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Abstract 

The present study involves analysis and design optimisation of lattice composite 

structures using symbolic computation. The concept of a homogenised model is used 

to represent heterogeneous composite isogrid structure as a homogeneous structure 

with the stiffness equivalent to the original grid structure. A new homogenisation 

technique is developed and used in the present study_ 

The configuration of a unit ceJl and the geometrical parameters of the ribs of a 

composite isogrid cylinder are optimised subject to a strength criterion in order to 

maximise externally applied loading to provide maximum strength and stiffness of the 

structure as a whole. The effects of tension and torsion on the optimum design are 

investigated. 

Special purpose computation routines are developed using the symbolic computation 

package Mathematica for the calculation of equivalent stiffness of a structure, failure 

analysis and calculation of optimum design parameters. The equivalent stiffness 

homogenisation approach, in conjunction with optimum search routines, is used to 

detennine the optimal values of the design variables. The numerical approach 

employed in the present study was necessitated by the computational inefficiency and 

conventional difficulties of linking the optimiser and the FEM analysis package for 

calculating the stress resultants used in the optimisation process. These drawbacks 

were successfully overcome by developing special purpose symbolic computation 

routines to compute stress resultants directly in the program usmg a new 

homogenisation approach for the model with equivalent stiffness. 

In the design optimisation of cylindrical isogrids the computational efficiency of the 

optimisation algorithm is improved and good accuracy of the results has been 

achieved. The investigation on the basis of failure analysis shows that the difference 

in the value of the maximum load applied to the optimal and non-optimal isogrid 

structure can be quite substantial. emphasising the importance of optimisation for the 

composite isogrid structures. The computational efficiency of optimisation algorithms 

is critical and therefore special purpose symbolic computation routines are developed 

for its improvement. 

A number of optimal design problems for isogrid structures are solved for the case of 

maximum applied load design. 
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Nomenclature 

Equivalent Stiffness Model 

X,Y,z 

Q .. Q, 

N; > Q;o. Si" 

Co-ordinate directions. 

Components of displacement in the x, y, and z directions. 

Components of displacement of a midsurface. 

Rotations of a midsurface about x and y axes. 

Strain components. 

Midsurface ( or membrane) strains. 

Curvatures of a shell. 

Shell resultant forces. 

Shell resultant moments. 

Shell transverse shear forces. 

Axial, transverse shear (in the nonnal direction and 

tangential to a median surface) forces in the ribs. 

Bending, transverse shear (in the plane nannal and 

tangential to a median surface) and torsion moments in the 

ribs. 

Stress components. 

Extensiona! stiffness components. 

Extensional-bending coupling stiffness components. 

Bending stiffness components. 

Transverse shear stiffness. 

Transverse shear strains on a midsurface. 

Resultant thermal forces and moments. 

Non-reduced stiffness of a material. 

Shear correction coefficients. 

Coefficients of thermal expansion. 
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AT Change in temperature from the stress-free state. 

N:. N;". N:'. M:. M;". M~ Shell resultant thermal coefficients. 

Po Mass per unit area. 

P Density of the material. 

P2 Rotary inertia per unit area. 

[N] , [M] , [V] In-plane stress resultant vector, bending moment resultant 

vector and out-of-plane shear resultant vector. 

(&) ,{k) 

[Aj, [B] , [D] , [H] 

d 

J , A,I 

z 

s 

In-plane strain vector and curvature vector. 

Extension, coupling, flexural and transverse shear stiffness 

matrices. 

Longitudinal and shear module. 

Spacing for each set of ribs. 

Torsion constant, area and second moment of inertia of the 

ribs. 

Shear correction factor. 

Poison's ratio and shear modulus. 

Stiffness matrix members. 

Tensile and compressive strength of a composite in the first 

material direction. 

Tensile and compressive strength ofa composite in the 

second material direction. 

Shear strength of a composite. 

Developed Homogenised Model 

a,fJ 

u, v, w 

:x' y' Z· , , 

Curvilinear orthogonal co-ordinates of the points on a 

median surface. 

Outer nonnal to the surface of a shell. 

Components of deformation of the median surface. 

Projections of the vector of load intensity to the directions 

of the unit co-ordinate vectors and the outer normal to a 

median surface of a shell. 
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A, B 

n 

a, 

a 

K 

rp, 

rp 

k(a) 

v, 

p 

lntensities of the distributed moments. 

Coefficients of the first quadratic form for a median 

surface. 

Curvatures of the normal sections of a median surface 

along the co-ordinate lines. 

Torsion of the co-ordinate lines. 

Components of tangential and bending deformation of a 

median surface of a shell . 

Number of the families ribs. 

Area, main central moments of inertia and torsion moment 

of inertia of the rib's cross-section. 

Young's and shear moduli of the ribs. 

Distance between the axes of the ribs that belong to the i­

thfamily. 

Notation in the case when a, = Q 1 . 

Parameters which show the relationship between the 

corresponding stiffness characteristics of the ribs and the 

distance between their axes. 

Notation in the case when K, = Kl . 

Additional bending moments acting in the plane tangential 

to a median surface. 

Angle between the axes a and an axes of the first family 

of ribs. 

Notation in the case when 9'1 = 9'2 . 

Function of rigidity of an elastic constraint. 

Angles of rotation about the normal to a median surface of 

the axes of two adjacent members of two different 

families of ribs. 

Operator that denotes differentiation towards the tangent 

to the axis of a rib, which belongs to the i-th family. 

Linear differential operators. 

Radius of inertia of the rib's cross-section for the case of 
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rh 

X . y . z 
X. , Y.. Z. 

<l> 

R" R, 

r 

Y. 

c 

in-plane bending of a grid plate. 

Angles of rotation of the normal to a median surface ofa 

plate in the planes r=const, Fconst. 

Non-dimensional section radius of inertia of a rib, which 

belongs to the i-th family. 

Load components. 

Surface loading components. 

Resolving function . 

Main radii of curvature of the surface ofa shell. 

Equation of the median surface ofa shell . 

Angle between the normal to a median surface of a 

cylindrical shell and it axis of revolution. 

Radius of a median surface of a cylindrical shelL 

Distributed surface load. 

Components of the vector of unknown functions. 

Vector of loading conditions. 

Components of the square matrix of the stiffness 

properties and geometric characteristics of a shell . 

Rectangular matrices of boundary conditions. 

Rigid body displacement of a shell in the direction of an 

outer normal to the median surface. 

Optimum Search Algorithm 

X 
-, 
X 

S' 
• a 

J 

Vector of design variables. 

Initial vector of design variables. 

Search vector . 

Value that yields the optimal design In the direction 

defined by S. 

Set of constraints. 
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F(X) Objective function. 

gj(X) Active constraints. 

q Iteration number. 

a Scalar move parameter. 

x/. Xt Low and upper side constraints. 

-< j Lagrange multipliers. 

B Positive definite identity matrix. 

<1J Pseudo-objective function . 

Maximum Applied Load Design 

q 

b, h 

w, 

Maximum applied load. 

Tension and torsion components of a load. 

Width and height of a rectangular cross-section of a rib. 

Load scaling factor. 

Critical load. 

Nonnal and shear stresses components. 

Axial force in the rib in the i-th direction. 

Cross-sectional area. 

Shear forces. 
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Main Project Objectives 

The objective of the project is to develop an efficient and inexpensive technique for 

design and analysis of composite lattice structures. The technique must be capable of 

predicting the optimum lattice parameters and cell configuration for the particular 

type ofloadlconstraint combination. 
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1 Introduction 

1.1 Overview 

In this chapter different types of grid structures used in a wide variety of applications, 

primarily in the aerospace and civil engineering fields, are being surveyed. A variety 

techniques of manufacturing of grid structures is also briefly covered. The chapter 

concludes with a review of the methods and techniques used in the analysis of lattice 

structures. 

Structures for different engineering applications mllst satisfy a variety of functional 

parameters and properties depending on their usage. Composite isogrid structures 

(Figure 1.1) provide a great potential to replace conventional metal structures by 

offering a higher strength to weight ratio, flexibility in design, custom tailoring of 

desired properties and the ability to sustain different environments. 

Figure l.llsogrid structure 
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Figure 1.2 Isogrid tanks 

Shells supported by a grid lattice of the stiffeners have been considered as a possible 

replacement to monocoque, skin-stringer, and honeycomb sandwich structures [52], 

[88]. The concept of isogrid represents the lattice of interconnected ribs made from 

continuous very strong, stiff and tough fibres. The ribs that comprise the structure are 

arranged in three families in a way that creates a repetitive pattern of a triangular cells 

(Figure 13). 

Figure 1.3 Isogrid cylindrical structure 

A unidirectional arrangement of the ribs possesses good impact damage tolerance, 

resistance to delamination and crack propagation across the grid. The first generation 

of isogrid structures were metal isogrids, which were essentially the integral 

equilateral triangular stiffening ribs machined onto a metallic skin surface. 

Manufacturing of such metal isogrids was very laborious task and subsequently 

required up to two years of lead time. Besides it was an expensive procedure and 

obtained components came out excessively heavy. Significant reduction of weight and 
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• 

subsequently manufacturing costs was achieved by replacing the aluminium shrouds 

structure with those made of composite materials. 

Composite materials gained their popularity and became widely used in various areas 

such as aerospace industry, civil engineering, sporting goods, etc. relatively recently. 

This is due to a number of advantages these materials possess. A composite is a 

material having two or more distinct constituents which are usually referred as fibre 

reinforcement and matrix. Unlike conventional isotropic materials, fibre-matrix 

composites exhibit very high specific strength and stiffness in the direction of fibre 

reinforcement. With incorporation of this phenomenon arises a great opportunity to 

create a material with the custom tailored properties by combining several composite 

layers with certain mutual orientations to provide strength and stiffness in many 

directions. lncorporation of composite materials provides structures with a lighter 

weight, dimensional stability, increased stiffness, minimum outgassing and low cost. 

However, composite structures, which are traditionally made from multidimensional 

laminates, suffer from a major deficiency: they are predisposed to microcracking and 

delimitation due to material mismatch between the layers which limits their 

performance. In contrast to the laminates, grid structures posses multidirectional 

stiffness by running the ribs in several directions, which can avoid material mismatch 

associated with laminates. The lack of material mismatch provides composite grid 

structures with much better resistance to delamination, crack propagation and superior 

impact damage tolerance (the latter is usually occurs at the interface between different 

material layers in laminates). 

The ribs comprising a grid structure are usually loaded in their axial direction so that 

in a composite grid structure fibres are usually oriented along the rib's axial direction 

to provide their maximum axial strength and stiffness. As long as the composite ribs 

are onhotropic their transverse stiffness is much less than the axial In order to 

compensate for the loss of transverse (bending) stiffness the ribs are usually of a high 

aspect ratio in that direction (from 3 to 5). Inplane stiffness of grid structures can also 

be altered subject to the number of families of ribs incorporated and their mutual 

orientation which will subsequently define a repetitive cell pattern. There are several 

cell patterns conventionally used in grid structures (Figure 1.4). 

20 



• 
a - Anglcgrid 
b - Orthogrid 
c -lsogrid 

o 
b , 

Figure 1.4 Cell configurations 

3 

4-..E---If--~ 

1,2 - Diagonal families of ribs 
3,4 - Orthogonal families of rit:6 

The use of one or other pattern usually depends on the way the structure is loaded. 

The behaviour of different types of grid structures has been analysed by S. 

Huybrechts [36]. This analysis shows that: 

• Grid structures with diagonal ribs (Figure lA) have much higher strength when the 

applied in-plane biaxial load has the same sign (either tension or compression) than 

when loads of both signs presented. 

• Adding extra circumferential family of ribs to the tri-directional structure (isogrid) 

reduces the first failure strength of a grid structure. Failure in this case is a material 

failure. 

• The major contribution to the grid structure's shear strength comes from the 

diagonal families of ribs. The steeper diagonal ribs go - the higher shear strength 

the structure obtains. 

Based on these conclusions and series of test perfonned the general comparison of 

three major types of grid structures can be made: 

I. Anglegrid (Figure 1.4 (a» exhibits high shear strength, but low axial strength 

because of the lack of axial ribs. 

2. Orthogrid (Figure 1.4 (b» in contrast to the anglegrid shows much higher axial 

strength, but tremendous decrease in the shear strength. With the angle ribs 

removed the interaction between the orthogonal ribs becomes much smaller. This 
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explains the reduced shear strength of the structure due to the absence of coupling 

between orthogonai families of ribs. 

3. Isogrid (Figure 1.4 (c)) exhibits high strength for both normal and shear loading. 

However, despite its name, the isogrid is not isotropic and shows much higher 

strength in the direction coincident with axial ribs than in the direction transverse 

to it. When the aspect ratio of the rib's cross-section increases (they become taller 

and thinner) and the buckling of the ribs becomes an important factor, isogrid 

structures exhibit significantly higher strength to tensile loads than to compressive 

loads. Isogrids are often become weaker and tend to buckling of the axial rib when 

subjected to the combined load: compressive along the axial ribs and tensile 

transverse to the axial ribs. A composite isogrid significantly outperfonns an 

aluminium one due to the abihty to run composite fibres exclusively axially along 

the ribs, which tremendously increases their strength. 

The technology of fabrication of stiffened composite structural members was 

developed in late seventies in the US by the McDonnell Douglas Corporation [39] . In 

this method a composite isogrid structure with an outer skin was produced by 

moulding a stiffened member with an equilateral triangular cell arrangement of ribs 

made of carbon fibre/polymer based composition to a partially cured condition. A 

suitable elastomer was then injected into the open spaces of the isogrid rib stiffener to 

stabilise partially cured composite for subsequent forming and curing operations. The 

resulting stiffening member was heat-fonned to the required contour. Cylindrical 

structure for instance was manufactured by assembling four initial contours shaped as 

90 degrees arch-shaped isogrid panels. The outer skin which represented a composite 

laminate was manufactured separately by laying up a plurality of layers of 

preimpregnated tape within a mould (cylindrical mould for a cylindrical structure). 

The assembly process was perfonned by installing four heat fonned isogrid stiffeners 

into the interior of the skin to form the final shape of the structure. lsogrid stiffeners 

and the skins were then co-cured to achieve their unity and the final isogrid shell 

structure was obtained by removing the mould and subsequent removing elastomer 

from the spaces between the isogrid rib stiffeners. 

Many distinct areas of application for composite isogrid structures have emerged. 

These are payload shrouds, solar array substrates and civil engineering structures. 
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This structuraJ concept also has a great potential for automation of the manufacturing 

process including continuous filament winding and resin transfer moulding. Only 

recently the concept of the grid made of unidirectional continuous fibres was 

introduced and it is predominantly applied in the aerospace industry [71], [75], [72]. 

The advanced grid structures have been manufactured in several countries. In the 

United States a number of companies and research institution were involved in the 

development of advanced grid structures: Boeing Company, US Air Force Research 

Lab, McDonnell-Douglas, Alliant Tech Systems, Stanford University. and others. In 

the early 1990s, the Air Force Phillips Laboratory was involved in an effort that 

finally achieved high quality, light weight composite isogrid structures [37], [38]. 

These structures were manufactured using tooling made of silicon rubber and proved 

to have extremely high strength-weight ratios. Advanced composite grid structures 

have been manufactured also in the leading Russian Composite Centre, the Central 

Research Institute of Special Machine Building (CRISMB) [106]. High-performance 

lattice structures from carbon and aramid epoxy composites were manufactured using 

continuous filament winding. These structural elements are used in aeroplane frames 

and space launch vehicles (Figure 1.6, Figure 1.7). 

Companies such as Chemgrate, Inc were able to fabricate large quantities of low cost, 

low fibre content grid structures for use as non-corrosive flooring for commercial 

property and factories. Significant research at Stanford University, Ohio State 

University and Georgia Tech has lead to several new analysis techniques [73], [51] 

and [47] that were verified using the grid structure floor grating. 

Presently composite grid structures are extensively used by the aerospace industry. 

The US Air Force MightySat I satellite, launched off the US space shuttle in 

December, 1998, had a grid structure for its upper payload deck, fabricated using the 

SnapSat™ concept developed by Composite Optics International. Delta IT interstage 

replacement was built using Russian manufacturing process. The Boeing Company is 

developing a grid stiffened fairing for the Minotaur Launch Vehicle, expected to fly in 

the year 2000. 

Another advantage of grid structures that they have significantly higher damage 

tolerance than their main competitor, the honeycomb sandwich. Grid structures also 
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have an ability to limit spread of damage and subsequently resistant to catastrophic 

failures. This phenomenon is due to limiting delamination resulting from the impact 

damage to the area within the cell. Composite grid structures have also higher in­

plane (but lower out-of-plane) stiffness than the equivalent honeycomb structures 

which defines the area of their application. The other advantage of the isogrid 

compared to the honeycomb sandwich is resistance to water absorption which can 

further lead to the degradation of the core. 

Composite grid structures are also attractive because of the low cost of the 

manufacturing which can be significantly automated. This feature is particularly 

beneficial for grid structures of revolution. 
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1.2 Manufacturing Methods for Grid Structures 

The following manufacturing methods of grid structures are presently known: 

Manufacturing techniques developed in the former Soviet Union [106]: 

1. Wet Winding Around Pins. 

2. Free Winding. Free forming of the ribs using the traditional filament winding 

process. The tows are placed with the offset from each other on the top of the tows 

of the previous layer. This process results in the ribs of poor quality, but is the 

cheapest of all . 

3. Winding into a light weight core. This technology includes: winding of the inner 

skin; machining of the core sprayed on the mandrel surface; machining the 

grooves in the core~ winding the ribs into the grooves; winding the outer skin. 

4. Winding into the grooves/armed in an elastic coating. The coating is then pulled 

out of the lattice. 

S. Winding into the grooves formed in the metal liner. This process is used for 

manufacturing tanks and pressure vessels and yields a hybrid metal-composite 

structure. 

Manufacturing techniques developed in United States: 

1. Wet winding in hard tooling with e-beam cure. This technology was developed at 

Boeing Co. 

2. Nodal spreading. Developed at Stanford University. 

3. Winding into solid rubber tooling. Developed at Phillips Lab. 

4. The hybrid tooling method. Developed at Air Force Research Laboratory [54]. 

5. Fibre placement with hybrid tooling. Developed at Boeing Co. 

6. Fibre placement with expansion inserts. Developed at Alliant Tech Systems. 

7. The located expansion tooling method. Developed at Air Force Research 

Laboratory and Boeing Co. 

8. Wet winding. The Brute Force approach. 

9. The SnapSat "'method. Developed at Composite Optics, Inc. 

I o. The TRlG Method. Developed at Stanford University. 
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Figure 1.5 Aluminum Isogrid. 

Figure 1.6 Lattice composite spacecraft attachment fitting-adapter. 
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Figure 1.7 Composite wound grid structure. 

Figure 1.8 Open isogrid structure 
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1.3 Survey of Analysis Techniques 

Grid stiffened structures have been studied quite extensively for the last two decades. 

The following techniques are currently known to be used for their modelling and 

analys is: 

1. In the US early analytical analysis for grid structures was developed by L. W. 

Rahfield [73] and at the Air Force Phillips Lab. A relatively simple set of 

equations was developed to predict rib buckling. Grid structures that were 

fabricated had tall, thin ribs, and the buckling of the ribs was a major failure factor 

for the structures at a time. 

2. Significant analytical work was done on grid structures in the fanner Soviet Union 

by Tarnopol'skii [91], [92]. Structural behaviour was analysed on the basis of 

' smearing' stiffeners. 

3. The analysis of lattice structures with a regular and dense system of ribs was 

perfonned by the research group of the Central Research Institute of Special 

Machine Building [106] on the basis of continuum models with ribs smeared over 

the structure surface. Constitutive equations of the continuum model were used to 

construct a structural stiffness matrix for the finite element analysis, which was 

subsequently used for the investigation of structural behaviour and stress 

concentration in the vicinity of structural discontinuities (doors, joints, etc.). The 

constitutive equations were also used to solve the problem of local buckling 

induced by local stresses. The discrete models were used to analyse grid structures 

without skins due to the possible local buckling of the ribs. The finite element 

method was used to overcome the complexity of high order general equations of 

shell theory. The ribs of the FEM structure were modelled with beam elements 

working in tension, compression, bending and torsion. 

4. The equivalent stiffness approach was developed by H. Chen [\3] for analysis of 

grid stiffened structures on the basis of 'smeared' grid stiffeners to a solid plate of 

equivalent properties. 

5. S. Huybrechts [36] were developed failure envelope analysis and made a series of 

finite element derivations for grid structures with discontinuities. 

6. Rib buckling predictions developed at Ohio State University and the Air Force 

Research Lab [53]. 
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7. The general homogenisation approach was used by A Kalamkarov [42], [43], [44] 

for analysis of composite and reinforced systems of irregular structure. The 

modelling is based on the calculation of effective stiffness and strength and 

solutions for the effective module and local stresses in composites are obtained by 

means ofhomogerusation. 
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2 Modelling on the Basis of Equivalent Stiffness 

2.1 Abstract 

In this chapter the Equivalent Stiffness technique is used for modelling and analysis of 

lattice structures. The approach taken to crate the Equivalent Stiffness Model (ESM) 

is described in detail s. The advantages and disadvantages of ESM are discussed. 

Verification of the analysis on the basis of the ESM and the finite element method is 

also presented. 

2.2 Homogenisation Approach 

2.2.1 Preface 

In this section the tenn "exact" modelling refers to the modelling based on finite element 
methcxl. The tenn "exact model" is used as an opposite to "homogenised (or continuous) 
model" , The latter has only the smeared stiffness equivaJent to the real structure, but the 
structural members (ribs and skins) are not "exactly" presented in the model. 

Exact modelling and the subsequent analysis of composite grid structures using the 

finite element method is quite laborious. Lattice structure models that use beam 

elements to represent interconnected shrouds require finite element mesh to coincide 

with the actual geometry of the structure to adequately describe the given cell pattern. 

This will result in an excessively large model, which will subsequently require more 

effort for perfonning calculations. Moreover, recreation of the model on each 

optimisation iteration will be complicated if the geometry is to be represented exactly. 

One of the solutions will be to incorporate a rather simplified model with the stiffness 

equivalent to the original. The transition from the exact model to the equivalent 

stiffness model is shown in Figure 2.1: 
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Exact Model Equivalent Stiffness Model 

Figure 2.1 Transition from exact model to equivalent stiffness model 

Several attempts were made to represent the complex non-uniform structure as a 

unifonn homogeneous structure with the same stiffness propenies as the original one. 

Some of the approaches that were undertaken for the creation of the Equivalent 

Stiffness Model (ESM) used specially designed "stiffened elements" [19]. [57]. [62]. 

[70]. [71]. [75]. [72]. special macroelements that have the combined stiffness of the 

rib and both outer and inner skins. ESM was created for orthogrid structures by 

incorporating the additional stiffness of the shell elements in the direction of the 

diagonal families of ribs in [19]. [57]. [62]. The above mentioned methods of 

"smearing" the grid were suitable for the particular applications, i.e. certain types of 

loading conditions, orientation of ribs, etc. In these models assumptions were made 

regarding stress distribution and in some models in-plane bending and shear of ribs 

are not taken into account. The most complete transition from the exact model to the 

equivalent stiffness model has been perfonned by H. Chen and S. Tsai [13] for an 

arbitrary rib configuration that can be unsymmetrical. subjected to general loads and 

multiple failure mechanisms. In this approach an integrated equivalent stiffness model 

is developed to describe a grid structure with or without laminated skins. The model 

includes all the important effects such as torsion, in-plane bending and shear of ribs 

and has the fonn of a Mindlin plate. The model also gives an opportunity to perfonn 

refined stress analysis incorporating exact FEM modelling in certain regions of ESM 

where high accuracy is required or stress concentration occurs [36]. 
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2.3 Lamination Theory 
The finite element analysis package MSClNASTRAN, which was chosen for modelling 

an isogrid structure, uses the assumptions of classical lamination theory in 

formulating shell behaviour for non-uniform and composite laminate element 

properties [56]. The CQUAD4, CQUAD8, CTRIAJ and CTRIA6 elements are 

available the modelling composite and non-unifonn materials. This approach allows 

one to model plates with coupled membrane and bending elastic behaviour. This 

behaviour can be simulated directly by inputting membrane. bending, membrane­

bending coupling and transverse shear constitutive relationships. 

The following assumptions regarding the behaviour of the laminae are made In 

classical lamination theory [14]: 

• The laminae are perfectly bonded together. 

• The bonds are infinitesimally thin and no lamina can slip relative to another. 

• A linear variation of strain through the laminate thickness is assumed. 

The displacement of a shell can be described by the displacement and rotation of its 

midsurface. the straining of a shell can be described by the straining and curvature 

changes of its midsurface, and the equilibrium of a shell can be described by the 

equilibrium of stresses integrated through the thickness of the shell. 

The figure below shows a flat rectangular shell, the edges of which are aligned with 

the X and Y axes of a Cartesian co-ordinate system. The XV plane of this co-ordinate 

system is halfway between the top and bottom surfaces of the shell; that is, the 

midsurface of the shell is at FO. The shell has thickness t, so that the top surface is at 

z=112 and the bottom surface is at z=-tI2, as the following figure illustrates: 

z 

surface 

Figure 2.2 Rectangular shell element 

32 



As mentioned above, it is assumed that the displacement of any point (x, y. z) in a 

shell can be expressed in tenns of the displacement and rotation of the point (x, y, 0) 

on the midsurface of the shell. The deformation in the X-Y plane of the shell at any 

point at a distance z in the normal direction to plate middle surface is 

u ,(x,y,z) = u~(x,y)+ zp, (x,yi 

u ,(x,y, z)= u;(x,y)- zp.(x,y i 
u,(x,y,z) = u~(x,Yi 

(2.1) 

where ux • uy• Uz are the components of displacement in the X. y. and z directions. 

respectively~ u~. u~. u; are the components of displacement of the midsurface~ 

p" P, are the (small) rotations of the midsurface about the x and y axes, 

respectively. 

Similarly. the strain components &u. &w and Exy of any point (x. y. z) can be 

expressed in terms of the midsurface (or membrane) strains E~. E~, E~ and curvature 

changes kxx , k». kxy as: 

E=(X,y,Z) = E':. (X,y)+ zk=(x,y), 
E,.(X,y,Z) = E:"(x,y)+zk,.(x,y), 

E",(X,y,z) = E:"(X,y) + zk",(x,y). 

For flat shells, the tensor shear strain components are: 

a,' 
--' 

r 
a.: 
a,' 

E' = --' ,. 
0-

E' 

~(~+~J '" 

BP; 
k= a.: 

_ BP; 
k", = 

0-
k", 

1 ( BP; BP; J - -----
2 0- a.: 
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The shell resultant forces (N=. N»,' Nry), the shell resultant moments 

(M =, M», ' M ry), and the shell transverse shear forces (Q ... , Qy) are obtained by 

integrating the stress components (0'=, a»" a "Y' O';r:. a)",) through the thickness of 

the shell. The shell resultant forces are given by: 

(2.5) 

The shell resultant moments are given by: 

(2.6) 

The shell transverse shear forces are given by: 

{Q<} = l{u~L .. 
Qy -J{ O"ytr (2.7) 

The following figure illustrates the sign conventions employed for the resultant forces 

and moments. and transverse shear forces. Note that a positive moment. M ....... induces 

positive strain, &xz' in the top half of the shell (z> 0) and negative strain in the bottom 

half of the shell (z < 0). 
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N ,u, 

Q, 

Q,-

Figure 2.3 Sign conventions for the stress resultants 

The relationship between the shell resultants, and the midsurface strains and curvature 

changes from the classical shell theory [59] are given as: 

3S 



N~ A" A" A" B" B" B" &' = NT 
~ 

N", A" A" A,. B" Bn B,. E' 
'" 

NT 
yy 

N", A" A,. A" BI • B,. Boo 2&' 
'" 

NT .. 
+ (2.8) 

M= B" BI , BI , D" D" DI • k~ MT 
= 

M", BI , Bn B" D" Dn D,. k", MT 
'" M", BI• B", Boo DI • D,. D" 2k"Y MT 
'" 

{Q.} [~' Q, = A" A" f E; } 
A44 2&),% 

(2.9) 

In equation (2.8), the quantities A,- (where i, 1 = I, 2, 6) are the shell extensional 

stiffnesses, the quantities D ij are the bending stiffnesses. the quantities B ij are the 

extensional-bending coupling stiffnesses, and the quantities AkJ (where k,/ = 4.5) are 

the transverse shear stiffnesses. The quantities 8~ and E~ are the transverse shear 

strains on the midsurface. The quantities N: and M: are the resultant thermal forces 

and moments respectively. 

The shell stiffness and thermal resultants introduced in equations (2.8) and (2.9) are 

defined by integrating the material properties of the shell through the thickness of a 

shell. The extensional , bending, and extensional-bending stiffnesses are given by: 

A, = 1 Q,dz 
-K 

K 
B; = f Q, zdz 

-K 

K 
D ij = J Qjj z 2dz 

-K 

i,1 = 1,2,6. 

i,j = 1,2,6. 

i ,j = 1, 2,6. 

where Qij are the reduced stiffness of the material . 

The transverse shear stiffness is given by: 

K 
A, = K,KI f C"dz 

-K 
k,l = 4,5, 
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where: ell is (non-reduced) is the stiffness of the material, and K 4 • Ks are the shear 

correction coefficients, which for a homogeneous shell are often taken to be 

K, ; K, ; ~5/6 [59]. 

If the material of a shell is distributed symmetrically about the midsurface, then the 

integral in equation (2.11) vanishes and the extensional-bending coupling stiffnesses 

Bq are identically equal to zero. 

The resultant thermal forces and moments are given by: 

{~f};-I[~:: ~: 
N T -" Q Q ;cy 16 26 

Q"]{ a= } Q" aY>' l!.Tdz, 

Q" 2a", 

(2.14) 

(2.15) 

where a.or. a". , az;y are the coefficients of thermal expansion of the material, and 6.T 

is the change in temperature from the stress-free state. 

If the change in temperature is uniform through the thickness of the shell, then 

equations (2.14) and (2.15) may be removed from the integral, resulting in equations 

(2.16) and (2.17): 

(2.16) 

(2.17) 

where N:, N:, N;' , u:. M:, M~ are the shell resultant thennal coefficients, 

which are given by: 

(2.18) 
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{~t};-I[~:: ~~ 
M· -~ Q Q 

S}' 16 2(i 

(2.19) 

The mass properties for the shells are also obtained by integrating the material 

property through the thickness of a shell. The mass per unit area, PO' is given by: 

where p is the density of the material. 

The rotary inertia per unit area, P2' is given by: 

!> 
p, ; f pz'dz. 

-~ 
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2.4 Equivalent Stiffness Matrices 

In the present approach the ESM is described using Mindlin theory [59]: 

[Nj = [ARc}+ [BRk~ 
[M] = [Bj{c}+[DRkl 
[vj= [Hjlrl 

(2.22) 

where [N] > [M] and [V] are the in-plane stress resultant vector, the bending moment 

resultant vector and the out-of-plane shear resultant vector respectively. {c} and {k} 

are the in-plane strain and curvature vectors respectively. [Aj , [B], [Dj and [Hj are 

the extension, coupling, flexural and transverse shear stiffness matrices of the 

structure respectively and are given as: 

[Aj =[AF" + [Arw , 
[Bj= [BF" + [Brw , 
[Dj= [DF" + [Drw , 
[Hj=[HF"+[Hrw . 

(2.23) 

Notations with indices skin and rib are the stiffness matrices corresponding separately 

to the ribs and outer skins respectively. 

2.4.1 Equivalent Stiffness of the Ribs 

For the isogrid structure subjected to in-plane loading, axial forces will dominate in 

the ribs. In this case the bending and shear effect of the ribs tangential to midplane can 

be neglected. The total stiffness of the ribs can be obtained by summing the stiffness 

of each unidirectional set of parallel ribs using the principle of superposition, so that 

the stiffness matrices for the ribs can be expressed as: 

39 



o 

rib 
D" 
Drib 

Xl 

o 
~rib ], 

D .. 

E,A. 2 E,A, , --+X--m 
[Hf = do d, 

o 

m = casO, 

o 

o 

E,A." 2 E,A, , + X--n 
d,. d, 

n= sinB, 

o 

o 

(2.24) 

(2.25) 

(2.26) 

where subscripts 0, 90 and (} indicate differently oriented sets of ribs; Elt and Es are 

the longitudinal and shear module respectively; d is the spacing for each set of ribs; 

J 's, A 's and I are the torsion constant, area and second moment of inertia of the 

ribs respectively; X is the shear correction factor. For the rectangular cross-section of 

the ribs these values are calculated from [95]: 

bh' 
1 =­

I 12 ' 
hb' 

1 =-
2 12 ' 

J = hb' [~ -336~(1 -~)) 16 3 h 12h" 
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2.4.2 Stiffness of Composite Skins 

Calculations for the skin's stiffness matrices are perfonned as for a regular laminate 

(Figure 2.4) [59] and are given by: 

2 

Y 

[At" = HQ)dz. 

[Br"" = HQ)zdz. 

[Dt" = J[QIz 'dz. 
[Ht" = zf[Css C., lA •. 

C4S C44 J 

/~J 

- 2 /---

/-1 

Three-Ply 

x 

o 

X~I 

"'" 

000 

x~) 

"'" 

...L._y~) 
~ m .. 

Figure 2.4 Laminae arranged to form a laminate 

(2.28) 

The stiffness matrices for each layer in the laminate are calculated using the fonnulae 

of the theory oflaminates [41]: 

E" V21 E I1 0 
] - V I2 V21 I-v12v21 

Q= 
V21 EII En 0 (2.29) 

] - V
I2

V21 I -V12 V 21 

0 0 
1 

G" 

where Ell, E22 are Young's module of the orthotropic material in the first and second 

material directions; V 12 ' V 2! are Poisson's ratios; Gl2 is shear modulus. For the layers 
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rotated with the respect to the global material axes of the composite laminate, the 

members of the stiffness matrix Q are: 

QI\ = Ql lm4 + 2(Q12 + ZQ33 )n2m2 + Qnn4, 

Qn = Ql1 n4 + Z(Q12 + ZQ13)n2m2 +Qnm\ 

QI2 = (Q\I +Q22 -4Q33 )n2m2 +Q12(m4 +n4} 

Q" = (Q" +Q" - 2Q" - 2Q,, )n'm' +Q,, (m' +n') 

Q" =(Q" - Q" - 2Q,, )nm' +(Q" -Q" +2Q,, )n' m, 

Q" = (QII - QI' - 2Q,, )n'm+(QI , - Q" + 2Q,, )nm'. 

(2.30) 

Stiffness matrices for the skins were calculated using PROMAL software for 

composites [55]. 
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2.5 Verification of the Model 

For the verification afthe model presented, comparative analysis has been undertaken 

for ESM and the exact model using two different FEM packages. The structure under 

consideration is a circular cylinder (Figure 2.5) which is fixed on at one end and 

loaded at the other with a distributed load of 106 N/m. The core of the cylinder is a 

grid with equilateral triangular cell (Figure 2.5) representing a repetitive structural 

unit of the isogrid. The outer skin that covers the grid core of the structure (Figure 

2.6) is a symmetrical laminate (0/90)s. General dimensions of the structure are 

presented on the Figure 2.5 and numerical values are given in the Table 2.1: 

H D h b 
7.56m 5.44 m 60· 0.02 m 0.00667 m 

Table 2.1 Dimensions of the structure 

o w 

Figure 2.5 Considered structure and cell pattern 
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y y y 

x 
x 

Figure 2.6 A unit cell 

2.5.1 Equivalent Stiffness Model 

The equivalent stiffness model (Figure 2.7) has been developed on the basis of 

homogenised stiffness matrices (2.23). A computer routine for the calculation of 

equivalent homogenised properties from given original grid properties (Appendix 1) 

has been written using the symbolic computation package Mathematica [117]. These 

properties were subsequently used as input parameters for the ESM FEM model. The 

FEM code used for the creation of ESM was ProMechanica [21]. This particular 

FEM package was chosen because it allows input of the element's non-homogeneous 

material properties by means of inputting extension, coupling, flexural and transverse 

shear stiffness matrices. Rectangular shell p-elements were used. 

, 

" 
, 
.k~. ' 

-·-·1 
I 

Figure 2.7 Equivalent stiffness model 
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2.5.2 Exact FEM Model 

The exact FEM model (Figure 2.8) was created USUlg the FEM package 

MSCINASTRAN. 

Figure 2.8 Exact FEM model 

First, the unit cell of the structure (Figure 2.9) was developed. The unit cell of the 

considered structure can be modelled in a way that is usually used for modelling 

stiffened plates (Figure 2.10). A number of approaches were used previously [19], 

[62], [70]. One of them is to use plate elements to model the stiffener. The resulting 
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model turns out to be excessively stiff and does not transfer loads properly. The 

stiffener portion of the component resists a load by bending action, which requires a 

cubic displacement function to model, while the plate elements in membrane action 

are capable of representing only a linear displacement. Therefore, using a single plate 

as a stiffener almost always results in a model that is too stiff for most applications. 

Nonnally the most preferred approach for the modelling of similar structures is the 

one where offset beam elements (Figure 2.11) are used to model the stiffener. This is 

the recommended method for modelling a stiffened plate. 

, 

Figure 2.9 A unit cell 

Figure 2.10 StilTened plate 
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Figure 2.11 3D OfTset BEAM element 
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Grid Point GB 

In the exact FEM analysis, the rib to skin ratio was taken as 3.5 as is recommended in 

the "lsogrid Design Hand Book" [39]. This ratio was kept constant through the 

analysis whereas the aspect ratio of the rib's cross-section varied. The extra 

dimensions of the unit cell and its components that have not been listed above are: 

Ribs: b~0.007 m; h~.02 m; d90~0.262 m; de~0.302 m; 

Skin thickness: h",~5.714e-3 m; Lay-up: (0/90). 

Angle ofisogrid rib ' s orientation: 8=60°. 

H~7.56 m; D~5.44 m; q>~60o; a~0.302 m; h~.02 m; b~0.00666667 m; 

The skin section of the isogrid was taken as a (0/90)5 laminate with four identical 

layers. CarbonlEpoxy composite was used as the material for the isogrid structure. 

The material properties used for the structure are taken from [12] and given in Table 

2.2. Triangular laminate composite shell finite elements that take into account 

transverse shear stress were used in the model. 
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Material T300/5208 
Stiffness Pareameters 

E },Pa E2,Pa VJ2 Gn Pa 
1.81 lO" 1.03 1010 0.28 7.1710' 

Stren?, h Pareamelers, MPa 
Tensile Compress;ve Shear 

X, y, X, y, S 
1500 57 1340 212 68 

Table 2.2 Material properties of the ribs 

At the second stage of the model development the unit cell was revolved around and 

translated along the global axis of the cylinder to represent the complete cylindrical 

structure. The final model had 23000 elements. 

2.5.3 Comparison of the Results 

In order to verify the results, normal and shear components of the strains obtained 

from linear static analysis of the ESM must be recalculated back to strain components 

acting in the ribs and skin using the following formulae: 

(2.31) 

There superscript skin denotes strains acting in the skin; &~, E~, r~ are nannat and 

shear midsurface strains; and k" • ky • r~ are curvature changes of the midsurface 

of the homogenised shell. 

For the ribs, axial strains are calculated as: 

m = cosS, n= sinB. 
(2.32) 

Strains in the vertical and diagonal families of the ribs and also skin are plotted versus 

the vertical co-ordinate z (Figure 2.12 - Figure 2.29) 
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Figure 2.12 Beam axial stress for the diagonal families of ribs 
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Figure 2.13 Beam axial stress for the vertical families of ribs 
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Figure 2.14 Von Mises stress for the ply 1 
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Figure 2.15 Normal X stress for the ply 1 
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Figure 2.16 Normal Y stress for the ply 1 
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Figure 2.17 Major principal strain in ESM 
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Figure 2.18 Major principal strain comparison 
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Figure 2.19 Strain X in ESM 
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Figure 2.20 Strain energy in ESM 

0.005 '---~--~--~--~--~---'--'==Z---, 
VM Strain - t-

Von Mises Strain 

0.0045 

0.004 

0.0035 

0.003 

0.00251M 

0.002 

0.0015 

0 .001 '-__ ~ _ _ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ...J 

o 1 2 3 4 5 6 7 8 

Height of the cylindrical structure, m 

Figure 2.21 Von Mises strain (exact model) 
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Figure 2.22 Axial normal strains in the vertical ribs 
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Figure 2.23 Axial normal strains in tbe diagonal ribs 
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Figure 2.24 Strain X in the composite skin (top) 
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Figure 2.25 Strain Y in the composite skin (top) 
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Figure 2.26 XY Shear strain in the composite skin (top) 
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Figure 2.27 Normal strain X in the middle surface of the shells (ESM) 
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Figure 2.28 Normal strain Y in the middle surface oftbe shells (ESM) 
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The results presented in Figure 2.22 - Figure 2.26 and Figure 2.29 show good 

correlation. The discrepancy does not exceed 10% for most of the elements of the 

model except for those elements subjected to the local effects. Considerable 

differences in the results can be seen in the vicinity of the constrained contour and the 

loaded edge of the cylinder. This inconsistency can be overcome by taking into 

account boundary effects: by combining exact beam and shell elements with 

equivalent stiffness shell elements in the regions where there are boundary effects. 

However, this is not considered in this thesis since it was not set as a goal of this 

research. In the following comparison of the obtained results, the primary focus is 

made on middle section of the structure which is not subjected to the edge effects. 

Error estimation is given in Table 2.1 and Table 2.2 for the elements in the middle 

section of the structure in order to minimise the influence of the boundary effects on 

the results. 

The results of this part of the research were summarised in [81]. 
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FEM ESM 

Axial strain Displacement, m Axial strain Displacement, m Difference, % 

Ex Z Ex Z Ex Z 

Vertical family of ribs 1.551784E·3 7.5524E·3 1.5603143E·3 6,91125E·3 0.55 8.49 

Diagonal famiry of ribs 3.512564E·4 7.5412E·3 OJ512564E·4 6,92DIE·3 9,9 8.51 

Table 2.1 Comparison of strains and displacements of the ribs 

FEM ESM 

Strain component Strain component Difference, % 

Ex Ey Yxy Ex Ey Yxy Ex Ey Yxy 

1.551784E·3 -1.332556E·4 0 1.5603143E·3 ·0.1 o 1274E·4 0 0.57 7,6 0 

Table 2.2 Comparison of strains components for the skin elements 



2.5.4 Conclusions 

The verification of the ESM has been undertaken by comparing it with the exact FEM 

model. The general verification of the homogenisation concept has been made and the 

estimation of the accuracy of the results has been performed. The comparison of the 

strains (both normal and shear) and displacements of the elements in two models 

shows that the difference in the results obtained from the analysis of the exact and 

equivalent stiffness models does not exceed 10%. The inconsistency in the stress 

resultants is localised in the boundary areas where the load and constraints are 

applied. At this stage the developed homogenised model rails to predict stress 

resultants with the reasonable accuracy in the vicinity of the areas where boundary 

effect is taking place. However, the homogenisation approach presented shows the 

possibility of replacing complex and extensive stress analysis on the basis of an exact 

FEM model by analysis based on an equivalent stiffness model of reasonable 

accuracy. 
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3 Proposed Homogenisation Approach 

3.1 Introduction 

Composite isogrid structures can offer a wide variety of properties for different 

sequences of geometric parameters (rib's cross-section, skin thickness, configuration 

of a unit cell) and skin lay-ups. All these advantages in the design can only be utilised 

by incorporating the optimisation methods. 

During the optimisation process the design responses of a structure are usually 

calculated from the stress resultants in structural members. Calculation of the stress 

resultants themselves in the isogrid using the finite element method can be simplified 

by means of incorporating a homogenised model to replace the exact model [13]. [36]. 

The finite element method (FEM) has proven to work reasonably well for calculating 

structural responses and characteristics [16]. Usually the geometry of the FEM models 

of lattice structures is highly dependent on rib stiffener spacing and angle, making 

these models very difficult to modify to accommodate small changes in rib pattern. 

This disadvantage limits the usefulness of the application of the FEM method for 

design/optimisation purposes. 

Transition from the exact model to a ESM was shown in detail in the previous 

chapter. The optimisation requires a great number of finite element analyses to be 

performed for the constantly iteratively changing optimisation variables (usually the 

geometric characteristics of the unit cell). The complexity arises when equivalent 

stiffness matrices [A] . [B] . [D] and [H] have to be recalculated each time to update 

the stiffness characteristics of the finite element model. Calculation of equivalent 

stiffness matrices (2.23) for the isogrid is not a part of the FEM code so they should 

be calculated manually and subsequently the FEM model must be manually updated. 

Considering the amount of optimisation iterations required for obtaining the final 

optimum design with the reasonable convergence tolerance [10] this task will 

obviously be extremely intensive. The number and type of design variables that can 

be possibly assigned in commercially available FEM packages [21]. [5]. [17] is 

limited. That is why the optimisation of the isogrid structures must be performed 

using an optimisation routine that is not based on the FEM calculation of the design 

responses. 
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The above-mentioned inefficiency of the FEM method for the purpose of 

design/optimisation (though quite accurate for static structural analysis), makes it 

impossible to adopt for the solution of the designloptimisation problem stipulated for 

this research work. The further study will be focused on developing different 

homogenisation representations of equivalent stiffness of a lattice structure, which is 

not based on FEM, but rather on static equations and equations of motion, geometric 

equations and constitutive equations of a shells. 
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3.2 Basic Approach 

The proposed approach deals with the elastic shell as a continuous system. I.e. 

external loads and the stress-strain states are described by the functions. This 

approach allows the effective implementation of the methods of solid mechanics [14] 

in the analysis of an isogrid shell. 

Most of the grid shells represent complex spatial frames comprising elastic members. 

The axes of the structural members (the ribs) are assumed to form families of cutves 

on the median surface of a shell. These families are further referred to as "families of 

ribs". There are three families for the isogrid structure and two for both the orthogrid 

and the anglegrid structures (Figure lA). The median surface of a continuous model is 

assumed to be coincident with the one of the exact model. Axes of the ribs that belong 

to any particular family do not intersect. The high accuracy of the calculations on the 

basis of the proposed homogenisation technique can be achieved for the parts of the 

model that are not situated in the immediate vicinity of the constraints or the applied 

load. For these regions the boundary effects must be taken into account or analysis 

should be perfonned on the basis of the exact model. 

In the approach developed, three groups of equations are used: 

1. Static equations and equations of motion written in terms of forces and moments 

[97] 

2. Geometric equations that link the displacements to the deformations [6] 

3. Constitutive equations of the shell [6]. 
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3.3 Basic Equations of the Theory of Anisotropic Shells 

Consider a median surface of a shell in the curvilinear co-ordinate system a, P The 

projections of the displacement vector of the point on the median surface of a shell to 

the directions of the unit co-ordinate vectors a, p and the outer nonnal to the 

considered surface (Figure 3.1) are denoted as u, v, w. 

w 

fJ a 

Figure 3.1 Median surface of a shell in curvilinear co-ordinates 

£1' &2 ' (j). XI' Xl and f' are the components of the deformation of the median 

surface of the shell (Figure 3.1). 

3.3.1 Static Equations 

Positive directions of the distributed forces and moments are shown on the Figure 3.2. 

Positive directions correspond to the moments causing clockwise rotation when 

viewed from the positive side of the corresponding vector. 
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M u; 

Figure 3.2 Direction of the forces and 'moments acting in the shell 

Forces and moments Sj' Qi ' M f , HJ (J = I, 2) must satisfy the following six 

equations [6] : 

dJ'N, a4"S, S 124 N m' AB(Qk' Qk' X')-O Ob: + ap + I ap - <! Ch + I I + '2 1'2 + - , 

a4'N, m's, s m' N 124' AB(Q k' Qk' Y') 0 iJjJ +~+ 2 a:r - I ap + 2 2 + I 12 + ::; . 

~' + 124,$' _ AB( N,k; + N,k; + S,k;, + S,k;, - Z') = 0, 

dJM,+ iMH'+ H a4 + M m _ AB(Q-m')=o 
bl:l !Jp , i3f3 ' bl:l 'a ' 

MM, + mH, +H m +M 124 - AB(Q - m') = O 
!Jp bl:l ' bl:l ' !Jp , P • 

S, -S, + H,k; +H,~ +k;,(M, -M,)= O. 

(3 .1) 

In (3 .1) the superscript' shows that this tenn corresponds to the median surface in 

defonned state: X. 1", Z· are projections of the vector of load intensity in the 

directions of the unit co-ordinate vectors and outer normal to the median surface~ m; 
and m; are the intensities of distributed moments. A and B are coefficients of the first 
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quadratic form for the median surface; k} , k2 are curvatures of the normal sections of 

the median surface along co-ordinate lines; ki2 is the torsion of the co-ordinate lines: 

k =_1 
, 11, ' 

k; = kl + Xl> 

A' = (I + ",)A, 

3.3.2 Geometric Equations 

1 
k =-, R, , 

k;=k2 + Z 2 , 

B' = (1 + ", )B. 

1 
k" = 11" , 

k;2 = kl2 + r, (3 .2) 

Tangential (&1' &2' lV) and bending (Xl' X2' T) components of strain tensor for 

median surface ofa shell must satisfy the following three equations of continuity [6] : 

3.3.2.1 Small Deformations 

In the case of small deformations it is assumed that angles of rotation are small 

compared to a unit. Components of the strain tensor (El' E2> lV, Xl' X2 and r) can 

be found from the components of the displacement vector u, v and w using the 

following transformations [58). 

(3.4) 
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In (3.4) the following notations are used: 

la, v&1. 
e =--+--+kw 
" A O\:z AB 0fJ ,. 

I bV u &1. 
el 2 =--+--+k12w, 

A O\:z AB 0fJ 

la. r. =A' Cb: -k1u-k1zv, 

IbV ual 
e,,; B up + AB O\:z + k,w. 

la, val 
e" ; B 0fJ + AB O\:z + k" w. (3.5) 

l a. r,; B 0fJ -k,v-k"u. 

There are several methods which can be used to detennine the bending components of 

the strain tensor [26]. [I 15]. This is due to the fact that the right hand sides of the 

expressions for these components have additional terms containing product of the 

tangential component of a strain tensor and a curvature of the median surface of a 

shell. 

If summand k"OJ/2 is added to the right hand side of the formulae (3.4) in the 

expressions for XI and Xl' and also the tenn 2k.tS:. +kI2 (C1 -C.) in the expressions 

for T we have: 

l a, v &1.w 
E =--+--+-

, A O\:z AB up R,' 

x, ; ~ ~( - ~ ~ + ~ - ;,J + ~: (- ~ : + ;, - ;J + 

+ I (~(Bv)_~(Au)l 
2ABR" O\:z OfJ)' 

r ; ~!(-~~+~ - ;,} ~:C: +~ -;,J+ 
+ ~ (~ : - ~:: - ;J -~, (~ : + ~:: + ~) (3.6) 

In this case k" ; - If R" 
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The angle of in-plane rotation of a midplane surface about the nonnal to the median 

surface according to [60] is: 

where 

t _ - 28 +(e I2 + e2,)cos2<p + (en + e ll )sin2<p 
glJl - 2(1 + ell cos2 <p +en sin 2 <p)+ (eI2 + e2Jsin2<p ' 

O=_I_[~(AU)-~(BV)]. 
2AB ap aa 

3.3.3 Constitutive Equations for Anisotropic Shells 

(3.7) 

(3 .8) 

If the material of a shell has a plane of elastic symmetry that is parallel to the tangent 

surface of the median surface, the constitutive equations take the following fonn [6] : 

N I = C'lel + C'2e2 + C'6m, 
N2 = C2,e, +C22 E2 +Cu;m, 

S = C'6E\ +Cu;e2 + C66m, 

H=DI6E\ + DUe2 +D(,6T. 

M\ = - (DuX\ +D12X2 +D'6'Z)' 

M 2 :;: - (D,:zZ , +D22X:z +DJ6T). 

(3 .9) 

In the case of an orthotropic material with main axes of elastic symmetry coincident 

with the direction ofthe co-ordinate lines. equation (3 .9) simplifies. and the following 

terms vanish: 

(3 .10) 

For the case of an isotropic material, equation (3 .9) simplifies even further by 

satisfying conditions (3 .11) as well as conditions (3.10). 

c" = C" = C,,/v = 2C,.!(I- v) = Eh/(I- v). 
D" = D" = D,,/v = D .. /(I- v) = £h'/ 12(1 - v). 

(3 .11) 

where E and v are Young's modulus and Poisson's ratio. respectively for the material 

ofthe shell. 
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3.4 Constitutive Equations ofthe Grid Shell Theory. 

In this section constitutive equations are developed, which represent forces and 

moments acting in a homogenised model of a lattice shell as functions of the strain 

components of the median surface of the lattice shell . These constitutive equations 

will allow for the first stage of analysis: homogenisation of the actual grid structure 

and calculation of stress resultants in the homogenised model. 

In the next section the second stage of lattice structure analysis will be shown: the 

reverse calculation of stress components in the ribs of the actual grid from the 

"homogenised" stress components. In a general form, the algorithm for the analysis of 

lattice structures is shown in Figure 3.3 

Homogenisation of the actual lattice structure 

Formulation and application of loads and constraints 

Calculation of strain components of the midsurface of the homogenised model 

Calculation of forces and moments acting in homogenised (continuous) model 

Reverse calculation of forces and moments in the ribs (for each family) 

Optimisation of geometric (or other) parameters of the lattice structure 

Figure 3.3 The algorithm for the analysis of lattice structures 

3.4.1 Deformation of the Ribs in a Lattice Shell. 

Assuming that the deformation of an axis of any particular rib is equal to the 

defonnation of a line coincident with the axis of this rib and fix one (i-th, 1" i :5 n) of 

the presented n rib families in a shell. The orientation of a rib's axes on the median 

surface of a shell is characterised by the angle rp,. 
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Using transfonnation fonnulae of the theory of elasticity for the components of a 

strain tensor [97] and also their linear distribution in the direction normal to the 

median surface, expressions for the deformations of an axis of a rib that belong to the 

i-th family of a grid shell can be derived as follows: 

Here the following notations have been used: 

S; = sin(q;>J. 
Cl = cos( q;» 

(3 .12) 

(3.13) 

The change in the curvature of a rib's axis in the plane tangential to the median 

surface of a shell can be calculated as: 

(3 .14) 

The value ofV', is calculated using (3 .15) depending on the considered problem 

V' = 0.5(- 20 + ",cos 21P +(e, - eJsin 2IP). (3.15) 

3.4.2 Forces and Moments Acting in the Ribs of a Grid Shell 

Constitutive equations for the ribs in the lattice shell are developed in this subsection. 

Consider that one of the main central axes ofrib's cross-section is coincident with the 

direction normal to the median surface of a shell . 

Positive directions of forces and moments, acting in the cross-section of a rib that 

belong to i-th family are shown in Figure 3.4. 
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Q' 

h h 

b b 

Figure 3.4 Positive directions of forces and moments in the cross-section of a rib 

The relationship between the forces and moments and components of a strain tensor 

takes the following fonn: 

Ni· = EjF;E;. 

H; = G;J).j T;, 

M j- = -EtJIIX;. 

Qj- =-Y',M;. 

Gj- = -EIJ2IX~J 

S; = - VjG; . 
(3 .16) 

Where F; . J li • Jll • JlI are the area inertia of the cross-section, main central and 

torsional moment of inertia of the rib ' s cross-section respectively; Eo Gi - the 

Young' s and shear module of the ribs. 

Formulae (3 .16) allow the evaluation of the forces and moments acting in the ribs 

when the load is applied to the grid nodes. In the case of load application "out-of-

71 



node" it is necessary to assess the deformation of a rib from the locally applied loads, 

distributed along the axes of the ribs. 

3.4.3 Continuous Model. 

A continuous model of a lattice shell is considered. A set of constitutive equations is 

developed for the equivalent homogenised model which allows the calculation of the 

stress resultants in the equivalent model from the strain components of its median 

surface. 

3.4.3.1 Calculation of the Defonnations from the Forces and Moments in the 
Ribs. 

Let us assume that the forces N;, Q;, S; and moments M; , G;, H; (Figure 3.4) 

acting in the ribs are distributed continuously along the cross-section of the equivalent 

modeL 

Linear forces and moments (Figure 3.2) acting in the model of a shell that consists of 

n families of ribs are: 

" Q, = "LQ;c, la" ,., 

,., 

/,,1 

" 
MLI = ~Gj·cl l a;, 

/",1 

1=1 

" 
Q, = "LQ;s,la" 

H, =-i(M;c,s, +H;s, )Ia" 
;=1 

" 
M 2, =-~G;sjla; , 

/,.\ 

where a j is spacing between the ribs that belong to the i-th famil y. 

3.4.3.2 Constitutive Equations of Continuous Model 

• General case. 

(3 .17) 

Substituting (3.16) into (3 .17), and talcing into consideration (3 .12), the following 

constitutive equations for a model ofa grid shell can be obtained : 
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" 
NI;::::' ClIl\ +CIlC1 +CI~(()- LSjC;X:, ,., 

" 
Nz = e21 C\ +C22 &2 + C16lU + Ls;c,X: . 

;: 1 

" 
SI = C61 G1 +C62 &2 +c66 C'V+ Lcj

2x: . 

" 
S2 ;; C61 E 1 + C62 C 2 + Cfj6({J - LSj'l x;, 

; = 1 

M , = - [(Du + Ku)x, + (D" +K" )x, + (2D" + K,,)r 1 
M, =-[(D" +K,,)x, +(D" +K,,)x, + (2D" +K,,)rl 
HI ;; (V61 +K~:»)XI +(D62 +K~»)X2 + (2D66 +K~)}r-. 
H 2 = (D6\ +K!~» )XI +(D62 +Kg)1~2 + (2D66 +K~)}r-, 

" " M}s ;; - 'L/iOC; %iD• 

i_I 
M 2s = - 'L/;O Si XiD. 

i _I 

The following notations are used above: 

" " CII ;; LK i c,4, el2 = C6(, = LKjsj1C.1 • 

; =1 ,., 
" " 

Cn = 'LKjs:, C26 = LKjs:cj J ,., .. , 
" D66 t 2 '2 DII = LI;ct. D\2 = -- = 1,$; c, , 

i . \ 2 /. \ 

" " 
D22 ;; 'Lljst . D'}.6 = L,!,s;c/. 

i_I b.\ 

" " 

" 
Cl6 = 'LK/Sf c:. 

;.,1 

Cif =C" 

" 
DI6 = 'L1/Sj Cj). 

i . \ 

Dij = Dji" 

KI I =KZ2 ;;;;Kll :;;;;K21 :;;; L:Cjs;Cj'l, K I') - "C' 2 66 - £..- je; cos IP,. 
i=l 

" 
KI6 =Ku; = Le'SI cj cos2tpj , 

l iD = E j J 21 • 

Q , 

W here 

,., 

1=1 

" K~)::;: Le,s; cos2tpp ,., 
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(3 .18) 

(3 .19) 

(3 .20) 

(3.21) 



K = E,F, , , I = E,JI/ , , (3 .22) 
a, a, 

Parameters XI' 11 , I jO, Cl show the relationship between the corresponding stiffness 

characteristics of the ribs and the distance between their axes. 

In contrast to the conventional continuous shell in the case when J 1.i '*- 0 additional 

bending moments MII and M 2s acting in the plane tangential to the median surface 

(Figure 3.2) must also be taken into account. 

3.4.3.3 Some Particular Cases 

In this subsection some particular cases are considered. Constitutive equations are 

derived for some of the most common patterns ofa lattice. 

In practical calculations we can assume J2i = 0 provided it does not turn the model 

into an imperfect frame. There is a similarity with the analysis of a frame where the 

rigid joints of its members are assumed to be hinges. Bending stresses of the ribs 

acting in the plane tangential to the median surface are found using deformations of 

the median surface. In further calculations the value of J 1i is assumed to be equal to 

zero. This assumption essentially simplifies some of the constitutive equations (3 .18). 

Tangential forces in this case are: 

NI =CII &\ +CI1 &2 +ClIsm, 

N2 =C:n &, +C21 &2 +C26aJ. 

S = C61 &, +C61 &2 +C66 tU. 

The last equation in (3. 18) also shows that 

(3.23) 

(3.24) 

Now constitutive equations for homogenised model will be written for several 

particular cases of the grid arrangement. The above mentioned assumption J 2i = 0 is 

used in each of the considered cases. 

1. The torsion stiffness of the ribs equals zero (J3/ = 0). The constitutive equations 

take the following fonn: 
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N] = CIIE] +C12 E 2 +C]6U)' 

N 2 = C2I S] +C'12 S2 +C'26U)' 

S = C]6E] +C26 E2 +C66 U), 

H = DI6S1 + DU E2 +D66 T, 

M ] =-(D1]XI +DI'2X2 +D\6'l), 

M 2 =-(D12X1 + DnX2 + D26 T). 

(3.25) 

For a particular grid pattern equations (3.25) will be the same as the constitutive 

equation for anisotropic shells, the material of which has a plane of elastic symmetry 

parallel to the plane that is tangential to the median surface. If these constitutive 

equations also satisfy the following equality: 

(3 .26) 

then they transform into constitutive equations for an orthotropic shell, where the co­

ordinate axes ~ P, and the normal to the median surface are the principal elasticity 

axes: 

NI = CI]B] + C12 B2• 

M, = - (DIIX, + D"X,), 
N2 =C2]B1 +C:u E 2' 

M, = -(D"X, + K"X, ), 
(3 .27) 

Let us consider some possible grid arrangements where conditions (3 .27) are satisfied. 

In this case it is enough to consider only the first two of these conditions because the 

last two may be obtained from the first. substituting It:; with I , according to (3.20) 

and (3.21). 

If the number of families of ribs, n, is two (orthogrid and anglegrid, see Figure 3.5) 

there are only two possible cases: 

I. '1', = -'1'" K, = K, (((3.22) because a, = a, for this geometry) (Figure 3.5(a)) 

2. '1', = 0, '1', = ", K" K, are arbitrary (Figure 3.5 (b)) 
2 
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(a) (b) 

Figure 3.5 Isogrid and orthogrid unit cells 

For n = 3 (Isogrid), the constitutive equations (3 .27) can be used for the following 

grid patterns: 1< 
'P2 = - <P I' K2 = K" 'Pl = 0 or 'P3 = - for any value of K3; 

2 

The range of values for <Pi is detennined by the condition Xi> O. 

(3.28) 

3. The grid pattern is rhombic (n = 2) (Figure 3.5). Ribs that belong to each family 

are assumed to be the same and we have ~ ;;;; a2 = Q , 'PI ;;;; 'P2 = rp, Kl :;::: K2 = K . 

For the considered rhombic grid pattern, the constitutive equations can be written as: 

76 



NI = N 2ctg 2 rp = 2Kc2 
(C

2 
BI + S 2 6 2 ) , 

MI =-2C' ((Ic' +CS' )XI + (1 - C)S'X, ), 

M, = - 2S' ((1 + C)c' XI +(1s' - Cc' )X, ), 

H I = 2c2(21s2 + C cos2rp)r, 

H 2 = 2s2(2lc2 - C COS2rp)r. 

S = 2Ks2c 2
(j) . 

(3 .29) 

It can be seen that forces NI and N2 are linked. A similar link will occur between 

bending moments M j and M 2 when the torsion stiffness is equal to zero. This shows 

the significant difference of these equations in comparison with those used in the 

conventional solid shell theory [59). 

4. A grid pattern consisting of four families of ribs (n = 4) (Figure 1.4). Ribs 

comprising families 1 and 2 are assumed to be the same: 

KI = K , = K . (3 .30) 

Using the relations for rib spacing a = 2a)s = 2a4c the constitutive equations are 

given as: 

NI = C1I 6 1 + C [262 ' 

M t = P lI XI + fi 12 X2' 

N2 = C21 6 j + Cn 6 2 • 

M 2 = fi 12 X, + fi 22 X2' 

HI = fill 'C. 

H 2 = fi4 lr . 

where: 

CI I = 2Kc4 + K4 • 

Cl2 = C66 = 2Ks2c2
, 

C22 = 2Ks
4 

+ K3' 

fi ll = -(2lc4 + 14 + 2CS2C2), 

/31' = - 2s'c' (1 - C), 
fin = - (21s4 +13 + 2CS2

C
2

) , 

fi31 = 1sin22rp + 2Cc2cos2rp+C4 • 

P41 = 1sin2 2rp - 2Cs2 cos2rp + C3 · 
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s = C tU 
.. , (3 .31) 

(3.32) 



3.5 Calculation of the Deformations and Forces in the Ribs from the 

Forces and Moments in Homogenised Model 

The constitutive equations that were obtained above represent forces and moments 

acting in the homogenised model of a grid shell as functions of the strain components 

of its median surface. In this section the question of finding the reverse dependencies 

(strain components as functions of acting forces and moments) is considered. 

In this section the deformations, forces and moments acting on the ribs are calculated 

for lattice structures with: 

• two families of ribs 

• more than two families of ribs. 

The solutions are derived for the cases of statically detenninate and statically 

indeterminate lattice shells. 

3.5.1 Tangential Strain Components 

Let us consider the tangential strain components E\ . &2' CV In the equations of 

equilibrium (3 .23) as unknowns. The determinant of this system of algebraic 

equations is: 

" D = L~KjKI:(Ci4S:C:S: + 2S;Cj2SjC~S;Ck - C;4sjCJS;Ct - s;c?S:c;s;c; - SjCj
3Sp;s:).<3.33) 

/.j,k:\ 

In order to simplify the expression, let us fix three arbitrary integer numbers jJ . m , 

v. Each of these numbers is greater than zero and smaller than n + 1. According to 

further pennutations of these numbers, the indices in equation (3 .33) change their 

value in the following way: 

j = j.J, j = m, k = V; i = j.i, j = v, k = m; 

i = m, j = p, k = V; i = m, j = v, k = p ; 

j = v, j = p, k = m; i = v, j = m, k = p . 

(3.34) 

The final sum of all SIX members mentioned above, after certain trigonometric 

transformations, is: 
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(3.35) 

Consequently (3.33) will be: 

A pnme next to the sum symbol means that there is only one member that 

corresponds to each sequence of indices 11. m. v (the total number of these indices is 

six). 

The value of the considered determinant does not depend on the choice of the co­

ordinate axis of the median surface because (3 .36) includes only the differences in 

angles. 

3.5.1.1 The Number of Families of Ribs Is More Than Two 

For all indices that satisfy the condition: 

j.J '1:- m, P '1= v, m'#. V, (3.37) 

the expression (3 .36) in the square brackets IS non zero. Consequently. D> 0 for 

n > 2, because the number of combinations of indices j.J. m . v . which satisfy the 

conditions in (3.37), in this case n(n - l)(n -2)/6, and the system of algebraic 

equations (3 .23) for unknowns El' E2 , m always has a unique solution (D > 0). This 

result is unique because for n> 2 families a grid shell consists of the system of ribs, 

which is stiff in the plane tangential to the median surface: the system of 

homogeneous equations (3.21) should have only a trivial solution. 

The solution of this system is: 

where: 

&1 =aIlN. +allN 2 +al)S. 

&2 =a21 N1 +an N 2 +a2JS. 

(l);::;.a11N 1 + a12N2 +~3S, 
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I ~K K " . ' ( ) a 22 = - L- , l e , Cl SIn 'P, - rpi ' 
2D i •i =1 

Q 23 = - 21D .tKiK jc;cj sin(lPj + if' j )sin
2
(lPj - tp i )' 

, ./=1 

aB =_I_ tK,K j cj cj sin2(tpj +lP j )sin2{1P; - tp j ), 
2D i d=1 

a ij = a /; . 

3.5.1.2 The Number of Families of Ribs is Two 

(3.39) 

Formula (3.36) shows that if at least one of three conditions: j.J = m, J.l =- y , J.l = v . is 

satisfied, then the corresponding sum equals zero. Therefore D = 0 for n = 2 , since 

the combination of indices (3.37) in this case is excluded. Consequently, the system of 

equations (3 .23) for N I = N 2 = S = 0 has also a nontrivial solution. That means that 

the model is not fully constrained and represents an imperfect frame. 

In the considered case the tangential forces NI ' N z, S are related in the following 

way: 

(3.40) 

which represents the condition of compatibility for the inhomogeneous system of 

equations (3 .23) for c" c" "' . 

If fP l + 'P2 :t; 0 ,then the solution of this system of equations is 

(341) 

where Cl) has an arbitrary value. 
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The condition Q'\ + tp2 :::; 0 results in (Q'\ :::; -tp2 ) : 

C N -C S 
& :::;_& Ig' rp + 66] ]6 

] 2 4 . 2 ' K ]K2c sm 2'1' 
(3.42) 

Here &2 is arbitrary. 

This leads to the conclusion that this model of a grid shell is unconstrained on its sides 

and therefore will represent an imperfect frame since its median surface can defonn 

without any applied load. 

3.5.2 Calculation of the Bending Components of a Strain Tensor 

Let us derive bending components XI' X2' ' of a strain tensor from the following 

system of equations: 

M, = - [(D" +K,,)Z, +(D" +K,, )Z, + (2D" + K,,)Tj. 

M, = - [(D" +K,, )Z, +(D" +K,, )Z, + (2D,. +X,, )Tj. 

H] :::; (D61 + K~:» )X ] +(D62 +K!;l )X2 +(2D66 + Kl!l),. 
H2 :::; (D61 + K!~» )x\ +(D62 +Ki~1 )X2 + (2D66 +K!:l )T. 

which represents a part of the equations (3 .19). 

(3.43) 

When E;J u » G;J 3; the torsional stiffness of ribs need not be taken into 

consideration if this assumption does not lead to the transformation of an analysis 

model into an imperfect frame (geometrically unstable model). Then the torque 

moments acting in the ribs of a grid shell are found from 

where the values of , ; are calculated using equations (3 .12). 

Considering J. = 0 from (3.43) we obtain: 

M \ :::; -(DuX] + D \2 X 2 + 2D16 ,1 
M , = - (D" Z, +D" Z, +2D,.Th 
H = D" Z, + D" Z, + 2D" T. 
H = H,= H,. 
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Comparing systems of equations (3 .23) (for E" E" llJ) to (3.45) (for Z" Z" T) we 

can conclude that one may he transformed into the other when substituting 

(3.46) 

for 

(3.47) 

It is also true for the system of equations (3.45), and in particular equations (3 .36) 

(3 .38) remain true (for arbitrary n), (3.40) (for n > 2), (3.40) and (3.42) (for n = 2) 

when substituting (3.46) with (3.47). 

In the case when torsional stiffness of ribs can not be neglected (J)i *- 0) J parameters 

Z" Z" T are calculated from the system of equations (3.43). 

The system of equations (3.43) has only a trivial solution for 

M \ = M z = H I = H'l = O. Bending and torque moments are related so that system 

(3.43) has a unique solution. 

3.5.3 Forces and Moments Acting in the Ribs of a Cylindrical Shell 

3.5.3.1 Statically Determinate Cases 

lf the reverse dependencies of (3.17) are single-valued, then they can he used for the 

calculation of forces and moments in the ribs of a grid shell from known strain-stress 

distributions (for statically determinate cases) . Lets consider some of these cases. 

For the grid pattern that has three families of ribs (n = 3) . the solution of the first 

three equations from (3 .17) is: 

DN; ; [N,s,s, sin (9', - 9',) + N,e,e, sin(9', - 9',)+ S(e; -e;)}:." 
DN; = [N,s,s, sin(9', - 9',)+N,e,e, sin(9', - 9',)+S(e,' - e;)p" 

DN; ; [N,s,s, sin (9', - 9', )+ N,e,e, sin (9), - 9',)+ S(e; - e,' )p" 

where S, ; S, = S because S; ; 0 and 
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In this case the value of D is not equal to zero if the axes of ribs which belong to the 

same family do not have a common tangent with the axes that belong to the different 

families. When subjected to the following conditions: 

(3 .50) 

these fannulae simplify to: 

DoN; = l-N,ss, sin(q. + q., )+N,cc, sin(q. -q., )+ S(c; - c' )):.. 
DoN; = [N,ss, sin (q. - q.,)+ N,cc, sin(q. - q., )+ S(c' - c; )P. (3.51) 

N; = a } (NI S 2 - N2c
2XC; - el t , 

where 

(3 .52) 

It follows from the equations (3 . t7), fannulae for the bending moments can be 

obtained from (3 .51) by substituting N; . Ni ' S with M,. M i • - H . respectively for 

(i = 1, 2 , 3~ j = I, 2) . Torsional stiffness of the ribs in this case is neglected. After the 

substitution we have: 

DoM, = [- M,ss, sin(q. + q.,)+ M,cc, sin(q.- q.,) + H(c; - c' )ja. 

DoM, = [M,ss, sin(q. - q.,) + M,cc, sin(q. - q., ) + H(c' - c:)ja. 

M; =aJ(M\.r - M2C2XC~ - e2fl, 
(3 .53) 

Let us consider the case when n = 2. and all stiffness characteristics of the ribs 

(including J'U ) are non zero. Then the number of unknowns in the equations for 

unknown forces and moments acting in the ribs of a grid are equal to the number of 

equations for each of the separate systems appearing in (3 .17). 

Solutions for these systems can be written as: 
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N; =al (cls2N I - SIC2N2 -SIS2SI - CIC2S2)Sin - I(<I'2 -<I'l l 

N; = a2(s, c2N, - Cls2N 2 - SIS2S1 - C\C2S2 )Sin -
I
(<I'\ - <P2l 

s; = al(s.s2N. - C1c2N2 - C1S2S1 - SIC2S2)Sin -I(<p. - <P2l 

s; = a2(s\s2N\ - c\c2N2 - S\C2S1 - CI S2Sl )Sin -] (<P2 - <I'll 

G- = (S2M b + c2M 2S ):r. G- = (s,M .. +cIM 2S P 2 
, sin(~, - ~J ' sin(~, - ~, ) 

Q; = (s,Q, +c,Q, Ja , Q; = (s,Q, + c,Q, Ja, 
sm(~, - ~, ) sm(~, - ~, ) 

[f consider <p = <PI = - <Pl • a = a. = a2 these formulae transform into: 

N,~, = 05a[N, +N, ±(S, tg~+S, ctg~)l. 

S~, = 05a[S, +S, +(N, tg~ + N, ctg~)l. 

Q,~, = O.5a(Q,c-' ±Q,s-'). 

G;,2 = O.5a(M,sc-\ ± M2 Ss-1
). 

(3.54) 

(3 .55) 

On the basis of (3. 17) the conclusion can be made that the formulae for bending and 

twist moments acting on the ribs of a considered grid can be obtained from (3 .55), 

when the strain-stress distribution is known and Ni- . Si-' Nit Si are replaced by 

M;'. - H;' , M" - H, (i = 1, 2) respectively. Then we can write: 

M,~, = O.5a[M, +M, +(H, tg~ + H, ctg~)]. 

H,~, = O.5a[H, +H, ±(M, tg~+M, ctg~)l 
(3 .56) 

For the case of a grid pattern that consists of two families of ribs, and assuming that 

J" = 0 (S;' = 0) , the linear loads of a model N" N,. S are related through (3 .40). 

This relationship represents the compatibility conditions for the first three equations 

of (3 .17) that have two unknown forces in ribs N; and N; . Solution of these 

equations for <p] + <P2 ':F 0 is: 

(3 .57) 

When~, + 9', = 0 we have (~, = -~, ) and 
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N; =(N, + S)~, 
c s 2c 

(3 .58) 

If the torsional stiffhess of the ribs are neglected (J3i = 0). then Hi- = O. The formulae 

for the bending moments in the ribs of a shell are obtained from (3.57), (3 .58) after 

replacing N;', N p S with AI;, Mp - H (i = I, 2) . This leads to the following 

formulae for the bending moments: 

(3.59) 

for the case when lPI + 'P2 -:t; 0 and 

M; =(M, +H)~, 
c s 2c 

(360) 

for the case ffJ = IPI = -t.p2 . 

3.5.3.2 Statically Indetenninate Cases 

If a grid pattern of a shell is such that the number of equations (3.17) is less than the 

number of unknowns, we are faced with the statically indeterminate problem for 

calculation of unknown forces and moments in the ribs from the known stress-strain 

distribution in the shelL 

Nevertheless, this problem can he solved relatively easily: first the strain components 

of a median surface can be obtained from a given stress distribution in the model 

(3.33), (3 .3 5); and then formulae (3 .12) and (3 .16) can be incorporated. 

We now calculate the forces and moments acting on the ribs of a grid (Figure 3.4) for 

a known stress distribution. Ribs of the first two families (i = I, 2) are considered to 

be the same. Index i (i = 1) is skipped for all notations which correspond to the first 

fam ily of ribs excluding those for the forces and moments. 

Constitutive equations for the considered grid pattern are given by (3 .17). 

Equations for tangential strain components can be found after applying relations 

(3.38) as: 
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Del = [2N\(2KS4 + Kl ) - KN2 sin 2 24p]KS2c2• 

De2 = [- KN, sin 2 24p+ 2N2(2Kc4 +K4)]Ks2C2
• 

DOJ = (2KK3C4 + 2KK4 s4 + K3K4)s' 

where according to (3 .35) 

D = [(K,e' + K,s' )K + K,K, /2]K sin ' 2'1'. 

(3.61) 

(3 .62) 

Now fonnulae (3 .12) and (3 .16) allow the unknown axial forces in the ribs to be 

found for any of the four families: 

where 

N;, =[(K,N,e' +K,N,s')K' ±SK(sin2<pt'] EF, 

N; = [(2Kc" +K.)Nz -2KNIS2c2]K°ElFl' 

N; = [(2Ks' + K, ~JIf, - 2KN,s' e']K° E,F" 
(3 .63) 

(3 .64) 

The sign before the second summand in the expression for Nl~2 is negative for the 

second family and positive for the first family. 

The expressions for the bending and twisting moments of the median surface of a 

shell are found by expressing the components of bending deformation XI ' X2' r in 

tenns of distributed moments M \. M 2• HI' using constitutive equations (3 .18). Then 

after applying (3 .12) and (3.16), the final expressions for bending and twisting 

moments of the median surface are found as: 

M'~2 = {[(13cl +2CS2C2)M, +(141 +2CS2C2)M2 ]/0 :;: 

+H,(1 sin 2'1' + 2Ce' ctg2<p + C, sin-' 2<pr'}E1" 

M; = [(21e' + I, + 2Cs'e' )M, - 2M,s'e'(1 - C)]I,E,J13 , 

M; = [(21S' + 1, +2Cs'e')M, - 2M,s'e'(1 - C)]I,EJ, ,, 

H,~, = I ±[(IS' + I,)M, - (2Ie' + I,)M,]I, + 2H,fT,: cos2<pl GJ" . , H, = - 2G,J"J4H,fT", 
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where 

10 = [2I(I]c4 +/4s4 )+//4 + 2Cs2c 2(21 + 1] +/4)jl. (3 .66) 

The tenn P 3I is calculated using (3 .32). 
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3.6 Boundary Conditions 

In this section the boundary conditions imposed on the considered structure are 

discussed. 

If the stiffness of the members of a grid structure in the plane tangent to the median 

surface of a shell is neglected (3 .67) 

(3 .67) 

then the order of the system of differential equations of the stress-strain state for both 

grid and solid shells are the same. In this case the boundary conditions are the same 

for the both shells. 

When the stiffness of the ribs J2i is not neglected, the order of the system of 

differential equations increases from the eighth to the twelfth order. In this case six 

boundary conditions are required to be specified instead of four. Consider the form of 

these two extra boundary conditions required for a grid shell in the case of non-zero 

bending stiffness of the ribs (J2 i '* 0) . Practically there is only one case when the 

bending stiffness of the ribs in the plane tangential to a median surface should be 

taken into account. This is the case of a grid comprised of two families of ribs (n=2). 

The additional boundary conditions are fonnulated along the contour of a shell, which 

is coincident with the co-ordinate line P = Po . 
The most typical boundary conditions are: 

1. The members of a grid structure are joined along the contour of a shell by means 

of a hinged connection, which allows free rotation of the members of each family 

about the nonnat to the median surface ofa shell (Figure 3.6a). 
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a) b) c) 

Figure 3.6 Types of a constraint contour 

In this case. according to (3 .20) and (3.21), the two additional boundary conditions 

along the contour G; ;;;; G; := 0 are: 

for P= Po. (3.68) 

2. The members of a grid structure are rigidly connected to each other (Figure 3.6b) 

along the contour of a shell: the rotational angles about the nannat to the median 

surface of a shell of two adjacent members that belong to different families are 

equal. Additionally. the value of a linear bending moment in the plane tangential 

to the median surface of a shel l is given. 

In this case one of the two additional boundary conditions is: 

for P= Po, (3 .69) 

where ~s( a) is a given function. 

The second additional boundary condition is obtained by equating the angles of 

rotation of two adjacent members about the normal to the median surface of a shell 

(3. 15): 

m( cos2q>, - cos2q>,) + (c, - c,X sin2q>, - sin2q>,) = O. (3.70) 

3. The members of a grid structure are rigidly connected to each other along the 

contour of a shell . No rotation about the normal to the median surface of a shell is 

allowed (Figure 3.6c). 

Two additional boundary conditions, according to (3.15), are: 
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for (3 = (30· 

For the case of rp = rp, = rp,. boundary conditions (3.70) and (3 .71) become: 

&2 - 6 1 ::; 0 for 

&z - & 1 ::; tVcos2tp - 28 ::; 0 for 

(3 = (30' 

P = Po 

(3 .71) 

(3 .72) 

(3 .73) 

4. The members of a grid structure are rigidly connected to each other. hut the 

connection with the contour of a shell is linear elastic with the respect to the angle 

about the normal to the median surface of a shell. 

In this case one of the two additional boundary conditions must be taken in the form 

of(3.70) and the other as (3.74): 

M,. = k(a)\V, = k(a)\V, for (3 = Po. (3.74) 

where k( a) is a function of the rigidity of the elastic constraint, VI and Ij/ 2 are 

angles of rotation about the nannal to a median surface of the axes of two adjacent 

members of two different families. These angles are found from the formulae (3 .15) 

depending on the type of the considered boundary problem. In later formulae the 

members 'If and rp must be substituted with 'l'i and fP; · 
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3.7 Analysis of the Lattice Plates 

In this section the problem of a rectangular plate with rhombic and rectangular types 

of grid patterns is considered. The forces and moment resultants are calculated. 

3.7.1 A Plate with the Number of Families of Ribs More than Two 

Lets consider the median surface of a plate in the Cartesian co-ordinate system x, y . 

The differential equations of equilibrium in this case are given as: 

iN iN __ , +_1 +Y =O. 
0/ ac 

(3 .75) 

The components of strain tensor in this case are given as: 

'" "" a>=-+-. 
0/ ac 

(3.76) 

The constitutive equations (3.23) can be written in the following form: 

" " N, = :LK;c,'V,(c,u + s,v), N, = :LK,s,'V,(c,u + s,v), 

" 
(3.77) 

S = :LK;s,c,V,(c,u + ~v), ,., 
where the operator V, denotes differentiation towards the tangent to the axis of a rib, 

which belongs to i-th family. This operator is given as: 

Cl Cl 
V =c-+s-, 'ac ' 0/ (3.78) 

The member cju+siv represents the displacement of the point of the median surface 

in the direction of a tangent to the axis of a rib. which belongs to i-th family. 

Incorporating the obtained constitutive equations and (3.75), the following system of 

differential equations is found in the displacement form: 

L,,(u)+L,,(v)+X = 0, L,,(u) + L,,(v) + Y = 0, (3 .79) 

where 4; are linear differential operators: 
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(3.80) 

The notations used in (3 .80) are given in (3.20) and (3 .21), and the following 

additional notations are used: 

(3.81) 

If the geometric and material parameters are the same for all the families of ribs, the 

differential operators of the system of equations (3 .79) can be simplified and are given 

as: 

" " " ~I = LKiC;V~. L" = LK,?,V:, 4 2 = L:K;c;sjV~ . (3.82) 
i . \ ; .. \ ,=, 

Let us consider a grid plate which consists of three families of ribs. The grid 

parameters as well as the properties of the ribs are considered to be constant: 

rp = <1>\ = -qJ". 
F = F; = F; , 

fPl = 0, a =al =a2 = 2caJ • 

E = E, = E, = E" 
(3.83) 

This grid can be obtained from the onc shown in Figure lA (c) if the third family of 

ribs is absent. The subscript i for the Hrst family of ribs in the further derivations is 

omitted. 

In this case the equations of equilibrium of a grid plate are transformed into the 

formulae for N" N" S from the formulae (3 .27) with the following notations: 

c" = C .. = 2Ki'c', CII = 2Ks' . (3.84) 

For the considered type of grid, the differential operators (3 .82) of the system of 

equations (3 .79) become 
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(3 .85) 

where 

u = -(a,/EF)4,(rt» , v = (a, / EF)L, ,(rt>). (3 .86) 

The system of equations (3 .79) can be reduced to a single equation 

(3 .87) 

where 

K ,O = a 110 12 • x: = tl.;z:2 Q I2' K~ = a 11
Q 12 - 3a;2, 

al l = 03 + c3• a'2 = $2c, a n = .rtg~, 03 = ~/F . 
(3 .88) 

Lets consider particular case where the boundary conditions are given as: 

II=S=O for x = 0, I , (3 .89) 

where I is the dimension of a plate in the x direction. In this case the solution of the 

differential equation (3 .87) is found by expansion into a series 

~ 

rt>(x, Y) = L9'.(y)sinA.x, (3 .90) 
~, 

The solution for the function tp",(y) corresponds to the solution of the homogeneous 

equation (3 .87) for X 'lE 0 and can be reduced to the solution of the characteristic 

equation 

where 

a , = ~~ , K' 
2a, = i~ . 

K' , 

(3 .91) 

(3 .92) 

The forces in the members of each of the families are obtained from the known stress­

strain state using the following equations: 
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N' = (N, ± S)!!... N' = (N, _ N,e) a 
],2 s C 2s ' 3 C I 2 • 

(3 .93) 

which were obtained from (3 .51), for the case of '1', = 0, a = 2ea,. 

3.7.2 A Plate with Two Families of Ribs 

Consider a problem that takes into account the in-plane stiffness of the ribs. On the 

basis of equations (3 .7), (3 .8), (3 .15) and (3 .76), the angle of twist of the axis ofa rib 

that belongs to the i-th family about the nannat to the median surface of a shell is 

1/1, +, ~ -s, :}e,v-s,u) (3 .94) 

The changes in the in-plane curvature of the axis of a rib, that belongs to the same 

family, according to (3 .14) is 

(3 .95) 

The constitutive equations of the grid plate can be written using formulae (3 . 18), 

considering the number of the families of ribs: n = 2 . 

The stress-strain state of a model allows the calculation of the forces and moments in 

the members ora grid using the formulae in Section 3.5.3 . 

3.7.2.1 A Plate With a Rectangular Grid 

Consider the case when the co-ordinate axes are coincident with the grid families, so 

that 'PI = O. 'Pl = 1!/ 2 . Then the formulae for the forces and moments can be obtained 

from the relationships (3 .18), (3 .76) and (3 .95). 

(3 .96) 

where 

(i=I, 2). (3 .97) 

The equations of equilibrium 

av, + is, + X = O 
i1< 0' ' 

av is __ , +_1 +y = O 
0' i1< 

(3 .98) 

can be reduced to the following form 
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(3.99) 

The above system of equations for a plate with considered grid pattern is written in 

tenns of displacements. 

3.7.2.2 A Plate With a Rhombic Grid 

Let us consider the diagonals of a grid to be coincident with the co-ordinate lines of 

the median surface of a plate (tp = <PI = -tp2)' The ribs are considered to have equal 

length and to have the same cross-section. 

The constitutive equations (3.100) for a plate with a rhombic grid are obtained using 

formulae (3.18), (3.76) and (3 .95): 

where 

N = NI') - 10') , , 

S = Si') + Si') , , 

N, = 10')tg'tp+ NI'), 

S, = ,s{') - ,s{')tg'tp, 

N P) KSin' 2tp(ro , iV) 
= 2 ",ctgtp+o/ , 

N I') = ( , o'u 3' o'u 
c ",' + S "'0/' 

Si') = KSin' 2tp(iV + ro) 

2 '" 0/' 

Si') (, o'u 3' o'u 3' _o'c--o-v, = S -+ C - c ---:: 
0/' ""0/ "'0/' 

c' o'v) 0 • , "7 ",' I Sin 2'1'. 

(3 .100) 

(3.101) 

The forces and moments in the members of a grid are calculated using (3 .55) for the 

known stress-strain state of the model of a grid shell. 

The following system of equations in terms of dispiacements (3.102) is obtained by 

substituting (3 .100) into the equations of equilibrium (3 .98): 

2X L,,(u) + L,,(v) + ., 0, 
KSIn 2'1' 

2Y L,,(u) + L,,(v) + . , =0, 
KSIn 2'1' 

(3.102) 

where 
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LIl=L-p~T, 

L" ; Ltg' tp - p;Tctg' tp, 

8' ,(, 8' '8'} L\2 = 2--+ 4P2 c 3 +S 3 a,y a ,y a,y (3 .103) 

Here p~ = J2 / F ; P is a radius of inertia of the rib's cross-section for the case of in­

plane bending of a grid plate. 

Taking Y == 0 and also considering 

u ; [.,,(<1», v ; 1,, (<1» , (3 .104) 

the system of equations (3 .102) is reduced to the following differential equation 

expressed in terms of the function et>: 

, , cl)} 2X +5 tg '1'- , <I> ; • , • a KSIO 2'1' 

As can be seen from the above equation, consideration of the in-plane bending 

stiffness of the ribs (P2 '1-"- 0) increases the order of the equation from four to eight. 

This fact points towards the necessity of the formulation of additional boundary 

conditions. 

Additional boundary conditions (3 .71) that restrict the rotation of the axes of the ribs 

of both families about the normal to the median surface of a plate can be used. 

Substituting equations (3.8) and (3.76) into (3 .71), these additional boundary 

conditions are written in the following fonn: 
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, ii> ro ro ii> 
c -- r -=---= O for a 0/ a 0/ Y = YO· (3 .106) 

In the analysis of the plates with two families of ribs, the decision of whether to take 

into account in-plane bending deformation of the ribs depends on the particular 

fonnulation of the problem. 

As can be observed, for X = Y = J" = 0 and tpi = consl ~ = 1, 2) the axial force in 

any of the members of a grid plate must remain constant. This can be shown by the 

following solution of the equations of equilibrium. 

Co-ordinate axes are chosen in such a way that they satisfy the following conditions 

tp = tp, = - tp, . Then from the equations (3.40) we obtain 

N, = N,tg'tp, 

and the equations (3.75) are written as 

av,+ co =o 
a 0/ ' 

The solution oftrus system of equations is given as: 

N, = ¥,,(y + rtgtp) + ¥,,(y - rtgtp), 

s = [-¥,,(y + xtgtp) + ¥,,(y - xtgtp))tgtp, 

where '1'1 and 1,112 are arbitrary functions. 

(3.107) 

(3.108) 

(3 .109) 

In this case the forces in the ribs (3 .111) are obtained incorporating formulae (3.110) 

for the case of rp = f/Jj = - ffJ2 as 

(3.110) 

(3.111) 

The axial forces N; and N; do not change if the following conditions are satisfied 

y - xtgtp = const, y + xtgq'J = const. (3 .112) 

The conditions (3 .112) are the equations of the axes of the first and the second 

families of ribs. 
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3.8 Bending of the Grid Plates 

This section presents analysis of bending and shear deformation of the lattice plates 

with two, three and four families of ribs. 

3.8.1 Differential Equations of Bending oftbe Plates 

The equations of equilibrium for an element of a plate in the Cartesian co-ordinate 

system are: 

iQ, + iQ, + Z ~ O 
& 0/ ' 

ai, + M , _Q ~ O 
& 0/ ' , 

~: - ~' - Q, ~ o. 

(3.113) 

The expressions for the linear shear forces (3 .115) are obtained from the last two 

equations (3 .113) taking into account the constitutive equations (3 .17) and the 

conditions (3.114): 

if'w 
T=---. 

&0/ 
(3 .114) 
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( Kl'») ilw ( ) ilw + 3D62 + Kl6 + 61 aq,2 + D22 + KII q,l + 

+[:(D" -Kl:»)+ ;(D" -Kl1)]~'; + 

+[:(D66 + xl':») + ;(2D,,+K,,)]~; + 

{: (D62 +Kl:»)+ ;(Dn+Kl1)]~';}' 
Coefficients D, and K if are defined in (3 .20) and (3 .21). 

(3.115) 

The differential equation of the bending of a grid plate, taking into account the values 

from the first equation of equilibrium (3 .113), can then be written in a form of 

L(w)- Z =0. (3.116) 

where linear differential operator L{w) , is defined as 
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L(w) =(DlI +KlI) ~~ +2(2D" +K,,) :,~ + 

+(3D06 +~) ;;, + 2(2D" - K,,) :;, + (D" + KlI ) ~~ + 

+[2 ! (DlI- KlI )+ ; (3D" +K,,)]~~ + 

+[3 ! (2D,,-K,,)+ ; (3D,,+Kn];:~ + 

+[! (3D,,+~) +3 ;(D,,+K,,)]:;, + 

+[! (2D,,-K,,)+2 ;(D,,+ KlI )]~~ + 

, 8 , ' W 
+ de' (DlI +KlI)+ deo/ (2D" +K,,)+ 0/' (D" - KlI ) de' + 

+[;, (2D" +K,,)+ :0/(2D06 +~) + 

,:, (2D" - K,,)]!; + ;, (D" - KlI )+ :; (2D" +K,,)+ 

, ]'W '0/' (D" +KlI ) 0/' . 

The following additional notations were used in the above equation (3.111): 

" " 
K~ = L(l - 6 .... c,'):::" K~ = L Cj cos2 2qJ, . 

j=\ j=\ 

The equations for the moments are given as: 

" M, = Lc,V',(I,c,V' , + C,s,t.,)w, 
1=1 

" 
M , = Ls,V',(I,s,V, - C,c,t.,)w, 

j ", ] 

" H, = - Lc,V,(I,s,V', - C,c,t.,)w, 
1= \ 

" 
H, = - Ls,V,(I,c,V, +C,s,t.,)w, 

(3 .117) 

(3 .118) 

(3 .119) 

where the differentiation is introduced in the direction orthogonal to the tangent to the 

axis of the i-th family in addition to (3 .14): 

t., = s,8/de-c, 8/0/. (3.120) 

Equations (3.115) for the shear forces of a grid plate are written in the form: 
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" Q, = - Lv;(I;c;v, +c;s;t.;)w, 
/"' \ (3 .121) 
" Q, = - LV;(/;s;v; - c;c;t.;)w. 

/ ,, \ 

The differential operator (3 .117) in the (3 .116) is transformed into 

" L( w) = LV; (/,'1; + c,t.;)w (3 .122) 
;; \ 

3.8.2 A Plate With a Rhombic Grid 

The type of grid considered is the same as the one analysed in the section 3.7.2 .2 : the 

diagonals of rhombic grid are coincident with the co-ordinate lines of the median 

surface of a plate: rp ;:: 'PI = - tpz . a = Q ] ;:: a z . The cross-sections of the ribs which 

belong to both families are considered to be the same, From the above considerations 

and using equations (3 .119) we obtain the expressions for the bending moments as: 

M, = 2C' [(Ic' + Cs' ) [fw/ iic' + (/ -C)s' [fw/o/' l, 

M , = 2S' [(I - C)c' [fw/ iic' + (Is' + Cc' )[fw/o/' l, 
H, = - 2c' (2Is' +Ccos2rp) [fw/aco/ , 

H, = 2s' (Ccos2rp - 2Ic' )o'w/aco/ . 

The formulae (3 .121) for the shear forces are simplified considerably: 

, ( , [fw s' [fw ) s'~' [fw ( ' ) [fw ) Q, = -2c I c ac' + 3 iico/' - 2 " \. c iic' + 1- 3c iico/' ' 

,( ,&w s' &w) '~s' [fw ( s') o'w ) Q, =-2s13C iic,0/+ 0/' -2C,,\. 0/, +1-3 iic' o/ ' 

(3 .123) 

(3 .124) 

After the update of the differential operator (3 .122) for the rhombic grid pattern, the 

differential equation of bending of a grid plate (3.116) transforms into the following 

equation: 

&w 8'w 8'w z 
D, ac' + D, ac' 0/' + D, 0/' = 7 

The coefficients in (3 .125) are given as: 

where 

DJ = 2(c4 + ]<10) 

D, = 2(s' + 1'10 1 
D, = 12ao + 2r(l- 6ao 1 
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GJ, 
r= El ' 

1 

- s' ' 0 0 - c. (3 .127) 

The bending and twisting moments and also shear forces acting directly on the 

members of a grid plate are calculated using (3 .55), (3 .56). 

3.8.3 A Plate With More Than Two Families of Ribs 

In this section the transverse bending of the grid plates with three and four families of 

ribs is discussed. 

3.8.3.1 Three Families of Ribs 

Let us consider a rectangular plate with three families of ribs. The solution for this 

case can be obtained from the generalised case (Figure 1.4, with fouT families), where 

the family number 3 is absent. In order to utilise already derived equations for the 

plate with four families of ribs , the family number four will be referred as number 

three. The members which belong to the first and the second families are considered 

to have the same cross-sections. For the considered grid pattern the length of the ribs 

which belong to the first two families is 

(3 .128) 

Constitutive equations for this model of plate are obtained from (3 .27). if the 

coefficients Pij in the fonnulae for linear bending and torque moments are substituted 

with 

Pll = -(2Ic4 +1) +2CS2
C

2
). 

{J" = - 2s' (Is' + Cc' ), 

{J" = - 2s'c' (I - C), 

P 31 := I sin2 2(0 + 2Cc2 cos2qJ + C3• 

{J" = I sin' 29' - 2Cs' cos29'. 

(3 .129) 

The shear forces acting in the grid plate are obtained from the equations (3 .121) with 

an adjustment to the current grid pattern: 

(3 .130) 

where 
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D, = (S1g~ + )C)s' . 

d = E)JIl 

' El , 
(3 .131) 

The equations of bending of a plate (3 .132) are obtained from the fonnulae (3 .1\6) 

and (3 .122) 

(3.132) 

where 

(3.133) 

Ifthe torsion stiffness of the ribs can be neglected, the bending moments acting on the 

ribs are obtained using formulae (3 .53), where 'Pl = 0 , a = 2eal : 

M" =(M, +H) ~, 
, s c 2s 

(3 .134) 

OtheIWise, formulae for bending and twist moments are obtained from (3 .65). In order 

to do that, all the quantities which correspond to the third family must be taken as 

equal to zero and the quantities which correspond to the fourth family must be 

considered as third family. After these changes we obtain 

where 

M,~, = ([ 2Cs'e' M, + (I,s' + 2Cs'e')M, ]10 + 

+H,(I sin2~ + 2Ce'ctg2~+ C, sin- '2\p)-' }El" 
M; = [(21S' + 2Cs'e')M, - 2M,s'e'(I - C)loE,Jll ]. 

H,~, = (±[2IS'M, -(2Ie' +I,)M, ]lo + 

+2H,fJ;: COS2\p}GJ" 

10 = [2D,s' + 2Cs'e'{21 + I,)r' , 

fill = Isin' 2\p+2Ce' cos2\p+C, . 

(3 .135) 

(3 .136) 

For the rectangular grid plate. which is pinned at its opposite ends (x = const) , the 

solution of the equation (3 .132) is found using an ordinary trigonometric series: 

• 
w{x,y) = ~>m(y)sinA.x (3.137) 

m" 

The characteristic equation, which corresponds to (3 .132) is 
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a=~' , D ' , 

3.8.3.2 Four Families of Ribs 

D, 
2a, = ~D, . 

D, 

(3.138) 

Lets consider a plate with four families of ribs (n = 4). The cross-sections of the ribs 

of the first two families are considered to he the same and f{J = (01 = - f{Jz I 

a = a, = a, = 2sa, = 2ca, (See Figure 1.4 (c)). 

The constitutive equations for this model are written in the form of expressions for 

linear bending and twist moments (3 .27). 

For the considered case of a plate with four families of ribs, the expressions for shear 

forces (3 .139) are obtained from the formulae (3.121) and are written as a function of 

deflection:s 

where 

D\ = c3 + d 4 + ;5'lC, 

ej = Gj J3i / GJ3 • 

Dz :;;::; s l tgtp+d)tgQ') + }5'2C• 

d, =E,J" IEI, (; =3,4) 

The sUbscript i is omitted when its value is equal to zero. 

(3 .139) 

(3 .140) 

The differential equation for the deflection of a grid shell comprised of four families 

of ribs is found by means of substituting (3 .122) into (3.116): 

a4

w a4
w a4

w -~Z 
D, iJx' + D, iJx'o/' + D, 0/' - El, ' (3 .141) 

where 

(3.142) 

For the case of isogrid plate this differential equation changes into (3 .27). In this case 

the third family of ribs considered to be absent, and the fourth family is notated as a 

third. 
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In order to obtain an equation for deflection of a plate with rhombic grid (3 .125), the 

coefficients which correspond to the third and the fourth family in the equation 

(3.141) must be taken as equal to zero. For the known stress-strain state of a plate, the 

values of bending moments acting in each of the four members ofa grid are calculated 

using the formulae (3 .65). 

3.8.4 Shear Deformation 

The classical theory of shells, based on the Kirchhoff-Love hypothesis [86] allows the 

analysis of a wide variety of problems with an accuracy that is often sufficient for 

practical applications. 

However. in many engineering applications some refined theories should be used. 

Higher-order theories of laminated plates and shells, which take into account 

transverse shear and normal deformation were developed by V. E. Verijenko et. af. 

[64], [107] for the solution of the dynamic problems. These theories are capable of 

treating plates and shells with arbitrary numbers and sequences of layers which may 

differ significantly in their physical and mechanical properties. The use of the refined 

higher-order theories can be very beneficial especially for shells made of composite 

materials where the matrix has a relatively low stiffness. In the present chapter the 

transverse shear of the ribs comprising a lattice shell is taken into consideration by 

applying the well known principle ofTimoshenko [97]. 

3.8.4.1 The System of Differential Equations for the Deflection of a Plate 

Let us denote the angles of rotation of the normal to a median surface of a plate in the 

planes x=const, Fconst as 8\ and 8 2 , The corresponding angles of transverse shear 

for the considered model of a grid shell are 

aw aw 
/3, = Ox +8" /3, = 0/ +8, . (3 .143) 

Shear forces and bending moments for the members of i-th family of the ribs are 

(3.144) 

where 

(3 .145) 

The torsional stiffness of the ribs is neglected. The value of k;2 depends on the shape 

of the cross-section ofthe ribs. 
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Substituting (3 .143)-(3.145) into the corresponding equations (3 .17) and after some 

simplifications we obtain the expressions for the shear forces, bending and twist 

moments of the plate as: 

" Q, = Lc,KI'(Y',W+c,O, +s,o, 1 
i=] 

" 
Q, = LS,K,'(Y',W +C,O, +S,O' )' 

;=1 

" M, = - Lc,'IIY' I(O,c, +0,s,1 (3 .146) 
,:\ 

" M, =-Ls,'I,v I(O,c, +0,s,1 
.",1 

" H = L S,C/,Y' , (0, c, +0,s,1 
i=l 

where 

(3 .147) 

Differential equations for the deflection of a plate (3 .116) can be reduced to the 

system of differential equations in tenns of the functions w , 8] and 82 using 

formulae (3 .146): 

where 

£" (w)+ £" (0,) + £,,(0, )= Z, 

L" (w) + L" (0,) + L" (0, )= 0, 
LI3 (w) + L" (0,)+ L" (0, ) = 0, 

" 
Ll2 = Le/X/V" 

I:] ;=1 

" 
£" = LsIKI'Y'" 

;= \ ;=\ 

j=\ ;=\ 

3.8.4.2 A Plate W~h a Rhombic Grid 

(3.148) 

(3.149) 

Let us consider the case when the directions of the families of ribs coincide with the 

co-ordinate axes, and when all members to be the same. In this case the system of 

differential equations (3 .149) can be written as: 
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Formulae (3 .146) for the calculation of forces and moments are simplified to 

Q, =2K'C'(: +0,), Q, =2K'S'(: +0,J, 

M = M ctgm = -2Ic'(C' 00, + s' 00, ] 
12 '1' Ox ay ' 

B - 2l ' ,(00, 00, ] - s C -+--. 
0/ iJx 

(3 .150) 

(3.151) 

For the particular case of a square grid ('I' = 7r/4) , the equations (3.150) take the 

foIlowing form: 

o'W o'w 00, 00, Z - -+--+-+-=­
iJx' 0/' iJx 0/ K' , 

iJw _~(O'O, + 0'0, +20'0')+0 =0 
iJx 2K' iJx' 0/' iJxo/ ' , 

iJw _~(20'O, + 0'0, + 0'0' )+0 =0. 
0/ 2K' iJxo/ iJx' 0/' , 

(3 .152) 

The forces and moments acting in the square grid can be obtained from equation 

(3 .151), considering 'I' = 7r/4 : 

Q, =K'(: +0, )-

M - M _M __ £(OO, ao,) 
,- ,- - 2 iJx + o/ ' 

(3.153) 

The solutions of the boundary value problem for the grid plates with the rhombic and 

square grid pattern can be linked. In order to do this the following substitution of the 

variables is introduced: 

0, = O,'tg'P . (3 .154) 

The formulae (3 .151) then can be written as: 
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Q, =K'sin2J ilw +B,'), "\. a~ . 

M = M ctgrp =-21s1C1 -'-+--' 
(

aiJ ' aB J 
" a~ 0/ ' 

H =2/s,j aB,' + aB' J 
"l o/ a~ ' 

and the system of differential equations (3 .150) becomes 

a'w a'w aB,' aB, Z 
-a~-' + -0/-' + -a-~-+ -0/- = -2Kc:=:-' sC;-, ' 

8w _ 1S 2 (('/1-0,0 +8
2
8,0 + 2 82(}'2J+ (} D = 0 

a~ K' a~' 0/' a~o/ ' , 

Ow _!Sl(2fi 8,D +8
2
82 +8

2
82 J+8 = 0. 

0/ K' a~o/ aq' 0/' , 

(3 .155) 

(3 .156) 

It can be observed that the system of equations (3 .152) for the plate with a square grid 

is the same as (3.156). The following substitution of variables is made: 

with (3 .157) 

where 

K, = K'/ 2s' , Z, = Z/ 4s'. (3 .158) 

Comparing the linear forces and moments for the models of a plate with the rhombic 

and square grids calculated using formulae (3 .155) and (3 .153), it is found that for the 

case of rhombic grid we have: 

Q, = Q" sin 2rp, Q, = 2s' Q,,, 
(3 .159) 

H :::; 4s 3cH., M , = M 2 ctg(j) :::; 4s '2 c '2M. , 

where the quantities denoted with the index * are calculated using the formulae 

(3 .153) for the case ofthe square grid after the substitution of x and B, with ~ and 

u: correspondingly. 

The last fannulae are obtained satisfying the condition that K· for the rhombic and 

square grids are equal. For the case of substitution of variables in (3.145), where K' 

is substituted with K'/2i' , formulae (3 .159) must be modified to the following form: 

Q, = 4s' cQ,,, Q, = 4s'Q,,, 

H :::; 4s 3cH., M\ = M 1ctgrp = 4s '2 c '2M •. 
(3 .160) 
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These transformations allow substitution of the problem of analysis of a plate with a 

rhombic grid with the solution of a certain boundary value problem for a square grid. 

This can be done by following the proposed scheme: 

1. The side dimension I of a plate with a rhombic grid pattern in the direction x is 

substituted with Itgrp in accordance with (3.154). 

2. The given value of K' is substituted with K = K' /2s' . 
3. Transverse load Z is considered to be equal Z = Z· / 4s4 

. 

4. The values on the outer boundary of the functions with * superscript and also 81° 

are found using second formula of(3.154) and (3.160). 

This substitution will result in a boundary value problem for the system of equations 

(3.156), where 0,; ~ ,; I tgrp . The solution of this problem is actually the solution for 

the plate with a square grid with the set of altered (substituted) parameters, shown 

above. 

After completing the analysis of such a lattice plate, the reverse transition from the 

obtained functions with' superscript and B,' is performed using (3.154) and (3.160) 

considering also that ~ = xtg.". 
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3.9 Circular Cylindrical Shells 

In the previous sections (3.1-3.8) a technique was developed for the analysis of 

various types of lattice plates. The solutions obtained for lattice plates will be used for 

the development of a similar analysis technique for lattice structures of revolution. 

This technique is based on the same homogenisation principles. In the present section 

the analysis of a circular cylindrical shell with several grid patterns is considered. 

3.9.1 System of Differential Equations 

Let us take the expressions for the components of deformation of the median surface 

of a shell in the following form: 

c,; ~(: + w). 
1 iJ'w 

X, ; - R' 0f3' • 

'" ; ~(iU + cv) 
R 0/3 Ca' 

1 iJ'w 
X, ; - R' Ca~ · 

Then the constitutive equations (3 .18) can be transformed and written as: 

I ' , 
N. ; -"dc . R~ '" 

;= 1 

1 • 
N,;- "di R£.... , , • ,., 

1 • 
M,; R' L(P,c.' +q,c,s,). 

, .. I 

1 • 
M , ;-, L(P,s,' +q,c,s,). 

R j .. l 

1 • 
H, ; R' L(q,C.' + p,c,s, ). 

1.01 

1 • 
H, ; --, L(q,s,' + p,c,s,). 

R 1=1 

where J2i = 0 and the following notations were used: 

(3 .161) 

(3 . 162) 

(3.163) 

Let us write the differential equations of equilibrium for the element of cylindrical 

shell [59]: 
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av, + is = - RY 
i3fJ ro ' 

'Z; + ~I = - RQI· 

-N +iQl+iQ,=-RZ , ro i3fJ ' 
(3 .164) 

The tenns Ki,1;, C,. fP;. in the further derivations are considered to be constant but may 

have different values for different indices i. From the last two equations of the 

(3.164), taking into account formulae (3.162), obtain: 

1 '{' [ ,8'w 8'w ,8'w ,8'W] QI = --, L cJ, c, --, + 3tgl", , + 3tg 1", , + tg 1", --, + 
R '_I ro ro 8p ro8P 8p 

(
, ,8'w ( , ) 8'w ,( , ) 8'w ,8'W)} 

+ C,. c, Sj Ba) + eis; 3s j - 1 Ca '2 op + Sj 1- 3c, Oaoj32 - Sj c, 8j3] • 

(3.165) 
1 '{ , [, 8'w 8'w ,8'w ,8'W] Q, = --, L s,cJ, c, --, + 3tgl", , + 3tg 1", , + tg 1", --, -

R '.1 ro ro 8p ro8P 8p 

-C,ctgl",(c"s" ~: +c,s,(3s~ - 1) ~:;p +s,'(1-3c,' ) ~~;, 5:C,~: )} 

Substituting the values of terms (3.162) and (3.165) into the first three equations of 

system (3.164), obtain the following system of differential equations of equilibrium in 

tenns of displacements: 

£;1 (u)+ L I , (v) + L\3 (w) = -R' X, 

L,I (u)+ La (v)+ L,, (w) = - R'Y, 

£'1 (u) + L" (v)+ L" (w) = - R' Z, 

where differential operators Lij are given: 
, , 

LI\ = Le/KjL;, L\2 = Ls;c/KfL,., 
;,. \ ;,,1 

~ ,,(a a) ~3 = £..Js; c i Ki -+ tglPl- , 
'.1 aa ap 

L" = "s. c.K . -+ tgm . -" , (a a) 
£.... I , , a T , a,n ' 
1=1 a p 

L3 ='L.K jrl/cj --4 + 4tgtp; ] +6tgrp; '22+ 4tgrpj 3+ , {" ( a' a' ,a' ,a' 
'.1 aa aa ap aa ap aaap 

, a') ,[, '( a' a'). ( , ) a' (a' a' ) + tg rpj--4 + r31 Sj Cj --, +--4 +sm2rpj 2s j - 1-- --, ---, + ap aa ap aaap aa ap 

( ") a' ] '} + 1-6st c; 2 2 +Sj aa ap 

where 
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(3 .168) 

The term Tu is a non-dimensional section radius of inertia of a rib, that belong to the i-

th family. The final system of differential equations (3 . 166) is symmetric. For a grid 

plate this system splits into two independent systems which correspond to the plane 

and bending problems (in this case the following values must be taken: r = Ra . 

y = RP , R-> oo ). 

3.9.2 Cylindrical Shell with Rhombic Grid 

Let us consider a cylindrical shell with a rhombic grid (n=2) comprised of the same 

rib members. Let us take one of the diagonals of a rhombic unit cell to be coincident 

with the generating line of the median surface of a shell (rp, = rp, rp, = -rp). The 

torsional stiffness of the ribs comprising the grid is neglected : J); ;; 0 (;= 1, 2). In this 

case from the formulae (3 .162), (3 .165) we obtain 

(3.169) 

The system of differential equations (3 .166) now transforms into 
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a2u 2 a2
U a2

V aw 2R2 X 
--ctg 91 + --+ 2 + - = --=::.:..,,::;--aa' ap' aaap aa K sin ' 291 ' 

a 2u a 2v a 2v 2 8w '2 2R2y 
2 aaap + aa' + ap' tg 91 + ap tg 91 = - K sin ' 291 ' 

au av , (a'w , a'w a'w,), -+-tg tp + --4 ctg tp+6 2 2 +--4 tg tp'. + aa ap aa aa ap ap 

(3.170) 

2R'Z 
+ wtg2

tp = . 2 
K sm 291 

The solution of the problem in the case of a rhombic grid shell (arbitrary angle tp of a 

unit cell) can also be applied to the case of a shell with a square unit cell (q:>=trl4), for 

a certain reduced length of the shell and dummy surface loading. Some 

transformations must be carried out to allow this. 

The following notations are used in the further derivations: 

~ = atg91, 

X = 4s3cX. . Y = 4s4y • • 

u. = uctgtp. 

Z = 4s'Z •. 

Substituting the notations (3 .171) into the system (3.170) obtain: 

(3 .171) 

(3.172) 

It is important to mention that functions u. . v . w are linked to co-ordinates ~. p 

(subjected to the load components X., Y., Z.) by the same differential relations as u , 

v, w to the co-ordinates a, p (subjected to the load components X , Y , Z) for the 

case of a square unit cell . This can be clearly seen if the system of differential 

equations (3 .172) for the shell with a rhombic cell are compared to the system of 

differential equations for the shell with a square cell. The latter is obtained from 

equation (3 .170) for q:>=trl4, 
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o'u o'u o'v iJw 2R' X 
--+--+2 +-=--=--oa' op' aaap aa K 

a'u a'v a'v iJw 2R'y 
2 aaap +-aa-' +-ap-' +-ap-= -----:K-c-· (3 .173) 

Ou Qv (a'w o'w a'w}, 2R'Z 
aa + ap + aa' +6 aa'ap' + op' I +w = K 

The fonnulae (3.169) for the cylindrical shell with a square grid ({I"""m'4) are 

transformed into: 

N = N, = N, = K (Ou + Qv +w) 2R aa ap . 

s=~(:+:} 
1 a'w 

H =---­R' aaap' 
1 (a' w a'w) M = M , =M, = 2R' aa' + ap' • 

=_I_(a'w+3 o'w) = __ 1_(3 o'w +o'w) 
Q, 2R' aa' aaap" Q, 2R' aa'ap ap'· 

(3.174) 

The fonnulae (3 .171) for the shell with a rhombic unit cell can be written in the 

following form: 

N, = N,ctg'rp = N. sin' 2'1'. 

M, = M,ctg'rp = M. sin' 2'1'. 

Q, = 4Q,.s'c. 

S = 4S.s3c, 

H = 4Ho5' c. 

Q, = 4Q,.s'. 
(3. 175) 

The expressIOns for N .. S .. M .. H •• Q, .. Q,. are obtained from (3 .174) by 

substituting a and u with 4" and u. respectively. 

The relationships (3 .171) and (3.175) allow a transition from the boundary conditions 

prescribed for a shell with a rhombic unit cell to the boundary conditions for 

equivalent shell with a square unit cell to be made. In other words, to analyse a shell 

with a rhombic unit cell and a length I, subjected to the load X, Y. Z and continuous 

boundary conditions, it is sufficient to analyse a shell with a square grid with a 

reduced length I. = I tgrp and a surface loading X •• Y. . Z. for the same boundary 

114 



conditions. Then the values of the forces and moments are recalculated using (3 .175) 

and applying 

u = u.tgtp, a = 4ctg¥'. (3 .176) 

The described method allows the simplification of the further analyses of grid shells 

with two families by considering only a cylindrical shell with a square unit cell. 

3.9.3 Cylindrical Shell with a Square Unit Cell 

3.9.3.1 Introduction of Resolving Function 

In the case of homogeneous problem (X = y = Z " 0) the system of equations (3.173) 

can be reduced to a homogeneous differential equation of the eighth order relative to 

the function <I> = <I>(a,p) : 

(3 .177) 

where L is a differential operator: 

L =..1-.-= 4 a' -10 a' +4 a' +_a_'_ 
aa' aa'ap' aa'ap' aa'a;r ap· · (3.178) 

The components of the displacement vector are found usmg function (/J in the 

following way: 

u= --+7 +7 +-- +--<1> [( a' a' a' a' }' a' ] 
aa' aa'ap' aa'ap' ap" aa' , 

v = -2, +6 + + <I> [ , ( a' a' a' ) a' ] 
'aa'ap aa'ap' aaap' aaap , (3.179) 

( 
a' 

W = aaap' a' ) --, <1>. aa 
Substituting (3.179) into (3.174) we have: 
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N=-I- --+5 - 5 + <I> KT' ( a' a' a' a') 
2R aa' aa' ap' aa' ap' aoor ' 

S=_I- - -5 +5 +-- <I> KT ' (a' a' a' a' ) 
2R aa'ap aa'ap' aa'ap' ap' ' 

M = 2~' ( - a~' + a:;p' ) <1>, 

1 (a' as) H--- <I> - R' aa'ap' aa'ap , 

(3.180) 

I(a' a' a') 
QI =-2R' -aa,-2 aa'ap' +3 aa'ap' <1>, 

I( a' a' a') 
Q, =- 2R' - 3 aa'ap +2 aa'ap' + aa ap' <1>. 

Partial solution of the system of differential equations (3 .173) is found in the form of 

three summands, each of them corresponding to only one component of the surface 

load X, Y, Z. 

1 If Y = Z == O. then the system of equations (3.173) is reduced to one differential 

equation: 

L<I>. = -(2R' /I)x (3.181) 

The displacements, linear forces and moments are calculated using formulae (3 .179), 

(3.180), where the function (/) is substituted with (/) •. 

2 If X;;;; Z ;;;;: 0 , then resolving equation is 

(3.182) 

The components of the displacement vector of any point on the median surface of a 

shell are 

u =- 27 +6 + + <I> [ '( a' a' a') a'] 
y I aa'ap aa'ap' aoop' aoop Y' 

v = --+ 7 +7 +--' +-- <I> [( a' a' a' a'} a'] 
Y aa' aa'ap' aa'ap' ap' ap' Y' 

(3 .183) 

( a' a' ) 
W y = aa'ap - ap' <1>" 

Then formu lae (3 .174) for linear forces and moments become 
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N =-'- - 5 +5 +-- <I> KT ' (a' a' a' a' ) 
y 2R aa'ap aa'ap' aa'ap' ap' y' 

S = -'- --+ 5 --0-----0-KT ' ( a' a' 
y 2R aa' aa'ap' 

5 - <I> a' a') 
aa'ap' aaap' y' 

1 (a' a' ) M -- - <I> 
y - 2R' aa'ap ap' y, 

l (a' a') 
H y =- R' aa'ap' aaap' <l> y, 

(3.184) 

1 ( a' a' 3 a' )<1> 
Q,y =- 2R' aa'ap +2 aa'ap' aaap' y' 

1 (a' a' 
Q,y =- 2R' 3 aa'ap' -2 aa'ap' a' ) ap' <l> y. 

3 If X = Y = 0, then this problem reduces to the solution of the following 

differential equation: 

(3 .185) 

The state of deformation of the considered model is defined by the formulae 

u - --- <I> ( a' a' ) 
: - oaap2 oa3 ;:) 

v - <I> ( a' a' J 
,- aa'ap ap' " (3.186) 

( a' a' a'J 
w, = aa' - 2 aa'ap' + ap' <1> ,. 

These formulae as well as relationships (3.174) allow the analysis of the stress state 

using the following equations: 

a' a' J -=--==+-- <1> aa'ap' ap' " 

H =- 2 + <I> J ( a' a' a' J 
, R' aa'ap aa'ap' aaap' " 

J (a' a' a' a' J Q 5 +3 <I> 
" = - 2R' aa' + aa'ap' aa'ap' aaap' " 

I (a' a' a' a' J 
Q" =- 2R' 3 oa'ap -5 oa'op' + oa'ap' + ap' <1> ,. 
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3.10 Equations for the Shell of Revolution 

The main relationships and equations for a shell of revolution are discussed in this 

section. A cylindrical co-ordinate system is used to describe the location of the points 

on the surface. The expressions for the main radii of curvature of the surface (RI , IS) 

and coefficients of the frrst quadratic form (A,B) are: 

A = (I +r" )y', 
r"RI = - (1 + r,2 )%'. 

B = r, 

R, =r(l+r")y' , 
(3 .188) 

where r is the equation of the median surface ofa shell. 

The angle between the nonnal to the median surface of a shell and the axIS of 

revolution is: 

(3.189) 

The static equations of the shell theory [94) are: 

(3.190) 

In the case of the linear problems for a shell of revolution, the functions A, B, ~ 

and l?.z are independent of the 8 co-ordinate. Thus, the static equations transform to: 
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oBN, +A oS _ N oB + ABQ -+ABX = 0 
a iJ() 'a R' , , 

A 0:;/ + o~s +:: Q, +ABY=O, 

oBQ, +AoQ, _ ,jN, + N')+ABZ = o 
a iJ() "'"'lR, R, , 

(3.191) 

oBM, +A oH, + oB M - ABQ =0 
a iJ()a' ,. 

- A oM, + oBH , + oB H _ ABQ = O. 
iJ() a a' , 

Here, the bending stiffness of the ribs in the plane tangential to median surface of a 

shell are assumed to be equal to zero. 

Using geometric equations, the deformation components of the median surface are 

written as: 

o B u 1 ov 
c =--+--+kw 
, oz AB B 08 " 

'" = ..!.. OU + B ~(~) 
B 08 A OZ B ' 

X = ok, ~-k'W -..!..~(..!.. ow) 
, OZ A ' A OZ A OZ ' 

_ o k, ~-k'w - ..!..~(..!.. ow) __ I _oB OW 
X, - OZ A ' B 08 B 0 8 A' B OZ OZ' 

,= [..!.. ou _ B ~(~) k, - k, _1 (o'w _..!.. oB ow)]. 
B 0 8 A OZ B 2 AB oz08 B OZ 0 8 

The angles of rotation and generalised distributed forces are: 

1 OW 
y, = B 08 -k, v, 

1 oH, 
Q'H = Q, +---. 

B OZ 

(3 .192) 

(3 .193) 

For the general case ofa shell that consists of four families of ribs, we assume that the 

ribs, which belong to families one and two have the same properties and are made of 

the same material. 
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Constitutive equations for a shell with this grid pattern have been derived earlier and 

are given by (3.31). The reverse calculation of axial forces, bending and twisting 

moments acting in the ribs of each family can be made from known stress resultants in 

the homogenised model using (3.63), (3 .65). 

For convenience further calculations are carried out in the non-dimensional form. The 

non-dimensional equivalents of the quantities used before are denoted with the 

superscript 0 are: 

u = Rouo ~,w>B>r,z,ai V = 1,4)1 

G=EG'[X,Y,z,gl kt' =R,kt[k"XI.,X"r! 

S = ER,S' [N; ,QJ M; = ER,;M;' [H; 1 (i = 1,21 

F, = R;,F,', Jp =R;J; 0 =1,31 
Ni·=~NiO M; = ER.:M;, [H; 1 ~ = lA 

(3.194) 

where: Ro is a linear dimension of a shell; g is the distributed surface load. Functions 

are listed in the square brackets are reduced to non-dimensional form in a similar way 

as the expression, which preceded it. 

The constitutive equations (3.31) for a shell with considered grid pattern in non­

dimensional form are: 

H ' , I = Yl1T , H ' , 2 =Y4I T . 

The non-dimensional coefficients entering these formulae are: 
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FO , 
+ - 0 ' 

a, 

_ FO sin' (29') 
a l2 -

2ao 

__ ( 2J,OC' J O GO J ' sin 2 (29')) 
rll - a O +---T+---'-'-:-2--;C'--'--'-" 

a, a 

_ ( 0 ° 0)sin' (29') 
Y I2 - - J ] -G J1 0' 

2a 

__ ( 2J,'s' J,o, GOJ~ sin' (29')) r22 - 0 + 0 + 0 ' a Q ) 2a 

J ,o sin' (29') GO J:' 2GoJ: c' cos(29') 
r 31 = 0 + 0 + 0 • a Q 4 a 

J,osin' (29') GOJ~, 2GoJ~s' cos(29') 
Y41 = 0 + 0 + 0 . 

a 0 3 a 

121 

(3 .196) 



3.11 Axisymmetric Deformations of the Grid Shells 

For an axisymmetric state of stress all the unknown stress resultants are the functions 

the of co-ordinate z only: 

v = '" = T = r, = S = Q, = H , = H , = Y = O. (3.197) 

In this case, after certain transformations (3 .191) - (3 .195), the final system of 

differential equations in the matrix form can be obtained as: 

(3.198) 

where y is the vector of unknown functions : 

(3 .199) 

f is a known vector which describes the loading conditions of the shell: 

j, = / , = / , = / , =0, /. =-AX, / , = - AZ; (3.200) 

P is a square matrix with known coefficients that are calculated from the stiffness 

properties and geometric characteristics of the considered shell. Non zero members of 

the matrix are given: 

122 



" a llB 
Pll= - - B" 

a" 

B" 
Pn= EO' 

mA 
Pll=- Bo, 

p~ =A. 

k'A 
P43 =--'-, 

a" 

The solution oftrus system must satisfy the following boundary conditions: 

(3.201) 

(3.202) 

where Bo and B! are known rectangular matrices; bo and hi are given column vectors. 

The given system of differential equations represents a boundary value problem that 

can be solved numerically reducing it to the solution of Cauchy problem using the 

Runge-Kutta method [105]. 

The rest of the unknowns, which do not enter the system (3 .198) must be calculated 

using the following fannulae: 

123 



N 0 = (a _ a;,)[ B O' UO + k OW' ) + all N ' ,,, ABo 2 ). 
a ll a ll 

(3.203) 

The calculation of forces in the members with known state of stress is done using 

formulae (3 .63) that were obtained for the case of a plate with the same grid pattern. 

For calculation of bending and twisting moments in the members of a shell, the 

expressions (3 .65) are used. 
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3.12 Boundary Effects 

The mathematical model described earlier allows calculations to be made for the 

lattice cylindrical structure subjected to different sets of loading conditions and their 

combination. Providing a reasonable range of accuracy with the exception of the areas 

that are in the immediate vicinity of the loaded/constrained regions. For the sake of 

the improving the accuracy of results in these areas, an approach that takes into 

account boundary effects is proposed. 

3.12.1 Equation of a Simple Boundary 

Boundary effects in the grid shells are similar to those in continuous shells. The local 

state of stress in a shell in the vicinity of the line (a = const) close to the boundary is 

now analysed. A grid shell with more than two families of ribs is considered.. The 

solution of the stress-strain state ofa shell is based on the following conditions: 

I. The boundary effect is caused by the distortion of the stress state along the line 

(a = const) . The solution of the system of homogeneous equations in this case is 

2. Differentiation of any unknown function over the co-ordinate a causes significant 

growth of this function (3.204) compared to differentiation over the co-ordinate fJ 

(A ~ B ~ ~). This is caused by a quick tapering off of the solution with the 

increase of the distance from the line (a;;;; const) . 

(3 .204) 

3. The direction of the displacement vector for the point on the median surface of a 

shell is very close to the direction of its normal at this point. In this case the 

following relationship 

(3.205) 

is taking place. 

4. The main contribution to the stress state comes from the load N2: 

125 



(3 .206) 

Considering (3.205) and (3.206), fonnulae for defonnation components of the median 

surface of a shell are: 

1 a, W 
E ;;;--+­

, Aea R ' , 
I ifw 

XI =- Al a:r2' 

1 "" 2w to=----
Am R,, ' 

(3 .207) 

The main component of the bending deformation of the median surface of a shell in 

the case of boundary effect is Xl . The constitutive equations (3 . 18) in tenns of 

bending and twisting moments are written as 

M , = - (Du +Ku)X" 

H I = {D16 + K~: » )Z I' 

Shear forces in this case are 

M , = - (D" +Ku)X" 

H2 = (D]6 + Ki~})X l' 

considering equations (3 .207), (3 .208) 

(3 .208) 

(3 .209) 

(3 .210) 

Using the expression for the function ", that enters equations (3.38), using (3.206) and 

taking into account an ;t:. 0 we have 

Considering (3 .207), 

w 
N, =-::­

an!?", 

(3.211) 

(3.212) 

Equations (3 .206) and (3 .210) in conjunction with static equations allow another 
• 
expression for N]to be obtained: 
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(3 .213) 

After equating the right sides of (3 .2 12) and (3.213), the following equation of a 

simple boundary effect can be obtained: 

(3 .214) 

Now formulae (3 .208) for bending and twisting moments incorporating (3.207) are: 

M ::; Dl1 +KII iJw 
I A2 ib:2 ' 

H = _ DI6 - K!:) iJw 
I A2 az2' 

M ::; DI2 - K]l &W 
2 A3 &x 2 • 

H = _ Dl 6 +K!:) iJw 
2 A2 a:z2' 

(3.215) 

The obtained formulae (3 .210), (3.213) and (3 .215) allow all the unknown functions 

of the stress state for a grid shell to be calculated. 

3 .12.2 Integration of the Boundary Effect 

Let us consider that the distortion line of the stress state coincides with the co-ordinate 

line a = a . . 

The stress-strain state of a shell for the case of the boundary effect is localised in the 

vicinity of this line. All the coefficients in the obtained fannulae are functions of co­

ordinate P only and are equal to their values for a = a . . In this case the coefficients 

ofthe equation of the boundary effect (3 .214) do not depend on a. The solution of the 

equation (3 .214) for the case of a s: a, is: 

W = (fl/ leo +'l/2S0)£+' 

y, '" : [(\11, + \II,)c, +(\11 , - \II,)s,)g£', 

N2 = N~(V/,co + '1'250 )£\ 

Q, = Q' [(\II, - \II, )c, +(\11, + \11,)-'0 lE' , 
M , = M;'(\II,C, - \II,s,)£', 
H, = lP,(\II,-'o - \II,c,)£' (i = I, 2) 

The notations in the formulae (3 .216) are: 
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So =sing{a- a.), 
E + = e g(a-ao} , 

Co = cosg{a - a.), 
E - = e -g(a-ao ) , 

M IO = 2g2 A -2 (Dll + K11) , 

H,o = 2g2 A-:Z (DI6 + K~:» ) , 

(3 .217) 

In these formulae '1/, (1, 4) are arbitrary functions of the co-ordinate p. They can be 

determined from the boundary conditions at a = a •. 

3.12.3 Simple Boundary Effect for a Shell or Revolution Subjected to 

Axisymmetric Loading 

The solution for the boundary effect in the vicinity of the distortion line of the stress 

state is determined by the main state of the stress and nontangential boundary 

conditions. Addition of the solution part for the boundary effect to the conventional 

solution violates the tangential boundary conditions. The proposed approach allows 

nontangential boundary conditions to be considered without violating tangential 

boundary conditions. 

Let us introduce a rigid body displacement of a shell along its axis of revolution. 

For an orthotropic grid shell we have: 

~' ;; + (C"k, +C"k,)w = O. (3 .218) 

After the integration of this equation and considering formulae (3.216) for w it can be 

found that: 

u = _~(_l +~)[(vr, - vr,)co +(11', + vr,)so]£· . 
2g R, R,C" 

(3 .219) 

Writing the components of the displacement vector of the median surface as a sum of 

three tenns: 

(3.220) 
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where UJ, WJ are conventional solutions of the problem, U2. Wz are solutions of the 

simple boundary effect, C is a rigid body displacement of a shell in the direction of 

the outer nonnal to the median surface, '1/ is the angle between the normal to the 

median surface of a shell and the axis of revolution. 

Functions UJ. W J are considered known from the solution of the boundary value 

problem subjected to a set of tangential boundary conditions. 

Lets consider the case when one of the edges of a shell is fixed at a = a . . The 

boundary conditions in this case are: 

U =W = rl = 0 at a = a . . (3.221) 

Taking into account (3.2 19), (3.220), the boundary conditions (3 .221) can be rewritten 

as 

at a=a . . (3 .222) 

Substituting (3.219), (3.220) and (3.216) into the boundary conditions (3.222), the 

following system of three equations for unknowns 'l/J. '1/2. C can be obtained: 

(3.223) 

'1'1 + '1'2 = o. 

In the system (3.223) all the functions are calculated for a = a. and If/. = If/(a.). 

The solution of this system is 

__ 2w,(a.) 
'1'1 - , '1'2:;: 0 

2 - ectglf/. 

where 
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ew,(a.) 
C = ..,-,---'-'-"---

2sin'l'. - ECOS'I'.' 
(3 .224) 

(3.225) 



3.13 Conclusions 

In this chapter a new approach has been developed. This approach is shown to be 

more efficient when applied to the design/optimisation of lattice structures than the 

Equivalent Stiffness Method (which is quite effective in simple static analysis). 

Constitutive equations are developed and the expressions for the components of stress 

and strain tensors are derived for the following cases: 

1. Plane problem: 

Lattice plates with two, three and four families of ribs loaded in-plane and 

transverse to the plane. 

2. Shell of revolution: 

Cylindrical shells with different lattice patterns. The cases ofaxisymmetric 

deformation and boundary effect are considered. 

The models for the cylindrical lattice shells were realised in computer code using 

symbolic computation. Numeric verification of the mathematical models is given in 

the next chapter. 

An advantage of the new homogenisation approach is the ability to calculate structural 

stress resultants without perfonning FEM analysis. This allows higher computational 

efficiency to be achieved. Also this approach allows more design variables to be 

assigned in the further optimisation analyses. 
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4 Numerical Verification of the Mathematical Model. 

Numerical implementation of the proposed homogenisation approach was perfonned 

using the general-purpose symbolic computation package Mathematica [117]. A list 

of the Mathematica code used for the solution of the problem described above, 15 

presented in the Appendix 2 

This code solves the problem in the following steps: 

1. Calculation of the equivalent stiffness parameters. 

2. Analytical solution of the boundary value problem (system of SIX governing 

differential equations (3.198)). 

3. Calculation of the homogenised stress resultants. 

4. Conversion of the homogenised stress resultants to the stress resultants in the 

members of two diagonal and one vertical families of ribs. 

5. Subsequent calculation of the failure coefficients. 

6. Analytical derivation of the objective function. 

7. Maximisation of the objective function. 

Using the method outlined in the Chapter 3, numerical results are obtained for the 

isogrid cylindrical structure with the geometric parameters given for the ribs (Table 

2.2) and the cell configuration shown on the structure (Figure 2.5), subjected to 

combined tension and torsional loading. Surfaces of optimisation are shown in Figure 

55-Figure 5.12, and the optimal values for the critical load and optimal design 

parameters are given in Table 5.2-Table 5.4. Results presented here are given for the 

model that neglects the influence of the boundary effects on the general state of the 

stress. The contribution of the boundary effect will be discussed and implemented in 

the further chapters. The obtained results are compared to the solution of the same 

problem using. the Finite Element Method, using the commercial FEM code 

MSCINASTRAN. The stress (axial force, moments, etc.) distribution in the structural 

members of the different families is shown in Figure 4.1- Figure 4.16. 

In order to verify its validity, the developed mathematical model was analysed and the 

results obtained were compared to the exact FEM solution. The following load cases 

were considered: 
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4.1 Uniaxial Tension. 

The load has been applied to the top edge of the isogrid cylinder as a uniformly 

distributed load 10' N/m. 
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Figure 4.1 Maximum combined stress for the diagonal family of ribs 
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Figure 4.2 Maximum combined stress for the vertical family of ribs 
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Figure 4.3 Axial force for tbe vertical family of ribs 
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Figure 4.5 Bending moment Ml for the diagonal family of ribs 
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4.1.1 Torsion. 

The torque load has been applied as an unifonnly distributed equivalent force 10s N/m 

in the hoop direction. 
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Figure 4.7 Maximum combined stress for tbe vertical family of ribs 
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Figure 4.8 Maximum combined stress for the diagonal family of ribs 
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Figure 4.9 Bending moment Ml for the diagonal family of ribs 
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The bending moment M2 is almost an order smaller compared to the moment MI so 

the further graphs will only be plotted for the moment Ml. 

In this case the dominating stress appears in the vertical family of ribs will be due to 

the deformation of bending and for diagonal families the additional contribution of the 

stress state comes from the appearance of the axial force. 
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4.1.2 Combined Tension and Torsion 

Loading was considered as a combination of the two previous loading conditions. 
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Figure 4.13 Axial force for the diagonal family of ribs 

140 



400000 r------~--~--~~---____;:__:'::==__,_,:_-_____, 
Exact FEM Model 

Axial Force, N Equivalent Mathematical Model 

380000 

360000 

340000 

320000 

300000 

----
----------------280000 ------

260000 L_\~========-=--~-=--=-=-=--=-=-=--=-=-;;;--;"",=:::::::::;;..~_.J 
o 1 2 3 4 5 6 7 8 

Height of the cylindrical structure, m 
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Exact Model Equivalent Stiffness Model Difference, % 
Diagonal family Vertical family Diagonal family Vertical family Diagonal Vertical family 

family 

Nax,N 6081 0.00928 6~87.7 0,0100224 6.7 8,7 
M},Nm 0,064 0.12 0,07104 0.108 8.8 6.4 

o;Pa 1.77108 7.1106 1.7, 108 7,662106 1.1 7.3 

Table 4.1 Comparison of stress resultants for the case of torsional load q=21 04 N/m 

Exact Model Equivalent Stiffness Model Difference, % 
Diagonal family Vertical family Diagonal family Vertical family Diagonal Vertical family 

family 

Nax,N 1924 0,0029 20;8,6 0,003B2 6,) 9.1 
M},Nm 0.02 0.04 0.023 0.0426 9,1 6.3 

o;Pa ,6486740 2276822 60440812 2463521 7.2 8.2 

Table 4.2 Comparison of stress resultants for the case of torsional load q=6366 N/m 

Exact Model Equivalent Stiffness Model Difference, % 
Diagonal family Vertical family Diagonal family Vertical family Diagonal Vertical family 

family 

NaxJ N 44,9 261659 47 273433 4,) 4,85 
M},Nm 11 0 105 0 4,9 0 

fJ, Pa 736944~7 19)97~9326 78)6)))2 206163404~ 6.2 4,94 

Table 4.3 Comparison of stress resultants for the case of tension load q= 106 N/m 

'The cross-section parameters of all ribs for the given analysis are: h=O,Olm; b=O.OOJJm 
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Exact Model Equivalent Stiffness Model Difference, % 
Diagonal family Vertical family Diagonal family Vertical family Diagonal Vertical family 

family 

Nax,N 6408 286708 68417 )14231 6,8 

M),Nm 10,8 0,51341 11.5 0,55191 6,9 

fJ, Pa 28370730 1966027008 30470164 2074158493 7.4 

Table 4.4 Comparison of stress resultants for the case of combined tension 106 N/m and torsional load 2104 N/m 

*The cross-section parameters of all ribs for the given analysis are: h=O, 01 m; b=O, 003 3 m 

9,6 

7j 

5j 

The values in the tables are given for the middle section of the grid structure, It is observed from Figure 4,1 -Figure 4,16 that the developed 

homogenised model is in a good agreement with the FEM solution, The main discrepancy of the results occurs in the immediate vicinity to the 

boundary edges of the model where the loading and boundary conditions are applied, The comparison of the results is shown in the Table 4,1-

Table 4.4, 

The analysis of the lattice structure presented in this chapter is aimed merely at verification of the accuracy of developed homogenised model 

and comparison of the values for stress resultants for the ESM and the FEM, The complete structural failure analysis is undertaken in the 

following chapter, 

The numerical results of the proposed homogenisation technique are summarised in [83]. 
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4.2 Conclusions 

The proposed homogenisation approach is implemented usmg the Mathematica 

symbolic computation system and this application is used to derive analytical 

expressions for the objective functions with further calculation of the numerical 

results. Consideration of boundary effects (discussed in the chapter 3.12) is not 

realised in the software at current stage of the development due to the high 

computational complexity and subsequent high requirements on the computing 

hardware. 

The model of the lattice cylindrical structure developed in the previous chapter is 

realised in the computer code. The static analysis is performed for the structure loaded 

in tension and torsion. 

The numerical results obtained for the equivalent homogeneous model of the isogrid 

cylindrical structure are compared to those obtained on the basis of commercial FEM 

code in order to validate the homogenisation approach used. It is found that the 

developed homogenised mathematical model predicts stress resultants in the members 

of the structure with sufficient accuracy (the discrepancy of the results does not 

exceed 10% for most of the elements). However, it is observed that a high 

discrepancy of the results occurs in the regions subjected to the boundary effects. 
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5 Optimisation 

The objective of this chapter is to present the optimisation study of the isogrid 

cylindrical structure on the basis of the homogenisation approach presented in Chapter 

3. 

On the basis of the derived system of differential equations, a variety of optimisation 

tasks can be stated: 

1. Minimisation of the total weight of the structure subjected to the variable design 

parameters (cell configuration, cross-section of the ribs, etc.) without failure of the 

structure occuring. The failure of the structure is calculated on the basis of design 

responses (stresses, strains, etc.) using one of the composite failure criteria. 

2. Maximisation of the applied load before the failure of the structure, subject to the 

same set of design variables. 

The first case is obviously more complicated because the objective function (weight) 

is non-linear and optimisation requires constant verification of another non-linear 

function i. e. strength ratio of the structural members. The practical realisation of such 

an optimisation task requires the incorporation of a complex non-linear programming 

algorithms. 

For the second case, the optimisation task is much simplified since we are dealing 

with only one function. This function is an objective function, which is derived in an 

analytical fonn from the solution ofthe boundary value problem (3.198). The failure 

coefficients enter the expression of the considered objective function and their 

calculation is performed inside the objective function during optimisation. 

In the case of the isogrid cylinder subjected to a combination of different loading and 

different geometrical parameters of the structure need to be optimised to allow the 

structure sustain the maximum load before failure. The optimum combination of the 

design parameters subsequently contributes to the optimum mass of the system. 
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5.1 Problem Statement 
The basic optimisation problem statement can be introduced by providing the 

definition of the design variables, objective, and constraints as 

mlIumlse 

subject to 

F(X) 
g;(X) '; 0 

h,(X) = 0 

where X is a vector of design variables. 

j = I, ... lIz 

k = 1, ... n" 

j = 1 

Objective function 

Inequality Constraints 
(5.1) 

Equality Constraints 

Side Costratints 

It is within the design space defined by the above problem statement that the 

optimiser searches for a hest design. At this time we have introduced the idea of a 

one-dimensional search and the steepest descent a1gorithm as a particular method of 

establishing this search direction. However, we have also noted that this method, in 

addition to not being particularly efficient, cannot address situations in which one or 

more constraints are active. The resolution of these issues is discussed in the section 

5.4. 

The design variable vector update can be written as 

Xl =Xo+a·S I 

• (5.2) 

where go is the initial vector of design variables, Si is the search vector, and a is 

the search parameter. Equation (5.2) represents a one-dimensional search since the 

update on Xl depends only on the single scalar parameter a. a· is the value of a 

that yields the optimal design in the direction defined by S. 
In practice, there is a better choice of direction called a conjugate direction. However, 

regardless of the search direction used the concept is the same. The optimiser finds a 

search direction towards the highest gradient of the objective function and moves in 

that direction as far as possible. 

If the optimiser has encountered some of the design constraints, in order to make any 

further improvement in the design, a new search direction ~ must be found that 

continues to reduce the objective function within the design space. Here the optimiser 

is seeking for a "usable-feasible" direction, in which a usable direction is one that 

moves in the direction of the high gradient of the objective function and a feasible 
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direction is one that keeps the search inside the constraint boundaries. This situation is 

shown in Figure 5.1. The mathematical definition ofa usable search direction is 

(5 .3) 

Equation (5 .3) is the scalar product (dot product) of the gradient of the objective 

function with the search direction. The dot product is the magnitude of VF(X) times 

the magnitude of S times the cosine of the angle between the two vectors. Thus, the 

cosine of the angle determines the sign of the product since the magnitudes are 

positive numbers. The optimiser has to find a search direction that makes the left-hand 

side of equation (5 .3) as negative as possible. However, this direction must remain 

within a critical constraint. This is the feasibility requirement, which is similar to the 

usability requirement but now is stated with respect to the constraint 

(5.4) 

- constant 

o L ________________________________ ~~ 

Figure 5.1 Usable-feasible search direction 

Just as for the objective function, the angle between the search direction S and the 

gradient of the constraint must be between 90° and 270°. If the angle is exactly 90° or 

270°, the search direction is tangent to the constraint boundary. To find the search 

direction that makes the greatest possible improvement in the objective function but 

still follows or moves inside the constraint boundary, the usability and feasibility 

requirements must be combined. This combination creates the following sub-
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optimisation task: to find the components of the search direction S In order to 

minimise 

VF(X)(S) 
subject to: 

j E J , 

(5.5) 

(5.6) 

(5.7) 

where J is the set of constraints whose values are zero within some numerical 

tolerance. This is the set of active constraints. The purpose of the equation (5.7) is 

simply to prevent an unbounded solution to the problem defined by (5.5) and (5.6). In 

the general case where there are numerous design variables as well as several active 

constraints. this becomes a sub-problem that is solved as part of the optimisation. 

This problem is linear in S except for the quadratic constraint of (5.7) [105]. 

Assuming that a usable-feasible search direction is found. the optimiser can now 

search in this direction until it can make no further improvement. The sub-problem of 

finding a new usable-feasible search direction is repeated and continues until no 

search direction can be found that improves the design without violating one or more 

constraints. That means that the optimum is reached. 

The verification of the obtained values of the design variables that correspond to the 

real optimum can be done using the Kuhn-Tucker conditions [104]. In the case of an 

unconstrained problem (omitting second and third equations in (5.1)). this is simply 

the condition where the gradient objective function vanishes. In the case of the 

constrained optimisation problem considered here. the conditions of optimality are 

more complex. In this case. the governing equation is the stationary condition of the 

Lagrangian function: 

L(X,X)=F(X)+ f"lgl(x} (5.8) 
I" 

(5 .9) 

The Kuhn-Tucker conditions dictate that the Lagrangian function L(X,A) must have 

a vanishing gradient at the optimum design, X*. When all of these conditions are 

considered, they lead to the statement of the Kuhn-Tucker necessary conditions for 

optimality: 
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Condition 1: g' is feasible. Therefore,for all}, gj( g,) ,; 0 

Condition 2: '<jgj(g,) = 0 (the other product of '<j and gAg') equals to zero) 

. . F(g')+ t '<jvg j(g')=o, 
Condition 3 : i=' 

'<j 2 0 } = ~ 2, ... , M . 

The physical interpretation of these conditions is that the sum of the gradients of the 

objective and scalars ..t I times the associated gradients of all active constraints must 

vectorally add to zero. This is much like the statement for static equilibrium where 

the sum of all internal and external forces at any given point must vectorally add to 

zero. 
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5.2 The Feasible Direction Search Method 

The method described here is referred to as the Modified Method of Feasible 

Directions [104]. At this point it is assumed that both an objective function F( X) 
and constraints g j (X) ~ 0 for j = 1.2, .... n6 as well as lower and upper bounds on 

the design variables are provided. Also. the gradients of the objective and constraints 

are available. Thus, we are solving the general problem defined by (5 .1). 

The optimiser is simply minimising a function subject to inequality constraints. 

Given an initial x-vector rO, the design will be updated according to 

XII =X 9-
I +a·S" , 

where q - iteration number, a· - scalar move parameter. 

(5.10) 

The overall optimisation process proceeds in the following steps of the algorithm 

(Figure 5.2) 
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5.3 Finding the Search Direction 

Often in design optimisation, the one-dimensional search is limited by the a at which 

a side constraint X/ or X/' becomes critical. Assume aa corresponds to encountering 

the lower or upper bound on some variable X /t. Because this constraint is a function 

of Xk only. it may be possible to fix this at its bound and repeat the one-dimensional 

search from this point with respect to the remaining variables. To achieve this, the k­

th component of S is set to zero. If other constraints are violated and a feasible design 

is being sought~ the one-dimensional search is restarted from this point. If no 

constraints are currently violated, the scalar product VF(X).(S) is calculated. If this 

product is negative, the objective is assumed to be decreasing for a move in this 

modified direction. This is an assumption., since VF(X) has not been re-evaluated for 

the current X. If the objective is, in fact , increasing in this new direction, the resulting 

a- will be zero. 

The advantage of this modification is that, in a design where many side constraints are 

active, the one-dimensional search can continue without the necessity of calculating 

new gradient information, usually a time-consuming process. For cases where this 

modification appJies, it often considerably improves the efficiency of the optimisation 

process and is recommended when using this and other direct search algorithms. 

An alternative here would be to simply set any XI to its bound if, during the one­

dimensional search, that bound is violated. This usually works well in practice, even 

though the objective and constraints now have discontinuous first derivatives with 

respect to a 
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Figure 5.2 Algorithm for the method of feasible directions 
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5.4 Sequential Quadratic Method 

This method is considered to be an excellent method by many theoreticians [67). 

[105). The basic concept is very similar to Sequential Linear Programming (SLP) 

[67). [104) [63). when first the objective and constraint functions are approximated 

using Taylar Series Approximations [67] and the search direction S is created. Then 

a one-dimensional search is performed in order to improve the design as much as 

possible in this direction. In this case the search direction is found using first order 

(gradient) information only. The first step in the one-dimensional search direction is 

somewhat arbitrary although. using gradient information, it is possible to provide a 

fIrst order estimate for the solution to the one-dimensional search. 

In contrast to the SLP J Sequential Quadratic Programming uses the technique where 

the search direction is found by solving a sub-problem with a quadratic objective and 

linear constraints. The objective function is an augmented using Lagrange multipliers 

(AI' j;;;; I. m) and an exterior penalty. The direction of the search is determined by 

incorporating a quadratic, rather than a linear approximation of the objective function. 

Linearised constraints are used with this to create a direction-finding problem of the 

form: 

minimise 

Q(S) ; F' + 'IF S + O.5S' BS (5.11) 

subject to 

j ;1. m. (5 .12) 

where F(X) is an objective function and vector X contains design (or decision) 

variables; S is a vector of search direction; superscript 0 denotes the value at the 

beginning point; gj defines the constraint boundaries; B is dependant variable matrix 

which contains gradient information. 

Here the design variables are the components of S. The matrix B is a positive definite 

matrix which is initially the identity matrix. On subsequent iterations, B is updated to 

approach the Hessian of the Lagrangian functions. This sub-problem is solved using 

the Modified Method of Feasible Directions [104). For this sub-optimisation problem. 

the functions and derivatives are easily and efficiently evaluated. 
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Now assuming the approximate problem of minimising Q subject to the linearised 

constraints has been solved. At the optimum for this problem, the Lagrange 

multipliers A. j. j = I, m associated with the solution of this direction-finding 

problem can be calculated. 

With the Lagrange multipliers available, an approximate Lagrangian function can be 

constructed and used to search in the direction defined by S. Having determined the 

search direction S, the design is updated as a one-dimensional search problem in the 

usual manner, except here an exterior penalty function is used: 

<I> = F(X)+ i:UJ max[o,dX)l (5.13) 
i- i 

where 

(5 .14) 

for the first iteration, (5 .15) 

for the subsequent iterations (5 .16) 

and u; = U i from the previous iteration. 

Here: tP is a pseudo-objective function; q is an iteration number; a* defines the 

distance in the direction S where the optimiser should move to achieve the better 

design. 

The task is to find a in order to minimise (5 .13). This one-dimensional search 

problem is well conditioned and a=1 is a very good estimate for a". Usually, 

quadratic polynomial interpolation is adequate to refine the solution for a *. 

During the one-dimensional search, approximations are made to the components of t1J 

because this function has discontinuous derivatives at the constraint boundaries. but 

the components are smooth. 

At this point the search direction S is determined and the one-dimensional search is 

performed to update the design. Then the matrix B needs to be updated to provide an 

improved quadratic approximation of the augmented design objective. Powell [67] 

recommends the Broydon-Fletcher-Shanno-Goldfarb (BFSG) [105] update formula: 

(5 .17) 

where 
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{P)=1" - 1" -1, 
M= o{y )+(I - oXBJ(pl 
{y) = V x<l>' - V X<l>q-I , (5.18) 

<I> = F(1' l+:tAid1') 

0= O.12{PnBJ(p) . T T 
{

I if (p),{y) " O.2{Py[BJ(p) 

(pnBIBJ(p)-{P)' {y) if{P} {y) <o.z{P) [BJ(p) 

Here the constants 0.12 and 0.2 are chosen arbitrary from the numerical experience; 0 

is a push-off factor The new matrix [B'] now replaces [B) in (5.11) and the 

optimisation process is repeated until convergence. 
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Figure 5.3 Algorithm for the sequential quadratic method 
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The algorithm of this method is given in Figure 5.3. From the outline of the algorithm, 

it is apparent that this method incorporates the best features of several concepts. First, 

the Lagrangian is approximated and then the approximating function is minimised. 

However, since the function is approximated with respect to the primal variables X 

alone, the minimisation sub-problem uses linear approximations to the constraints. 

The result is then used as a search direction to minimise the augmented Lagrangian. 

The form of the update of the B matrix is such that positive definiteness is maintained 

and thus is a variable metric method. The method deals well with equality constraints, 

as long as the sub-problem of the solving for S can treat linear equality constraints. 

Finally. the method deals with infeasible designs with no additional strategy required. 

The abovementioned confirms this technique to represent a very powerful 

optimisation tool . 
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5.5 Literature Survey 
A number of optirnisation studies have been undertaken for orthogrid, anglegrid and 

isogrid structures [13], [36], [32]. However they were mostly based on the different 

homogenisation approaches that required calculations of the stress resultants with the 

use of supplementary finite element package and subsequent input of the obtained 

results in the optimisation routine. These approaches make the optimisation process 

not completely automatic, which becomes an important issue considering the number 

of iterations required for achieving optimum. 

5.6 Maximum Applied Load Design 
The objective function in the present design study is applied load. The design problem 

can be stated as 

max q(9), h, b) 
.. , h . to 

(5.19) 

subjected to the following constraints 

(5.20) 

for the case of the constant aspect ratio, and also 

(5.21) 

for the generalised case. 

The maximum load represents the maximum load the structure can sustain before 

failure. The failure of the isogrid cylinder is characterised by the failure coefficient 

(strength ratio) r , described later in Section 5.8.2 equation (5.33). The value of r~l 

corresponds to the failure of the structure. The strength ratio is calculated for the 

vertical and diagonal families of ribs and the structure is considered to have failed 

when either of them is equal to one. The analytical expression for the objective 

function is derived for r= /. 

The load scaling factor was introduced to link tension and torsional loads in order to 

reduce the number of system variables and subsequently reduce the required 

computational time. The load scaling factor is a ratio: 

(5.22) 
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where qu,. is a tension load and qlql' is an equivalent torsional load. The equivalent 

torsional load is an applied distributed load equivalent to the torque (1) 

T 
q,., = 2:rR' . (5.23) 

The maximum applied load design involves the computation of the width (b), height 

(h) of the ribs and angle of cell configuration (q:» so as to solve the optimisation 

problem (5.19). For a given h and q:> the maximum p~ is determined such that the 

inequality (5.20) is satisfied. The optimal h and 'P are obtained by maximising the 

objective function Pcr over these variables. This yields the maximum (critical) load 

that can be applied to the structure just before its failure, having the optimal geometric 

parameters h, b and rp. A Sequential Quadratic Method (SQM) was used for 

calculating the optimum [105]. In this method, a quadratic programming subproblem 

is so lved at each iteration. The values of the optimum sequences of the cross-sectional 

parameters are presented in Table 5.2-Table 5.4. 
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5.7 Stresses Acting in the Ribs 
Components of the stress acting in the ribs of the isogrid structure comprise normal 

(direct) and shear components. According to the regular beam theory direct stress 

components (1"1 are calculated on the faces that are nonnal to the direction denoted by 

a subscript (Figure 5.4) . The notations ofthe shear stresses T u the first index denotes 

the direction of the normal to the surface where the stress component is acting and the 

second shows the direction of this stress (Figure 5.4); i shows that stresses are 

calculated for each family of ribs. The directions of the forces and moments acting in 

the rib are shown on the Figure 3.4 

2 

T 32i",,-
r 32i 

T31i 1 
h 

~ 
(J3i 

b ~3 

Figure 5.4 Direction of tbe normal and shear stress components 

5.7.1 Normal Stresses 

Normal stresses have two components: 

1. From the contribution of the axial force in direction 3 [95] : 

Where N3 is an axial force in the rib in direction 3; A is a cross-sectional area. 

2. From the contribution of the bending moment about the axes 1 and 2 [95): 
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Where Q, are the shear forces. 

The total normal stress is: 

5.7.2 Shear Stresses 

Shear stress has also two components: 

1. From the contribution oflhe shear forces Q : 

~ . = QH (b, -Ix IX~JXH I } 
311 Iu 2 I 4 2 

T = ~(h, -Ix .IXh, _1x"I) 
32. 1

1
; 2 2• 42 

5.7.3 Torsion of the Ribs 

Torsional stress in the ribs may be expressed as: 

H r ::;:: i 

'" hb " a , , 

(5 .25) 

(5.26) 

(5 .27) 

(5 .28) 

where h, is longer side ofthe cross-section and bi is the shorter side, a is the 

coefficient that depends on the geometry, for the rectangular cross-section the values 

of this coefficient are given in Table 5.1. 

h/b 1 1.5 2 2.5 3 4 6 10 00 

a 0.208 0.231 0.246 0.256 0.267 0.282 0.299 0.312 0.333 

Table 5.1 The values of coefficient a 
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5.8 Material Failure in a Rib 

In this section a quadratic failure criterion is derived to determine material failure in 

the ribs due to the stresses calculated in subsection 5.7. 

5.8.1 Material Properties 

The following material properties are considered for the material which is orthotropic 

in respect of the third direction: 

X; = Tensile strength in the 3-d direction; 

x; = Compressive strength in the 3-d direction; 

S = Shear strength in the 31 and 32 directions. 

5.8.2 Quadratic Failure Criterion for a Beam 

Let us start derivation with the generic quadratic criterion [15] 

(i, j = I, 2, 3, 4, 5, 61 (5.29) 

where the material is presumed to fail when equation (5.29) is satisfied at any point. 

Eliminating stress in the I, 2. 12 directions from beam theory assumptions and 

removing the first order shear tenus leaves us with 

(5.30) 

where only F;j and F; have to be determined from the material properties. When any 

two of the stresses are zero, the remaining stress is either X;. X; or S at failure, so 

we can detennine that 

F = 1 
33 X' X c' , , 

1 
F44 = S2 ' 

1 
F55= S 2' 

F = _1 _ _ _ 1_ 
3 X ' X c ' , , 

and our final failure criteria for a simple orthotropic beam is then 
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(5 .32) 

Ifwe now substitute ru/ for O"i ' the ratio of the failure loading to the applied loading 

can be detennined as follows 

S2U3(X! -X;)+ SJS2U: (X~ - X;)+4X; x; {SlU; +X; X;(u; +0";)) 
r == 2(S2U;+ X;X;(u;+u;» . (5.33) 

where r is a strength ratio for this case. 
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5.9 Optimisation Runs 

Three optimum design problems for the isogrid structure are considered. 

The first problem involves the maximum load design for the structure in the fann of a 

cylinder subjected to combined tension and torsional loading. The design variables are 

chosen as the width (b) and the height (h) of the ribs' cross-section, and they 

considered to be the same for all the families of the structure. The design-optimisation 

is performed for the isogrid cylinder with the geometrical parameters given in Table 

2.1 and material properties in Table 2.2. The relationship between these cross­

sectional parameters is established. The effect of the design parameters on the 

extensional and torsional stiffness is investigated. The optimisation task has been 

performed for the different combinations of tension and torsional loads and the results 

are presented in Figure 5.5-Figure 5.6 

Figure 5.5 Critical load for the vertical family of ribs (w,=l) 
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Figure 5.6 Critical load for the diagonal family of ribs (w,=l) 

The values of the optimum sequences of the cross-sectional parameters are presented 

in the Table 5.2. The optima are found in each case using the symbolic computation 

package Mathematica by means of multiple application of the Sequential Quadratic 

Method (SQM) with constant changing of the initial guess. 

In the case of w,= 1 the failure occurs in both families of ribs almost simultaneously at 

the critical load combination: qren=qror=107 N/m. Surfaces of optimisation are shown 

in Figure 5.5 - Figure 5.6, where the critical applied (P.,) load is plotted verses the 

design variables (b and h). Optimum sequences of geometric parameters for the rib's 

cross-section for this case are given in the Table 5.2. 
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0.03 

Figure 5.7 Critical load for the diagonal family of ribs (w.=2) 

4x 10
6 ~::;>''\..., 
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0.03 

Figure 5.S Critical load for the vertical family of ribs (w.=2) 
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In the case of dominating tensile loading (w".=2) as can be seen from Figure 5.7-Figure 

5.8, the failure load for the diagonal families is much smaller than for the vertical 

families. The aspect ratios of the ribs that belong to the diagonal families lend 10 a 

unit. This occurs because of the increased tensile component of the axial force in the 

diagonal families of ribs. Considering the cross-section of the vertical and diagonal 

ribs to be the same during the optirnisation process leads to the vertical family become 

much stiffer than the diagonal. This points towards the possibility of considering 

cross-sectional parameters b and h to be different for vertical and diagonal families of 

ribs, varying independently during the optimisation process. That can subsequently 

increase the stiffness of the structure in the critically loaded direction and reduce the 

tota1 mass of the structure as a whole. 

4x l06 

3xI06 
-Per 

2xl0
6 

He.ight 

0.03 

Figure 5.9 Critical load for the vertical family of ribs (w,=O.5) 
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.01 'Width 

Height 

0.03 

Figure 5.10 Critical load for the diagonal family of ribs (w,=0.5) 

For the case of w3=O.5 the increase of the load scaling factor (which leads to the 

increase of the torsional component of the loading) as can be seen from the Figure 5.9 

- Figure 5 .10 does not influence much the stress-strain state of the ribs that belong to 

the vertical family. Increased strength oftbe diagonal ribs is observed. This is caused 

by the decreased contribution of the axial loading of the diagonal ribs subjected to the 

smaller torsional component of the applied load. There are several local maximums on 

the surface plots Figure 5.9 - Figure 5.10. The global optimum corresponds to the 

b=0.017m and h=0.035m for the critical loading combination: q".=3.8 10' N/m, 

qror=1.9 10° N/m. The cross-section of the vertical ribs tends to the high aspect ratio in 

the hoop (tangential) direction to increase the bending stiffness of the vertical ribs to 

sustain the bending component of the torsional load. 

The second problem involves the m8XImum applied load design for the isogrid 

cylindrical structure subjected to the same combined loading. but the design variables 

are chosen as the height (h) of the cross-section of the rib in each of the families and 

the cell configuration described by the angle (~) between the first family and the 
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generator of the cylindrical surface. The aspect ratio of the cross-section in this case is 

considered constant (equal to three as suggested in [39]). The relationship between the 

height of the rib. cell configuration and the maximum applied load is established. The 

effect of the design parameters on the extension and torsional stiffiIess is investigated. 

8XlO' 

h 

• 
0.0.5 

Figure 5.11 Critical load for vertical family of ribs (w,=l) 
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Figure 5.12 Critical load for diagonal family of rib. (w.=l) 

A number of cases were considered for different values of the aspect ratio of the 

cross-section. The optima are given in the Table 5.3 . 

With introducing a cell configuration angle rp as a design variable. the distribution of 

the optimum sequences becomes more complex. Extensional and torque stitfuess of a 

cylindrical structure in this case is governed by the change in orientation of the two 

diagonal families. Torque stiffness increases for higher values of ip (60 ... 70°). In 

contrast, the extensional stiffness is reverse dependant on fIT. increasing for the lower 

ip values (40 ... 50°). The change in cell configuration causes a change in cell density 

and subsequently a slight change in the diameter of an isogrid cylinder (the magnitude 

of this change also depends on the change in cell density). That is why, in practical 

design/optimisation of the isogrid structures it is recommended that the change in the 

design variable rp with a certain step be consider. to be able to manufacture an 

enclosed isogrid cylinder. 

The range of the design variables were taken as 35'> ip>75°, 0.002>h>0.07 from the 

considerations of manufacturability of the isogrid structure. The optimisation results 

171 



show that with decreasing angle rp, the torsional stiffness of the structure decreases. 

The optimum cell configuration for the · ws=2 corresponds to the tp=62 .1° and 

h=0.02394m at the critical load combination: qren=qror=1.2 107 N/m. Analysing the 

plots for different load scaling factors the following conclusions can be made: 

1. Forws=2 (dominant torsional load) and ws=O.S (dominant tension load): in the case 

of the smaller torsion load the diagonal ribs can sustain a higher load than in the 

case ofws=2, but still the failure will be at the minimum load for both families. In 

this case it will be vertical family. 

2. For the vertical family the value of the critical load does not change with the load 

factor (w.). 

The values of the optimum sequences of the cross-sectional parameters are presented 

in the Table 5.3. The optima are found in each case using symbolic computation 

package Mathematica by means of multiple application of the Sequential Quadratic 

Method (SQM). In this method, a quadratic programming subproblem is solved at 

each iteration with constant changing of the initial guess. 

The objective of the design study for the third case is to maximise the applied loading 

subjected to the material failure constraint. Maximisation of the applied load (qten. 

qror) is achieved by optimally detennining the width and height of the ribs cross· 

section (b and h respectively) and the angle (ip) between the first family and the 

generator of the cylindrical surface in order to prevent material failure occuring 

during the loading event. The design-optimisation problem is stated as (5.19) 

subjected to (5.20) and (5.21). The computational solution consists of successive 

stages of the calculation of the stiffness parameters with successive optimisation until 

a convergence is obtained and the optimal values of the design variables (5 .20), 

(5 .21) are determined within a specified range of accuracy. In this optimisation study 

the Sequential Quadratic Method (SQM) [105] is employed to determine the global 

optimum. The effect of the design parameters on the extension and torque stiffness is 

investigated. The optirnisation task has been performed the different combinations of 

tension and torque loads. The numerical results are given in the Table 5.4 for the 

isogrid structure (Figure 2.5) with the dimensions shown in Table 2.1 and the material 

properties of the ribs shown in Table 2.2. 
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The numerical results obtained on the basis of optimisation study show that the 

vertical family of the ribs is more sensitive to the loading and will fail first at the 

lower values of the combined tension and torsion loading. This is true for all the three 

cases considered. The optimum configuration of the unit cell of the grid structure in 

the case of equal tensile and torsion loading corresponds to an almost equilateral 

triangle (fJopF 61 .3°). When the tensile loading starts to dominate (the case w,=O.5), 

the unit cell will tend to stretch in the vertical (z) direction, and the optimum cell 

configuration corresponds to the isosceles triangle with the base angle ~opF40. 5°; 

accordingly for the case of dominating torsion loading the base angle ~opF73.3° - the 

unit cell tends to stretch in the hoop (8) direction. The rectangular cross-section 

parameters are also changing dependent on the dominant loading component. As 

expected, as the torsional component of the combined load increases (w,=O.5, 1, 2) the 

aspect ratio of the rib's cross-section tends to increase in the hoop (8) direction. 

Predominate torsion of the structure causes bending of the ribs in the (J direction, 

which subsequently governs the increasing aspect ratio of the ribs. The increased 

aspect ratio of the ribs accordingly increases the second moments of inertia of the 

cross-section in the direction of the induced bending. 

The values of the optimum sequences of the cross-sectional parameters are presented 

in the Table 5.4. The optimums are found in each case using the symbolic 

computation package Mathematica by means of multiple application of the Sequential 

Quadratic Method (SQM). 
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Vertical Famiry DiqKonal Family 

Ws b h ""'"''''''''~''''''''''''' qten qtor b h ""'''''''''~''''''''''' qten qtor 
'IIIIIIIIIIIIIIIII""IIIIIIIIIII'"UIIIUII 1111111111111"'"11111111111111111111111111111 """'''''''''''''''',..'''''''''''''''''''''''''''' ""'"''''''''''''''''7''''''''''''''''''''''''''''''' '"1111111111111111111111111111111111111' 111111""""141111111'"111111"'111111 ""'''''''''''''''',..''''''''''''''''''''''''''' "'"'''''''''''''''7''''''''''''''''''''''''''''' 

1 0,02) m 0,004 m 0° 10 N/m 10 N/m O,021~ m O,m02 m 60° 10 N/m 10 N/m 

2 0,029 m 0,002 m 0° 4106 N/m ~ 106 N/m O,mOI m 0,069 m 60° I" 10
6 

N/m j lOb N/m 
1111111111111111111. ","IIIIIIIIII"""""""IUIIIIIIIIIIIII 1111111/1"11 11""""1111111111111111111111" IIUII'",II'"II'I'IItlllllllll """""''''''''''''''''''0'''''''''''''''''''''''' """"''''''''''''''''''''''6'''''''''''''''''''''''' ,,,""'10'11 11111111 111 11" 1,11'11 1"111' ",.,,,,,111111111111'111,,1111111111111., 11111 1'11 111111111111'"11/11' """""""''''''''''0'''''''''''''''''''''''''' ''''''''''''''''''''''''0'''''''''''''''''''''''''' 

0.5 0,017 m 0,0035 m 0° 3.810 N/m 1.910 N/m 0,0219 m 0,m02 m 60° 610 N/m 310 N/m 

Table 5.2 Optimum values for b, h 

Vertical Family Diagonal Family 

Ws b h '"'''''''''''~''''''''''''' qten qtor b h """ " '''''~'''''''''''' qten qtor 
'''11111",,"," ,11111111111111111111111111 1 11111111111111111111111111111111111111111111111 """"""""'"'''''''''''''''''''''''''''''''''' """''''''''''''''''''''''''7'''''''''''''''''''''''' '"'1111111111111111111, 11111'1'1"1111111 'Imll"III.III,""lIlIlllllIilllIIlIIlI ""'"''''''''''''''''''''7''''''''''''''''''''''' "'"''''''''''''''''''''''7''''''''''''''''''''''' 

1 0,0091 m 0,0026 m 0° 1.210 N/m l.210 N/m 0,02394 m 0,00684 m 62,1° 1.3 10 N/m 1.310 N/m 

2 0,01295 m O,Om7 m 0° 4.7106N/m 9Al06N/m 0,0588 m 0,0168 m 71.4° 1.8106N/m 3.6106N/m 
1IIIIInllllllllllll '111111111111111"11'111'11111111111111111111 1111111111111111111111111111111111111111111111. 111111111111111111 111111111111111 """""'"''''''''''''''''0''''''''''''''''''''''' """"""""""III"'"'~''''''''''''''''''''''''' 111.111101111111 1111 11111111111111111111' 11111111111111111111111111111111111111111 IIIIUIIIIIIIIIIIIIIIIIIIIIII """""""""""""'0""""""'''''''''' """"""'''''''''''''''0'''''''''''''''''''''' 

Oj 0,011" m O,OOJJ m 0° 4J 10 N/m 2,210 N/m 0,0682; m 0,0195 m J8,2° 7,210 N/m 3.610 N/m 

Table 5.3 Optimum values for h, ~, when aspect ratio is constant (3.5) 

Vertical Famiry Diagonal Family 

Ws b h ~ qten qtor b h ~ .. qten qtor 

1 ' 0,014 m 0,004 m 0° IJ8101 N/m IJ~ 107 N/m 0,021 m 0,014 m 61Jo lA 107 N/m lAl07N/m 

2 0,033 m 0,0063 m 0° ;A3106N/m 1.1107 N/m 0,027 m 0,00;7 m 73,3° 6106N/m 1.2107 N/m 

0.5 0,024 m 0,013; m 0° 4,9106 N/m 2A; 106N/m 0,0;2 m 0,0262; m 40.5° 8,64106 N/m 4,32106N/m 
111111111 111 '11111"1111111111111111111111 111"1 '111111 1111111111 11111111111"111111111"'llllIltllllllllllllllll lllllllt IIIIlHllllllllllllllllljlllllllllllllllllllll111111111111111111111111111111111111111111111111 1111111111111""""11111 111111111"""111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111IIIU"",,,'IIIIIIIIII'IIIIIIIIIIIIIIII'I'IIIIIII 

Table 5.4 Optimum values for b, h, ~ 

* Bold case indicates design variable 

The range of design variables: j;O ~ ~ s 7,° 0,002 S b s 0.07 0,002 ~ h ~ 0,07 
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5.10 Analysis of the Results 

The effects of tensile and torsion applied load on the optimum design have been 

investigated. 

In the case of equal tensile and torsion loads (Figure 5.5, Figure 5.6, Table 5.2 - Table 

5.4), the failure occurs in both families of ribs almost simultaneously at the critical 

load combination: Qre,,=qto,.=107 Im. 

In the case of dominating torque loading (w,=2) as can be seen from Figure 5.7, 

Figure 5.8; Table 5.2, that the aspect ratio increases to increase the torsion stiffness of 

the structure. Ribs tend to get taller in the hoop direction. The failure load for the 

diagonal families is much smaller than for the vertical families. The aspect ratios of 

the ribs that belong to the diagonal families tend to a unit. This occurs because of the 

increased tensile component of the axial force in the diagonal families of ribs. 

Considering the cross-section of the vertical and diagonal ribs being the same during 

the optimisation process leads to the vertical family becoming much stiffer than the 

diagonal. This points towards the possibility of considering cross-sectional parameters 

b and h to be different for vertical and diagonal families of ribs, varying 

independently during the optimisation process. This can subsequently increase the 

stiffness of the structure in the critically loaded direction and reduce the total mass of 

the structure as a whole. 

When introducing a cell configuration angle rp as a design variable, the distribution of 

the optimum sequences becomes more complex. Extensional and torsion stiffness of a 

cylindrical structure in this case is governed by the change in orientation of the two 

diagonal families . Torsion stiffness increases for higher values of rp (60 ... 70°). In 

contrast, the extensional stiffness is reverse dependant on rp: increases for the lower rp 

values (40 .. . 50°) . The change in cell configuration causes a change in cell density and 

subsequently a slight change in the diameter of an isogrid cylinder (the magnitude of 

this change also depends on the change in cell density). That is why. in the practical 

design/optimisation of the isogrid structures it is recommended that the change in the 

design variable rp with a certain step be considered, to allow manufacture of an 

enclosed isogrid cylinder. Results obtained for a number of design/optimisation 

studies are also summarised in [82), [84). 
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5.11 Conclusions 

The procedure for optimally designing grid structures for a maximum applied loading 

using a failure criterion as a constraint is described. The objective is a maximum 

applied combined tensile and torsion load and the design variables are cell 

configuration and the cross-section parameters of the ribs comprising the grid. The 

equivalent stiffuess homogenisation approach in conjunction with an optimum search 

routines is used to determine the design variables optimally. The numerical approach 

employed in the present study is necessitated by the computational inefficiency and 

conventional difficulties of linking the optimiser and the FEM analysis package for 

calculating the stress resultants used in the optimisation process. These were 

successfully overcome by the developing special purpose symbolic computation 

routines to compute stress resultants directly in the program using the new 

homogenisation approach for the model with equivalent stiffness. The proposed 

homogenisation approach shows high efficiency and good accuracy for the obtained 

results. It must be emphasised that different failure criteria may be used. 

The effect of the optimisation was investigated by plotting surfaces of optimisation, 

where the critical applied load is plotted against the design variables. The results show 

that the difference in the value of the maximum load applied to the optimal and non­

optimal isogrid structure can be quite substantial, emphasising the importance of 

optimisation for composite isogrid structures. 

In order to demonstrate the complete procedure of implementation of the new 

homogenisation approach to the design-optimisation study. several isogrid cylinders 

were completely optimised, such that both width and height of the ribs comprising 

vertical and diagonal families and the angle of the cell configuration were detennined 

optimally. These structures have been analysed for different loading conditions such 

as tension and torsion and their combination, and optimal designs of each were 

compared to the others. The extent of influence of the rib's geometry and unit cell 

configuration on extensional and torsion stiffness was established. 
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6 Areas of Further Research 
This research is aimed at formulating new mathematical models for composite grid 

plates and shells which are subjected to a variety of loading combinations. The main 

objective of this research is to improve the accuracy and efficiency of the tools for 

design/optimisation of these structures, As a step towards obtaining practical results 

and further research in this area it is recommended that that the developed 

experimental computer code [Appendix I, 2] written using symbolic computation 

package Mathematica should be made available in more accessible versions to the 

researchers working in the field of the design/optirnisation of grid structures. Further 

work on this code should concentrate on considering the itlfluence of boundary effects 

in the vicinities of loaded and constrained edges of a shell. The mechanism of 

application of internal pressure to the mathematical model should also be further 

investigated. In addition, experimental studies on a real isogrid structures should bc 

carried out to investigate an accuracy of the homogenised mathematical model. In the 

case of a grid structure with outer layers of composite skins the homogenised 

representation of the skins must be developed so that the behaviour of the composite 

grid structure as a whole can be represented adequately. 

Some of the areas of grid structure analysis which are still not well developed 

analytically, are typically resolved by the use of FEM. These areas include: local rib 

buclding, local skin 'pocket buckling', rib tennination effects and the effects of grid 

pattern irregularities. The influence of manufacturing defects on the modelling of grid 

structures should also be addressed. Detailed geometry of a grid structure is heavily 

dependent on the manufacturing method used. The effects of different manufacturing 

processes on the behaviour of grid structures is currently not very well understood and 

was not implemented in the currently developed model. Further development of the 

current model must also address the following common manufacturing defects: 

material build-up at the nodes, skin print-through (markofl) near ribs where rubber 

tooling deforms the skin, wavy fibres in ribs due to lateral compaction, resin rich/dry 

areas at or near nodes, and non-uniform fibre volume fraction from rib top to rib 

bottom. 
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The analysis tool developed in this study is aimed at making the design of grid 

structures easier for the engineer. The tool of course has to be further developed not 

only to be able to incorporate the effects mentioned above, but also to address some of 

the guideline issues of the grid structures design which have not been fully understood 

and developed at present time. This issues include: 

• Investigation of the effect of nodal offset. 

• The best methods to tenninate different types of grid patterns. 

• The choice of the grid pattern for the lattice structures of revolution. What 

families of ribs should be included for the optimal structural performance? 

• Adequate representation of discontinuities in grid structure patterns (cut-outs, 

doors, windows) and the boundary effect at the edges. 

• Fabrication of a grid structure with a zero bending-coupling CB-matrix) which 

would not warp under a temperature change. 

Development of reliable and accurate optimisation methods is also essential due to the 

expanded use of composite grid shells in high-tech industries. Therefore, there is a 

need to improve the current optimisation methods and approaches. Development of 

practical numerical techniques for predicting the failure initiation in composite grid 

shells subjected to different loading conditions is a logical sequel of the design 

optimisation and of a great importance in modem engineering. The results of this 

research can be used to assemble a computer code for the simulation of the 

defonnation and stresses of the grid structure subjected to a variety of loads and their 

combination. The extended optimisation routines can also be further developed to 

handle more variables. This research would greatly enhance the scope and 

effectiveness of conventional tools for the designloptimisation of grid structures. 

Several problems which are cumbersome or exceedingly difficult to solve using 

conventional techniques could be treated using the proposed new homogenisation 

method. 
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7 General Conclusions 

A model for the analysis of grid structures based on the equivalent stiffuess approach 

has been developed. The model was verified by comparing the results obtained on its 

basis to those obtained using exact FEM modeL The equivalent stiffness model was 

shown to be accurate in predicting resultant stresses and strains. However, the 

equivalent stiffness approach was found later to be inefficient for application in the 

designloptimisation of lattice structures, so a new homogenisation approach was 

proposed. The new homogenisation approach was developed and verified. This 

approach was implemented using the symbolic computational system of Mathematica. 

The developed software was used to derive analytical expressions for the objective 

functions with further calculation of the numerical results. 

The numerical results were calculated for the problem of isogrid cylindrical structure 

subjected to tensile and torsion loads. The optimisation study shows the maximum 

values of the combination of the loads correspond to the values of optimum design 

parameters. Results are presented for a model, which neglects the influence of the 

boundary effects. The computational efficiency of the optimisation algorithm in the 

design optimisation of cylindrical isogrids was improved and good accuracy of the 

results has been achieved. The investigation based on failure analysis shows that the 

difference in the value of maximum load applied to the optimal and non-optimal 

isogrid structure can be quite substantial, emphasisi ng the importance of optimisation 

for the composite isogrid structures. Several isogrid cylinders were completely 

optimised on the basis of the proposed homogenisation approach, such that both the 

width and height of the ribs comprising vertical and diagonal families and the angle of 

the cell configuration were determined optimally. These structures were analysed for 

different loading conditions such as tension and torsion, and their combination. The 

numerical results obtained during several optimisation runS can be used in the 

practical engineering design of isogrid structures to allow time consuming and 

inefficient trial and error methods to be avoided when the recommended values for 

cross-sectional parameters, cell configuration and cell density have to be determined 

for an arbitrary loading combination. 

As a step towards improving the developed experimental computer code, further work 

should concentrate on considering the influence of boundary effects in the vicinities 

of loaded and constrained edges of a shell. The mechanism of applying of internal 
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pressure to the mathematical model should also be further investigated. The extended 

optimisation routines can also be further developed to handle more variables. 
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Appendix 1 

Symbolic computational routine used for the calculation of the equivalent stiffness 

matrices for the isogrid cylindrical structure. 



Equivalent Stiffness Matrices.nb 

Calculation of the Equivalent Stiffness Matrices for the Isogrid Structure 

Young's moduli of the material: 

Eo: = 1.811011 
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Shear correction factor: 
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Cross~sectiona1 properties (width and height of the ribs): 
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Calcu1ation of extensionaJ. extensional-bending coupling, bending and transverse shear stiffness matrices for the ribs: 
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2--m n ... 

E. J e 2; 2; 
2 --mn ... 

Du 0 

EII, 2 2 2 __ mn_ E. J, 2 2 2 __ m n ... 
Du .. Du 

Ell I. 2 2 2 __ mn+ ... 

Ha triD'oz:m (A.:llo ] 

Hatri.zFoz:m [Br llo ] 

Hatri.%Foz:m [Drllo) 

HatriIFoz:m [Hr llo ) 

... 

.... E. J,o E. J. 2 2 2. 
+---+--(m_n) 

4d,o 2tJe, 

E .... , E... 11 
o}, {Ot X--='-"'::'+2x--n' 

",", ... 

Stiffness matrix (Q] is calculated for the given lay-up of the skins using PROMAL sofrware for composites: 

Q.",,,, {{1 . 81102 , 2. 897 , Ol. {2.891, 10.35, Ol. to, 0, 7.11}} 

HatrixFoz:m [Q.t.] 

Calculation of extensional. extensional-bending coupling, bending and transverse shear stiffness matrices for the ribs: 

Thickness of the layers: 
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Equivalent Stiffiress Matrices.nb 

A.k=ArrOly(aOl, {3, 3}J; 

B.k",Array[bb, {3, 3)] ; 

D.k :: Array[dd. (3, 3)]; 

i '" 0; 
Label. [be2) ; 

i:i+l; j>=O; 

Label [be3] ; 

j=j+l; 

A.k.[ [i, j]] 

B.k( (i. j)) 

,.2Q.k[[i, j])h.k ; , 
,,- Q.k.[[i., j]] h.t? ; 

2 , 
D.k [ [i. , j]] .. - Q.k [ [i, j]] b.t. l; 

3 
1£{j<3, Goto[be311; 

1£[i<3, Goto[be2]]; 

Print[~A.k :::" MatrixFo:r:m[A.k)1 ; 

Print["B.k;; MatrixFo:r:m1B.k1); 

Print["D.1r. :::" MatrixFo:r:m[D.kl); 

Equivalent Stiffness Matrices of the isogrid structure: 

Atotal.-Ar.ray[aaa, (3, 3}); 

Bt.at..l - Arr_y [bbb, {3, 3} ) ; 

Dtotal .. Ar.ray[ddd., (3 , 3} ) ; 

i. .. 0; 

Label. [be4 J ; 

Labe.l[beS] ; 

j = j ... 1; 

Atot.al.([i, jl) =~1l>[[i, j)] +A.k([i., j»; 

Btot.al.[[i, j)] z Br1l>[[i., j)] +B • .I;[[i, j»; 

Dtot.al [[i , j]] '" D:l:1lo [[i, j» +D.t. ( ri, j»); 

If[j < 3, Goto[be3JI; 

If [i < 3. Goto [be2]} ; 

Htotal '"' UrJ.b 
Pr;Lnt [ " Atotal. .." Matri.ltFo:z:m. [Atot..1 J ) ; 

Print["Bt.atal. .. " MatrixFo:z:m.[BtoU1J]; 

P:r;Lnt["Dtot..l. ,," MatrixFo:z:m.[Dtot..al.J 1; 
Pr;Lnt["Utot..l :::" MatrixFo:z:m.[Htot&l)]; 
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Appendix 2 

The symbolic computational routine used for the calculation of the optimum values of 

geometric parameters for the isogrid cylindrical structure during different 

design/optimisation runs. 



lsogrid.nb 

DesignlOptimisation of Isogrid Cylinder 

• Shell parameters: 

The angle between generator line and axis of rotation of a shell 

y '" 0 

mm '" 0 

Radius of curvature of a median swface 

.. oS 

Curvatures of the shell: 

Equation of the meridian of a shell: 

rd" Ro + Z Tan[rl 

Number of intersection points of rib's axes on the paralel of the median surface: 

mo z 60 

Parameters of the cross-section oftbe ribs: 

b '"' h/3 

FF". (bb) IRo"2 

F l ,", (bb) IRo"2 
F2;; (bb) IRo"2 

F3 = (bb) IRo"2 
Ft'" (bb) IRo"2 

Material properties: Young's and shear module, Pa: 

El ... l . 81.0"11 

El ", El 

E2 == El 

E J '" 0 

E. zEl 

1 



lsogrid.nb 

Gl. (1 . 1710 " 9) IEl 

G3.0 

G4. (7 . l710"9)/El 

Main central moments of inertia for the ribs: J 1- in the plane nonnal to the median surface, 
J) - torsional constant of a cross - section : 

J 1 = (b (h) "3) 112/Ro"4 

J ll • (b (h) " 3) Il2/Ro"4 

Jit • (b (h) "3) 112/1'.0"4 

J 3 .l/Rg" " «hb3 ) 116 (1.6/1.3_3.36b/b (b4 /(l2h4»» 

Jll -1/ Ro " 4. «bbl ) 116 (16/13-3 . 36b/b (b'l (12b'»» 

J 3, .1/1'.0"4 «bbl ) 116(16/13-3.36b/b(b'l (12b'»» 

Spacing between the axes of adjacent families of ribs: 

aa. pil (amo) 

,).1 .... a 

"'2 .... ... 

"'l·Zaac 

..... · ~c 

Angle bern'ceo normal to the median surface and axis of rotation of a shell 

'" • ArCSin!" (1. (~.r) ' 2) 1 
Il . (El J1) 1 a1 

I3 . (El Ju) 1 a) 

I4. • (E, J u ) I ..... 

• Load parameters: 

Forces distributed along the surface of a shell: 

goO 

x .. gz Si.n[y] 

y 0 0 

Z", q Z Coa {y] 

Coefficients of quadratic form 

A. "" (1. (~.r) "2) 

Rod"' r 

B,. .. c!'. Bo 

IlU . (2FFc .... 4.) 1...a..F,/ .... 

IlU .. (FF (s2phi) " 2) I (2 ... a) 

Y11 " -«2J1 c"4.)/aa. J u I ..... (GlJ3 (s2phl)"2)/(2aa» 

Yu .. - (J1 - G1 J l ) (s2phl) "21 (2 aa) 

Y22 " -«2J1 s " 4.) laa. Jll/al. (G1J) (s2phi) "2) I (2a.a» 

2 



!sogrid.nb 

Yll '" J l (s2phi.) "2 /aa + GIJl4 /~ + (2GIJl c"2 c2phi.) / aa 

Y41 '" J 1 (s2phi.) "'2 /aa + GIJ])/al - (2GIJl s"'2 c2phi.) / aa 

a1.21 '" a~a1.2 

kll .. IJ~ k1 

xn '" a~xz 

Bn '" a~B1 

At '" IJ¥A 

YlU '" a~ Yll 

Ym = IJ~Yll 
a, • azz - a12"'2a11 " (-1) 

S, '" Yzz - Yu '" 2 Yu" (-1) 

S, • Yn + Y41 

S, • 1 + Yu Yu " (-1) 

S, = Yl11 Ba - B1 Yl1 

~o = xn - (BtXl) /Bo 

~1 = mm"2/Bo "2 - k z "2 

~z '" (1 - (k1 - xz) (Xz Yll) / (2 a12» " (-1) 

~3 '"' (Xl - k z ) (kZa12Yl1) fall 

Pu " - (a12 Bl) / (au Bo) 

Pu .. - (a12 III:II.A) / (au Bo) 

P 13 '" -A (X1 + a12 / a ll Xz) 

PH'" 0 

P15",A/au 

PHi '" 0 

Pn .. (JIIIIl A) / BD 

pzz '" Bl/So 

PZ3:0 

P :l4 '" 0 

PZ5 '"' 0 

PZ6 '" A I 1:1:12 

Pl1 '" Akt 

,Pn lE 0 

Pn lE 0 

P l . '" A 

3 



lsogrid.nb 

PlS • 0 

PJ6 '" 0 

Pu = (Vu .0) I Yu + (au kl Bd I (au Bo) 

Pn. (aummklA) I (auBa) 

Ptt '" - (Vu Bd I (Yu Bo) 

Pu'" 0 

PSt. mm " 2k1 YllA/Ba " 2 

PS5 '" (au I all - 1) Bl I Ba 

Ps, '" - (mmA) IBa (1 + k1Yll (k1 - k 2 ) I (2a12» 

Pu '" (mm.2 k2 A) I Ba 
(0.0 + (.61 Bl "2) I (A.,., 2 Bo'" 2) + (Vu Bll ) I (A. ,., 2 Bo) - .1 (.Bo + (Y12 Yu) I Yu) + k2 Yll 

(k1 + (k, - k l ) a12/(11) + B11 (A '" 3 Bo "' 3) (YluA Bo"'2 - Yu Bo (AlBa + 2A Bl}» 

p,,: . -., «2 Bl ) I Bo • (ku - ku) (k2 Yll) I (20.12) + 

«k: - k l ) k:d I (2au) «.B1Bl ) I Bo + (Yll.l - Yl1012ll (2012»» 

p", ({Pu, Pu, Pu, Pu, Pu, Pu), CPu, Pu, Pu, P2t, P25, P2,} , 

{Pll. Pu, Pll, P,t, PlS, PJ6:}, {Pu, Pu, Pt], Pu, Pt5. PtS} • 

{PS1. Pn, p", PS4, Pss, p,,}, (Pu, P,z, Pu, Pu, Pu, p,,» 

H;Ltri..xForm[P] 

f. .0 

f, .0 

f, .0 

f, z _ AX 

f, • 0 

f. • -AZ 

y = (u[z], w[z], y1[z], Nl[z], Hl[z], Ql[z]) 

Matri..xForm(y1 

M=P.y.Fl 

4 



Isogrid.nb 

Hatr.i.xFo:ca.[MJ 

Height of a cylinder: 

zl:7.4/Ro 

Load in Dondimentional form: 

gO 

9 .. ~ IEl 

Load scaling factor 

_ . 0 . 5 

ml .. gOwww 

mO .m1ZP.i~ " Z 

m1 . mOl (ElRo"'Z) 

Solution of a boundary value problem: 

solution2 _ DSolve[ lu' [z] -= M[ [lJ J , v ' [z] - M[ [Z)]. yl' [z) - M[ [3]] , NI' [z) 

- MU 4]), Ml.' [z] - H( [5] J, Ql ' [z] - M( (6] ] , u (zl] - O. v [zl) - 0, yl [zl] 
0, Nl[O] _ - q , MJ.[O] - m.l , Ql[O) - 0), (u[z] . v[z] , yl[z) , Nl[z], MJ.[z], 
Ql[z]} , z) ; 

Notations for calculated homogenised entities: 

Eu . E'vUuate(u[z} I. aolution2]; 

Ew . li:vUuato[w[z] I. solution2) ; 

:£yl. rv-luate[yl[z) I. solution2]; 

DU. Ev<iLl.uatO[Nl[z] I . solution2] ; 

ENZ . N2 ; 

E01 .. Evaluate (01 [z] I. solution2] ; 

DU . Eva.luate(Kl [z] I. solution2] ; 

EM2 .. M2; 

N2 . (on - 012 " 2/011) (B11 (A~) Ell. k z Ell) + 0 12 /011 DU ; 

><2= 

(YZ2: -y12" 2/Y11) «k21 - B1/BokdEll/A- k z "'2 Ew- B11 (ABo) :£yl) + y12/yu DU ; 

Stress resultants in each family of ribs: 

Axial forces in the ribs: 

For the case of cylindrical shell with symmetric loading: 

S • 0; 

H1 : 0; 

5 



lsogrid.nb 

K1 = (El F1) I al. 

K2 = (B, F 2) I a2; 

Kl :: (El FJ) I al; 

",. (Et Ft) la... ; 

Ko .. (2KK(KJe"4 +~s " 4) +KJ~)"(-l) 

K3 • 0.0192304220041906894 

Nondiroentionai form: 

NN1 . «Kl ENl e "2 + ~ EN2 s"2) Ko + S (Ks2pbi) " (-1» El FFK3; 

NN2'"' «K) mu e"2 + ~ £N2 8"2) Ko - s (K82pbi) "(-1» BIFFK3; 

NN3. «2 KK e " 4 + Kt) EN2 - 2 KK EN1 s" 2 e " 2) Ko El IT; 

K4 E 29.9439419296801467'; 

NN4 '" «2 KK s " 4 + K) ENl - 2 KK EN2 s" 2 e" 2) Ko El FF K4; 

Dimentional form: 

NI'" 10 " (-2) ElRo " 2NNl ; 

N2 E 10 " (-2) E1Ro"2NN2 ; 

KJ '" 10 " (-2) ElRo " 2NH3; 

Kt .. 10" (_2) ElRo "2 NN4 ; 

Bending and torque moments: 

C4 = (G4 JJt) I a...; 

fJu :: :11 s2phi" 2 + 2 Cl e" 2 e2phi. + C4; 

10: (2I1 (I3e " 4 + I4 s" 4) + 1314 + 2Cls"2e"2 (211 + 13 + 14» " _1 ; 

KOI = 1. 3702640779739837066239076186610" (-2); 

Nondimcntional form : 

MM1", ««:13e "2 + 2c1s"2c"2)EM1 + (14s"2 + 2c1s"2c"2)EM2) 10-

HI (I1s2phi + 2C1c"2cot2phi. + C4 (s2phi) A (-1» A (-1»El Jl) K01; 

HK2 .. « «I3 c" 2 + 2 Cl s" 2 CA 2) EM1 + (14 SA 2 + 2 Cl s" 2 C A 2) EM2) 10 + 

HI (11 s2ph.i. + 2 Cl c"2 eot2phi + C4 (s2pb.l.) " (-1» " (-1» El J l ) K01; 

MM:! .. «2 I1 c A4 + :I4 + 2 cl s"2 c"2) EM2 - 2 EM.! sA2 c A2 (11 - Cl» IOE) J u ; 

KO« '" 0.00689623509708214932; 

MKt .. « (2 11 s " « + 13 + 2 Cl s A 2 c" 2) EK1 - 2 EM2 s " 2 c " 2 (11 - Cl» 10 Et J lt ) K04; 

HH1 :: « (211 s"2 + 13) EM1 - (211 c"2 + 14) EK2) 10 + 2 Hl.Bn A (-1) c2pbi) Gl J ); 

6 



isogrid.nb 7 

HH2 '" (- ( (2 11 s ... 2 + 13) EM1 _ (2 11 c" 2 + If) EM2) 10 + 2 H1831 ... (_1) c2phi) Gl Jl; 

HH3 '"' -2 G3 J ll 81831 '" (-1) ; 

HH4t :: 2 Gf J].t 81831" (-1) ; 

Dimentiona1 form: 

M1 '" MKl.10'" (-4) E1Ro "3; 

M2 =MM210"(-4) E1Ro"3; 

M3 = MK3 10'" (- 6) El Ra" 3; 
Kt ,. MM4 10" (_4) E1Ro" 3; 

81" H8110'" (-4) E1Ro" 3, 

8 2 " H8210 '" (~4) E1Ro"3; 

HJ ;;; 88310" (-4) E1Ro" 3, 

8 4 " 88410" (-f) E1Ra"3, 

Stress calculations 

Normal stresses: 

Naod, '" mO I (2 Pi Ro" 2) 0 .52324850769714106189129751806472; 

0'3U '" N1 I (b h) + (N.od c) I (b h) ; 

O'l4. '" N41 (bb) 

x2=b/2 
xl",h/2 

1 2 ", (b (b) "3) 112 



lsogrid.nb 

031111'" K11 1 2 X2 - ~ 1 11 xl; 

03411 '" Kt 1 1 2 .x2 - G4 1 11 Xl; 

au", (au. + OUII); 

034 = (a34. + (34111); 

Shear stresses: 

FindMinirnurn[Pcr4, {h, 0.002}, {rp, 0.001}] 

0 1 = 0 

S1 '" 0 

0", = 0 

5", '" 0 

't31.1-Q1/J2 (b/2- X1) (b/4+ :11:1/2) 

1:321 - Sl/J1 (h/2 - X2) (h/4 + x2/2) 

1:U4 =Q./J2 (b/2- .:11:1) (b/4+ x1/2) 

't324 '" S,/J.1 (h/2 - %2) (h/4 + %2/2 ) 

Torsion 

aa=O.267 

1:121" H11 (aahb"'2); 

't124 =H",I (aahb"'2); 

Material failure in the ribs 

Tensile strength in 3-d direction: 

Xlt_ :;;:: 1500000000; 

Compressive strength in 3-d direction: 

X3_ = 1500000000; 

Shear strength in 31 and 32 directions: 

811 '" 68000000; 

Quadratic failure criterion strength parameters: 

F33 _1/ (X3t .. X3_); 

F 3 ",1/X3tea -1/X3 _; 

Fu '" 1/S31"'2; 

Fss '" 1/ S31 " 2; 

2 = 21; 

rst4 '" Part [rst4, 1]; 

8 



lsogrid.nb 

Sol.ution4 ;;; Solve (rst4 ;;;:: 1, gO]; 

sol.ution4 .. Part [Solution4 , 1J; 

Solution4 . Part[Solution4, 11; 

Per4 .. gO /. Solution4; 

a • Sin[IP); 

Surface plot 

plot3D[-Per4, {b, 0.002, O.OS}, {cp , 0.001, P.i/1.9999}, Plotpoi.nts"'SO, 

Mesb ... True, FaeeGr~ds ... A1l., AxesLabe1 ... ("h~, ~IP", · Per4~}J 

Optimum values of design parameters 

F~[Per4, {h, 0.002}, (cp, O.OOl}J 

Ti.meUaed [] 
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