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Abstract

Analytical methods for finding exact solutions of many nonlinear equations are

rare or unknown. Therefore, methods of approximating the solutions of nonlin-

ear equations are of interest where solutions are known to exist. We study nonlinear

equations with monotone type mappings, nonexpansive mappings, µ-strictly pseu-

docontractive mappings and other related problems such as equilibrium problems,

variational inequality problems, optimization problems, e.t.c. Constructing iterative

algorithms for the approximation of zeros of nonlinear equations and solutions of

fixed point problems is an active area of research in Mathematics. It is also observed

that most of the existing results on the approximation of solutions of monotone-type

mappings have been proved in Hilbert spaces or they are for accretive-type mappings

in Banach spaces. Assuming existence, we develop explicit and implicit iterative al-

gorithms for approximating the solutions of nonlinear equations. We propose the

concept of generalized Lyapunov functions which are essential in the study of nonlin-

ear analysis and convex analysis that involves important field of monotone mappings

from a Banach space into its dual space. We introduce several iterative algorithms

for some nonlinear problems which involve monotone type mappings. The strong

convergence theorems are obtained in the general Banach spaces for different classes

of monotone mappings. These include the class of generalized Φ-strongly monotone

mappings, which is the largest (i.e generalized other classes) such that if a solution

of an equation 0 ∈ Ax exists, it is necessarily unique, where x ∈ D(A), the domain

of A. The class of monotone type maps is chosen for this study due to its suitabil-

ity than other maps, such as compact maps, for the study of nonlinear equations.

Most operators lack compactness property, it is not always easy to check or verify

compactness and it does represent a rather severe restriction on the operators. As

an immediate application of our results, we obtain the solutions of generalized con-

vex optimization problems. Our results are of interest to a wide audience due to

the monotonicity property of our maps and their applications in other fields such

as engineering, Physics, Biology, Chemistry and Economics. We explore the vis-

cosity approximation methods. Numerical examples are used to compare the rate

of convergence of implicit midpoint rules, where viscosity is involved with a non-
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viscous approximation method. Also, a strong convergence result is established for

the implicit midpoint procedures. Under suitable conditions imposed on the control

parameters, we show that certain two generalized implicit iterative algorithms will

converge to the same fixed points of a nonexpansive mapping. By considering the

class of µ-strictly pseudocontractive mappings, we generalize some existing results

on viscosity approximation methods of nonexpansive mappings. We propose an iter-

ative algorithm for the class of µ-strictly pseudocontractive mappings and establish

its strong convergence to a fixed point of the map, which is also the solution to

some variational inequality problems in uniformly smooth Banach spaces. Using

generalized contractions, a new iterative algorithm is introduced for the class of

nonexpansive mappings. It is shown that the newly introduced sequence converges

strongly to a fixed point of the nonexpansive mapping, which is also the solution to

some variational inequality problems.
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PREFACE

This research focuses on how to develop iterative algorithms to approximate solu-

tions of nonlinear equations. Methods of approximating the solutions of nonlinear

equations are of interest where solutions are known to exist. Indeed, approximation

method often gives accurate solution which leads to right predictions. Nonlinear or

complex equations often defy analytical methods of finding their solutions. They

arise in modeling problems, such as maximizing gains in businesses, improving health

of individuals, minimizing costs in industries and maximizing the use of resources

in the academic institutions.

Business men and women look for ways to optimize profits, individuals think of

ways to improve their health, industries search for procedures to minimize cost and

academic institutions seek for ways to maximize the use of resources. Suffice it to

say that men are always overwhelmed with the thoughts on how to get things done

or solve particular problems.

Mathematical tools called ordinary differential and differential algebraic equations

can be used to model optimization problems. The solutions to these problems can

help the individual to understand the importance of taking basic health tips, for the

head of the institutions to value and adopt right strategies, for the managers to wel-

come new ideas and procedures and for businesses to bring smile on the faces of the

concerned people. However, these are often highly complex and dynamic problems,

influenced by multiple factors. Sometimes, these cannot be solved by simple means

to find their exact solutions.

The best methods to solve such nonlinear equations (otherwise known as complex

equations) are the "explicit and implicit iterative procedures". These are the approx-

imation methods which give solutions with least or no computation errors. Many

problems which we encounter daily in the world will remain unsolved without appli-

cation of appropriate mathematical tools. Using suitable iterative algorithms and

approximation methods have helped to predict, plan and avert some difficulties.
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Assuming existence, we develop explicit and implicit iterative algorithms for ap-

proximating the solutions of nonlinear equations. Our results are of interest to a

wide audience due to their applications in other fields such as engineering, Physics,

Biology, Chemistry and Economics.
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CHAPTER 1

General Introduction

Many phenomena in real life are governed by inherently nonlinear equations. For

instance, when chemists model molecules, they are solving Schrödinger’s equation,

exploring for oil requires solving Gelfand-Levitan equation and predicting tsunamis

means solving Naiver-Stokes equation. Nonlinear equations also represent the prob-

lems of minimization of a function, variational inequalities and equilibrium problems.

These illustrations drive home the importance of finding the solutions of equations.

The researches needed for national and intercontinental development apply math-

ematical models and principles. These lead to differential and integral equations,

which in general are nonlinear. Most nonlinear differential and integral equations

cannot be solved analytically. Consequently, we usually resort to iterative methods

for finding their solutions. Methods of approximating the solutions of nonlinear

equations are of interest where solutions are known to exist.

The contributions of this thesis belong to the general scope of nonlinear func-

tional analysis. This is a scope of Mathematics with increasing amount of study

and vast amount of applicability in recent years. This thesis is devoted to present

several of the important convergence theorems for solutions of various types of prob-

lems associated with nonlinear equations. We provide qualitative and quantitative
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descriptions of their solutions.

The existence or construction of solutions of differential and integral equations

is often reduced to the problem of finding a fixed point for an operator defined on

a subset of a space of functions. Many problems which occur in different areas of

mathematics, such as optimization, variational analysis and differential equations,

can be modeled by the equation

x = Tx,

where T is a nonlinear operator defined on a metric space. The solutions to this

equation are known as fixed points of T. Fixed point theory (FPT) is one of the

most powerful tools of modern Mathematics. FPT includes theorems concerning

the existence and properties of fixed points. Also, it blends analysis, topology and

geometry. It has numerous application and it has been applied in several fields,

such as game theory, engineering, Physics, Economics, Biology, Chemistry, etc. For

contraction mapping T, defined on a complete metric space X, that is, for α ∈ (0, 1),

d (T (x), T (y)) ≤ αd(x, y) ∀ x, y ∈ X,

it is known by Banach contraction principle that T has a unique fixed point for any

x ∈ X. Moreover, the Picard’s sequence defined by {T nx}∞n=1 , converges strongly to

the fixed point of T. Unfortunately, if the contraction mapping T is replaced by a

nonexpansive mapping, that is,

d (T (x), T (y)) ≤ d(x, y) ∀ x, y ∈ X,

the Banach contraction principle fails. Additional conditions must then be assumed

either on T and/or the underlying space to ensure the existence of fixed points.

The study of the class of nonexpansive mappings and its generalized form, such as

strict pseudocontraction mappings, is one of the major and recent active research

areas of nonlinear analysis. On the account of the connection with the geometry of

Banach spaces and relevance of the class of nonexpansive mappings in the theory of

monotone and accretive operators, considerable attention has been given to it since

the sixties.
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Fixed point theorems have also been applied to determine the existence of pe-

riodic solutions for functional differential equations. In addition to the deep in-

volvement in the theory of differential equations, fixed point theorems have been

found to be inevitable in problems such as finding zeros of nonlinear equations and

proving surjectivity theorems. Consequently, fixed point theory which is branch of

functional analysis has developed into an area of independent research due to its

importance and applications in solving real life problems.

Due to the progress in nonlinear functional analysis, it has allowed the study of

many nonlinear problems. The concept of monotone operators, introduced in the

1960s, has proved to be very effective in the study of nonlinear problems. The con-

nection between nonlinear analysis and convex analysis has led to the introduction

of the important field of monotone operators from a Banach space into its dual space

[81]. This is due to the associated problems with the compactness: most operators

lack compactness property, it is not always easy to check or verify compactness

and it does represent a rather severe restriction on the operators. Monotone map-

pings extend the properties of compact operators to the infinite-dimensional case.

The term ’monotone type’ denotes the generalizations of monotone operators. The

pseudo-monotone mappings, quasi-monotone mappings and the mappings of type

(M) are the examples of monotone type. Monotonicity has provided a more proper

tool for solving large classes of nonlinear differential and integral equations.

In this thesis, we develop essential iterative methods for approximating the so-

lutions of nonlinear equations and which have applications in many other areas of

mathematics. Basically, the focus of this thesis is on the three important topics:

1. Algorithms for solutions of monotone mappings;

2. Viscosity approximation methods for nonexpansive;

3. Viscosity approximation methods for strict pseudocontraction mappings.
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1.1 Motivation for present work

Nonlinear systems and nonlinear phenomena are ubiquitous. Systems such as fluid

and plasma mechanics, gas dynamics, elasticity, relativity, chemical reactions, com-

bustion, ecology and biomechanics are governed by inherently nonlinear equations.

The facile fact is that nonlinear systems are vastly more difficult to analyze. For

this reason, an ever increasing proportion of modern mathematical research is being

devoted to their study. In the nonlinear realm, many of the most basic questions re-

main unanswered: existence and uniqueness of solutions are not guaranteed; explicit

formulae are difficult to come by; linear superposition is no longer available; numeri-

cal approximations are not always sufficiently accurate; etc. The motivation for this

work is discussed under three short sub-headings: monotone mappings, equations

of Hammerstein type and viscosity approximation methods.

1.1.1 Monotone mappings

Nonlinear equations have been studied extensively for monotone mappings in Hilbert

spaces and accretive mappings in general Banach spaces (see e.g, [32], [75], [89], [26]

and references there in). Accretivity can simply be described as the monotonicity

from a Banach space into itself. It is known that the dual of a Hilbert space is still a

Hilbert space and the normalized duality mapping is an identity in a Hilbert space.

Therefore, monotonicity and accretivity coincide in the Hilbert spaces. Monotone

mappings were first studied in Hilbert spaces by Zarantonello [110], Minty [75],

Kačurovskii [64] and a host of other authors. Interest in monotone mappings stems

mainly from their usefulness in numerous applications. For example, consider the

following: Let f : E → R be a proper and convex function. The subdifferential of f

at x ∈ E is defined by

∂f(x) = {x∗ ∈ E∗ : f(y)− f(x) ≥ 〈y − x, x∗〉 ∀ y ∈ E} ,

which is an example of monotone mapping (see e.g, [2]). It is known that 0 ∈ ∂f(x)

if and only if x is a minimizer of f. Setting ∂f = A, it follows that solving the

inclusion 0 ∈ Au in this case, is the same as solving for a minimizer of f . Several
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existence theorems have been established for the equation Au = 0 when A is of the

monotone-type (see e.g., Deimling [38]; Pascali and Sburlan [81]).

There have been extensive research efforts on inequalities in Banach spaces and

their applications on the iterative methods for solutions of nonlinear equations of

the form Au = 0. However, it occurs that most of the existing results on the ap-

proximation of solutions of monotone-type mappings have been proved in Hilbert

spaces or they are for accretive-type mappings in Banach spaces. Unfortunately,

as has been rightly observed, many and probably most mathematical objects and

models do not naturally live in Hilbert spaces. The remarkable success in approx-

imating the zeros of accretive-type mappings is yet to be carried over to nonlinear

equations involving monotone mappings in general Banach spaces. Perhaps, part

of the difficulty in extending the existing results on the approximation of solutions

of accretive-type mappings to general Banach spaces is that, since the operator A

maps E to E∗, the recursion formulas used for accretive-type mappings may no

longer make sense under these settings. Take for instance, if xn is in E, Axn is in

E∗ and any convex combination of xn and Axn may not make sense. Moreover,

most of the inequalities used in proving convergence theorems when the operators

are of accretive-type involve the normalized duality mappings which also appear in

the definition of accretive operators. Certainly, if iterative algorithms can be devel-

oped for the approximation of solutions of nonlinear equations with monotone-type

mappings in general Banach spaces, these will be a welcome complement and gen-

erallization of the existing results in the literature which are available(see e.g, [28],

[40]).

1.1.2 Viscosity approximation methods

The set of fixed points of a mapping T will be denoted by F (T ). The Viscosity

approximation method (VAM) for solving nonlinear operator equations has recently

attracted much attention (see [65], [76], [102], [104], [107] and the references therein).

In 1996, Attouch [14] considered the viscosity solutions of minimization problems.

Following the ideas of Attouch [14], in 2000, Moudafi [76] introduced an explicit

viscosity method for nonexpansive mappings. Let {αn}∞n=1 ⊂ (0, 1), the explicit
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viscosity iterative sequence {xn}∞n=1 is defined by

xn+1 = αnf(xn) + (1− αn)Txn, n ∈ N, (1.1.1)

where f is a contraction on K and the nonexpansive mapping T : K → K is also

defined on K, which is a nonempty closed convex subset of a Hilbert space H. Later

in 2004, Xu [102] apply a technique which uses (strict) contractions to regularize

a nonexpansive mapping for the purpose of selecting a particular fixed point of

the nonexpansive mapping and studied the sequence (1.1.1). Xu [102] showed that

under suitable conditions imposed on the parameters, the iterative sequence {xn}∞n=1

generated by (1.1.1) converges strongly to p ∈ F (T ) which also solves the following

variational inequality

〈(I − f)p, x− p〉 ≥ 0, ∀ x ∈ F (T ). (1.1.2)

Consider the ordinary differential equation

x′ = f(t), x(0) = x0. (1.1.3)

The sequence {xn}∞n=1 generated by the the implicit midpoint rule via the recursion

1

h
(xn+1 − xn) = f

(
xn + xn+1

2

)
, n ∈ N, (1.1.4)

where h > 0 is a stepsize and N is the set of positive integers is efficient in ap-

proximating a solution of (1.1.3). The implicit midpoint rule is widely known as

a powerful numerical method for solving ordinary differential equations and dif-

ferential algebraic equations (see [15], [16], [17], [39], [50], [51], [91], [93] and [94]

and references therein). Xu et al. [104] recently proposed the concept of implicit

midpoint rule

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ∈ N, (1.1.5)

where {αn}∞n=1 , T and f remain as defined in (1.1.1). Still in a Hilbert space, in

2015, Yao et al. [107] introduced the iterative sequence

xn+1 = αnf(xn) + βnxn + γnT

(
xn + xn+1

2

)
, n ∈ N, (1.1.6)

7



where T and f are as defined in (1.1.1) and αn + βn + γn = 1 ∀ n ∈ N. Ke and Ma

[65] introduced generalized viscosity implicit rules which extend the results of Xu

et al. [104] and Yao et al. [107]. The generalized viscosity implicit procedures are

given by

xn+1 = αnf(xn) + (1− αn)T (δnxn + (1− δn)xn+1) , n ∈ N, (1.1.7)

and

yn+1 = αnf(yn) + βnyn + γnT (δnyn + (1− δn)yn+1) , n ∈ N, (1.1.8)

where {αn}∞n=1 , {βn}
∞
n=1 , {γn}

∞
n=1 ⊂ [0, 1] with αn + βn + γn = 1. Replacement

of strict contractions in (1.1.8) by the generalized contractions and extension to

uniformly smooth Banach spaces was considered by Yan et al. [106]. Under certain

conditions on imposed on the parameters, the sequence {xn}∞n=1 converges strongly

to a fixed point p of the nonexpansive mapping T, which is also the unique solution

of the variational inequality

〈(I − f)p, j(x− p)〉 ≥ 0, for all x ∈ F (T ), (1.1.9)

where j is a single valued duality mapping. Then, the following questions which

arise are of interest to us:

Problem 1.1.1 Comparing the viscosity implicit iterative schemes (1.1.5) and (1.1.6)

with a non-viscosity implicit sequence such as

xn+1 = (1− αn)xn + αnT

(
xn + xn+1

2

)
, n ∈ N, (1.1.10)

where T is a nonexpansive mapping and {αn}∞n=1 ⊂ (0, 1) certify certain conditions,

which one has the highest rate of convergence?

Problem 1.1.2 Analytically, do the sequences (1.1.7) and (1.1.8) always converge

to the same fixed point of a nonexpansive mapping?

Problem 1.1.3 Can one generalize the results of Ke and Ma [65] to show that the

results hold for finite combination of nonexpansive mappings, composition of finite

family of nonexpansive mappings and monotone mappings?
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Problem 1.1.4 How to extend the results of Ke and Ma [65] and Yan et al. [106]

to the more general class of µ-strictly pseudo-contractive mappings?

Problem 1.1.5 Does there exist any implicit iterative algorithm which converges

strongly to a fixed point of µ-strictly pseudo-contractive mapping in uniformly smooth

Banach spaces?

1.2 Objectives

1. To study the monotonicity of composition of monotone mappings in Banach

spaces as the composition need not be monotone but monotonicity provides a

broad analytical framework for the study of nonlinear equations.

2. To study the iterative methods for approximating the solutions of nonlinear

equations in Banach spaces since there is no known standard method for find-

ing their solutions.

3. To construct coupled explicit iterative algorithms and also try to establish their

strong convergence to the unique solution of nonlinear equations in Banach

spaces which are more general than the Hilbert spaces, lp (1 < p <∞) spaces

and 2-uniformly convex spaces which are already existing in the literature.

4. To provide answers to the questions raised in Section 1.1.2.

1.3 Organization of the thesis

The thesis is divided into five chapters as follows:

In chapter 1, a brief historical background of the study is given. The motivations

for the study are clearly expressed. The objectives of the study are itemized and

finally, we describe the organization of the thesis.

In chapter 2, we introduce some basic concepts and terms that are used in this the-

sis. We also state some existing results and classical inequalities which are needed
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in establishing our results in this work.

Chapter 3 marks the beginning of our contributions and it comprises of four sections.

The concept of generalized Lyapunov function is introduced and proof of some es-

sential lemmas are given in section 1. In section 2, we study the convergence of an

iterative algorithm for finding the zeros of the class of (p, t)-strongly monotone maps

in p-uniformly convex Banach spaces with uniformly Gâteaux differentiable norm.

In section 3, we study the class of strongly monotone mappings in uniformly smooth

and uniformly convex Banach spaces and prove a strong convergence theorem for

an explicit iterative algorithm. In section 4, we establish strong convergence results

for the equations within the class of generalized Φ-strongly monotone mappings and

apply the results to obtain the solutions of generalized convex optimization problems.

Chapter 4 consists of two sections. In section 1, we use numerical examples to com-

pare the rate of convergence of implicit midpoint rules, where viscosity is involved

with a nonviscous method. A strong convergence result is also established for im-

plicit midpoint procedures. In section 2, we establish the conditions under which

two generalized implicit iterative algorithms will converge to the same fixed points

of a nonexpansive mapping.

Chapter 5 consists of two sections. In section 1, a generalized contraction is applied

to introduce an implicit iterative algorithm for the class of µ-strictly pseudocontrac-

tive mappings. Moreover, the strong convergence of our implicit iterative algorithm

to a fixed point of µ-strictly pseudocontractive mappings is established, which is also

the solution to some variational inequality problems in uniformly smooth Banach

spaces. In section 2, we introduce a new iterative algorithm based on generalized

contractions for nonexpansive mappings. It is also proved that the newly introduced

sequence converges strongly to the fixed point of nonexpansive mappings, which is

also the solution to some variational inequality problems.

In chapter 6, the results in the thesis are summarized and the contributions to

knowledge are discussed. Some areas of future research are also pointed out.
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CHAPTER 2

Preliminaries

The definitions of essential concepts that are used in this thesis are introduced in this

chapter. Some importants results which are used in establishing the main results

are also stated.

2.1 Smooth and convex spaces

Definition 2.1.1

(i) Let X and Y be real normed linear spaces and F : U ⊂ X → Y be a map with

U open and nonempty. The function F is said to have a G âteaux differentiable

norm at x ∈ U if there exists a bounded linear map from X into Y denoted

by F ′(x) such that for each h in X, we have

lim
t→0

F (x+ th)− F (x)

t
= 〈F ′(x), h〉 . (2.1.1)

We say that F is Gâteaux differentiable if it has a Gâteaux derivative at each

x in U and F ′(x) is called the gradient of F at x.

(ii) Let E be a normed linear space and S := {x ∈ E : ‖x‖ = 1}. E is said to have
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a G âteaux differentiable norm if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1.2)

exists for each x, y ∈ S.

(iii) A Banach space E is said to be smooth if for every x 6= 0 in E, there is a

unique x∗ ∈ E∗ such that ‖x∗‖ = 1 and 〈x, x∗〉 = ‖x‖, where E∗ denotes the

dual of E. E is Fr échet differentiable if it is smooth and the limit (2.1.2) is

attained uniformly for y ∈ S. Furthermore, E is said to be uniformly smooth

if it is smooth and the limit (2.1.2) is attained uniformly for each x, y ∈ S.

(iv) The modulus of convexity of a Banach space E, δE : (0, 2] → [0, 1] is defined

by

δE(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. Let p > 1,

then E is said to be p-uniformly convex if there exists a constant c > 0 such

that δE(ε) ≥ cεp for all ε ∈ (0, 2]. A normed linear space E is said to be strictly

convex if

‖x‖ = ‖y‖ = 1, x 6= y ⇒ ‖x+ y‖
2

< 1.

Observe that every p-uniformly convex space is uniformly convex and every

uniformly convex space is reflexive and strictly convex. Also, it is well known

that a space E is uniformly smooth if and only if E∗ is uniformly convex.

Remark 2.1.2

It is known that a Banach space E is smooth if and only if its norm is Gâteaux

differentiable (Alber and Ryazantseva [8], page 7).

2.2 Duality mappings

Definition 2.2.1

In what follows, E will denote a real Banach space.
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(i) Let ν : [0,∞)→ [0,∞) be a continuous, strictly increasing function such that

ν(t) → ∞ as t → ∞ and ν(0) = 0 for any t ∈ [0,∞). Such a function ν is

called a gauge function.

(ii) A duality mapping associated with the guage function ν is a map Jν : E → 2E
∗

defined by

Jν(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖ν(‖x‖), ‖f‖ = ν(‖x‖)} ,

where 〈., .〉 denotes the duality pairing.

(iii) If the guage function is defined by ν(t) = t, then the corresponding duality

mapping is called the normalized duality mapping. Therefore, the normalized

duality mapping is given by

J(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2

}
.

(iv) For p > 1, let ν(t) = tp−1 be a gauge function. Jp : E → 2E
∗ is called a

generalized duality mapping from E into 2E
∗ and is given by

Jp(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖p, ‖f‖ = ‖x‖p−1

}
.

For p = 2, the mapping J2 is the normalized duality mapping which is simply

written as J. In this work, J will denote the normalized duality mapping except

where it is specifically stated otherwise.

Remark 2.2.2

In a Hilbert space, the normalized duality mapping is the identity map.

The following results about the generalized duality mappings are well known

which are established in [8, 37, 66, 109, 105]. Let E be a Banach space.

(i) E is smooth if and only if Jp is single-valued;

(ii) If E is reflexive, then Jp is onto;

(iii) If E has uniform Gâteaux differentiable norm, then Jp is norm-to-weak∗ uni-

formly continuous on bounded sets;
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(iv) E is uniformly smooth if and only if Jp is single valued and uniformly contin-

uous on any bounded subset of E;

(v) If E is strictly convex, then Jp is one-to-one, that is, ∀ x, y ∈ E, x 6= y ⇒

Jp(x) ∩ Jp(y) = ∅;

(vi) If E and E∗ are strictly convex and reflexive, then J∗p is the generalized duality

map from E∗ to E and J∗p = J−1p ;

(vii) E is uniformly smooth and uniformly convex, the generalized duality map J−1p
is uniformly continuous on any bounded subset of E∗;

(viii) If E and E∗ are strictly convex and reflexive, for all x ∈ E and f ∈ E∗, the

equalities JpJ−1p f = f and J−1p Jpx = x hold.

2.3 Convex functions

Definition 2.3.1

Let E be a Banach space.

(i) A subset K of E is said to be convex if for every x, y ∈ K, and λ ∈ [0, 1], we

have

λx+ (1− λ)y ∈ K.

(ii) A function f : K → R defined on a convex subset K of E is convex if for any

x, y ∈ K and λ ∈ [0, 1], we have

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If we have strict inequality for all x 6= y in the above definition, the function

is said to be strictly convex.

(iii) Let f : E → R be a convex function. The subdifferential of f at x ∈ E is

defined by

∂f(x) = {x∗ ∈ E∗ : f(y)− f(x) ≥ 〈y − x, x∗〉 ∀ y ∈ E} .
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(iv) A function f : K → R is quasiconvex if

f (λx+ (1− λ)y) ≤ max {f(x), f(y)} , ∀ x, y ∈ K and λ ∈ [0, 1].

Clearly every convex function is quasiconvex but the converse is not always

true. Consider the function f : R→ R defined by

f(x) =

 x− 1, x ≤ 1,

lnx, x > 1.

f is quasiconvex but not convex. Certainly, it is concave (Dodos [41]). A

function f : E → R ∪ {+∞} is convex if and only if for each α ∈ E∗ the

function u 7→ f(u) + 〈α, u〉 is quasiconvex. A classical tool to study lower

semicontinuous functions is the Clarke subdifferential.

(v) Let f : E → R ∪ {+∞} be a lower semicontinuous function. The Clarke

subdifferential of f is the operator ∂f : E → E∗ defined for each u ∈ E by

∂f(u) =


{
u∗ ∈ E∗ : 〈u∗, v〉 ≤ f ↑(u; v), ∀ v ∈ E

}
, if u ∈ domf,

∅, if u /∈ domf,

where

f ↑(u; v) := sup
ε>0

inf
γ>0

δ>0
λ>0

sup
x∈Bγ(u)

f(x)≤f(u)+δ
t∈(0,λ)

inf
y∈Bε(v)

f(x+ ty)− f(x)

t

is the Rockafellar directional derivative (see e.g., Aussel et al. [11], Clarke [22],

pp. 308, Rockafellar [88]). It is known as an axiom of a subdifferential that if

f attains a local minimum at u, then 0 ∈ ∂f(u) (see e.g., J. P. Penot [82]).

Recall that a function having a bounded set range is called a bounded function

and given a convex function f, if u ∈ int dom f, then ∂f(u) is nonempty and

bounded, where int dom f denotes the interior of the domain of f.

Lemma 2.3.2 Aussel et al. [11]. Let f : E → R∪{+∞} be a lower semicontinuous

function on a Banach space E. Then, ∂f is quasimonotone if and only if f is

quasiconvex.

Lemma 2.3.3 Alber and Ryazantseva [8], p. 17. If a functional φ on the open con-

vex set M ⊂ dom φ has a subdifferential, then φ is convex and lower semicontinuous

on the set.
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2.4 Nonexpansive mappings

Definition 2.4.1

Let K be a nonempty closed convex subset of a real Banach space E.

(i) A self-mapping T : K → K is said to be Lipschitz if there exists L > 0 such

that ‖Tx− Ty‖ ≤ L‖x− y‖ ∀ x, y ∈ K.

(ii) If L = 1, then T is said to be nonexpansive.

(iii) A point x ∈ K is called a fixed point of T if Tx = x. We shall denote the set

of fixed points of T by F (T ).

(iv) If E is smooth, T : K → E is said to be firmly nonexpansive type if

〈Tx− Ty, JTx− JTy〉 ≤ 〈Tx− Ty, Jx− Jy〉 for all x, y ∈ K,

where J : E → 2E
∗ is the normalized duality mapping (see e.g., Kohsaka and

Takahashi [58]).

(v) Let D be a subset of K and let S be a mapping from K to D. Then S is said

to be sunny if S(Sx + t(x − Sx)) = Sx whenever Sx + t(x − Sx) ∈ K for

x ∈ K and t ≥ 0. A mapping S from K into itself is said to be a retraction if

S2 = S. A set D is said to be a sunny nonexpansive retract of K if there exists

a sunny nonexpansive retraction from K into D.

(vi) A mapping T : E → 2E
∗ is called J-pseudocontractive if for every x, y ∈ E,

〈ω − η, x− y〉 ≤ 〈ν − µ, x− y〉 for all ω ∈ Tx, η ∈ Ty, ν ∈ Jx, µ ∈ Jy.

(vii) A point x ∈ E is called a J-fixed point of a mapping T : E → 2E
∗ if and only

if there exists ω ∈ Tx such that ω ∈ Jx.

Remark 2.4.2

It is well known that if E is a smooth Banach space and K is a nonempty closed

convex subset of E, then there exists at most one sunny nonexpansive retraction S

from E onto K (see e.g., Cioranescu [37], Takahashi [96]).
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2.5 Continuous mappings

Definition 2.5.1

Let X and Y be real Banach spaces and let the map A : X → Y.

(i) A is uniformly continuous if for each ε > 0, there exists δ > 0 such that

∀ x, y ∈ X with ‖x− y‖ < δ we have ‖Ax− Ay‖ < ε.

(ii) Let ψ(t) be a function on the set R+ of nonnegative real numbers such that:

• ψ is nondecreasing and continuous;

• ψ(t) = 0 if and only if t = 0.

A is said to be uniformly continuous if it admits the modulus of continuity ψ

such that

‖A(x)− A(y)‖ ≤ ψ(‖x− y‖) ∀ x, y ∈ X.

The modulus of continuity ψ has some useful properties which can be found,

for instance ([10], pp. 266-269, [80], [60]).

Properties of modulus of continuity

Let X and Y be real Banach spaces and let A : X → Y be a map which

admits the modulus of continuity ψ.

• Modulus of continuity is subadditive: For all real numbers t1 ≥ 0, t2 ≥ 0,

we have

ψ(t1 + t2) ≤ ψ(t1) + ψ(t2).

• Modulus of continuity is monotonically increasing: If 0 ≤ t1 ≤ t2 holds

for some real numbers t1, t2, then

0 ≤ ψ(t1) ≤ ψ(t2).

• Modulus of continuity is continuous: The modulus of continuity ψ : R+ →

R+ is continuous on the set positive real numbers, in particular, the limit

of ψ at 0 from above is

lim
t↘0

ψ(t) = 0.
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(iii) Let X and Y be linear topological spaces. A mapping A : X → 2Y is said to

be upper semicontinuous if for each point x0 ∈ X and arbitrary neighborhood

∨ of Ax0 in Y, there exists a neighborhood U of x0 such that for all x ∈ U one

has the inclusion: Ax ⊂ ∨.

(iv) A functional f is called lower semicontinuous at the point x0 ∈ domf if for

any sequence xn ∈ domf such that xn → x0 there holds the inequality

f(x0) ≤ lim inf
n→∞

f(xn). (2.5.1)

f is called weakly lower semicontinuous at x0 if the inequality (2.5.1) holds

with the condition that the convergence of {xn}∞n=1 to x0 is weak.

Remark 2.5.2

If a map A is uniformly continuous on a bounded set, then A is bounded.

Lemma 2.5.3 (See, e.g., Chidume and Djitte [30]). Let X and Y be real normed

linear spaces and let A : X → Y be a uniformly continuous map. For arbitrary

r > 0 and fixed x∗ ∈ X, let

BX(x∗, r) = {x ∈ X : ‖x− x∗‖X ≤ r} .

Then A (B(x∗, r)) is bounded.

2.6 Lyapunov functions

Definition 2.6.1 Let E be a smooth real Banach space with the dual E∗.

(i) The Lyapunov function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2 〈x, J(y)〉+ ‖y‖2, for all x, y ∈ E, (2.6.1)

where J is the normalized duality map from E to E∗ (introduced by Alber [7])

and has been studied by Kamimura and Takahashi [52] and Reich [87].

(ii) The map V : E × E∗ → R is defined by

V (x, x∗) = ‖x‖2 − 2 〈x, x∗〉+ ‖x∗‖2 ∀ x ∈ E, x∗ ∈ E∗.
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If E = H, a real Hilbert space, then Eq.(2.6.1) reduces to φ(x, y) = ‖x− y‖2 for

x, y ∈ H.

Lemma 2.6.2 Kamimura and Takahashi [52]. Let E be a smooth uniformly convex

real Banach space and let {xn} and {yn} be two sequences from E. If either {xn} or

{yn} is bounded and φ(xn, yn)→ 0 as n→∞, then ‖xn − yn‖ → 0 as n→∞.

2.7 Monotone type mappings

Definition 2.7.1

Let E be a real Banach space and A : E → E be a single-valued mapping. J denotes

the normalized duality mapping.

(i) A is accretive if for each x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈Ax− Ay, j(x− y)〉 ≥ 0.

(ii) A is m-accretive if it is accretive and the range of (I + tA) is all of E for some

t > 0.

(iii) A satisfies the range condition if D(A) ⊆ R(I + tA) for all t > 0, where D(A)

is the domain of A.

(iv) A mapping T : E → E is said to be a strong pseudocontraction if there exists

k > 0 such that for all x, y ∈ K, there exists j(x− y) ∈ J(x− y) such that

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ k‖x− y‖2.

T : E → E is said to be pseudocontractive if for each x, y ∈ K, there exists

j(x− y) ∈ J(x− y) such that

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ 0.

Remark 2.7.2
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Pseudocontractive mappings are firmly connected with the class of accretive map-

pings. A mapping T : E → E is pseudocontractive if and only if A := I − T is

accretive. It is easy to see that the fixed point of pseudocontractive mapping T is

the zero of accretive mapping A := I − T.

Remark 2.7.3

It known that if A is m-accretive, then A satisfies the range condition (see e.g.,

Chidume and Djitte [30]).

Definition 2.7.4

Let E be a smooth Banach space.

(i) The multivalued mapping A : E → 2E
∗ is called monotone if for each x, y ∈ E,

the following inequality holds:

〈x∗ − y∗, x− y〉 ≥ 0 ∀ x∗ ∈ Ax, y∗ ∈ Ay.

The single valued mapping A : E → E∗ is monotone if for each x, y ∈ E, we

have

〈x− y, Ax− Ay〉 ≥ 0.

(ii) Let φ : [0,∞) → [0,∞) be a strictly increasing function such that φ(0) = 0.

The mapping A : E → 2E
∗ is called φ-strongly monotone if

〈x∗ − y∗, x− y〉 ≥ ‖x− y‖φ(‖x− y‖) ∀ x∗ ∈ Ax, y∗ ∈ Ay.

If φ(t) = kt, where k is a positive constant, then mapping A is called strongly

monotone (Alber and Ryazantseva [8], page 25). That is, there exists a positive

constant k such that

〈x∗ − y∗, x− y〉 ≥ k‖x− y‖2 ∀ x∗ ∈ Ax, y∗ ∈ Ay.

(iii) (Chidume and Djitte [31] and Chidume and Shehu [36]): Let p > 1, A : E →

E∗ is said to be (p, k)-strongly monotone if there exist a constant k > 0 such

that for each x, y ∈ E, we have

〈x− y, Ax− Ay〉 ≥ k‖x− y‖p.
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Remark 2.7.5

According to definition of Chidume and Djitte [31] and Chidume and Shehu

[36], a strongly monotone mapping is referred to as (2, k)-strongly monotone

mapping.

(iv) Let Φ : [0,∞) → [0,∞) with Φ(0) = 0 be a strictly increasing function.

A : E → 2E
∗ is said to be generalized Φ-strongly monotone if

〈x∗ − y∗, x− y〉 ≥ Φ(‖x− y‖) ∀ x∗ ∈ Ax, y∗ ∈ Ay.

(v) A : E → 2E
∗ is called maximal monotone if it is monotone and its graph is not

properly contained in the graph of any other monotone mapping. As a result

of Rockafellar [90], it follows that A is maximum monotone if it is monotone

and the range of (J + tA) is all of E∗ for some t > 0.

(vi) Let E be a reflexive smooth strictly convex space and A : E ⊇ D(A) → 2E
∗

a maximal monotone mapping (or a mapping satisfying the range condition)

and let x ∈ E be fixed. Then for every t > 0, there corresponds a unique

element xt ∈ D(A) such that

Jx ∈ Jxt + tAxt. (2.7.1)

Therefore, the resolvent of A is defined by JAt x = xt. In other words, JAt =

(J + tA)−1J and A−10 = F (JAt ) for all t > 0, where F (JAt ) denotes the set

of all fixed points of JAt . The resolvent JAt is a single-valued mapping from E

into D(A) and is nonexpansive if E is a Hilbert space (Kohsaka and Takahashi

[57]).

Remark 2.7.6

Observe that any maximal monotone mapping satisfies the range condition. The

converse is not necessarily true. Hence, the range condition is weaker than maximal

monotonicity.

Clearly, the class of strongly monotone mappings is a subclass of φ-strongly

monotone mappings (by taking φ(t) = kt ) and the class of φ-strongly monotone
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mappings is a subclass of generalized Φ-strongly monotone mappings (by taking

Φ(t) = tφ(t)). It is a well known fact that the class of the generalized Φ-strongly

monotone mappings is the largest class of monotone-type mappings such that if

a solution of the equation 0 ∈ Ax exists, it is necessarily unique (Chidume et al.

[35]). We recall some important generalized monotonicity properties which have

been studied for multivalued mappings. Let E be a real locally convex topological

vector space and E∗ be the dual space. Suppose K ⊆ E is a nonempty subset

of E and A : K → 2E
∗ is a multivalued mapping. For each x, y ∈ K, A is said

to be respectively pseudomonotone and quasimonotone (see e.g., Karamardian and

Schaible [53], Karamardian et al. [54]), if for any x∗ ∈ A(x), y∗ ∈ A(y) the following

implications hold:

〈y∗, x− y〉 ≥ 0⇒ 〈x∗, x− y〉 ≥ 0,

and

〈y∗, x− y〉 > 0⇒ 〈x∗, x− y〉 ≥ 0. (2.7.2)

Also, A is said to be quasimonotone if

min {〈x∗, x− y〉 , 〈y∗, x− y〉} ≤ 0. (2.7.3)

The two definitions of quasimonotonicity coincide (see e.g., Penot and Quang [83]).

It is clear that a monotone mapping is pseudomonotone, while a pseudomonotone

mapping is quasimonotone. The converse is not necessarily true. In the case of a

single-valued linear mapping A, defined on E (where E := Rn), for α ∈ E∗ \ {0}, it

is known that if A+α is quasimonotone, then A is monotone (see e.g., Karamardian

et al. [54]). This result has been extended by several authors (see, e.g., Hadjisavvas

[44], He [48], Isac and Motreanu [61]). In a Hilbert space, the normalized duality

map is the identity map. Hence, in Hilbert spaces, monotonicity and accretivity

coincide.

2.8 Surjective property of bounded linear functions

Let E and F be two real locally convex topological vector spaces and K a nonempty

convex subset of E. Let θF denotes the zero vector of F and T : K → L(E,F ) a set-

22



valued mapping, where L(E,F ) denotes the space of all continuous linear mappings

from E into F .

Definition 2.8.1

Recall from Farajzadeh and Plubtieng [43], for x and y in K, S ⊆ L(E,F ) is said

to have the surjective property on [x, y] = {x+ t(y − x) : t ∈ [0, 1]} ( for short, on x

and y) whenever the following equality holds:

〈S, x− y〉 := {〈x∗, x− y〉 = x∗(x− y) : x∗ ∈ S} = F,

where 〈x∗, x− y〉 = x∗(x− y) denotes the value of x∗ at (x− y).

S ⊆ L(E,F ) is said to have the surjective property on K if for every x ∈ K

there exists y ∈ K such that S has the surjective property on x and y. For x, y ∈ K,

consider x− y as a linear functional (denoted by x̂− y) on L(E,F ) as follows:〈
x̂− y, f

〉
= 〈f, x− y〉 ,

where f ∈ L(E,F ). Thus, the surjective property of S ⊆ L(E,F ) on x, y implies

that the image of S under the linear functional x̂− y is F. Let S have the surjective

property on x, y and f ∈ F ∗\ {θF ∗} . Then, a set value mapping foS ⊂ L(E,R) =

2E
∗ has the surjective property on x, y. Indeed,

〈foS, x− y〉 := {〈fox∗, x− y〉 : x∗ ∈ S} = f(F ) = R.

Definition 2.8.2

A set of real numbers K is called disconnected if there exist two open subsets of R,

say U and V such that

(i) K ∩ U ∩ V = ∅;

(ii) K ⊆ U ∪ V ;

(iii) K ∩ U 6= ∅;

(iv) K ∩ V 6= ∅.
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In such a case, we say U and V form a disconnection of K (or we simply say they

disconnect K). A set of real numbers K is called connected if it is not disconnected.

The set of integer Z is disconnected. Indeed, choose U = (−∞, 0) and V = (0.5,∞)

respectively.

Lemma 2.8.3 Farajzadeh et al. [42]. Let E be a real topological vector space, K

a nonempty convex subset of E and A : K → 2E
∗ a multivalued mapping. Assume

S ⊆ E∗ is connected and has the surjective property on K. If A+α is quasimonotone

for all α ∈ S, then A is monotone on K.

2.9 Contraction mappings

Definition 2.9.1 Let (E, d) be a metric space and K a subset of E with f : K → K

a mapping defined on K.

(i) f is called a contraction if there exists c ∈ [0, 1) such that

d(f(x), f(y)) ≤ cd(x− y) for all x, y ∈ K.

A contraction mapping f will be referred to as c-contraction mapping. ΠK

will denote the collection of contraction mapping defined on K.

(ii) f : K → K is said to be a Meir-Keeler contraction if for each ε > 0 there

exists δ = δ(ε) > 0 such that for each x, y ∈ K, with ε ≤ d(x, y) < ε + δ, we

have d(f(x), f(y)) < ε.

(iii) Let N be the set of all positive integers and R+ the set of all positive real

numbers. A mapping ψ : R+ → R+ is said to be an L-function if ψ(0) =

0, ψ(t) > 0 for all t > 0 and for every s > 0, there exists u > s such that

ψ(t) ≤ s for each t ∈ [s, u].

(iv) f : E → E is called a (ψ,L)-contraction if ψ : R+ → R+ is an L-function and

d(f(x), f(y)) < ψ(d(x, y)), for all x, y ∈ E, x 6= y.

The following are the interesting results about Meir-Keeler contractions.
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Proposition 2.9.2 Suzuki [100]. Let E be a Banach space, K a convex subset of

E and f : K → K a Meir-Keeler contraction. Then ∀ ε > 0, there exists c ∈ (0, 1)

such that

‖f(x)− f(y)‖ ≤ c‖x− y‖ (2.9.1)

for all x, y ∈ K with ‖x− y‖ ≥ ε.

Proposition 2.9.3 Lim [69]. Let (E, d) be a metric space and f : E → E be a

mapping. The following assertions are equivalent:

(i) f is a Meir-Keeler type mapping;

(ii) there exists an L-function ψ : R+ → R+ such that f is a (ψ,L)-contraction.

Proposition 2.9.4 Lim [69]. Let K be a nonempty convex subset of a Banach

space E, T : K → K a nonexpansive mapping and f : K → K a Meir-Keeler

contraction. Then Tf and fT : K → K are Meir-Keeler contractions.

Throughout this dissertation, the generalized contraction mappings will refer

to Meir-Keeler or (ψ,L)-contractions. It is assumed that the L-function from the

definition of (ψ,L)-contraction is continuous, strictly increasing and lim
t→∞

φ(t) =∞,

where φ(t) = t− ψ(t) for all t ∈ R+. Whenever there is no confusion, φ(t) and ψ(t)

will be written as φ t and ψ t, respectively.

The results below about contractions and generalized contraction mappings are

very essential.

Lemma 2.9.5 Xu [102]. Let E be a uniformly smooth Banach space, K be a closed

convex subset of E, T : K → K be a nonexpansive mapping with F (T ) 6= ∅ and

let Q ∈ ΠK . Then the sequence {xt} defined by xt = tQ(xt) + (1 − t)Txt converges

strongly to a point in F (T ). If we define a mapping S : ΠK → F (T ) by S(Q) :=

lim
t→0

xt, ∀ Q ∈ ΠK , then S(Q) solves the following variational inequality:

〈(I −Q)S(Q), J(S(Q)− p)〉 ≤ 0, ∀ Q ∈ ΠK .

Lemma 2.9.6 Wong et al. ([99], Lemma 2.12). Let E be a Banach space with

a uniformly Gâteaux differentiable norm, let K be a nonempty, closed and convex
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subset of E, let Q : K → K be a continuous operator, let T : K → K be a

nonexpansive operator and {xn} be a bounded sequence in K such that lim
n→∞

‖xn −

Txn‖ = 0. Suppose that {zt} is a path in K defined by zt = tQ(zt) + (1− t)Tzt, t ∈

(0, 1) such that zt → z as t→ 0+. Then

lim sup
n→∞

〈Q(z)− z, J(xn − z)〉 ≤ 0.

2.10 Rate of convergence

Definition 2.10.1

Berinde [18]. Let {un}∞n=1 and {vn}∞n=1 be two sequences of real numbers that

converge to u and v respectively, and assume that

l = lim
n→∞

|un − u|
|vn − v|

exist. (2.10.1)

(i) If l = 0, then we say that {un}∞n=1 converges faster to u than {vn}∞n=1 to v.

(ii) If 0 < l < ∞ then we say that {un}∞n=1 and {vn}∞n=1 have the same rate of

convergent.

(iii) If l =∞, then we say that {vn}∞n=1 converges faster to v than {un}∞n=1 to u.

Definition 2.10.2

Berinde [18]. Let {xn}∞n=1 and {yn}∞n=1 be two fixed point iteration procedures that

converge to the same fixed point p on a normed spaceX such that the error estimates

‖xn − p‖ ≤ un, n ∈ N (2.10.2)

and

‖yn − p‖ ≤ vn, n ∈ N (2.10.3)

are available, where {un}∞n=1 and {vn}
∞
n=1 are two null sequences of positive numbers

( that is, sequences of positive numbers that have zero as their limit). If {un}∞n=1

converges faster than {vn}∞n=1 , then we say that {xn}∞n=1 converges faster to p than

{yn}∞n=1 .

The following results are well known about the sequences of non-negative real

numbers.
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Lemma 2.10.3 Tan and Xu [97]. Let {αn} be a sequence of non-negative real

numbers satisfying the following relation:

αn+1 ≤ αn + σn, n ≥ 0

such that
∞∑
n=0

σn <∞. Then lim
n→∞

αn exists.

Remark 2.10.4

It is worth stating that if in addition the sequence {αn} has a subsequence that

converges to 0, then {αn} converges to 0.

Lemma 2.10.5 Xu [102]. Assume {an} is a sequence of nonnegative real numbers

such that

an+1 ≤ (1− θn)an + γn, n ≥ 0,

where {θn} is a sequence in (0, 1) and γn is a sequence in R such that

(i)
∞∑
n=0

θn =∞, and

(ii) lim sup
n→∞

γn
θn
≤ 0 or

∞∑
n=0

|γn| <∞.

Then lim
n→∞

an = 0.

Lemma 2.10.6 Xu [103]. Let {an} be a sequence of nonnegative real numbers

satisfying the following relations:

an+1 ≤ (1− αn)an + αnσn + γn, n ∈ N,

where

(i) {α}n ⊂ (0, 1),
∞∑
n=1

αn =∞;

(ii) lim sup {σ}n ≤ 0;

(iii) γn ≥ 0,
∞∑
n=1

γn <∞.

Then, lim
n→∞

an = 0.
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Lemma 2.10.7 Suzuki [95]. Let {un}∞n=1 and {vn}∞n=1 be bounded sequences in a

Banach space E and {tn}∞n=1 be a sequence in [0, 1] with 0 < lim inf
n→∞

tn ≤ lim sup
n→∞

tn <

1. Suppose that un+1 = (1− tn)un + tnvn for all n ≥ 0 and

lim sup
n→∞

(‖un+1 − un‖ − ‖vn+1 − vn‖) ≤ 0. Then lim
n→∞

‖un − vn‖ = 0.

2.11 Cauchy-Schwartz’s inequality

Let E be a topological real vector space and T a multivalued mapping from E into

2E
∗
. Cauchy-Schwartz’s inequality is given by

| 〈x, y∗〉 | ≤ 〈x, x∗〉
1
2 〈y, y∗〉

1
2 , (2.11.1)

for any x and y in D(T ) and any choice of x∗ ∈ Tx and y∗ ∈ Ty (Zarantonello

[108]). The Cauchy-Schwarz’s inequality is also called Cauchy’s inequality, Cauchy-

Bunyakovsky-Schwarz’s inequality or Schwarz’s inequality.

28



CHAPTER 3

Iterative algorithms for monotone type mappings

This chapter focuses on the study of iterative methods for monotone type map-

pings. New mappings are introduced. We establish strong convergence theorems

for monotone type mappings in different spaces such as p-uniformly convex Banach

spaces with uniformly Gâteaux differentiable norm and also uniformly smooth and

uniformly convex Banach spaces. We shall make use of the following result in this

section.

Theorem 3.0.1 Xu [101]. Let E be a real uniformly convex Banach space. For

arbitrary r > 0, let Br(0) := {x ∈ E : ‖x‖ ≤ r}. Then, there exists a continuous

strictly increasing convex function

g : [0,∞)→ [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), jp(x) ∈ Jp(x), jp(y) ∈ Jp(y), the following inequali-

ties hold:

(i) ‖x+ y‖p ≥ ‖x‖p + p 〈y, jp(x)〉+ g(‖y‖);

(ii) 〈x− y, jp(x)− jp(y)〉 ≥ g(‖x− y‖).
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3.1 Generalized Lyapunov functions

1 The concept of generalized Lyapunov function is introduced in this section. We

state and give the proof of some lemmas which are useful in establishing our main

results.

Definition 3.1.1

Let E be a smooth real Banach space and p, q > 1 with 1
p

+ 1
q

= 1.

(i) We introduce a function φp : E × E → R defined by

φp(x, y) =
p

q
‖x‖q − p 〈x, Jpy〉+ ‖y‖p, for all x, y ∈ E,

where Jp is a generalized duality map from E to E∗.

(ii) We introduce a function Vp : E × E∗ → R defined as

Vp(x, x
∗) =

p

q
‖x‖q − p 〈x, x∗〉+ ‖x∗‖p ∀ x ∈ E, x∗ ∈ E∗.

Lemma 3.1.2 Let E be a smooth uniformly convex real Banach space and p > 1

be an arbitrarily real number. For d > 0, let Bd(0) := {x ∈ E : ‖x‖ ≤ d}. Then for

arbitrary x, y ∈ Bd(0),

‖x− y‖p ≥ φp(x, y)− p

q
‖x‖q, where

1

p
+

1

q
= 1.

Proof. Since E is a uniformly convex space, then by Theorem 3.0.1, we have

for arbitrary x, y ∈ Bd(0),

‖x+ y‖p ≥ ‖x‖p + p 〈y, Jpx〉+ g(‖y‖).

Replacing y by −y gives

‖x− y‖p ≥ ‖x‖p − p 〈y, Jpx〉+ g(‖y‖).
1The results of this section are contents of the following paper

- M. O. Aibinu and O. T. Mewomo [3]
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Interchanging x and y, we have

‖x− y‖p ≥ ‖y‖p − p 〈x, Jpy〉+ g(‖x‖)

≥ p

q
‖x‖q − p 〈x, Jpy〉+ ‖y‖p − p

q
‖x‖q + g(‖x‖)

≥ φp(x, y)− p

q
‖x‖q + g(‖x‖)

≥ φp(x, y)− p

q
‖x‖q.

Lemma 3.1.3 Let E be a strictly convex and uniformly smooth real Banach space

and p > 1. Then

Vp(x, x
∗) + p

〈
J−1p x∗ − x, y∗

〉
≤ Vp(x, x

∗ + y∗) (3.1.1)

for all x ∈ E and x∗, y∗ ∈ E∗.

Proof. Let p > 1 with 1
p

+ 1
q

= 1.

Vp(x, x
∗) =

p

q
‖x‖q − p 〈x, x∗〉+ ‖x∗‖p,

Vp(x, x
∗ + y∗) =

p

q
‖x‖q − p 〈x, x∗ + y∗〉+ ‖x∗ + y∗‖p.

Vp(x, x
∗ + y∗)− Vp(x, x∗) = −p 〈x, y∗〉+ ‖x∗ + y∗‖p − ‖x∗‖p

≥ p 〈−x, y∗〉+ ‖x∗‖p + p
〈
y∗, J−1p x∗

〉
+ g(‖y∗‖)− ‖x∗‖p

( by Theorem 3.0.1, since E∗ is uniformly convex)

= p
〈
J−1p x∗ − x, y∗

〉
+ ‖x∗‖p + g(‖y∗‖)− ‖x∗‖p

≥ p
〈
J−1p x∗ − x, y∗

〉
,

which implies that

Vp(x, x
∗) + p

〈
J−1p x∗ − x∗, y∗

〉
≤ Vp(x, x

∗ + y∗).

Lemma 3.1.4 Let E be a reflexive strictly convex and smooth real Banach space

and p > 1. Then

φp(y, x)− φp(y, z) ≥ p 〈z − y, Jpx− Jpz〉 = p 〈y − z, Jpz − Jpx〉 for all x, y, z ∈ E.

(3.1.2)
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Proof. Let p > 1 with 1
p

+ 1
q

= 1. We first show that Vp has a subdifferential on

an open subset M ⊂ dom Vp. For every h ∈ E∗ and t ∈ R\ {0} with a variable y∗

and a fixed element y in E, we have,

Vp(y, y
∗) =

p

q
‖y‖q − p 〈y, y∗〉+ ‖y∗‖p,

Vp(y, y
∗ + th) =

p

q
‖y‖q − p 〈y, y∗ + th〉+ ‖y∗ + th‖p

≥ p

q
‖y‖q − p 〈y, y∗〉 − pt 〈y, h〉+ ‖y∗‖p

+pt
〈
J−1p y∗, h

〉
+ g(‖th‖)

= Vp(y, y
∗)− pt 〈y, h〉+ pt

〈
J−1p y∗, h

〉
+ g(‖th‖),

then lim
t→0

Vp(y, y
∗ + th)− Vp(y, y∗)

t
≥ p

〈
J−1p y∗ − y, h

〉
.

Therefore, grad Vp(x, y) = p(J−1p y∗ − y) and by the Lemma 2.3.3, Vp is convex and

lower semicontinuous. Then it follows from the definition of subdifferential that

Vp(y, x
∗)− Vp(y, z∗) ≥ p

〈
J−1p z∗ − y, x∗ − z∗

〉
for all y ∈ E, x∗, z∗ ∈ E∗.

Since φp(y, x) = Vp(y, Jpx
∗), we have

φp(y, x)− φp(y, z) ≥ p 〈z − y, Jpx− Jpz〉 for all x, y, z ∈ E.

Remark 3.1.5

These remarks follow from Definition 3.1.1:

(i) If E is a smooth reflexive strictly convex space, it is obvious that

Vp(x, x
∗) = φp(x, J

−1
p x∗) ∀ x ∈ E, x∗ ∈ E∗. (3.1.3)

Clearly, for x ∈ E, x∗ ∈ E∗,

φp(x, J
−1
p x∗) =

p

q
‖x‖q − p

〈
x, Jp

(
J−1p x∗

)〉
+ ‖J−1p x∗‖p

=
p

q
‖x‖q − p 〈x, x∗〉+ ‖x∗‖p

= Vp(x, x
∗).
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(ii) For p = 2, φ2(x, y) = φ(x, y), which is the Definition 2.6.1 (i) of Alber [7],

given by

φ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2, for all x, y ∈ E.

Also, it is easy to see from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for all x, y ∈ E. (3.1.4)

Indeed,

(‖x‖ − ‖y‖)2 = ‖x‖2 − 2‖x‖‖y‖+ ‖2‖2

≤ ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2

= φ(x, y)

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖2‖2

= (‖x‖+ ‖y‖)2.

By similar analysis, interested readers can verify that for each p ≥ 2,

(‖x‖ − ‖y‖)p ≤ φp(x, y) ≤ (‖x‖+ ‖y‖)p for all x, y ∈ E. (3.1.5)

3.2 Algorithm for zeros of monotone maps in Ba-

nach spaces

2 Let p > 1, t > 0, we study the convergence of (p, t)-strongly monotone maps in

p-uniformly convex Banach spaces with uniformly Gâteaux differentiable norm. The

set of zeros of a mapping A is denoted by N(A) := {x ∈ D(A) : Ax = 0} = A−10.

The following result is well known for p-uniformly Banach convex spaces.

Lemma 3.2.1 Xu [101]: Let p > 1 be a fixed real number and E a real Banach

space. The following are equivalent:

(i) E is p-uniformly convex;
2The results of this section are contents of the following paper

- M. O. Aibinu and O. T. Mewomo [5]
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(ii) there is a constant c1 > 0 such that for all x, y ∈ E and jp(x) ∈ Jp(x),

‖x+ y‖p ≥ ‖x‖p + p 〈y, jp(x)〉+ c1‖y‖p;

(iii) there is a constant c2 > 0 such that

〈x− y, jp(x)− jp(y)〉 ≥ c2‖x− y‖p,∀ x, y ∈ X and jp(x) ∈ Jp(x), jp(y) ∈ Jp(y).

3.2.1 Background

Let E be a real Banach space and let E∗ be the dual space of E. We study the

methods of approximating the zeros of a nonlinear equation of the form

0 ∈ Au, (3.2.1)

where u ∈ E and A : E → 2E
∗ is a multivalued monotone mapping. This is a

general form for problems of minimization of a function, variational inequalities and

so on. Assuming existence, for approximating a solution of Au = 0, where A is a

single valued accretive-type mapping, Browder [19] defined an operator T : E → E

by T := I − A, where I is the identity map on E. He called such an operator,

pseudo-contractive. It is trivial to observe that the zeros of A correspond to fixed

points of T . Chidume [25] defined a sequence of iteration

xn+1 = (1− λn)xn + λnTxn, n ∈ N

where {λn}∞n=1 ⊂ (0, 1) and imposed suitable conditions which made the sequence to

converge strongly to the unique fixed point of a Lipschitz strongly pseudo-contractive

mapping T in Lp, 2 ≤ p < ∞, spaces. The result of Chidume [25] has been

generalized and extended in various directions by numerous authors (see e.g., Censor

and Reich [23]; Chidume [26], [30]; Chidume and Bashir [27]; Chidume and Chidume

[29]; Chidume and Osilike [56]). Recently, Diop et al [40] introduced an iterative

scheme for finding the zeros of a bounded and 2-strongly monotone mappingA : E →

E∗ in a 2-uniformly convex real Banach space with uniformly Gâteaux differentiable

norm. A sequence {xn}∞n=1 was defined from an arbitrary x1 ∈ E by

xn+1 = J−1(Jxn − λnAxn), n ∈ N, (3.2.2)
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where J is the normalized duality mapping from E into E∗ and {λn}∞n=1 ⊂ (0, 1).

The iteration (3.2.2) was proved to converges strongly to the unique solution of the

equation Ax = 0 under suitable conditions.

It is our purpose in this section to extend and improve on the existing results in

this direction. Let p > 1, in a p-uniformly convex real Banach space with uniformly

Gâteaux differentiable norm, we shall study the convergence of the sequence {xn}∞n=1

defined from an arbitrary x1 ∈ E by

xn+1 = J−1p (Jpxn − λnAxn), n ∈ N, (3.2.3)

where Jp is a generalized duality mapping from E into E∗, {λn}∞n=1 ⊂ (0, 1) and A :

E → E∗ is a bounded (p, t)-strongly monotone mapping with t > 0. As corollaries,

we obtain the results of Diop et al. [40] for p = 2 and Chidume et al. [28] for

E := Lp, 1 < p <∞ and λn = λ ∀ n ∈ N, λ ∈ (0, 1).

3.2.2 Main result

Theorem 3.2.2 Let p > 1 and E be a p-uniformly convex real Banach space with

uniformly Gâteaux differentiable norm. Let t > 0 and A : E → E∗ be a bounded

(p, t)-strongly monotone mapping such that A−10 6= ∅. Suppose that the inverse

duality map J−1p is Lipschitz continuous. For arbitrary x1 ∈ E, let {xn}∞n=1 be the

sequence defined iteratively by (3.2.3) with {λn}∞n=1 ⊂ (0, 1) satisfying the following

conditions:

(i)
∞∑
n=1

λn =∞; (ii)
∞∑
n=1

λ2n <∞.

Then the sequence {xn} converges strongly to a solution of the equation Ax = 0.

Proof. Let p, q > 1 with 1
p

+ 1
q

= 1 and x ∈ E be a solution of the equation

Ax = 0. There exists r > 0 sufficiently large such that:

r ≥ max

{
4
p

q
‖x‖q, φp(x1, x)

}
and γ0 := min

{
1,

ptr

4M0

}
, (3.2.4)

where

M0 := pL sup
{
‖Axn‖2 : ‖xn‖ ≤ r

1
p + ‖x‖

}
,

L is a Lipschitz constant of J−1p and A is a bounded map. We divide the proof into

two steps.
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Step 1: We prove that {xn}∞n=1 is bounded. It suffices to show that φp(x, xn) ≤

r,∀ n ∈ N. The proof is by induction. By construction, φp(x, x1) ≤ r. Assume that

φp(x, xn) ≤ r for some n ∈ N. We show that φp(x, xn+1) ≤ r,∀ n ∈ N.

From inequality (3.1.5), we have ‖xn‖ ≤ r
1
p + ‖x‖. We compute as follow by using

the definition of xn+1:

φp(x, xn+1) = φp
(
x, J−1p (Jpxn − λnAxn)

)
= Vp (x, Jpxn − λnAxn)

≤ Vp(x, Jpxn)− pλn
〈
J−1p (Jpxn − λnAxn)− x,Axn

〉
(by Lemma (3.1.3) with y∗=λnAxn)

= Vp(x, Jpxn)− pλn
〈
J−1p (Jpxn − λnAxn)− x,Axn − Ax

〉
(since x ∈ N(A))

= φp(x, xn)− pλn 〈xn − x,Axn − Ax〉

−pλn
〈
J−1p (Jpxn − λnAxn)− J−1p (Jpxn), Axn

〉
.

Using the (p, t)-strongly monotonicity property of A, Schwartz’s inequality and Lip-

schitz property of J−1p , we obtain

φp(x, xn+1) ≤ φp(x, xn)− ptλn‖xn − x‖p

+pλn‖J−1p (Jpxn − λnAxn)− J−1p (Jpxn)‖‖Axn‖

≤ φp(x, xn)− ptλn‖xn − x‖p + pλ2nL‖Axn‖
2

≤ φp(x, xn)− ptλn
(
φp(x, xn)− p

q
‖x‖q

)
+ λ2nM0

(using Lemma 3.1.2)

≤ φp(x, xn)− ptλnφp(x, xn) + ptλn

(
p

q
‖x‖q

)
+ λnγ0M0

≤ r − ptλnr + ptλn
r

4
+ ptλn

r

4

=

(
1− ptλn

2

)
r

< r.

Hence, φp(x, xn+1) ≤ r. By induction, φp(x, xn) ≤ r ∀ n ∈ N. Thus, from inequality

(3.1.5), {xn}∞n=1 is bounded.
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Step 2: We now prove that {xn}∞n=1 converges strongly to the unique point x ∈

A−10. Following the same arguments as in step 1, the boundedness of {xn}∞n=1 and

that of A, there exists a positive constant M0 such that

φp(x, xn+1) ≤ φp(x, xn)− ptλn‖xn − x‖p + λ2nM0. (3.2.5)

Consequently, φp(x, xn+1) ≤ φp(x, xn) + λ2nM0.

By the hypothesis that
∞∑
n=0

λ2n <∞ and Lemma 2.10.3, we have that lim
n→∞

φp(x, xn)

exists. From inequality (3.2.5), we have
∞∑
n=0

λn‖xn − x‖ < ∞. Using the fact

∞∑
n=0

λn = ∞, it follows that lim inf ‖xn − x‖p = 0. Consequently, there exists a

subsequence {xnk}
∞
nk=1 of {xn}∞n=1 such that xnk → x as k → ∞. Since {xn}∞n=1

is bounded and Jp is norm-to-weak∗ uniformly continuous on bounded subset of E,

it follows that {φp(x, xn)}∞n=1 has a subsequence that converges to 0. Therefore,

by Lemma 2.6.2, {φp(x, xn)}∞n=1 converges strongly to 0. Also, by Lemma 2.6.2,

‖xn − x‖ → 0 as n→∞.

Corollary 3.2.3 Diop et al. [40]: Let E be a 2-uniformly convex real Banach space

with uniformly Gâteaux differentiable norm and E∗ its dual space. Let A : E → E∗

be a bounded and (2, t)-strongly monotone mapping such that A−10 6= ∅, where t ∈

(0, 1). For arbitrary x1 ∈ E, let {xn}∞n=1 be the sequence defined iteratively by:

xn+1 = J−1(Jxn − λnAxn), n ∈ N, (3.2.6)

where J is the normalized duality mapping from E into E∗ and {λn}∞n=1 ⊂ (0, 1) is

a real sequence satisfying the following conditions:

(i)
∞∑
n=1

λn =∞; (ii)
∞∑
n=1

λ2n <∞.

Then, there exists γ0 > 0 such that if λn < γ0, the sequence {xn}∞n=1 converges

strongly to the unique solution of the equation Ax = 0.

Proof. By taking p = 2, the proof follows from Theorem 3.2.2.
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3.3 Strong convergence theorems for strongly mono-

tone mappings in Banach spaces

3 Let p > 1, η ∈ (1,∞), we study the convergence of (p, η)-strongly monotone maps

in uniformly smooth and uniformly convex Banach spaces. The following result is

well known for uniformly Banach convex spaces.

Lemma 3.3.1 Xu [101]. Let E be a real uniformly convex Banach space. For

arbitrary r > 0, let Br(0) := {x ∈ E : ‖x‖ ≤ r}. Then, there exists a continuous

strictly increasing convex function

g : [0,∞)→ [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), jp(x) ∈ Jp(x), jp(y) ∈ Jp(y), the following inequali-

ties hold:

(i) ‖x+ y‖p ≥ ‖x‖p + p 〈y, jp(x)〉+ g(‖y‖);

(ii) 〈x− y, jp(x)− jp(y)〉 ≥ g(‖x− y‖).

3.3.1 Background

Let H be a real Hilbert space and A : D(A) ⊂ H → 2H a maximal monotone

mapping. Consider the following problem:

find u ∈ H such that 0 ∈ Au. (3.3.1)

This is a typical way of formulating many problems in nonlinear analysis and opti-

mization. A well-known method for solving (3.3.1) in a Hilbert space is the proximal

point algorithm: x1 ∈ H and

xn+1 = Jrnxn, n ∈ N,

introduced by Martinet [73] and studied further by Rockafellar [90] and a host

of other authors. How to extend the monotonicity definition to mappings from a
3The results of this section are contents of the following paper

- M. O. Aibinu and O. T. Mewomo [3]
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Banach space into its dual was a puzzle in nonlinear functional analysis. Alber [7]

introduced a Lyapunov functions which signaled the beginning of the development

of new geometric properties in Banach spaces. The Lyapunov function introduced

by Alber is suitable for studying iterative methods for approximating solutions of

equation 0 ∈ Au where A : E → 2E
∗ is of monotone type from a Banach space into

its dual (see e.g [5], [28], [77], [111]).

In this section, our purpose is to establish a strong convergence theorem for an

iterative scheme for the (p, η)-strongly monotone mappings in uniformly smooth and

uniformly convex Banach spaces.

3.3.2 Main result

Theorem 3.3.2 Let E be a uniformly smooth and uniformly convex real Banach

space. Let p > 1, η ∈ (1,∞), suppose A : E → E∗ is a bounded, (p, η)-strongly

monotone mapping such that the range of (Jp + tA) is all of E∗ for all t > 0 and

A−1(0) 6= ∅. Let {λn}∞n=1 ⊂ (0, 1) and {θn}∞n=1 in (0, 1
2
) be real sequences such that,

(i) lim
n→∞

θn = 0 and {θn}∞n=1 is decreasing;

(ii)
∞∑
n=1

λnθn =∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞∑
n=1

λn <∞ ∀ n ∈ N.

For arbitrary x1 ∈ E, define {xn}∞n=1 iteratively by:

xn+1 = J−1p (Jpxn − λn (Axn + θn(Jpxn − Jpx1))) , n ∈ N, (3.3.2)

where Jp is the generalized duality mapping from E into E∗. Then the sequence

{xn}∞n=1 converges strongly to a solution of Ax = 0.

Proof. The proof is divided into two parts.

Part 1: The sequence {xn}∞n=1 is shown to be bounded.

Let q > 1 with 1
p

+ 1
q

= 1 and x ∈ E be a solution of the equation Ax = 0. It suffices

to show that φp(x, xn) ≤ r, ∀ n ∈ N. From inequality (3.1.5), for real p > 1, we have
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‖xn‖ ≤ r
1
p + ‖x‖. Let B := {z ∈ E : φp(x, z) ≤ r} . It is known that A is bounded

and Jp is uniformly continuous on bounded subsets of E. Define

M0 := sup

{
‖Axn + θn(Jpxn − Jpx1)‖ : θn ∈ (0,

1

2
), xn ∈ B

}
+ 1.

Let ψ denotes the modulus of continuity of J−1p . Then

‖xn − xn+1‖ = ‖xn − J−1p (Jpxn − λn (Axn + θn(Jpxn − Jpx1)))‖

= ‖J−1p (Jpxn)− J−1p (Jpxn − λn (Axn + θn(Jpxn − Jpx1)))‖

≤ ψ (|λn|‖Axn + θn(Jpxn − Jpx1)‖)

≤ ψ (|λn|M0)

≤ ψ (sup {|λn|M0 : λn ∈ (0, 1)}) . (3.3.3)

Since A is bounded and the duality mapping Jp is uniformly continuous on bounded

subsets of E, the sup {|λn|M0} exists and it is a real number different from infinity.

Let M =: ψ (sup {|λn|M0}) and let r > 0 be sufficiently large such that:

r ≥ max

{
φp(x, x1), 4M0M,

4p

q
‖x‖q

}
. (3.3.4)

The proof is by induction. By construction, φp(x∗, x1) ≤ r. Suppose that φp(x∗, xn) ≤

r for some n ∈ N. We show that φp(x∗, xn+1) ≤ r. Applying Lemma 3.1.3 with

y∗ := λn (Axn + θn(Jpxn − Jpx1)) and by using the definition of xn+1, we compute

as follows,

φp(x, xn+1)

= φp
(
x, J−1 (Jpxn − λn (Axn + θn(Jpxn − Jpx1)))

)
= Vp (x, Jpxn − λn (Axn + θn(Jpxn − Jpx1))) (By (3.1.3))

≤ Vp(x, Jpxn)

−pλn
〈
J−1p (Jpxn − λn (Axn + θn(Jpxn − Jpx1)))− x,Axn + θn(Jpxn − Jpx1)

〉
= φp(x, xn)− pλn 〈xn − x,Axn + θn(Jpxn − Jpx1)〉

−pλn
〈
J−1p (Jpxn − λn (Axn + θn(Jpxn − Jpx1)))− xn, Axn + θn(Jpxn − Jpx1)

〉
.
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By Schwartz inequality and by applying inequality (3.3.3), we obtain

φp(x, xn+1) ≤ φp(x, xn)− pλn 〈xn − x,Axn + θn(Jpxn − Jpx1)〉

+pλnM0M

≤ φp(x, xn)− pλn 〈xn − x,Axn − Ax〉 (since x ∈ N(A))

−pλnθn 〈xn − x, Jpxn − Jpx1〉+ pλnM0M.

By Lemma 3.1.4, p 〈x− xn, Jpxn − Jpx1〉 ≤ φp(x, xn) − φp(x, x1). Consequently,

p 〈x− xn, Jpxn − Jpx1〉 ≤ φp(x, xn). Therefore, using (p, η)-strongly monotonicity

property of A, we have,

φp(x
∗, xn+1) ≤ φp(x

∗, xn)− pηλn‖xn − x∗‖p − pλnθn 〈xn − x∗, Jpxn − Jpx1〉

+pλnM0M

≤ φp(x
∗, xn)− pλn‖xn − x∗‖p + pλnθn 〈x∗ − xn, Jpxn − Jpx1〉

+pλnM0M

≤ φp(x
∗, xn)− pλn

(
φp(x

∗, xn)− p

q
‖x∗‖q

)
+pλnθnφp(x

∗, xn) + pλnM0M

= (1− pλn)φp(x
∗, xn) + pλn

(
p

q
‖x∗‖q

)
+pλnθnφp(x

∗, xn) + pλnM0M

≤ (1− pλn)r + pλn
r

4
+ pλn

r

2
+
pλn
4
r

=

(
1− pλn + pλn

1

4
+ pλn

1

2
+ pλn

1

4

)
r = r.

Hence, φp(x, xn+1) ≤ r. By induction, φp(x, xn) ≤ r ∀ n ∈ N. Thus, from

inequality (3.1.5), {xn}∞n=1 is bounded.

Part 2: We now show that {xn}∞n=1 converges strongly to a solution of Ax = 0.

(p, η)-strongly monotone implies monotone and the range of (Jp + tA) is all of E∗

for all t > 0. By Kohsaka and Takahashi [57], since E is a reflexive smooth strictly

convex space, we obtain for every t > 0 and x∗ ∈ E, there exists a unique xt ∈ D(A),

where D(A) is the domain of A such that

Jpx
∗ = Jpxt + tAxt.
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Define JAt x∗ := xt, in other words, define a single-valued mapping JAt : E → D(A)

by JAt = (Jp + tA)−1Jp. Such a JAt is called the resolvent of A. Setting t := 1
θn
, for

some x1 ∈ D(A) and yn = (Jp + 1
θn
A)−1Jpx1, we obtain

θn(Jpyn − Jpx1) + Ayn = 0, yn → x ∈ N(A). (3.3.5)

Observe that the sequence {yn}∞n=1 is bounded because it is a convergent se-

quence. Moreover, {xn}∞n=1 is bounded and hence {Axn}∞n=1 is bounded. Following

the same arguments as in part 1, we get,

φp(yn, xn+1) ≤ φp(yn, xn)− pλn 〈xn − yn, Axn + θn(Jpxn − Jpx1)〉

+pλnM0M

≤ φp(yn, xn)− pλn 〈xn − yn, Axn + θn(Jpxn − Jpx1)〉

+pλnM0M.

(3.3.6)

By the (p, η)-strongly monotonicity property of A and using Theorem 3.0.1 and Eq.

(3.3.5), we obtain,

〈xn − yn, Axn + θn(Jpxn − Jpx1)〉

= 〈xn − yn, Axn + θn(Jpxn − Jpyn + Jpyn − Jpx1)〉

= θn 〈xn − yn, Jpxn − Jpyn〉+ 〈xn − yn, Axn + θn(Jpyn − Jpx1)〉

= θn 〈xn − yn, Jpxn − Jpyn〉+ 〈xn − yn, Axn − Ayn〉

≥ θng(‖xn − yn‖) + η‖xn − yn‖p (Since A is (p, η)-strongly monotone and by Lemma 3.3.1(ii))

≥ 1

p
θnφp(yn, xn).

Therefore, the inequality (3.3.6) becomes

φp(yn, xn+1) ≤ (1− λnθn)φp(yn, xn) + pλnM0M. (3.3.7)

Observe that by Lemma 3.1.4, we have

φp(yn, xn) ≤ φp(yn−1, xn)− p 〈yn − xn, Jpyn−1 − Jpyn〉

= φp(yn−1, xn) + p 〈xn − yn, Jpyn−1 − Jpyn〉

≤ φp(yn−1, xn) + ‖Jpyn−1 − Jpyn‖‖xn − yn‖. (3.3.8)
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Let R > 0 such that ‖x1‖ ≤ R, ‖yn‖ ≤ R for all n ∈ N. We obtain from

Eq.(3.3.5) that

Jpyn−1 − Jpyn +
1

θn
(Ayn−1 − Ayn) =

θn−1 − θn
θn

(Jpx1 − Jpyn−1) .

By taking the duality pairing of each side of this equation with respect to yn−1− yn
and by the strong monotonicity of A, we have

〈Jpyn−1 − Jpyn, yn−1 − yn〉 ≤
θn−1 − θn

θn
‖Jpx1 − Jpyn−1‖‖yn−1 − yn‖,

which gives,

‖Jpyn−1 − Jpyn‖ ≤
(
θn−1
θn
− 1

)
‖Jpyn−1 − Jpx1‖. (3.3.9)

Using (3.3.8) and (3.3.9), the inequality (3.3.7) becomes

φp(yn, xn+1) ≤ (1− λnθn)φp(yn−1, xn)

+C

(
θn−1
θn
− 1

)
+ pλnM0M,

for some constant C > 0. By Lemma 2.10.6, φp(yn−1, xn)→ 0 as n→∞ and using

Lemma 2.6.2, we have that xn − yn−1 → 0 as n → ∞. Since yn → x ∈ N(A), we

obtain that xn → x as n→∞.

Let p > 1, η ∈ (1,∞), suppose A : E → E∗ is a bounded, (p, η)-strongly mono-

tone mapping which satisfies the range condition and A−1(0) 6= ∅.

Corollary 3.3.3 Let H be a Hilbert space, p > 1, η ∈ (1,∞) and suppose A : H →

H is a bounded (p, η)-strongly monotone mapping such that D(A) ⊆ range (I + tA)

for all t > 0. For arbitrary x1 ∈ H, define the sequence {xn}∞n=1 iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ∈ N,

where {λn}∞n=1 ⊂ (0, 1) and {θn}∞n=1 in (0, 1
2
) are real sequences satisfying the con-

ditions:

(i) lim
n→∞

θn = 0 and {θn}∞n=1 is decreasing;

(ii)
∞∑
n=1

λnθn =∞;
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(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞∑
n=1

λn <∞ ∀ n ∈ N.

Suppose that the equation Ax = 0 has a solution. Then the sequence {xn}∞n=1 con-

verges strongly to a solution of the equation Ax = 0.

Proof. The result follows from the Theorem 3.3.2 since uniformly smooth and

uniformly convex spaces are more general than the Hilbert spaces.

Remark 3.3.4

The generalized Lyapunov functions which we introduced admit the generalized

duality mapping. Clearly, our results show the efficacy of the generalized Lyapunov

functions which we introduced. Also, our method of proof is constructive and is of

independent interest.

Remark 3.3.5

Prototype for our iteration parameters in Theorem 3.3.2 are, λn = 1
(n+1)a

and θn =

1
(n+1)b

, where 0 < b < a and a+ b < 1.

3.4 Algorithm for the generalized Φ-strongly mono-

tone mappings and application to the general-

ized convex optimization problems

4 This section centres on the generalized Φ-strongly monotone mappings, which are

the largest class of monotone type mappings. In uniformly smooth and uniformly

convex Banach spaces, we study the convergence of a sequence of approximating a

solution of a generalized Φ-strongly monotone mapping.
4The results of this section are contents of the following paper

- M. O. Aibinu and O. T. Mewomo [4]
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3.4.1 Background

An important generalized monotonicity property which has been studied for multi-

valued mappings is quasimonotonicity. The concept of quasimonotone multivalued

mapping broadly generalizes monotone mappings (see e.g., Aussel and Fabian [13],

Phelps [84]). Quasimonotone mappings are closely related to the so-called demand

functions in mathematical economics (see e.g., Levin [67], Karlin [55] for more de-

tails). Classical examples of quasimonotone mappings are the subdifferentials of

lower semicontinuous quasiconvex functions. The interest in quasimonotone map-

ping stems mainly from the fact that the derivative and more generally, the subd-

ifferential of a quasiconvex function is quasimonotone. This is similar to the link

between convex functions and monotonicity of their (generalized) derivative (see,

Aussel et al. [12], [11] for more details). For a 2-uniformly convex real Banach space

with uniformly Gâteaux differentiable norm, Diop et al. [40] studied the class of

strongly monotone mappings and applied their result to the convex minimization

problem. Chidume and Idu [33] considered the class of maximal monotone map-

pings in a uniformly convex and uniformly smooth Banach space and obtained the

minimizer of a convex function defined from a Banach space E to R.

Let E be a real Banach space and A : E → 2E
∗ be a multivalued mapping. We

study the method of finding the zeros of a generalized Φ-strongly monotone mapping

A, which satisfies the range condition. It is a well known fact that the class of the

generalized Φ-strongly monotone mappings is the largest class of monotone-type

mappings such that if a solution of an equation 0 ∈ Ax exists, it is necessarily

unique (Chidume et al. [35]). Assuming existence, a sequence is constructed which

converges strongly to a solution of the equation 0 ∈ Ax. As an immediate application

of this result, we apply it to obtain the solutions of generalized convex optimization

problems.

3.4.2 Main Results

Theorem 3.4.1 Let E be a uniformly smooth and uniformly convex real Banach

space. Let A : E → 2E
∗ be a multivalued mapping which is bounded, a generalized
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Φ-strongly monotone such that the range of (Jp + tA) is all of E∗ for all t > 0 and

A−1(0) 6= ∅. Let {λn}∞n=1 ⊂ (0, 1) and {θn}∞n=1 in (0, 1
2
) be real sequences such that,

(i) lim
n→∞

θn = 0 and {θn}∞n=1 is decreasing;

(ii)
∞∑
n=1

λnθn =∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞∑
n=1

λn <∞ ∀ n ∈ N.

For arbitrary x1 ∈ E and p > 1, define {xn}∞n=1 iteratively by:

xn+1 = J−1p (Jpxn − λn (µxn + θn(Jpxn − Jpx1))) , µxn ∈ Axn n ∈ N, (3.4.1)

where Jp is the generalized duality mapping from E into E∗. Then the sequence

{xn}∞n=1 converges strongly to a point of A−10.

Proof. The proof is divided into two parts.

Part 1: We prove that {xn}∞n=1 is bounded.

Let x ∈ E be a solution of 0 ∈ Ax. It suffices to show that φp(x, xn) ≤ r,∀ n ∈ N.

From inequality (3.1.5), we have ‖xn‖ ≤ r
1
p +‖x‖. Let B := {z ∈ E : φp(x, z) ≤ r} .

It is known that A is bounded and Jp is uniformly continuous on bounded subsets

of E. Define

M0 := sup

{
‖µxn + θn(Jpx− Jpx1)‖ : θn ∈ (0,

1

2
), x ∈ B, µxn ∈ Axn

}
+ 1. (3.4.2)

Let ψ denotes the modulus of continuity of J−1p . Then

‖xn − xn+1‖ = ‖xn − J−1p (Jpxn − λn (µxn + θn(Jpxn − Jpx1)))‖

= ‖J−1p (Jpxn)− J−1p (Jpxn − λn (µxn + θn(Jpxn − Jpx1)))‖

≤ ψ (|λn|‖µxn + θn(Jpxn − Jpx1)‖)

≤ ψ (|λn|M0)

≤ ψ (sup {|λn|M0 : λn ∈ (0, 1)}) . (3.4.3)

Since A is bounded and the duality mapping Jp is uniformly continuous on bounded

subsets of E, the sup {|λn|M0} exists and it is a real number different from infinity.

Let M =: ψ (sup {|λn|M0}) and let r > 0 be chosen such that
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Φ

(
δ

2

)
≥ r ≥ max

{
φp(x, x1), 2M0M, δp +

p

q
‖x‖q

}
and M ≥ δ

2
, where 1

p
+ 1

q
= 1 and δ is a positive real number. The proof is

by induction. By construction, φp(x, x1) ≤ r. Suppose that φp(x, xn) ≤ r for

some n ∈ N. We show that φp(x, xn+1) ≤ r. Suppose this is not the case, then

φp(x, xn+1) > r. Applying Lemma 3.1.3 with y∗ := λn (µxn + θn(Jpxn − Jpx1)) and

by using the definition of xn+1, we compute as follows,

φp(x, xn+1)

= φp
(
x, J−1p (Jpxn − λn (µxn + θn(Jpxn − Jpx1)))

)
= Vp (x, Jpxn − λn (µxn + θn(Jpxn − Jpx1)))

≤ Vp(x, Jpxn)

−pλn
〈
J−1p (Jpxn − λn (µxn + θn(Jpxn − Jpx1)))− x, µxn + θn(Jpxn − Jpx1)

〉
= φp(x, xn)− pλn 〈xn − x, µxn + θn(Jpxn − Jpx1)〉

−pλn
〈
J−1p (Jpxn − λn (µxn + θn(Jpxn − Jpx1)))− xn, µxn + θn(Jpxn − Jpx1)

〉
.

By Schwartz inequality and by applying inequality (3.4.3), we obtain

φp(x, xn+1) ≤ φp(x, xn)− pλn 〈xn − x, µxn + θn(Jpxn − Jpx1)〉

+pλnM0M

≤ φp(x, xn)− pλn 〈xn − x, µxn − µx〉 (µx ∈ Ax since x ∈ N(A))

−pλnθn 〈xn − x, Jpxn − Jpx1〉+ pλnM0M.

By Lemma 3.1.4, p 〈x− xn, Jpxn − Jpx1〉 ≤ φp(x, xn) − φp(x, x1). Consequently,

p 〈x− xn, Jpxn − Jpx1〉 ≤ φp(x, xn). Also, since A is generalized Φ-strongly mono-

tone, we have,
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φp(x
∗, xn+1) ≤ φp(x, xn)− pλnΦ(‖xn − x‖)− pλnθn 〈xn − x, Jpxn − Jpx1〉

+pλnM0M

= φp(x, xn)− pλnΦ(‖xn − x‖) + pλnθn 〈x− xn, Jpxn − Jpx1〉

+pλnM0M

≤ φp(x, xn)− pλnΦ(‖xn − x‖) + pλnθn(φp(x, xn)− φp(x, x1))

+pλnM0M. (3.4.4)

By the uniform continuity property of J−1p on bounded sets of E∗, we have

‖xn+1 − xn‖ = ‖J−1p (Jpxn+1)− J−1p (Jpxn)‖ ≤M,

such that

‖xn+1 − x‖ − ‖xn − x‖ ≤M,

which gives

‖xn − x‖ ≥ ‖xn+1 − x‖ −M. (3.4.5)

From Lemma 3.1.2,

‖xn+1 − x‖p ≥ φp(x, xn+1)−
p

q
‖x‖q

≥ r − p

q
‖x‖q

≥
(
δp +

p

q
‖x‖
)
− p

q
‖x‖q

≥ δp.

So,

‖xn+1 − x‖ ≥ δ.

Therefore, the inequality (3.4.5) becomes,

‖xn − x‖ ≥ δ −M

≥ δ

2
.
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Thus,

Φ(‖xn − x‖) ≥ Φ(
δ

2
). (3.4.6)

Substituting (3.4.6) into (3.4.4) gives

r < φp(x, xn+1) ≤ φp(x, xn)− pλnΦ(
δ

2
) + pλnθnφp(x, xn)

+pλnM0M

≤ r − pλnr + pλn
r

2
+ pλn

r

2

=

(
1− pλn +

pλn
2

+
pλn
2

)
r = r.

a contradiction. Hence, φp(x, xn+1) ≤ r. By induction, φp(x, xn) ≤ r ∀ n ∈ N.

Thus, from inequality (3.1.5), {xn}∞n=1 is bounded.

Part 2: We now show that {xn}∞n=1 converges strongly to a point of A−10. Recall

that A is a generalized Φ-strongly monotone and the range of (Jp + tA) is all of E∗

for all t > 0. Since E is a reflexive smooth strictly convex space, we obtain for every

t > 0 and x∗ ∈ E, there exists a unique xt ∈ D(A), where D(A) is the domain of A

such that

Jpx
∗ ∈ Jpxt + tAxt.

Define JAt x∗ = xt, equivalently define a single-valued mapping JAt : E → D(A) by

JAt = (Jp + tA)−1Jp. Such a JAt is called the resolvent of A. Setting t := 1
θn
, for some

x1 ∈ D(A) and yn = (Jp + 1
θn
A)−1Jpx1, we obtain

θn(Jpyn − Jpx1) + µyn = 0, µyn ∈ Ayn and yn → x ∈ N(A). (3.4.7)

Observe that the sequence {yn}∞n=1 is bounded because it is a convergent sequence.

Moreover, {xn}∞n=1 is bounded and hence {Axn}∞n=1 is bounded. Following the same

arguments as in part 1, we get,

φp(yn, xn+1) ≤ φp(yn, xn)− pλn 〈xn − yn, µxn + θn(Jpxn − Jpx1)〉

+pλnM0M. (3.4.8)
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By the generalized Φ-strongly monotonicity of A and using Theorem 3.0.1 and Eq.

(3.4.7), we obtain,

〈xn − yn, µxn + θn(Jpxn − Jpx1)〉

= 〈xn − yn, µxn + θn(Jpxn − Jpyn + Jpyn − Jpx1)〉

= θn 〈xn − yn, Jpxn − Jpyn〉

+ 〈xn − yn, µxn + θn(Jpyn − Jpx1)〉

= θn 〈xn − yn, Jpxn − Jpyn〉+ 〈xn − yn, µxn − µyn〉

≥ θng(‖xn − yn‖) + Φ(‖xn − yn‖) (Since A is (p, η)-strongly monotone and by Lemma 3.3.1(ii))

≥ 1

p
θnφp(yn, xn).

Therefore, the inequality (3.4.8) becomes

φp(yn, xn+1) ≤ (1− λnθn)φp(yn, xn) + pλnM0M. (3.4.9)

Observe that by Lemma 3.1.4, we have

φp(yn, xn) ≤ φp(yn−1, xn)− p 〈yn − xn, Jpyn−1 − Jpyn〉

= φp(yn−1, xn) + p 〈xn − yn, Jpyn−1 − Jpyn〉

≤ φp(yn−1, xn) + ‖Jpyn−1 − Jpyn‖‖xn − yn‖. (3.4.10)

Let R > 0 such that ‖x1‖ ≤ R, ‖yn‖ ≤ R for all n ∈ N. We obtain from

Eq.(3.4.7) that

Jpyn−1 − Jpyn +
1

θn

(
µyn−1 − µyn

)
=
θn−1 − θn

θn
(Jpx1 − Jpyn−1) .

By taking the duality pairing of each side of this equation with respect to yn−1− yn
and by the generalized Φ-strongly monotonicity of A, we have

〈Jpyn−1 − Jpyn, yn−1 − yn〉 ≤
θn−1 − θn

θn
‖Jpx1 − Jpyn−1‖‖yn−1 − yn‖,

which gives,

‖Jpyn−1 − Jpyn‖ ≤
(
θn−1
θn
− 1

)
‖Jpyn−1 − Jpx1‖. (3.4.11)

Using (3.4.10) and (3.4.11), the inequality (3.4.9) becomes

φp(yn, xn+1) ≤ (1− λnθn)φp(yn−1, xn) + C

(
θn−1
θn
− 1

)
+ pλnM0M,
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for some constant C > 0. By Lemma 2.10.6, φp(yn−1, xn) → 0 as n → 0 and

using Lemma 2.6.2, we have that xn − yn−1 → 0 as n → 0. Since yn → x ∈ N(A),

we obtain that xn → x.

Corollary 3.4.2 Aibinu and Mewomo [3]. Let E be a uniformly smooth and uni-

formly convex real Banach space. Let p > 1, η ∈ (0, 1) suppose A : E → E∗ is a

bounded, (p, η)-strongly monotone mapping such that the range of (Jp + tA) is all of

E∗ for all t > 0 and A−1(0) 6= ∅. Let {λn}∞n=1 ⊂ (0, 1) and {θn}∞n=1 in (0, 1
2
) be real

sequences such that,

(i) lim
n→∞

θn = 0 and {θn}∞n=1 is decreasing;

(ii)
∞∑
n=1

λnθn =∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞∑
n=1

λn <∞ ∀ n ∈ N.

For arbitrary x1 ∈ E, define {xn}∞n=1 iteratively by:

xn+1 = J−1p (Jpxn − λn (Axn + θn(Jpxn − Jpx1))) , n ∈ N, (3.4.12)

where Jp is the generalized duality mapping from E into E∗. Then the sequence

{xn}∞n=1 converges strongly to a solution of Ax = 0.

Proof. Take Φ(‖x − y‖) := η‖x− y‖p in Theorem 3.4.1, then the desired result

follows.

3.4.3 Application to the generalized convex optimization prob-

lem

Generalized Φ-strongly monotone mappings is the largest class of monotone-type

mappings such that if a solution of an equation 0 ∈ Ax exists, it is necessarily

unique (Chidume et al. [33]). A specific generalized monotononicity property which

is quasimonotonicity is used for illustration as it is closely related to the so-called
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demand functions in mathematical economics (see e.g., Levin [67], Karlin [55] for

more details).

Let E be a real Banach space with the dual E∗ and A, a multivalued mapping

from E into 2E
∗
. According to Hassouni [46], for K subset of E, and x̄ ∈ K, A

satisfies the variational inequality below if and only if

∀ x ∈ K, 〈µx, x− x̄〉 ≥ 0, ∀ µx ∈ Ax. (3.4.13)

Consider now the quasiconvex minimization problem

min
x∈K

f(x), (3.4.14)

where f : E → R ∪ {+∞} is lower semicontinuous and quasiconvex. Let N be a

convex open neighborhood of x̄. The necessary and sufficient condition to obtain a

solution of (3.4.14) is given in the Lemma 3.4.3 below.

Lemma 3.4.3 Hassouni and Jaddar [47]. If K = N or K = E, then following

assertions are equivalent:

(i) x̄ is an optimal solution of (3.4.14),

(ii) ∂f satisfies (3.4.13).

Remark 3.4.4

For any single-valued quasimonotone operator ∂f , the operator

h(x) := {α∂f(x) : α ≥ 0} is also quasimonotone and Gr(∂f) ⊂ Gr(h) provided

∂f 6= 0, where Gr(∂f) and Gr(h) denote the graph of ∂f and of h respectively. It

follows that for every non-constant smooth quasiconvex function f, the single-valued

quasimonotone operator ∂f is not maximal (see e.g., Levin [67]).

Next, we give a useful definition and establish a lemma which is necessary in

establishing our main result in this section. Let E be a real locally convex topo-

logical vector space, K a nonempty convex subset of E, A : K → L(E,R) = 2E
∗ a

multivalued mapping and S ⊆ 2E
∗
.
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Definition 3.4.5 A multivalued mapping A : K → 2E
∗ is said to have the surjective

property if the range of A excluding the zero vector (i.e R(A)\ {0}) has the surjective

property. Indeed, suppose S has the surjective property on K and f ∈ R(A)\ {0} ,

then a multivalued mapping foS ⊂ L(E,R) = 2E
∗ is said to have the surjective

property on K provided

〈foS, x− y〉 := {〈fox∗, x− y〉 : x∗ ∈ S} = R.

Lemma 3.4.6 Let E be a uniformly smooth and uniformly convex real Banach

space, K a nonempty convex subset of E and A : K → 2E
∗ a multivalued map-

ping. Suppose S ⊆ 2E
∗ is connected and has the surjective property on K. Then A

is monotone and the range of (Jp + tA) is all of E∗ for all t > 0 if and only if for

each α ∈ S, A+ α is quasimonotone and has the surjective property on K.

Proof. ” ⇒ ” Suppose A is monotone and R(Jp + tA) = E∗ for all t > 0.

Therefore for each α ∈ X∗, the operator u 7→ A(u) + α is obviously monotone,

hence quasimonotone. Next, suppose for contradiction that A+α has no surjective

property, that is ∃ x ∈ K, a convex subset of E such that ∀ y ∈ K

〈A+ α, x− y〉 = {〈fou∗ + α, x− y〉 , u∗, α ∈ S} 6= R.

It follows that for each u∗ ∈ S, the range of

g(t) := −t 〈fou∗, x− y〉 − 〈u∗, x− y〉

is not equal to R. Recall that monotonicity of A gives that

〈x∗ − y∗, x− y〉 ≥ 0⇒ 〈x∗, x− y〉 ≥ 〈y∗, x− y〉 ∀ x∗ ∈ Ax, y∗ ∈ Ay.

Therefore, there exists t0 ∈ R such that

〈x∗, x− y〉 ≥ −t0 〈fou∗, x− y〉 − 〈u∗, x− y〉 ≥ 〈y∗, x− y〉 .

Setting α := t0fou
∗ + u∗, we deduce that

〈x∗ + α, x− y〉 ≥ 0,
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while

〈y∗ + α, x− y〉 ≤ 0.

Thus contradicting the pseudomonotonicity and hence quasimonotonicity of the map

A+ α.

” ⇐ ” Suppose that A + α is quasimonotone and has the surjective property. We

show that A is monotone and the range of (J + tA) is all of E∗ for all t > 0. By

Lemma 2.8.3, A is monotone since A + α is quasimonotone. Next is to show that

R(Jp + tA) = E∗ for all t > 0. Since A + α has the surjective property on K, for

every u∗ ∈ R(Jp + tA), the line L = {u∗ + tfou∗ : t ∈ R+} has surjective property

on K. But L ⊂ E∗, therefore

R(Jp + tA) ⊆ E∗.

Also, for a given u∗ ∈ S and each v∗ ∈ E∗, define

〈v∗, x− y〉 = 〈u∗ + tfou∗, y − x〉

for every x, y ∈ K. Therefore, v∗ := u∗+tfou∗ ∈ R(Jp+tA). Hence R(Jp+tA) = E∗

Theorem 3.4.7 Let K be a nonempty convex subset of a uniformly smooth and

uniformly convex real Banach space E and S ⊆ 2E
∗ is connected and has the sur-

jective property on K. Let f : K → R ∪ {+∞} be a bounded lower semicontinuous

quasiconvex function defined on K with nonempty interior. Suppose for each α ∈ S,

∂f +α is quasimontone and has the surjective property on K with (∂f)−1 0 6= ∅. Let

{λn}∞n=1 ⊂ (0, 1) and {θn}∞n=1 in (0, 1
2
) be real sequences such that,

(i) lim θn = 0 and {θn} is decreasing;

(ii)
∞∑
n=1

λnθn =∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞∑
n=1

λn <∞.

Then, for arbitrary x1 ∈ E, the iteration {xn}∞n=1 defined by

xn+1 = J−1p (Jpxn − λn ((∂f)xn + θn(Jpxn − Jpx1))) , n ∈ N. (3.4.15)

converges strongly to some x∗ ∈ (∂f)−1 0.
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Proof. f is a bounded quasiconvex function, therefore by Lemma 2.3.2, ∂f is

a bounded quasimonotone operator. Take ∂f to be A in Lemma 3.4.6. Similar

analysis to the proof of Theorem 3.4.1 gives the desire result.

Conclusion 3.4.8

Most of the existing results on the approximation of solutions of monotone-type

mappings have been proved in Hilbert spaces or they are for accretive-type mappings

in Banach spaces. Unfortunately, as has been rightly observed, many and probably

most mathematical objects and models do not naturally live in Hilbert spaces. We

have considered the class of generalized Φ-strongly monotone mappings in Banach

spaces, the class of monotone-type mappings such that if a solution of the equation

0 ∈ Ax exists, it is necessarily unique. Therefore, our results very important results

our techniques of proofs are of independent interest.
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CHAPTER 4

Viscosity implicit iterative algorithms and applications

1 In this chapter, we explore the implicit iterative algorithms for approximating the

fixed points of nonexpansive mappings in uniformly smooth Banach spaces. Numer-

ical and analystical comparisons are made for various implicit iterative algorithms.

4.1 The implicit midpoint rule of nonexpansive map-

pings and applications in uniformly smooth Ba-

nach spaces

4.1.1 Background

In 1967, Halpern [45] considered an iterative sequence for a nonexpansive map-

ping T in a Hilbert space. He showed that the conditions (A1) lim
n→∞

αn = 0 and

(A2)
∞∑
n=1

αn = ∞ are essential for the convergence to a fixed point of T of the se-

1The results of this section are contents of the following paper

- M.O. Aibinu, P. Pillay, J.O. Olaleru and O.T. Mewomo [6]
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quence {xn} defined by

x1 ∈ K, xn+1 = αnu+ (1− αn)Txn, n ∈ N, (4.1.1)

where u ∈ K is a given point and αn ∈ [0, 1]. Halpern [45] iteration attracted

the attention of many researchers. In 1977, Lions [70] improved on the result

of Halpern and showed that for {αn} satisfying the conditions (A1), (A2) and

(A3) lim
n→∞

|αn − αn−1|/α2
n = 0, {xn} converges strongly to a fixed point of T in a

Hilbert space. In 1992, still in Hilbert spaces and for {αn} satisfying the conditions

(A1), (A2) and (A4)
∞∑
n=1

|αn − αn−1| < +∞, Wittmann [62] proved a strong conver-

gence theorem for the sequence (4.1.1) to a fixed point of T. By considering various

conditions either on {αn} or on the space, there are also several theorems for the

strong convergence of Halpern’s iteration to a fixed point of T in Banach spaces (see,

e.g., [70], [62], [86], [92], [95], [68]). Modifications of Halpern-type iteration have also

been studied by many authors [45]. In 2000, Moudafi [76] introduced the concept

of a viscosity approximation method for selecting a particular fixed point of a given

nonexpansive mapping. He considered an explicit viscosity method for nonexpansive

mappings and defined the iterative sequence {xn} by (1.1.1). He showed that the

sequence {xn} defined by (1.1.1) converges strongly to a fixed point of T with the

conditions that (A1), (A2) and (A5) lim
n→∞

|αn− αn−1|/αnαn−1 = 0 are satisfied. One

of the essential numerical methods for solving ordinary differential and differential

algebraic equations is the implicit midpoint rule ( [15], [16], [51] and [93]). In 2014,

Alghamdi et al. [9] presented a semi-implicit midpoint iteration for nonexpansive

mappings in a Hilbert space. They proved a weak convergence theorem for the se-

quence {xn} defined by (1.1.10). Furthermore, in 2015, Xu et al. [104] defined the

viscosity implicit midpoint sequence for a nonexpansive mapping T on K by (1.1.5).

Precisely, they proved the following strong convergence theorem.

Theorem 4.1.1 [104] Let K be a nonempty closed convex subset of a Hilbert space

H and T : K → K be a nonexpansive mapping such that F (T ) 6= ∅. Suppose

f : K → K is a contraction with coefficient α ∈ [0, 1) and assume that the sequence

{αn} satisfies the conditions (A1), (A2) and either (A4) or lim
n→∞

αn
αn−1

= 1. Then the

sequence {xn} generated by (1.1.5) converges in norm to a fixed point p of T, which
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is also the unique solution of the variational inequality (1.1.2). That is, p is the

unique fixed point of the contraction PF (T )f, in other words, PF (T )f(p) = p.

Still in a Hilbert space, in 2015, Yao et al. [107] introduced the iterative sequence

(1.1.6). They imposed suitable conditions on the parameters and obtained that the

sequence {xn} generated by (1.1.6) converges strongly to p = PF (T )f(p). In 2017,

Luo et al. [72] extends the result of Xu et al. [104] to a uniformly smooth Banach

space. Few among several other works on modified Halpern-type iteration include

Qin et al. [85], Wang et al. [98] and the references contained in them. Also, some

authors studied modified Halpern-type sequences for various classes of mappings

(see e.g., Aibinu and Mewomo [5], [3], Chidume and Mutangandura [34], Hu and

Wang [49] and Nandal and Chugh [78]). The following questions are of interest to

us:

Problem 4.1.2 Comparing the three implicit iterative schemes (1.1.5), (1.1.6) and

(1.1.10) that are respectively given by

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ∈ N,

xn+1 = αnf(xn) + βnxn + γnT

(
xn + xn+1

2

)
, n ∈ N,

and

xn+1 = (1− αn)xn + αnT

(
xn + xn+1

2

)
, n ∈ N,

which one has the highest rate of convergence?

Problem 4.1.3 The main results of Yao et al. [107] which are in Hilbert spaces,

can we establish them in general Banach spaces?

The purpose of this paper is to study the implicit midpoint procedure (1.1.6) in the

framework of Banach spaces for approximating a fixed point of nonexpansive map-

pings. We prove a strong convergence theorem in a uniformly smooth Banach space

for the sequence {xn} defined by (1.1.6) and illustrate with a numerical example

that it is the most efficient among the three implicit midpoint procedures (1.1.5),

(1.1.6) and (1.1.10). Moreover, we obtain the results of Xu et al. [104], Luo et al.

[72] and Yao et al. [107] as corollaries.
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4.1.2 Main results

Let K be a nonempty closed convex subset of a real Banach space E, T : K → K

a nonexpansive mapping with F (T ) 6= ∅ and f : K → K a c-contraction. Suppose

{αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {γn} ⊂ (0, 1) are real sequences satisfying αn +

βn + γn = 1 ∀ n ∈ N. For arbitrary x1 ∈ K, we consider the iterative scheme for the

sequence {xn} defined by (1.1.6).

Remark 4.1.4 It is known that the sequence {xn} is well defined [107].

We first give and prove a lemma which is useful in establishing our main result.

Lemma 4.1.5 Let E be a uniformly smooth Banach space and K be a nonempty

closed convex subset of E. Let T : K → K be a nonexpansive mapping with F (T ) 6= ∅

and suppose f : K → K is a c-contraction. For an arbitrary x1 ∈ K, define the

iterative sequence {xn} by (1.1.6). Then the sequence {xn} is bounded.

Proof. We show that the sequence {xn} is bounded.

For p ∈ F (T ),

‖xn+1 − p‖ = ||αn (f(xn)− f(p)) + αn (f(p)− p)

+βn(xn − p) + γn

(
T (
xn + xn+1

2
)− p

)
||

≤ αn||f(xn)− f(p)||+ αn||f(p)− p||

+βn||xn − p||+ γn||T (
xn + xn+1

2
)− p||

≤ αn||f(xn)− f(p)||+ αn||f(p)− p||

+βn||xn − p||+ γn||
xn + xn+1

2
− p||

≤ cαn||xn − p||+ αn||f(p)− p||+ βn||xn − p||

+
γn
2
||xn − p||+

γn
2
||xn+1 − p||.
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We then have that(
1− γn

2

)
||xn+1 − p|| ≤

(
cαn + βn +

γn
2

)
||xn − p||+ αn||f(p)− p||

2− γn
2
||xn+1 − p|| ≤

2cαn + 2βn + γn
2

||xn − p||+ αn||f(p)− p||

1 + αn + βn
2

||xn+1 − p|| ≤
2cαn + 2βn + 1− (αn + βn)

2
||xn − p||

+αn||f(p)− p||
1 + αn + βn

2
||xn+1 − p|| ≤

1 + βn + αn(2c− 1)

2
||xn − p||+ αn||f(p)− p||.

Therefore,

||xn+1 − p|| ≤
1 + βn + αn(2c− 1)

1 + αn + βn
||xn − p||+

2αn
1 + αn + βn

||f(p)− p||

=

(
1− 2αn(1− c)

1 + αn + βn

)
||xn − p||+

2αn(1− c)
1 + αn + βn

1

1− c
||f(p)− p||

≤ max

{
||xn − p||,

1

1− c
||f(p)− p||

}
...

≤ max

{
||x1 − p||,

1

1− c
||f(p)− p||

}
.

This implies that the sequence {xn} is bounded.

Also, for p ∈ F (T ),

||T (
xn + xn+1

2
)|| = ||T (

xn + xn+1

2
)− p+ p||

≤ ||T (
xn + xn+1

2
)− Tp||+ ||p||

≤ ||xn + xn+1

2
− p||+ ||p||

≤ 1

2
(||xn − p||+ ||xn+1 − p||) + ||p||

≤ max

{
||x1 − p||,

1

1− c
||f(p)− p||

}
+ ||p||.

Thus
{
T
(
xn+xn+1

2

)}
is bounded.

Moreover, we show that {f(xn)} is bounded. For p ∈ F (T ),

||f(xn)|| = ||f(xn)− f(p) + f(p)||

≤ ||f(xn)− f(p)||+ ||f(p)||

≤ c||xn − p||+ ||f(p)||

≤ cmax

{
||x1 − p||,

1

1− c
||f(p)− p||

}
+ ||f(p)||.
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Theorem 4.1.6 Let E be a uniformly smooth Banach space and K be a nonempty

closed convex subset of E. Let T : K → K be a nonexpansive mapping with F (T ) 6= ∅

and f : K → K be a c-contraction. Suppose {αn} satisfies

(A1) lim
n→∞

αn = 0;

(A2)
∞∑
n=1

αn =∞

and {βn} satisfies

(A6) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1 and

(A7) lim
n→∞

|βn+1 − βn| = 0.

For an arbitrary x1 ∈ K, define the iterative sequence {xn} by (1.1.6). Then as

n→∞, the sequence {xn} converges in norm to a fixed point q of T, where q is the

unique solution in F (T ) to the variational inequality:

〈(I − f)q, J(x− q)〉 ≥ 0 ∀ x ∈ F (T ).

Proof. Step 1: The iterative process (1.1.6) is

xn+1 = αnf(xn) + βnxn + γnT (
xn + xn+1

2
)

= βnxn + (1− βn)
αnf(xn) + γnT (xn+xn+1

2
)

1− βn
= βnxn + (1− βn)yn, (4.1.2)

where yn = αn
1−βnf(xn) + γn

1−βnT (xn+xn+1

2
), n ∈ N.

From condition (A6), we have that

0 < βn ≤ β < 1, for some β ∈ R+,

where R+ denotes the set of positive real numbers. Therefore,

1− βn ≥ 1− β. (4.1.3)

Now f is a c-contraction while {xn} and
{
T (xn+xn+1

2
)
}
are bounded sequences. These

guarantee that {yn} is bounded.
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Step 2: We show that lim
n→∞

||yn − xn|| = 0.

We need to first show that lim sup
n→∞

(||yn+1−yn||−||xn+1−xn||) ≤ 0. Observe that

yn+1 − yn =
αn+1

1− βn+1

f(xn+1) +
γn+1

1− βn+1

T (
xn+1 + xn+2

2
)

−
(

αn
1− βn

f(xn) +
γn

1− βn
T (
xn + xn+1

2
)

)
=

αn+1

1− βn+1

(f(xn+1)− f(xn)) +

(
αn+1

1− βn+1

− αn
1− βn

)
f(xn)

+
γn+1

1− βn+1

(
T (
xn+1 + xn+2

2
)− T (

xn + xn+1

2
)

)
+

(
γn+1

1− βn+1

− γn
1− βn

)
T (
xn + xn+1

2
)

=
αn+1

1− βn+1

(f(xn+1)− f(xn)) +

(
αn+1

1− βn+1

− αn
1− βn

)
f(xn)

+
γn+1

1− βn+1

(
T (
xn+1 + xn+2

2
)− T (

xn + xn+1

2
)

)
+

(
1− αn+1 − βn+1

1− βn+1

− 1− αn − βn
1− βn

)
T (
xn + xn+1

2
)

=
αn+1

1− βn+1

(f(xn+1)− f(xn)) +

(
αn+1

1− βn+1

− αn
1− βn

)
f(xn)

+
γn+1

1− βn+1

(
T (
xn+1 + xn+2

2
)− T (

xn + xn+1

2
)

)
+

(
αn

1− βn
− αn+1

1− βn+1

)
T (
xn + xn+1

2
)

=
αn+1

1− βn+1

(f(xn+1)− f(xn)) +

(
αn

1− βn
− αn+1

1− βn+1

)(
T (
xn + xn+1

2
)− f(xn)

)
+

1− αn+1 − βn+1

1− βn+1

(
T (
xn+1 + xn+2

2
)− T (

xn + xn+1

2
)

)
.

Therefore,

||yn+1 − yn|| ≤
cαn+1

1− βn+1

||xn+1 − xn||+
∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣ ||T (
xn + xn+1

2
)− f(xn)||

+
1− αn+1 − βn+1

2(1− βn+1)
(||xn+2 − xn+1||+ ||xn+1 − xn||) . (4.1.4)

We evaluate ||xn+2 − xn+1||.
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||xn+2 − xn+1|| = ‖αn+1f(xn+1) + βn+1xn+1 + γn+1T (
xn+1 + xn+2

2
)

−
(
αnf(xn) + βnxn + γnT (

xn + xn+1

2
)

)
‖

= ||αn+1 (f(xn+1)− f(xn)) + (αn+1 − αn)f(xn)

+βn+1(xn+1 − xn) + (βn+1 − βn)xn

+γn+1(T (
xn+1 + xn+2

2
)− T (

xn + xn+1

2
))

+(γn+1 − γn)T (
xn + xn+1

2
)||

= ||αn+1 (f(xn+1)− f(xn)) + (αn+1 − αn)f(xn)

+βn+1(xn+1 − xn) + (βn+1 − βn)xn

+((αn − αn+1) + (βn − βn+1))T (
xn + xn+1

2
)

+(1− αn+1 − βn+1)(T (
xn+1 + xn+2

2
)− T (

xn + xn+1

2
))||

= ||αn+1 (f(xn+1)− f(xn)) + (αn − αn+1)

×
(
T (
xn + xn+1

2
)− f(xn)

)
+ βn+1(xn+1 − xn)

+(βn+1 − βn)

(
xn − T (

xn + xn+1

2
)

)
+(1− αn+1 − βn+1)(T (

xn+1 + xn+2

2
)− T (

xn + xn+1

2
))||

≤ cαn+1||xn+1 − xn||+ |αn − αn+1|

×
(
||T (

xn + xn+1

2
)||+ ||f(xn)||

)
+βn+1||xn+1 − xn||+ |βn+1 − βn| ‖xn − T (

xn + xn+1

2
)‖

+
1− αn+1 − βn+1

2
(||xn+2 − xn+1||+ ||xn+1 − xn||) .

Therefore, we have that(
1− 1− αn+1 − βn+1

2

)
||xn+2 − xn+1||

≤
(
cαn+1 + βn+1 +

1− αn+1 − βn+1

2

)
||xn+1 − xn||

+|αn − αn+1|
(
||T (

xn + xn+1

2
)||+ ||f(xn)||

)
+|βn+1 − βn| ||xn − T (

xn + xn+1

2
)||.
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Then,

1 + αn+1 + βn+1

2
||xn+2 − xn+1|| ≤

1 + βn+1 + 2cαn+1 − αn+1

2
||xn+1 − xn||

+|αn − αn+1|
(
||T (

xn + xn+1

2
)||+ ||f(xn)||

)
+|βn+1 − βn| ||xn − T (

xn + xn+1

2
)||.

Let M1 = sup
{
||T (xn+xn+1

2
)||+ ||f(xn)||

}
, M2 = sup

{
||xn − T (xn+xn+1

2
)||
}

and

M = max {M1, M2} . It follows that

||xn+2 − xn+1|| ≤
1 + βn+1 + 2cαn+1 − αn+1

1 + αn+1 + βn+1

||xn+1 − xn||

+
2|βn+1 − βn|

1 + αn+1 + βn+1

||xn − T (
xn + xn+1

2
)||

+
2|αn − αn+1|

1 + αn+1 + βn+1

(
||T (

xn + xn+1

2
)||+ ||f(xn)||

)
≤ 1 + βn+1 + 2cαn+1 − αn+1

1 + αn+1 + βn+1

||xn+1 − xn||+
2M

1 + αn+1 + βn+1

× (|αn − αn+1|+ |βn+1 − βn|) . (4.1.5)

By substituting (4.1.5) into (4.1.4), we get

||yn+1 − yn|| ≤ [
2cαn+1 + 1− αn+1 − βn+1

2(1− βn+1)
+

1− αn+1 − βn+1

2(1− βn+1)

×1 + βn+1 + 2cαn+1 − αn+1

1 + αn+1 + βn+1

]||xn+1 − xn||

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M +
1− αn+1 − βn+1

2(1− βn+1)

×
(

2M

1 + αn+1 + βn+1

(|αn − αn+1|+ |βn+1 − βn|)
)

= [
(1 + αn+1 + βn+1)(2cαn+1 + 1− αn+1 − βn+1)

2(1− βn+1)(1 + αn+1 + βn+1)

+
(1− αn+1 − βn+1)(1 + βn+1 + 2cαn+1 − αn+1)

2(1− βn+1)(1 + αn+1 + βn+1)
]||xn+1 − xn||

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M
+

1− αn+1 − βn+1

(1 + αn+1 + βn+1)(1− βn+1)
(|αn − αn+1|+ |βn+1 − βn|)M
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= [
(1− αn+1 − βn+1)(1 + αn+1 + βn+1) + 2cαn+1(1 + αn+1 + βn+1)

2(1− βn+1)(1 + αn+1 + βn+1)

+
(1− αn+1 − βn+1)(1 + βn+1 + 2cαn+1 − αn+1)

2(1− βn+1)(1 + αn+1 + βn+1)
]||xn+1 − xn||

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M
+

1− αn+1 − βn+1

(1 + αn+1 + βn+1)(1− βn+1)
(|αn − αn+1|+ |βn+1 − βn|)M

= [
(1− αn+1 − βn+1)(2 + 2βn+1 + 2cαn+1)

2(1− βn+1)(1 + αn+1 + βn+1)

+
2cαn+1(1 + αn+1 + βn+1)

2(1− βn+1)(1 + αn+1 + βn+1)
]||xn+1 − xn||

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M
+

1− αn+1 − βn+1

(1 + αn+1 + βn+1)(1− βn+1)
(|αn − αn+1|+ |βn+1 − βn|)M

= [
2cαn+1(1− αn+1 − βn+1) + 2(1 + βn+1)(1− αn+1 − βn+1)

2(1− βn+1)(1 + αn+1 + βn+1)

+
2cαn+1(1 + αn+1 + βn+1)

2(1− βn+1)(1 + αn+1 + βn+1)
]||xn+1 − xn||

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M
+

1− αn+1 − βn+1

(1 + αn+1 + βn+1)(1− βn+1)
(|αn − αn+1|+ |βn+1 − βn|)M

=
2cαn+1 + (1 + βn+1)(1− αn+1 − βn+1)

(1− βn+1)(1 + αn+1 + βn+1)
||xn+1 − xn||

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M
+

1− αn+1 − βn+1

(1 + αn+1 + βn+1)(1− βn+1)
(|αn − αn+1|+ |βn+1 − βn|)M

=

(
1− 2αn+1(1− c)

(1− βn+1)(1 + αn+1 + βn+1)

)
||xn+1 − xn||

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M +
1− αn+1 − βn+1

1 + αn+1 + βn+1

(|αn − αn+1|+ |βn+1 − βn|)M

<

(
1− 2αn+1(1− c)

1− βn+1

)
||xn+1 − xn||+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣M
+

1− αn+1 − βn+1

(1 + αn+1 + βn+1)(1− βn+1)
(|αn − αn+1|+ |βn+1 − βn|)M.

Thus,

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0.
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Hence, by Lemma 2.10.7, we have

lim
n→∞

||yn − xn|| = 0.

Step 3: We show that ||xn − Txn|| → 0 as n→∞.

We observe from (4.1.2) that

xn+1 − xn = βnxn + (1− βn)yn − xn

= (1− βn)yn − (1− βn)xn

= (1− βn)(yn − xn).

Therefore

||xn+1 − xn|| ≤ (1− βn)||yn − xn|| → 0 as n→∞. (4.1.6)

Also, from (1.1.6), we obtain that

||xn − Txn|| ≤ ||xn − xn+1||+ ||xn+1 − Txn||

= ||xn − xn+1||+ αn||f(xn)− Txn||+ βn||xn − Txn||

+γn||T (
xn + xn+1

2
)− Txn||

= ||xn − xn+1||+ αn||f(xn)− Txn||+ βn||xn − Txn||

+(1− αn − βn)||xn + xn+1

2
− xn||

= ||xn − xn+1||+ αn||f(xn)− Txn||+ βn||xn − Txn||

+
(1− αn − βn)

2
||xn − xn+1||.

By (4.1.3), we obtain that

||xn − Txn|| ≤
3− αn − βn
2(1− βn)

||xn − xn+1||+
αn

1− βn
||f(xn)− Txn||

≤ 3− αn − βn
2(1− β)

||xn − xn+1||

+
αn

1− β
||f(xn)− Txn|| → 0 as n→∞. (4.1.7)

Step 4: For t ∈ (0, 1) and f ∈ ΠK , define the sequence {xt} by xt = tf(xt) +

(1− t)Txt. By Lemma 2.9.5, as t→ 0, xt strongly converges to a fixed point q of T,

which is also a solution to the variational inequality

〈(I − f)q, J(x− q)〉 ≥ 0, x ∈ F (T ).
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Using Lemma 2.9.6 and since ||xn+1 − xn|| → 0 and ||xn − Txn|| → 0 as n→ 0 (by

(4.1.6) and (4.1.7) respectively), we get

lim sup
n→∞

〈f(q)− q, J(xn+1 − q)〉 ≤ 0. (4.1.8)

Step 5: Lastly, we prove that xn → q.

||xn+1 − q||2 = αn 〈f(xn)− f(q), J(xn+1 − q)〉

+αn 〈f(q)− q, J(xn+1 − q)〉+ βn 〈xn − q, J(xn+1 − q)〉

+(1− αn − βn)

〈
T (
xn + xn+1

2
)− q, J(xn+1 − q

〉
≤ cαn||xn − q|| ||xn+1 − q||+ αn 〈f(q)− q, J(xn+1 − q)〉

+βn||xn − q|| ||xn+1 − q||

+
1− αn − βn

2
(||xn − q||+ ||xn+1 − q||)||xn+1 − q||

= cαn||xn − q|| ||xn+1 − q||+ αn 〈f(q)− q, J(xn+1 − q)〉

+βn||xn − q|| ||xn+1 − q||

+
1− αn − βn

2
(||xn − q|| ||xn+1 − p||+ ||xn+1 − q||2)

=

(
cαn + βn +

1− αn − βn
2

)
||xn − q|| ||xn+1 − q||

+
1− αn − βn

2
||xn+1 − q||2 + αn 〈f(q)− q, J(xn+1 − q)〉

≤ 1 + βn − (1− 2c)αn
4

(||xn − q||2 + ||xn+1 − q||2)

+
1− αn − βn

2
||xn+1 − q||2 + αn 〈f(p)− q, J(xn+1 − q)〉

≤ 1 + βn − (1− 2c)αn
4

||xn − q||2 +
3− βn − (3− 2c)αn

4
||xn+1 − q||2

+αn 〈f(q)− q, J(xn+1 − q)〉 .

Consequently, we have

||xn+1 − q||2 ≤
1 + βn − (1− 2c)αn
1 + βn + αn(3− 2c)

||xn − q||2

+
4αn

1 + βn + αn(3− 2c)
〈f(q)− q, J(xn+1 − q)〉

=

(
1− 4(1− c)αn

1 + βn + αn(3− 2c)

)
||xn − q||2

+
4αn

1 + βn + αn(3− 2c)
〈f(q)− q, J(xn+1 − q)〉 . (4.1.9)
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By applying Lemma 2.10.6 with γn = 0 to (4.1.8) and (4.1.9), we deduce that xn → q

as n→∞.

Corollary 4.1.7 [107] Let K be a nonempty closed convex subset of a Hilbert space

H. Let T : K → K be a nonexpansive mapping with F (T ) 6= ∅. Suppose f : K → K

be a c-contraction. For given x0 ∈ K arbitrarily, let the sequence {xn} be generated

by

xn+1 = αnf(xn) + βnxn + γnT

(
xn + xn+1

2

)
, n ≥ 0, (4.1.10)

where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {γn} ⊂ (0, 1) are three sequences satisfying

αn + βn + γn = 1 for all n ≥ 0. Assume that {αn} satisfies (A1) and (A2) and {βn}

satisfies

(A6) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1 and

(A8) lim
n→∞

(βn+1 − βn) = 0.

Then the sequence {xn} generated by (4.1.10) converges strongly to p = PF (T )f(p).

4.1.3 Application to accretive mappings

Let E be a real Banach space and K be a nonempty closed convex subset of E.

The set of zero of an accretive mapping A is denoted by A−1(0), that is A−1(0) =

{z ∈ D(A) : A(z) = 0} . We denote the resolvent of A by JAr = (I + rA)−1 for each

r > 0 ([7], [87]). It is known that if A is m-accretive then JAr : E → D(A) is

nonexpansive and F (JAr ) = A−1(0) for each r > 0. Consequently, we can deduce the

result below from Theorem 4.1.6.

Corollary 4.1.8 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K be a c-contraction. Let A : K → K be an accretive

mapping such that R(I + rA) = E for all r > 0 with A−1(0) 6= ∅. Suppose {αn}

satisfies

(A1) lim
n→∞

αn = 0;

(A2)
∞∑
n=1

αn =∞
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and {βn} satisfies

(A6) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1 and

(A7) lim
n→∞

|βn+1 − βn| = 0.

For an arbitrary x1 ∈ K, define the iterative sequence {xn} by

xn+1 = αnf(xn) + βnxn + γnJ
A
r

(
xn + xn+1

2

)
, n ∈ N. (4.1.11)

where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {γn} ⊂ (0, 1) are real sequences satisfying

αn + βn + γn = 1 ∀ n ∈ N. Then as n → ∞, the sequence {xn} converges in norm

to p ∈ A−1(0), where p is the unique solution to the variational inequality:

〈(I − f)p, J(x− p)〉 ≥ 0 ∀ x ∈ A−1(0).

4.1.4 Application to variational inequality problems

Let H be a Hilbert space with inner product 〈., .〉 . Let K be a nonempty closed

convex subset of H and A : K → H be a nonlinear mapping. The variational

inequality problem is finding x∗ ∈ K such that

〈Ax∗, x− x∗〉 ≥ 0 for all x ∈ K. (4.1.12)

We denote the set of all solutions of the variational inequality (4.1.12) by V I(K,A).

We shall consider the system of general variational inequalities in Banach spaces re-

cently introduced by Katchang and Kumam [63]. Given two operators A1, A2 : K →

E, where E is a real Banach space, where K is a nonempty closed convex subset E.

The authors considered the problem of finding (x∗, y∗) ∈ K ×K such that 〈α1A1y
∗ + x∗ − y∗, j(x− x∗)〉 ≥ 0, ∀ x ∈ K,

〈α2A2y
∗ + x∗ − y∗, j(x− x∗)〉 ≥ 0, ∀ x ∈ K,

(4.1.13)

where α1 and α2 are two positive real numbers and j(x − x∗) ∈ J(x − x∗). Recall

that a nonlinear mapping A : K → E is called µ-inverse strongly accretive if there

exist j(x− y) ∈ J(x− y) and µ > 0 such that

〈Ax− Ay, j(x− y)〉 ≥ µ‖Ax− Ay‖2, ∀ x, y ∈ K.

We need the two Lemmas below to establish our next result.

69



Lemma 4.1.9 [59]. Let K be a nonempty closed convex subset of a real Banach

space E and let α1, α2 > 0 and A1, A2 : K → E be two mappings. Let G : K → K

be defined by

G(x) = SK [SK(x− α2A2x)− α1A1SK(x− α2A2x)], ∀ x ∈ K,

where SK is a sunny nonexpansive retraction from E onto K. If I − α1A1 and

I − α2A2 are nonexpansive mappings, then G is nonexpansive.

Lemma 4.1.10 [63] Let K be a nonempty closed convex subset of a real smooth

Banach space E. Let SK be a sunny nonexpansive retraction from E onto K. Let

A1, A2 : K → E be two nonlinear mappings. For given x∗, y∗ ∈ K, (x∗, y∗) is

a solution of problem (4.1.13) if and only if x∗ = SK(y∗ − α1A1y
∗) where y∗ =

SK(x∗ − α2A2x
∗).

Corollary 4.1.11 Let K be a nonempty closed convex subset of a 2-uniformly

smooth Banach space E and f : K → K be a c-contraction. Let A1, A2 : K → E be

two possibly nonlinear mappings and G be a mapping defined in Lemma 4.1.9 with

F (G) 6= ∅. Let SK be a sunny nonexpansive retraction from E onto K. Suppose {αn}

satisfies

(A1) lim
n→∞

αn = 0;

(A2)
∞∑
n=1

αn =∞

and {βn} satisfies

(A6) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1 and

(A7) lim
n→∞

|βn+1 − βn| = 0.

For an arbitrary x1 ∈ K, define the iterative sequence {xn} by

xn+1 = αnf(xn) + βnxn + γnyn,

yn = SK(un − α1A1un),

un = SK(vn − α2A1vn),

vn = xn+xn+1

2
,

(4.1.14)
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where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {γn} ⊂ (0, 1) are real sequences satisfying

αn + βn + γn = 1 ∀ n ∈ N. Then as n → ∞, the sequence {xn} converges in norm

to a fixed point p of G, where p is the unique solution to the variational inequality:

〈(I − f)p, J(x− p)〉 ≥ 0 ∀ x ∈ F (G).

Remark 4.1.12 Nonlinear mappings that satisfy Theorem 4.1.11 are readily avail-

able. Let L be the 2-uniformly smooth constant of a 2-uniformly smooth Banach

space and A1, A2 : K → E be µ1-inverse strongly accretive and µ2-inverse strongly

accretive, respectively. If 0 < α1 <
µ1
L2 and 0 < α2 <

µ2
L2 , then I−α1A1 and I−α2A2

are nonexpansive [59].

4.1.5 Numerical examples

Example 4.1.13 Let R be the real line with the Euclidean norm. Let f, T : R→ R

be maps defined by f(x) = 1
4
x and T (x) = 2 − x for all x ∈ R, respectively. It is

clear that T is a nonexpansive mapping and F (T ) = {1} . Let {zn} , {yn} and {xn}

be the sequences generated by (1.1.10), (1.1.5) and (1.1.6) respectively. We find

that {zn} , {yn} and {xn} strongly converge to 1 (by [76], Theorem 4.1.1 of [104]

and Theorem 4.1.6, respectively). Take αn = 2
4n+5

, n ∈ N in (1.1.10) and (1.1.5).

Notice that the parameters in (1.1.6) are arbitrary sequences satisfying the conditions

stated in Theorem 4.1.6. Therefore, the sequence {αn} in (1.1.6) is not necessarily

the same as the one in (1.1.10) and (1.1.5). Thus, for the iterative scheme defined

by (1.1.6), we choose αn = 1
4n+5

, βn = n+4
4n+5

and γn = 3n
4n+5

for all n ∈ N. One can

rewrite (1.1.10), (1.1.5) and (1.1.6) as follow:

zn+1 =
2n+ 1

2n+ 3
zn +

2

2n+ 3
, (4.1.15)

yn+1 = − 4n+ 2

12n+ 13
yn +

4(4n+ 3)

12n+ 13
, (4.1.16)

xn+1 =
17− 2n

2(11n+ 10)
xn +

12n

11n+ 10
. (4.1.17)

Using Matlab 2015a and by taking z1 = y1 = x1 = 0, the results for (4.1.15), (4.1.16)

and (4.1.17) are displayed in Table 4.1.1 and Figure 4.1.1. The graphs show that

the three algorithms converge to 1 with the iterative algorithm (1.1.6) having the
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Figure 4.1.1: Comparison of the rates of convergence for the iterative schemes

(1.1.10), (1.1.5) and (1.1.6) with different values for αn.

highest rate of convergence for the viscosity implicit midpoint rule. Therefore, it is

the most efficient among the three algorithms.

Remark 4.1.14 It is worth of mentioning that the efficiency of (1.1.6) depends on

the choice of suitable control parameters.

The next example displays the result where αn is the same for all the three

iterative schemes.

Example 4.1.15 Let f and T be as defined in Example 4.1.13. Then for the iter-

ative scheme defined by (1.1.6), choose αn = 2
4n+5

, βn = n+1
4n+5

and γn = 3n+2
4n+5

for all

n ∈ N. The equation (4.1.17) then becomes

xn+1 =
1− n

2(11n+ 12)
xn +

4(3n+ 2)

11n+ 12
. (4.1.18)

The results are presented in Figure 4.1.2 and Table 4.1.2 with the algorithm (1.1.5)

having the highest rate of convergence.

The next example compares the convergence rate where where αn is greater for

(1.1.6).
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Table 4.1.1: Comparison of the rates of convergence for the iterative schemes

(1.1.10), (1.1.5) and (1.1.6) with different values for αn.

iteration zn yn xn

(n) e-01 e-01 e-01

1 0 0 0

2 4.000000 11.20000 5.714286

3 5.714286 8.864865 8.660714

4 6.666667 9.712079 9.479859

5 7.272727 9.593157 9.678877

6 7.692308 9.711651 9.751940

7 8.000000 9.735260 9.794472

8 8.235294 9.772600 9.824043

9 8.421053 9.795703 9.846041

10 8.571429 9.816226 9.863092

11 8.695652 9.832470 9.876711

12 8.800000 9.846251 9.887849

13 8.888889 9.857882 9.897130

14 8.965517 9.867896 9.904986

15 9.032258 9.876586 9.911723

16 9.090909 9.884206 9.917565

17 9.142857 9.890939 9.922679

18 9.189189 9.896932 9.927194

19 9.230769 9.902301 9.931210

20 9.268293 9.907139 9.934805
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Table 4.1.2: Comparison of the rates of convergence for the iterative schemes

(1.1.10), (1.1.5) and (1.1.6) with same value for αn.

iteration zn yn xn

(n) e-01 e-01 e-01

1 0 0 0

2 4.000000 11.20000 8.695652

3 5.714286 8.864865 9.156010

4 6.666667 9.712079 9.370844

5 7.272727 9.593157 9.497991

6 7.692308 9.711651 9.582210

7 8.000000 9.735260 9.642166

8 8.235294 9.772600 9.687045

9 8.421053 9.795703 9.721907

10 8.571429 9.816226 9.749772

11 8.695652 9.832470 9.772558

12 8.800000 9.846251 9.791537

13 8.888889 9.857882 9.807591

14 8.965517 9.867896 9.821348

15 9.032258 9.876586 9.833268

16 9.090909 9.884206 9.843696

17 9.142857 9.890939 9.852897

18 9.189189 9.896932 9.861074

19 9.230769 9.902301 9.868389

20 9.268293 9.907139 9.874973
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Figure 4.1.2: Comparison of the rates of convergence for the iterative schemes

(1.1.10), (1.1.5) and (1.1.6) with same value for αn.

Example 4.1.16 Let f and T be as defined in Example 4.1.13. Then for the iter-

ative scheme defined by (1.1.6), choose αn = 4
4n+5

, βn = n+1
4n+5

and γn = 3n
4n+5

for all

n ∈ N. The equation (4.1.17) then becomes

xn+1 =
4− n

2(11n+ 10)
xn +

12n

11n+ 10
. (4.1.19)

The results are presented in Figure 4.1.3 and Table 4.1.3 with the algorithm (1.1.5)

having the highest rate of convergence.

Example 4.1.17 Let E = R2 with the usual norm and f, T : R2 → R2 be defined

by f(x) = 1
2
x and T (x) = 0 for all x = (x1, x2) ∈ R2 respectively. Take αn =

4
4n+5

, βn = 1
4
− 1

4n+5
and γn = 12n+3

4(4n+5)
for all n ∈ N. Observe that αn, βn and γn

satisfy the conditions of Theorem 4.1.6 and T is nonexpansive. Indeed, for x, y ∈ R2

‖Tx− Ty‖ = 0 ≤ ‖x− y‖.

Also, it is obvious that F (T ) = {0} . Therefore, {xn} strongly converges to 0. A

simple computation shows that (1.1.6) is equivalent to:

xn+1 =
4n+ 9

4(4n+ 5)
xn. (4.1.20)
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Figure 4.1.3: Comparison of the rates of convergence for the iterative schemes

(1.1.10), (1.1.5) and (1.1.6) where αn is greater for (1.1.6)

Figure 4.1.4: Two dimensional figure for (4.1.20).
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Table 4.1.3: Comparison of the rates of convergence for the iterative schemes

(1.1.10), (1.1.5) and (1.1.6) where αn is greater for (1.1.6)

iteration zn yn xn

(n) e-01 e-01 e-01

1 0 0 0

2 4.000000 11.20000 5.714286

3 5.714286 8.864865 7.857143

4 6.666667 9.712079 8.554817

5 7.272727 9.593157 8.888889

6 7.692308 9.711651 9.094017

7 8.000000 9.735260 9.234368

8 8.235294 9.772600 9.336746

9 8.421053 9.795703 9.414827

10 8.571429 9.816226 9.476384

11 8.695652 9.832470 9.526181

12 8.800000 9.846251 9.567303

13 8.888889 9.857882 9.601842

14 8.965517 9.867896 9.631264

15 9.032258 9.876586 9.656630

16 9.090909 9.884206 9.678726

17 9.142857 9.890939 9.698147

18 9.189189 9.896932 9.715351

19 9.230769 9.902301 9.730698

20 9.268293 9.907139 9.744473
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Table 4.1.4: Values of iteration for (4.1.20).

iteration (n) x1(n) x2(n)

1 1.0 1.2

2 3.611111e-01 4.333333e-01

3 1.180556e-01 1.416667e-01

4 3.645833e-02 4.375000e-02

5 1.085069e-02 1.302083e-02

6 3.146701e-03 3.776042e-03

7 8.951823e-04 1.074219e-03

8 2.509223e-04 3.011068e-04

9 6.951226e-05 8.341471e-05

10 1.907349e-05 2.288818e-05

Choosing the initial point for (4.1.20) to be (1.0, 1.2), Table 4.1.4 and Figure 4.1.4

show the results from the Matlab 2015a.

Conclusion 4.1.18 We have considered the implicit midpoint rule of nonexpansive

mappings, using the viscosity approximation method in the framework of Banach

spaces. Our method of proof is of independent interest and our result extends the

main result of Yao et al. [107] to uniformly Banach spaces. The numerical examples

show the application of our work and the efficiency of the algorithm over the existing

ones. Moreover, we obtained the results of Xu et al. [104], Yao et al. [107] and Luo

et al. [72] as corollaries. It is observed that the iterative scheme (1.1.6) converges

faster than (1.1.5) with the following two conditions:

(i) The value of αn in (1.1.6) is less than the value of αn in (1.1.5);

(ii) The sum of values of αn and γn in (1.1.6) is greater than the value of αn in

(1.1.5).
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4.2 On the rate of convergence of viscosity implicit

iterative algorithms

2

4.2.1 Background

In 2000, Moudafi [76] introduced a well-known iterative method known as the vis-

cosity approximation method for approximating fixed points of a nonexpansive map-

ping. Later in 2004, Xu [102] applied a technique which uses (strict) contractions

to regularize a nonexpansive mapping for the purpose of selecting a particular fixed

point of the nonexpansive mapping and studied the sequence (1.1.1). Xu [102]

showed that under suitable conditions imposed on the parameters, the iterative se-

quence {xn}∞n=1 generated by (1.1.1), converges strongly in Hilbert spaces to a fixed

point p of a nonexpansive mapping T which also solves the following variational

inequality (1.1.2). Recently, Xu et al. [104] introduced the implicit midpoint proce-

dure (1.1.5). They proved a strong convergence theorem for the sequence {xn}∞n=1

to a fixed point p of T which also solves the variational inequality (1.1.2) in Hilbert

spaces. Yao et al. [107] extended the work of Xu et al. [104] and considered the

implicit midpoint sequence (1.1.6). Under certain conditions on the parameters,

they obtained that the sequence {xn}∞n=1 generated by (1.1.6) converges strongly to

p = PF (T )f(p). In other words, the sequence {xn}∞n=1 generated by (1.1.6) converges

in norm to a fixed point p of T, which is also the unique solution of the variational

inequality (1.1.2).

Luo et al. [72] studied the convergence of the sequence (1.1.5) in uniformly

smooth Banach spaces. Furhermore, they used a numerical example to compare the

rate of convergence of the sequences (1.1.1) and (1.1.5). Also, numerical methods

were used by Aibinu et al. [6] to compare the rate of convergence of the iteration

procedures (1.1.10), (1.1.5) and (1.1.6) in uniformly smooth Banach spaces. Ke

and Ma [65] chose {δn}∞n=1 ⊂ (0, 1) and generalized the viscosity implicit midpoint

2The results of this section are contents of the following paper

M.O. Aibinu [1]
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rules of Xu et al. [104] and Yao et al. [107] to the two viscosity implicit rules

(1.1.7) and (1.1.8). It was shown that the sequences generated by (1.1.7) and (1.1.8)

converge strongly to a fixed point p of the nonexpansive mapping T, which solves

the variational inequality (1.1.2). Extension of the main results of Ke and Ma [65]

from Hilbert spaces to uniformly smooth Banach spaces was considered by Yan et

al. [106]. Then, the following questions arise naturally:

Question 4.2.1 Do the sequences (1.1.7) and (1.1.8) which are respectively given

by

xn+1 = αnf(xn) + (1− αn)T (δnxn + (1− δn)xn+1) , n ∈ N,

and

yn+1 = αnf(yn) + βnyn + γnT (δnyn + (1− δn)yn+1) , n ∈ N,

always converge to the same fixed point of a nonexpansive mapping?

Question 4.2.2 Do the results of Ke and Ma [65] hold for finite combination of

nonexpansive mappings, composition of finite family of nonexpansive mappings and

monotone mappings?

In this section, an affirmative answers are given to those questions raised above.

Under suitable conditions imposed on the control parameters, the analytical proof is

given to show that the two sequences converge to the same fixed point of a nonexpan-

sive mapping. Moreover, it is shown analytically that the sequence (1.1.8) converges

faster than (1.1.7) in approximating a fixed point of a nonexpansive mapping.

4.2.2 Main results

Here, the analytical proof is given to ascertain that the implicit iterative sequences

(1.1.7) and (1.1.8) converge to the same fixed point of a nonexpansive mapping.

Theorem 4.2.3 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E, T a nonexpansive self-mapping defined on K with F (T ) 6= ∅ and

f : K → K, a c-contraction mapping. Given that {αn}∞n=1 , {βn}
∞
n=1 and {γn}∞n=1

are sequences in [0, 1] with
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(a) αn + βn + γn = 1;

(b)
∞∑
n=1

αn =∞;

(c) lim
n→∞

βn
αn

= 0.

Then (1.1.8) converges in norm to p if and only if (1.1.7) converges in norm to p.

Proof.

We show that (1.1.7) and (1.1.8) converge to the same fixed point of a nonex-

pansive mapping T.

‖yn+1 − xn+1‖ = ||αnf(yn) + βnyn + γnT (δnyn + (1− δn)yn+1)

− (αnf(xn) + (1− αn)T (δnxn + (1− δn)xn+1)) ||

= ||αn(f(yn)− f(xn)) + βn(yn − T (δnxn + (1− δn)xn+1))

+γn (T (δnyn + (1− δn)yn+1)− T (δnxn + (1− δn)xn+1)) ||

≤ αn||f(yn)− f(xn)||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+γn ‖T (δnyn + (1− δn)yn+1)− T (δnxn + (1− δn)xn+1)‖

≤ cαn||yn − xn||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+γn ‖δn(yn − xn) + (1− δn)(yn+1 − xn+1)‖

≤ cαn||yn − xn||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+γnδn‖yn − xn‖+ γn(1− δn)‖yn+1 − xn+1‖

≤ (cαn + γnδn)||yn − xn||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+γn(1− δn)‖yn+1 − xn+1‖.

Since {yn}∞n=1 and {T (δnxn + (1− δn)xn+1)}∞n=1 are bounded [106], let

M := sup
n
‖yn − T (δnxn + (1− δn)xn+1)‖ . Then,
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‖yn+1 − xn+1‖ ≤
cαn + γnδn

1− γn(1− δn)
||yn − xn||+

βn
1− γn(1− δn)

M

= 1 +
cαn − (1− γn)

1− γn(1− δn)
||yn − xn||+

βn
1− γn(1− δn)

M

= 1 +
−βn − (1− c)αn
1− γn(1− δn)

||yn − xn||+
βn

1− γn(1− δn)
M

=

(
1− (1− c)αn + βn

1− γn(1− δn)

)
||yn − xn||+

βn
1− γn(1− δn)

M

=

(
1− (1− c)αn + βn

1− γn(1− δn)

)
||yn − xn||+

βn
1− γn(1− δn)

M

≤
(

1− (1− c)αn
1− γn(1− δn)

)
||yn − xn||+

βn
1− γn(1− δn)

M

=

(
1− (1− c)αn

1− γn(1− δn)

)
||yn − xn||+

(1− c)αn
1− γn(1− δn)

βn
(1− c)αn

M

= (1− σn)||yn − xn||+
βn

(1− c)αn
σnM, (4.2.1)

where σn = (1−c)αn
1−γn(1−δn) . Notice that lim sup

n→∞

βn
αn
≤ 0. Then, we can apply Lemma

2.10.6 with γn = 0 to (4.2.1) in order to deduce that ||yn − xn|| → 0 as n → ∞.

Furthermore, suppose ||xn − p|| → 0 as n→∞, we have that

||yn − p|| = ||yn − xn + xn − p|| ≤ ||yn − xn||+ ||xn − p|| → 0 as n→∞.

Similarly, suppose ||yn − p|| → 0 as n→∞, we have that

||xn − p|| = ||xn − yn + yn − p|| ≤ ||xn − yn||+ ||yn − p|| → 0 as n→∞.

4.2.3 Applications

The results in this section show an improvement on and generalization of the main

results of Xu et al. [104], Yao et al. [107] and Ke and Ma [65]. It will be assumed

that the real sequences {αn}∞n=1 , {βn}
∞
n=1 , {γn}

∞
n=1 ⊂ [0, 1] and {δn}∞n=1 ⊂ (0, 1)

satisfy the following conditions:

(i) αn + βn + γn = 1,
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(ii) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(iii) lim
n→∞

|βn+1 − βn| = 0, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.

(I) Finite combination of nonexpansive mappings

The proof of the proposition below is given in Wong et al. [99].

Proposition 4.2.4 Let K be a nonempty closed convex subset of a strictly convex

and uniformly smooth Banach space E and let θi > 0 (i = 1, 2, . . . , r) such that
r∑
i=1

θi = 1. Let T1, T2, . . . , Tr : K → K be nonexpansive mappings with ∩ri=1F (Ti) 6=

∅ and let T =
r∑
i=1

θiTi. Then T is nonexpansive from K into itself and F (T ) =

∩ri=1F (Ti).

Therefore, we have the following result.

Corollary 4.2.5 Suppose K is a nonempty closed convex subset of a strictly convex

and uniformly smooth Banach space E, f : K → K is a c-contraction and let θi > 0

(i = 1, 2, . . . , r) such that
r∑
i=1

θi = 1. Let T1, T2, . . . , Tr : K → K be nonexpansive

mappings with ∩ri=1F (Ti) 6= ∅. Then the iterative sequence {xn}∞n=1 which is defined

from an arbitrary x1 ∈ K by

xn+1 = αnf(xn) + βnxn + γn

r∑
i=1

θiTi (δnxn + (1− δn)xn+1) , (4.2.2)

converges strongly to a fixed point p ∈ ∩ri=1F (Ti), which solves the variational in-

equality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ ∩ri=1F (Ti). (4.2.3)

Proof. Define T :=
r∑
i=1

θiTi. It suffices to show that T is a nonexpansive mapping

and ∩ri=1F (Ti) ⊆ F (T ). This is true by by Proposition 4.2.4.

(II) Composition of finite family of nonexpansive mappings
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Corollary 4.2.6 Suppose K is a nonempty closed convex subset of a uniformly

smooth Banach space E and {Tt}Nt=1 a finite family of nonexpansive self-mappings

of K such that F := ∩Nt=1F (Tt) 6= ∅. Let f : K → K be a c-contraction. Then the

iterative sequence {xn}∞n=1 which is defined from an arbitrary x1 ∈ K by

xn+1 = αnf(xn) + βnxn + γnT
NTN−1T n−2...T 1 (δnxn + (1− δn)xn+1) ,

converges strongly to a fixed point p ∈ F, which solves the variational inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F. (4.2.4)

Proof. It is known that a composition of finite family of nonexpansive self-

mappings {Tt}Nt=1 on K is nonexpansive with F (T ) ⊇ ∩Nt=1F (Tt) 6= ∅.

(III) Monotone mappings

Let E be a real Banach space with the duality pairing 〈., .〉 and norm ‖.‖. The dual

of E is denoted by E∗. Let A be a set-valued mapping and denote the domain and

range of A by D(A) and R(A), respectively. Monotone mappings have been studied

extensively (see, e.g., Bruck [21], Chidume [24], Martinet [74], Reich [87], Rockafellar

[89]) due to their role in convex analysis, in nonlinear analysis, in certain partial

differential equations and optimization theory. For a maximal monotone mapping

A : D(A)→ 2E
∗ (Kohsaka and Takahashi [57]), one can define the resolvent of A by

JAt = (J + tA)−1J, t > 0. (4.2.5)

It is well known that JAt : E → D(A) is nonexpansive, and F (JAt ) = A−1(0), where

F (Jt) denotes the set of fixed points of Jt.

We can then have the following.

Corollary 4.2.7 Suppose K is a nonempty closed convex subset of a uniformly

smooth Banach space E, f : K → K is a c-contraction and let θi > 0 (i = 1, 2, . . . , r)

such that
r∑
i=1

θi = 1. Let Ai ⊂ E × E∗ be a family of maximal monotone mappings

with resolvent JAit for t > 0 such that ∩ri=1A
−1
i 0 6= ∅. Then the iterative sequence

{xn}∞n=1 which is defined from an arbitrary x1 ∈ K by

xn+1 = αnf(xn) + βnxn + γn

r∑
i=1

θiJ
Ai
t (δnxn + (1− δn)xn+1) ,
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converges strongly to a unique solution p ∈ ∩ri=1A
−1
i 0, which solves the variational

inequality:

find p ∈ ∩ri=1A
−1
i 0 such that 〈(I − f)p, J((x− p)〉 ≥ 0 for all x ∈ ∩ri=1A

−1
i 0.

Proof. Define T :=
r∑
i=1

θiJ
Ai
t . Then T is nonexpansive self-mapping of K and

F (T ) ⊇ ∩ri=1F (Ti) 6= ∅.
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CHAPTER 5

Implicit iterative procedures based on generalized contractions

We study the implicit iterative procedures which are based on generalized contrac-

tions. The implicit iterative procedure is examined for approximating the fixed

points of a class of µ-strictly pseudo-contractive mapping. A new implicit itera-

tive procedure based on generalized contractions is also introduced for the class of

nonexpansive mappings.

5.1 The implicit iterative algorithms of strictly pseudo-

contractive mappings in Banach spaces

5.1.1 Background

Let K be a nonempty, closed and convex subset of a real Banach space E and

f : K → K a contraction. T : K → K is said to be a µ-strictly pseudo-contractive

mapping if there exists a fixed constant µ ∈ (0, 1) such that

〈T (u)− T (v), j(u− v)〉 ≤ ‖u− v‖2 − µ‖(I − T )u− (I − T )v‖2, (5.1.1)
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for some j(u− v) ∈ J(u− v) and for every u, v ∈ K. For some j(u− v) ∈ J(u− v)

and for every u, v ∈ K, (5.1.1) can be written as

〈(I − T )(u)− (I − T )(v), j(u− v)〉 ≥ µ‖(I − T )u− (I − T )v‖2. (5.1.2)

A recent research interest to many authors is the viscosity implicit iterative algo-

rithms for finding a common element of the set of fixed points for nonlinear operators

and also the set of solutions of variational inequality problems (see [65], [76], [102],

[104], [107] and the references therein). Following the ideas of Attouch [14], in 2000,

Moudafi [76] introduced the viscosity approximation method for nonexpansive map-

ping in Hilbert spaces. Refinements in Hilbert spaces and extensions to Banach

spaces were obtained by Xu [102]. Recently, Xu et al. [104] introduced the im-

plicit midpoint procedure (1.1.5). They proved a strong convergence theorem in

a Hilbert space for the implicit midpoint sequence (1.1.5) to a fixed point p of a

nonexpansive mapping T, which also solves the variational inequality (1.1.2). Yao

et al. [107] extended the work of Xu et al. [104] and studied the implicit midpoint

sequence (1.1.6). They showed that the implicit midpoint sequence {xn}∞n=1 gener-

ated by (1.1.6) converges strongly to p = PF (T )f(p) under certain conditions on the

parameters, where F (T ) is the set of fixed points of a nonexpansive mapping T. In

other words, the implicit midpoint sequence {xn}∞n=1 generated by (1.1.6) converges

in norm to a fixed point p of a nonexpansive mapping T, which is also the unique

solution of the variational inequality (1.1.2). Choosing {δn}∞n=1 ⊂ (0, 1), Ke and Ma

[65] generalized the viscosity implicit midpoint rules of Xu et al. [104] and Yao et al.

[107] to (1.1.7) and (1.1.8) respectively. Yan et al. [106] replaced strict contractions

by the generalized contractions and established the main results of Ke and Ma [65]

in a uniformly smooth Banach spaces. The sequence {xn}∞n=1 generated by (1.1.8)

is proved to converge strongly to a fixed point p of a nonexpansive mapping T,

which solves the variational inequality (1.1.9). The previous works in this direction

generate the following natural questions:

Question 5.1.1 How to extend the results of Ke and Ma [65] and Yan et al. [106]

to the more general class of µ-strictly pseudo-contractive mappings?

Question 5.1.2 Does there exist any implicit iterative algorithm which converges
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strongly to fixed points of a µ-strictly pseudo-contractive mapping in uniformly smooth

Banach spaces?

Motivated by the previous works, we seek to improve on the existing results in

this direction. Precisely, for a nonempty closed convex subset K of a uniformly

smooth Banach space E and for real sequences {δn}∞n=1 ⊂ (0, 1),
{
{θin}

∞
n=1

}3
i=1
⊂

[0, 1] and
{
{βin}

∞
n=1

}3
i=1
⊂ [0, 1] with β1

n, β
3
n 6= 0 such that

3∑
i=1

θin = 1 and
3∑
i=1

βin = 1,

we introduce a new viscosity iterative algorithm of implicit rules from an arbitrary

x1 ∈ K as follows

xn+1 = θ1nf(xn) + θ2nxn + θ3nSn(δnxn + (1− δn)xn+1), (5.1.3)

where Snx = β1
nQ(x) + β2

nx + β3
nT (x), f : K → K is a generalized contraction,

Q : K → K is a contraction and T : K → K is a µ-strictly pseudo-contractive

mapping. The iterative sequence given by (5.1.3) generalizes the existing schemes

and we use the method of Yan et al. [106] to show that it converges strongly to

a fixed point p of T, which is also a solution to the variational inequality problem

(1.1.9).

5.1.2 Main results

Definition 5.1.3 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K a generalized contraction. Let T be a µ-strictly

pseudo-contractive mapping defined on K and Q : K → K a contraction with F (T )∩

F (Q) 6= ∅. Assume that the real sequences {δn}∞n=1 ⊂ (0, 1),
{
{θin}

∞
n=1

}3
i=1
⊂ [0, 1]

and
{
{βin}

∞
n=1

}3
i=1
⊂ [0, 1] with β1

n, β
3
n 6= 0 satisfy the following conditions:

(i)
3∑
i=1

θin = 1,
3∑
i=1

βin = 1

(ii) lim
n→∞

θ1n = 0,
∞∑
n=1

θ1n =∞,

(iii) lim
n→∞

|θ2n+1 − θ2n| = 0, 0 < lim inf
n→∞

θ2n ≤ lim sup
n→∞

θ2n < 1,

(iv) lim
n→∞

|β1
n+1 − β1

n| = 0, lim
n→∞

|β3
n+1 − β3

n| = 0,
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(v) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.

We shall study the convergence of the iterative scheme (5.1.3) under the conditions

(i)-(v) of Definition 5.1.3.

We show that the scheme is well defined. Firstly, let cQ ∈ [0, 1] be the contraction

constant of Q, then for all y, z ∈ K,

‖Sn(y)− Sn(z)‖2 =
∥∥β1

nQ(y) + β2
ny + β3

nT (y)− β1
nQ(z)− β2

nz − β3
nT (z)

∥∥2
=

∥∥β1
n(Q(y)−Q(z)) + β2

n(y − z) + β3
n(T (y)− T (z))

∥∥2
= β1

n 〈Q(y)−Q(z), J(y − z)〉+ β2
n 〈y − z, J(y − z)〉

+β3
n 〈T (y)− T (z), J(y − z)〉

≤ β1
n‖Q(y)−Q(z)‖‖y − z‖+ β2

n‖y − z‖
2

+β3
n

(
‖y − z‖2 − µ‖(I − T )y − (I − T )z‖2

)
≤ β1

ncQ‖y − z‖
2 + β2

n‖y − z‖
2

+(1− β1
n − β2

n)
(
‖y − z‖2 − µ‖(I − T )y − (I − T )z‖2

)
≤ β1

n‖y − z‖
2 + β2

n‖y − z‖
2 (since cQ ∈ [0, 1])

+(1− β1
n − β2

n)
(
‖y − z‖2 − µ‖(I − T )y − (I − T )z‖2

)
= ‖y − z‖2 − (1− β1

n − β2
n)µ‖(I − T )y − (I − T )z‖2

≤ ‖y − z‖2.

Next is to show that for all v ∈ K, the mapping defined by

x 7→ Tv(x) : = θ1nf(v) + θ2nv + θ3nSn(δnv + (1− δn)x) (5.1.4)

for all x ∈ K is a contraction with a contractive constant (1 − ε) =: δ ∈ (0, 1).

Clearly, for all y, z ∈ K,
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‖Tv(y)− Tv(z)‖ = θ3n ‖Sn (δnv + (1− δn)y)− Sn (δnv + (1− δn)z)‖

≤ θ3n ‖(δnv + (1− δn)y)− (δnv + (1− δn)z)‖

≤ θ3n(1− δn)‖y − z‖

≤ (1− δn)‖y − z‖

≤ (1− ε)‖y − z‖

= δ‖y − z‖. (5.1.5)

Thus, (5.1.3) is well defined since Tv is a contraction and by Banach contraction

principle, Tv has a fixed point. Observe that for each n ∈ N, x ∈ F (T ) ∩ F (Q) ⇒

x ∈ F (Sn). So, F (T ) ∩ F (Q) ⊂ F (Sn) 6= ∅. Indeed, suppose x ∈ F (T ) ∩ F (Q), then

Snx = β1
nQ(x) + β2

nx+ β3
nT (x)

= β1
nx+ β2

nx+ β3
nx

= (β1
n + β2

n + β3
n)x

= x.

Thus, x ∈ F (Sn).

We give and prove the following lemmas which are useful in establishing our

main result.

Lemma 5.1.4 Let E be a uniformly smooth Banach space and K be a nonempty

closed convex subset of E. Let T : K → K be a µ-strictly pseudo-contractive mapping

and suppose that f : K → K is a generalized contraction and Q : K → K is a

contraction with F (T ) ∩ F (Q) 6= ∅. For an arbitrary x1 ∈ K, define the iterative

sequence {xn}∞n=1 by

xn+1 = θ1nf(xn) + θ2nxn + θ3nSn(δnxn + (1− δn)xn+1), (5.1.6)

Then the sequence {xn}∞n=1 is bounded under the conditions (i)-(v) of Definition

5.1.3.
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Proof. We show that the sequence {xn}∞n=1 is bounded. Let zn := δnxn + (1 −

δn)xn+1 and recall that φ(t) := t− ψ(t) for all t ∈ R+. Then for p ∈ F (T ) ∩ F (Q),

‖xn+1 − p‖ = ‖θ1nf(xn) + θ2nxn + θ3nSnzn − p‖

= ||θ1n (f(xn)− f(p)) + θ1n (f(p)− p) + θ2n(xn − p) + θ3n(Snzn − p)‖

≤ θ1n‖f(xn)− f(p)‖+ θ1n‖f(p)− p‖+ θ2n‖xn − p‖+ θ3n‖Snzn − p‖

≤ θ1nψ‖xn − p‖+ θ1n‖f(p)− p‖+ θ2n‖xn − p‖

+θ3n (δn‖xn − p‖+ (1− δn+1)‖xn+1 − p‖)

≤ θ1nψ‖xn − p‖+ θ1n‖f(p)− p‖+ θ2n‖xn − p‖

+θ3nδn‖xn − p‖+ θ3n(1− δn+1)‖xn+1 − p‖.

Consequently,

(
1− θ3n(1− δn)

)
‖xn+1 − p‖ ≤

(
θ1nψ + θ2n + θ3nδn

)
‖xn − p‖+ θ1n‖f(p)− p‖

=
(
θ1nψ + (1− θ1n − θ3n) + θ3nδn

)
‖xn − p‖+ θ1n‖f(p)− p‖

=
(
1− θ3n(1− δn)− θ1n(1− ψ)

)
‖xn − p‖+ θ1n‖f(p)− p‖

=
(
1− θ3n(1− δn)− θ1nφ

)
‖xn − p‖+ θ1n‖f(p)− p‖.

Observe that 1 − θ3n(1 − δn) > 0 since
{
{θin}

∞
n=1

}3
i=1

, {δn}∞n=1 ⊂ (0, 1). Therefore,

we have

‖xn+1 − p‖ ≤
1− θ3n(1− δn)− θ1nφ

1− θ3n(1− δn)
‖xn − p‖

+
θ1n

1− θ3n(1− δn)
‖f(p)− p‖ (5.1.7)

=

(
1− θ1nφ

1− θ3n(1− δn)

)
‖xn − p‖+

θ1n
1− θ3n(1− δn)

‖f(p)− p‖

=

(
1− θ1nφ

1− θ3n(1− δn)

)
‖xn − p‖+

θ1nφ

1− θ3n(1− δn)
. φ−1‖f(p)− p‖

≤ max
{
‖xn − p‖, φ−1‖f(p)− p‖

}
.

Thus, by the induction, we have

‖xn+1 − p‖ ≤ max
{
‖x1 − p‖, φ−1‖f(p)− p‖

}
.
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This implies that the sequence {xn}∞n=1 is bounded and hence {Sn (δnxn + (1− δn)xn+1)}∞n=1

and {f(xn)}∞n=1 are also bounded.

For p ∈ F (T ) ∩ F (Q),

‖Sn (δnxn + (1− δn)xn+1) ‖ = ‖Sn (δnxn + (1− δn)xn+1)− p+ p‖

≤ ‖Sn (δnxn + (1− δn)xn+1)− Snp‖+ ‖p‖

≤ ‖δnxn + (1− δn)xn+1 − p‖+ ‖p‖

≤ δn‖xn − p‖+ (1− δn)‖xn+1 − p‖+ ||p||

≤ max
{
||x1 − p||, φ−1||f(p)− p||

}
+ ||p|| (by induction).

The boundedness of {Sn}∞n=1 implies that Q and T are also bounded siince Sn is

defined in term of Q and T. Moreover,

‖f(xn)‖ = ‖f(xn)− f(p) + f(p)‖ ≤ ψ‖xn − p‖+ ‖f(p)‖

≤ max
{
ψ||x1 − p||, ψφ−1||f(p)− p||

}
+ ||f(p)|| (by induction).

Lemma 5.1.5 Let E be a uniformly smooth Banach space and K a nonempty closed

convex subset of E. Let Q : K → K be a contraction, T : K → K a µ-strictly

pseudo-contractive mapping and {δn}∞n=1 is a real sequences in (0, 1). Define zn :=

δnxn+(1−δn)xn+1 and letM1 = max

{
sup
n
‖T (zn)− zn‖, sup

n
‖Q(zn)− zn‖

}
. Then

‖Sn+1zn+1 − Snzn‖ ≤ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖

+
(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1 for all n ∈ N.

Proof. It is known that {zn}∞n=1 is bounded since {xn}∞n=1 is a bounded sequence.

Notice that

‖zn+1 − zn‖ = ‖δn+1xn+1 + (1− δn+1)xn+2 − (δnxn + (1− δn)xn+1) ‖

= ‖δn+1xn+1 + (1− δn+1)xn+2 − δnxn − (1− δn)xn+1‖

= ‖(xn+2 − xn+1)− δn+1(xn+2 − xn+1) + δn(xn+1 − xn)‖

= ‖δn(xn+1 − xn) + (1− δn+1)(xn+2 − xn+1)‖

≤ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖. (5.1.8)
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Then

‖Sn+1zn+1 − Snzn‖ = ‖Sn+1zn+1 − Sn+1zn + Sn+1zn − Snzn‖

≤ ‖zn+1 − zn‖+ ‖β1
n+1Q(zn) + β2

n+1zn + β3
n+1T (zn)

−β1
nQ(zn)− β2

nzn − β3
nT (zn)‖

= ‖zn+1 − zn‖+ ‖β1
n+1Q(zn) + (1− β1

n+1 − β3
n+1)zn + β3

n+1T (zn)

−β1
nQ(zn)− (1− β1

n − β3
n)zn − β3

nT (zn)‖

= ‖zn+1 − zn‖+ ‖β1
n+1(Q(zn)− zn) + zn + β3

n+1(T (zn)− zn)

−β1
n(Q(zn)− zn)− zn − β3

n(T (zn)− zn)‖

= ‖zn+1 − zn‖+ ‖(β1
n+1 − β1

n)(Q(zn)− zn)

+(β3
n+1 − β3

n)(T (zn)− zn)‖

≤ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖

+
(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1. (5.1.9)

Theorem 5.1.6 Let E be a uniformly smooth Banach space and K a nonempty

closed convex subset of E. Let T be a µ-strictly pseudocontractive self-mapping de-

fined on K while f : K → K is a generalized contraction and Q is a contraction

defined on K with F (T ) ∩ F (Q) 6= ∅. Suppose that the conditions (i) − (v) of Def-

inition 5.1.3 are satisfied. Then, for an arbitrary x1 ∈ K, the iterative sequence

{xn}∞n=1 defined by (5.1.3) converges strongly to a fixed point p of T.

Proof. Observe that one can write the iterative sequence (5.1.3) as:

xn+1 = θ1nf(xn) + θ2nxn + θ3nSn (δnxn + (1− δn)xn+1)

= θ2nxn + (1− θ2n)
θ1nf(xn) + θ3nSn (δnxn + (1− δn)xn+1)

1− θ2n
.

Since
3∑
i=1

θin = 1 by condition (i), we have

xn+1 = (1− θ1n − θ3n)xn + (θ1n + θ3n)
θ1nf(xn) + θ3nSn (δnxn + (1− δn)xn+1)

1− θ2n
= (1− θ1n − θ3n)xn + (θ1n + θ3n)wn, (5.1.10)
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where

wn :=
θ1nf(xn) + θ3nSn (δnxn + (1− δn)xn+1)

1− θ2n

=
θ1n

1− θ2n
f(xn) +

θ3n
1− θ2n

Sn (δnxn + (1− δn)xn+1) (5.1.11)

=
θ1n

θ1n + θ3n
f(xn) +

θ3n
θ1n + θ3n

Sn (δnxn + (1− δn)xn+1) , n ∈ N.

We note that {xn}∞n=1 , {f(xn)}∞n=1 and {T (δnxn + (1− δn)xn+1)}∞n=1 are bounded

sequences. Furthermore, since the lim sup
n→∞

θ2n < 1 by the condition (iii) of Definition

5.1.3, there exists n0 ∈ N and η < 1 such that

1− θ2n > 1− η ∀ n ≥ n0. (5.1.12)

The consequence of (5.1.11) and (5.1.12) is that {wn}∞n=1 is bounded.

Next, we show that lim
n→∞

||wn − xn|| = 0.

We need to first show that lim sup
n→∞

(||wn+1 − wn|| − ||xn+1 − xn||) ≤ 0. Observe that

wn+1 − wn =
θ1n+1

θ1n+1 + θ3n+1

f(xn+1) +
θ3n+1

θ1n+1 + θ3n+1

Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−
(

θ1n
θ1n + θ3n

f(xn) +
θ3n

θ1n + θ3n
Sn (δnxn + (1− δn)xn+1)

)
=

θ1n+1

θ1n+1 + θ3n+1

(f(xn+1)− f(xn)) +

(
θ1n+1

θ1n+1 + θ3n+1

− θ1n
θ1n + θ3n

)
f(xn)

+
θ3n+1

θ1n+1 + θ3n+1

(Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1))

+

(
θ3n+1

θ1n+1 + θ3n+1

− θ3n
θ1n + θ3n

)
Sn (δnxn + (1− δn)xn+1)
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=
θ1n+1

θ1n+1 + θ3n+1

(f(xn+1)− f(xn)) +

(
θ1n+1

θ1n+1 + θ3n+1

− θ1n
θ1n + θ3n

)
f(xn)

+
θ3n+1

θ1n+1 + θ3n+1

(Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1))

+

(
θ1n+1 + θ3n+1 − θ1n+1

θ1n+1 + θ3n+1

− θ1n + θ3n − θ1n
θ1n + θ3n

)
Sn (δnxn + (1− δn)xn+1)

=
θ1n+1

θ1n+1 + θkn+1

(f(xn+1)− f(xn)) +

(
θ1n+1

θ1n+1 + θ3n+1

− θ1n
θ1n + θ3n

)
f(xn)

+
θ3n+1

θ1n+1 + θ3n+1

(Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1))

+

(
θ1n

θ1n + θ3n
−

θ1n+1

θ1n+1 + θ3n+1

)
Sn (δnxn + (1− δn)xn+1)

=
θ1n+1

θ1n+1 + θ3n+1

(f(xn+1)− f(xn))

+

(
θ1n

θ1n + θ3n
−

θ1n+1

θ1n+1 + θ3n+1

)
(Sn (δnxn + (1− δn)xn+1)− f(xn))

+
θ3n+1

θ1n+1 + θ3n+1

(Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1)) .

Therefore,

||wn+1 − wn|| ≤
θ1n+1ψ

θ1n+1 + θ3n+1

‖xn+1 − xn‖+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣
×‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖+

θ3n+1

θ1n+1 + θ3n+1

×‖Sn (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1) ‖.

Applying Lemma 5.1.5 leads to

||wn+1 − wn|| ≤
θ1n+1ψ

θ1n+1 + θ3n+1

‖xn+1 − xn‖

+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣ ‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖

+
θ3n+1

θ1n+1 + θ3n+1

[ δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖

+
(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1 ]
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=
θ1n+1ψ + θ3n+1δn
θ1n+1 + θ3n+1

‖xn+1 − xn‖+
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

‖xn+2 − xn+1‖

+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣ ‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖

+
θ1n+1ψ

θ1n+1 + θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1. (5.1.13)

Next, we need to evaluate ||xn+2−xn+1||. LetM1 := sup
n
{‖xn − Sn (δnxn + (1− δn)xn+1) ‖} ,

M2 := sup
n
{‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖} and M2 =: max {M1,M2} .

xn+2 − xn+1 = θ1n+1f(xn+1) + θ2n+1xn+1 + θ3n+1Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)

−
(
θ1nf(xn) + θ2nxn + θ3nSn (δnxn + (1− δn)xn+1)

)
= θ1n+1 (f(xn+1)− f(xn)) + (θ1n+1 − θ1n)f(xn) + θ2n+1(xn+1 − xn)

+(θ2n+1 − θ2n)xn +
(
θ3n+1 − θ3n

)
Sn (δnxn + (1− δn)xn+1)

+θ3n+1 (Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1))

= θ1n+1 (f(xn+1)− f(xn)) + (θ1n+1 − θ1n)f(xn) + θ2n+1(xn+1 − xn)

+(θ2n+1 − θ2n)xn +
(
(θ1n − θ1n+1)− (θ2n+1 − θ2n)

)
Sn (δnxn + (1− δn)xn+1)

+θ3n+1 (Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1)) .

Consequently,

||xn+2 − xn+1|| ≤
(
θ1n+1ψ + θ2n+1

)
‖xn+1 − xn‖

+|θ1n − θ1n+1|‖Sn (δnxn + (1− δn)xn+1)− f(xn)‖

+|θ2n+1 − θ2n|‖xn − Sn (δnxn + (1− δn)xn+1) ‖

+θ3n+1‖Sn+1 (δn+1xn+1 + (1− δn+1)xn+2)− Sn (δnxn + (1− δn)xn+1) ‖
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≤
(
θ1n+1ψ + θ2n+1

)
‖xn+1 − xn‖+

(
|θ1n − θ1n+1|+ |θ2n+1 − θ2n|

)
M2

+θ3n+1 [δn‖xn+1 − xn‖+ (1− δn+1)‖xn+2 − xn+1‖

+
(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1 ] (by Lemma 5.1.5)

=
(
θ1n+1ψ + θ2n+1 + θ3n+1δn

)
‖xn+1 − xn‖

+
(
|θ1n − θ1n+1|+ |θ2n+1 − θ2n|

)
M2

+θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1 (5.1.14)

+θ3n+1(1− δn+1)‖xn+2 − xn+1‖.

LetBn = 1
1−θ3n+1(1−δn+1)

(
|θ1n − θ1n+1|+ |θ2n+1 − θ2n|

)
M2+θ

3
n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1,

since 1− θ3n+1(1− δn+1) > 0, we obtain from (5.1.14),

‖xn+2 − xn+1‖ ≤
θ1n+1ψ + θ2n+1 + θ3n+1δn

1− θ3n+1(1− δn+1)
‖xn+1 − xn‖+Bn. (5.1.15)

Substituting (5.1.15) into (5.1.13) gives

‖wn+1 − wn‖ ≤ [
θ1n+1ψ + θ3n+1δn
θ1n+1 + θ3n+1

+
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

×
θ1n+1ψ + θ2n+1 + θ3n+1δn

1− θ3n+1(1− δn+1)
]

×‖xn+1 − xn‖+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣M2 +
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

Bn

+
θ1n+1ψ

θ1n+1 + θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1

=
θ1n+1ψ + θ3n+1δn + θ3n+1(1− δn+1)θ

2
n+1

[θ1n+1 + θ3n+1][1− θ3n+1(1− δn+1)]
‖xn+1 − xn‖

+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣M2 +
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

Bn

+
θ1n+1ψ

θ1n+1 + θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1

=

(
1−

θ1n+1(1− ψ) + θ3n+1(δn+1 − δn)

[θ1n+1 + θ3n+1][1− θ3n+1(1− δn+1)]

)
‖xn+1 − xn‖

+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣M2 +
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

Bn

+
θ1n+1ψ

θ1n+1 + θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1
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=

(
1−

θ1n+1φ+ θ3n+1(δn+1 − δn)

[θ1n+1 + θ3n+1][1− θ3n+1(1− δn+1)]

)
‖xn+1 − xn‖

+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣M2 +
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

Bn

+
θ1n+1ψ

θ1n+1 + θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1

<

(
1−

θ1n+1φ

θ1n+1 + θ3n+1

)
‖xn+1 − xn‖

+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣M2 +
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

Bn

+
θ1n+1ψ

θ1n+1 + θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1,

since θ1n+1φ + θ3n+1(δn+1 − δn) > θ1n+1φ and [θ1n+1 + θ3n+1][1 − θ3n+1(1 − δn+1)] <

θ1n+1 + θ3n+1. It then follows that

‖wn+1 − wn‖ − ‖xn+1 − xn‖ ≤ −
θ1n+1φ

θ1n+1 + θ3n+1

‖xn+1 − xn‖

+

∣∣∣∣ θ1n
θ1n + θ3n

−
θ1n+1

θ1n+1 + θ3n+1

∣∣∣∣M2 +
θ3n+1(1− δn+1)

θ1n+1 + θ3n+1

Bn

+
θ1n+1ψ

θ1n+1 + θ3n+1

(
|β1
n+1 − β1

n|+ |β3
n+1 − β3

n|
)
M1,

and thus,

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0. (5.1.16)

Invoking Lemma 2.10.7, we have

lim
n→∞

‖wn − xn‖ = 0. (5.1.17)

Obviously from (5.1.10), we can obtain that

‖xn+1 − xn‖ = ‖(1− θ1n − θ3n)xn + (θ1n + θ3n)wn − xn‖

≤ (θ1n + θ3n)‖wn − xn‖ → 0 as n→∞. (5.1.18)

Next, we show that lim
n→∞

‖xn − Snxn‖ = 0. From (5.1.3), we can have that
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‖xn − Snxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Snxn‖

≤ ‖xn+1 − xn‖+ θ1n‖f(xn)− Snxn‖+ θ2n‖xn − Snxn‖

+θ3n‖Sn (δnxn + (1− δn)xn+1)− Snxn‖

≤ ‖xn+1 − xn‖+ θ1n‖f(xn)− Snxn‖+ (1− θ1n − θ3n)‖xn − Snxn‖

+θ3n‖δnxn + (1− δn)xn+1 − xn‖

≤ ‖xn+1 − xn‖+ θ1n‖f(xn)− Snxn‖+ (1− θ1n − θ3n)‖xn − Snxn‖

+θ3n(1− δn)‖xn+1 − xn‖.

(θ1n + θ3n)‖xn − Snxn‖ ≤ (1 + θ3n(1− δn))‖xn+1 − xn‖+ θ1n‖f(xn)− Snxn‖

‖xn − Snxn‖ ≤
1 + θ3n(1− δn)

θ1n + θ3n
‖xn+1 − xn‖+

θ1n
θ1n + θ3n

‖f(xn)− Snxn‖

=
1 + θ3n(1− δn)

1− θ2n
‖xn+1 − xn‖+

θ1n
1− θ2n

‖f(xn)− Snxn‖

≤ 1 + θ3n(1− δn)

1− η
‖xn+1 − xn‖

+
θ1n

1− η
‖f(xn)− Snxn‖ → 0 as n→∞, (5.1.19)

by the condition (ii) of Definition 5.1.3 and since 1− η > 0 (5.1.12). For a unique

fixed point p ∈ F (T ) ∩ F (Q) of the generalized contraction PF (T )∩F (Q)f(p) (Propo-

sition 2.9.4), that is, p = PF (T )∩F (Q)f(p) and since lim
n→∞

‖xn − Snxn‖ = 0 (5.1.19), it

follows that

lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.

Moreover, since the duality map is continuous and ‖xn+1− xn‖ → 0 by (5.1.18),

we obtain that,

lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 = lim sup
n→∞

〈f(p)− p, J(xn+1 − xn + xn − p)〉

= lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0. (5.1.20)

We prove that xn → p ∈ F (T ) as n→∞.

Let us assume that the sequence {xn}∞n=1 does not converge strongly to p ∈ F (T ).

Therefore, there exists ε > 0 and a subsequence
{
xnj
}∞
j=1

of {xn}∞n=1 such that
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‖xnj − p‖ ≥ ε, for all j ∈ N. Thus, for this ε, there exists c ∈ (0, 1) such that

‖f(xnj)− f(p)‖ ≤ c‖xnj − p‖.

||xnj+1
− p||2 = θ1nj

〈
f(xnj)− f(p), J(xnj+1

− p)
〉

+ θ1nj
〈
f(p)− p, J(xnj+1

− p)
〉

+θ2nj
〈
xnj − p, J(xnj+1

− p)
〉

+θ3nj
〈
Sn
(
δnjxnj + (1− δnj)xnj+1

)
− p, J(xnj+1

− p)
〉

≤ cθ1nj ||xnj − p|| ||xnj+1 − p||+ θ1nj
〈
f(p)− p, J(xnj+1

− p)
〉

+θ2nj ||xnj − p|| ||xnj+1
− p||

+
(
θ3njδnj‖xnj − p‖+ θ3nj(1− δnj)‖xnj+1

− p||
)
||xnj+1

− p||

≤
(
cθ1n + θ2nj

)
||xnj − p|| ||xnj+1

− p||+ θ1nj
〈
f(p)− p, J(xnj+1

− p)
〉

+
(
θ3njδnj‖xnj − p‖+ θ3nj(1− δnj)‖xnj+1

− p||
)
||xnj+1

− p||

≤ 1

2

(
cθ1nj + θ2nj + θ3njδnj

)
(||xnj − p||

2 + ||xnj+1
− p||2)

+θ1nj
〈
f(p)− p, J(xnj+1

− p)
〉

+ θ3n(1− δnj)‖xnj+1
− p||2

2||xnj+1
− p||2 ≤

(
1− θ1nj(1− c)− θ

3
nj

(1− δnj)
)

(||xnj − p||
2 + ||xnj+1

− p||2)

+2θ1nj
〈
f(p)− p, J(xnj+1

− p)
〉

+ 2θ3nj(1− δnj)‖xnj+1
− p||2

=
(

1− θ1nj(1− c)− θ
3
nj

(1− δnj)
)
||xnj − p||

2

+
(

1− θ1nj(1− c) + θ3nj(1− δnj)
)
||xnj+1

− p||2

+2θ1nj
〈
f(p)− p, J(xnj+1

− p)
〉
.

Therefore (
1 + θ1nj(1− c)− θ

3
nj

(1− δnj)
)
||xnj+1

− p||2

≤
(

1− θ1nj(1− c)− θ
3
nj

(1− δnj)
)
||xnj − p||

2

+2θ1nj
〈
f(p)− p, J(xnj+1

− p)
〉
,
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which is equivalent to

||xnj+1
− p||2 ≤

1− θ1nj(1− c)− θ
3
nj

(1− δnj)
1 + θ1nj(1− c)− θ3nj(1− δnj)

||xnj − p||
2

+
2θ1nj

1 + θ1nj(1− c)− θ3nj(1− δnj)
〈
f(p)− p, J(xnj+1

− p)
〉

=

(
1−

2θ1nj(1− c)
1 + θ1nj(1− c)− θ3nj(1− δnj)

)
||xnj − p||

2

+
2θ1nj

1 + θ1nj(1− c)− θ3nj(1− δnj)
〈
f(p)− p, J(xnj+1

− p)
〉
.

(5.1.21)

By applying Lemma 2.10.6 with γn = 0 to (5.1.21), one can deduce that xnj → p as

j →∞. This is a contradiction. Hence, the sequence {xn}∞n=1 converges strongly to

p ∈ F (T ).

5.1.3 Extension to a finite family of strictly pseudo-contractive

mappings

The result of Theorem 5.1.6 can be extended to a finite family of µ-strictly pseudo-

contractive mappings by using the lemma given below.

Lemma 5.1.7 [112] Let K be a nonempty convex subset of a real smooth Banach

space E and let λi > 0 (i = 1, 2, ..., N) such that
N∑
i=1

λi = 1. Let {Ti}Ni=1 be a finite

family of µi-strictly pseudo-contractive mappings and let T =
N∑
i=1

λiTi. Then, we

have the following:

(i) T : K → K is µ-strictly pseudo-contractive mapping with µ = min {µi : 1 ≤ i ≤ N} .

(ii) If ∩Ni=1F (Ti) 6= ∅ then F (T ) = ∩Ni=1F (Ti).

The next following result then comes readily.

Theorem 5.1.8 Let E be a uniformly smooth Banach space and K a nonempty

closed convex subset of E. Let {Ti}Ni=1 be a finite family of µi-strictly pseudo-contractive

self-mapping defined on K, Q a contraction defined on K with ∩Ni=1F (Ti)∩F (Q) 6= ∅
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and λi > 0 (i = 1, 2, ..., N) such that
N∑
i=1

λi = 1. Let f : K → K be a generalized

contraction and suppose that the conditions (i)−(v) of Definition 5.1.3 are satisfied.

Then, for an arbitrary x1 ∈ K, the iterative sequence {xn}∞n=1 defined by

xn+1 = θ1nf(xn) + θ2nxn + θ3nSn(δnxn + (1− δn)xn+1), (5.1.22)

where Snx = β1
nQ(x) + β2

nx + β3
n

N∑
i=1

λiTi(x), converges strongly to a fixed point

p ∈ ∩Ni=1F (Ti) which solves the variational inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ ∩Ni=1F (Ti). (5.1.23)

Proof. Define T =
N∑
i=1

λiTi, it suffices to show that T is a µ-strictly pseudocontrac-

tive mapping with F (T ) = ∩Ni=1F (Ti). It is known that T satisfies these properties

with µ = min {µi : 1 ≤ i ≤ N} (Lemma 5.1.7).

Remark 5.1.9 The following result is readily obtained as corollaries of Theorem

5.1.6.

Corollary 5.1.10 Let E be a uniformly smooth Banach space and K a nonempty

closed convex subset of E. Let Ti be a µ-strictly {Ti}Ni=1 be a finite family of µi-

strictly pseudo-contractive self-mapping defined on K, Q a contraction defined on

K with ∩Ni=1F (Ti) ∩ F (Q) 6= ∅ and λi > 0 (i = 1, 2, ..., N) such that
N∑
i=1

λi = 1.

Let f : K → K be a generalized contraction and assume that the real sequences

{δn}∞n=1 ⊂ (0, 1),
{
{θin}

∞
n=1

}3
i=1
⊂ [0, 1] and {αn} ⊂ (0, 1) satisfy the following

conditions:

(i)
3∑
i=1

θin = 1,

(ii) lim
n→∞

θ1n = 0,
∞∑
n=1

θ1n =∞,

(iii) lim
n→∞

|θ2n+1 − θ2n| = 0, 0 < lim inf
n→∞

θ2n ≤ lim sup
n→∞

θ2n < 1,

(iv) lim
n→∞

|αn+1 − αn| = 0,

(v) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.
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Then, for an arbitrary x1 ∈ K, define the iterative sequence {xn}∞n=1 by

xn+1 = θ1nf(xn) + θ2nxn + θ3nSn(δnxn + (1− δn)xn+1), (5.1.24)

where Snx = αnQ(x) + (1− αn)
N∑
i=1

λiTi(x), converges strongly to a fixed point p of

p ∈ ∩Ni=1F (Ti) which solves the variational inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ ∩Ni=1F (Ti). (5.1.25)

Proof. Take β2
n = 0 in (5.1.3), then αn = β1

n and (1 − αn) = β3
n. Also, define

T =
N∑
i=1

λiTi, it suffices to show that T is a µ-strictly pseudocontractive mapping

with F (T ) = ∩Ni=1F (Ti). It is known that T satisfies these properties with µ =

min {µi : 1 ≤ i ≤ N} (Lemma 5.1.7). Thus, the desire result follows from Theorem

5.1.6.

5.2 The viscosity implicit iterative algorithms of non-

expansive mappings in Banach spaces

5.2.1 Background

The Viscosity Approximation Method (VAM) for solving nonlinear operator equa-

tions has recently attracted much attention. In 1996, Attouch [14] considered the

viscosity solutions of minimization problems. In 2000, Moudafi [76] introduced an

explicit viscosity method for nonexpansive mappings. The iterative explicit viscos-

ity sequence {xn}∞n=1 is defined by (1.1.1). The sequence {xn}∞n=1 defined by (1.1.1)

converges strongly to a fixed point of a nonexpansive mapping T under suitable

conditions in Hilbert spaces. Xu et al. [104] recently proposed the concept of the

implicit midpoint rule (1.1.5). Under certain conditions, they established that the

implicit midpoint sequence (1.1.5) converges to a fixed point p of T which also solves

the variational inequality (1.1.2). Ke and Ma [65] introduced generalized viscosity

implicit rules which extend the results of Xu et al. [104]. The generalized viscosity

implicit procedures are given by (1.1.7) and (1.1.8). Replacement of strict contrac-

tions in (1.1.8) by the generalized contractions and extension to uniformly smooth
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Banach spaces was considered by Yan et al. [106]. Under certain conditions imposed

on the parameters involved, the sequence {xn}∞n=1 converges strongly to a fixed point

p of the nonexpansive mapping T, which is also the unique solution of the variational

inequality (1.1.9).

Inspired by the previous works in this direction, we propose a new implicit

iterative algorithm. Precisely, for a nonempty closed convex subset K of a uni-

formly smooth Banach space E and for real sequences
{
{αin}

∞
n=1

}3
i=1
⊂ [0, 1] and

{δn}∞n=1 ⊂ (0, 1) such that
3∑
i=1

αin = 1, the strict contraction f : K → K is replaced

by the generalized contraction mapping in (1.1.8) and we propose the implicit iter-

ative scheme, defined from an arbitrary x1 ∈ K by

xn+1 = α1
nf(xn) + α2

nxn + α3
nT ((1− δn)f(xn) + δnxn+1) , (5.2.1)

where T : K → K is a nonexpansive mapping. The technique of Yan et al. [106]

has been applied in the analysis.

5.2.2 Main results

Definition 5.2.1 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K be a generalized contraction mapping. Let T

be a nonexpansive self-mapping defined on K with F (T ) 6= ∅. The real sequences{
{αin}

∞
n=1

}3
i=1
⊂ [0, 1] and {δn}∞n=1 ⊂ (0, 1) are assumed to satisfy the following

conditions:

(i)
3∑
i=1

αin = 1;

(ii) lim
n→∞

(1− α3
nδn − α2

n) = 0,
∞∑
n=1

(1− α3
nδn − α2

n) =∞;

(iii) 0 < lim inf
n→∞

α2
n ≤ lim sup

n→∞
α2
n < 1;

(iv) lim
n→∞

α3
n = 0,

∞∑
n=1

α3
n(1− δn) <∞;

(v) 0 < ε ≤ δn ≤ δn+1 ≤ δ < 1 for all n ∈ N.
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We shall study the convergence of the iterative scheme (5.2.1) under the conditions

(i)-(v) of Definition 5.2.1 stated above.

First, we show that for all ω ∈ K, the mapping defined by

u 7→ Tω(u) : = α1
nf(ω) + α2

nω + α3
nT ((1− δn)f(ω) + δnu), (5.2.2)

for all u ∈ K, where {{αn}∞n=1}
3

i=1 ⊂ [0, 1], {δn}∞n=1 ⊂ (0, 1), is a contraction with

δ ∈ (0, 1) a contractive constant.

Indeed, for all u, v ∈ K,

‖Tω(u)− Tω(v)‖ = α3
n ‖T ((1− δn)f(ω) + δnu)− T ((1− δn)f(ω) + δnv)‖

≤ α3
n ‖(1− δn)f(ω) + δnu− (1− δn)f(ω)− δnv‖

≤ α3
nδn‖u− v‖

≤ δn‖u− v‖

≤ δ‖u− v‖. (5.2.3)

Therefore, Tω is a contraction. By Banach’s contraction mapping principle, Tω has

a fixed point.

We give and prove the following lemmas which are useful in establishing our

main result.

Lemma 5.2.2 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K a generalized contraction mapping. Let T be

a nonexpansive self-mapping defined on K with F (T ) 6= ∅. For an arbitrary x1 ∈

K, define the iterative sequence {xn}∞n=1 by (5.2.1). Then the sequence {xn}∞n=1 is

bounded under the conditions (i)-(v) of Definition 5.2.1.
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Proof. We show that the sequence {xn}∞n=1 is bounded. For p ∈ F (T ),

‖xn+1 − p‖ = ‖α1
nf(xn) + α2

nxn + α3
nT ((1− δn)f(xn) + δnxn+1)− p‖

≤ α1
n‖f(xn)− p‖+ α2

n‖xn − p‖+ α3
n‖T ((1− δn)f(xn) + δnxn+1)− p‖

≤ α1
n‖f(xn)− f(p)‖+ α1

n‖f(p)− p‖+ α2
n‖xn − p‖

+α3
n‖(1− δn)f(xn) + δnxn+1 − p‖

= α1
n‖f(xn)− f(p)‖+ α1

n‖f(p)− p‖+ α2
n‖xn − p‖

+α3
n‖(1− δn)(f(xn)− p) + δn(xn+1 − p)‖

≤ α1
n‖f(xn)− f(p)‖+ α1

n‖f(p)− p‖+ α2
n‖xn − p‖

+α3
n(1− δn)‖f(xn)− f(p)‖+ α3

n(1− δn)‖f(p)− p‖

+α3
nδn‖xn+1 − p‖

≤ α1
nψ‖xn − p‖+ α1

n‖f(p)− p‖+ α2
n‖xn − p‖+ α3

n(1− δn)ψ‖xn − p‖

+α3
n(1− δn)‖f(p)− p‖+ α3

nδn‖xn+1 − p‖

=
(
α1
nψ + α2

n + α3
n(1− δn)ψ

)
‖xn − p‖

+
(
α1
n + α3

n(1− δn)
)
‖f(p)− p‖+ α3

nδn‖xn+1 − p‖

=
(
(α1

n + α3
n)ψ + α2

n − α3
nδnψ

)
‖xn − p‖

+
(
(α1

n + α3
n)− α3

nδn
)
‖f(p)− p‖+ α3

nδn‖xn+1 − p‖

=
(
(1− α2

n)ψ + α2
n − α3

nδnψ
)
‖xn − p‖

+
(
1− α2

n − α3
nδn
)
‖f(p)− p‖+ α3

nδn‖xn+1 − p‖

=
(
ψ + α2

n(1− ψ)− α3
nδnψ

)
‖xn − p‖

+
(
1− α2

n − α3
nδn
)
‖f(p)− p‖+ α3

nδn‖xn+1 − p‖.

Therefore,

‖xn+1 − p‖ ≤
ψ + α2

n(1− ψ)− α3
nδnψ

1− α3
nδn

‖xn − p‖

+
1− α2

n − α3
nδn

1− α3
nδn

‖f(p)− p‖ (5.2.4)
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=

(
1 +

ψ + α2
n(1− ψ)− α3

nδnψ − [1− α3
nδn]

1− α3
nδn

)
‖xn − p‖

+
1− α2

n − α3
nδn

1− α3
nδn

‖f(p)− p‖

=

(
1 +
−(1− ψ) + α2

n(1− ψ) + α3
nδn(1− ψ)

1− α3
nδn

)
‖xn − p‖

+
1− α2

n − α3
nδn

1− α3
nδn

‖f(p)− p‖

=

(
1− (1− α2

n − α3
nδn)(1− ψ)

1− α3
nδn

)
‖xn − p‖

+
1− α2

n − α3
nδn

1− α3
nδn

‖f(p)− p‖

=

(
1− (1− α2

n − α3
nδn)φ

1− α3
nδn

)
‖xn − p‖

+
(1− α2

n − α3
nδn)φ

1− α3
nδn

φ−1‖f(p)− p‖

≤ max
{
‖xn − p‖, φ−1‖f(p)− p‖

}
.

Then by induction, we have

‖xn+1 − p‖ ≤ max
{
‖x1 − p‖, φ−1‖f(p)− p‖

}
.

For p ∈ F (T ),

‖f(xn)‖ ≤ ‖f(xn)− f(p)‖+ ‖f(p)‖

≤ ψ‖xn − p‖+ ‖f(p)‖

≤ max
{
ψ‖x1 − p‖, ψφ−1‖f(p)− p‖

}
+ ‖f(p)‖ (by induction).

So, {xn}∞n=1 is bounded. Also,

‖T ((1− δn)f(xn) + δnxn+1)‖ = ‖T ((1− δn)f(xn) + δnxn+1)− p+ p‖

≤ ‖T ((1− δn)f(xn) + δnxn+1)− Tp‖+ ‖p‖

≤ ‖(1− δn)f(xn) + δnxn+1 − p‖+ ‖p‖
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≤ (1− δn)‖f(xn)− p‖+ δn‖xn+1 − p‖+ ||p||

≤ (1− δn)‖f(xn)− f(p)‖+ (1− δn)‖f(p)− p‖

+δn‖xn+1 − p‖+ ||p||

≤ (1− δn)ψ‖xn − p‖+ δn‖xn+1 − p‖

+(1− δn)‖f(p)− p‖+ ||p||

≤ (1− ε)ψ‖xn − p‖+ δ‖xn+1 − p‖

+(1− ε)‖f(p)− p‖+ ||p||.

Therefore,

‖T ((1− δn)f(xn) + δnxn+1)‖ ≤ (1 + δ − εψ) max
{
‖xn − p‖, φ−1‖f(p)− p‖

}
+(1− ε)‖f(p)− p‖+ ||p|| (by induction).

Hence, {T ((1− δn)f(xn) + δnxn+1)}∞n=1 is bounded.

Lemma 5.2.3 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K a generalized contraction mapping. Let T be a

nonexpansive self-mapping defined on K with F (T ) 6= ∅. Suppose {δn}∞n=1 is a real

sequences in (0, 1) and {xn}∞n=1 ⊂ K. Set yn = (1− δn)f(xn) + δnxn+1, then

‖Tyn+1 − Tyn‖ ≤ (1− δn+1)ψ‖xn+1 − xn‖+ (δn+1 − δn)‖xn+1 − f(xn)‖

+δn+1‖xn+2 − xn+1‖. (5.2.5)

Proof.

‖Tyn+1 − Tyn‖ = ‖T ((1− δn+1)f(xn+1) + δn+1xn+2)− T ((1− δn)f(xn) + δnxn+1)‖

≤ ‖(1− δn+1)f(xn+1) + δn+1xn+2 − (1− δn)f(xn)− δnxn+1‖

= ‖(1− δn+1)f(xn+1)− (1− δn+1)f(xn)

+(1− δn+1)f(xn)− (1− δn)f(xn)

+δn+1xn+2 − δn+1xn+1 + δn+1xn+1 − δnxn+1‖
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= ‖(1− δn+1)(f(xn+1)− f(xn))− (δn+1 − δn)f(xn)

+δn+1(xn+2 − xn+1) + (δn+1 − δn)xn+1‖

= ‖(1− δn+1)(f(xn+1)− f(xn)) + (δn+1 − δn)(xn+1 − f(xn))

+δn+1(xn+2 − xn+1)‖

≤ (1− δn+1)‖f(xn+1)− f(xn)‖+ (δn+1 − δn)‖xn+1 − f(xn)‖

+δn+1‖xn+2 − xn+1‖

≤ (1− δn+1)ψ‖xn+1 − xn‖+ (δn+1 − δn)‖xn+1 − f(xn)‖

+δn+1‖xn+2 − xn+1‖.

Theorem 5.2.4 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K a generalized contraction mapping. Let T be a

nonexpansive self-mapping defined on K with F (T ) 6= ∅. Assume that the conditions

(i)− (v) of Definition 5.2.1 are satisfied. Then the iterative sequence {xn}∞n=1 which

is defined from an arbitrary x1 ∈ K by (5.2.1), converges strongly to a fixed point p

of T.

Proof. Set zn = xn+1−α2
nxn

1−α2
n

and yn = (1− δn)f(xn) + δnxn+1, we obtain,

zn+1 − zn =
xn+2 − α2

n+1xn+1

1− α2
n+1

− xn+1 − α2
nxn

1− α2
n

=
α1
n+1f(xn+1) + α3

n+1T (yn+1)

1− α2
n+1

− α1
nf(xn) + α3

nT (yn)

1− α2
n

=
α1
n+1

1− α2
n+1

(f(xn+1)− f(xn)) +

(
α1
n+1

1− α2
n+1

− α1
n

1− α2
n

)
f(xn)

+
α3
n+1

1− α2
n+1

(T (yn+1)− T (yn)) +

(
α3
n+1

1− α2
n+1

− α3
n

1− α2
n

)
T (yn)

109



=
α1
n+1

1− α2
n+1

(f(xn+1)− f(xn))−
(

α3
n+1

1− α2
n+1

− α3
n

1− α2
n

)
f(xn)

+
α3
n+1

1− α2
n+1

(T (yn+1)− T (yn)) +

(
α3
n+1

1− α2
n+1

− α3
n

1− α2
n

)
T (yn)

=
α1
n+1

1− α2
n+1

(f(xn+1)− f(xn)) +

(
α3
n+1

1− α2
n+1

− α3
n

1− α2
n

)
(T (yn)− f(xn))

+
α3
n+1

1− α2
n+1

(T (yn+1)− T (yn)).

LetM1 = sup
n
{‖T (yn)− f(xn)‖} , M2 = sup

n
{‖xn+1 − f(xn)‖} andM = max {M1,M2} .

We then have that

‖zn+1 − zn‖ ≤
α1
n+1

1− α2
n+1

‖f(xn+1)− f(xn)‖+

∣∣∣∣ α3
n+1

1− α2
n+1

− α3
n

1− α2
n

∣∣∣∣ ‖T (yn)− f(xn)‖

+
α3
n+1

1− α2
n+1

‖T (yn+1)− T (yn)‖

≤
α1
n+1

1− α2
n+1

ψ‖xn+1 − xn‖+

∣∣∣∣ α3
n+1

1− α2
n+1

− α3
n

1− α2
n

∣∣∣∣ ‖T (yn)− f(xn)‖

+
α3
n+1

1− α2
n+1

[(1− δn+1)ψ‖xn+1 − xn‖+ (δn+1 − δn)‖xn+1 − f(xn)‖

+δn+1‖xn+2 − xn+1‖ ] (by (5.2.5))

=
α1
n+1ψ + α3

n+1(1− δn+1)ψ

1− α2
n+1

‖xn+1 − xn‖

+

(∣∣∣∣ α3
n+1

1− α2
n+1

− α3
n

1− α2
n

∣∣∣∣+
α3
n+1(δn+1 − δn)

1− α2
n+1

)
M

+
α3
n+1δn+1

1− α2
n+1

‖xn+2 − xn+1‖. (5.2.6)

We now evaluate ‖xn+2 − xn+1‖.

xn+2 − xn+1 = α1
n+1f(xn+1) + α2

n+1xn+1 + α3
n+1Tyn+1

−
(
α1
nf(xn) + α2

nxn + α3
nTyn

)
= α1

n+1(f(xn+1)− f(xn)) + α2
n+1(xn+1 − xn) + α3

n+1(Tyn+1 − Tyn)

+(α1
n+1 − α1

n)f(xn) + (α2
n+1 − α2

n)xn + (α3
n+1 − α3

n)Tyn
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= α1
n+1(f(xn+1)− f(xn)) + α2

n+1(xn+1 − xn) + α3
n+1(Tyn+1 − Tyn)

+((α2
n − α2

n+1) + (α3
n − α3

n+1))f(xn)

+(α2
n+1 − α2

n)xn + (α3
n+1 − α3

n)Tyn

= α1
n+1(f(xn+1)− f(xn)) + α2

n+1(xn+1 − xn) + α3
n+1(Tyn+1 − Tyn)

+(α2
n+1 − α2

n)(xn − f(xn)) + (α3
n+1 − α3

n)(Tyn − f(xn)).

This leads to

‖xn+2 − xn+1‖ ≤ α1
n+1ψ‖xn+1 − xn‖+ α2

n+1‖xn+1 − xn‖+ α3
n+1‖Tyn+1 − Tyn‖

+|α2
n+1 − α2

n|‖xn − f(xn)‖+ |α3
n+1 − α3

n|‖Tyn − f(xn)‖

≤ α1
n+1ψ‖xn+1 − xn‖+ α2

n+1‖xn+1 − xn‖

+α3
n+1[(1− δn+1)ψ‖xn+1 − xn‖+ (δn+1 − δn)‖xn+1 − f(xn)‖

+δn+1‖xn+2 − xn+1‖ ] (by (5.2.5))

+|α2
n+1 − α2

n|‖xn − f(xn)‖+ |α3
n+1 − α3

n|‖Tyn − f(xn)‖

=
(
α2
n+1 + (α3

n+1 + α1
n+1)ψ − α3

n+1δn+1ψ
)
‖xn+1 − xn‖

+α3
n+1δn+1‖xn+2 − xn+1‖

+
(
|α2
n+1 − α2

n|+ |α3
n+1 − α3

n|+ α3
n+1(δn+1 − δn)

)
M

=
(
α2
n+1 + (1− α2

n+1)ψ − α3
n+1δn+1ψ

)
‖xn+1 − xn‖

+α3
n+1δn+1‖xn+2 − xn+1‖

+
(
|α2
n+1 − α2

n|+ |α3
n+1 − α3

n|+ α3
n+1(δn+1 − δn)

)
M

=
(
ψ + α2

n+1(1− ψ)− α3
n+1δn+1ψ

)
‖xn+1 − xn‖

+α3
n+1δn+1‖xn+2 − xn+1‖

+
(
|α2
n+1 − α2

n|+ |α3
n+1 − α3

n|+ α3
n+1(δn+1 − δn)

)
M

=
(
α2
n+1(1− ψ) + (1− α3

n+1δn+1)ψ
)
‖xn+1 − xn‖

+α3
n+1δn+1‖xn+2 − xn+1‖

+
(
|α2
n+1 − α2

n|+ |α3
n+1 − α3

n|+ α3
n+1(δn+1 − δn)

)
M.
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Let dn =
(
|α2
n+1 − α2

n|+ |α3
n+1 − α3

n|+ α3
n+1(δn+1 − δn)

)
. Therefore,

‖xn+2 − xn+1‖ ≤
α2
n+1(1− ψ) + (1− α3

n+1δn+1)ψ

1− α3
n+1δn+1

‖xn+1 − xn‖

+
dnM

1− α3
n+1δn+1

. (5.2.7)

Let Sn =
∣∣∣ α3

n+1

1−α2
n+1
− α3

n

1−α2
n

∣∣∣+ α3
n+1(δn+1−δn)

1−α2
n+1

and substitute (5.2.7) into (5.2.6) to obtain

‖zn+1 − zn‖ ≤ [
α1
n+1ψ + α3

n+1(1− δn+1)ψ

1− α2
n+1

+
α3
n+1δn+1

1− α2
n+1

×
α2
n+1(1− ψ) + (1− α3

n+1δn+1)ψ

1− α3
n+1δn+1

]‖xn+1 − xn‖

+SnM +
α3
n+1δn+1

1− α2
n+1

× dnM

1− α3
n+1δn+1

= [
α1
n+1ψ + α3

n+1(1− δn+1)ψ − α3
n+1δn+1(α

1
n+1ψ + α3

n+1(1− δn+1)ψ)

[1− α2
n+1][1− α3

n+1δn+1]

+
α3
n+1δn+1(α

2
n+1(1− ψ) + (1− α3

n+1δn+1)ψ)

[1− α2
n+1][1− α3

n+1δn+1]
]‖xn+1 − xn‖

+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M

= [
α1
n+1ψ + α3

n+1(1− δn+1)ψ − α3
n+1δn+1(α

1
n+1ψ + α3

n+1ψ − α3
n+1δn+1ψ)

[1− α2
n+1][1− α3

n+1δn+1]

+
α3
n+1δn+1(α

2
n+1 − α2

n+1ψ + ψ − α3
n+1δn+1ψ)

[1− α2
n+1][1− α3

n+1δn+1]
]‖xn+1 − xn‖

+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M

= [
α1
n+1ψ + α3

n+1(1− δn+1)ψ − α3
n+1δn+1((1− α2

n+1)ψ − α3
n+1δn+1ψ)

[1− α2
n+1][1− α3

n+1δn+1]

+
α3
n+1δn+1(α

2
n+1 + (1− α2

n+1)ψ − α3
n+1δn+1ψ)

[1− α2
n+1][1− α3

n+1δn+1]
]‖xn+1 − xn‖

+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M

=
α1
n+1ψ + α3

n+1(1− δn+1)ψ + α3
n+1δn+1α

2
n+1

[1− α2
n+1][1− α3

n+1δn+1]
‖xn+1 − xn‖

+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M

=
(1− α2

n+1)ψ − α3
n+1δn+1ψ + α3

n+1δn+1α
2
n+1

[1− α2
n+1][1− α3

n+1δn+1]
‖xn+1 − xn‖

+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M
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=

(
1−

(1− α2
n+1)(1− ψ)− α3

n+1δn+1(1− ψ)

[1− α2
n+1][1− α3

n+1δn+1]

)
‖xn+1 − xn‖

+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M

=

(
1−

(1− α2
n+1)φ− α3

n+1δn+1φ

[1− α2
n+1][1− α3

n+1δn+1]

)
‖xn+1 − xn‖+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M

=

(
1−

(1− α2
n+1 − α3

n+1δn+1)φ

[1− α2
n+1][1− α3

n+1δn+1]

)
‖xn+1 − xn‖+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M

≤
(

1−
(1− α2

n+1 − α3
n+1δn+1)φ

1− α2
n+1

)
‖xn+1 − xn‖+

(
Sn +

dnα
3
n+1δn+1

[1− α2
n+1][1− α3

n+1δn+1]

)
M.

It then follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ −
(1− α2

n+1 − α3
n+1δn+1)φ

1− α2
n+1

‖xn+1 − xn‖

+

(
Sn +

dnα
3
n+1δn+1

(1− α2
n+1)(1− α3

n+1δn+1)

)
M,

and thus,

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (5.2.8)

Invoking Lemma 2.10.7, we have

lim
n→∞

‖zn − xn‖ = 0. (5.2.9)

Consequently,

‖xn+1 − xn‖ = ‖(1− α2
n)zn + α2

nxn − xn‖

= ‖(1− α2
n)zn − (1− α2

n)xn‖

= ‖(1− α2
n)(zn − xn)‖

≤ (1− α2
n)‖zn − xn‖ → 0 as n→∞. (5.2.10)

Next, we show that lim
n→∞

‖xn − T (xn)‖ = 0. From (5.2.1), we obtain that
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‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T (xn)‖

≤ ‖xn+1 − xn‖+ ‖α1
nf(xn) + α2

nxn + α3
nT (yn)− T (xn)‖

≤ ‖xn+1 − xn‖+ α1
n‖f(xn)− T (xn)‖

+α2
n‖xn − T (xn)‖+ α3

n‖T (yn)− T (xn)‖

≤ ‖xn+1 − xn‖+ α1
n‖f(xn)− T (xn)‖

+α2
n‖xn − T (xn)‖+ α3

n‖yn − xn‖

≤ ‖xn+1 − xn‖+ α1
n‖f(xn)− T (xn)‖+ α2

n‖xn − T (xn)‖

+α3
n‖(1− δn)f(xn) + δnxn+1 − xn‖

≤ ‖xn+1 − xn‖+ α1
n‖f(xn)− T (xn)‖+ α2

n‖xn − T (xn)‖

+α3
n(1− δn)‖xn − f(xn)‖+ α3

nδn‖xn+1 − xn‖

= (1 + α3
nδn)‖xn+1 − xn‖+ (α1

n + α3
n(1− δn))Q+ α2

n‖xn − T (xn)‖

= (1 + α3
nδn)‖xn+1 − xn‖+ (1− α3

nδn − α2
n)Q+ α2

n‖xn − T (xn)‖.

Since 0 < lim inf
n→∞

α2
n ≤ lim sup

n→∞
α2
n < 1, let 0 < η ≤ α2

n < 1, then

‖xn − Txn‖ ≤
1 + α3

nδn
1− α2

n

‖xn+1 − xn‖+
1− α3

nδn − α2
n

1− α2
n

Q

≤ 1 + α3
nδn

1− η
‖xn+1 − xn‖+

1− α3
nδn − α2

n

1− η
Q, (5.2.11)

which goes to zero as n→∞ by (5.2.10) and condition (ii) of Definition 5.2.1.

We claim that

lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 ≤ 0, (5.2.12)

For a unique fixed point p ∈ F (T ) of the generalized contraction PF (T )f(p) (Propo-

sition 2.9.4), that is, p = PF (T )f(p) and since lim
n→∞

‖xn − Txn‖ = 0 by (5.2.11), it

follows that

lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.

Due to the continuity of the duality map and the fact that ‖xn+1 − xn‖ → 0 as

n→∞ by (5.2.10), we obtain that,

lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 = lim sup
n→∞

〈f(p)− p, J(xn+1 − xn + xn − p)〉

= lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0. (5.2.13)
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We prove that xn → p ∈ F (T ) as n→∞.

Suppose that the sequence {xn}∞n=1 does not converge strongly to p ∈ F (T ). Then

there exists ε > 0 and a subsequence {xnk}
∞
k=1 of {xn}∞n=1 such that ‖xnk − p‖ ≥ ε,

for all k ∈ N. Therefore, for this ε, there exists c ∈ (0, 1
2
) such that

‖f(xnk)− f(p)‖ ≤ c‖xnk − p‖.

||xnk+1
− p||2 = α1

nk

〈
f(xnk)− p, J(xnk+1

− p)
〉

+ α2
nk

〈
xnk − p, J(xnk+1

− p)
〉

+α3
nk

〈
T (ynk)− p, J(xnk+1

− p)
〉

= α1
nk

〈
f(xnk)− f(p), J(xnk+1

− p)
〉

+ α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+α2
nk

〈
xnk − p, J(xnk+1

− p)
〉

+ α3
nk

〈
T (ynk)− p, J(xnk+1

− p)
〉

≤ cα1
nk
‖xnk − p‖ ‖xnk+1

− p‖+ α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+α2
nk
‖xnk − p‖ ‖xnk+1

− p‖

+α3
nk
||(1− δnk)f(xnk) + δnkxnk+1

− p|| ||xnk+1
− p||

≤ cα1
nk
‖xnk − p‖ ‖xnk+1

− p‖+ α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+α2
nk
‖xnk − p‖ ‖xnk+1

− p‖

+α3
nk

(1− δnk)||f(xnk)− p|| ||xnk+1
− p||+ α3

nk
δnk‖xnk+1

− p‖2
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≤ cα1
nk
‖xnk − p‖ ‖xnk+1

− p‖+ α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+α2
nk
‖xnk − p‖ ‖xnk+1

− p‖+ cα3
nk

(1− δnk)||xnk − p|| ||xnk+1
− p||

+α3
nk

(1− δnk)||f(p)− p|| ||xnk+1
− p||+ α3

nk
δnk‖xnk+1

− p‖2

=
(
cα1

nk
+ α2

nk
+ cα3

nk
(1− δnk)

)
‖xnk − p‖ ‖xnk+1

− p‖

+α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+α3
nk

(1− δnk)||f(p)− p|| ||xnk+1
− p||+ α3

nk
δnk‖xnk+1

− p‖2

≤ 1

2

(
cα1

nk
+ α2

nk
+ cα3

nk
(1− δnk)

) (
‖xnk − p‖

2 + ‖xnk+1
− p‖2

)
+α1

n

〈
f(p)− p, J(xnk+1

− p)
〉

+ α3
nk
δnk‖xnk+1

− p‖2

+
1

2
α3
nk

(1− δnk)
(
‖f(p)− p‖2 + ‖xnk+1

− p‖2
)

=
1

2

(
c(α1

nk
+ α3

nk
(1− δnk)) + α2

nk

)
‖xnk − p‖

2 + α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+
1

2

(
c(α1

nk
+ α3

nk
(1− δnk)) + α2

nk
+ 2α3

nk
δnk + α3

nk
(1− δnk)

)
‖xnk+1

− p‖2

+
1

2
α3
nk

(1− δnk)‖f(p)− p‖2

=
1

2

(
c(α1

nk
+ α3

nk
(1− δnk)) + α2

nk

)
‖xnk − p‖

2 + α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+
1

2

(
c(α1

nk
+ α3

nk
(1− δnk)) + α2

nk
+ α3

nk
(1 + δnk)

)
‖xnk+1

− p‖2

+
1

2
α3
nk

(1− δnk)‖f(p)− p‖2

=
1

2

(
c(1− α2

nk
− α3

nk
δnk) + α2

nk

)
‖xnk − p‖

2 + α1
n

〈
f(p)− p, J(xnk+1

− p)
〉

+
1

2

(
c(1− α2

nk
− α3

nk
δnk) + α2

nk
+ α3

nk
(1 + δnk)

)
‖xnk+1

− p‖2 (5.2.14)

+
1

2
α3
nk

(1− δnk)‖f(p)− p‖2.

Observe that

2− c(1− α2
nk
− α3

nk
δnk)− α2

nk
− α3

nk
(1 + δnk)

= 2− c+ cα2
nk

+ cα3
nk
δnk − α2

nk
− α3

nk
− α3

nk
δnk

= 2− c− (1− c)α2
nk
− (1− c)α3

nk
δnk − α3

nk

= 1− c− (1− c)α2
nk
− (1− c)α3

nk
δnk + 1− α3

nk

= 1 + (1− c)
(
1− α2

nk
− α3

nk
δnk
)
− α3

nk
(5.2.15)
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and

α1
nk

= 1− α2
nk
− α3

nk

≤ 1− α2
nk
− α3

nk
δnk (since δnk ∈ (0, 1)). (5.2.16)

Multiplying (5.2.14) by 2 gives

||xnk+1 − p||2 ≤
c(1− α2

nk
− α3

nk
δnk) + α2

nk

1 + (1− c)
(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

‖xnk − p‖
2

+
α1
n

1 + (1− c)
(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

〈
f(p)− p, J(xnk+1

− p)
〉

+
α3
nk

(1− δnk)
1 + (1− c)

(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

‖f(p)− p‖2

=

(
1−

(1− 2c)(1− α2
nk
− α3

nk
δnk) + α1

nk

1 + (1− c)
(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

)
‖xnk − p‖

2

+
α1
nk

1 + (1− c)
(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

〈
f(p)− p, J(xnk+1

− p)
〉

+
α3
nk

(1− δnk)
1 + (1− c)

(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

‖f(p)− p‖2

≤

(
1−

(1− 2c)(1− α2
nk
− α3

nk
δnk)

1 + (1− c)
(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

)
‖xnk − p‖

2

+
(1− 2c)(1− α2

nk
− α3

nk
δnk)

1 + (1− c)
(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

1

1− 2c

〈
f(p)− p, J(xnk+1

− p)
〉

+
α3
nk

(1− δnk)
1 + (1− c)

(
1− α2

nk
− α3

nk
δnk
)
− α3

nk

‖f(p)− p‖2 (By (5.2.16)).

Using Lemma 2.10.6, it shows that xnk → p as k → ∞. A contradiction, hence,

{xn}∞n=1 converges strongly to p ∈ F (T ).

The next result shows that under suitable conditions, the implicit iterative se-

quences (1.1.8) and (5.2.1) converge to the same fixed point.

Theorem 5.2.5 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K a c-contraction mapping with c ∈ [0, 1). Let T be

a nonexpansive self-mapping defined on K with F (T ) 6= ∅. Let
{
{αin}

∞
n=1

}3
i=1
⊂

[0, 1] and {δn}∞n=1 ⊂ (0, 1) be real sequences such that
3∑
i=1

αin = 1. Given that
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lim
n→∞

α3
n

(1− α2
n − α3

nδn)
= 0, then {xn}∞n=1 defined by (5.2.1) converges to p if and

only if {yn}∞n=1 defined by (1.1.8) converges to p.

Proof. Notice that (5.2.1) and (1.1.8) are respectively given by

xn+1 = α1
nf(xn) + α2

nxn + α3
nT ((1− δn)f(xn) + δnxn+1) , n ∈ N,

and

yn+1 = αnf(yn) + βnyn + γnT (δnyn + (1− δn)yn+1) , n ∈ N.

We first need to show that ||xn − yn|| → 0, as n→∞.

‖xn+1 − yn+1‖ = ||α1
nf(xn) + α2

nxn + α3
nT ((1− δn)f(xn) + δnxn+1)

−
(
α1
nf(yn) + α2

nyn + α3
nT (δnyn + (1− δn)yn+1)

)
||

= ‖α1
n(f(xn)− f(yn)) + α2

n(xn − yn)

+α3
n (T ((1− δn)f(xn) + δnxn+1)− T (δnyn + (1− δn)yn+1)) ‖

≤ α1
n||f(xn)− f(yn)||+ α2

n‖xn − yn‖

+α3
n‖T ((1− δn)f(xn) + δnxn+1)− T (δnyn + (1− δn)yn+1)‖

≤ α1
nc||xn − yn||+ α2

n‖xn − yn‖

+α3
n‖(1− δn)(f(xn)− yn+1) + δn(xn+1 − yn)‖

≤ α1
nc||xn − yn||+ α2

n‖xn − yn‖

+α3
n(1− δn)‖f(xn)− f(yn) + f(yn)− yn+1‖

+α3
nδn‖xn+1 − yn+1 + yn+1 − yn‖

≤ α1
nc||xn − yn||+ α2

n‖xn − yn‖

+α3
n(1− δn)c‖xn − yn‖+ α3

n(1− δn)‖yn+1 − f(yn)‖

+α3
nδn‖xn+1 − yn+1‖+ α3

nδn‖yn+1 − yn‖

=
(
α1
nc+ α3

n(1− δn)c+ α2
n

)
||xn − yn||+ α3

nδn‖xn+1 − yn+1‖

+α3
n(1− δn)‖yn+1 − f(yn)‖+ α3

nδn‖yn+1 − yn‖.

Since {yn}∞n=1 and {f(yn)}∞n=1 are bounded, let
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M2 = max

{
sup
n
‖yn+1 − f(yn)‖, sup

n
‖yn+1 − yn‖

}
. Then

‖xn+1 − yn+1‖ ≤
α1
nc+ α3

n(1− δn)c+ α2
n

1− α3
nδn

||xn − yn||+
α3
n

1− α3
nδn

M2

=

(
1− (1− α2

n − α3
nδn)(1− c)

1− α3
nδn

)
||xn − yn||+

α3
n

1− α3
nδn

M2

= (1− βn)||xn − yn||+
α3
n

(1− α2
n − α3

nδn)(1− c)
βnM2, (5.2.17)

where βn = (1−α2
n−α3

nδn)(1−c)
1−α3

nδn
. From the given condition, it follows that

lim sup
n→∞

α3
n

(1− α2
n − α3

nδn)
≤ 0. Apply Lemma 2.10.6 with γn = 0 to (5.2.17) to get

that ||xn − yn|| → 0, as n→∞. Next, suppose ||yn − p|| → 0 as n→∞. It follows

that,

||xn − p|| = ||xn − yn + yn − p|| ≤ ||xn − yn||+ ||yn − p|| → 0 as n→∞.

Similarly, suppose ||xn − p|| → 0 as n→∞. Then,

||yn − p|| = ||yn − xn + xn − p|| ≤ ||yn − xn||+ ||xn − p|| → 0 as n→∞.

Hence, the implicit iterative sequences (1.1.8) and (5.2.1) converge to the same fixed

point under suitable conditions.

5.2.3 Applications

(I) Application to fixed points of λ-strictly pseudo-contractive mappings

Let K be a closed convex subset of a real Banach space E. A mapping S : K → K

is said to be λ-strictly pseudo-contractive mapping if there exists 0 ≤ λ < 1 such

that

‖Sx− Sy‖2 ≤ ‖x− y‖2 − λ‖(I − S)x− (I − S)y‖2, ∀ x, y ∈ K, (5.2.18)

where I denotes the identity operator on K.

Zhou [112] established the following lemma which gives a relationship between

λ-strictly pseudo-contractive mappings and nonexpansive mappings.
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Lemma 5.2.6 Let K be a nonempty subset of a 2-uniformly smooth Banach space

E. Let S : K → K be a λ-strictly pseudo-contractive mapping. For θ ∈ (0, 1), define

Tx = θx+ (1− θ)Sx ∀ x ∈ K. (5.2.19)

Then, as θ ∈ (0, λ
L2 ], (where L is the 2-uniformly smooth constant of a 2-uniformly

smooth Banach space,) T : K → K is nonexpansive such that F (T ) = F (S).

We obtain the following result by using Lemma 5.2.6 and Theorem 5.2.4.

Corollary 5.2.7 Let K be a nonempty closed convex subset of a uniformly smooth

Banach space E and f : K → K be a generalized contraction mapping. Let S :

K → K a λ-strictly pseudo-contractive mapping with F (T ) 6= ∅. Suppose that the

conditions (i)− (v) of Definition 5.2.1 are satisfied and T is a mapping from K into

itself, defined by Tx = αx + (1 − θ)Sx, x ∈ K, θ ∈ (0, 1). Then, for an arbitrary

x1 ∈ K, the iterative sequence {xn}∞n=1 defined by

xn+1 = α1
nf(xn) + α2

nxn + α3
nT ((1− δn)f(xn) + δnxn+1) for all n ∈ N, (5.2.20)

converges strongly to a fixed point p of S, which solves the variational inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F (S). (5.2.21)

(II) Application to solution of α-inverse-strongly monotone mappings

Let K be a nonempty closed convex subset of a Hilbert space H. The metric pro-

jection PK , is defined from H onto K by

PKx := arg min
y∈K
‖x− y‖2, x ∈ H (5.2.22)

and characterized by

PK(x) := arg min
z∈K
‖x− z‖2, x ∈ H. (5.2.23)

PK(x) is known as the only point in K that minimizes the objective ‖x − z‖ over

z ∈ K. A mapping A of K into H is called monotone if 〈Au− Av, u− v〉 ≥ 0, for all

u, v ∈ K. The classical Variational Inequality (VI) problem is to find u∗ ∈ K such

that

〈Au∗, u− u∗〉 ≥ 0, u ∈ K, (5.2.24)
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where A is a (single-valued) monotone operator in Hilbert space H ([20], [71]). In

this work, the solution set of (5.2.24) is denoted by V I(K,A). In the context of the

variational inequality problem, (5.2.23) implies that

u ∈ V I(K,A)⇔ u = PK(u− γAu), ∀ γ > 0. (5.2.25)

A is said to be α-inverse-strongly monotone if there exists a positive real number α

such that

〈Au− Av, u− v〉 ≥ α‖Au− Av‖2,

for all u, v ∈ K. If A is an α-inverse-strongly monotone mapping of K to H, it is

known that A is 1
α
-Lipschitz continuous. Also, we have that for all u, v ∈ K and

γ > 0,

‖(I − γA)u− (I − γA)v‖2 = ‖(u− v)− (Au− Av)‖2

= ‖u− v‖2 − 2γ 〈u− v, Au− Av〉+ γ2‖Au− Av‖2

≤ ‖u− v‖2 + γ(γ − 2α)‖Au− Av‖2.

Therefore, if γ ≤ 2α, then I − γA is a nonexpansive mapping of K into K. Conse-

quently, one can apply Theorem 5.2.4 to deduce the following result:

Corollary 5.2.8 Let K be a nonempty closed convex subset of a real Hilbert space

H and f : K → K a generalized contractions. Let A be an α-inverse-strongly

monotone mapping of K to H with A−10 6= ∅. Assume that the conditions (i)− (v)

of Definition 5.2.1 are satisfied. Then the iterative sequence {xn}∞n=1 which is defined

from an arbitrary x1 ∈ K by

xn+1 = α1
nf(xn)+α2

n(xn)+α3
nPK(I−γA) ((1− δn)f(xn) + δnxn+1) , n ∈ N, (5.2.26)

converges strongly to a solution p in A−10, which solves the variational inequality

〈(I − f)p, x− p〉 ≥ 0, for all x ∈ A−10. (5.2.27)

(III) Application to Fredholm integral equation in Hilbert spaces

Consider a Fredholm integral equation of the form

x(t) = g(t) +

∫ 1

0

Φ(t, s, x(s))ds, t ∈ [0, 1], (5.2.28)
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where g is a continuous function on [0, 1] and Φ : [0, 1]× [0, 1]×R→ R is continuous.

The existence of solutions of (5.2.28) has been studied (see [79] and the references

therein). If Φ satisfies the Lipschitz continuity condition

|Φ(t, s, x)− Φ(t, s, y)| ≤ |x− y|, s, t ∈ [0, 1], x, y ∈ R, (5.2.29)

then equation (5.2.28) has at least one solution in the Hilbert space L2[0, 1] ([79],

Theorem 3.3). Precisely, define a mapping T : L2[0, 1]→ L2[0, 1] by

Tx(t) = g(t) +

∫ 1

0

Φ(t, s, x(s))ds, t ∈ [0, 1]. (5.2.30)

It is known that T is nonexpansive. Indeed, for x, y ∈ L2[0, 1]

‖Tx− Ty‖2 =

∫ 1

0

|Tx(t)− Ty(t)|2dt

=

∫ 1

0

∣∣∣∣∫ 1

0

Φ(t, s, x(s))− Φ(t, s, y(s))ds

∣∣∣∣2dt
≤

∫ 1

0

∣∣∣∣∫ 1

0

|x(s)− y(s)|ds
∣∣∣∣2dt

≤
∫ 1

0

|x(s)− y(s)|2ds = ‖x− y‖2.

Thus, finding a solution of integral equation (5.2.28) is reduced to finding a fixed

point of the nonexpansive mapping T in the Hilbert space L2[0, 1]. Consequently,

the following result is obtainable.

Corollary 5.2.9 Let K be a nonempty closed convex subset of a Hilbert space

L2[0, 1], T : K → K, defined by (5.2.30) with F (T ) 6= ∅ and f : K → K is a

generalized contraction. Suppose that the conditions (i)− (v) of Definition 5.2.1 are

satisfied. Then, for an arbitrary x1 ∈ K, the iterative sequence {xn}∞n=1 defined by

xn+1 = α1
nf(xn) + α2

n(xn) + α3
nT ((1− δn)f(xn) + δnxn+1) , n ∈ N, (5.2.31)

converges strongly to a fixed point p of T, which solves the variational inequality

〈(I − f)p, x− p〉 ≥ 0, for all x ∈ F (T ). (5.2.32)
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CHAPTER 6

General conclusion, contribution to knowledge and future research

6.1 General conclusion and contribution to knowl-

edge

Introduction of new maps or functions and construction of new algorithms are very

essential in Functional Analysis. We proposed the concept of generalized Lyapunov

functions in Chapter 3 (Aibinu and Mewomo [3], [5]). The Lyapunov functions given

by Alber [7] are obtained from the generalized Lyapunov functions by taking p = 2.

The generalized Lyapunov functions admit generalized duality mapping. When

p = 2, the generalized duality mapping becomes the normalized duality mapping

and we obtain the definition which was given by Alber [7]. The class of (p,η)-

strongly monotone mappings which satisfies the range condition is being considered

in Section 3.3, where p > 1 and η > 0. Thus, the results in Section 3.3 extend and

generalize the results of Chidume and Idu [33]. Great improvements and expansion

have been made to the results of Chidume and Djitte [30]: more general iterative

algorithm was considered in Section 3.3 and the results are obtained in uniformly

smooth and uniformly convex Banach spaces. The study in Section 3.4 focuses on

the class of generalized Φ-strongly monotone mappings in Banach spaces, the class of
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monotone-type mappings. Therefore, the results in Section 3.4 extend and improve

the existing results on monotone type mappings in the literatures. Reference is

also made to the generalized convex optimization problems as an application of the

results.

In Section 4.1, the numerical examples display the efficiency of the rate of con-

vergence of implicit midpoint rules, where viscosity is involved over a nonviscous

method. We studied the relationship between the existing generalized implicit it-

erative algorithms and examined the conditions under which they converge to the

same fixed points of a nonexpansive mapping. Analytical comparison of the rate

of convergence of the existing generalized implicit iterative algorithms is given in

Section 4.2. The analytical proof is essential as it is more general and contains

numerical examples as corollaries. The study of the class of µ-strictly pseudocon-

tractive mappings in Section 5.1 is very important as it extends and improves the

existing results on viscosity approximation methods. Generalized contraction is used

in Section 5.2 to introduce a new viscosity iterative algorithm for the class of non-

expansive mappings. The convergence in norm of the newly introduced sequence to

a fixed point of a nonexpansive mapping is established. Furthermore, it is shown

that it also solves some variational inequality problems in uniformly smooth Banach

spaces.

6.2 Recommendation

(i) Can the implicit midpoint rule be applied to approximate a fixed point of non-

affine nonexpansive mappings such as sinx? For instance, taking T (x) = sin x

in the implicit midpoint rule (1.1.5), a simplest form of the equation in R

which one would obtain is

y = x+ sin(x+ y),

where y is to be made the subject of the formula in order to get an explicit

equation like (4.1.15), (4.1.16) or (4.1.17).

(ii) We do not know if the implicit iteration scheme can be applied in general to
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nonexpansive non-affine functions, for example cosx. That is, can one solve

for y in

y = ax+ b cos(cx+ dy)

in < (the set of real numbers with the usual metric).
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[109] C. Zǎlinescu, On uniformly convex functions, J. Math. Anal. Appl. 95, (1983),

344-374.

[110] E. H. Zarantonello, Solving functional equations by contractive averaging,

Technical Report 160. Madison, Wisconsin: U.S. Army Mathematics Research

Center; 1960.

136



[111] H. Zegeye, Strong convergence theorems for maximal monotone mappings in

Banach spaces, J. Math. Anal. Appl. 343, (2008), 663-671.

[112] H. Zhou, Convergence theorems for λ-strict pseudo-contractions in 2-uniformly

smooth Banach spaces, Nonlinear Anal. 69 (2008), 3160-3173.

137


	Title Page
	Abstract
	Preface
	Declaration
	Publication
	Dedication
	Table of contents
	Acknowledgments
	List of Figures
	List of Tables

	General Introduction
	Motivation for present work
	Monotone mappings
	Viscosity approximation methods

	Objectives
	Organization of the thesis

	Preliminaries
	Smooth and convex spaces
	Duality mappings
	Convex functions
	Nonexpansive mappings
	Continuous mappings
	Lyapunov functions
	Monotone type mappings
	Surjective property of bounded linear functions
	Contraction mappings
	Rate of convergence
	Cauchy-Schwartz's inequality

	Iterative algorithms for monotone type mappings
	Generalized Lyapunov functions
	Algorithm for zeros of monotone maps in Banach spaces
	Background
	Main result

	Strong convergence theorems for strongly monotone mappings in Banach spaces
	Background
	Main result

	Algorithm for the generalized -strongly monotone mappings and application to the generalized convex optimization problems
	Background
	Main Results
	Application to the generalized convex optimization problem


	Viscosity implicit iterative algorithms and applications
	The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces
	Background
	Main results
	Application to accretive mappings
	Application to variational inequality problems
	Numerical examples

	On the rate of convergence of viscosity implicit iterative algorithms
	Background
	Main results
	Applications


	Implicit iterative procedures based on generalized contractions
	The implicit iterative algorithms of strictly pseudo-contractive mappings in Banach spaces
	Background
	Main results
	Extension to a finite family of strictly pseudo-contractive mappings

	The viscosity implicit iterative algorithms of nonexpansive mappings in Banach spaces
	Background
	Main results
	Applications


	General conclusion, contribution to knowledge and future research
	General conclusion and contribution to knowledge
	Recommendation

	Bibliography



