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Abstract 

This thesis is concerned with the some aspects of electrostatic wave phenomena dusty 

plasmas . In particular Debye shielding, nonlinear potential structures such as diploar 

vortices and solitons are investigated. 

The phenomenon of Debye shielding is investigated in a dusty plasma where electrons 

and ions have Boltzmann density distributions and the massive, negatively charged 

dust grains are taken to be stationary. Small and large amplitude electrostatic po­

tentials are considered. The existence of nonlinear dipolar-vortex and modified con­

vective cell structures are examined in an inhomogeneous magnetized dusty plasma. 

A study is carried out on arbitrary amplitude rarefactive and compressive solitons in 

dusty plasmas. Using the reductive perturbation technique, the kinetic Korteweg-de 

Vries equation and the corresponding equation for fluid theory is derived. The in­

vestigation is done on weak (or small amplitude) solitons. Comparisons between the 

associated soliton profiles are presented. 
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Chapter 1 

INTRODUCTION 

An ordinary plasma is defined as a quasi-neutral collection of electrons, ions and neu­

tral particles in which the long range electromagnetic forces dominate over the short 

range billiard ball collisions. In this sense a plasma displays collective behaviour. 

Quasi-neutrality is associated with the phenomenon of Debye shielding, which is char­

acterized by the Debye length: the typical distance over which any electric potential 

perturbation (external or internal) is shielded from the rest of the plasma. As a result 

of the much greater mobility of the electrons the Debye length is usually expressed 

in terms of the electron parameters, it is given by 

(1.1 ) 

where Te(ne) is the electron temperature (density), e is the magnitude of the electron 

charge, to the permittivity of free space and k is Boltzmann's constant. 

On the other hand, a "dusty plasma" can be generally defined as a plasma with 

a dispersed phase of solid objects like grains or dust particles. By dust particles 

we mean particles larger than ionic in size but small enough that electromagnetic 
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forces on the dust have significant effect on their motion. At one (lower) extreme in 

which the dust becomes molecular ion in size the plasma would be a multicomponent 

plasma and not a dusty one. Whereas in the other extreme of larger particles, the 

gravitational forces dominate over the electromagnetic forces. 

Dust is quite common throughout the universe. Some well known systems where the 

presence of dust has been observed are inter-stellar clouds (from star reddening and 

infrared emission), circum-stellar clouds and the solar system. Larger objects such 

as meteorites, planetesimals and planets persumably evolved through coagulation of 

dust. Recent measurements show that the solar system is full of "grains" of various 

nature, size and origin: micrometeoriods, space debris, man-made pollution etc. Dust 

is also seen in planetary magnetospheres, including the earth, and in cometary tails. 

One of the sources of dust in the earth's magnetosphere is man-made pollution in the 

form of rocket exhausts. These are mainly in the form of aluminium oxide (A120 3). 

Sources of dust in planetary magnetospheres are interplanetary dust blown off from 

comets and asteriods. Missions to Jupiter and Saturn in the last decade have proved 

that their rings are made of a distribution of micron to submicron size dust particles. 

Recent interest in dusty plasmas have been accelerated by the observation of dust in 

the environment of comet halley by the Vega and Giotto space probes; in the vicinity 

of comet Giacobini-Zinner by the ICE satellite; and in the vicinities of Jupiter, Saturn 

and Uranus by the Voyager spacecraft. 

The effect of dust on the structure and the properties of plasmas was recognised in 

laboratory experiments long before "space dust". Some sources of such dust are: high 

Z impurities from the walls in Tokamaks; plasma etching techniques and impurities in 

MHD generators. The sizes of the particles are found to range from tens of Angstroms 

to several microns, in some cases up to O.lem depending on the plasma conditions. 
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A characteristic of a dust grain in a dusty plasma is that its charge is not fixed, 

being dependent on environmental factors such as the temperature and density of the 

surrounding plasma, or processes such as photoemission and secondary emission. For 

charging effects purely due to the surrounding plasma, the electron and ion fluxes to 

the dust grain's surface are unequal because of the much larger thermal velocity of the 

more mobile electrons. Hence, the dust grains become negatively charged to equalize 

the electron and ion thermal fluxes and thereby establish steady state (Figure 1.1). 

Consequently, in many theoretical studies the dust grains are taken to be negatively 

charged. For equal electron and ion temperatures (T), the grain potential is given by 

ecpjkT = -2.51 for a hydrogen plasma and -3.31 for a singly charged oxygen plasma. 

For kT = leV, and grain radius a = lOj.lm, calculations yield for the charge on the 

dust grain Qd = -1.7 x 104e. 

On the other hand, if the the primary electrons are sufficiently energetic, they can pro­

duce secondary emission which causes the surface potential to become positive. Also, 

the absorption of solar UV radiation releases photoelectrons, thereby constituting a 

positive charging current. There are other sources of charging currents, e.g. thermal 

emission, sputtering and proton-induced secondaries. Figure 1.2 (Goertz 1989) shows 

the net current as a function of the dust grain's surface potential due to primary elec­

tron and ion currents and secondaries. The constant Om is a measure of the material 

properties of the dust grains and is found to be in the range 0.5 ~ Om ~ 30. From 

Figure 1.2, it is seen that there are three values of CPd for a steady state (Jtot = 0) 

solution. The two extreme values correspond to stable equilibria (with positive and 

negative charges, respectively), whereas the intermediate equilibrium is unstable. 

The variation of the dust grain surface potential as a function of plasma temperature 

(Te = Ti = T) for different values of Om is shown in Figure 1.3. The grain is negative 
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Figure 1.1: A dust grain in a plasma becomes negatively charged. 
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Figure 1.2: The charging current density due to plasma electrons (dotted curve), 
plasma ions (dashed curve), and secondaries (dashed-dotted curve) as a function of 
the grain's surface potential <Ps. The solid curve is the net charging current density 
including secondaries for 8m = 10 and kT = 1e V and the equilibrium surface potential 
is given by the zeros of the net charging current (from Goertz 1989). 
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for a cold plasma (T small), because the flux of secondaries is small. But in a hot 

plasma the flux of secondaries exceeds the flux of primaries thereby resulting in a 

positive grain potential. This type of behaviour suggests that in a plasma with a 

fluctuating temperature, some of the dust grains will be positively charged, while 

others have negative charge. 

The charge on the dust can pe modified through their motion in a plasma. As the 

electron thermal velocity is much larger than the dust grain drift velocity, the electron 

flux is not affected generally by this motion. Since the dust particles are charged, they 

will be affected by the electric and the magnetic fields often in subtle and surprising 

ways. In addition, they may change the properties of the plasma itself and change 

the dispersion relation of various, usually low frequency plasma waves. Depending on 

the concentration, one can look at either the dust grains in a plasma from a particle 

dynamics point of view or at the collective effects of the charged dust on the plasma. 

In this thesis we study electrostatic wave phenomena in dusty plasmas, in particu­

lar Debye shielding and nonlinear potential structures such as dipolar vortices and 

solitons. 

This thesis is organized as follows:-

In Chapter Two the phenomenon of Debye shielding is investigated in a dusty 

plasma having Boltzmann density distributions for electrons and ions, while the mas­

sive, negatively charged dust grains are taken to be stationary. Both small and large 

amplitude electrostatic potentials are considered. 

Chapter Three examines the existence of nonlinear dipolar-vortex and modified 

convective cell structures in an inhomogeneous magnetized dusty plasma. 
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Chapter Four presents a study of arbitrary amplitude compressive and rarefactive 

solitons in dusty plasmas for the plasma model used in chapter two. 

Chapter Five, which is concerned with weak (or small amplitude) solitons, contains 

the derivation of the kinetic KdV equation for dusty plasmas. The corresponding 

equation for fluid theory is also derived. Comparisons between the associated soliton 

profiles are presented. 

Chapter Six is the concluding chapter in which the summary of our investigations 

are presented. 



Chapter 2 

DEBYE SHIELDING IN A 

DUSTY PLASMA 

2.1 Introduction 

Firstly, this chapter describes the phenomenon of Debye shielding in a plasma. Then 

the effect of Debye shielding is examined in a dusty plasma in which the thermal elec­

trons and ions have been taken as point particles having Boltzmann density distribu­

tions, while the massive, negatively charged dust grains are stationary. An analytical 

expression is derived for the one- dimensional effective Debye length for the case of 

small amplitude potentials. Then an approximate analytical solution of the Poisson 

equation, using spherical coordinates, is compared with a numerical solution of the 

complete equation using a backward differencing scheme. 

It is well known that in an electron-ion plasma, electrons are attracted to the vicinity 

of an ion and shield its electrostatic field from the rest of the plasma. Similarly, an 

electron at rest repels other electrons and attracts ions. The formation of a shielding 

9 



10 

cloud of charge takes place over a typical distance defined as the Debye length AD 

(Chen, 1974), which is given by 

(2.1) 

Here Te is the electron temperature, no the equilibrium density of the electrons ( and 

ions) 

In a dusty plasma, for example, a negatively charged dust, tends to attract the positive 

ions and repel the negative electrons. This positive charge density partially shields 

out the negative dust charge and reduces the electric field significantly. This "Debye 

shielding" effect is a unique consequence of the fact that the dust is immersed in a 

plasma. 

Using a scaling technique, the assumption e<jJ ~ kT for weak potentials is put in 

perspective by Mak (1992) who has shown that the linearized solution we are accus­

tomed to remains valid well after the linearization is violated. In this chapter, we 

extend his work to the case of a dusty plasma. 

2.2 Theory 

In our model both the positive ions and the electrons are treated as point particles in 

comparison to the massive dust particles. Hence, allowing for finite electron and ion 

temperatures, the number density of both the species is taken to be of the Boltzmann 

type ( Rao et. aI, 1990; Bharuthram and Shukla, 1992). The dust grains are assumed 

to be cold. Furthermore, because of their large mass they are assumed not to par­

ticipate in the motion over the time scale involved, thereby forming a neutralizing 

background. 
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2.2.1 Weak electrostatic potentials 

We begin by deriving an expression for the Debye length in a dusty plasma following 

the usual 'weak' potential expansion technique (Chen, 1974). As stated above, in our 

model both the electrons and the ions are treated as point particles with Boltzmann 

density distributions ( Rao et. aI, 1990; Bharuthram and Shukla, 1992) given by, 

respectively, 

(2.2) 

and 

(2.3) 

where </> is the electrostatic potential and Tj is the temperature of species j (j = e( i) 

for the electrons (ions). Quasineutrality at equilibrium requires that the equilibrium 

densities njo satisfy 

(2.4) 

where ndo is the density of the negatively charged dust particles, Zd the magnitude 

of their charge, and no is the total plasma density. 

The system of equations is closed with Poisson's equation 

(2.5) 

For I e</>/Tj I~ 1 (j = e, i), we expand the exponential terms in (2.2) and (2.3). Upon 

then combining with (2.4) and (2.5) one obtains 

(2.6) 

We note that in arriving at (2.6) the massive dust grains have been assumed to be 

stationary charged particles. 
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Restricting the analysis to one dimension, (2.6) is easily solved in Cartesian coordi­

nates to yield 

</> = </>0 exp( -xl A~), (2.7) 

where the effective Debye shielding distance is 

I AD 
AD = 1 , 

[ &£ + ~]2 
no T. 

(2.8) 

where AD = (Te/47rnoe2)~ is the usual Debye length in an electron - ion plasma. 

In Figure 2.1 is shown the variation of AD/AD with the normalized electron density 

neo/no for different values of the electron to ion temperature ratios Te/Ti. Here we 

set Zd = 100, and vary ndo/no from 0.0005 to 0.0095. It is observed that the effective 

Debye length in a dusty plasma is smaller than that for an ordinary electron - ion 

plasma, the relative fraction decreasing with increasing values of the temperature 

ratio Te/Ti. For Te/Ti 2:: 10, an increase in the electron density has little effect on the 

effective Debye length. This may be attributed to the electrons being very energetic at 

such temperatures, thus they are easily repelled by the negatively charged dust grains. 

For the massive, stationary dust grains the shielding is then essentailly provided by 

the positive (point particle) ions. 

2.2.2 Large amplitude electrostatic potentials 

Here, we examine the validity of the assumption I e</>/Tj I~ 1 (j = e, i) used in 

obtaining (2.6) and (2.7) by solving the appropriate Poisson equation numerically. In 

doing so we use spherical coordinates. For </> = </>(r ), the approximate equation (2.6) 

yields 

</> ( ) = ;, exp( -r / AD) 
r '1'0 r/ AD ' (2.9) 
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Figure 2.1 : The variation of ADI AD with the normalized electron density. The 
parameter labelling the curves is the electron to ion temperature ratio TeiTi. 
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where ~o = eif>o, with if> = if>o at r = AD' 

Let us now consider the complete equation (2.5). In solving it numerically we 

follow the technique of Mak (1992). In spherical coordinates, with the dimensionless 

variables p = r/AD and 't/J = ADif>/e ,(2.5) can be written as 

(2.10) 

where Nd = 41l'noA1 represents the total charge within a Debye sphere. 

Equation(2.10) is solved using a central differencing scheme. With the approximate 

solution (2.9) as an inital solution at p - 00, where if> is small, a backward differencing 

scheme (Mak, 1992) is used to numerically calculate the potential at lower p values. 

Figures 2.2(a) - 2.2(c) present the approximate solution (2.9) as well as the exact nu­

merical solution of (2.10) for To/T; = 1, 10 and 100, respectively. Standard parameter 

values are Zd = 100, noA1 = 30 and ndo/noO = 0.005 (corresponding to noo/no = 0.5). 

It is seen that the difference between the approximate analytical and the numerical 

solutions become significant for p ::; 0.3, when the value of the potential begins to 

rise sharply. As an illustration, for To/T; = 1, the approximate value of if> is 4% 

larger than the computed value at p = 0.1, while for To/T; = 100, the approximate 

value of if> is 20% smaller than the computed value at the same value of p. However, 

the shapes of the two curves are similar. The difference in behaviour with varying 

To/T;, may be attributed to the fact that although the normalized potential satisfies 

1 eif>/To 1« 1 for all the curves in Figure 2.2, the additional requirement 1 e¢>/T; 1« 1 

in obtaining the analytical result (2.9) becomes that more difficult to satisfy as To/T; 

Increases. 

The effect of the dust grains on the decaying potential is shown in Figure 2.3, where 
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Figure 2.2 c: The approximate solution (2.9) for ¢Y and a numerical solution of the 
complete equation (2.10) for Te/Ti = 100. Here we set ndo/no = 0.00.5 (n eD /nO = 0.5). 
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numerically computed results are presented for Te/Ti = 1.0. As the dust grain den­

sity increases (neo / no decreasing) the fall-off of </Y is less rapid. This behaviour is 

consistent with the corresponding curve for the particular temperature ratio in Fig­

ure 2.1, where the effective Debye length is found to increase with neo/no decreasing. 

Finally, in Figure 2.4 we confirm the earlier results of Mak (1992) that the approxi­

mate solution (2.9) is a reasonable solution of the Poisson equation (2.5) even when 

the approximation I e</Y/Tj I~ 1 is not strictly satisfied. The difference between the 

approximate analytical and numerical solutions at p = 0.12 is found to be 10%. 

2.3 Summary 

In this chapter we have examined the effect of Debye shielding in a dusty plasma 

in which the thermal electrons an"d ion have been taken as point particles having 

Boltzmann density distributions, while the massive, negatively charged dust grains 

are stationary. For small amplitude potentials, an analytical expression has been 

derived for the effective Debye length, which is found to be smaller than that in pure 

electron - ion plasma. The latter is found to decrease with the electron density for 

small values of Te/Ti. On the other hand for Te/Ti ~ 1, the electrons play little or 

no role in Debye shielding. 

Next, an approximate analytical solution of the Poisson equation, using spherical 

coordinates, is compared with a numerical solution using a backward differencing 

scheme. The difference between the two solutions is found to be small in regions of 

parameter space where the approximations used in obtaining the approximate solution 

are valid. The effect of the electron density on the spatial decay of the potential, as 

obtained numerically, is found to be consistent with the approximate analytically 
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derived expression for the effective Debye length. 

The results of this chapter have already been published in the journal Astrophysics 

and Space Science (S. Vidhya Lakshmi, R. Bharuthram and P.K. Shukla 1993). 



Chapter 3 

NONLINEAR POTENTIAL 

STRUCTURES IN A DUSTY 

PLASMA 

3.1 Introduction 

In a magnetized plasma Rossby-type wave (usually called drift-wave by plasma physi­

cists) modes arise when there exists a gradient of the background magnetic field in 

a direction perpendicular to its line of action and the electric field perturbations 

are electrostatic in nature. Investigation on the properties of such waves, have been 

done originally by Rudakov and Sagdeev (1961) and more recently by others (e.g. 

Hasegawa and Mirna 1978; Hasegawa, Maclennon and Kodama 1979) in connection 

with the spectrum cascade in drift-wave turbulence in magnetized plasmas, as well 

as by other authors (Makino, Kamimura and Taniuti 1981; Meiss and Horton 1983; 

Pavlenko and Petviashvili 1983) into nonlinear vortex-type solitons. Larichev and 

22 
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Reznik (1976) were the first to produce a stationary nonlinear analytical solution in 

the form of dipolar vortices for the system of equations describing the evolution of 

2-D Rossby waves. 

Dust grains in a plasma can significantly modify the usual drift waves and also in­

troduce a new type of drift mode. The latter is caused by the E x B motion of 

the negatively charged dust grains. These waves are similar to the impurity-ion drift 

waves (Ong and Yu, 1971). Dipolar vortex structures can exist when the set of nonlin­

ear equations that governs the dynamics of the modified convective cells are included. 

Nonlinear dipolar vortex potential structures have been studied for dust drift waves 

(Shukla et al 1991) and for an inhomogeneous dusty plasma with stationary dust 

grains and a sheared ion flow (Bharuthram and Shukla 1992c). In this chapter, fluid 

theory is used to investigate the formation of nonlinear potential structures in an 

inhomogeneous magnetized dusty plasma consisting of hot electrons, cold ions and 

dust grains, taking into account the dynamics of all species. The model is essentially 

that used by Shukla et al (1991), with the inclusion here of magnetic curvature ef­

fects. However, in addition to studying the existence of dipolar vortex solutions, as 

done by them, we point out the existence of modified convective cell vortices in the 

complementary region of parameter space. 

3.2 Basic Equations 

Our model consists of a collisionless, magnetized non-uniform plasma in which the 

electrons have a temperature Te , while the singly charged positive ions and the 
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negatively-charged, massive, dust grains are cold. Thus, in equilibrium the quasi­

neutral condition reads 

(3.1) 

where njo( x) is the equilibrium density of the ph species (j = d, e, i) and - Zde is the 

equilibrium charge of the dust particles. 

The hot electrons are assumed to be in thermodynamic equilibrium. Their density is 

then given by the Boltzmann distribution, 

(3.2) 

where <p is the electrostatic potential and e is the magnitude of the electron charge. 

The dynamics of the cold ion and dust fluids are governed by their continuity equation, 

(j = i, d) (3.3) 

and the respective momentum equations, 

(3.4) 

for the ions, and 

(3.5) 

for the dust grains. The external magnetic fields Eo = Bo( x)i is in the z-direction. 

For at ~ OJ , where OJ = I%j~o is the gyrofrequency of the ph species (j = i, d), we 

have 

(j = i, d), (3.6) 

where 

(3.7) 
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(3.8) 

and 

(3.9) 

are the ExB, curvature and polarization drifts respectively. Here R-1 
= -v(lnB) 

is the magnetic curvature, fl-j is the magnetic moment (taken to be constant) and 

Ej = +1(-1) for j = i, (d). It is noted that the gyrofrequency of the dust grains is 

given by f!d = Z!e!o. 

Substituting equations (3.7) - (3.9) into (3.3) for the ion and dust fluids, we use the 

(3 .10) 

where K,n = oAlnneo(x)). In arriving at (3.10) we have assumed VE' V ~ Vzjoz. 

The parallel (to Eo) components of the ion and dust momentum equations (3.4) and 

(3.5) yield, respectively 

(3.11) 

and 

(3.12) 

The set of equations (3.10) - (3.12) describe the nonlinear evolution of our system. 

However, before proceeding to a nonlinear analysis, we briefly examine the linear 

behaviour of the system. Upon linearizing (3.10) - (3.12) for perturbations varying 

as expi(k. r - wt), we obtain the local dispersion relation (Shukla et a11991) 

(3.13) 
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Here w* = ~ky(~ + K n ), Dd = Zd(ndo/neo) and Di = nio/neo, ps = cs/ni, 

psd = Csd/nd, where Cs = (Te/mi)! is the ion acoustic speed and Csd = (Te/md)! is 

the dust acoustic speed. For Dd = O(ndo = 0), we have the usual coupled ion acoustic­

drift waves in an electron - ion plasma. On the other hand for the rare situation with 

no ions (Di = 0) , ie. a plasma with electrons and positively charged dust grains, the 

dispersion relation (3.13) reduces to that of coupled dust acoustic - drift waves. In 

its given general form, (3.13) describes the coupling between a hybrid acoustic wave 

with drift waves driven by the electron density gradient and the magnetic curvature 

effect. 

3.3 Nonlinear Analysis 

We consider stationary solutions of the equations (3.10) - (3.12) in the moving frame 

(x,O where ~ = y + o:z - Mt, with 0: and M constant. Then (3.11), (3.12) and (3.10) 

become, respectively, 

and 

It is seen that (3.14) is satisfied by 

eo: 
Vzi = -M </>, 

mi 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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while 

(3.18) 

satisfies (3.15). 

Inserting (3.17) and (3.18) into (3.16), we obtain 

(3.19) 

The equation (3.20) is solved by letting 

(3.20) 

provided the constants C1 and C2 satisfy 

(3.21 ) 

where 

Me c (1 ) ea
2 

[ 1 ( 1 Zd)] (3=---- -+K,n +- -+8d -+- . 
Te Bo R M mi mi md 

(3.22) 

Solitary dipole vortex solutions of (3.20) can be constructed following standard meth­

ods (Larichev & Reznik 1976; Makino, Kamimura & Taniuti 1981; Meiss & Horton 

1983; Shukla et al. 1991). Accordingly, we introduce the polar co-ordinates 

B = tan-1 (~/x) , 

and divide the (r, B) plane into an inner region r -::; R (where R is the vortex radius), 

and an outer region r > R. 
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In the outer region we prescribe rapidly decaying solutions for localization. Thus we 

set Cfl = O. From (3.21) we then find 

CO - -f3 
1 - M..£ (.,§.rL + .k.-) 

B o Hd Hi 

= a2 
- , (3.23) 

where the superscript' 0 ' denotes the outer region. The outer solutions are given by 

(3.24) 

where AO is a constant and f{1 is the modified Bessel function of the first order. 

Since, for large r, the asymptotic form of f{1 (ar) is 

localization is ensured provided a > 0, which yields (using (3.23)) 

(3.25) 

The inner solution is 

(3.26) 

where b2 = -ct, Ai is a constant, and J1 is the Bessel function of the first kind. The 

superscript' i ' denotes the inner region. The constants C{ and C~ satisfy (3.21). 

Continuity of <p, 8r <p and '\12 <p at r = R, yield 

(3.27) 

(3.28) 



29 

and 

(3.29) 

For a given a, which depends on M, ex and the plasma parameters, (3.29) yields 

the value of b. Then using (3.21), (3.28) and (3.28), the dipole vortex structure is 

completely determined. As mentioned, the existence of the dipole-vortex solutions 

requires a2 = Cf > 0, which reduces to (3.25). The existence region for such solitary 

dipole-vortices is shown by the shaded region in Figure 3.1. Here we have used the 

following fixed parameters: Psd/ R = psd"'n = 0.01, Zd = 100, ndO/niO = 0.005 and 

md = 1000mj. 

In the un-shaded region of Figure 3.1, Cf < O. We examine the nature of the outer 

solutions when this inequality holds. We write Cf = -Of, where a2 = Of > O. 

Then proceeding as above, the outer solution is found to be given by, using 'I/; to now 

represent the potential, 

'1/;0 = DOY1(ar) cos (), (3.30) 

where DO is a constant, and Y1 is the modified Bessel function of the second kind. 

The inner solution is , once again, given by (3.26), with b2 = ct. We write it as, 

,pi = {DiJl(br) + (~) +Oso. (3.31 ) 

The continuity of '1/;, 8r 'l/; and ,i'l/; at r = R, yield 

DO = C~R 
{(b2 - a2 )Yi (bR)) , (3.32) 

(3.33) 

and 

Y;(aR) _ J2(bR) 
aY1(aR) bJ1(bR) . (3.34) 
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As pointed out by Shukla and Yu (1984), the latter solutions ((3.30) - (3.34)) represent 

modified convective cell motion. Convective cells are associated with fluid vortex 

motion, due to the E x Bo drift of the ions and electrons. This can cause Bohm-like 

diffusion even in an equilibrium plasma. The convective cell and the related motion 

on plasma transport has been studied (Okuda and Dawson 1973; Hasegawa and Mirna 

1977,1978; Hasegawa, MacLennon and Kodama 1979). Okuda and Dawson (1973) in 

their study of three dimensional effects on the convective cell motion, found that by 

introducing a small kll (k~ /k2 ~ m/ M, kll Vte ~ W, Vte is the electron thermal velocity) 

the convective cells attain a real frequency Wr = (k
ll
/k)(M/m)h1i , where Wr ~ Oi. 

Here, m and M are the mass of the electron and ion respectively, and Oi = eBo/ M c 

is the gyrofrequency. In our studies, the convective cell motion is due to the E x B 

motion of the dust grains. 

In this case, the outer solution (3.30) (for r > R) oscillates about zero with the en­

velope of the oscillation decreasing slowly in the radial direction. This solution is 

less localized than the dipole vortex solution (3.24) which decreases monotonically as 

r ~ 00. It is interesting to note that these two types of solutions exist in comple­

mentary regions of the parameter space reflected in Figure 3.1. 

3.4 Conclusion 

We have examined the existence of nonlinear potential structures in an homogeneous, 

magnetized dusty plasma in which the hot electrons have a Boltzmann density dis­

tribution, while the cold ions and dust grains are represented by the fluid equations. 

The model is essentially that of Shukla et al. (1991). The set of nonlinear equations 

describing the evolution of the system has been derived. In the linear limit, it is shown 
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to produce a dispersion relation for coupled hybrid acoustic - drift waves, where the 

frequency of the hybrid acoustic wave is determined by the ion acoustic and dust 

acoustic frequencies. 

Stationary solutions of the system of nonlinear equations yield dipolar vortex po­

tential structures and less localized oscillatory solutions in complementary regions of 

parameter space (Figure 3.1). 

The localized potential structures discussed in this paper may be responsible for 

enhanced particle and heat transport (in dusty plasmas in space, as well as laboratory 

plasmas). In particular, an ensemble of such randomly distributed structures can 

constitute a new turbulent state. Their associated electromagnetic fields can enhance 

transport across confining magnetic fields. Furthermore, the presence of the massive 

dust grains introduces a new range of low frequencies for fluctuation phenomena. 

The results of this chapter have already been published in the journal Astrophysics 

and Space Science (S. Vidhya Lakshmi, R. Bharuthram and M. Y. Yu 1993). 



Chapter 4 

ARBITRARY AMPLITUDE 

DUST-ACOUSTIC SOLITONS 

4.1 Introduction 

Our investigations in this chapter are on the existence of large amplitude rarefactive 

and compressive dust-acoustic solitons in an unmagnetized four component plasma 

consisting of electrons, two distinct positive ion species of different temperatures and 

massive, negatively-charged, dust grains. Nonlinearity effects cause wave steepening 

leading to wave breaking. Dispersion, on the otherhand leads to a spreading of a 

travelling wave. When the two effects balance, a nonlinear wave packet called a soliton 

is produced. It has a pulse-like waveform. In addititon to laboratory experiments, 

solitons were observed in auroral plasma (Temerin et al. 1982, Mozer and Temerin 

1983: Temerin and Mozer 1984) and in the magnetosphere (Bostrom et al. 1988). 

In our studies, the effects of the particle densities and temperatures on the soliton 

amplitude and Mach number are examined. 

33 
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Dust-acoustic modes in dusty plasmas have been treated by number of authors. Rao 

et al. (1990) investigated the linear and weakly non-linear properties of dust-acoustic 

waves using a model in which they considered the dynamics of a tenuous dust fluid, 

with the electrons and ions assumed to be in electrostatic equilibrium, their number 

densities given by the Boltzmann distribution. They showed the existence of dust­

acoustic waves and dust-acoustic solitons in unmagnetized dusty plasmas. 

Bharuthram and Shukla (1992) employed a similar model, but incorporated both cool 

and hot Boltzmann-distributed ions to show the existence of dust-acoustic double 

layers in a dusty plasma. Their work was extended by Mace and Hellberg (1993), 

who included ion inertia effects. A review paper on double layers and solitons in 

dusty plasmas has been presented by Verheest (1993). 

4.2 Theory 

Our plasma model consists of Boltzmann-distributed electrons, two distinct groups 

of thermal positive ions, their densities given by Boltzmann distributions with dif­

ferent temperatures, and a negatively-charged, cold dust fluid whose dynamics are 

governed by the continuity and momentum equations. It is exactly the model used 

by Bharuthram and Shukla (1992) in an investigation of double layer potential struc­

tures. 

The basic equations derived below have been obtained by Bharuthram and Shukla 

(1992). For purposes of completeness we present them in some details. We consider 

a collisionless, unmagnetized plasma consisting of electrons having a temperature T
e

, 

two distinct groups of warm ions having temperatures Tc (for the cool species) and Th 
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(for the hot species) and negatively-charged, extremely heavy, dust particles. Thus, 

in equilibrium the quasi-neutrality condition reads 

( 4.1) 

where njo is the equilibrium density of the ph species (j = e,c,h) and ndo(-Zde) is 

the equilibrium density (charge) of the dust particles. The number densities of the 

electron and ion fluids are given by their respective Boltzmann distributions, viz, 

and 

ne = Neo exp( aerP) , 

nc = Nco exp( -acrP) , 

( 4.2) 

( 4.3) 

( 4.4) 

where aj = TefJ/ZdTj, rP = ZdeiP/Tefh the effective temperature TefJ is defined by 

(Bharuthram and Shukla, 1992) ZJndo/TefJ = neo/Te + nco/Tc + nho/Th, iP is the 

electrostatic potential and densities have been normalised by the "effective" density 

Zdndo of the dust particles. Thus nj = nj/Zdndo and Njo = njo/Zdndo where nj = 

njo exp( ±ajrP) is the actual density of the species j. 

The dynamics of the cold dust grains are governed by continuity and momentum 

equations, 

(4.5) 

and 

( 4.6) 

where we have introduced n~ = Zdnd. We close the system of equations with Poisson's 

equation, 

(4.7) 
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Here we have normalised the dust fluid velocity Vd by the dust acoustic speed 

Csd = (TefJ/md)t, the spatial length by the dust Debye length ADd = Csd/Wpd and 

the time is in units of the inverse dust plasma frequency w;J = (md/47rndoZle2)t. 

For perturbations varying as exp{i(kx -wt)}, where k is the wavenumber and w the 

frequency, linearization of the equations (4.3) - (4.7) yields w = kCsd / (1 + P ADd2
) t, 

which is the dispersion relation for dust-acoustic waves (Rao et ai, 1990). 

We now look for solutions of equations (4.5) - (4.7) in the stationary frame 

e = x - Mt where M( = V/Csd ) is the Mach number. Accordingly, from equations 

(4.5) and (4.6) one finds the normalised number density for dust particles as 

n~ = M/(M2 + 2</Y)t , ( 4.8) 

where the plasma is assumed to be unperturbed at 1 e 1--* 00 and we have used the 

appropriate boundary conditions n~ = 1, Vd = 0 and </Y = 8e</Y = 0 at 1 e 1--* 00. 

Substituting for particle number densities from equations (4.2) - (4.4) and (4.8) into 

(4.7), multiplying both sides by 8e</Y and integrating once with the chosen boundary 

conditions, we obtain 

( 4.9) 

where the Sagdeev potential(Sagdeev, 1965) is given by 

( 4.10) 

For the existence of soliton potential structures one requires (Sagdeev, 1965) that 

(i) 1jJ( </Y) = 8¢1jJ( </Y) = 0 at </Y = 0, 

(ii) 1jJ(</y) = 0 at some </Y = </Ym and 
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<Pm < (»0, 

(i i i ) 1f; ( <p) < 0 for 0 < I <P I < I <Pm I . . 

For ion-acoustic phenomena in ordinary electron-ion plasmas (moving positively­

charged heavier ions and Boltzmann negatively-charged electrons) such solitons are 

referred to as compressive solitons (Baboolal et aI, 1990). However, as pointed out by 

Verheest (1993), in our model of a dusty plasma with negatively-charged dust parti­

cles the role of the charged particles are reversed (moving negatively-charged massive 

dust grains, Boltzmann positively-charged ions). Hence, here solitons with <Pm > 0 

are rarefactive and <Pm < 0 are compressive in nature. This will be easier to see when 

the numerical solutions are presented. 

4.3 Numerical solutions 

4.3.1 Rarefactive solitons 

Initially, we consider a plasma consisting solely of positive ions and negative dust 

particles, i.e. Neo = 0, a cool to hot ion temperature ratio of Tc/Th = 0.05 and a 

cool to hot ion density ratio of 0.1/0.9 and typical forms of the Sagdeev potential 

1f;(<p) for different values of M are computed. This is depicted in Figure 4.1. It is 

seen there exists a value of Mach number M(M = 1.159) beyond which solitons do 

not exist. At the cut-off, the Sagdeev potential has a double humped structure (a",1f; 

= 0 at <P = 0 and <P = <Pm), corresponding to a double layer structure (Bharuthram 

and Shukla 1986, Baboolal et al 1988, 1990). This point will be discussed later. The 

soliton potential half-profiles corresponding to the curves in Figure 4.1 are shown in 

Figure 4.2. For such profiles it is seen from equation (4.8) that the dust density has 

a minimum value at e = 0, corresponding to a dip in density (rarefactive structure). 
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Figure 4.1: Typical forms of the large amplitude Sagdeev potential '!fJ (<fJ ) for rar­
efactive solitons. The fixed plasma parameters are Neo = 0, Tc/Th = 0.05, and 
Nco/Nho = 0.1/0.9. The parameter labelling the curves is the Mach number M. 
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fixed parameters are as in Fig. 4.1. 
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The variation of <Pm with Mach number M, for fixed Tc/Th, is shown in Figure 4.3. 

It is seen that only supersonic (M > 1) solitons are found to exist . Furthermore the 

range of M - values for soliton formation narrows sharply as Tc/Th increases slightly. 

The variation of the soliton amplitude <Pm with Tc/Th is shown in Figure 4.4 for differ­

ent M values. For each value of M, there exists an upper threshold of Tc/Th beyond 

which no solitons occur, e.g. for M = 1.1 the limit is Tc/Th = 0.06. This is clearly 

shown in Figure 4.5 where the formation of a double layer potential profile constitutes 

the boundary of soliton formation. Such double layer formation is attributed to an 

imbalance of the charge distribution caused by the two ion species, thus producing 

an isolated electric field within the plasma. Associated with this field is a double 

layer potential structure. It is seen from Figure 4.4 that as the value of M increases, 

solitons are found for a narrower range of Tc/Th values. 

Next we consider the effect of a finite electron population. Figure 4.6 shows the 

variation of <Pm with the normalised electron density Neo for different values of M. 

The fixed parameters are Te/Th = 10.0 and Tc/Th = 0.05. For a given Mach number 

we observe that as the electron density increases, the soliton amplitude also increases, 

with an upper limit of Neo beyond which no solitons are found. The effect of Neo on 

the Sagdeev potential for a fixed M value is shown in Figure 4.7 

The increase in <Pm with Neo may be explained as follows. A measure of the wave 

dispersion is given by the quantity ~ =/ ~~ / - / ~:~ / (Taniuti and Nishihara 1983). 

The smaller~, the larger the dispersion. It is found that ~(Neo = 0) > ~(Neo = 0.1). 

Thus the dispersion is stronger when a finite electron population is present. This has 

to be balanced by a stronger nonlinearity for soliton formation, leading to an increase 

in soliton amplitude. 



46 

A study of the effect of the electron temperature on the soliton amplitude is shown 

in Figure 4.8 for a fixed Neo = 0.1. As Te/Th decreases the soliton amplitude <Pm 

increases. However, at the critical value of Te/Th = 1. 74, the Sagdeev potential 

becomes double layer in character, beyond which no solitons occur (in a manner 

similar to Figure 4.5). We illustrate in Figure 4.9, the dependence of the soliton 

amplitude on the cool to hot ion density ratio Neo / Nho for different values of Neo . 

The fixed parameters are M = 1.1, Te/Th = 0.05 and Te/Th = 10. We observe that 

the range of Neo / Nho values over which solitons are possible is severely limited as Neo 

increases. 

Figure 4.10 presents the Neo/Nho - Neo parameter space over which soliton formation 

is possible. The parameter labelling the boundary curves is Te/Th. Solitons occur 

within the area bounded by the curves and the Neo / Nho-axis. For the chosen fixed 

parameters, no solitons are found for Te/Th > 0.065. 

4.3.2 Compressive solitons 

For the purpose of a comparative study, here also, we consider a plasma consisting 

solely of positive ions and negative dust particles (electron density Neo=O), a cool to 

hot ion density ratio Neo/Nho = 0.2/0.8 and a cool to hot ion temperature ratio of 

Te/Th = 0.05. Typical forms of the Sagdeev potential 'ljJ( <p) for compressive solitons 

(<Pm < 0) for different values of Mach number M are shown in Figure 4.11 with the 

associated compressive soliton profile shown in Figure 4.12 for M = 1.05. We find, 

that there exists a lower and an upper cut-off value of M, beyond which solitons do 

not exist. It is observed that at the upper cut-off the Sagdeev potential does not 

have a limiting double-humped structure corresponding to a double layer potential 

structure as found for the rarefactive solitons. We have shown in theory (eq bn( 4.8)) 
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Figure 4.8: The Sagdeev potential w( (j) ) for various ratios of electron to hot ion 
temperature TeiTh . The fixed parameters are -Yeo = 0.1, TclTh = 0.05 and .VI = 1.1. 
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Figure 4.9: Variation of the soliton amplitude cDm with the cool to hot ion density 
ratio Nco /Nho for Te/Th = 10. The parameter labelling the curves is -Yeo ' The other 
fixed parameters are as in Figure 4.8. 
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Figure 4.10: The existence region for soliton formation in the Nco /-Vho - Neo space 
for different values of Tc/Th . Solitons are found in the region bounded by the 
-Vco /Nho - axis and each curve (area labelled S). Beyond the curves no solitons are 
possi b Ie (area labelled :.J S). 
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Figure 4.ll: Typical forms of the large amplitude Sagdeev potential 'ljJ ( <p) for com­
pressive solitons. The parameter labelling the curves is the \'Iach number ;\tI. The 
other fixed plasma parameters are Neo = 0, Tc/Th = 0.05 and .Vco /Nho = 0.25. 
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Figure -1.12: The soliton potential half-profile corresponding to the curve Ji = 1.05 
in Figure 4.11. 



52 

that the normalized dust density is given by nd = M/(M2 + 2<p)t. For <P < O(the case 

under study) real values of nd are possible for values of M satisfying M2 > 2 1 <P I· The 

upper limit on M in Figure 4.11 is determined by this condition. The lower limit of 

supersonic solitons (M > 1) is the same as that for the rarefactive solitons. It is seen 

from the above expression for nd that when <P reaches its maximum negative value 

of <Pm, nd attains its largest positive value, corresponding to a compressive soliton 

structure. 

The reason for selecting the value of Nco/Nho = 0.25 in Figures 4.11 and 4.12 can be 

seen from Figure 4.13 where the soliton amplitude <Pm is shown as a function of the 

normalized cool ion density Nco for different values of M, with Neo = 0 and Tc/Th 

= 0.05. For 1 < M ~ 1.46, the lowest possible value of Nco for soliton formation is 

found to be 0.1265, which we note is higher than the lower value «0.1) obtained for 

rarefactive solitons (Figure 4.9). The lower left boundary (broken line) is due to the 

condition M2 > 2 1 <P I· 

A direct comparison with Figure 4.9 is presented by Figure 4.14 where we plot <Pm 

against Nco/Nho for M = 1.1, Tc/Th = 0.05, Te/Th = 10 and vary Neo . We note that 

the lower cut-off of Nco/Nho is higher in the latter case than in the former, while no 

upper limit of Nco/Nho exists in the latter as compared to the former. Furthermore, as 

the value of Neo increases the range of Nco / Nho values for soliton formation increases 

in Figure 4.14, the opposite behaviour is seen in Figure 4.9. 

For different values of M, Figure 4.15 shows the variation of the soliton amplitude <Pm 

with the cool to hot ion temperature ratio Tc/Th . For a comparative study we have 

selected the same values of Mach numbers as used for rarefactive solitons in Figure 

4.4. In Figure 4.15, as the value of M increases, solitons are found for a narrower 
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Figure -1:.13: Variation of the soliton amplitude rPm with the cool ion density .Veo . The 
parameter labelling the curves is the Ylach number iVI. The other fixed parameters 
are as in Figure -1:. 11. 
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Figure 4:.14:: The soliton amplitude <Pm as a function of the cool to hot ion density 
ratio Nco /Nho for Te/Th = 10. The parameter labelling the curves is Neo . The other 
fixed parameters are Tc/Th = 0.0.5 and lVI = 1.1. 
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range of Tc/Th values, with I CPm I decreasing with increasing Tc/Th. Changes in 

CPm are small for larger values of Tc/Th. For each value of M, there exists a lower 

threshold of Tc/Th below which solitons are not found. For the rarefactive studies 

(Figure 4.4), solitons do not exist beyond an upper threshold value of Tc/Th, while 

I CPm I increases with Tc/Th. 

Figure 4.16 shows the dependence of the soliton amplitude CPm on the normalized 

electron density Neo . The parameter labelling the curves is the the Mach number M. 

As we increase Neo , for values satisfying Neo > 5, the increase in CPm is found to be 

very gradual. In contrast to Figure 4.6, in Figure 4.16 the solitons are possible over 

a wider range of Neo values. As a function of M, it is seen from the latter that I CPm I 

increases with M, as is the case in the former. 

4.4 Conclusion 

In this chapter we have investigated large amplitude solitons in an unmagnetised dusty 

plasma consisting of electrons, two species of ions (hot and cool) and a cold dust fluid 

consisting of negatively-charged particles. The density distributions of the electrons 

and the ions have been taken to be of the Boltzmann type, while the dynamics of the 

dust fluid is governed by the fluid equations. The study is carried out for both the 

rarefactive (amplitude CPm > 0) and compressive (amplitude CPm < 0) solitons. 

For rarefactive solitons, in the absence of the electron component, a study of the 

dependence of soliton amplitude (CPm) on the cool to hot ion temperature ratio Tc/Th 

for different values of M, as well as on the Mach numbers for different Tc/Th ratios, 

show that the range in which the solitons are found narrows sharply as M increases 
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in the former case and as TclTh increases slightly in the latter case. Only supersonic 

(M > 1) ,solitons are found to exist. Typically for TclTh = 0.05, solitons do not exist 

for M >1.159. At the threshold a double layer potential structure is formed. Our 

results also show that low Mach number solitons are possible over a wide range of 

TclTh values. 

When we consider the effect of a finite electron population it is found that for each 

value of Mach number, the soliton amplitude increases with increasing electron density 

(Neo ) but with an upper limit of Neo beyond which solitons are not found. Low Mach 

number solitons exist over a wide range of Neo values. On the otherhand, for a fixed 

Neo , <Pm decreases with increasing TelTh, and decreasing Nco I Nho , for a fixed value 

of M. In both instances there are lower cut offs (of TelTh and NcolNho respectively) 

below which no solitons are found to exist. 

For the compressive solitons, as for the rarefactive solitons, we find that the Mach 

number M should not become subsonic for soliton formation to be possible. On the 

otherhand, there is also an upper value of M beyond which solitons do not occur. 

This value is determined by the condition that the dust density becomes complex. 

A variation of the ratio of cool to hot ion density NcolNho shows that the compressive 

solitons have a larger lower cut-off for soliton formation than the rarefactive solitons, 

with the range of Nco I Nho values (for solitons to occur) increasing (decreasing) with 

the electron density Neo for the former (latter). 

As the cool to hot ion temperature ratio TclTh is varied for a given M-value, the 

compressive solutions have a lower threshold value below which solitons do not occur , 

with the amplitude I <Pm I decreasing with TciTh' The opposite behaviour is found for 

the rarefactive solitons. A study of the dependence of <Pm on the electron density Neo 
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shows that for a given Mach number, the range of Neo values for solitons to occur is 

much larger in the case of the compressive solitons than for the rarefactive solitons. 

The ~pper cut-off value of Neo observed for the rarefactive solitons is not seen for 

their compressive counterparts. 

Part of the results of this chapter have already been published in the journal Planetary 

and Space Science (S. Vidhya Lakshmi and R. Bharuthram 1994). 



Chapter 5 

A KINETIC THEORY 

APPROACH TO SMALL 

AMPLITUDE SOLITONS IN A 

DUSTY PLASMA 

5.1 Introduction 

In the previous chapter we investigated arbitrary amplitude solitons in a dusty plasma 

via the fluid equations. Here, using the same plasma model as in chapter four, a study 

is made via the reductive perturbation technique of small amplitude or weak solitons 

in a dusty plasma. The initial study is in terms of kinetic theory, using a Vlasov­

Poisson system. The associated Korteweg de Vries (KdV) equation is derived. Then 

the analogous problem is solved via the fluid equations. Differences between the 

coefficients of the two KdV equations are discussed, as well as those between the 
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corresponding stationary soliton profiles. 

Using the fluid equations Washimi and Taniuti (1966) showed how weak solitary waves 

propagate in a plasma of cold ions and isothermal electrons by deriving a nonlinear 

partial differential equation in the form of a Korteweg de Vries equation. Later this 

has been extensively studied, both theoretically and experimentally by a number of 

authors (Taniuti and Wei, 1968; Ikezi et al. 1970; Ikezi 1973; Nakamura 1982). The 

kinetic treatment here for a dusty plasma is based on the work done by Kato et al. 

(1972) who obtained a kinetic KdV equation for ion-acoustic solitons by considering 

a Vlasov-Poisson system. 

5.2 Derivation of the kinetic KdV equation 

We start by considering a collisionless and unmagnetised dusty plasma. We assume 

that the massive dust particles are described by the Vlasov equation and the particle 

densities of the massless electrons and ions given by the Boltzmann distribution: 

a!d a!d Zd e aif> a!d 
at + v ax + -;;; ax av = 0 , (5.1) 

(5.2) 

(5.3) 

where!d is the dust velocity distribution function and if> is the electrostatic potential. 

Zd e and m are the charge and mass of the dust particle, neo (nio) is the equilibrium 

number density of the electrons (ions), Te (Ti) is the temperature of the electrons 

(ions). The above equations couple with each other through the Poisson equation: 

a2 if> 
ax2 = 47re(ne + Zdnd - ni). (5.4) 
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Quasineutrality at equilibrium requires 

(5.5) 

To solve equation (5.1) we consider the following characteristic equations over which 

jd is constant. 

dx 

dt 
du 

dt 
82 ¢> 

Zd 8x2 

n · I 

u, (5.6) 

8¢> 
Zd 8x ' (5.7) 

(ne + nd - ni) , (5.8) 

(5.9) 

where 0"(= Te/Ti) is the ratio of the electron temperature to the ion temperature. 

In equations (5.6) - (5.9) we have normalised densities by Zdndo, the potential by 

Te/e ,the characteristic velocity by the dust-acoustic speed Csd = (Te/m)t, the 
1 

characteristic length by Ad = (4 TZ2 2) 2, and the time is in units of the inverse 
1rndo de 

1 

(
41rn Z2 e2)-2 plasma period W;l = d,: d . 

In order to derive the KdV equation, the order of perturbation may be deduced from 

the fluid model, which gives the scaling 

1 e = €2 (x - At) , 
3 

'T = €2t, (5.10) 

where A is the unknown phase velocity to be obtained later and € is the expansion 

parameter. The plasma parameters are now expanded asymptotically as a power 

senes III € as 

u (5.11) 
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t2Xl + t2X2 + ... , 

63 

(5.12) 

(5.13) 

in which Xo and U o are the initial position and velocity, respectively. From (5.10) we 

obtain the following transformations 

d 
dt 
d 

dx 

Using equations (5.10) - (5.13), equations (5.6) and (5.7) can be written as 

(5.14) 

(5.15) 

Collecting the lowest order terms in t in the above equations (5.14) and (5.15), we 

have 

Similarly, to the next higher order in t gives the following relations 

o 

which are easily integrated to give 

(5.16) 



64 

(5.17) 

(5.18) 

We calculate the dust density nd(~,T) = J !d(u,~,T)du from the equation which is 

valid along the particle trajectory: 

!d(U,~,T) fd(uo,fJxo,o) = fo(u o) 

fo( U - WI - €2 U2 ) 

a fo 2 ( a fo 1 2 a
2 
fo) 

fo(u) - WI au + € -U2 au + 2"ul au2 

From equation (5.9) we have 

ne = neo (1 + €~I + €2~2 + ~€2~i) } 

ni = nio (1 - (J'€~I - (J'€2 ~2 + ~(J'2 €2 ~i) . 

Using equations (5.17) and (5.18), (5.19) can be written as 

(5.19) 

(5.20) 

(5.21) 

Substituting (5.20) and nd (calculated via (5.21)) into the Poisson equation (5.8), 

using equation (5.11) to express U o in terms of u, Ul, ... , we have 
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(5.22) 

To zero order, neo - nio = f fo(u)du(= 1) = ndo in normalized form. 

Collecting the lowest order term in c( c1
) in the above equation, we obtain 

j +OO 8fo du 
neo + anio = Zd -8 --, 

-00 u u - /\ 
(5.23) 

from which the phase velocity A of the wave is obtained for a given velocity distribution 

fo. For a Maxwellian distribution, 

we find 

(5.24) 

where Z = -ne---'o!=!L-n-io and a1(= Td/Te) is the ratio of the temperature of the dust 

particle to that of the electron. 

The next higher order term in c( c2 ) gives 

neo ,/.2 _ a2nio,/.2 j+OO Zd 8 fo je 8¢J1 
2 'PI 2 'PI + -00 (u - .\)2 au -00 aT dedu 

/

+00 Zd2 aJ. /+00 Z2 82J. + ¢J2 _0 du d,/.2 0 

-00 2(U-A)3 1au + -00 2(U-A)2'P18u2 

/

+00 ZJ 2 a fo 
- -00 (u - A)3 ¢J1 au du , 

which after differentiating both sides of the equation w.r.t e gives 

o = Z [J3¢J1 _ Z 8¢J1 j+oo( _ ')-28fod 
d 8e d aT -00 u /\ 8u u 
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8<Pl [ 2 21+
00

( ')-3 8f O d +<Pl- -neo + (J" nio + Zd U - 1\ -8 u 8e - 00 u 

2 j+OO _2 82 f o 1 
-Zd - 00 (u - A) 8u2 du , 

which can be written in the form of a KdV equation as 

(5.25) 

where 

1 [ 2 ') j+OO ( ')-38f o d 1 Zd (J" nio - n eo - Zd, - 00 u - 1\ 8u u (5.26) 

/k = 1+ 00 -28fo 
- ( u - A) -du . 

- 00 8u 
(5.27) 

Hen:ce equation (5.25) is the general KdV for dust-acoustic waves obtained via kinetic 

theory. It is seen from (5 .26) and (5.27) the coefficients Ok and /k are obtained, once 

the equilibrium velocity distribution f o( u) of the dust particles are given. 

5.3 Derivation of the fluid KdV equation 

We compare the kinetic KdV equation (5.25) with that derived from pure fluid theory. 

The basic set of fluid equations in the dimensionless form are 

the dust continuity equation: 

8nd 8 - + -(ndu) = 0 
8t 8x ' (5.28) 

the dust momentum equation: 

(5.29) 

and the Poisson equation 

(5.30) 
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where the dimensionless parameters are defined as in kinetic theory. 

We introduce the stretched space-time variables as given in (5.10) and use the power 

series expansion (5.11) and (5.12) for the quantities u and 1>. Then expanding nd, we 

have 

u (5.31) 

Substituting (5.10) and (5.31) firstly in the Poisson equation (5.30) and then collecting 

the lowest order term in E( (1) gives 

(5.32) 

and the next higher order term in E( (2) yield 

Substituting (5.10) and (5.31) in (5.28) and (5.29) and then collecting the lowest 

order term in E( Et) gives 

a 
(uo - ).) ae nd1 (5.34) 

(u o - ).) :e U1 (5.35) 

To the next higher order in E( E~) we obtain 

(5.36) 

(5.37) 
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In equations (5.33), (5.36) and (5.37) we substitute for ndl and Ul in terms of <PI using 

equations (5.32) , (5.34) and (5.35). Solving for nd2 and U2 from (5.33) and (5.37) , 

respectively and substituting in (5.36) , we finally get the following KdV equation 

where 

If 

(5.38) 

(5.39) 

(5.40) 

5.4 Comparison between the kinetic and the fluid 

KdV equations 

In order to obtain the corresponding fluid equation from the kinetic KdV equation, 

the coefficients ak and Ik are evaluated for a 8 - function velocity distribution, viz. 

fo = 8 (u - uo) . 

(Recall in normalized form, f f odu = 1) 

Then 

is obtained using 

1+00 [) 3 
(u - A ) -3~8(u - uo)du = ( )' 

- 00 uU U o - A 4 

and similarly 

I k = - 2(uo - At3 
, 

(5.41 ) 

(5.42) 
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is obtained using 

It is seen that (5.41) and (5.42) are identical to (5.39) and (5.40). Thus the kinetic 

KdV equation is consistent in behavior. Moreover, it has the advantage of being 

applicable to any given velocity distribution function fo. This will be illustrated in 

the next section. 

5.5 Solution of the KdV equation 

The KdV equation (5.38) is solved for a stationary solution in the frame defined by 

7] = ~ - Mr. We obtain 

(5.43) 

where we drop the subscripts on I and a. We find the solution of this equation by 

integrating with the boundary conditions 

(5.44) 

One then obtains 

(5.45) 

where 

Integration (5.45) results in the soliton solution 

(5.46) 
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where 1>0 = ~M is the amplitude and 8 = (-y~)t is the width of the dust-acoustic 

solitary wave. 

The soliton profile corresponding to (5.46) is shown in Figure (5.1). In Figure (5.2) 

is displayed the soliton profile obtained from the kinetic KdV equation (5.25) for a 

Maxwellian velocity distribution (see expression for fo preceeding equation (5.24)). 

The chosen parameters for these curves were neo = 1.0, nio = 2.0, 0"( = Te/Ti) = 

10.0,0"1 (= Td/Te) = 0.01, M = 1.0, Zd = 100 and U o = 10.0. We note that a compari­

son of the two curves is not exact, since no thermal effects are considered in the fluid 

model, while in the kinetic approach no equilibrium drift is allowed for. 
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Figure 5.1: The soliton profile satisfying the fluid theory. 
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Figure 5.2: The soliton profile satisfying the kinetic theory. 



Chapter 6 

CONCLUSIONS 

Recently, there has been much interest in the properties and behaviour of dusty 

plasmas as they have been increasingly observed in asteriod zones, planetary rings 

and magnetospheres (in those of Jupiter, Saturn and Uranus by the voyager space 

craft), cometary environment (in the vicinity of comet Giacobini - Zinner by the ICE 

satellite), as well as the lower part of the Earth's ionosphere (Whipple et al., 1985; 

Gendrin, 1991). Moreover, such plasmas are being increasingly studied in laboratory 

experiments (Sheehan et al., 1990; Carlisle et al., 1991; Bouchoule et al., 1991). In 

this thesis, some aspects of electrostatic wave phenomena in dusty plasmas have been 

investigated. 

In chapter 2, the effect of Debye shielding in a dusty plasma was examined by treating 

electrons and ions as point particles with Boltzmann density distributions, while the 

massive, negatively charged dust particles were stationary. For weak electrostatic 

potentials, the effective Debye length (A~) was found to be smaller than that in 

a pure electron - ion plasma. For small values of Te/Ti, A~ decreases with electron 

density and when Te/Ti » 1, the electrons were found to play little or no role in Debye 
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shielding. When an approximate analytical solution of the Poisson equation (using 

spherical coordinates) was compared with a numerical solution (using a backward 

differencing scheme) of the complete equation for arbitrary amplitude potentials, the 

difference between the two solutions was found to be not greater than 10% in regions 

of parameter space where the approximations used in obtaining the approximate 

solution were invalid. 

U sing the same model as Shukla et al. (1991), the existence of nonlinear potential 

structures in an homogeneous, magnetized dusty plasma was investigated in chapter 

3. This was done by deriving a set of nonlinear equations describing the evolution 

of the system. Here the hot electrons have a Boltzmann distribution while the ions 

and the dust particles were represented by the fluid equations. In the linear limit, 

the system of equations produced a dispersion relation for coupled hybrid acoustic -
\ 

drift waves. 

Dipolar vortex potential structures and modified convective cell vortices in comple-

mentary regions of parameter space (Figure 3.1) were found to exist when the sta­

tionary solutions of the nonlinear equations were considered. These vortices might be 

responsible for enhanced particle and heat transport (in dusty plasmas in space, as 

well as in laboratory plasmas). An ensemble of such randomly distributed structures 

could constitute a new turbulent state. Furthermore a new range of low frequencies 

for fluctuation phenomena were found due to the presence of massive, charged dust 

grains. 

In chapter 4, arbit rary amplitude dust-acoustic rarefactive and compressive solitons 

in an unmagnetized dusty plasma were studied. In this study the plasma model 

consisted of Boltzmann distributed electrons and ions (with two distinct groups of 
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thermal positive ions with different temperatures) and a negatively-charged, cold dust 

fluid whose dynamics were governed by the continuity and the momentum equations. 

It was found that in the absence of the electron component for both the rarefactive and 

the compressive solitons, the Mach number M should not become subsonic for soliton 

formation to be possible. In the rarefactive case, for TclTh = 0.05, solitons were not 

found for M > 1.159, the upper limit in M being determined by the formation of 

double layer potential structures. Whereas for the compressive solitons, this value is 

determin~d by the condition that the dust density becomes complex. The dependence 

of the soliton amplitude (<Pm) on the cool to hot ion temperature ratio TclTh for a 

given M value showed that for the compressive solitons the amplitude I <Pm I decreases 

with TclTh and also there exists a lower threshold below which solitons do not occur. 

For the rarefactive solitons, the opposite behaviour was found. 

Next, the effect of finite electron population was considered. When the electron 

density Neo was varied for a given Mach number, it was found that the range of Neo 

values in which the solitons occured was much larger in the case of the compressive 

solitons than for the rarefactive solitons. On the otherhand, the upper cut-off value 

of Neo observed for the rarefactive solitons, was not seen in the compressive case. A 

variation of the soliton amplitude I <Pm I with the cool to hot ion density NcolNho 

showed that the compressive solitons have a larger lower cut-off for soliton formation 

than the rarefactive solitons. Moreover the range of Nco I Nho values over which the 

solitons were seen was found to decrease (increase) with the electron density for the 

former (latter). 

The plasma model used in chapter 5 was that adopted in chapter 4. Here, study was 

made via the reductive perturbation technique of small amplitude solitons in a dusty 

plasma via both kinetic and fluid plasma models. A Vlasov-Possion system was used 
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for kinetic theory and the associated Korteweg de Vries (KdV) equation was derived. 

Then the fluid KdV equation was obtained by solving the basic set of fluid equations. 

When the kinetic and fluid KdV equations were compared, it was shown that the 

fluid equation could be obtained from the kinetic KdV equation if the coefficients 

CKk and 'k were evaluated for a 8 - function velocity distribution and thereby proved 

the consistent behaviour of the kinetic KdV equation. Since no thermal effects were 
I 

considered in the fluid theory and no equilibrium drift was allowed in the kinetic 

approach, a comparison of the soliton profiles for both fluid and kinetic theory is not 

exact. 

The work undertaken in this thesis lead to several avenues for extension. For example, 

the investigations of solitons in chapter 4 can be extended to thermal dust particles, 

as well as the inclusion of a confining external magnetic field. The studies in chapter 

5 can be widened to include other forms of kinetic velocity distributions, especially 

those used to model beam - plasma interactions in space plasmas. 

A limitation of our work is due to the treatment of the dust particles as being of 

constant charge. In reality, due to coagulation and fragmentation Zd is changing. 

Thus the effects of non-constant dust charge will represent an important extension of 

our findings. 
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