﬁt’: r,
b)) = - G0t (r,) - (7.86)

As before (section 5.2) we may sel r; = 1 because of the normalization with regard to

the plasma boundary a = r; . The value of a,| may be chosen [reely because
L

B = [ll.l'h} (V4 A i), which allows us to add any constant to ¥ = a, . The values of

;},llu and nﬁl

I

are now known from equations (7.36) and (7.37).
1

The value of aj| can be found from equation (7.68), 1.e.

i
dy

Y
I J'r':ll-

Finally the values of af

and aj| will be chosen such that - a)
|

=B ‘ g Kl
E|':.'|

1 0

=ﬂ_

0

-3y =By

] 2

All the boundary conditions that are needed to solve equations (7.62) — (7.66), ie. -
Al g
II :

ay = o, agl , &4
determined in the numerical procedure. We thus have

1

P
I

-
3 1
[

L)
p da
L

, are now known or are to he

! 1

ay

=k, (free constant) (7.87)



-
-
1

=
e
I

R

]

K+ D(2m+1)+ D

k, + g{EmH}— D %,

1"""“ll

shooting value

shooting value

1if (2m+1) r:ll (m+1)

using the fact that a’ =y, i=

7.10 The Vacuum Equations

12.

LS Lp

M ) - 30T

costy,

(7.88)

(7.89)

(7.00)

(7.91)

(7.92)

(7.93)

(7.94)

When the plasma equations ((7.62) — (7.66)) are coupled to vacuum on the outside,

the toroidal vacuum equations are needed. We know that VAB, =0 and V.B, =10

in vacoum, with



229

B, = (B i+Bjd + H':,P ;p}e'['“"““’}

+ (B% i + B% 0+ BY, ppedmatnetx) (7.95)

the perturbed magnetic field with m, = m+1 and the superscripls Aand B denoting
the phase. When this is substituted into the toroidal expressions for VAB, = 0 and
7.B, =0, and terms of 0(¢¥) are dropped, we get

mBY + em Bl = 0 (7.96)
El:,; + ten B‘[, = 0 (7.97)
B+ o8ty in o, = o 1
A A . A ; | O 0 “ 99)
B, +rB, +mBjy—ine B, = ;
and
] B 7.100)
m,]ilm+szm.—ﬂ (7.
B}, + in B, = 0 (7.101)
B +rB' —im, B =0 (7.102)
B} + 8% 4+ imBY—maB’ =0, (7.103)

which are exactly Lhe same as in the pure cylindrical case where the two perturbed
modes are decoupled. It is thus now possible to use all the expressions that were derived

for one mode in a cylinder with various external situations and to apply them direcily to
the present model.
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7.11 External Coils

The external coils on Tokoloshe have the winding laws q¢ = 0 — A# sin § +
(p~1)"/#, p = 1,2 ... The Fourier expansion of this current at t = 1, (the coil
radius) allows many j{™™ components to be non—zero. The effects have been
included in equation (5.59), with the values of A# computed for Tokoloshe and

given just below equation (5.59).

For the I,—coil, we get

Ly = U—%‘r‘cl—? with Jo(ll.676) = 0.412

b = —% with J(1.676) = 0.575
and for the I,—~coil

e = 0

B0 = with J(0) = 1.

When both the I, and 1, coils are on, we get

(2, .82

it = Orfrscq L

(nn 1

(9D = 7r_rc(3 [,-1.7251,) .

Another thing to remember is that the coupling at the radius where the coil current is

found (i.e. equation (5.28)), is actually



N

I:H-i: _ B:'l} i El.'m'ﬁ'-ﬂﬁh'.' = jl=m E‘.m'ﬂ' nptX,)

with R denoting the outside and L the inside of the boundary. When jimnl g
P 3 i

found, using equations (5.45) or (5.104), it gives the amplitude of e..*m "etx) we

need the corresponding jL™*' at x, =0, #=0, ¢y=10 to know the coil current

direction. For
iAm™ (0=0,9=10x=0)>0
the coil current is positive and for
LM (f=0,9=0x=0)<0,

the coil current is negative.

7.12 Conclusions

The one mode cylindrical model of chapter 4 was extended to include two modes
with torcidal coupling between them. This agrees with work done by Bateman and

Morris [67] but is extended here Lo allow for non—axisymmetric boundaries.

The model developed in this chapter will now be used in conjunction with the
various boundary conditions of chapter 5. This is the first time that toroidally
coupled modes have been studied with specific attention to the boundary conditions.
The results are presented in the next chapter.
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CHAPTER 8

RESULTS OF THE TWO MODE MODEL

8.1 Introduction
The results for the two mode toroidal model will now be presented.

This chapter is divided into three parts. First we present some results on the
equilibrium quantities, i.e. the form of K (r) as well as other quantities. Contour

plots of (2,1) and (3,1) toroidally coupled saturated islands are also presented.

Then we consider the case of a peaked parabolic (f=2) profile for K (r), i.e.
representing the low MHD phase on Tokoloshe. Locking of the modes, rotation,
locking with external coils and external coils with in—phase locking are considered.

Lastly, we examine the relation of the natural uncoupled (3,1) mode to the coupled

one. In this part we investigate the effect of coupling on a natural (3,1) mode.
8.2 The equilibrium quantities

As was discussed in the previous chapter, the unperturbed "toroidal current profile®
K (1) is flattened at both rational surfaces when two islands are included. This is
shown in Figure 8.1 where toroidally coupled (2,1) and (3,1) modes have been
included in the plasma. The value of the safety factor at the boundary (q,) is 4.5.
We did not use the value of 3.6 as was mostly done in the cylindrical case, because
the (3,1) island had to lie deeper in the plasma for the theory to be valid (i.e. with

R, =0 as discussed at the end of section 7.3).
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0.3 __
0.2
0.1
0.0 =
r Ts1 Ts2
PIGURRB 8.1 The graph of K ,(r) and Ko(r) for a peaked profile with q, = 4.5,

qozl.o, f=2, b = 3.5.

The form of éK = 6Ky + 6K, that was used to flatten the current profile of Figure
8.1, is shown in Figure 8.2. Both 6K, and 6K, are similar to the éJ used in the
cylindrical case (Figure 6.3), changing sign at r =r,, and r = r,, respectively.
When both are, however, included simultaneously, and the (2,1) island is dominant
(6K > 8Kj), the effect of 6K; on 6K, can be significant as is shown in Figure

8.2. The 6K, curve prevents the 6K curve {from changing sign at r=r, .

Also shown are k; and kj;. Both change sign al the particular rational surface, i.e.

ki at rg and kp at rg,. Notethat k, iszeroal ry, and k; at ry . This will

be discussed later in this section.
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The amplitude of k; is much smaller than k; because the (3,1) mode is only 22 %

of the (2,1) mode for this case in which the modes were locked.

0.0 __
0.0 _
-0.01 |_—
-0.02 L | | | | J
0.0 0.2 0.4 0.6 0.8 |
 (norm unils)
FIGORR 8.2 The forms of X = 8Ky + 63, k, and kg for the same profile as in

Figure 8.1.

The last equilibrium quantity to be discussed is {bo, the helical magnetic flux.
There are two expressions for ¥, , i.¢. w(I) which agrees with the helicity of a (2,1)
mode in our work, and wgl which agrees with the helicity of a (3,1) mode in our

case. The functional form of g/% has a minimum at r = rg, (therational surface of

st
the (2,1) mode) and that of wil has a minimum at r = r,, (the rational surface of

the (3,1) mode). This is shown in Figure 8.3.

Other important quantities to be calculated are OKO/E)% and aKo/é){b%)I . These
are needed to calculate a; and a, from equations (7.63) and (7.64). Both these
quantities (aKO/G{/;(I, and aKO/B{/%I) are showrn in Figure 8.4. The quantity
aKO/c’){b[I, = Kg/{b{,/ changes sign at r = 1y, because d%/ changes sign at that
point (wﬁ has a minimum at 1 = r,, as was discussed in the previous paragraph).
This is also true of aKﬂ/E){ng = Ka/{[;})I/ which changes sign at r=r_, . Also
note that both these quantities are zero at the rational surface other than the one

where they change sign. This happens because K is zero at both rational surfaces.
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0.0YH

0.08

-1
¥y
0.07 ] )
= 11
- ¥
006 1__ | B e i !
0.0 0.2 0.1 0.6 0. |
r{norm anils)
~1 ~1T . .
FIGURB 8.3 The form of %, and %, for a (2,1) and (3,1) island respectively.

The equilibrium specified in Figure 8.1 is used.

This also explains the behaviour of k; and k, which is just
k = ¢1K6/%
~ , -III
ky = 4 Ky /9

Finally, being able to calculate all the equilibrium and perturbed quantities for this

particular profile (q, = 4.5, qu = 1.0, f = 2, b = 3.5), we can calculate the total

perturbed values of
AI AI ~
Y = Y, + ¢, cos (mb-nyp)
‘II -~ -
¥ = %'+ ¥, cos (m+1)0-ny)

K3, 91 = K1) + k, cos (ml-ng) + k, cos (tn+1)0-np)



LILYS

i L1

L . il
o | — }\

' I . I I
=100 | A | . |
(RE tr, 2 0. .5 .

Pl anilsl

a7 - L3 g ]
FICURE 8.4 The graphy of l"uf'.i!llu and lE,,I"l;Ii'gl . The eguilibrium specilied in
Figure 8.1 is waed.

with k; =0, m =2, n=1. The contour plot of 1'.IrI is shown in Figure 8.5, that of
i&:l in Figure 8.0 and that of K{'ﬁirl, 17;!'11] in Figure 8.7. Only on the graph of
K{;;Ial, E!I“] are both islands visible as can be expected.

8.3 The eigenvalues of both modes

Instead of one eigenvalue as before, the problem now has two eigenvalues, w, and

w, . These parameters are defined in equations (7.74) and (7.75). The graphs of

gr| agamst w, 1=12 have exactly the same form as before. The only
it

difference is that in the case of only one mode present, the graph was independent of
both § and ¢. It was thus possible to find the functional form of the graph and
only afterwards to solve for § when Lhe saturated island width is determined using
some A‘(W) criterion. Now, the form of the graph can only be found at the same
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[Un]
|

8 (rad)

e
|

0.0 |

0.0 0.2 0.4 0.6 0.8
r (norm units)

FIGURR 8.5 The (2,1) mode vith b = 3.5, f = 2,q =4.52and q5 = 1.0.
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F
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0.0 | I
0.0 0.2 3.4 0.6

r (norm units)

FICURE 8.6 The {3,1) mode with the same squilibrium as in Fipare §.5.
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(@)

6 (rag)

\\

FIGURR 8.7 Doth the (2,1) and (3,1) islands are visible on the contour plot of
K(‘&)I, ’ZZ'II) The equilibrium is the same as iv Figure B.5.

0.0 | |
0.0 0.2 0.4

r (norm units)
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time that 451, 1= 1, 2, are determined. For every value of W the correct value of

.
a—’; is only known once Lhe saturated island width, and thus also :Ft., has heen

L LR
determined. This increases the computing time considerably (up to a 100 times

because both the starting shooling values must also be chosen correctly). In the

o T
following graph we present 1?:'
1

Against W for both modes in the case of a peaked
1

parabolic profile for Ky(r) (b = 3.5, { =2, q, = 4.5, q, = 1.0). It is clear that the

profile is Mattened much more at the (2,1) rational surface than at the (3,1) surface,

. This implies a (2,1) island that is considerably
i

a-
i.e. w, > w, for the same a—}

larger than the (3,1} island. It is consistent with our present model, which is only

valid if the (3,1) island is not very large.

2.00 %
e i
1 L I"
190 F g P
! i
i I
1 |
i I
L) 0.40F . | == (2.1) mode
a’ ' [
i = i
M, : .3 ! - - {3.1) mode
-0 .40 '\a : \gl
il !
—120 | h
ik :
] .
_?UU i i i i i
000 0.02 004 006 008 00 0.12
i
-|'-|.1-
FIGURE 8.8 The graph of o7|  seninst ¥y t=1,2 for coupled (2,1) (i=1) and

111
{3,1)(1=2) modes.
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B4 Mode Hotation without External Coils

As was discussed in chapter 5, we will now assume a configuration where the plasma

i rotating. Between the plasma and the resistive wall a small vacuum region is

-

allowed for, and vacoum is also assumed outside the wall, The form of I; for
il

such a configuration is given by equation (5.73). From this equation we can

L

EI.=-|

tabulate 1 against for both modes. This is done in Table 8.1 for ¢ = 0.1

and r,, the wall radius, at 1.01, i.e. the wall is very close to the plasma edge.

0 E:| 4y
ap|, dg)
0 ={}.301 .33

1 —0.447 -0.316
2 =353 —0.283
a —{1.185 -0.171

10 .14 -0.105

20 —0.05 =055
m -0.01 —0.011
Table B.1

In Figure 8.9 we show the island width as a function of rotational frequency 11 .
The (2,1) island increases by 16 % when it is locked (from a very fast rotating
situation), and the (3,1) island by 36 %. The effect of mode locking is thus much

larger on the (3,1) island. The islands are considered Lo be coupled together and

rotating at the same frequency.
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FICURE 8.9 The island widths of the {2,1} and (3,1} islamls for different
rotational freguencies. The equilibrium parameters are q, = 4.5,
g = 1.0, b= 3.5, 1= 2.0.
8.5 External Coils

when an external coil is.included in the vacuum outside
I

a
Equation (5.45) gives ET;-
1

the plasma. When r, =1 and r_= 1.1, we get

i

2y %3 i
H g FTL Y [— f
(hl = [I;-Jfﬂ.3335+1]m
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We will now consider three situations, i.e. when only the I, coil is swilched on, when
both I, and I, coils are switched on such that j{*" =0, and when both the I, and
I, coils are on with j!»P = j(31U  In Figure 8.10 the case of I, alone is shown, in
Figure 8.11 we show the second case where j!¥1" =0, and in Figure 8.12 the third case

where j(20 = j(dto

The same profile as before is used, i.e. with parameters q, =
4.5, g, = 1.0, b = 3.5, { = 2. In all the cases the islands are locked in phase with the

external coil.

0.20

0.12 r

T

|

\
\
+

0.08

0.04 H~~

0.00 : ' — ' '
0.00 0.20 0.40 0.60 0.80 1.00 1.20

J

1

FIGURB 8.10 The width of the (3,1) island for the I; coil. The (2,1) island width

stays unchanged on 0.164.
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FIGURE 8,11 The widtl of the (2,1} ialand when JL2Y g0, L2010 0. The videh
of the (3,1) inland atays unchanged at 0,036,
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0.00 : 4 i 1 A 4 i — 2
000 0.10 0.20 0.30 040 050 0.60 070 0.80 0.90 100
J z lﬂ.:
FICULE 8.12 The island vidthe vhes jL7V = ji 000,
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Important conclusions can be drawn from these graphs:

The island size does not change if the boundary condition for that mode is
not changed. When %-,ll is kept at —0.5 (i.e. locked but no external coil
i

current), but :4' is increased consistently with increasing I3 (Figure
2l

8.10), the (2,1) island stays unchanged on 0.164 but the (3,1) island is
increased. On the other hand, when ;,! is kept at —0.33 (i.e. locked but
]

F |
no external current density of similar helicity), but %{ . is increased
consistently with increasing jL*" (Figure B.11), the (3,1) island stays
unchanged on 0.036 but the (2,1) island is increased in size. This may

have implications for experimental mode suppression.

The effect of a similar current density is much larger on the (3,1) island

than on the (2,1) island. The (2,1) island width increased by 10 % and
the (3,1) island width by 131 % for jL®" = ji%) = 0.1 x 10, From
this we observe that the (3,1) island is much more sensitive to the

boundary conditions than the (2,1) island. The reason for this is probably
due to the proximity of the (3,1) island to the surface.

External Coils with Rotation

We will now consider the case where an external coil is included with a rotating
plasma. Only "in—phase” cases are considered. The parameters are 1y = 11, te=
1.3, qu=10,q,=4.5b=235,1 =20

In Figure 8.13 we present the case when jL®" = ji™) = () x 10 and in Figure

B.14 when J1*Y =0 amd jL®V = 0.1 x 10, As before we note that the (3,1)
island is much more sensitive to the boundary conditions than the (2,1) mode.
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As before the modes are conmsidered to be coupled and rotating at the same
{requency.

B.T The Effect of the Aspect Ratio

On Tokoloshe we do not have an inverse aspect ratio of ¢ = 0.1 as was used in the

calculations up to now, but of ~ 0L5. It is thus important to examine the effect of ¢

In the following graph we show the effect of inverse aspect ratio on island size. As
¢ increases, the ratio of the (3,1) island size Lo the (2,1) island size increases. This
means that the toroidal sideband increases in size when ¢ is increased. This could

be due to the proximity of the (3,1) island to the plasma edge. Note that the (2,1)
mode is not alfected significantly by the change in €.
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FICTRRE B.15 The effect of imverse aspect ratio (€} on mode couplimg. The

equilibrium paramcters were =45, q,=1.0,b=2.5_ f=2.0.
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8.8 Equilibrium Effcctr

The effect of equilibriumt changes can alsy be looked into. In Ifigure 8.16 we show
how the island width of the (2,1) and (3,1) islands changes with profile. The (2,1)
tsland varies in exactly the same way as in the cylindrical case (see Figure 6.32).
The (3,1) island width is the largest for a profile with g, = 4.5, q, = 1:3, b =246,
= 2.0 and profiles with q; = 1.0 and q, = 1.5 haviug smaller sideband islands.
We are not sure why the pronounced tmaximuru for the (3,1) island width occurs.

T'his may Le due to the effects of the cliosen profile.
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FIGURRE 8. 16 Ieland width variation with equilibriem parameter q;. The other

parameters are q; = 4.5 and f = 2.0. The value of b can le

calculated from equation {6.7).



249

8.9 Other Effccts
8.9.1 Boundary perturbation

We found that the (3,1) island perturbs the boundary much more than the (2,1)
island. This is shown in igure 8.17. A boundary perturbation of 62. =0.19 x 102
corresponds to a (3,1) island width of 0.08 and a (2,1) island width of 0.16. This
may also be the reason why the (3,1) island is much more sensitive to the boundary

conditions than the (2,1) island as was discussed earlier.
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FICURE 8. 57 The (2,1) and (3,1) island vidths are related to the boundary
perterbation 51" 1=1,2.
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8.9.2 "Coupling" of islands through the background current density profile

When the unperturbed equilibrium profile is flattened locally at the rational
surfaces, the surrounding regions are also affected. This happens because the
current density on the inside of the rational surface is redistributed to the region
justlon the outside of the inner rational surface. Such a change in the form of the
profile can affect the nearby islands, increasing or decreasing the steepness of the
profile at those islands. Although other authors found this effect to be significant
[67], we found it to be small. The main reason why these effects are small in our
model is that the islands are not positioned close to each other in the plasma. This

coupling would also be present in a two—mode cylindrical model.
8.9.3 Toroidal effects in the helical flux

As was discussed earlier, we used a simplified form for the helical flux expression to
enhance iteration of the model at the end of section 7.3. Instead of using the
toroidal helical flux expressions, we used the cylindrical ones. The effect of this
toroidal modification is to move the islands to the outside (when coupled in—phase
i.e. x, = 0) or to move them to the inside (when coupled out of phase i.e. X, = 7).
This will clearly have an effect on the island size. For ar equilibrium profile with
parameters q, = 4.5, q, = 1.0, b = 3.5, { = 2.0, we found that the locked (2,1)
mode was reduced from 0.164 (cylindrical flux function) to 0.142 (toroidal flux

function). This is a reduction of 13 %. Other authors also found a reduction in

island size |4,67|.
8.10 The relation of a natural tearing mode to a toroidally induced one

The profile that was used up to now (,=45,9;=10,b=35 1= 2.0) does not

have a natural (3,1) island present. The (3,1) island was included in the plasma as
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a pure toroida) sideband of the (2,1) island. 1t is thus clear that a (3,1) island of
nearly the same size as the (2,1) island (for certain values of ¢ and equilibria) can
be introduced into the plasma when toroidicity is included, even if no natural (3,1)
tearing mode exists. This effect of a (3,1) tearing stable profile having a (3,1)

toroidally induced mode present, was also found by Bateman and Morris [67].

To study the reJation between a natural tearing island (i.e. an island which exists
when no toroidal coupling is allowed for) and a sideband island, we proceeded as
follows: We took two equilibria with very similar parameters (profile 1 —q, = 3.99,
qy =143, b=14,{= 1.6 and Profile 2 —q, = 4.11, q; = 1.33, b = 1.4, { = 1.4),
the first being tearing mode unstable and the other tearing mode stable. The island
sizes of the natural and the sideband islands of the tearing unstable profile and the
island size of the sideband in the tearing stable equilibrium were then compared.
This is tabled in Table 8.2 and shown graphically in Figure 8.18. The profile we
have used up to now is also included in Table 8.2. The — means island size is zero,
"tor" means the (3,1) island is a toroidally coupled sideband and "nat” means that a

natural (3,1) island exists in the case of no toroidal coupling.

An interesting result from Figure 8.18 is that the island sizes of the natural and
sideband islands are the same for W > 0.05. It is probable that the sideband island

takes the value of the natural island when the latter is larger.



Superconducting Wall Locked jietr =0 jitb =0
go (1-17)° tor ot j{1 2 0.1 x 10-4 348910 = 0.5 x 1074
tor nat tor nat tor nat
(2,1) (3,1 (3,1) (2,1) (3,1 (3,1 (2,1 (3:1) (38,1 2,1y 1) G
g, = 0.14
i = 1.2 0.121 0.021 --- 0.130 0.042 0.015 0.130 0.052 0.054 0.130 0.08 0.082
= 1.
q, = 3.99
gy = 0.15
g = l.i 0.121 0.018 --- 0.125 0.023 --- 0.125 0.047 --- 0.125 0.075 ---
= 1.
q, = 4.11
gy = 0.2
i = 3.0 0.138 0.023 --- 0.164 0.036 - 0.164 0.046 --- 0.164 0.066 -
= 3.9 .
q; = 4.5

Table 8.2
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superc wall locked ,=0.00001 1,=0.00005
PIGURR 8.18 The island width of natural and toroidal sideband islands for profile

1 and of toroidal sideband islands for profile 2. These are compared
for a super conducting wall situation, a locked one, and locked with

5EBD 2001 x 1074 and 0.5 x 1074,

On Tokoloshe we observed a situation where the (3,1) island is comparable in size
with the (2,1) island before the minor disruption. - Thereafter it is much smaller.
We can tentatively conclude that this can be because of profile changes at the edge.
It is possible that a large natural (3,1) island exists before the minor disruption, and
that we only obsefve the toroidal sideband afterwards. It 15 also possible that both
before and after the minor disruption the (3,1) island is due to toroidal coupling. In
such a case the profile change can be the reason for the island size changes. We,

however, did not find pure toroidal sideband islands of that size {or the profiles

used.
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8.11 Conclusions
We modelled a sitvation of two toroidally coupled modes in a Tokamak. The effect
of external situations on these modes is of particular interest as it is the first time

that such a study had been undertaken.

The main findings of this model for the specific current density profiles studied,

include:

. Toroidal sidebands can be introduced although no natural island is
present. This was also found by Bateman and Morris [67].

. Island sizes are not affected if the boundary conditions are not changed. If
a current density of a particular helicity is applied at the coil position, it
will only affect that particular mode of the same helicity.

. The (3,1) island is much more sensitive to the boundary conditions.

. When a large natural island is present, the toroidal sideband island will be

of the same size. Toroidicity will not increase the size of such an island.

. Large inverse aspect ratios can give rize to large sideband islands.
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CHAPTER 9

CONCLUSIONS
8.1 General Conclusions

In this thesis cylindrical and toroidal models were developed to study the behaviour
of saturated tearing mode behaviour on Tokamaks. Some of the interesting features
of the cylindrical model that appear to be new include:

. A graph of 2} (BeyBy)| against w giving all possible boundary
1

conditions the plasma can be coupled to. The island width as well as
boundary perturbation can be calculated on every point on this graph

using some A‘(W) criterion.

. The values of both Erl and ]]ml can be calculated for any boundary
1 1
condition.
. The relation of B"'l to toroidal rotational frequency with external coils
1

resembles that of Tokoloshe for a natural shot. From this it follows that

error fields play a role on Tokoloshe even if the external coils are switched
off.

. Broad flat profiles have very large islands in the presence of small external

coil currents.

. A simple model of angular momentum conservation, which couples profile

type to rotational frequency, describes the Tokoloshe situation quite

accurately.



. A comparison of the A’ ecriteria of Rutherford and Reiman. Although
the Rutherford criterion 15 only applicable when the boundary is circular,
it agrees very well with the Reiman criterion (which is valid for perturbed
boundaries) in the case of perturbed boundaries. The eriteria do differ for
circular boundaries because of the difference in their formulation and
because the White et al. [3] o—terms do not appear in the Heiman

erilerion.

The toroidal model enabled us to include two torcidally coupled modes in the
plasma. The effect of external coils as well as plasma rotation on toroidally coupled
modes appears to be new. We also looked at the relation between a natural (3,1)
tearing mode and a toroidally induced one which is of particular interest for

Tokoloshe. The effect of aspect ratio on the findings was also investigated.

Some of the findings are:

. Large inverse aspect ratios can give rize to large sideband islands.

. The toroidally coupled (3,1) mode grows much faster than the (2,1) mode
with the same current density applied at the boundary. Both modes
reduce when the rotational frequency is increased (assuming rigid body
rotation, i.e. modes rotating at the same frequency). However, the (3,1)
mode reduces much more as a percentage of original width. This will
probably also be true for two uncoupled cylindrical modes.

. None of the island widths change if the boundary condition of that mode
is not changed. This can easily be observed in the case when a current
density of only one mode number (ie. (2,1) or (3,1)) is applied to the

boundary. In that case only the one island grows, but the other remains
unchanged.



257

. The problem that Bateman and Morris [67] mention with regard to the
determination of the island width (as was discussed in the introduction to
chapter 7) is overcome by using the boundary conditions as is described in

section 8.3.

. The (3,1) island is toroidally induced in many profiles studied. When the
aspect ratio is changed, the (2,1) island remains unchanged, but the (3,1)

increases with aspect ratio.

. When the natural tearing island is small, the toroidally induced one can
be much larger. However, when the natural tearing island is large, the
toroidally induced one is of the same size. This is contrary to a possible
expectation that the effect of both the natural instability and the coupling

would give an even larger island.

9.2 Shortcomings of the Models

The models have certain shortcomings which include:

. The effect of the axisymmetric current density perturbations used in the
model can influence the results. The inclusion of two possible models {or
8] in the cylindrical case was an effort to determine the effect of this
variable (4&J). The fact that no significant difference was found in the
results is not particularly revealing because of the sirnilarities of the
models. However, it can be argued that the eigenvalue will force any
axisymmetric perturbation to flatten the unperturbed profile to the same
extent, and that this can be the reason for the agreement between the two

models used.
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The fact that only terms of 0(¢) were included in the expansion for J(%)
has as side effect the result that the current density is not single valued
inside the island. The error of 0(¢?) in B.¥J = 0 can be observed in
Figure 6.28. An iteration scheme can possibly be used to eliminate this

problem as was discussed at the end of section 6.5.4.

The rotational frequency (with external coils) was not included in a fully
satisfactory way since we actually modelled a set of coils rotating with the
plasma, whicli is not the situation on Tokoloshe. Assuming that the
islands will be saturated all the time during the rotation, allows the model
to be applied to Tokoloshe. In the cylindrical case we considered both
in—phase and out—of—phase situations, and in the toroidal case only

in—phase situations. For low {requencies the model also breaks down.

In the toroidal model we used the cylindrical helical magnetic flux
expressions assuming small differences. This had as an effect that the
(2,1) island sizes were not affected which is not fully true as was discussed.

This simplification, however, enables us to get easier iteration for the

system of equations.

In this model we did not allow for overlapping of islands Lecause of the
restriction that the (3,1) mode be small (section 7.8). This is consistent
with the theoretical modelling where non—linear mode coupling has been

ignored (section 3.9).

Recommendations for Future Work

As it was not possible to consider all interesting situations in this thesis, the

following cases seem to0 be of interest in case of future work:
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The consideration of AC coil curfents in conjunction with toroidally

coupled modes.

More complete investigation of the case where the tearing mode is out of

phase with the external coil current direction.

The eflect of profile changes with toroidally coupled modes in the case of

rotation or external coils.

The inclusion of more modes, including secondary modes, in the toroidal

model, and coupling it to the various boundary conditions.

The analytic model of section 6.4.2 provides a relatively direct way of

obtaining analytic estimates for stability and should be persued in the

future.
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APPENDIX A

Term A in equation (3.27) can be written as

SRR
~am | ] g [ [ ] [ ) ]
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APPENDIX B

DERIVING AN ENERGY INTEGRAL IN THE TOROIDAL SYSTEM

In this section we derive the energy integral given by lzzo et al. [4] . We recall equation

(3.32), i.e,,

0oy 720 —2/R, 42 v20) = ﬂf{’:—“’. o+ BY Ay,
I this equation is multiplied with U, we get
Usy 5 72U + Upy V_7(720) = Up, 2/R, S0 920

VR A VP . *

We know, from vector analysis, that

V.(UAYYB — Uv20V)

= V(UA*).B + UA*y(V.B) — V(UV2U).V — UVAU(V.V)

= V(UA*y).B — V(UV2U).V

= UVA™YB + A*4JU.B — UV(V2U).V — V2U(V(VU.V) . (B.2)

In the derivation of equation (B.2) we used the fact that
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But

Ro/royap+ (/R + /R)D

{es
Il

Thus,

JUB = Ro/R(VyAp+B,p)U , /R~ 0(e2)
1

= Ro/Ri(vy A p0)U + § By G

= (Ro/m)? 6t + Rofron, . (B.3)

(from equations (3.34) and (3.14))
This can be substituted into equation (B.2).
We now have
7.(UA*yB — UV2UV)

= UB.IA*Y + Arg(Ro/R)" T4 vy RojR g3, - UB(920).V - 20 (7ULY) |
(B.4)

Neglecting higher order terms, we know that
V2U(VU.V) ~ V2U(VU.YL) .

Substituting V_ = "/R, VUA in VUV, we gel

U

R )
YR, vUAp = G RyR QU SRy SU g
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eliminating the last term in equation (B.4).
Equation (B.4) can now be substituted into equation (B.1). Using
AU o, s
U (2/Ro) §Z 72U ~ 0(¢4) .

and

we gel

VR AVP -
v v+ v s = 20 TR T2 p o4 W.(UA%YB - UPUY)

~ xRy S8 axy (o/Rygl, + UV W(T0) (B.5)
This immediately reduces to
R. .2
UZ U = 7.(Us*B - Uruy) - aryRoyRy
+ 20 o— 0 Ro/R g3 (B.6)
R, \ .

To simplify this equation further we proceed as follows: Let

dP g% #V_ 9P

= gl-:'+ R/R, VUAQ.YP ~ 0(ed) .
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This gives
o = —R/R, VUARTP .
From vector analysis we get
VARV = v{{{%!} ATP 4+ E%—’{vnw)

2
[{EH?] +2R H‘:—“} ATP.

n

Taking the {-component, gives

7.9 A E{Evp = R/R, vuavp.p + 1‘%’- YRAVP.p
H— - 2{] -~

= ~ R, vurp9P + 2V g A vP.
/Ry TUAQ R, ¢

= -g%—fr VRAVP.p.

32

Now, using this in equation (B.6), we get

UHVU = (UAYYB - UTUY) - Aty(Ro/)’ 2

UR?

+ vorn O -5 _AvyRor g

We also know from B = R':'j'li VyAp ~ 0(c)

(B.7)

(B.8)
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and from
A* ~ 0(e0) and 7~ 0(e) that n(A*y)*~ 0(ed) .
The resulting equation is

vd v = v(uatyB-UTTY) - ary(torr)’ 8¢

UR? JoP

Taking the integral of equation (B.9) gives
0 Rypy2 0
f Uz VUdy = fV.(UA*wB —Uv2UV) — A*y(/R) 3%

+ 9.9 A %2 7P - %2) dy (B.10)

with dy = dV .
toroidal
We can now proceed to analyse each term in equation (B.10). Thus

[ v.(UA*yB - UTIUV)dy = [ (UA*¢B — U2UV)dSyor

= 0 because U(a) = 0.
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1 UR?
-f (R, VP AdA), = 0 because U(a) = 0,

using
[ ARV = - [FadA
The right hand side of equation (B.10) can also be simplified:
fudwvay = [funflg
= fueaa- 180 ay

= - [ Gy = -4 [ Fou)ay,

using

J TV = [ w(19).dA - [ prryav.
and (VU)?2 = VU.VU.

We also have
2 2
Sarufor) fay = [ vRoravg) Py

G Fomayan~ [ o 2R mavy) oy
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Finally,
2
f % .:R-u /R?Vy).dA = 0 because y = constant on the boundary.

Thus

[ avuBom)' Ray = - f vgg.[ﬂgmi y) dy
=~ [ & Comvw dr- [ vy Rz G (G
= —4 [ &R (vy)’ ay
The final energy integral is

LA [[Rﬁfn wj’+{wj’-2p] dy = 0. (B.11)
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APPENDIX C

THE COEFFICIENTS FOR ¢ AND U

We define 9 and U as follows:

b = %2 (amnez’(mO—nzp) + a:mei(mﬂ-mp))

mn

U = % 2 (bmnei(m0~n<p) + b;nevl(m0~n(p)) .

o

Let

dmn = @mwmn + %000, ban = bnn + Yo -

Thus

mn

P = 2 {amn cos (mB-ng) — fuy sin (m0-nyp))

U = 2 (bnn cos (ml-np) — ynn sin (mdnyp)) .

mn

We know from the equations that

¥(6,0) = ¥-0-9))
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and

U(0,9) = -U(-0-¢)
Now
w0,0) — W-0,-0) =

z (C!..m C0S§ (mo—n(P) - ﬁmn sin (m0~n<p))

— Gmn €08 (mO-ny) — fun sin (m0-ny)

= 2 z —fnn sin (m-ny) .

This implies that fun = 0 for all m,n.
In the same way we can show that &y, = 0 for all m,n.

From the symmetry it is clear that

® —m

2 Qpy €08 (MO-ny) = 2 @y €08 (MO-nyp)
mn mun
-~ ®
giving
Omn = Qg

In the same way we can get

Ton = ~Yopy -
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Now
[14]
Y = 2 Omn €08 (M O-1yp)
and
1))
U = Yun Si0 (MO-ng) .
%

U
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APPENDIX D
FOURIER ANALYZING THE REDUCED MHD EQUATIONS

When 920 and A*yp are substituted into equations (3.75) and (3.76), (using

equations (3.74) and (3.69), it is possible to see from inspection that

U(a,(p) = _U(‘ﬂ)‘w)
W0p) = Y(-0,-v) .

We now choose

b = zamnei(mﬂ—nw)

mn

U = Zibmnei(mo'n‘p)

mn

where a Fourier expansion is done in 0 and ¢ and the r—derivatives will be

discretized later on.

Substituting this in equation (3.76) gives

D ( imann ibia = E ag, dkby) el(MHRE(n+0)¢)

mnkl

* 2(‘(“ig)’bkl + "%aﬂl + naf + (k)2 L ay
k1

— " /h cos 0 af, + €/h Lsin 0(ik) a)eK0=t0) _ g



280

or
2 (—hma b, + 2kal b [(m+k)0 — (n+&) i)
T MannOy) + T K g, k1) €OS 14
mnkl
n ’ 1 k2 2
+ E(EZbH + 7Jray + nay " /1t nan
k1
~ /n cos 0ay) cos (k0 — bp)
+ 2(— €/h M/ k sin 0 ag) sin (k0—£p) = O .
k1
Let
A = -Dmagdiy + (") kay, b
- _Fma""" kl +( /[) 8pn Dkl
— i ’ 1 k2 € ’
B = elbu+ (7/r) aj) + may; — 3 na—n("/h) cos 0 ag
C = —%h("r)ksin §ay
to give

2 A cos [(m+k)0— (n+8)y|

mnkl

+ E[B cos (k@ — £p) + Csin (k0 —tp)} = 0 .
k1
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If the same procedure is followed for equation (3.75), we get

2 {A cos [(m+k)0— (n+8y] + D sin [(m+k)0 — (n+&)¢]}
mnkl

+ Y {B cos (ko~ty) + Esin (kf~£p)} + C = 0

k1
with
A= %ﬁ m %5 5in0 by, by + %% mk ¢0s0 sind by, by
— £k $in0 bun bj — 25 £25in0 by, by
+ 5 2 sinfcosd b’ by, —£5in0 by, by + £y k2sinf by, by
+ 2£6inf by, by, + 2 sin0 b, bl — 25 k2 sind by by,
_121_§ £sindb, b, + 2-12—2 sind cosf b, b, + %5% mk cosd sind b
+ ﬁ-%%, mk sinf a,, ay, —ﬁ—g% mk sinfa, a
ﬁ—g% mk cosf sinfa a2, + h—-,—smO A, ag|
~ 5121—%3 sinfcosfa/ ap — ﬁ—%—;—? k?sinfa,  a,,
B — . €252

= -—h—3—rlk Sinf)&kl

C = 8231n03—+ cS’é‘ cosoa-a

mn bkl



D=F’

E

. mhlnh'tl|‘_%]mb-nhil+l':mhllh:|-¥lm‘lhihhi1
4 28 10kt b bat + 25 2 @ by buy — & MO baa b,
- £ m cas?0 bug bfy + £ m €080 bay b, — 1y k by b,
b bo + Bokabe by + kB b b
=1 ke by, by + u k3 by, by + g7 ke by, by
— £k cosO by, b, + & ksin20 by, by, — &k cosd b, by
€k sin2f b’ b, — 2 Gb,_. b2t 0b, . bl
+ g & ndl by, by — Ty mocosd by, by - T mocosl by, ki
2 g 2¢l
+ 'F!' mk? cosf h-“ hhl + E‘E‘ mﬂ Eﬂlﬂ h“. h“
—%ﬁlmmnﬂh"bh+§-:Hmh..lﬁ1—%mlmlh
4 1 ki
+ﬁ—rmn.ma:;&E—,;ml’a.nniﬁ%mhh.nm
—Ffﬁ:mnmh..nil+ﬁ:§—:mmﬂl_nli,—%ka§mlil
—%kl;.l:li'%kli;ulkl""rsi:%k“El;.lh

5

1 1
= 'ﬁ‘!hil‘*]ﬁ'hfl +;-§F,Ht‘n1 + %?E:m Pag, .
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[f terms of 0(e*) are neglecied, we finally gel an expression for the momentum

equation {D.2):

2[2 D+E+F |+ A+ B+ C| sin(mbnp = 0,
mn k1
(D.3)
2 )
A = ——Eiin ap,—€S2nayr + 62%nm2anm
3G2 1 S2 1
B = 5 n(mtD) gy + 5 @ a2 a0~ 5 €15 00
3G2 1 ,S? 1
C = —i_ T “(m_l) a‘m-Un + 3 el T n(m~1)2 a'[n-l)n ) edr S na':l,rl’n
m_k n m‘k 7 m‘k 1]
D = T @ byna b — T1 € byonq by + 0 € ban DK1

m-k ’ 2(m-k)k2 k / ’
_(_I'Jl k? e2 bm'k'l‘l'l bkl + _(fj_)_ €2 bm-kln-l bkl _F! e? bm-kln-l b)(l

k \ k3 S? ,
~T € Bnona Bla + T3 €@ bpguna by + 2y (m=k) e2al | a),

S? , €252 S2 ,
= pam—k) €2 ay 10 af) + S2(m—k) ag . af) — Ta(m—k) k22 a0 ag,

28?2 €252 S2

+ m—k) k2e2 - -2
R k) k2e2a_,, Ay — T kK ag g 2p —kelag . ag
52

2 /
+ I3 k3 ¢ 3ndon-l 3k
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3 1 €3 /
%%ﬁ(m"k_l) K by ge-prn Dy = 5 Sp(m—k=1) k by 0y by

Ledy, / / 1 ¢
+ 3T bm-k-lln'l bkl + € bm-k-l’n-l bl):l 912 k bm k-t'n-] bkl

3152 , 1 €352
+ ng-( —k—1) k 3 g1 34 =5 T (M=k=1) K 2p-ppa) 20

6352 7 1 ¢352

/
+3 ank-un- 41~ 377 K ng-pnd 3

L\J(

33 N 3e3 ;
+ Er—(m—k—l) bk D1~ “pp(m—k—1) by 04 bi)
9¢3 k b " 263 =5 k*(m—-k-1) b by
+ 2¢ (m— —l) mk-rn-l (m ) m-k-t'n-l Ykl

5( 5 &3

=y k(m—k—=1) by 0 O =5 K Dpgpna bl — 263kbg 00 bRy

€3 , 1ed, ., 1 S2¢ '
+ 2 7 k3 bm-k-l'n-l bkl + 312 k bm-k-l'n-l bk1 3 ( _k—l) mk-lin-l aﬂl

5263 k 1 7 382 k "
- —rr(m— - ) Ank-lsn- a'kl +¢€ (m_ _l) a‘m-k-l*n-l a’kl

cS 2€352

2
— k2 (m—k—1) a,, .- g+ 37 k3(m—k~1) ay 4 3,0 3y

1 ¢3S,
3Tk kl:nlakl_f3s?ka‘mkl'n-la'kl'l'_'zs k2 a0 -lin- gl

T3 7T X 2n4-vnd &
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1 €3 /
-71; E—g( mk+1) k by yin B + 5 pg(mkt1) K byyenna b

€3
Q b7 st Dt~ € Bhcanna DUy + 3 77 K2 Dyt B

362 , 1 €352 :
-%E—rg—(m—k“) K aggeon- & + 7 =3 (m—k+1) K 2 a1 20

1 €352 1 ¢3§2
— 5 3gerna 2a T 771 K Aggann Bkl

3e3 ’
%i—(m—kﬂ) Bk s - Dkt — Fr(m—k+1) byyina bl

y 2 k
+ 263(m_k+1) bm-kllln-l (k) : ( _k+1) bm “k+i’n-1 b

3 5 63 7 ’ s 1
+ 22 k2 (m—k+1) by geeina i — 5 kK bpgunna bla = 26€ K dgpna bl

1 S2¢

+2_'2k b -k.[)nlbkl+2'_‘jkbm kw[}nlbkl+§ ( _k+l) a'I]]'](‘l’l'l‘l a'll:l

_S_:gf(m—kﬂ) Agpewnd A+ ESAm—k+1) 2 4ipna di)

— 52 -k (m=k+1) ag i 34 + 26—“?& k2 (m—k+1) ag gupaq 2k
-3 r_ﬁ k (m=k+1) a’ 4, pno @k — €S2 Kak 4 apn &4 + %; SZ3ag k4 pn-) 2k
— 577 K2n4pn- 2

In these coefficients, as well as those below, the ¢ has been made explicit. The

equation for the magnetic flux, equation {D.1), can also finally be written as



with

where

3|

mo

286

2D+E,+E_ + A+ B+ C|cos(mbnyp) = 0,
kil
(D.4)
f_, It €m?
Eznbmn + efa-mn + Efamn_?‘rfamn
2 2 1)? 2 f(m+1
e nrbmﬂ’n + ‘5— r{a'l"tlﬂl?n - 26— M f m+1'n _é— —Lrl dmepn

2 ¢? (m-1)? €2 f(m-1
€ nrbm-lm + ‘E_ rf&;l‘,_l,n -5 L—?J— ila'm-lm + 2 —(—T)' 2yn-pn

e2(m—k) ek,
- I &m-kin-) bl,d + T dpkon-t bkl

3 /! 3 /!
— 5 (m—Kk+1) ay 0 biy + 5 @ Kaf a0 by

3 ;.3 y
=g Alm=k=1) ag e bl + 5 € kagy o by

c/arp = ~Bom Oy (m)

= 1/ki(r) (I(r) = —C/le(r))'
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APPENDIX E

ANOTBER WAY OF DERIVING THE EXPRESSION
FOR THE HELICAL FLUX

The expressions for the helical flux can also be derived in another way. Instead of
using the Fourier expansions where the first harmonic is included, ordering of terms
could also have been used. Using the expression for B in the equation for the

magnetic flux, that is equation (4.5), we get

GH G G B =0,

written in another form as

2 TS I

Do the following substitutions:

0 _ oxd _ 0
W = etk -
0 _ Oxd _ 0
@ T Fox T M
where ¥ = mf~nyp is a helical coordinate which can be used in the case of one

mode.

Now we have
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or

oy 0y _ 0y (0 ny _
PE-FGEran =0
The general solution of this differential equation is

Vo= f(v,b’+fr%).

A particular solution is

n
o ’ A
Vo= Y tea .
If this solution is ordered, using the expressions

= {bo+ {I)lcos mn

= ap;+a cosmn,

we get
y n
/ — '
'd)l = a'l

Just as was derived in equation (4.9) for a = 1.
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APPENDIX F

DERIVING THE COIL CURRENT IN TOROIDAL CONFIGURATION

The magnetic field in a toroid is given by
By, = B90(1+EACOS 7)
e = /Ry (athe minor radius)
A= Bp+if2-1
Bo = /(B /2m)

Bi pdp d¢

(, = [ ——— , p="/a[95, p18s] .
L f T a.2 Be
0

The equations for a magnetic ficld line are given by

rdd - Ry dy

By B,
or

B B

dd _ Ry78 _ RyTE

a@ = [_B; = r—Blp—o(].‘}‘fACOSB)
Thus

dd d B,

_ _T
1+5Ac050'ﬁf'q_/R°Hg'



This gives

dy
df {1 —e hocos 0) = R

Mow

j;ﬂdﬂ_.ruﬂ

¢ hcosdf o« f

]
0 q'li'.ﬂ

or

; g |
F—¢ Asin § = g

It can also be writien as

ol

w e g+ dsind, d=qen.
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Now we want a current density of the form

4

f(r,0,¢) §{r—a) §(p—qlf— fsin 0 k).

To calculate [ we proceed in the same way as in the cylindrical case:

Let

;

i

Thus

S rdedo
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— f{wﬁ(r—b)6((p—q0—6sin0—k)rdrd0
= f{wé(r—b)é((p-—g(ﬂ))rdrdO,
[g(o) = q0+6sin0+k=y]
= bf1,(560) (0= T I
from g%dl? = dy .
Now
I, = bfi,(000) 89 gy » §()=6()
= 2, (by), v=y)
W‘P
We can also write
I, = [JgRdrdy
= [138(1-b) 6(p—qf—dsin §—k) Rdrdy
= R[5 (b,0,0) 6(v—g(0) dv
= Rf,(b0p=pg0) .

Now we have {, = 1/b g% Iy o= 1/R I, and the current density can be written

as



] =
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1,0, }/R, (*/b)(a + 6cos 0)) 6 (1-b) 6 (9 —q0— Gsin 0—K) .

It is important that ¥.J = 0. This can be tested:

Let

u =

We thus have

0
W =

_g:[t»
|

to get

¢_

8.1%

81Q>

10 10

| —
SEASY

%%(Ie/n 5 (r—b) & (9 — q0 — 6 sin 0 —k))

+ 1/R§¢(Iz/b (q+ 6cos 0) 6 (1=b) 6 (p—q0— Esin 0—k))

LTy/e 6 (1-b) Gy (5—q0—6sin 0—X)
r=b

+ 1R Yoo (q + 5 cos 0) 6 (+-0) & (6 (0= 8= Ssin 0-1))

ql0— §sin 0 .

ou d
W = —(q+6c050)m
ou _ 9§

Jp — Bu
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