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Abstract

In this thesis, we study the kinematical and dynamical properties of a general space-

time that admits a conformal Killing vector. A 1+1+2 decomposition of the spacetime

is performed using the fluid 4-velocity and a preferred spatial direction in the 3-space.

The Lie derivatives of the 4-velocity vector and the preferred spatial direction vector

are calculated and analyzed. We compare our results with the 1+3 decomposition

of Maartens et al (1986), and find new results in the form of a scalar equation and

constraint equation owing to the further decomposition. This provides new insights

into the behaviour of the acceleration, expansion, shear and vorticity scalars which

are not possible in the 1+3 decomposition. The general energy momentum tensor

for an anisotropic fluid is considered and decomposed using the semi-tetrad covariant

approach. We take the Lie derivative along the conformal Killing vector and apply

to Einstein’s field equations. This makes it possible to generate a set of constraint

equations in the new geometrical variables. All the geometrical and thermodynamical

quantities are written in terms of the 1+1+2 decomposition variables. This is a new

result. We also find a system of equations that must be satisfied by the thermodynam-

ical variables when a conformal symmetry exists applied to the perfect fluid case. We

show that the conformal factor satisfies a damped wave equation with a potential.
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Chapter 1

Introduction

The theory of general relativity, developed by Einstein, describes the gravitational

interaction between celestial bodies in the universe. In order to analyse the evolution

of these astrophysical objects, such as galaxies and stars, we need to understand the

nature and behaviour of their gravitational fields. This has to be done in the context

of general relativity which requires Riemannian geometry. Comprehensive reviews on

basic principles of general relativity can be found in Foster and Nightingale (1994),

Narlikar (2002) and Stephani (2003).

In general relativity, the Einstein field equations relate matter to curvature and

are represented by a system of nonlinear partial di↵erential equations. Determining

explicit solutions to the Einstein field equations, which are in general hard to solve, is

necessary for astrophysical and cosmological applications. The most well known solu-

tions of the Einstein field equations are the Schwarzschild exterior and interior solu-

tions (Schwarzschild 1916a, 1916b) as well as the charged Reissner-Nordstrom solution

(Nordstrom 1918, Reissner 1916). The exterior Schwarzschild solution is a spherically

symmetric, static and vacuum solution. The interior Schwarzschild solution models

the gravitational field when the energy density is constant. The Reissner-Nordstrom

metric is a more general solution and describes the exterior spacetime of a spherical,
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non-rotating charged body.

Many methods exist to find exact solutions to the Einstein equations as detailed

in Stephani et al (2009). These include the coordinate approach where a metric is

specified, numerical methods, symmetry methods and tetrad formalisms. Examples of

tetrad formalisms are the complex null tetrad of Newman and Penrose (1962) and the

1+3 covariant approach formally developed by Ehlers (1961) and Ellis (1971). The

1+3 covariant approach involves a full tetrad approach as well as a partial ‘covariant’

approach where only one timelike tetrad vector is chosen. Covariant methods, dating

back to the work of Heckmann and Schucking (1955) and Raychaudhuri (1957), are

advantageous because they describe the physics and geometry of the spacetime by

tensor quantities and relations which remain valid in all coordinate systems. The

1+3 partial frame formalism was built on early cosmological perturbation work by

Hawking (1966), Stewart and Walker (1974), Lyth and Mukherjee (1988) and Ellis

and Bruni (1989), and developed further in covariant approaches by Ellis et al (1990),

Bruni et al (1992) and Dunsby et al (1992). This formalism involves the splitting

of the spacetime through a timelike vector into ‘time’ and ‘space’ where the 3-space

is orthogonal to the timelike vector. Hence, the spacetime geometry and physics are

described by scalars, 3-vectors and 3-tensors. All the important information in the

system is captured in a set of kinematic and thermodynamic 1+3 variables that have

a clear physical and geometrical meaning. A set of evolution and constraint equations,

arising from the Bianchi and Ricci identities, relate the 1+3 variables. A closed system

of equations results when an equation of state is chosen describing the matter. The

1+3 formalism has contributed greatly to the understanding of the physics behind

the cosmic microwave background as shown in Dunsby (1997), Challinor and Lasenby

(1998) and Maartens et al (1999). Examples of spacetimes where this formalism has

generated useful results are dust spacetimes studied by Ellis (1967), locally rotationally

symmetric spacetimes studied by Stewart and Ellis (1968) and Ellis and MacCallum
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(1969), and Bianchi spacetimes studied by Krasinski et al (2003) and Bianchi (2001)

(which is a republication of the original paper from 1889). We refer the reader to Ellis

(2009) for a comprehensive review of the 1+3 formalism.

If we consider spacetimes that admit less symmetry, the resulting 1+3 equations are

tensorial partial di↵erential equations that are di�cult to work with as in the case of

inhomogeneous spacetimes. Hence a natural extension to the 1+3 covariant approach

is the 1+1+2 covariant approach formally developed by Clarkson and Barrett (2003).

A 1+1+2 decomposition of the spacetime is performed using the fluid 4-velocity and

a preferred spatial direction in the 3-space. This semi-tetrad formalism is optimized

for problems which have spherical symmetry, including the Schwarzschild solution and

many classes of Bianchi models. It was first introduced by Greenberg (1970) and

developed further by Tsamparlis and Mason (1983), van Elst (1996) and van Elst and

Ellis (1996). The formalism was mainly used in the context of symmetric solutions of

the Einstein field equations as shown in the works of Mason and Tsamparlis (1985),

van Elst and Ellis (1996) and Zafiris (1997). In recent times, the 1+1+2 formalism has

generated useful results in the analysis of: linear perturbations of the Schwarzschild

spacetime studied by Clarkson and Barrett (2003); locally rotationally symmetric class

II spacetimes investigated by Betschart and Clarkson (2004) in general relativity and

Nzioki et al (2010) in f(R) gravity; gravitational lensing studied by de Swardt et al

(2010) and general locally rotationally symmetric spacetimes investigated by Singh et

al (2017). We refer the reader to Clarkson (2007) for a comprehensive review of the

1+1+2 formalism.

An alternative method of determining solutions to Einstein’s field equations is to

assume the spacetime admits symmetry, e.g. a conformal symmetry. Such an assump-

tion simplifies the field equations and makes them easier to integrate. Notably the

Schwarzschild and Robertson-Walker models are spacetimes possessing high symme-
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try. Imposing conformal symmetry on the spacetime manifold means the manifold is

invariant under the action of a group of conformal motions. Conformal symmetry is

a widely researched area and has many applications in relativistic astrophysics. Dat-

ing back to the 1980’s, Herrera et al (1984) and Herrera and Ponce de León (1985)

used conformal motions in modeling an anisotropic relativistic sphere. Spherically

symmetric cosmological models with vanishing shear admitting a conformal Killing

vector were studied by Dyer et al (1987) and Maharaj et al (1991). Also in the con-

text of spherically symmetric spacetimes in conformal geometry, the analysis of the

kinematical and dynamical quantities was performed in many papers by Coley and

Tupper (1990a, 1990b, 1990c, 1994). Kramer (1990) determined rigidly rotating or

static perfect fluid solutions admitting conformal motion. Castejon-Amenedo and Co-

ley (1992) and Hansraj et al (2005) considered applications of conformal symmetries in

conformally related spacetimes. Conformal Killing vectors have been analyzed in the

following spacetimes: Minkowski spacetime studied by Choquet-Bruhat et al (1977);

Robertson-Walker spacetimes studied by Maartens and Maharaj (1986); pp-wave space-

times studied by Maartens and Maharaj (1991) and extended by Keane and Tupper

(2004) and static spherically symmetry spacetimes by Maharaj et al (1995). Recent

developments were made in static spherically symmetric spacetimes by Manjonjo et

al (2018), in shear-free spherically symmetric spacetimes by Moopanar and Maharaj

(2013), in general spherically symmetric spacetimes by Moopanar and Maharaj (2010)

and also, locally rotationally symmetric spacetimes studied by Singh et al (2018) us-

ing the 1+1+2 formalism. Clearly, considering conformal symmetry creates a huge

advantage in analyzing geometrical properties of spacetimes.

In this thesis, we follow the work of Maartens et al (1986) who studied the kine-

matical and dynamical properties of conformal Killing vectors in anisotropic fluids.

We attempt to write the results of Maartens et al (1986) completely in terms of the

1+1+2 formalism variables and perform a detailed analysis by considering a general
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spacetime that admits a conformal Killing vector.

A detailed outline of the thesis is as follows: In Chapter 2 we briefly outline concepts

relating to curvature in general relativity necessary for this thesis. Chapter 3 contains

a review of the 1+3 covariant approach which splits the spacetime using a timelike

vector. Important derivatives and geometrical and thermodynamical variables are

defined. The Weyl tensor and energy momentum tensor are decomposed and the

evolution, propagation and constraint equations derived from the field equations are

written down. In Chapter 4, by way of extension of the 1+3 covariant approach,

we summarize the important equations pertaining to the 1+1+2 covariant approach.

In this formalism, the spacetime is split further through a preferred spatial vector.

The 1+3 kinematical and Weyl quantities are decomposed and important derivatives

are specified. The evolution, propagation and constraint equations are written down

completely in the 1+1+2 variables and analyzed. Chapter 5 is where we write the

results of Maartens et al (1986) completely in terms of the 1+1+2 variables. We

consider an arbitrary spacetime that admits a conformal Killing vector and consider

the Lie derivatives of important quantities. A physical and geometrical analysis of

the kinematical quantities is performed. In Chapter 6, we consider the dynamics

of spacetime. We write down the Lie derivative of the Einstein field equations and

expand it further using the 1+1+2 formalism. An analysis of the resulting equations is

performed. In Chapter 7, we apply the resulting equations from Chapter 6 to a perfect

fluid spacetime and determine the physical significance of our findings. In Chapter 8,

we review the results obtained.
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Chapter 2

Riemann curvature

We devote this brief chapter to outlining concepts relating to curvature in general rel-

ativity necessary for this thesis. We first introduce the concept of a manifold. Then

we define the connection coe�cients, the Riemann tensor, the Ricci tensor, the Ricci

scalar and the Einstein tensor along with properties associated with them. For further

reading, comprehensive reviews on the basic principles of general relativity and di↵er-

ential geometry can be found in Hawking and Ellis (1975), Wald (1984) and Straumann

(2004).

In general relativity, spacetimeM is taken to be a 4-dimensional pseudo-Riemannian

manifold. Locally a pseudo-Riemannian space is similar to Euclidean space. Hence we

can always find coordinate patches (subsets of the manifold) where local neighbour-

hoods of a pseudo-Riemannian space can be mapped to Euclidean space. However, we

cannot perform this mapping globally. The manifold M is endowed with a symmetric,

nonsingular metric tensor field g of signature (– +++). A metric tensor is a bilinear

map that assigns a real number to pairs of tangent vectors at each tangent space of

the manifold. The properties of being symmetric and nondegenerate are necessary for

a physically acceptable field. The points in M are labelled using the real coordinates

(xa) = (x0
, x

1
, x

2
, x

3) where x0 is timelike and x
1
, x

2
, x

3 are spacelike coordinates. Note
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that x0 = ct where c is the speed of light in vacuum. We use units in which c is unity.

The line element is denoted by

ds
2 = gabdx

a
dx

b
, (2.1)

which defines the invariant distance between neighbouring points of a curve in the

manifold. The connection � is defined in terms of the metric tensor field g . The

coe�cients of the metric connection � are given by

�a
bc =

1

2
g
ad (gcd,b + gdb,c � gbc,d) , (2.2)

which are also known as the Christo↵el symbols of the second kind. The �’s are

symmetric in their lower indices. The commas denote partial di↵erentiation.

The Riemann curvature tensor R is a (1, 3) tensor field given by

R
a
bcd = �

a
bd,c � �

a
bc,d + �

a
ec�

e
bd � �

a
ed�

e
bc, (2.3)

which represents the curvature of the spacetime manifold. This tensor possesses the

following symmetry properties

Rabcd = �Rbacd, (2.4a)

Rabcd = �Rabdc, (2.4b)

Rabcd = Rcdab, (2.4c)

Rabcd +Racdb +Radbc = 0. (2.4d)

In addition we have

R
a
acd = 0, (2.5)

and

r[eRab]cd = 0, (2.6)
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which is the Bianchi identity. The derivative re represents covariant di↵erentiation

and square brackets on indices represents skew-symmetrization. Upon contraction of

the Riemann tensor (2.3), in the first and third indices, we obtain the Ricci tensor

given by

Rab = R
c
acb

= �d
ab,d � �

d
ad,b + �

e
ab�

d
ed � �

e
ad�

d
eb, (2.7)

which is symmetric. Contracting the Ricci tensor (2.7) results in the Ricci scalar as

follows

R = g
ab
Rab = R

a
a. (2.8)

Any given vector field v
a defined on a manifold should obey the Ricci identity

2r[arb]vc = R
d
abcvd. (2.9)

Using the definitions for the Ricci tensor (2.7) and the Ricci scalar (2.8), we can

construct the Einstein tensor G in the form

G
ab = R

ab
�

1

2
Rg

ab
, (2.10)

where G is symmetric and has zero divergence:

rbG
ab = 0. (2.11)

This property is known as the contracted Bianchi identity. Also note that applying a

double contraction to (2.6) results in the twice-contracted Bianchi identity

raR
a
c +rbR

b
c �rcR = 0 , r

a
Gab = 0. (2.12)

The distribution of matter is defined by the energy momentum tensor T . Specific

forms for T are considered in subsequent chapters. The Einstein field equations are

8



given by

G
ab = R

ab
�

1

2
Rg

ab = T
ab
, (2.13)

which arises when the energy momentum tensor is coupled to the Einstein tensor

(2.10). The coupling constant k = 8⇡G
c4

is set to unity. From the twice-contracted

Bianchi identities (2.12), we know that the divergence of the left hand side of (2.13) is

zero, making the divergence of the right hand side zero as well so that

rbG
ab = 0 =) rbT

ab = 0. (2.14)

As a result the matter content is conserved.

The equations presented in this chapter are a brief outline of results that are required

to build a foundation for later work.
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Chapter 3

1+3 formalism

3.1 Introduction

In this chapter, we review the 1+3 covariant approach developed by Ehlers (1961)

and Ellis (1971). This decomposition of the manifold has proved to be useful in our

understanding of spacetime structure, general relativity, and in particular, models in

relativistic astrophysics and cosmology. All important information of the system is

captured in a set of dynamic and kinematic 1+3 variables. A more detailed review

of the formalism can be found in Ellis (2009). The application of the 1+3 covariant

approach to general relativity is reviewed by Stephani et al (2009) in many spacetimes

of physical interest. In particular we mention the application to dust spacetimes by Ellis

(1967), locally rotationally symmetric spacetimes by Stewart and Ellis (1968) and Ellis

and MacCallum (1969), and Bianchi spacetimes by Krasinski et al (2003) and Bianchi

(2001) (which is a republication of the original paper from 1889). The geometrical and

thermodynamical variables and their properties belonging to this formalism are defined

in this chapter. Furthermore, the propagation, evolution and constraint equations for

the 1+3 covariant variables are derived from the field equations and analyzed.
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3.2 Kinematics

The nonintersecting timelike family of worldlines form a congruence in spacetime

(M, g) representing the average motion of matter at each point. These worldlines

are associated with fundamental observers comoving with the cosmological fluid. In

each case, their 4-velocity is

u
a =

dx
a

d⌧
, u

a
ua = �1, (3.1)

where ⌧ is the proper time measured along the worldline of any fundamental observer.

This unique vector field u
a provides a timelike threading for the spacetime and repre-

sents the observers’ congruence. Unique projection tensors are defined in terms of ua

by

U
a
b = �u

a
ub, (3.2)

hab = gab + uaub, (3.3)

where (3.2) projects parallel to u
a and (3.3) projects onto the rest space of an observer

moving with 4-velocity u
a. It follows that

U
a
cU

c
b = �U

a
b, U

a
bu

b = u
a
, U

a
a = 1, (3.4)

habu
b = 0, h

a
ch

c
b = h

a
b, h

a
a = 3. (3.5)

The e↵ective volume element in the rest space of the comoving observer is defined as

"abc = ⌘abcdu
d
, where "abc = "[abc] and "abcu

c = 0. (3.6)

Here ⌘abcd is the 4-dimensional volume element
⇣
⌘abcd =

p
|det g|�0[a �1b �2c �3d]

⌘
so

that

⌘abcd = 2u[a"b]cd � 2"ab[cud]. (3.7)
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and ⌘abcd = ⌘[abcd]. The following contractions hold

"abc"
def = 3!hd

[ah
e
bh

f

c],

"abc"
dec = 2hd

[ah
e

b],

"abc"
dbc = 2hd

a,

"abc"
abc = 3!, (3.8)

since ⌘abcd is totally skew-symmetric.

Furthermore, two derivatives which are useful can be defined. The covariant time

derivative, denoted by ‘ · ’, along the observers’ wordlines is defined, using the vector

u
a, as

Ż
a...b

c...d = u
e
reZ

a...b
c...d, (3.9)

for any tensor Za...b
c...d. The fully orthogonally projected covariant spatial derivative,

denoted by ‘D’, is defined using the spatial projection tensor hab, as

DeZ
a...b

c...d = h
r
eh

p
c ...h

q
dh

a
f ...h

b
grrZ

f...g
p...q, (3.10)

with total projection on all the free indices.

Any spacetime 4-vector va may be covariantly split into a scalar V and a 3-vector

V
a as follows

va = �uaV + Va where V
a = h

a
bv

b and V = vbu
b
. (3.11)

Here V is the part of the vector parallel to u
a and V

a lies orthogonal to u
a. Any

projected rank two tensor Sab can be split as

Sab = S<ab> +
1

3
Shab + S[ab]. (3.12)

In the above we have introduced

S = habS
ab
, (3.13)
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which is the spatial trace. S<ab> is the orthogonally projected symmetric trace-free

part of the tensor defined as

S<ab> =

✓
h
c

(ah
d

b) �
1

3
habh

cd

◆
Scd. (3.14)

Lastly S[ab] is given by

S[ab] = "abcS
c

, Sa =
1

2
"abcS

[bc]
, (3.15)

which is the skew part of the rank two tensor that is spatially dual to the spatial vector

S
c. We use angle brackets to represent the projected, symmetric and trace-free tensors.

Additionally, we use the angle brackets to denote orthogonal projections of covariant

time derivatives along u
a as follows

V̇
<a> = h

a
bV̇

b
, Ṡ<ab> =

✓
h
c

(ah
d

b) �
1

3
habh

cd

◆
Ṡcd. (3.16)

Using the above definitions, we obtain the derivatives of the projection tensors and

the 3-volume element

DaUbc = Dahbc = Da"bc = 0, (3.17)

U̇<ab> = ḣ<ab> = "̇<abc> = 0, (3.18)

ḣab = 2u(a u̇b), (3.19)

"̇abc = 3u̇d
"d[abuc]. (3.20)

The covariant spatial divergence and curl for projected vectors and fully projected rank

two tensors are given by

div V = Da
Va,

(div S)
a

= Db
Sab,

curl Va = "abcD
b
V

c
,

curl Sab = "cd<aD
c
S
d
b>, (3.21)
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which generalises these Newtonian operators to curved spacetimes. We have followed

the treatment of Maartens (1997). For a symmetric rank two tensor,

Sab = S(ab) ! curl Sab = curl S<ab>, (3.22)

since curl (khab) = 0 for any k ✏R. We note that for vectors or rank two tensors, div

curl is not in general zero, as in the Euclidean case.

The covariant decomposition of the derivative of a scalar ⌥ is given by

ra⌥ = �ua⌥̇+Da⌥. (3.23)

Before we write down the exact form of the covariant decomposition of the derivatives

of the 4-vector and then of the orthogonally projected rank two tensor, we introduce

the algebraic terms ⇥, !ab, �ab, u̇a. These terms are kinematic quantities arising from

the relative motion of the comoving observers. The trace term is defined as

⇥ = Da
ua, (3.24)

and is the rate of volume expansion scalar of the fluid. The shear tensor

�ab = D<aub>, (3.25)

with properties

�ab = �(ab),

�abu
b = 0,

�
a
a = 0, (3.26)

is the trace-free part of the spatial change of ua. This tensor describes the distortion in

the matter flow, leaving the volume invariant. We can write down the shear magnitude

as

�
2

⌘
1

2
�
ab
�ab � 0,

and �
2 = 0 , �ab = 0. (3.27)
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The anti-symmetric vorticity tensor

!ab = D[aub], (3.28)

describes the rigid rotation of matter relative to a nonrotating frame with properties

!ab = ![ab],

!abu
b = 0. (3.29)

We may also represent the vorticity tensor by the vorticity vector !a where

!
a =

1

2
⌘
abcd

ud!bc =
1

2
"
abc
!bc =

1

2
curl ua

, !ab = "abc!
c
,

!
a
ua = !

a
!ab = 0. (3.30)

The vorticity magnitude is expressed as

!
2 =

1

2
!
a
!a = !

ab
!ab � 0,

and ! = 0 , !a = 0 , !ab = 0. (3.31)

Finally

u̇b = u
c
rcub, (3.32)

is the relativistic 4-acceleration vector that represents the degree to which matter moves

under forces other than gravity and inertia. The acceleration vanishes for a free-falling

observer, in a rest frame, meaning that the observer moves along geodesic curves.

Now we can define the exact form of the covariant decomposition of the derivative

of the 4-vector (3.11) as

ravb = �V

✓
�ua u̇b +

1

3
⇥hab + �ab + !ab

◆
+ ub

✓
1

3
⇥Va + �

c
aVc + !

c
aVc

◆

�ua

⇣
V̇<b> + ub u̇cV

c

⌘
+

1

3
(div V )hab +D<aVb> +

1

2
"abc curl V

c

�ubraV. (3.33)
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Furthermore the covariant decomposition of the derivative of the orthogonally pro-

jected rank two tensor (3.12) is given by

rcSab = �uc

⇣
Ṡ<ab> + 2u(aSb)d u̇

d

⌘
+ 2u(a

✓
1

3
⇥Sb)c + S

d

b) (�cd � "cdew
e)

◆

+
3

5
(div S)

<a
hb>c �

2

3
"dc(a curl S

d

b) +D<aSbc>. (3.34)

Since the variation of velocity with position and time is of interest to us, we define the

covariant derivative of the 4-velocity vector using (3.33) as

raub = �ua u̇b +
1

3
⇥hab + �ab + !ab. (3.35)

We further write down the covariant decomposition of the double derivative of a scalar

⌥:

r
a
r

b⌥ = �⌥̇

✓
1

3
⇥h

ab + �
ab + !

ab

◆

+u
b

✓
1

3
⇥Da⌥+ �

acDc⌥+ !
acDc⌥+ u

a⌥̈�Da ⌥̇

◆

�u
a

h
h
cb (Dc⌥) + u̇

c
u
bDc⌥� ⌥̇u̇b

i
+

1

3

�
D2⌥

�
h
ab

+D<aDb>⌥+
1

2
"
abc curl Dc⌥, (3.36)

which will be of use later.

3.3 The energy momentum tensor

The total energy momentum tensor Tab, introduced in (2.13), can be decomposed,

relative to u
a, by breaking it up into parts, that are parallel and orthogonal to u

a, as

follows

Tab = µuaub + phab + qaub + ua qb + ⇡ab. (3.37)
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The total dynamic quantities are defined as follows: µ represents the e↵ective energy

density relative to u
a, p is the isotropic pressure, qa represents the total energy flux

relative to u
a and lastly ⇡ab is the projected symmetric trace-free anisotropic stress,

such that

µ = Tabu
a
u
b
, (3.38)

p =
1

3
Tabh

ab
, (3.39)

qa = �Tbcu
c
h
b
a, (3.40)

⇡ab = Tcdh
c
<ah

d
b>. (3.41)

For these quantities, the following properties:

qau
a = 0,

qa = q<a>,

⇡abu
b = 0,

⇡ab = ⇡(ab),

⇡
a
a = 0, (3.42)

hold. Additionally we demand that the isentropic speed of sound

c
2
s
= (@p/@µ)

s=constant , (3.43)

obeys

0  c
2
s
 1 , 0  (@p/@µ)

s=constant  1, (3.44)

because this guarantees local stability of matter (lower bound) and causality (upper

bound), respectively.

We note that we may write the field equations (2.13) in its trace-free reverse form

as

Rab = Tab �
1

2
T gab. (3.45)
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Taking the trace of (3.45), we find the expression for the Ricci scalar in terms of the

total thermodynamical quantities as follows

R = �T = µ� 3p. (3.46)

Also using (3.46) in (2.13), along with (3.37), we obtain an expression for the 1+3 split

of the Ricci tensor Rab given by

Rab =
1

2
(µ+ 3p) uaub +

1

2
(µ� p)hab + 2u(a qb) + ⇡ab. (3.47)

3.4 Weyl curvature

The local free gravitational field is represented by the Weyl curvature tensor C given

by

C
ab

cd = R
ab

cd � 2g[a[cR
b]
d] +

1

3
Rg

[a
[cg

b]
d], (3.48)

which describes spacetime curvature that is not directly determined locally by the

matter. The Weyl tensor possesses the same symmetry properties, given by (2.4), as

the Riemann curvature tensor. An additional property is

C
c
acb = 0, (3.49)

which indicates that the Weyl tensor is trace-free on all its indices. Hence we may

think of the Ricci tensor Rab and the Weyl tensor Cabcd as the trace and trace-free part

of the Riemann curvature tensor Rabcd respectively.

The Weyl tensor may be split relative to u
a as

Eab = Cacbdu
c
u
d
, (3.50)

Hab =
1

2
"adeC

de
bcu

c
, (3.51)

18



with properties

E
a
a = 0, Eab = E(ab), Eabu

b = 0, (3.52)

H
a
a = 0, Hab = H(ab), Habu

b = 0, (3.53)

where Eab represents the electric part and Hab represents the magnetic part of Weyl

curvature. The fully covariant 1+ 3 electromagnetic analogy for gravity was developed

and applied by Maartens and Bassett (1998). Thus we can write C as follows

Cabcd = C
E

abcd
+ C

H

abcd
, (3.54)

where

C
E

abcd
=

�
4ga[pgq]bgc[r gs]d � ⌘abpq ⌘cdrs

�
u
p
u
r
E

qs
, (3.55)

C
H

abcd
= 2

�
⌘abpq gc[r gs]d + ga[pgq]b⌘cdrs

�
u
p
u
r
H

qs
. (3.56)

The Bianchi identities (2.6), relating the Ricci tensor to the Weyl tensor, enable grav-

itational action at a distance of the gravitation field (such as tidal forces and gravita-

tional waves) and influence the motion of matter and radiation through the geodesic

deviation equation for timelike and null vectors. This relation can be seen in the works

of Levi-Civita (1927), Szekeres (1965) and Szekeres (1966).

The vanishing of the Weyl tensor generates a conformally flat spacetime. By in-

serting equations (3.54), (3.47) and (3.46) into equation (3.48), we obtain the 1+3

completely decomposed form of the Riemann curvature tensor R as follows

R
ab

cd = R
ab

P cd +R
ab

I cd +R
ab

E cd +R
ab

H cd, (3.57)

R
ab

P cd =
2

3
(µ+ 3p) u[a

u[ch
b]
d] +

2

3
µh

[a
[ch

b]
d],

R
ab

I cd = �2u[a
h
b]
[c qd] � 2u[ch

[a
d] q

b]
� 2u[a

u[c⇡
b]
d] + 2h[a

[c⇡
b]
d],

R
ab

E cd = 4u[a
u[cE

b]
d] + 4h[a

[cE
b]
d],

R
ab

H cd = 2"abeu[cHd]e + 2"cdeu
[a
H

b]e
, (3.58)
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where P represents the perfect fluid part, I represents the imperfect fluid part, E

describes the electric part and H describes the magnetic part, respectively.

3.5 The field equations

We now consider the dynamical quantities in the 1+3 formalism of first order gravity

for an arbitrary spacetime. The arbitrary spacetime may be completely characterised

by the set of geometric quantities

{⇥, u̇a, �ab, !ab, Eab, Hab} , (3.59)

as well as the set of thermodynamic variables

{µ, p, qa, ⇡ab} , (3.60)

provided an equation of state is prescribed which relates the thermodynamic variables.

We can obtain the propagation, evolution and constraint equations for the covariant

variables, given by (3.59) and (3.60), from the field equations (2.13) and its related

integrability conditions. This is discussed in detail in the following subsections.

3.5.1 The Ricci identities

We get the first set of propagation equations from the Ricci identities (2.9) for the

timelike vector field u
a given by

2r[arb]u
c = Rab

c
du

d
, (3.61)

when substituting in from (3.35) and (3.57).

By contracting (3.61) with u
a and separating out the orthogonally projected part

into the trace, skew-symmetric and symmetric trace-free parts respectively, we obtain

three propagation equations as follows:
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1. The expansion propagation equation (the generalized Raychaudhuri (1955) equa-

tion)

⇥̇�Da u̇
a = �

1

3
⇥2 + u̇a u̇

a
� �ab�

ab + 2!a!
a
�

1

2
(µ+ 3p) , (3.62)

describes the nature of attraction of the matter present.

2. The vorticity propagation equation

!̇
<a>

�
1

2
"
abcDb u̇c = �

2

3
⇥!a + �

a
b!

b
. (3.63)

3. The shear propagation equation

�̇
<ab>

�D<a
u̇
b> = �

2

3
⇥�ab + u̇

<a
u̇
b>

� �
<a

c�
b>c

� !
<a
!
b>

�

✓
E

ab
�

1

2
⇡
ab

◆
, (3.64)

indicates how the tidal gravitational fieldEab directly induces shear which changes

the nature of the fluid flow due to equations (3.62) and (3.63) being a↵ected.

Three sets of constraint equations are obtained by first projecting (3.61) orthogo-

nally to get:

1. The divergence equation for the rate of shear is obtained as

0 = (C1)
a = Db�

ab
�

2

3
Da⇥+ "

abc [Db!c + 2u̇b!c] + q
a
, (3.65)

by contracting over indices b and c.

2. The divergence equation for vorticity is obtained as

0 = (C2) = Da!
a
� u̇a!

a
, (3.66)

by multiplying with "abc.
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3. The magnetic constraint is obtained as

0 = (C3)
ab = H

ab + 2 u̇<a
!
b> +D<a

!
b>

� "
cd<aDc�

b>
d, (3.67)

by multiplying with "
abc and taking the projected symmetric trace-free part.

Equation (3.67) characterizes Hab as being constructed from the vorticity ‘dis-

tortion’ and the ‘curl’ of the shear.

3.5.2 The Bianchi identities

From the twice contracted Bianchi identity (2.12), and definitions (3.37) and (3.35),

we can rewrite (2.14) as

µ̇+Da q
a = �⇥ (µ+ p)� 2 u̇a q

a
� �ab⇡

ab
, (3.68)

by projecting parallel to u
a, and

q̇
<a> +Da

p+Db⇡
ab = �

4

3
⇥q

a
� �

a
b q

b
� (µ+ p) u̇a

� u̇b⇡
ab
� "

abc
!b qc, (3.69)

by projecting orthogonal to u
a. Equations (3.68) and (3.69) are known as the energy

conservation and momentum conservation equations, respectively.

By contracting the second Bianchi identity (2.6) once, we obtain another set of

equations. The covariantly decomposed propagation equations are:

1. The gravito-electric Ė propagation equation is given by

Ė
<ab> +

1

2
⇡̇
<ab>

� "
cd<aDcH

b>
d +

1

2
D<a

q
b>

= �
1

2
(µ+ p) �ab

�⇥

✓
E

ab +
1

6
⇡
ab

◆
+ 3�<a

c

✓
E

b>c
�

1

6
⇡
b>c

◆

�u̇
<a

q
b> + "

cd<a


2 u̇cH

b>
d + !c

✓
E

b>
d +

1

2
⇡
b>

d

◆�
. (3.70)
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2. The gravito-magnetic Ḣ propagation equation is given by

Ḣ
ab + "

cd<aDc

✓
E

b>
d �

1

2
⇡
b>

d

◆
=

�⇥H
ab + 3�<a

cH
b>c +

3

2
!
<a

q
b>

�"
cd<a


2 u̇cE

b>
d �

1

2
�
b>

c qd � !cH
b>

d

�
. (3.71)

Equations (3.70) and (3.71) describe gravitational radiation and when combined give

a wave equation for Eab and also for Hab.

From the once-contracted Bianchi identities, we obtain the constraint equations:

1. The gravito-electric (div E) divergence equation is given by

0 = (C4)
a = Db

⇣
E

ab + ⇡
ab

⌘
�

1

3
Da

µ+
1

3
⇥q

a
�

1

2
�
a
b q

b

�3!bH
ab
� "

abc

✓
�bdH

d
c �

3

2
!b qc

◆
, (3.72)

with the spatial gradient of the energy density as source.

2. The gravito-magnetic (div H) divergence equation is given by

0 = (C5)
a = DbH

ab + (µ+ p)!a + 3!b

✓
E

ab
�

1

6
⇡
ab

◆

+ "
abc


1

2
Db qc + �bd

✓
E

d
c +

1

2
⇡
d
c

◆�
, (3.73)

with the fluid velocity as source.

Note that equations (3.65), (3.72) and (3.73) are not ‘real’ constraints due to the

presence of spatial and temporal derivatives of the curvature in thermodynamic terms.
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3.5.3 Evolving the constraints

The following system of equations arises by propagating the constraint equations (3.65),

(3.66), (3.67), (3.72) and (3.73) along u
a:

⇣
Ċ1

⌘<a>

= �⇥ (C1)
a
�

3

2
�
a
b (C1)

b +
1

2
"
abc
!b (C1)c

�
8

3
!
a (C2)� "

abc
�bd (C3)c

d
� 3!b (C3)

ab

� (C4)
a
, (3.74)

⇣
Ċ2

⌘
= �⇥ (C2) , (3.75)

⇣
Ċ3

⌘<ab>

= �⇥ (C3)
ab + 3�<a

c (C3)
b>c

+"cd<a
!c (C3)

b>

d +
1

2
"
cd<a

�
b>

c (C1)d

+
3

2
!
<a (C1)

b>
, (3.76)

⇣
Ċ4

⌘<a>

�
1

2
"
abcDb (C5)c = �

4

3
⇥ (C4)

a +
1

2
�
a
b (C4)

b
�

1

2
"
abc
!b (C4)c

�
1

2
(µ+ p) (C1)

a
�

1

2
⇡
a
b (C1)

b

+2"abcEbd (C3)c
d +

3

2
"
abc

u̇b (C5)c , (3.77)

⇣
Ċ5

⌘<a>

+
1

2
"
abcDb (C4)c = �

4

3
⇥ (C5)

a +
1

2
�
a
b (C5)

b
�

1

2
"
abc
!b (C5)c

�
1

2
"
abc

qb (C1)c �
2

3
q
a (C2)

+2"abcHbd (C3)c
d
�

3

2
"
abc

u̇b (C4)c . (3.78)

More information on the above equations may be found in the treatments of van Elst

(1996) and Maartens (1997). If the constraints are satisfied on the local 3-space surface
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at an initial instant, it follows from the above system of equations that the constraints

vanish identically when propagated along u
a. Therefore, these constraints are satisfied

for all time which verifies that under evolution, the constraint equations are preserved.

Derivation of equations (3.74)–(3.78) involves application of the commutation relations

which are defined in the last subsection of this chapter.

3.5.4 Irrotational flow

According to the Frobenius theorem in general relativity, a vector field �a is hypersur-

face orthogonal if and only if

�[arb�c] = 0. (3.79)

A detailed explanation of the Frobenius theorem in general relativity can be found in

Poisson (2004). If the fundamental vector ua is hypersurface orthogonal then it follows

that

!ab = 0 , 0 = u[arbuc] = u[aDbuc] = u[a!bc]. (3.80)

Thus the timelike congruence u
a is irrotational. From the Frobenius theorem, we de-

duce that the distribution of the 3-vector rest spaces is integrable. These instantaneous

rest spaces are defined at each point by hab and ‘combine’ to make up 3-surfaces in the

spacetime orthogonal to u
a.

The curvature tensor of the 3-spaces, denoted by (3)
Rabcd, is defined by the 3-

dimensional version of the Ricci identity (2.9) given by

2D[aDb]Vc =
(3)

Rabc
d
Vd, (3.81)

for any 3-vector Va on the 3-dimensional manifold. The Gauss equation relates the

intrinsic 3-curvature tensor to the Riemann curvature tensor (2.3) and is given by

(3)
Rabcd = (Rabcd)? �KacKbd +KbcKad, (3.82)
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where ? denotes projection with hab with all indices. Kab is the extrinsic curvature

defined as

Kab = Daub =
1

3
⇥hab + �ab. (3.83)

The 1+3 decomposition of the Riemann tensor (3.57) takes the form

�
R

ab
cd

�
? =

2

3
µh

[a
[ch

b]
d] + 2h[a

[c⇡
b]
d] + 4h[a

[cE
b]
d]. (3.84)

Inserting (3.84) into the Gauss equation (3.82) and contracting, we obtain an expression

for the 3-Ricci tensor, denoted by (3)
Rab, as follows

(3)
Rab =

✓
2

3
µ�

2

9
⇥2

◆
hab �

1

3
⇥!ab + Eab +

1

2
⇡ab + �ac�

c
b. (3.85)

Equation (3.85) can be divided into a trace and trace-free part as follows

(3)
Rab =

(3)
Sab +

1

3
(3)
Rhab, (3.86)

where (3)
Sab represents the trace-free part (which is essentially equivalent to Eab) and

R is the 3-Ricci scalar derived by contracting (3.85), yielding

(3)
R = 2µ�

2

3
⇥2 + 2�2

, (3.87)

which is the generalized Friedmann equation. The trace and trace-free parts of (3)
Rab

are related to each other by the Bianchi identities for 3-surfaces given by

Db
(3)
S
b
a =

1

2
Da

(3)
R, (3.88)

which we note, due to (3.85), is equivalent to the constraint equation (3.72).

Lastly, we mention that the relation between the extrinsic curvature Kab and the

3-Ricci tensor (3.85) is given by the Codacci-Mainardi equation, that is

DaK
a
b �DbK

a
a = Rcdu

d
h
c
b, (3.89)
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which we note is equivalent to the constraint equation (3.65) when the vorticity van-

ishes. For further reading on the Gauss equation and the Codacci-Mainardi equation

in this context we refer to Hawking and Ellis (1975), Berger (2003) and the lecture

notes of Gourgoulhon (2007).

3.6 Commutation relations

In general, the two derivatives - ‘ · ’ and ‘D’ - do not commute which consequently gives

rise to various commutator relations. This is due to the spacetime curvature which is

derived from the Ricci identities for spacetime scalars Z, 3-vectors V
a and rank two

tensors Sab as follows

r[arb]Z = 0, (3.90)

2r[arb]Vc = RabcdV
d
, (3.91)

2r[arb]Scd = �RabecS
e
d �RabedS

e
c. (3.92)

The 3-space commutator relations orthogonal to the congruence of ua are evaluated

by writing out the 3-commutators explicitly and then using the Ricci identities (3.90),

(3.91) and (3.92), the splitting of raub (3.35) and the generalized Gauss equation

(3.82). The relations in this subsection can be found in Betschart (2005).

3.6.1 3-scalar derivatives

For any scalar function Z, the following holds

D[aDb]Z = "abc!
c
Ż , "

abcDbDcZ = 2!a
Ż, (3.93)

Da Ż � (DaZ)
·
? = �u̇a Ż +

✓
1

3
⇥hab + �ab + "abc!

c

◆
Db

Z. (3.94)
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3.6.2 3-vector derivatives

For any 3-vector V a, the following holds

D[aDb]Vc =

✓
Ec[a +

1

2
⇡c[a

◆
�

1

3
⇥�c[a +

1

3
⇥!d

"dc[a + !c![a

+
1

3

✓
µ�

1

3
⇥2

� 3!d!
d

◆
hc[a

�
Vb] +


hc[a

✓
Eb]d +

1

2
⇡b]d

◆

�
1

3
⇥Hc[a�b]d � �c[a�b]d �

1

3
⇥hc[a"b]de!

e

��c[a"b]de!
e + �d[a"b]ce!

e + hc[a!b]!d

⇤
V

d

+"abd!
d
V̇<c>, (3.95)

Da V̇b � (DaVb)
·
? = �u̇a V̇<b> +

✓
1

3
⇥hac + �ac + "acd!

d

◆
(Dc

Vb + V
c
u̇b)

�Ha
d
"dbcV

c
�

1

2
hab qcV

c +
1

2
Va qb. (3.96)

3.6.3 3-tensor derivatives

For any second rank 3-tensor Sab, the following holds

D[aDb]S
cd = 2

✓
E

c
a +

1

2
⇡
c

[a

◆
�

1

3
⇥�(c

[a +
1

3
⇥!e
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S
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⇡b]e

◆
�

1

3
⇥h

(c
[a�b]e � �

(c
[a�b]e

�
1

3
⇥h

(c
[a"b]ef !

f
� �

(c
[a"b]ef !

f
� !

f
"f [a

(c
�b]e

+h
c

[a!b]!e

⇤
S
d)e + "abe!

e
Ṡ
<cd>

, (3.97)
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Da Ṡbc � (DaSbc)
·
? =

✓
1

3
⇥had + �ad + !ad

◆�
u̇bS

d
c + u̇cS

d
b +Dd

Sbc

�

�u̇a

⇣
Ṡbc

⌘

?

�
ha[e qb] � "ebdH

d
a

�
S
e
c

+
�
ha[e qc] � "ecdH

d
a

�
S
e
b. (3.98)

3.7 Summary

In summary, in this chapter we have reviewed the 1+3 covariant approach which splits

the spacetime using the timelike vector u
a. Two important derivatives, namely the

covariant time derivative and the fully orthogonally projected covariant derivative,

and their commutation relations were defined. Furthermore, the geometrical and ther-

modynamical variables and their properties were defined. The covariant derivative of

u
a, the Weyl tensor and the energy momentum tensor were decomposed into their

irreducible parts. Finally, we wrote down the evolution, propagation and constraint

equations derived from the field equations which relate the set of 1+3 variables in the

formalism.
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Chapter 4

1+1+2 formalism

4.1 Introduction

The 1+3 covariant approach has successfully been applied in general relativity. How-

ever, if we consider a spacetime that admits less symmetry, the resulting 1+3 equations

are tensorial partial di↵erential equations that are di�cult to work with. We find that

a further decomposition is useful. In this chapter, we review the 1+1+2 covariant ap-

proach developed by Clarkson and Barrett (2003). This formalism involves a further

splitting of the 1+3 variables such that it isolates a specific spatial direction. Hence

we obtain a set of variables that are advantageous to treat systems with one preferred

spatial direction. For example, if we consider a spherically symmetric spacetime, the

1+1+2 approach is beneficial because we end up with scalar equations which are easier

to work with than tensorial equations. The 1+1+2 formalism has generated useful re-

sults in the analysis of: linear perturbations of the Schwarzschild spacetime studied by

Clarkson and Barrett (2003); locally rotationally symmetric class II spacetimes inves-

tigated by Betschart and Clarkson (2004) in general relativity and Nzioki et al (2010)

in f(R) gravity; gravitational lensing studied by de Swardt et al (2010) and general lo-

cally rotationally symmetric spacetimes investigated by Singh et al (2017). We include
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in this chapter the 1+1+2 kinematical and Weyl quantities and their properties by way

of extension from the 1+3 formalism. The covariant derivatives of special quantities

are given and the constraint, propagation and evolution equations are written down as

per Clarkson (2007).

4.2 Kinematics

In the 1+3 formalism, the timelike unit vector ua is split in the form R⌦ V , where R

is the timeline along u
a and V is the 3-space perpendicular to u

a. We now split the

3-space V , by introducing the unit vector ea orthogonal to u
a such that

eau
a = 0, eae

a = 1, (4.1)

in the 1+1+2 covariant approach. The projection tensor

Na
b
⌘ ha

b
� ea e

b = ga
b + uau

b
� ea e

b
, (4.2)

projects vectors orthogonal to e
a and u

a onto 2-spaces referred to as sheets. It follows

that

e
a
Nab = 0 = u

a
Nab, N

a
a = 2, (4.3)

holds. Any spacetime 3-vector �a can be irreducibly split into �, a scalar component

along e
a and a 2-vector, �a, which is a sheet component orthogonal to e

a as follows

�a = �e
a + �

a where � ⌘ �a e
a and �

a
⌘ N

ab�b ⌘ �
ā
, (4.4)

where the bar on a particular index denotes projection with Nab on that index such

that the vector or tensor lies on the sheet.

Similarly we can split a projected, symmetric, trace-free tensor �ab into scalar,

2-vector and 2-tensor parts as follows

�ab = �<ab> = �

✓
ea eb �

1

2
Nab

◆
+ 2�(a eb) + �ab, (4.5)
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where the components

� ⌘ e
a
e
b�ab = �N

ab�ab, (4.6)

�a ⌘ Na
b
e
c�bc, (4.7)

�ab ⌘ �{ab} =

✓
N(a

c
Nb)

d
�

1

2
NabN

cd

◆
�cd, (4.8)

are defined. The curly brackets denote the part of the tensor that is projected, sym-

metric and trace-free, with respect to e
a. We note also that

h{ab} = 0 = N{ab}, N<ab> = �e<a eb> = Nab �
2

3
hab. (4.9)

The alternating Levi-Civita 2-tensor is defined as

"ab ⌘ "abc e
c = ⌘abcd e

c
u
d
, (4.10)

where "ab is the natural 2-volume element carried by the sheet induced by "abc, the

volume element of the 3-space. From the definition of "ab and Nab, the following

relations:

"ab e
b = 0 = "(ab), (4.11)

"abc = ea"bc � eb"ac + ec"ab, (4.12)

"ab"
cd = Na

c
Nb

d
�Na

d
Nb

c
, (4.13)

"a
c
"bc = Nab, (4.14)

"
ab
"ab = 2 (4.15)

hold.

It follows that any object in the 1+1+2 formalism can be split into scalars, 2-vectors

and projected, symmetric and trace-free 2-tensors where the latter two components are

defined in the sheet. Apart from the ‘time’ (dot) derivative, defined along the timelike
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congruence ua, of any object, we introduce two new derivatives for any object �a...b
c...d:

�̂a...b
c...d

⌘ e
f
rf Ma...b

c...d
, (4.16)

�f�a...b
c...d

⌘ Nf
j
Na

l
...Nb

g
Nh

c
...Ni

dDj�l...g
h...i

, (4.17)

defined by the congruence ea. The hat-derivative ‘ˆ’ is the spatial derivative along the

e
a vector field in the surfaces orthogonal to u

a. Hence we observe the congruence u
a

retains its primary importance as in the 1+3 approach. The delta-derivative ‘� ’ is the

projected spatial derivative onto the 2-sheet, with projection on every free index. Using

the aforementioned definitions, we obtain the following relations for the derivatives of

Nab and the sheet volume element "ab:

Ṅab = 2u(a u̇b) � 2e(a ėb) = 2u(a'b), (4.18)

N̂ab = �2e(aab), (4.19)

�cNab = 0, (4.20)

"̇ab = �2u[a"b]cA
c + 2e[a"b]c'

c
, (4.21)

"̂ab = 2e[a"b]ca
c
, (4.22)

�c"ab = 0, (4.23)

where Aa ⌘ u̇ā, 'a ⌘ ėā and aa ⌘ e
cDc ea = êa.

At this point, we take e
a to be arbitrary and then split the 1+3 kinematical and

Weyl quantities according to the decompositions (4.4) and (4.5), respectively. The

4-acceleration, vorticity, shear and electric and magnetic Weyl tensor quantities are
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split irreducibly as

u̇
a = Ae

a +A
a
, (4.24)

!
a = ⌦ea + ⌦a

, (4.25)

�ab = ⌃

✓
ea eb �

1

2
Nab

◆
+ 2⌃(a eb) + ⌃ab, (4.26)

Eab = E

✓
ea eb �

1

2
Nab

◆
+ 2E(a eb) + Eab, (4.27)

Hab = H

✓
ea eb �

1

2
Nab

◆
+ 2H(a eb) +Hab, (4.28)

respectively. The expression

�
2 =

1

2
�ab�

ab =
3

4
⌃2 + ⌃a⌃

a +
1

2
⌃ab⌃

ab
, (4.29)

defines the form of �, the shear scalar. Using equation (3.33), and the relations found in

Appendix A, we obtain the exact form of the covariant decomposition of the derivative

of the 3-vector (4.4) given by

ra�b = �ua [(�̇� �c'
c) eb + �'b + �̇b̄]� uaub (A�+Ac�

c)

+ub

✓
1

3
⇥+ ⌃

◆
�ea +

✓
1

3
⇥�

1

2
⌃

◆
�a + ⌃a�+ ⌃c

�c ea

+⌃a
c
�c + ⌦"a

c
�c � "a

c⌦c�+ ea"
cd
�c⌦d

⇤

+
1

3
(�̂+ ��� �ca

c + �c�
c) (Nab + ea eb)

+
1

3
(2 �̂� ��� 2�ca

c
� �c�

c)

✓
ea eb �

1

2
Nab

◆

+


�a(a + �(a�+ �̂(ā �

1

2
��(a + �

c
�
& "c(a � ⇣c(a

��
eb)

+�⇣ab + �{a�b} +
1

2
"ab

�
2�& + "

cd
�c�d

�
+ e[a"b]c�

c
&
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�e[a

✓
��ab] + �b]�� �̂b] �

1

2
��b] � ⇣b]c�

c

◆
, (4.30)

where

� ⌘ �a e
a
,

aa ⌘ e
cDc ea = êa,

A ⌘ e
a
u̇a,

& ⌘
1

2
"
ab
�a eb,

⇣ab ⌘ �{a eb}, (4.31)

are 1+1+2 kinematical variables that are fundamental objects in the spacetime, and

their dynamics give us information about the spacetime geometry. Traveling along e
a,

� represents the sheet expansion, aa is the sheet acceleration, A is the radial component

of the acceleration of ua, & represents the vorticity of ea (the twisting of the sheet) and

⇣ab represents the shear of ea (the distortion of the sheet). An analogous relation for

rank two tensors holds by applying (3.34) and using the relations found in Appendix

A.

Using (4.30), we define the full covariant derivative of ea in its irreducible form as

ra eb = �Auaub � ua'b +

✓
1

3
⇥+ ⌃

◆
eaub + (⌃a � "ac⌦

c) ub

+eaab +
1

2
�Nab + & "ab + ⇣ab, (4.32)

from which we obtain the spatial derivative of ea given by

Da eb = eaab +
1

2
�Nab + & "ab + ⇣ab. (4.33)

The other derivative of ea is

ėa = Aua + 'a, (4.34)
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which describes its change along u
a. We write down the 1+1+2 split of the full covari-

ant derivative of ua given by

raub = �ua (Aeb +Ab) + ea eb

✓
1

3
⇥+ ⌃

◆
+ ea (⌃b + "bc⌦

c)

+ (⌃a � "ac⌦
c) eb +Nab

✓
1

3
⇥�

1

2
⌃

◆
+ ⌦"ab + ⌃ab, (4.35)

which implies the useful relation

ûa =

✓
1

3
⇥+ ⌃

◆
ea + ⌃a + "ab⌦

b
, (4.36)

for calculating the Ricci identities.

The spatial covariant derivative of a scalar  is defined as

Da = ̂ea + �a, (4.37)

and for any vector a that lies in the sheet, orthogonal to both u
a and e

a, the di↵erent

parts of its spatial derivative are decomposed as follows

Dab = �ea ebca
c + ea ̂b̄ � eb


1

2
�a + ('"ac + ⇣ac)

c

�
+ �ab. (4.38)

Similarly for a projected, symmetric and trace-free 2-tensor  ab

Dabc = �2ea e(bc)da
d + ea ̂bc � 2e(b


1

2
�c)a + c)

d ('"ad + ⇣ad)

�
+ �abc, (4.39)

where ab = {ab}. Finally, we write down the 1+1+2 double derivative expression for
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the scalar  as

r
a
r

b
 = �̇

⇢
1

3
⇥
�
N

ab + e
a
e
b
�
+ ⌃

✓
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+
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3
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c
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c
�c

o�
N

ab + e
a
e
b
�

+
1

3

n
2 ˆ̂� �̂� 2�cac � �

c
�c

o✓
e
a
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b
�

1

2
N
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◆

+
�
2�(a ̂�

�
⌃(a + ⌦c"

c(a
�
̇� ��

(a
+ 2�c

�
& "

c(a
� ⇣

c(a
� 

e
b)

+̂⇣ab + �
{a
�
b}

+
1

2

�
e
a
"
bc
� e

b
"
ac + e

c
"
ab
�
{(2& ̂+ "mn �

m
�
n
) ec + & �c

+"cm (⌃m
̇� "

mc⌦c ̇+ "
mc
& �c)} . (4.40)

4.3 The energy momentum tensor

We split the anisotropic fluid variables qa and ⇡ab as follows

qa = Qea +Qa, (4.41)

⇡ab = ⇧

✓
ea eb �

1

2
Nab

◆
+ 2⇧(a eb) + ⇧ab, (4.42)
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and hence we can write down the total energy momentum tensor as

Tab = µuaub + phab + 2u(a

⇥
Qeb) +Qb)

⇤
+⇧

✓
ea eb �

1

2
Nab

◆
+ 2⇧(a eb) +⇧ab, (4.43)

in terms of the 1+1+2 variables. The thermodynamic quantities found in (4.43) are

representative of the total combination of standard matter and curvature quantities.

4.4 Derivatives and commutators

In general the dot ‘ ˙ ’, the hat ‘ˆ’ and the delta ‘�a ’ derivatives do not commute. The

commutation relations for any scalar  are

ˆ̇� ˙̂ = �A ̇+

✓
1

3
⇥+ ⌃

◆
̂+

�
⌃a + "ab⌦

b
� 'a

�
�
a
, (4.44)

�a ̇� (�a)
·
? = �Aa ̇+

�
'a + ⌃a � "ab⌦

b
�
̂+

✓
1

3
⇥�

1

2
⌃

◆
�a

+(⌃ab + ⌦"ab) �
b
, (4.45)

�a ̂� (�a)
ˆ
? = �2"ab⌦

b
̇+ aa ̂+

1

2
��a+ (⇣ab + & "ab) �

b
, (4.46)

�[a �b] = "ab (⌦ ̇� '̂) , (4.47)

where we reintroduce the symbol ? which now denotes projection onto the sheet.

From equations (4.44) and (4.47), we note that the 2-sheet will be a genuine 2-surface,

instead of being a collection of tangent planes, if and only if

– The sheet derivatives commute. Specifically the delta derivative will be a true

covariant derivative on the surface. This occurs when & = ⌦ = a
a = 0.

– The commutator of the time and hat derivative does not depend on any compo-

nent. This occurs when Greenberg’s (1970) vector

⌃a + "ab⌦
b
� 'a, (4.48)
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vanishes. Thus the two vector fields ua and e
a are 2-surface forming.

The commutation relations for any 2-vector a are

ˆ̇ā � ˙̂ā = �A ̇ā +

✓
1

3
⇥+ ⌃

◆
̂ā + (⌃b + "bc⌦

c
� 'b) �

b
a

+Aa (⌃b + "bc⌦
c)b +H"ab

b
, (4.49)

�a ̇b � (�ab)
·
? = �Aa ̇b + ('a + ⌃a � "ac⌦

c) ̂b̄

+
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c
'b +Ha"bc

c
, (4.50)
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c
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c
, (4.51)
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+
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�
�
⌃[a

c + ⌦"[a
c
� �
⌃b]d + ⌦"b]d

�

d

+
�
⇣[a

c + & "[a
c
� �
⇣b]d + & "b]d

�

d + "ab (⌦ ̇

c̄
� &̂

c̄) . (4.52)

4.5 The field equations

The irreducible set of geometric variables

{⇥, A, ⌦, ⌃, E , H, �, &, Aa, ⌦a, ⌃a, 'a, aa, Ea, Ha, ⌃ab, ⇣ab, Eab, Hab} , (4.53)

together with the irreducible set of thermodynamic variables

{µ, p, Q, ⇧, Qa, ⇧a, ⇧ab} , (4.54)

make up the key variables in the 1+1+2 formalism of first order gravity for a given

equation of state. The full 1+1+2 equations for the above covariant variables are ob-

tained by applying the 1+1+2 decomposition procedure to the 1+3 equations, outlined

in Appendix A, and also by covariantly splitting the Ricci identities for ea as follows

Rabc ⌘ 2r[arb] ec �Rabcd e
d = 0, (4.55)

where Rabcd is the Riemann curvature tensor (2.3). Splitting this rank three tensor

using u
a and e

a, we obtain the evolution equations (along u
a) and the propagation

equations (along e
a) for 'a, aa, �, &, ⇣ab. In the subsections below, we write down the

full set of 1+1+2 equations for arbitrary spacetime produced and analysed by Clarkson

(2007).
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4.5.1 The evolution equations

We obtain the evolution equations for �, & , ⇣ab from the projection of ua
Rabc as follows:

u
a
N

bc
Rabc:

�̇ =

✓
2

3
⇥� ⌃

◆✓
A�

1

2
�

◆
+ 2&⌦+ �a'

a +A
a ('a � aa)

+ (aa �A
a)
�
⌃a � "ab⌦

b
�
� ⇣

ab⌃ab +Q. (4.56)

u
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&̇ =

✓
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◆
& +

✓
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'
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+
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2
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a
'
b
�
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2
"ca ⇣b

c⌃ab +
1

2
H. (4.57)

u
c
Rc{ab}:

⇣̇{ab} =

✓
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◆
⇣ab + ⌦"c{a ⇣b}

c +

✓
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'b}
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� �
⌃b} � "b}d⌦

d
�
� "c{aHb}

c
. (4.58)

We note that not all information needed to determine the complete 1+1+2 equations

is contained in Rabc. Hence we use the 1+1+2 decomposition of the standard 1+3

equations to obtain the remaining evolution equations given below.

Vorticity evolution equation:

⌦̇ =
1

2
"ab �

a
A

b +A& + ⌦

✓
⌃�

2

3
⇥

◆
+ ⌦a (⌃

a + '
a) . (4.59)
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Shear evolution equation:

⌃̇ab = �{aAb} +A{aAb} � ⌃{a
�
⌃b} + 2'b}

�
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⌃

◆
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c
� Eab +

1

2
⇧ab. (4.60)

4.5.2 Mixture of propagation and evolution equations

In this subsection, we write down a mixture of propagation and evolution equations

either by projecting Rabc (as indicated) or as a further decomposition of the 1+3

equations.

u
a
e
b
Rabc̄ = e

a
u
b
Rabc̄:

'̂ā � ȧā = �

✓
1

2
�+A

◆
'a � & "ab'

b +

✓
1

3
⇥+ ⌃

◆
(Aa � aa)

+

✓
1

2
��A

◆�
⌃a + "ab⌦

b
�
� &

�
"ab⌃

b
� ⌦a

�

+⇣ab
�
�'

b + ⌃b + "
bc⌦c

�
+

1

2
Qa � "abH

b
. (4.61)

u
a
e
b
u
c
Rabc = �e

a
u
b
u
c
Rabc:

Â�
1

3
⇥̇� ⌃̇ = �A

2 +

✓
1

3
⇥+ ⌃

◆2

� 2'a⌃
a + ⌃a⌃

a
� ⌦a⌦

a
� aaA

a

+"ab'
a⌦b +

1

6
(µ+ 3p) + E �

1

2
⇧. (4.62)

Raychaudhuri equation:

Â� ⇥̇ = ��aA
a
� (A+ �)A+ (aa �Aa)A

a +
1

3
⇥2 +

3

2
⌃2

� 2⌦2

+2⌃a⌃
a
� 2⌦a⌦

a + ⌃ab⌃
ab +

1

2
(µ+ 3p) . (4.63)
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Vorticity evolution equation:

⌦̇ā +
1

2
"ab Â

b = �

✓
2

3
⇥+

1

2
⌃

◆
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1

2
"ab

✓
�
b
A�Aa

b
�

1

2
�A

b

◆

+⌦ (⌃a � 'a) +
1

2
&Aa �

1

2
"ab ⇣

bc
Ac + ⌃ab⌦

b
. (4.64)

Shear evolution equation:

⌃̇�
2

3
Â =

1

3
(2A� �)A�

✓
2

3
⇥+

1

2
⌃

◆
⌃�

2

3
⌦2 + ⌃a

✓
2'a

�
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3
⌃a

◆

�
1

3
�aA

a
�

1

3
Aa (2a

a
�A

a) +
1

3
⌦a⌦

a +
1

3
⌃ab⌃

ab
� E

+
1

2
⇧. (4.65)

⌃̇ā �
1

2
Âā =

1

2
�aA+

✓
A�

1

4
�

◆
Aa �

✓
2

3
⇥+

1

2
⌃

◆
⌃a +

1

2
Aaa

�
3

2
⌃'a � ⌦⌦a �

1

2
(& "ab + ⇣ab)A

b + ⌃ab

�
'
b
� ⌃b

�
� Ea

+
1

2
⇧a. (4.66)

Additionally the conservation equations and the magnetic and electric Weyl evolu-

tion equations are listed below.

Energy conservation equation:

µ̇+ Q̂ = �⇥ (µ+ p)� (�+ 2A)Q�
3

2
⌃⇧+ (aa � 2Aa)Q

a

��aQ
a
� 2⌃a⇧

a
� ⌃ab⇧

ab
. (4.67)
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Momentum conservation equation:

Q̇+ p̂+ ⇧̂ = ��a⇧
a
�

✓
3

2
�+A

◆
⇧�

✓
4

3
⇥+ ⌃

◆
Q� (µ+ p)A

+
�
'a � ⌃a + "ab⌦

b
�
Q

a + (2aa �Aa)⇧
a + ⇣ab⇧

ab
. (4.68)

Q̇ā + ⇧̂ā = ��ap+
1

2
�a⇧� �

b⇧ab �Q
�
'a + ⌃a + "ab⌦

b
�
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2
⇧aa

�

✓
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3
⇥�
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2
⌃

◆
Qa + ⌦"abQ

b
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✓
3

2
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◆
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✓
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2
⇧

◆
Aa � ⌃abQ

b
� ⇣ab⇧

b + ⇧ab

�
a
b
�A

b
�
. (4.69)

Electric Weyl evolution equation:

Ė +
1

2
⇧̇+

1

3
Q̂ = "ab �

a
H

b +
1

6
�aQ

a +

✓
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⌃�⇥
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b

◆
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a
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b
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✓
E
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1

2
⇧ab

◆
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⇣
a
c. (4.70)
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Ėā +
1
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b
�
. (4.71)
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45



Magnetic Weyl evolution equation:

Ḣ = �"ab �
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c
�

1

2
"c{a ⇧̂b}

c =

"c{a �
c
Eb} �

1

2
"c{a �

c⇧b} �
3

2
H⌃ab +

1

2
Q"c{a⌃b}

c

+
3

2

✓
E �

1

2
⇧

◆
"c{a ⇣b}

c
� & Eab �

✓
⇥+

3

2
⌃

◆
Hab

�

✓
1

2
�+ 2A

◆
"c{aEb}

c
� ⌦"c{aHb}

c +
1

2
&⇧ab

+
1

4
�"c{a⇧b}

c + ⌃{a
�
3Hb} � "b}cQ

c
�
� 2'{aHb}

+⌦{a

✓
3

2
Qb} � "b}cH

c

◆
+ E{a2"b}c (a

c +A
c)

�⇧{a"b}ca
c + 3⌃c{aHb}

c
� "c{a ⇣

cd

✓
Eb}d �

1

2
⇧b}d

◆
. (4.75)

4.5.3 The propagation equations

Following a similar procedure, the propagation and constraint equations are derived

by either projecting Rabc as shown in this subsection, or from projections of the 1+3

constraint equations in Section 3.5.
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e
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Additionally the divergence equations for the shear, vorticity and the electric and

magnetic Weyl parts are written below.

Shear divergence equation (C1)
a
ea:
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(C1)ā:
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Vorticity divergence equation (C2):

⌦̂ = ��a⌦
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a
. (4.81)
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Electric Weyl Divergence equation (C4)
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Êā +
1

2
⇧̂ā =
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Magnetic Weyl divergence equation (C5)
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(C5)ā:
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4.5.4 Constraint equations

Lastly, we write down the 1+1+2 constraint equations and analyze the system of

equations.

"
ab
u
c
Rabc:

�a⌦
a + "ab �

a⌃b = (2A� �)⌦� 3&⌃+ "ab ⇣
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c +H. (4.87)

N
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b
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1

3
⇥�

1

2
⌃

◆�
⌃a � "ab⌦

b
�
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From (C3)ab e
b and (C1)ā or eauc

Rab̄c:

�a⌃�
2

3
�a⇥+ 2"ab �

b⌦+ 2�b⌃ab =

��
�
⌃a � "ab⌦

b
�
� 2&

�
⌦a � 3"ab⌃

b
�
� 4⌦"abA

b

+2⇣ab⌃
b + 2"ab ⇣

bc⌦c + ⌃aba
b
� 2"abH

b
�Qa. (4.89)

We note a few things:

– Equations (4.88) and (4.89) are not actual constraints in the proper sense because

of the presence of curvature thermodynamic terms that have spatial and temporal

derivatives of the curvature.

– The equation formed when considering (C3)ab e
a
e
b is equivalent to (4.87).

– Equation (4.62) can be written in terms of (4.63) and (4.65) with the combina-

tion: (4.62) = 1
3 (4.63)� (4.65).

– The redundancy in the field equations occurs because some of the information

contained in Rabc is already contained in the 1+3 equations.

– Finally, there are no evolution equations for A, Aa, 'a and no propagation equa-

tion for aa written down. These are determined when we choose a particular

frame.

4.6 Summary

In summary, in this chapter we have presented an overview of the 1+1+2 covariant

approach. In this formalism, the spacetime is further split through a preferred spa-

tial vector e
a which is orthogonal to u

a. The hat and delta derivatives and their

commutation relations were defined. The 1+3 kinematical and Weyl quantities were

51



decomposed irreducibly and the covariant derivatives of ua and e
a were specified in the

context of this formalism. Finally, the evolution, propagation and constraint equations

were written down and analyzed.
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Chapter 5

Conformal symmetry: Kinematics

5.1 Introduction

Conformal symmetry is a current topic that has been widely studied in the context

of general relativity. It possesses the geometric property of preserving the structure

of the null cone by mapping null geodesics to null geodesics. These symmetries are

physically significant as they generate constants of the motion along null geodesics for

massless particles. Conformal symmetry has been applied to cosmology in many di↵er-

ent spacetimes. Recent advances were made in static spherically symmetric spacetimes

by Manjonjo et al (2018), in shear-free spherically symmetric spacetimes by Moopanar

and Maharaj (2013) and in general spherically symmetric spacetimes by Moopanar

and Maharaj (2010). We also mention its application to relativistic stars analyzed by

Kileba Matondo et al (2018). Of particular interest to us is the study of Maartens et

al (1986) where the kinematic and dynamic properties of conformal Killing vectors in

anisotropic fluids were investigated. In this chapter, we extend the Lie derivative kine-

matic results of Maartens et al (1986) completely in terms of the 1+1+2 decomposition

variables for a general spacetime. This process is conducted in order to transparently

bring out the behaviours of certain scalars which was not possible before. We perform
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an analysis of the findings thereafter.

5.2 Kinematics

We begin by defining a conformal Killing vector (CKV) field in general by the relation

LXgab = 2 gab, (5.1)

where LX represents the Lie derivative along the CKV X and  (xc) is the conformal

factor. The set of all CKVs generates a Lie algebra with basis {XI}. The elements of

the basis are related by

[XI ,XJ ] = C
K

IJXK , (5.2)

where C
K

IJ are the structure constants of the group that satisfy the following condi-

tions

C
K

IJ = �C
K

JI [Anti-symmetry], (5.3)

C
K

LMC
M

IJ + C
K

IMC
M

JL + C
K

JMC
M

LI = 0 [Lie identity]. (5.4)

The integrability condition for the existence of the conformal vector (5.1) is

LXC
a
bcd = 0, (5.5)

as given by Hall and Steele (1991).

Now suppose an anisotropic fluid spacetime admits a CKV ⇠ such that

L⇠ gab = 2 gab, (5.6)

in accordance with (5.1). The CKV ⇠
a can be timelike or spacelike. Considering the

fluid 4-velocity u
a, we note

u
a
ua = �1 =) L⇠ (u

a
ua) = 0. (5.7)
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We can define L⇠u
a in general as

L⇠u
a = Au

a +Be
a + C

<a>
, (5.8)

where C<a> is a 2-vector and u
a
C<a> = 0 = e

a
C<a>. Substituting (5.8) into (5.7) and

expanding we get

uaL⇠u
a + u

a
L⇠ua = 0,

ua (Au
a +Be

a + C
<a>) + u

a
L⇠

�
gabu

b
�

= 0,

�A+ u
a
�
gabL⇠u

b + u
b
L⇠ gab

�
= 0,

�A+ ubL⇠u
b + u

a
u
b (2 gab) = 0,

�A+ ub

�
Au

b +Be
b + C

<b>
�
� 2 = 0,

A+ = 0. (5.9)

We substitute (5.9) into the general expression (5.8) to obtain

L⇠u
a = � u

a +Be
a + C

<a>
, and (5.10)

L⇠ua =  ua +Bea + C<a>, (5.11)

similarly. We can define L⇠ e
a in general as

L⇠ e
a = De

a + Eu
a + F

<a>
, (5.12)

where F
<a> is a 2-vector and u

a
F<a> = 0 = e

a
F<a>. Following a similar procedure,

detailed above, we conclude

D + = 0. (5.13)

Substituting (5.13) into the general expression (5.12), we get

L⇠ e
a = � e

a + Eu
a + F

<a>
, and (5.14)

L⇠ ea =  ea + Eua + F<a>, (5.15)
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similarly.

We observe we can always write ⇠a as

⇠
a = ↵u

a + � e
a + ⌫

<a>
, (5.16)

where u
a
⌫<a> = 0 = e

a
⌫<a>, ↵ = �⇠au

a and � = ⇠a e
a. Therefore

L⇠ua = ⇠
b
rbua + ubra ⇠

b

=
�
↵u

b + � e
b + ⌫

<b>
�
rbua + ubra

�
↵u

b + � e
b + ⌫

<b>
�

= ↵u
b
rbua + � e

b (rbua) + ⌫
<b> (rbua)

+ub (ra↵) u
b + ↵ub

�
rau

b
�
+ ub (ra�) e

b

+�ub

�
ra e

b
�
+ ub

�
ra⌫

<b>
�
. (5.17)

Now substituting the definitions of the 1+1+2 covariant derivatives of vector fields ua

(see (4.35)) and ea (see (4.32)) along with ub

�
ra⌫

<b>
�
= �⌫

<b> (raub), we progress

further and obtain

L⇠ua = ↵ (Aea +Aa) + � (Aua + 2"ac⌦
c)

+2⌫<b>

✓
1

2
uaAb � ea"bc⌦

c
� ⌦"ab

◆
+ (↵̇ua � ↵̂ea � �a↵)

=
�
�A+Ab⌫

<b> + ↵̇
�
ua

+
�
↵A� 2⌫<b>

"bc⌦
c
� ↵̂

�
ea

+↵Aa + 2�"ac⌦
c
� 2⌫<b>⌦"ab � �a↵, (5.18)

after some general simplification. Thus we can evaluate the components of L⇠ua in

(5.11) as

 = �A+Ab ⇠
b + ↵̇, (5.19)

B = ↵A� 2⇠b"bc⌦
c
� ↵̂, (5.20)

C<a> = ↵Aa + 2�"ac⌦
c
� 2⇠b⌦"ab � �a↵, (5.21)
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where we have substituted ⇠a in the place of ⌫<a> according to the definition given by

equation (5.16).

We consider two special cases. The first case involves assuming ⇠au
a = 0 = �↵.

Then expressions (5.19), (5.20) and (5.21) reduce to

 = �A+Ab ⇠
b
, (5.22)

B = �2⇠b"bc⌦
c
, (5.23)

C<a> = 2�"ac⌦
c
� 2⇠b⌦"ab. (5.24)

From (5.22) it follows that a CKV ⇠
a orthogonal to u

a is necessarily a Killing vec-

tor if ⇠a is also orthogonal to u̇
a
⌘ (Ae

a +A
a) or if we have a geodesic flow. This

is because ⇠a u̇a
⌘ ⇠a (Ae

a +A
a) = A� +A

a
⇠a = 0 implies either ⇠a ? (Ae

a +A
a) or

(Ae
a +A

a) = 0. The latter case corresponds to a geodesic form. Considering both

(5.23) and (5.24), we have

⇠au
a = 0 =) L⇠u

a = � u
a
� 2⇠b"bc⌦

c
e
a + 2

�
�"

ac⌦c � ⇠b⌦"
ab
�
, (5.25)

and therefore if ⇠aua = 0 then

L⇠u
a = � u

a
, �⇠

b
"bc⌦

c
e
a + �"

ac⌦c � ⇠b⌦"
ab = 0. (5.26)

This result shows that the condition ⇠aua places a restriction on the vorticity vector

!
a
⌘ ⌦ea + ⌦a on the 2-sheet. Furthermore if ⇠aua = 0 and the vorticity ! 6= 0 then

�⇠
b
"bc⌦

c
e
a + �"

ac⌦c � ⇠b⌦"
ab = 0 , ⇠

a
k !

a
⌘ (⌦ea + ⌦a) . (5.27)

If the fluid is irrotational then

L⇠u
a = � u

a
, (5.28)

is satisfied by any CKV orthogonal to u
a. However if the fluid is rotational then (5.28)

is satisfied by a CKV orthogonal to u
a if and only if ⇠a is parallel to (⌦ea + ⌦a).
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The second case involves assuming ⇠a is parallel to u
a then (5.28) is clearly satisfied

so Be
a + C

<a> = 0. Since ⇠a = ↵u
a we have

Bea + C<a> = (↵A� ↵̂) ea + ↵Aa + 2�"ac⌦
c
� �a↵ = 0, (5.29)

=) u̇a ⌘ Aea +Aa =
�↵̂ea + 2�"ac⌦c

� �a↵

↵
, (5.30)

which gives an expression for the acceleration. We note here that contracting (5.30)

with e
a, we get

A = �
↵̂

↵
,

= �\log (↵). (5.31)

This is the scalar version of the equation

u̇
a = �

�
log↵�1

�
,b
h
b
a, (5.32)

presented in the work by Maartens et al (1986). The result (5.31) indicates that the

acceleration scalar depends on the acceleration vector along the preferred direction.

Using the definition of ⇠a in (5.16), we can write down the form for L⇠ ea as follows:

L⇠ ea = ⇠
b (rb ea) + ebra ⇠

b

= ↵u
b
rb ea + � e

b (rb ea) + ⌫
<b> (rb ea)

+ebra(↵)u
b + ↵eb

�
rau

b
�
+ ebra(�)e

b

+� eb
�
ra e

b
�
+ eb

�
ra⌫

<b>
�
, (5.33)

and thereafter substituting the definitions of the 1+1+2 covariant derivatives of vector

fields ua (see (4.35)) and ea (see (4.32)) along with eb

�
ra⌫

<b>
�
= �⌫

<b> (ra eb), we
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progress further and obtain

L⇠ ea =


↵

✓
1

3
⇥+ ⌃

◆
+ ab⌫

<b> + �̂

�
ea

+


�

✓
⌃+

1

3
⇥

◆
+ 'b⌫

<b> + ⌃b⌫
<b>

� "bc⌦
c
⌫
<b>

� �̇

�
ua

+↵'a + �aa � 2& "ab⌫
<b> + (⌃a � "ac⌦

c) + �a�, (5.34)

after some general simplification. Hence we may evaluate the components of L⇠ ea

(5.15) as

 = ↵

✓
1

3
⇥+ ⌃

◆
+ ab ⇠

b + �̂, (5.35)

E = �

✓
⌃+

1

3
⇥

◆
+ 'b ⇠

b + ⌃b ⇠
b
� "bc⌦

c
⇠
b
� �̇, (5.36)

F<a> = ↵'a + �aa � 2& "ab ⇠
b + ⌃a � "ac⌦

c + �a�, (5.37)

where again we have substituted ⇠
a in the place of ⌫<a> according to the definition

given by equation (5.16).

We note identities (5.14) and (5.15) hold whether or not eau
a = 0. However if

eau
a = 0 then

eaL⇠u
a + u

a
L⇠ ea = 0. (5.38)

Expanding (5.38) using (5.10) and (5.15) results in the equation

B � E = 0. (5.39)

Substituting the expressions of B (from (5.20)) and E (from (5.36)) into (5.39), we

obtain the following new constraint equation

↵A� ⇠
b
"bc⌦

c
� ↵̂�


�

✓
⌃+

1

3
⇥

◆
+ 'b ⇠

b + ⌃b ⇠
b
� �̇

�
= 0, (5.40)
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which must be satisfied if the spacetime admits the CKV ⇠
a. We note that equation

(5.40) relates the kinematical quantities A, ⇥, ⌃b and ⌦c. Also, following (5.40) we

can write

L⇠ e
a = � e

a +Bu
a + F

<a>
, and (5.41)

L⇠ ea =  ea +Bua + F<a>, (5.42)

which are the definitions we will use henceforth in our calculations.

5.3 Geometrical and physical application

We consider geometrical and physical applications of equation (5.28). First, we consider

the Lie derivative of hab = ea eb +Nab given by

L⇠hab = 2 (ea eb +Nab) + 2
⇥
Bu(a eb) + u(aC<b>)

⇤
, (5.43)

which is derived by simple calculations using the definition of Nab (see (4.2)) and

equations (5.11) and (5.15). Now since u
a
ea = 0 = u

a
C<a> we have

L⇠u
a = � u

a
, L⇠hab = 2 (ea eb +Nab) = 2 hab. (5.44)

Hence (5.28) is satisfied if and only if ⇠a is a conformal motion of the fluid projection

tensor hab. In an irrotational fluid, the rest spaces orthogonal to u
a at each point form

global spacelike hypersurfaces orthogonal to u
a with hab as its intrinsic metric tensor.

If ⇠a is also orthogonal to u
a then ⇠a lies in these hypersurfaces and when ! = 0, we

know from (5.25) that (5.28) is satisfied. Therefore L⇠hab = 2 (ea eb +Nab) = 2 hab

also holds and ⇠a must be an intrinsic CKV of the hypersurfaces.

Another geometrical interpretation of (5.28) is that ⇠a maps integral curves of ua

into integral curves of ua. When  6= 0, the mapping involves a rescaling of ua by a

change of parameter but the entire family of integral curves of ua is mapped onto itself.
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Therefore ⇠a is said to be a dynamical symmetry of the fluid flow. This means that

new constants of the fluid motion may be generated from existing constants. Suppose

that f is a constant of the fluid motion then

u
a
raf ⌘ ḟ = 0. (5.45)

Then ⇠araf is also a constant of the fluid motion if (5.28) is satisfied as follows

u
a
ra

�
⇠
b
rbf

�
=

⇥
u
a
ra

�
⇠
b
rb

�
� ⇠

b
rb (u

a
ra)

⇤
f + ⇠

b
rb (u

a
raf) , (5.46)

and after simplification, equation (5.46) can be written as

 ḟ + ⇠
a
ra

⇣
ḟ

⌘
= 0. (5.47)

A physical interpretation of (5.28) involves the presence of material curves which

are curves that are made up of the same fluid particles at all times, and therefore

they move with the fluid as the fluid evolves. The integral curves of ⇠a are therefore

material curves in the fluid if (5.28) is satisfied. An important special case of material

curves occurs when ⇠aua = 0. If ! 6= 0 and (5.28) is satisfied then the CKV ⇠
a must be

parallel to (⌦ea + ⌦a). The integral curves of ⇠a are therefore vortex lines that will be

material curves in the fluid. This is due to the symmetry property of the flow and not

due to the physical nature of the fluid. Conversely, if ⇠a is a CKV orthogonal to u
a and

if the integral curves of ⇠a are material curves then if ! 6= 0, they must be vortex lines.

We note �⇠b"bc⌦c
e
a + �"

ac⌦c � ⇠b⌦"ab is orthogonal to both u
a and ⇠a and therefore

it follows from (5.25) that �⇠b"bc⌦c
e
a + �"

ac⌦c � ⇠b⌦"ab = 0. Otherwise, the integral

curves of ⇠a would not move with the fluid. Hence ⇠a must be parallel to (⌦ea + ⌦a).
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5.4 Summary

In this chapter we extended the Lie derivative kinematic results of Maartens et al (1986)

completely in terms of the 1+1+2 decomposition variables for a general spacetime. We

calculated the components of the Lie derivatives of ua and e
a and performed analysis

by considering two special cases. Thereafter geometrical and physical applications

involving the Lie derivative of ua were considered. The new results in this chapter

are given by the scalar equation (5.31) and constraint equation (5.40). The result

(5.31) indicates that the acceleration scalar A (in u̇
a
⌘ Ae

a +A
a) depends on the

acceleration vector along the preferred direction. The result (5.40) shows that the

existence of a CKV constrains the kinematical quantities A, ⇥, ⌃b and ⌦c. These

results arise directly from the 1+1+2 decomposition of spacetime.
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Chapter 6

Conformal symmetry: Dynamics

6.1 Introduction

In this chapter we analyze the dynamics of a general fluid spacetime with conformal

symmetry by considering Einstein’s field equations. We make initial assumptions on

the most general form of the energy momentum tensor, and write the decomposed

form according to the 1+1+2 formalism. Then we find the 1+1+2 decomposed form

of the Lie derivative of Einstein’s field equations. Following a similar procedure of

Maartens et al (1986), we perform contractions using combinations of ua
, e

a and N
ab

and obtain new general results after detailed simplification. As mentioned previously

particular analyses have been performed on selected spacetimes. Recently Singh et al

(2018) investigated conformal symmetries in locally rotationally symmetric spacetimes

using the semi-tetrad covariant formalism, and followed a similar Lie derivative and

contraction approach. However, to our knowledge, such investigations have not been

done in general for an arbitrary spacetime admitting conformal symmetry, using the

1+1+2 formalism. Our new results are therefore applicable to all spacetimes.
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6.2 Dynamics

We begin by considering the most general expression of the energy momentum tensor

in the 1+1+2 formalism given by equation (4.43). Here we assume

Q
a = 0,

⇧a = 0,

⇧ab = 0, (6.1)

which gives a new form for expressions (4.41) and (4.42) as follows

q
a = Qe

a
, (6.2)

⇡
ab = ⇧

✓
e
a
e
b
�

1

2
N

ab

◆
. (6.3)

Thus the energy momentum tensor has the form

Tab = µuaub + p (ea eb +Nab) + 2Qu(a eb) + ⇧

✓
ea eb �

1

2
Nab

◆
. (6.4)

Taking the Lie derivative of Tab in (6.4), we obtain

L⇠Tab = (L⇠µ) uaub + µL⇠ (uaub) + (L⇠ p) ea eb + pL⇠ (ea eb)

+ (L⇠ p)Nab + pL⇠ (Nab) + 2 [L⇠Q] u(a eb) + 2QL⇠

⇥
u(a eb)

⇤

+(L⇠⇧) ea eb + ⇧L⇠ (ea eb)�
1

2
(L⇠⇧)Nab �

1

2
⇧L⇠ (Nab) (6.5)

= [L⇠µ+ 2 ( µ+BQ)] uaub

+ [L⇠ p+ L⇠⇧+ 2BQ+ 2 (p+ ⇧)] ea eb

+


L⇠ p�

1

2
L⇠⇧+ (2p� ⇧)

�
Nab

+2 [L⇠Q+B (µ+ p+ ⇧) + 2 Q] u(a eb)

64



+ [2 (µ+ p)� ⇧] u(aC<b>) + 3⇧e(aF<b>)

+2Q
⇥
u(aF<b>) + e(aC<b>)

⇤
, (6.6)

after using the definitions of L⇠ua (see (5.11)) and L⇠ ea (see (5.42)), and some general

simplification.

The Lie derivative along a CKV ⇠
a of Einstein’s field equations was first evaluated

by Herrera et al (1984). In the 1+3 decomposition we obtain

L⇠Gab = 2⇤ gab � 2 (rarb ) , (6.7)

where ⇤ = g
ab (rarb ). In the 1+1+2 formalism, the expression (6.7) equates to

L⇠Gab = 2
h
�⇥ ̇�  ̈+  ̂ (A+ �) + ˆ̂ � �

c
�c 

i
[Nab � uaub + ea eb]

�2


� ̇

⇢
1

3
⇥ (Nab + ea eb) + ⌃

✓
ea eb �

1

2
Nab

◆
+ 2⌃(a eb)

+⌃ab + ea"bc⌦
c
�eb"ac⌦

c + "ab⌦}+ ub

⇢
1

3
⇥
⇣
 ̂ea + �a 

⌘

+


⌃

✓
ea ec �

1

2
Nac

◆
+ 2⌃(a ec) + ⌃ac

�⇣
 ̂e

c + �
c 

⌘

+
⇥
ea"cd⌦

d
� ec"ad⌦

d + "ac⌦
⇤ ⇣
 ̂e

c + �
c 

⌘
+ ua ̈

�

⇣
ˆ̇ ea + �a  ̇

⌘o
� ua

n
(Ncb + ec eb)

⇣
 ̂e

c + �
c 

⌘

+ub (Aec +Ac)
⇣
 ̂e

c + �
c 

⌘
� ̇ (Aeb +Ab)

o

+
1

3

n
ˆ̂ + � ̂� �

c ac + �
c
�c 

o
(Nab + ea eb)

+
1

3

n
2 ˆ̂ � � ̂� 2�c ac � �

c
�c 

o✓
ea eb �

1

2
Nab

◆

+
n
2�(a  ̂�

�
⌃(a + ⌦

c
"c(a

�
 ̇� ��(a + 2�c 

�
& "c(a � ⇣c(a

�o
eb)
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+ ̂⇣ab + �{a �b}

+
1

2
(ea"bc � eb"ac + ec"ab)

n⇣
2&  ̂+ "mn �

m
�
n 

⌘
e
c + & �

c 

+"cm
⇣
⌃m  ̇� "mc⌦

c  ̇+ "mc & �
c 

⌘oi
, (6.8)

using our definition for the double derivative of a scalar given by (4.40).

According to the Einstein field equations (2.13), we equate (6.6) and (6.7) (the

condensed version of equation (6.8)) to obtain

2⇤ (Nab � uaub + ea eb)� 2 (rarb ) =

[L⇠µ+ 2 ( µ+BQ)] uaub

+ [L⇠ p+ L⇠⇧+ 2BQ+ 2 (p+ ⇧)] ea eb


L⇠ p�

1

2
L⇠⇧+ (2p� ⇧)

�
Nab

+2 [L⇠Q+B (µ+ p+ ⇧) + 2 Q] u(a eb)

+ [2 (µ+ p)� ⇧] u(aC<b>) + 3⇧e(aF<b>)

+2Q
⇥
u(aF<b>) + e(aC<b>)

⇤
. (6.9)

Contracting the left hand side and right hand side of equation (6.9) with u
a
u
b
, u

a
e
b
,

u
a
N

bf
, e

a
e
b
, e

a
N

bf
, N

ab and N
af
N

bk
�

1
2N

ab
N

fk, we derive the following seven con-

straint equations given below

u
a
u
b:

�2⇤ � 2 (rarb ) u
a
u
b = L⇠µ+ 2 ( µ+BQ) , (6.10)

u
a
e
b:

2 (rarb ) u
a
e
b = L⇠Q+ 2 Q+B (µ+ p+ ⇧) , (6.11)
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u
a
N

bf :

2 (rarb ) u
a
N

bf =

✓
µ+ p�

1

2
⇧

◆
C

<f> +QF
<f>

, (6.12)

e
a
e
b:

2⇤ � 2 (rarb ) e
a
e
b = L⇠ p+ L⇠⇧+ 2 (p+ ⇧) + 2BQ, (6.13)

e
a
N

bf :

�2 (rarb ) e
a
N

bf =
3

2
⇧F

<f> +QC
<f>

, (6.14)

N
ab:

2⇤ � (rarb )N
ab = L⇠ p�

1

2
L⇠⇧+ (2p� ⇧) , (6.15)

N
af
N

bk
�

1
2N

ab
N

fk:

rarb 

✓
N

af
N

bk
�

1

2
N

ab
N

fk

◆
= 0. (6.16)

Expanding the left hand side of the above seven constraint equations using the

definition of the double derivative of a scalar (4.40), we obtain

2
⇣
⇥ ̇�

ˆ̂ � � ̂+ �c �
c +Ac �

c 
⌘
= L⇠µ+ 2 ( µ+BQ) , (6.17)

2
⇣
 ̂�A ̇

⌘
= L⇠Q+ 2 Q+B (µ+ p+ ⇧) , (6.18)

✓
µ+ p�

1

2
⇧

◆
C

<f> +QF
<f> = 2

⇣
�
f �  ̇A

f

⌘
, (6.19)

2

✓
⌃�

2

3
⇥

◆
 ̇+ (A+ �)  ̂�  ̈� �c �

c + �c a
c

�
=

L⇠ p+ L⇠⇧+ 2BQ+ 2 (p+ ⇧) , (6.20)
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4 ̇⌃f
� 2�f  ̂+ "c

f⌦c  ̇+ ��
f � �c 

�
& "c

f
� 2⇣c

f
�
=

3

2
⇧F

<f> +QC
<f>

, (6.21)

�

✓
4

3
⇥+ ⌃

◆
 ̇+ (2A+ �)  ̂+ 2 ˆ̂ � 2 ̈� 3�c �

c =

L⇠ p�
1

2
L⇠⇧+ (2p� ⇧) , (6.22)

 ̇⌃fk
�  ̂⇣fk � �

{f
�
k} = 0, (6.23)

using properties of "ab to simplify.

Manipulating equations (6.17), (6.18), (6.20) and (6.22), we can derive expressions

for the Lie derivatives of scalars µ, p,Q and ⇧ along the CKV ⇠
a as follows

L⇠µ = 2
⇣
⇥ ̇�

ˆ̂ � � ̂+ �c �
c +Ac �

c � BQ� µ

⌘
, (6.24)

L⇠ p =
4

3

⇣
� ̂+ ˆ̂ �⇥ ̇

⌘
� 2

⇣
 ̈�A ̂+ p

⌘
�

8

3
�c �

c 

+
2

3
(�c a

c
� BQ) , (6.25)

L⇠Q = 2
⇣
 ̂�  ̇A� Q

⌘
� B (µ+ p+ ⇧) , (6.26)

L⇠⇧ = 2
⇣
⌃ ̇� ⇧

⌘
+

2

3

⇣
� ̂+ �c �

c 
⌘
+

4

3

⇣
�c a

c
�

ˆ̂ � BQ

⌘
. (6.27)

We note that we can write L⇠µ as

L⇠µ = ↵ µ̇+ � µ̂+ ⌫
b
�bµ, (6.28)

and similarly

L⇠ p = ↵ ṗ+ � p̂+ ⌫
b
�bp, (6.29)

L⇠Q = ↵Q̇+ � Q̂+ ⌫
b
�bQ, (6.30)

L⇠⇧ = ↵⇧̇+ � ⇧̂+ ⌫
b
�b⇧. (6.31)
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Also, the energy conservation equation (4.67) now has the form

µ̇+ Q̂ = �⇥ (µ+ p)�Q (�+ 2A)�
3

2
⌃⇧, (6.32)

and the momentum conservation equations given by (4.68) and (4.69) have the form

Q̇+ p̂+ ⇧̂ = �⇧

✓
3

2
�+A

◆
�Q

✓
4

3
⇥+ ⌃

◆
�A (µ+ p) , (6.33)

��ap+
1

2
�a⇧�Q

�
'a + ⌃a + "ab⌦

b
�
�

3

2
⇧aa �

✓
µ+ p�

1

2
⇧

◆
Aa = 0, (6.34)

after using the assumptions in (6.1).

Now equating the expressions (6.24)–(6.27) with (6.28)–(6.31) respectively and ex-

panding further with equations (6.32) and (6.33), we obtain

2
⇣
⇥ ̇�

ˆ̂ � � ̂+ �c �
c +Ac �

c 
⌘
+Q (↵�+ 2↵A� 2B)

+µ (↵⇥� 2 ) + ↵

✓
p⇥+

3

2
⌃⇧+ Q̂

◆
� � µ̂� ⌫

b
�bµ = 0, (6.35)
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⌘
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 ̈+ p

⌘
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�c �

c +
2

3
�c a

c
� ↵ ṗ

+Q

✓
4

3
⇥� + ⌃� �

2

3
B

◆
+A

⇣
⇧� + p� + µ� + 2 ̂

⌘

+�

✓
4

3
 ̂+

3

2
⇧�

◆
+ �

⇣
Q̇+ ⇧̂

⌘
� ⌫

b
�bp = 0, (6.36)
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 ̂�  ̇A
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↵

✓
4

3
⇥⌃

◆
+ � (�+ 2A)� 2 

�
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3

2
�+A

◆
+

3

2
⌃�

�
+ (↵A+ �⇥) (µ+ p) + ↵

⇣
p̂+ ⇧̂

⌘

+� µ̇� ⌫
b
�bQ = 0, (6.37)
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2
⇣
⌃ ̇� ⇧

⌘
+

2

3
�c �

c +
4

3

⇣
�c a

c
�

ˆ̂ 
⌘
� ↵⇧̇

+Q

✓
4

3
⇥� + ⌃� �

4

3
B

◆
+ �

✓
2

3
 ̂+

3

2
⇧�

◆
+A� (µ+ p+ ⇧)

+�
⇣
Q̇+ p̂

⌘
� ⌫

b
�b⇧ = 0, (6.38)

where B = ↵A� 2⇠b"bc⌦c
� ↵̂ according to (5.20). These are constraints that must

be satisfied if the spacetime is to admit the CKV ⇠
a.

6.3 Summary

In this chapter we found the Lie derivative of the 1+1+2 decomposed form of the

total energy momentum tensor. This enabled us to write down the Lie derivative of

Einstein’s field equations. We performed contractions on the resulting equation, ex-

panded and simplified extensively. This process resulted in seven constraint equations.

We note that for an arbitrary fluid spacetime admitting a CKV ⇠
a it is necessary that

eight constraints, given by equations (6.19), (6.21), (6.23), (6.35)–(6.38) and (5.40)

(found in the previous chapter) need to be satisfied. We emphasize that these results

are general as we have not specified the line element. These constraint equations can

be applied to a number of spacetimes in general relativity and physically significant

results can occur. We demonstrate this in the next chapter.
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Chapter 7

Perfect fluids

7.1 Introduction

A perfect fluid spacetime is characterized by its rest frame energy density and isotropic

pressure. This fluid can be thought of as a smoothed out approximation to the matter

in the universe which makes it a more realistic fluid model. Notably perfect fluids

have no shear stresses, viscosity or heat conduction. Such a fluid appears to be a good

description of the observed universe on a large scale. The absence of the aforementioned

quantities is a great advantage as the relativistic equations become simpler and better

analysis can be performed which could lead to physically significant results. This is

shown in the works of Herrera et al (1984), Maartens et al (1986), Ellis and van Elst

(1998) in the 1+3 formalism and Clarkson (2007) in the 1+1+2 formalism. Results for

perfect fluids with a particular form of the CKV are contained in the works of Coley

and Tupper (1990a, 1990b, 1990c, 1994). In this chapter we apply the seven constraint

equations, found in the final part of the previous chapter, to a perfect fluid spacetime

which admits the CKV ⇠
a in (5.16).
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7.2 General equations

Due to the description of a perfect fluid spacetime, the anisotropic fluid variables (4.41)

and (4.42) vanish, i.e.

⇧ = 0,

Q = 0, (7.1)

where the initial assumptions (6.1) still hold. Thus the energy conservation equation

(6.32) now has the form

µ̇ = �⇥ (µ+ p) , (7.2)

and the momentum conservation equations given by (6.33) and (6.34) become

p̂ = �A (µ+ p) , (7.3)

�ap = �Aa (µ+ p) . (7.4)

Substituting (7.1) into the constraint equations (6.35), (6.36), (6.37), (6.38), (6.19),

(6.21) and (6.23) we obtain

2
⇣
⇥ ̇�

ˆ̂ � � ̂+ �c �
c +Ac �

c � µ

⌘
+ ↵⇥ (µ+ p)� � µ̂

�⌫
b
�bµ = 0, (7.5)

4

3

⇣
� ̂+ ˆ̂ �⇥ ̇

⌘
� 2

⇣
 ̈�A ̂+ p

⌘
�

8

3
�c �

c +
2

3
�c a

c
� ↵ ṗ

+�A (µ+ p)� ⌫
b
�bp = 0, (7.6)

2
⇣
 ̂�  ̇A

⌘
� B (µ+ p) = 0, (7.7)

2⌃ ̇+
2

3

⇣
� ̂+ �c �

c 
⌘
+

4

3

⇣
�c a

c
�

ˆ̂ 
⌘
= 0, (7.8)

(µ+ p)C<f>
� 2

⇣
�
f �A

f  ̇
⌘
= 0, (7.9)
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4 ̇⌃f
� 2�f  ̂+ "c

f⌦c  ̇+ ��
f � �

c 
�
& "c

f
� 2⇣c

f
�
= 0, (7.10)

 ̇⌃fk
�  ̂⇣fk � �

{f
�
k} = 0, (7.11)

for the perfect fluid case. These are the constraints, along with (5.40), to be satisfied

if the perfect fluid spacetime is to admit the CKV ⇠
a. We note (7.11) has remained

unchanged.

7.3 Equation of state: p = p (µ)

We now choose an equation of state

p = p (µ) , (7.12)

where the isotropic pressure p is a function of µ, the e↵ective energy density. Con-

sidering the definition of the isentropic speed of sound (3.43), we note that we can

write

µ̂ =
p̂

c2
s

, (7.13)

ṗ = c
2
s
µ̇, (7.14)

�bp = c
2
s
�bµ. (7.15)

Substituting these expressions into equations (7.5) and (7.6) we obtain

2
⇣
⇥ ̇�

ˆ̂ � � ̂+ �c �
c +Ac �

c � µ

⌘
+ ↵⇥ (µ+ p) +

�

c2
s

A (µ+ p)

�⌫
b
�bµ = 0, (7.16)
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⌘
�
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3
�c �

c +
4

3

⇣
� ̂+ ˆ̂ �⇥ ̇

⌘
+

2

3
�c a

c

+↵⇥c
2
s
(µ+ p) + �A (µ+ p)� ⌫

b
c
2
s
�bµ = 0, (7.17)
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after simplification. We have also incorporated the energy and momentum conservation

equations given by (7.2)–(7.4) to arrive at equations (7.16) and (7.17). Manipulating

the above equations results in

�2 ̈�
4

3
ˆ̂ +

4

3
⇥ ̇+ 2A ̂+

2

3
�c a

c +
8

3
Ac �

c � 

✓
�+ 2p+

8

3
µ

◆

+(µ+ p)


↵⇥

✓
4

3
+ c

2
s

◆
+
�
�A+ ⌫

b
Ab

�✓ 4

3c2
s

+ 1

◆�
= 0, (7.18)

which is a damped wave equation in  with a

potential =

✓
�+ 2p+

8

3
µ

◆
. (7.19)

The forcing term is generated by (µ+ p).

7.4 Summary

In this chapter we have found a system of equations that must be satisfied by the

thermodynamical variables for perfect fluids when a conformal symmetry exists. We

have shown that the conformal factor satisfies a damped wave equation with a potential.

This proves that the semi-tetrad decomposition is useful in bringing out physically

significant results that was not possible before.
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Chapter 8

Conclusion

In this thesis we followed the procedure of Maartens et al (1986) who considered

the kinematic and dynamic properties of an anisotropic fluid spacetime admitting a

conformal Killing vector using a 1+3 approach. Our main goal in this thesis was to

perform a semi-tetrad decomposition of a general spacetime that admits a conformal

Killing vector. This process was done in order to further investigate the kinematics

and dynamics of spacetimes admitting conformal symmetry. We found that the 1+1+2

decomposition leads to new results. In Chapter 2 we outlined concepts relating to

curvature in general relativity necessary for this thesis. We first introduced the concept

of a manifold and then defined the connection coe�cients, the Riemann tensor, the

Ricci tensor, the Ricci scalar and the Einstein tensor along with properties associated

with them.

Next we wrote down the 1+3 covariant approach equations in Chapter 3 which

built a foundation for the 1+1+2 equations that followed. The 1+3 equations, found

in Ellis (2009), the fluid 4-velocity unit vector ua and related projection tensors were

introduced. Two important derivatives, namely the covariant time derivative and the

fully orthogonally projected covariant spatial derivative, were defined and decomposed.

Kinematic quantities arising from the relative motion of the comoving observers and
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their properties were specified. Of high relevance to this thesis was writing down

the covariant decomposition of the 4-velocity vector. The total energy momentum

tensor was decomposed relative to u
a and each of the dynamical quantities and their

properties were defined. The Weyl tensor was also split relative to u
a and the electric

and magnetic parts were specified according to Maartens and Bassett (1998). A set

of propagation, evolution and constraint equations arising from the Bianchi and Ricci

identities were generated. Lastly, the commutation relations for the two derivatives

were given explicitly.

In Chapter 4, we extended the 1+3 equations and wrote down the 1+1+2 covariant

approach equations, given by Clarkson and Barrett (2003). The spacetime was split

further using a preferred spatial direction in the 3-space. The unit vector ea, orthog-

onal to u
a, and the related projection tensor were introduced. Two derivatives, their

properties and commutation relations were defined. They were the spatial derivative

along e
a in the surfaces orthogonal to u

a and the projected spatial derivative onto

the 2-sheet. The 1+3 kinematical and Weyl quantities were split irreducibly and new

1+1+2 kinematical variables introduced. The 1+1+2 split of the full covariant deriva-

tives of ua and e
a were defined. We obtained the evolution and propagation equations,

given by Clarkson (2007), by applying the 1+1+2 decomposition procedure to the 1+3

equations, and also by covariantly splitting the Ricci identities for ea.

In Chapter 5 we wrote the kinematic results of Maartens et al (1986) completely

in terms of the 1+1+2 variables. We considered an arbitrary spacetime that admits

a conformal Killing vector (CKV) ⇠a in terms of new vectors. The Lie derivatives of

u
a and e

a were calculated explicitly in terms of the 1+1+2 variables. Our analysis is

consistent with the findings of Maartens et al (1986). However, in the case of assuming

the CKV ⇠
a parallel to ua, we obtained a new scalar version of the acceleration equation
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presented by Maartens et al (1986). The scalar equation is given by

A = �
↵̂

↵
,

= �\log (↵). (8.1)

Furthermore since e
a is orthogonal to u

a, taking the Lie derivative of both quantities

produced a new constraint equation given by

↵A� ⇠
b
"bc⌦

c
� ↵̂�


�

✓
⌃+

1

3
⇥

◆
+ 'b ⇠

b + ⌃b ⇠
b
� �̇

�
= 0, (8.2)

which must be satisfied if the spacetime admits the CKV ⇠
a. Equation (8.2) shows

that the existence of a CKV constrains the kinematical quantities A, ⇥, ⌃b and ⌦c.

We note here that the 1+1+2 decomposition allowed us to yield new results in an area

previously analyzed.

In Chapter 6 we investigated the dynamics of a general spacetime admitting the

CKV ⇠
a. We considered the 1+1+2 decomposed form of the total energy momentum

tensor in general and found the Lie derivative of the total energy momentum tensor.

This enabled us to write down the Lie derivative of Einstein’s field equations. We

performed contractions on the resulting equation, expanded and simplified extensively.

This process resulted in seven more constraint equations given by
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 ̇⌃fk
�  ̂⇣fk � �

{f
�
k} = 0, (8.9)

where B = ↵A� 2⇠b"bc⌦c
� ↵̂. These constraints, and (8.2), must be satisfied if the

spacetime is to admit the CKV ⇠
a.

In Chapter 7, we applied the eight constraint equations above to a perfect fluid

spacetime where the anisotropic stress and heat flux vanish. Thus, we wrote down

the new forms of the energy and momentum conservation equations. This led to the

simplified system
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�
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along with (8.2) which remains unchanged. We then chose the equation of state

p = p (µ) , (8.17)

and applied this relation to equations (8.10) and (8.11). After some simplification,

involving the energy and momentum conservation equations, we arrived at

�2 ̈�
4

3
ˆ̂ +

4

3
⇥ ̇+ 2A ̂+

2

3
�c a

c +
8

3
Ac �

c � 

✓
�+ 2p+

8

3
µ

◆

+(µ+ p)


↵⇥

✓
4

3
+ c

2
s

◆
+
�
�A+ ⌫

b
Ab

�✓ 4

3c2
s

+ 1

◆�
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which is a damped wave equation in  with a

potential =

✓
�+ 2p+

8

3
µ

◆
. (8.19)

The forcing term is generated by (µ+ p).

In conclusion, we note that in performing the 1+1+2 decomposition, we were able

to obtain new results in Chapter 5 applicable to a general spacetime. This further
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proves that the semi-tetrad decomposition is useful in bringing out the behaviour of

certain geometrical and dynamical quantities that was not possible before. We further

stress that the results presented in Chapter 6 are for an arbitrary spacetime so these

constraint equations can be applied to particular metrics. The existence of a conformal

Killing vector has led to new constraint equations on the scalars associated with the

kinematics and dynamics. The properties of specific spacetimes will simplify some

of the equations and could lead to physically important results. We look forward to

extending our research in this area of semi-tetrad decomposition of spacetime with

conformal symmetry to specific spacetimes.
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Appendix A

Key relations to aid decomposition

Given any quantity in the 1+3 formalism, the following relations can be used to aid

decomposition into 1+1+2 variables as given by Clarkson (2007). Chapter 4, in par-

ticular, makes use of these relations to derive certain expressions. Note that 1+3 space

3-vectors, xa, ya and projected, symmetric and trace-free 3-tensors  ab and �ab may

be decomposed as follows

x
a = Xe

a +X
a
, (A.1)

y
a = Y e

a + Y
a
, (A.2)

 ab =  <ab> =  

✓
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2
Nab

◆
+ 2 (a eb) + ab, (A.3)

�ab = �<ab> = �

✓
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1

2
Nab

◆
+ 2�(a eb) + �ab. (A.4)

The following expansions from 1+3 quantities to 1+1+2 variables may be performed
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+

81



⇥
XY(a + Y X(a

⇤
eb) +X{aYb}, (A.7)

 abx
b =

�
X +Xb 

b
�
ea �

1

2
 Xa +X a + abX

b
, (A.8)

⌘cd<ax
c
 b>

d = "cdX
c d

✓
ea eb �

1

2
Nab

◆
+X "c{a b}

c
�X

c
"c{a b}

+

✓
X c

�
3

2
 X

c

◆
"c(a + "cdX

c d

(a

�
eb), (A.9)

 ab 
ab =

3

2
 2 + 2 a 

a + ab 
ab
, (A.10)

 c<a�b>
c =

✓
1

2
 �+

1

3
 c�

c
�

1

3
 cd�

cd

◆✓
ea eb �

1

2
Nab

◆

+


1

2
 �(a +

1

2
� (a + 

c�c(a + �
c c(a

�
eb)

�
1

2
 �ab �

1

2
� ab + {a�b} + c{a�b}

c
, (A.11)

⌘abc 
b
d�

dc = ea"bc 
b
d�

dc +
3

2
"ab

�
� b

� �b
�
. (A.12)

For the 1+3 covariant time dot derivative ‘ ˙ ’ and the fully orthogonally projected

covariant spatial derivative ‘D’ we have
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These relations may be substituted directly into 1+3 equations to aid decomposition.
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