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Abstract 
 

Learning Analytics (LA) can play a key role in understanding students’ learning and academic 

performance.  By identifying poorly performing students early, LA can also be used to identify 

students who are at risk of dropping out of programmes.  This enables academic advisors to 

intervene early and provide help to ensure students stay on track and succeed in their studies. 

 

Hence, LA is becoming a common trend in education particularly in higher education.  Previous 

studies of LA have not dealt with specific courses in information systems and information 

technology.  Therefore, the aim of this study was to develop a model for the application of LA to 

different courses with the discipline of Information Systems and Technology using various data 

sources.  This study used the design science research approach to help towards solving the problem 

of understanding students’ learning and performance in Higher Education Institutions (HEIs).  

Multiple data sources were used.  The data that was obtained was pre-processed using MS Excel.  

Thereafter, the WEKA tool was used in the analysis of the data and prediction of performance.  

Decision tree, Random Forest and genetic-based algorithms were used to develop prediction 

models for each of the courses in the discipline of Information Systems and Technology at the 

University of KwaZulu-Natal. 

 

The study also resulted in the development of an integrated dataset for the discipline of Information 

Systems and Technology in higher education and a process model for the implementation of LA 

in a specific discipline.  The involvedness of the data allows future researchers to continuously 

improve/evolve the area of LA.  This study should, therefore, be of value to LA practitioners 

wishing to implement LA to courses within other disciplines as well.  
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unstructured and semi-structured (Romero & Ventura, 2020).  Furthermore, these data have been 

collected and hoarded for a long period of time, and will continue to be collected, probably at a 

faster pace due to the evolution of mobile networks, cloud computing and reduced cost of resources 

(Romero & Ventura, 2020).  Despite the advances, both Daniel (2015) and Prinsloo and Kaliisa 

(2022b) note that this data is not being used optimally by decision makers within the higher 

education environment. 

 

With the evolution of technology and advanced data analysis techniques (Bollier & Firestone, 

2010), many institutions around the world are now attempting to integrate these data sources and 

use them intelligently in order to make decisions regarding improving teaching and learning.  Thus, 

the concept of Learning Analytics (LA) was introduced, described by Siemens et al. (2011, p. 4) 

as “The measurement, collection, analysis and reporting of data about learners and their contexts, 

for the purpose of understanding and optimizing learning and the environments in which it occurs.  

Learning analytics are largely concerned with improving learner success.” 

 

The advent of LA has resulted in researchers studying a number of areas surrounding LA.  Firstly, 

before LA can be implemented, the ethical and privacy implications of LA implementation need 

to be debated.  This is an area of importance identified by Slade and Prinsloo (2013), Olivier (2020) 

and Prinsloo and Kaliisa (2022a), amongst others.  Students need to be made aware that digital 

data about them and their academic activities are being recorded and for what purposes, while data 

anonymization ensures that student data is kept private (Prinsloo & Kaliisa, 2022a). 

 

Besides the ethical and privacy issues, the actual acquisition, cleaning and preparation of the data 

must be properly understood, with Romero and Ventura (2020) stating that this is an often 

neglected area of LA research and can make up more than half the time required to solve the LA 

problem.  Strategies such as dealing with missing data and inconsistent data, data discretization, 

outlier detection and feature selection, amongst others, must be dealt with in order for the analytics 

to produce reliable information (Romero & Ventura, 2020). 

 

The most commonly researched aspect of LA is the application of learning algorithms to datasets.  

Commonly used learning algorithms include Decision Trees, Neural Networks, Naïve Bayes, and 
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Clustering (Aggarwal, 2020).  The output of the learning algorithms, either in the form of 

prediction models or cluster groups, can be used to predict student performance, identify strengths 

and weaknesses in student learning as well as determine or predict students that may need 

assistance with improving their academic performance. 

 

There are other aspects of LA such as data visualization, which focuses on presentation of data so 

that it may be interpreted by relevant decision makers (Romero & Ventura, 2020), and prescriptive 

analytics, where the objective is to strategize and be pro-active based on predictions made (Bonnin 

& Boyer, 2017).  However, with the lack of research related to LA on the African continent, it is 

first necessary to focus on the initial aspects of LA.  Thus, the main objective of this research is 

the development of an artefact to guide the process of LA.  This will involve the collection of data 

resulting in the development of a dataset based on the discipline of Information Systems and 

Technology (IS&T) at the University of KwaZulu-Natal (UKZN).  Learning algorithms will then 

be applied to this dataset, resulting in the creation of models that can be used to predict whether a 

student will pass or fail a course, based on features such as individual demographics and 

registration data, past academic performance and course interaction data.  Finally, the entire LA 

process will be documented and presented in the form of a process model that can be used to guide 

future researchers in conducting LA for their particular discipline. 

 

1.2.  Background and Motivation 

In the current environment, higher education is regarded as a critical component for increasing the 

possibility of employment for individuals as well as to improve economic performance of a 

country (Chiramba & Ndofirepi, 2023; Pinheiro, Wangenge-Ouma, Balbachevsky & Cai, 2015).  

As a result, student performance is probably one of the most important aspects of higher education 

institutions and is seen as a key objective of HEIs in South Africa (CHE, 2013).  Two factors that 

measure student performance is observing assessments as well as yearly graduation rates (Shahiri 

& Husain, 2015).  In the case of South Africa, Ngqulu (2018) mentions that HEIs in the country 

are struggling with dealing with poor student success rates and throughput. 

 

Within the South African higher educational context, there is a continuous increase in enrollment 

while government cannot support this increase, resulting in inadequate funding (Badat, 2016; 
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Chiramba & Ndofirepi, 2023; Mlambo, Mlambo & Adetiba, 2021).  The resultant lack of funding 

has been the main motivator for the #FeesMustFall movement where students are pushing for 

government to ensure that higher education is free, livable study accommodations are provided, 

and there is improved access to the technology and infrastructure required (Raghavjee, 

Subramaniam & Govender, 2021).  The consequences of this push have been constant protest 

actions resulting in numerous interruptions to teaching and learning. 

 

In addition to the protests, in 2020, the world experienced the COVID-19 pandemic resulting in 

all South African HEIs moving from a face-to-face teaching and learning model to an online 

learning model.  To assist with online learning, students were assisted by universities and 

government by being supplied with data, laptops and tablets while some students were allowed to 

return to campus to access technological infrastructure when restrictions were lifted (Raghavjee et 

al., 2021).  From a teaching perspective, the online learning model was one that most academic 

and administrative staff were not familiar with (Hedding, Greve, Breetzke, Nel & Jansen van 

Vuuren, 2020). 

 

To maintain the quality of education in this new online environment, it has become necessary to 

find a way to monitor and understand student progress in terms of online learning and their 

academic performance.  In order to accomplish this, universities are striving to make better use of 

the data that is being continuously collected and stored, including past and current academic 

performance data, student interactions in academic activities as well as student biographical 

background.  All this data is stored and available via different university systems. 

 

Since the movement of paper-based records to digital records, the majority of universities make 

use of a Student Management System (SMS) that stores all student applications (past and present) 

and includes their biographical data (names, addresses and contact details, nationalities, high 

school education, qualifications etc.), course registrations, degree registrations and academic 

results (tests and exams). 

 

Many universities also make use of a Learning Management System (LMS) which allows lecturers 

to upload course material and activities that students may interact with on or off campus.  Common 
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features of an LMS include calendars with important due dates and course relevant events, 

personalized dashboards, file management, activity tracking and online assessments, amongst 

others (Foreman, 2017).  Administrative tasks that are found in an LMS include secure login 

authentication, mass enrollment, continuous updating of security measures, high interoperability 

with external applications and plug-ins, detailed logs about student interaction and mark 

management (Foreman, 2017). 

 

With the continued advancements and reliability of technology and the data that it generates, the 

South African HEIs have been slow to take advantage of Big Data analytics when compared to 

other areas of industry (Prinsloo & Kaliisa, 2022b).  Furthermore, another inherent weakness is 

that these data sources are separate and isolated (that is, not related or linked) from each other.  

Most universities store the data for a set number of years, mainly for record and/or legal purposes.  

In addition, the data is often incomplete with a number of errors and inconsistencies, and stored in 

a variety of different formats.  With the advances in computer processing and networks, the current 

trend is to integrate these data sources and, using data analysis techniques, find interesting trends 

and/or patterns and predictions within student academic activities (Daniel, 2015). 

 

Thus, with this important aspect of student monitoring not being fully utilized, it is necessary to 

better study the use of LA to predict student performance. 

 

1.3.  Research problem 

The societal issues affecting South African universities currently (protest actions, reduced 

government support) have affected the quality of education, yielding low pass rates and increased 

drop-out rates, thus resulting in poor graduation throughput (Marongwe, Mbodila & Kariyana, 

2020; Moodley & Singh, 2015).  One strategy to address this problem is to continuously monitor 

and regulate student academic activities and the progress that they are making in their coursework.  

However, due to the ever-increasing student numbers and limited resources and assistance 

provided by government, this is becoming logistically difficult for academic staff to achieve. 

 

Additionally, students and lecturers are continuously using technology as part of the teaching and 

learning process.  All registration data is stored electronically and course content is distributed to 
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students via learning management systems.  Communication is not only conducted through face-

to-face meetings but via e-mail, online discussion forums and social media applications.  While 

academic staff and institutions collect and store data regarding their students, the data sources are 

used in isolation (that is, without consideration of other possible data sources) or just for recording 

purposes. 

 

Although the LA concept was introduced in 2010 (Prinsloo & Kaliisa, 2022b), it is still seen by 

many as a fairly new area of research (Axelsen, Redmond, Heinrich & Henderson, 2020; Viberg, 

Hatakka, Bälter & Mavroudi, 2018).  The majority of studies are focused on data acquisition and 

the application of a variety of algorithms to determine accuracy.  While other aspects of LA studies 

such as intervention strategies and its impact on academic performance are important, this is still 

an area of LA to become proficient at, that is just as important. 

 

Thus, in summary, the research problem is stated as follows:   

In order to predict and understand student academic performance in higher education institutions, 

the use of technology in learning analytics has become increasingly important due to limited 

resources and an ever-increasing number of students.  

 

1.4.  Research questions 

An avenue that has only recently been looked at in the last five to ten years is the analysis of 

various data sources to regulate and monitor student progress.  To effectively use the various data 

sources, the combined use of these data sources is proposed in this study by means of learning 

analytics. This research, using data mining techniques, will involve analyzing and predicting 

students’ academic progress based on the various data sources available, including the university 

LMS interactions, SMS data with registrations, demographics and previous academic 

performance. 

 

The main research question is thus as follows: 

How can the different sources of Information Systems and Technology (IS&T) student data be 

used effectively in the learning analytics process? 
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From the main research question, the following sub questions have been established: 

 

1. How can the data from the relevant data sources (SMS, Moodle logs etc.) be integrated? 

2. How can the integrated data be organized in preparation for data analysis? 

3. How can the data be used for identifying learning patterns (training)? 

4. How can the trained data be used to predict student academic performance? 

5. How can the resultant information of student academic performance predictions be 

evaluated? 

 

1.5.  Research objectives 

Based on the research questions listed in Section 1.4, the main research objective is as follows: 

To develop and implement a Learning Analytic model in order to effectively use IS&T student 

data sources for predicting acadmic performance. 

 

The following are the sub-objectives of this research study: 

 

1. To integrate the relevant university data sources in preparation for classification. 

2. To extract, clean and classify the integrated data. 

3. To train the data in order to determine patterns and useful information for student 

performance prediction.   

4. To determine the effectiveness of the training techniques by evaluating their accuracy in 

terms of how they predict student performance. 

5. To evaluate the results generated by the artefact against other similar artefacts. 

 

1.6.  Research methodology 

In order to accomplish the objectives (and thus answer the research questions) listed above, a 

Design Science Research Methodology will be adopted.  Design Science research  is a commonly 

used research methodology in Information Systems that results in the development of an artefact.  

In the case of this study, a process model will be proposed, designed, demonstrated and evaluated.  

This process model will guide researchers through the learning analytics process from data 

acquisition to the application of prediction algorithms. 
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1.7.  Research contribution 

Tertiary institutions are continuously collecting large amounts of digital data, but are mostly not 

using it effectively, if at all.  Thus, this study aims to contribute to the growing literature within 

the LA field.  In addition, as the focus is on a university within South Africa, this study will address 

how other universities may better take advantage of the digital data stored in order to improve 

student learning outcomes, both from the perspective of meeting course objectives as well as 

improving undergraduate throughput.  This is an area where higher education appears to be lagging 

when compared to other areas of industry (Joksimović, Kovanović & Dawson, 2019; Ştefan, 

2017).  A more detailed discussion on the contribution of the research is provided in section 8.4. 

 

1.8.  Structure of the thesis 

Figure 1.1 in Section 1.1 depicts the overal structure of this thesis with the current chapter (Chapter 

1) highlighted.  As shown, the study is divided into three segments.  Segment one (1) consists of 

the first three (3) chapters, where the research setting is established by outlining the problem, 

objectives as well as establish the position of the research in the current literature and finally, 

describe the methodology used to conduct the research.  Segment two (2) covers chapters four (4) 

to six (6) which is the application of the research in order to address the research problem.  The 

final segment, chapter seven (7) and chapter eight (8), demonstrates and evaluates the application 

conducted and summarizes the entire study. 

 

This chapter (one) introduces the study and its justification in the current higher education context.  

It covers the research in terms of its background and motivation, the research questions and 

subsequent objectives, the methodology used, the research contribution and finally, the thesis 

structure. 

 

Chapter 2 is a literature review chapter that focuses on the domain of LA, its position in the overall 

area of Big Data analytics, as well as the concepts, terminology and past studies related to LA.  

The chapter then focuses further on the area of LA by expanding upon the different processes 

involved and tools available to conduct LA research. 
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The research methodology of the study is covered in Chapter 3.  This chapter covers the 

methodology of the design science research used in this study.  The chapter also covers the design 

of the research artefact and how it is used to meet the objectives of the study.  The chapter 

concludes by covering data collection and ethical clearance and the tools that were intended to be 

used for the study. 

 

Chapter 4 covers the first two questions of this research project.  From an LA project perspective, 

this is the steps of the initial data acquisition and preparation phases.  As will be discussed, this 

often-overlooked area of LA will cover the requirements for acquisition, cleaning and integration 

of the data sources in preparation for data analysis and prediction. 

 

Chapter 5 addresses research questions 3 and 4 regarding how data is analyzed with the objective 

of predicting student academic performance using established learning algorithms; these being the 

Decision Tree algorithm and the Random Forest algorithm.  Using feature selection, these 

algorithms were applied to the different course datasets with the objective of generating models 

that can accurately predict student performance.  The experiments conducted for the two 

algorithms are also presented in this chapter. 

 

Chapter 6 covers the use of genetic algorithms to find or improve prediction models for any courses 

identified in Chapter 5 where the models were not acceptable or if better models could be found.  

In this case, experiments are presented where genetic algorithms were used, either as part of feature 

selection or incorporated into the classification process.  In the case of the latter, an optimized 

forest algorithm was used, where genetic algorithms are used for determining the best Decision 

Tree within the forest. 

 

Chapter 7 answers research question 5 by presenting a comparison between the performances of 

the prediction models obtained in Chapter 5 and Chapter 6 with the performance measures of other 

LA or Educational Data Mining (EDM) studies from the literature.  Various comparisons are made, 

where the performances of the experiments from chapter 5 and 6 are compared to similar 

experiments conducted in other studies.  This includes comparison with studies involving other 

1st, 2nd and 3rd year courses, other computer based courses amongst other comparison types. 
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Finally, Chapter 8 provides a discussion of how this LA study and the prediction models generated 

can contribute positively towards student academic performance at the UKZN institution.  Further 

conclusions of the study are provided, as well as suggestions for improvement of LA 

implementation and areas of study for future work related to this study. 

 

1.9.  Chapter summary 

The chapter introduces the importance of LA in the current higher education climate.  The 

advances in networks, storage and other technologies necessitate the need for higher education 

institutions to make better use of the different types of academic data that is being collected, in 

order to better understand student academic performance. 

 

Section 1.2 provides a background of the current scenario facing higher education in South Africa 

and motivates on how LA can assist in dealing with the lack of resources and improving throughput 

at South African universities. 

 

The research questions and objectives are outlined (Sections 1.4 and 1.5).  A brief description of 

the methodology used is provided in Section 1.6.  The research contribution is provided in Section 

1.7.  With LA being fairly new to the African continent, there is a need for research related to the 

application of learning algorithms to African-based datasets, as well as making these datasets 

available for future studies.  Finally, the outline of the thesis is provided. 

 

Before looking at the application of LA in a South African university context, it is important to 

understand and appreciate what has already been covered in LA.  Thus, the next chapter covers an 

overview of LA and previous related research. 
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gap can be identified and so too, the justification for the research.  The literature review also 

contributes towards the development of the research artefact by identifying what techniques and 

tools work well when implementing LA. 

 

2.2.  Learning Analytics 

In the current academic environment, there is a great reliance on the use of technology for teaching 

and learning, resulting in the generation of an enormous amount of data (Avella et al., 2016).  The 

challenge is now to use this collection of data from a variety of sources in order to better understand 

student academic performance and plan a way forward to improve the quality of teaching and/or 

inform students about where they can improve their learning processes (Avella et al., 2016), thus 

resulting in the concept of LA.  As stated in Section 1.1, LA is commonly defined as the application 

of data for measurement, collection, analysis and reporting purposes, with the objective being to 

better understand and improve the quality of the learning environment (Siemens et al., 2011).   

 

Learning Analytics is said to be a bricolage field (Dawson, Joksimovic, Poquet & Siemens, 2019), 

meaning that the area of study emerged from multiple combinations of different disciplines.  

According to Haggag, Latif and Helal (2018), some of these disciplines include data mining, 

psychology, statistics, information science, machine learning as well as sociology.  Ferguson 

(2012) states that LA has a strong connection to web analytics, business intelligence, educational 

data mining and decision support systems. 

 

Boyer and Bonnin (2016) describe four avenues of LA that can be followed by HEIs, these being 

descriptive analytics, diagnostic analytics, predictive analytics and prescriptive analytics.   

 

According to Boyer and Bonnin (2016), descriptive analytics answer the question of “what 

happened?”.  This question is answered using general computational and statistical techniques and 

visualizations that are applied to teaching and learning related data.  Examples of visualization in 

descriptive analytics include pie charts, bar charts or line graphs.  This kind of LA is mainly used 

by students and teachers to evaluate their academic performance and teaching pedagogy, 

respectively (Boyer & Bonnin, 2016). 
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The objective of diagnostic analytics is to answer the question “Why did it happen?”.  In this case, 

the data is analyzed to better understand the root cause of the teaching and learning problem, an 

example being the identification of events that contribute to a student failing (Xin & Singh, 2021).  

This form of LA requires the use of data discovery or pattern identification as well as statistical 

correlation (Boyer & Bonnin, 2016). 

 

In the case of predictive analytics, the question of “What will happen?” is dealt with.  The objective 

of this form of LA is to provide insight and anticipate what may happen given a specific situation, 

based on past and present data.  This form of LA may inform a student of whether or not they are 

achieving their learning objective(s) based on their actions (interactions in class or online).  A 

teacher may use predictive analytics to determine students that are at-risk of failing, thus allowing 

for interventions to prevent failure (Boyer & Bonnin, 2016). 

 

The final avenue of prescriptive analytics answers the question “How can we make it happen?”.  

In this case, data or digital content is analyzed in order to determine an efficient and effective 

strategy to achieve the required goal(s) (Boyer & Bonnin, 2016).  Similar to predictive analytics, 

prescriptive analytics allows relevant stakeholders to discover trends of student drop-out and 

allows them to be pro-active in their academic activities.  Prescriptive analytics also allows course 

lecturers and assistants to develop personalized learning plans for students. 

 

The following subsections provides a description of the concept of LA, including how it relates to 

Big Data (Section 2.2.1) as well as a comparison to two overlapping areas of study, namely 

Academic Analytics (AA) and Educational Data Mining (EDM) (Section 2.2.2).  An overview of 

previous studies and how LA was applied is covered in Section 2.2.3.  Finally, the benefits and 

challenges of LA are covered in section 2.2.4 and 2.2.5 respectively.  An overview of this section 

is shown below (Figure 2.3): 
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In terms of Big Data and higher education, Fischer et al. (2020) identified two major trends 

appearing in most institutions.  The first major trend is the continuous digitization and storing of 

student profile information and academic records in the form of a student information system.  This 

data is usually heterogeneous and multimodal (Fischer et al., 2020) and thus fulfils the Volume 

and Variety characteristics of Big Data.  The second major trend is the continuous capturing of 

student activities through LMSs (also referred to as clickstream or log data).  This trend occurs on 

a daily basis (Fischer et al., 2020) and thus fulfils the Velocity requirement.   

 

According to Joksimović et al. (2019), most industries such as health, finance, insurance and 

aviation have seen the importance of the analysis of large amounts of data.  Higher education, 

however, has been very slow in realizing its importance in implementing effective systems that 

analyze learning related data for better decision making (Joksimović et al., 2019; Ştefan, 2017).  

Ştefan (2017) states that Big Data in higher education is still in the incipient stage, meaning 

universities are still researching and experimenting in this area.  According to Dawkins (2018), 

LA research falls under the area of Big Data, where the assumption is that larger-sized datasets 

have the capability of providing better intelligence, thus allowing for the potential of better 

decision making. 

 

However, it should be noted that LA is not the only field that falls under Big Data, specifically in 

the educational field.  Two other commonly researched fields that overlap with LA are that of 

Educational Data Mining and Academic Analytics.  These three fields of research are distinguished 

in Section 2.2.2. 

 

2.2.2.  Comparing Learning Analytics with Educational Data Mining and Academic 

Analytics 

Big Data research in higher education covers a variety of areas including student academic 

performance, student teaching evaluation, university throughput, and resource usage evaluation, 

amongst other areas.  From the review of the literature, Big Data at HEIs are covered through three 

fields of research, these being LA, Academic Analytics (AA) and Educational Data Mining 

(EDM). 
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The objective of LA is to provide information using analytical tools, statistical and predictive 

methods and models that will allow decision makers, usually teachers and/or students, to take 

action to improve teaching and learning (Avella et al., 2016).  According to Adejo and Connolly 

(2017b), LA is focused on improving teaching and learning and providing useful information to 

learners, teachers and course administrators. 

 

While LA is focused on the improvement of teaching and learning, AA is aimed at improving 

and/or making better decisions at an educational management or operational level (Boyer & 

Bonnin, 2016).  Academic Analytics is defined as the application of business intelligence and 

associated tools with the goal of improving decision making and academic performance for 

educational institutions (Avella et al., 2016).  The use of AA is mainly aimed at allowing for better 

decision making for university administrators, governments and funding agencies (Adejo & 

Connolly, 2017b; Viberg et al., 2018). 

 

From a higher education perspective, the application of Big Data has been performed at different 

levels within HEIs (Mendez, Ochoa, Chiluiza & De Wever, 2014).   According to Siemens and 

Long (2011), these five levels are course, departmental, institutional, regional and 

national/international.  Learning analytics is said to fall under the first two levels (course and 

departmental) while the remaining three levels (institutional, regional and national/international) 

are said to fall under the concept of AA (Mendez et al., 2014).   

 

Electronic Data Mining is a concept closely related to both LA and AA (Avella et al., 2016) but is 

more technically oriented (Baek & Doleck, 2023) and focuses specifically on the development of 

methods or techniques that are able to find patterns, discoveries and/or make predictions within 

educational data (Avella et al., 2016).  Electronic data mining is defined as being concerned with 

developing methods that explore educational data with the objective of better understanding 

students and the environment in which they learn (Adejo & Connolly, 2017b).   

 

There are several similarities between LA, EDM and AA, such as all focusing on a data intensive 

approach to education.  The differences between LA, EDM and AA, adapted from Adejo and 

Connolly (2017b), are listed in Table 2.1.   
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Table 2.1:  Differences between LA, EDM and AA (Adejo & Connolly, 2017b) 

 EDM AA LA 

Target 

audience 

 

Teachers and 

administrators 

Educational 

institutions 

Teachers, students and 

educational institutions 

Implementation 

benefit 

Automated adaptation 

and method of 

interpretation 

 

Automatic iterative 

processes 

Support human 

interventions and 

interpretation of data 

Application 

focus 

Software and student 

modelling 

Administrative 

concerns 

 

Systematic intervention 

Research focus Techniques and methodology 

 

Application of analysis, 

techniques and 

methodology 

Data 

application 

Makes use of data 

mining techniques 

Makes use of 

statistical techniques 

and predictive 

modelling 

 

Makes use of quantitative 

methods, data mining 

techniques, visualization 

tools 

 

2.2.3.  Applications of Learning Analytics 

Learning analytics projects have been implemented at different institutions with various 

objectives.  According to Hooda and Rana (2020), this is dependent on the target stakeholders that 

the implementation is aimed at as well as the framework that was being used.  This section 

describes some of the main applications of LA from the literature as well as recent studies of LA 

applications, what was done and the outcome of the research conducted. 

 

2.2.3.1.  Feedback systems 

According to both Evans (2013) and Wise (2019), feedback is a critical component of improving 

student learning outcomes and should ideally allow the student to evaluate their own progress and 

regulate or adjust their learning styles based on the feedback provided.  Further to this, it is also 

important to better understand the feedback being provided so as to improve this (feedback) 

process as well (Evans, 2013).  This area of application is rarely researched as there is a greater 

focus of research on using LA to predict student performance and improve graduation throughput 

(Gašević, Jovanović, Pardo & Dawson, 2017).  It is particularly important in the higher educational 

context due to the increase in class sizes as well as the increase in the socio-economic diversity of 

the student population (Iraj, Fudge, Faulkner, Pardo & Kovanović, 2020). 
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In research by Gašević et al. (2017), the aim was to use LA to analyze student learning strategies 

using log data, as well as study how these strategies influence learning outcomes.  In the context 

of this study, a learning strategy contains the thoughts, behaviours, beliefs, or emotions that allow 

for the accumulation of new knowledge and skills (Gašević et al., 2017).  A questionnaire, log data 

and assessment results were used as data sources.  Statistical techniques were used to detect 

patterns in learning behaviour.  Four specific learning sequences were found and the researchers 

were able to map these sequences to different learning styles, these being deep and surface level 

learning.  The research concluded by stating that students that followed a deep learning style were 

found to have higher exam scores overall than students with a surface learning style; and the 

research had the potential to provide students with information on what type of studying they fall 

under and the potential consequences of their studying style.  

 

In a study by Saucerman, Ruis and Shaffer (2017), the focus was on automating the detection of 

reflection on action, which is defined as the ability to remember past problem solutions and in turn 

apply them to solve a current problem being experienced (Saucerman et al., 2017).  The study 

focused on high school and college students from the USA doing a Land Science internship course.  

Using statistical techniques and automated algorithms, the authors were able to identify comments 

made by students and relate these comments to whether students were reflecting on their actions.   

 

A study by Kovanović et al. (2018) also used LA to better understand student reflections.  

However, in this case, the aim was to improve a student’s self-regulated learning ability.  Using 

reflection recordings from student groups as well as individually, the data was quantitatively 

analyzed with the results indicating that their system was able to classify student reflections.  This 

allowed for better understanding of student reflections, which opens the possibility of automated 

feedback to students on improving their learning as well as academic performances in the courses. 

 

Student feedback and the use of personalized feedback messages was the focus of a study by Iraj 

et al. (2020).  The intention was to understand student feedback and its effect on academic 

performance, how feedback relates to student demographics and how students react to feedback.  

Using statistical methods, the authors found that there was a relationship between students that 

reacted to test feedback and improved student performance in subsequent tests.  The results of the 
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study also indicated that females and non-English speaking students were more likely to interact 

with feedback compared to males and English-speaking students respectively (Iraj et al., 2020).  

Similarly, LA based feedback was seen as a benefit in a study conducted by Ustun, Zhang, 

Karaoğlan-Yilmaz and Yilmaz (2023).  The study found that in a 10-week course with 62 students, 

LA based interventions that included visual and written feedback was found to improve academic 

performance (Ustun et al., 2023). 

 

2.2.3.2.  Early warning systems 

Early warning systems involve the identification of risk factors that are used to predict whether or 

not a student will pass a course or end up failing or even dropping out of a course (Jokhan, Sharma 

& Singh, 2019).  Macfadyen and Dawson (2010) highlight that the foundations of early warning 

systems have already been established for HEIs, i.e. the integration of ICT into teaching and 

learning, improved detail and availability of LMS tracking data, the emergence of analytics in the 

educational sector and increased attention of the social nature of education.  Many studies relating 

to early warning systems produce some form of prediction accuracy, indicating how well the 

system is able to predict a student’s performance based on the factors provided.  Prediction is a 

form of supervised learning that occurs via a training set containing known data.  The application 

of learning algorithms to the training set leads to trends and patterns emerging, eventually resulting 

in a model that is able to predict a target value based on a set of supplied input values or predictor 

variables (Wise, 2019).   

 

A study by Jayaprakash, Moody, Lauría, Regan and Baron (2014) was based on the development 

of an LA system to detect at-risk students.  Using four (4) data mining techniques, the authors 

attempted to develop a model to predict student drop-out rate.  A further objective was to determine 

how well this prediction model can be used in other institutions.  The model was developed and 

applied to four related institutions and the authors determined that while drop-out prediction could 

be well determined (drop-out prediction accuracy ranging between 70% to 82% for three out of 

the four institutions), greater care must be taken for institutions with greater demographic diversity.  

 

The purpose of a study by Oloruntoba and Akinode (2017) used the support vector machine 

algorithm to create a model for academic performance prediction using student high school results 

as well as initial 1st year results.  The developed prediction model achieved a 98% accuracy and 
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could be used for identifying potentially excellent students for scholarships and to assist in 

enrollments and identifying students that are unlikely to graduate (Oloruntoba & Akinode, 2017). 

 

A study was conducted at the University of Cape Town to predict academic performance of first 

year Computer Science students (Nudelman, Moodley & Berman, 2019).  Using Bayesian 

networks and Decision Trees, the authors predicted student academic performance based on matric 

results, type of high school attended and university registration details.  The techniques used in the 

study were able to produce 91% accuracy in detecting students that would be unsuccessful in 

passing first year Computer Science courses. 

 

Dorodchi et al. (2018) conducted a study to determine the impact of how student self-reflection 

can determine whether the student is at-risk of failing or not.  The study was conducted with a 

group of ninety-one (91) Computer Science students.  The data sources acquired include 

demographics, performance scores, student self-reflections and self-assessments.  Using sequence 

analysis and linguistics analysis, the authors stated that results were promising (no prediction 

accuracy was provided) and that further research was warranted. 

 

Another early warning system was developed as a Moodle plugin by Jokhan et al. (2019) and 

applied to an online Information Literacy course consisting of 1523 students from the University 

of South Pacific, Fiji.  For this study, the focus was on the student’s interaction with the Moodle 

LMS for the course and how it affected their final mark.  Predictor variables that were identified 

and used to make predictions were activity completion rate, login frequency and coursework 

interaction.   

 

Hasan et al. (2020) used LA and data mining to predict student academic performance for 772 

students registered for e-commerce technology courses.  The data sources included student 

academic information (such as GPA, number of attempts for the course, at-risk status and previous 

coursework performance), student activity on the Moodle LMS and interactions with coursework 

video files (number of times video was played, paused, liked, and rewound).  Several classification 

techniques (such as Random Forest, Decision Trees, Naïve Bayes and Neural Networks) were 

applied and the results were compared.  The accuracy for each of the algorithms ranged from 82% 
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to 87%, with the Decision Tree models producing the best accuracy.  The study also used feature 

selection algorithms to identify the most effective predictor variables.  When feature selection 

algorithms were applied, the Random Forest classifier model produced the best accuracy (88%).  

The authors also preferred the results from their rule inducer algorithm as it provided information 

that was easy for non-expert users to understand.  The use of an information dashboard was 

identified as important and formed part of future research. 

 

A study by Renò et al. (2022) focused on the development of a prediction model to assist in 

predicting whether or not students will pass or fail automated online assessments.  The dataset is 

a benchmark dataset containing course information, student information and LMS log data.  The 

dataset consisted of 32 593 students with 97 attributes.  The Random Forest algorithm was chosen 

and the resultant prediction model achieved a 95% accuracy.  Future research includes consistently 

capturing student data from the LMS and the development of a feedback system to assist struggling 

students.  

 

A study by Silva, Rupasingha and Kumara (2022) involved the implementation of four machine 

learning algorithms to a dataset of 200 graduates from a Sri Lankan university.  The data source 

was in the form of a questionnaire requesting student demographics, study habits, hobbies and 

academic activities.  The Random Forest algorithm produced the best accuracy (97.5%) followed 

by the multilayer perceptron algorithm with the Naïve Bayes algorithm producing the lowest 

accuracy (70%).  The researchers concluded that the study would benefit the institution in 

identifying weak students that require assistance to pass and intended, as future research, to 

increase the number of instances and consider more attributes to include in the questionnaire. 

 

2.2.3.3.  Explanatory Learning Analytics 

Another common application of LA is to better understand different factors that play a role or 

affect the academic performance of a student, referred to by Wise (2019) as Explanatory LA.  

These factors could relate to a student’s background, academic performance, financial status or 

interaction with course content amongst others. 
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A recent study by Preetha (2021) attempted to understand the impact of student health on academic 

performance.  A health-based questionnaire focusing on student disabilities, sport participation, 

health and nutrition activities was distributed to 113 students at an Indian university.  The current 

mark percentage for the semester was also requested from each respondent.  With each question 

representing an attribute, a K-means algorithm was implemented and the students were placed into 

one of two clusters based on whether or not the student will pass or fail.  A genetic search algorithm 

was also used to identify the best set of attributes for best predicting academic performance.  The 

authors concluded that the clustering algorithm performed well for prediction but more instances 

were required in the future. 

 

Asif, Merceron, Ali and Haider (2017) conducted a study to predict student academic performance 

at a university in Pakistan.  Using Decision Trees and clustering techniques, the objective of the 

study was to determine the role of high school marks and previous academic marks in predicting 

a student’s final mark of a four-year Information Technology degree.  Using the Decision Tree 

classifier, the authors were able to achieve accuracy prediction in the range of 55% to 83%.  The 

study also looked at better understanding a student’s progression through the degree and used 

clustering to divide students into high performing and low performing groups of students.   

 

A study by Daud et al. (2017) attempted to determine the effect on family expenditure and personal 

characteristics (such as marital and employment statuses) on student academic performance.  Five 

classification techniques were applied to a dataset of 776 Pakistani students from years 2004 to 

2011 and the results were studied.  An accuracy of 86% was reported using the support vector 

machine classifier.  A further conclusion from the study was that family expenditure and the 

identified personal information attributes had a great impact on student academic performance. 

 

Mwalumbwe and Mtebe (2017) conducted a study to determine the relationship between student 

academic performance and student interaction with the LMS for two courses at a Tanzanian 

university.  An application was developed to keep track of LMS log data in terms of number of 

logins, time logged in and types of interactions (such as forum posts, downloads, exercises 

performed).  Using regression analysis, the authors found that forum interactions, peer interactions 

and exercises were significant activities that had an impact on student academic performance 
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(Mwalumbwe & Mtebe, 2017).   Koç (2017) also conducted a study looking at user interactions 

via LMS and its impact on academic achievement.  In the case of this study, structured equation 

modelling was used to determine if the relationship exists between student interaction using LMS 

and academic achievement.  The author specifically focused on discussion forums, online lecture 

attendance and assignment submissions.  The results indicated that there was a positive impact on 

academic performance when students were more involved via discussion forums and lecture 

attendance.  Learning Management System interaction was also the focus of a study by Avcı and 

Ergün (2019) where multivariate analysis of variance (MANOVA) was applied to the log data of 

65 undergraduate students.  For this study, it was determined that student online interactions 

positively influence student engagement and academic performance.   

 

The study by Al luhaybi, Tucker and Yousefi (2018) looked at prediction of academic performance 

based on admission data, module related data and 1st year final grades for a 2nd year Computer 

Science course at Brunel University (London).  The predictive model would classify students as 

either high, medium or low risk of failure.  Using clustering and classification techniques, the study 

identified that the model generated using the Naïve Bayes classification technique provided a 

better accuracy than when developing a model using the Decision Tree algorithm.  Another 

outcome of the study was that the student qualification upon registration and 1st year marks had a 

significant impact on academic performance. 

 

The objective of the research by Fincham et al. (2019) was to better understand the concept of 

engagement in Massive Open Online Courses (MOOCs) by developing a framework.  The study 

used two data sources for each of the three (3) courses being analyzed, that being log data from 

the LMS as well as tone and linguistic analysis from student discussion forums and other posts.  

To better understand the role that the data source attributes played in academic performance, 

exploratory factor analysis was applied first, with the objective of better understanding learning in 

non-formal educational settings.  Secondly, structural equation modelling was used to understand 

the relationship between the data source attributes and learning outcomes.  The authors concluded 

that their developed framework could allow researchers to view content engagement from the 

perspective of the individual (the effect of their background and motivation) as well as the course 

(how course design influences student engagement). 
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Kumar and Singh (2017) used a collection of academic and personal data from post-graduate 

students to predict their academic performance for the year.  Some of these attributes include past 

academic performance, parent’s qualification and current financial status of the student’s family.  

To predict the performance of the student, a number of classifiers were applied to the dataset, 

including Decision Trees, Naïve Bayes, Random Forest and Bayes network.  The authors identified 

that the Random Forest classifier performed the best and stated that family and academic attributes 

could be important factors in student academic performance prediction.  

  

2.2.3.4.  Learning Analytics for teaching 

Learning analytics can also be used by teachers to identify strengths and weaknesses of content 

available in courses (Nguyen, Gardner & Sheridan, 2017; Nguyen, Tuunanen, Gardner & 

Sheridan, 2021).  Once identified, teachers can strategize ways to improve understanding or 

restructure the course to ensure better engagement between the students and the available content. 

 

A recent study by Nguyen et al. (2021) addressing the improvement of teaching and learning 

focused on the development of an information system that provided lecturers with information 

related to students’ interactions with live lecture recordings.  The objective of the study was to 

design an LA system using LA design principles that were proposed by the author.  These design 

principles were found to be useful guidelines for the development of an LA information system 

that supports teaching and learning.  Three design principles were used and evaluated, that being 

the principle of actionable information (reporting of information about learners and their learning), 

the principle of information timeliness, and the principle of availability and interoperability 

(Nguyen et al., 2021). 

 

A study by Balbay and Kilis (2018) collected student log data as well as student questionnaires 

with the aim of enhancing the quality and efficiency of a course relating to improving English 

language skills.  Using descriptive statistics and deductive content analysis, the authors identify 

the study as an important starting point that provides useful, practical information for course 

improvement. 
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From an assessment perspective, Amigud, Arnedo-Moreno, Daradoumis and Guerrero-Roldan 

(2017) integrated LA into the assessment process.  By collecting student assignments and applying 

them to machine learning techniques and language and writing analysis, the application was able 

to associate each student with their writing and language styles.  The authors stated that this 

application had the potential to improve academic integrity, especially in an online environment.   

 

A study by Mendez et al. (2014) focused on the use of past student grades to better understand and 

assist in curriculum development.  Using student past grades from approximately 2500 Computer 

Science students, data analysis was conducted from past academic performance.  Questionnaires 

were also used to better understand course difficulty of the various Computer Science courses.  

The conclusions of the study indicated that these data sources could potentially inform relevant 

stakeholders regarding the quality of courses which could assist in curriculum redevelopment. 

 

2.2.4.  Benefits of Learning Analytics 

Several benefits of LA have been identified in the literature.  These benefits have arisen as a result 

of a number of small or large LA applications in higher education.  The most commonly identified 

beneficiaries of LA are the learners (or students), teachers (or lecturers/educators), administrators 

and the research community (Romero & Ventura, 2020). 

 

The use of statistical and prediction techniques allow academics to define and uncover student 

problems and needs with regard to the academic courses that they are undertaking.  This allows 

for not only detecting whether students are at risk of failing (Gašević et al., 2017; Nguyen et al., 

2021; Patwa, Seetharaman, Sreekumar & Phani, 2018; Sclater, Peasgood & Mullan, 2016) but to 

also better understand how students perceive the learning process (Muljana & Placencia, 2018). 

 

The understanding of how students learn and the ability to predict their performance allows for the 

development of early intervention and improvement strategies (Chatti & Muslim, 2019; Gašević 

et al., 2017; Mahroeian, Daniel & Butson, 2017).  This will allow for better student guidance 

towards passing their courses, thus improving student retention and/or graduation throughput 

(Patwa et al., 2018; Sclater et al., 2016).   
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A further benefit of LA implementation linked to performance prediction is that of personalized 

learning, which was identified as a key benefit of LA (Bonnin & Boyer, 2017; Chatti & Muslim, 

2019; Ellaway, Pusic, Galbraith & Cameron, 2014; Muljana & Placencia, 2018; Patwa et al., 

2018).  This can be accomplished through better understanding of student demographics and 

academic related behaviours (Mahroeian et al., 2017).  Muljana and Placencia (2018) further state 

that the realization of a “one size does not fit all” approach is important, i.e. student knowledge 

acquisition and assessments should be tailored individually to meet the diverse learning abilities 

of each individual student. 

 

Teachers or lecturers are also seen as potential beneficiaries of LA.  This is accomplished in terms 

of curriculum development and analysis of teaching performance.  The predictions resulting from 

LA provides the opportunity for lecturers to reconsider or revise their learning activities with the 

objective of improving the quality of the course activities and resources such as notes, slides, 

videos and tutorials (Bonnin & Boyer, 2017; Leitner, Khalil & Ebner, 2017; Nguyen et al., 2021).  

In addition, LA could improve the use and allocation of resources based on prediction of student 

enrollment and requirements, to maximize graduation throughput (Avella et al., 2016; Mahroeian 

et al., 2017). 

 

Both Avella et al. (2016) and Leitner et al. (2017) stated that LA will also benefit the research 

community that engages in furthering knowledge on using Big Data in all forms of education.  

Even after more than a decade of research, LA is seen as a relatively new area of research, and 

further implementation and publication of LA research will allow for the identification of gaps 

between academia and industry so that research problems can be further studied and addressed 

(Avella et al., 2016).  This benefit was also identified by Gašević et al. (2017) as well as Chatti 

and Muslim (2019).  Figure 2.4 summarizes the LA benefits with the intended beneficiaries: 
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Figure 2.4:  Benefits of LA identified for different beneficiaries 

 

2.2.5.  Challenges of Learning Analytics 

Despite more than a decade of research revolving around LA, institutions are still struggling with 

taking advantage of learner and organizational data to address educational challenges (Axelsen et 

al., 2020).   

 

The challenge of technical infrastructure refers to the cost and complexity of data integration as 

well as hardware and software acquisition (Mahroeian et al., 2017; Ngqulu, 2018).  Data collection 

is usually the initial challenge, requiring the consideration of several aspects including data 

availability, categories of data to consider (demographic data, learner interaction data, financial 

records etc.) and data ownership (Avella et al., 2016).  As technology evolves, the ability to capture 

data also evolves, such as the use of readily available datasets offered by LMSs, mobile data, 

biometric data and mood data (Avella et al., 2016).  From its early beginnings, the fact that data 

stored by institutions are isolated (separated) within different departments is an obstacle to 

effectively analyze the large amount of student data being captured daily (Ngqulu, 2018). 
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Another obstacle to overcome is the evolving challenge of the ethical, legal and risk considerations 

as identified by Alzahrani et al. (2023) as well as Guzmán-Valenzuela, Gómez-González, Rojas-

Murphy Tagle and Lorca-Vyhmeister (2021).  This is due to the way that data and applications are 

stored on cloud services (Avella et al., 2016).  Adejo and Connolly (2017b) and Guzmán-

Valenzuela et al. (2021) both state that the question of data ownership for all collected data must 

be determined and students should be made aware that data is being collected and used for 

academic analysis (Patwa et al., 2018).  Related to ethical considerations is the issue of data privacy 

concerns.  Administrators must ensure that guidelines are in place to monitor the access and usage 

of student data (Adejo & Connolly, 2017b).  Leitner, Ebner and Ebner (2019) state that while 

regulations are in place regarding data and ethics, codes of practice regarding LA implementation 

are lacking and must be addressed. 

 

In terms of implementation challenges, there is a lack of standardization and frameworks for data 

modelling in LA.  This includes dealing with structured and unstructured data, data types and 

working with missing data (Adejo & Connolly, 2017b; Daniel, 2015; Mahroeian et al., 2017).  

Even after more than a decade of research, Gašević et al. (2017) as well as Nguyen et al. (2021) 

found that there is a lack of LA implementation guidelines.  There is also a lack of LA adoption 

policies (Leitner et al., 2019). 

 

With regard to stakeholder challenges, the majority of teachers, students and administrators are 

unfamiliar with LA and its related concepts.  This makes collaboration between these stakeholders 

and LA developers difficult (Guzmán-Valenzuela et al., 2021; Leitner et al., 2019; West, Heath & 

Huijser, 2016).  Ngqulu (2018) states that it is imperative that for a LA initiative to be successful, 

staff training of LA practices should be mandatory and staff recruitment must take Big Data and 

analytics competency into consideration.  This can be difficult due to high teaching staff workload 

resulting in lack of time or motivation for further training (Kaliisa, Kluge & Mørch, 2022).  Leitner 

et al. (2019) also identified lack of leadership as an obstacle for LA implementation. 

 

Related to the challenges above, Ngqulu (2018) identified funding as a challenge for LA 

implementation.  This is especially the case for the acquisition of specialized technology, software, 

and personnel.  In the case of poorer and developing countries, funding may be prioritized for other 
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initiatives such as infrastructure maintenance and other resources (Guzmán-Valenzuela et al., 

2021). 

 

Institutions must weigh the benefits and challenges of learning analytics before attempting to begin 

an LA initiative.  When the benefits are understood and the challenges addressed, data sources 

must be identified within the institution to leverage the benefits of LA. 

 

2.3.  Data sources and feature (factor) identification for success in Learning Analytics 

Since LA follows a data driven approach, it is important to identify educational data sources that 

can be used.  This is usually the first step in the LA process followed by preprocessing, feature 

selection and finally, analysis and/or prediction (Gao, Xie & Tao, 2016).  According to Chatti, 

Dyckhoff, Schroeder and Thüs (2012), LA data sources fall into two (2) categories, i.e. centralized 

educational systems and distributed learning environments.  Examples of centralized education 

systems include LMSs such as Moodle and Blackboard.  These are large, multipurpose 

applications that accumulate large amounts of data, including student activities and interaction 

(log) data (for example viewing and updating learning material, interacting with test questions and 

viewing summaries or reports).  On the other hand, distributed learning environments involve the 

acquisition of data sources beyond the LMS.  These data sources can be formal or informal as well 

as available in a number of different formats (Chatti et al., 2012).  Examples of these different 

formats are summarized in Table 2.2. 

 

Table 2.2:  Format types and descriptions 

Format Type Description 

File format Files presented and opened using different 

applications such as MS-Excel (.xls, .xlsx), 

Adobe (.pdf), notepad (.txt), MS-Word (.doc, 

.docx) etc. 

Structure format Data within files presented differently using 

columns, rows, comma separated files (CSF).  

Files may also contain text, images, embedded 

multimedia files etc. 

Data format Data items within files use different formatting 

such as Dates (Date/Month/Year, Month, Date, 

Year), telephone numbers (including country 

codes, brackets, extensions) 
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Once the identification of data sources is complete, the contents of the data sources must be 

understood in order to effectively extract the data required.  From a research perspective, the 

objectives of the study will guide the researcher in determining what data is required to be extracted 

from the datasets for analysis and prediction purposes.  This section looks at the different types of 

data sources and what features (factors) can be found within these data sources.  From an LA 

perspective, features are the variables or attributes in a dataset that are used to analyze the dataset 

with the objective of meeting the LA goal, such as the prediction or understanding of the learning 

outcome (Fong, Biuk-Aghai & Millham, 2018).  The term feature is identified in many LA studies 

but attributes, variables and factors have also been synonymously used.  The term factor is 

commonly used in research where the impact of a specific attribute is being studied. 

 

For decades, researchers have been conducting studies with the objective of determining critical 

success factors for student academic performance.  Understanding the importance of these factors 

can play a critical role from an academic standpoint as teaching staff can identify students that 

may potentially struggle, and assist in improving their marks (Yusuf & Lawan, 2018).  From an 

administrative perspective, understanding the factors that play a role in academic success can help 

in identifying potentially good students to admit into their academic institution.  This is important 

as, according to Chen, Hsieh and Do (2014), the levels of research and training improves when 

there are a better caliber of students registered at the academic institution.   

 

There have been numerous studies related to student academic success factors at HEIs.  The 

methodologies for these studies varied by studying data from various data sources, including 

attendance registers, assessment marks, questionnaires, interviews and secondary data, amongst 

other items.  Thus, by identifying factors that determine academic success, the researcher can 

identify what data is important within a data source that can be used to predict student performance.  

The factors identified can fall into different categories depending on the data sources from which 

they are obtained.  The most commonly identified data sources are listed in Table 2.3 (adapted 

from Adejo and Connolly (2017a)), along with examples of factors that relate to these categories. 
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Table 2.3:  Categories of data sources with examples 

Data source category Examples of factors (features) 

  

Demographic Age, gender, place of birth, location, education, employment status 

 

Academic background GPA, high school marks, coursework assessments 

 

Financial Sources of funding including fee status, funding, tuition update, 

financial clearance status 

 

Historical progression Student graduation data, degree types, employment status, 

forwarding addresses, degree changes, de-registrations etc. 

 

Behavioural (academic) Interaction data that may include interaction logs (also referred to 

as clickstream data), discussion forums, course metadata, study 

methods, teaching and learning styles, reflection, click-through 

rates 

 

Behavioural (human) Stress, alcohol consumption, support structures, self-esteem, 

motivation and resiliency 

 

 

Student demographic data is always captured by HEIs when students apply for admission to any 

program of HEIs.  Date of birth (with age calculated where required), gender, race, nationality, 

employment status, and location are the most common features but other identified features from 

the literature include parents’ occupation and/or qualifications (Pal, 2012; Werner, McDowell & 

Denner, 2013), disability status (Algur, Bhat & Ayachit, 2016), relationship status (Ghorbani & 

Ghousi, 2020), language of education (Gulati, 2015) and whether the student has siblings or 

children (Gulati, 2015). 

 

In terms of academic background, many studies have looked at past academic performance as 

indicators to predict future academic performance.  In this case, past academic performance 

includes high school marks (Hamoud, Humadi, Awadh & Hashim, 2017; Jayaprakash et al., 2014; 

Nudelman et al., 2019; Olaniyi, Kayode, Abiola, Tosin & Babatunde, 2017; Oloruntoba & 

Akinode, 2017) as well as marks obtained in previous and current courses registered for at the 

institution (Al luhaybi et al., 2018; Dorodchi et al., 2018; Hasan, Palaniappan, Raziff, Mahmood 

& Sarker, 2018; Mahzoon, Maher, Eltayeby, Dou & Grace, 2018; Salal, Abdullaev & Kumar, 

2019). 
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Financial data sources relate to the student’s current financial status, amount owing to the 

institution or for specific courses, student bursary/loan information and family (mother and father) 

financial status (Anuradha & Velmurugan, 2015; Ribot, Ribot, Perez & Cayabyab, 2020). 

 

Historical progression is a data source with features relating to student graduation information, 

past qualifications, employment status and updated address details.  These features can also form 

part of the demographic data as seen by Jayaprakash et al. (2014). 

 

Behavioural factors may include student behaviour with regard to academic coursework.  Before 

the advent of online learning and LMSs, this area was mostly limited to attendance to lecture, 

tutorial and/or practical sessions (Devadoss & Foltz, 1996; Fraser & Killen, 2005; Thatcher, 

Fridjhon & Cockcroft, 2007; Wadesango & Machingambi, 2011), insight into teaching quality 

(Wadesango & Machingambi, 2011) and study approaches (Ali, Haider, Munir, Khan & Ahmed, 

2013).  With the introduction of making course content and teaching content available via online 

learning applications such as an LMS, behavioural factors can now include online activities.  

According to Sclater et al. (2016), variables relating to how a student interacts with the content is 

far more effective in determining/predicting academic performance than past historical data or 

demographic data.  This was particularly the case when comparing user clicks (total hits) and 

assessment clicks against the individual’s characteristics and past academic performance. 

 

Human behavioural factors have also been researched with regard to predicting student academic 

performance.  Examples of these factors include motivation (Dennis, Phinney & Chuateco, 2005), 

stress (Pritchard & Wilson, 2003), self-esteem, fatigue (Pritchard & Wilson, 2003), peer support 

(Dennis et al., 2005), health status (Preetha, 2021) resiliency (McMillan & Reed, 1994), alcohol 

consumption (Pritchard & Wilson, 2003), and student self-reflection (Dorodchi et al., 2018).  

Psychological factors have also been identified as playing a role in predicting academic 

achievement, with studies such as Kappe and Van der Flier (2012) highlighting the critical role of 

personality traits and motivation.   
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Along with the identification of data sources, it is also important to understand that the ethical 

implications of using these data sources, the majority of which contain personal student 

information and actions performed by these students. 

 

2.4.  Ethics regarding data use in Learning Analytics 

According to Leitner et al. (2019), ethics can be defined as various concerns regarding the 

understanding and defending of values such as life, security, happiness, health, knowledge, 

resources, freedom, etc.  It is further described as the important decision of ascertaining what is 

right, wrong, good and bad before action can be taken (Adejo & Connolly, 2017a).  From an LA 

perspective, ethics relates to how data used and generated in LA applications are interpreted by 

users and how they have an impact on students and their happiness (Adejo & Connolly, 2017a).  

According to Greller and Drachsler (2012), dealing with data in LA applications may result in 

stakeholders feeling that their privacy is at risk, resulting in resistance in LA and its further 

development.   

 

While there have been several advances around LA development through EDM, visualization and 

other practical aspects, there continues to be debate related to the ethical uses of LA (Gupta & 

Saxena, 2021).  The initial and current challenge relates to the lack of legal clarity with respect to 

data ownership (Guzmán-Valenzuela et al., 2021).  In most research projects currently, data 

collected in a study belongs to the owner of the data collection tool as well as the institution 

conducting the research.  The data collection tools are usually in the form of questionnaires and 

interview schedules that include attached ethical clearance and individual consent information.  In 

the current environment, with the increase of new technologies such as GPS tracking and/or 

biometric sensors etc., there is an increase in the digital capturing of individual actions without the 

individual’s awareness or even consent (Liu & Khalil, 2023).   

 

Thus, it is important that LA initiatives be conducted in a manner such that the use of academic 

data not be abused.  According to Greenleaf and Cottier (2020), at the end of 2020, a total of 142 

countries had implemented data privacy laws that operate at both private and public levels.  From 

a South African perspective, the Protection of Personal Information Act (POPIA) was approved 

on the 13th of November 2013 with the objective of protecting the personal information of both 



35 
 

public and private bodies (USAf, 2020).  The main objectives of POPIA are to ensure that every 

South African’s constitutional right to privacy is safeguarded, to balance the rights of privacy to 

that of other rights such as the access to information, to regulate how personal information is 

processed while ensuring that an individual’s rights is/are protected, promoted and enforced, and 

to provide an individual with rights and guidance should privacy protection be broken (USAf, 

2020).  According to POPIA, personal information relates to any piece of information related to 

an individual that is living and can be identified.  This includes (but is not limited to) information 

relating to a person’s age, gender, marital status, physical or mental status, qualifications, medical 

history, financial status and history, religion, culture, personal opinions etc.   

 

To assist researchers, a set of principles were outlined when dealing with data and POPIA (USAf, 

2020).  The four rules state that a researcher must de-identify the data as soon as possible, only 

collect data that is relevant to the study, ensure that the participants are aware of the study and how 

the data will be used, and finally, the data must be kept safe.   

 

Once the ethical and privacy issues have been addressed along with the acquisition of the data 

sources, these data sources need to be prepared for LA applications.  The issue of data preparation 

is covered in the next section. 

 

2.5.  Preparing data for Learning Analytics 

An important issue identified before performing data analysis and prediction is the stage of data 

preparation or data pre-processing.  The data preparation or pre-processing stages are areas of LA 

that has not received a lot of analysis and research (Munk, Drlík, Benko & Reichel, 2017; Romero, 

Romero & Ventura, 2014).  Further to this, this stage of LA is seen as requiring a lot of effort and 

can form a large portion of the LA overall process (Romero & Ventura, 2020).  Data preprocessing 

and preparation involves the detection, cleaning and filtering of any incomplete, missing, 

inconsistent and unnecessary data items (Tsai, Lai, Chao & Vasilakos, 2015).   

 

Some of the more common challenges that must be addressed when preparing data for analysis 

and prediction are discussed in the following sections. 
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2.5.1.  Handling missing or inconsistent data 

The majority of datasets in the real world contain incomplete or partially complete data 

(Alexandropoulos, Kotsiantis & Vrahatis, 2019).  There are several reasons why datasets may be 

incomplete, such as data items were lost, unavailable or not recorded at the time, or just forgotten 

by the data-capturer (Alexandropoulos et al., 2019). 

 

Addressing the issue of missing data can be handled in a number of ways.  Missing values can be 

replaced either by the most commonly found value in the dataset or an average can be calculated 

from existing values and be used.  The value can also be replaced with a predicted value using a 

regression model (Alexandropoulos et al., 2019).  The missing values can also be ignored when 

processing, i.e. only the values presented are used for analysis and/or prediction (Alasadi & Bhaya, 

2017).  Instances with missing data have also been known to be removed from the dataset 

altogether.  Minaei-Bidgoli, Kashy, Kortemeyer and Punch (2003) reduced the number of students 

in their study from 261 to 227 as some students did not complete sufficient assignments to qualify 

for a final mark.  In the cases of Kovanovic, Gašević, Dawson, Joksimovic and Baker (2016), as 

well as Waddington, Nam, Lonn and Teasley (2016), students that did not complete the course, 

for whatever reason, were removed from the dataset as these records did not have all assessment 

marks associated with them.  Gudivada, Apon and Ding (2017) expressed caution when removing 

records with incomplete data as removing a large number of records will have an adverse effect 

on statistical results.  An alternative to row deletion would be to remove only the attribute if that 

attribute has many values that are missing (Gudivada et al., 2017). 

 

Inconsistent data refers to data item(s) that is/are different from other data items in the same 

attribute within the dataset or when compared to other datasets (Romero et al., 2014).  Examples 

of this may include duplicate records from different periods of time.  In this example, an age from 

one record may be different from the age of the associated duplicate record.  Another example of 

inconsistency is when incorrect display formats are used, such as displaying dates as yyyy/mm/dd 

and mm/dd/yyyy (Romero et al., 2014). 

 

2.5.2.  Data discretization 

This process involves the categorization of data ranges to improve comprehension and 

interpretation (Romero, Ventura & García, 2008).  Knowles (2015) refers to this process as 
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recoding, where values of certain attributes are changed in order to be consistent across the 

datasets.  A common example in educational data analysis is to categorize assessment scores into 

a specified number of categories.  In the case of Naser, Zaqout, Ghosh, Atallah and Alajrami 

(2015), high school scores were categorized into one of a number of domains (for example, 1:  

Above 80%, 2:  75% to 79%, 3: 70% to 74%, etc.).  A balance needs to be found with simplifying 

the data while at the same time not generalizing the data and losing valuable information.  For 

example, an attribute for disability can be generalized to a yes/no value but this would result in a 

loss of information, such as the type of disability.  On the other hand, having different types of 

disabilities included may result in excess information or data values that overlap (Knowles, 2015). 

 

2.5.3.  Noise and outlier detection 

According to Romero et al. (2014), there are a select number of instances found in large datasets 

that do not match the behaviour of the other instances in the dataset.  These instances are referred 

to as outliers.  These outliers could be a natural occurrence or occur due to a mistake in data capture 

(Alasadi & Bhaya, 2017; Romero et al., 2014).  Many algorithms such as binning have the ability 

to minimize or remove the influence of outliers (Alasadi & Bhaya, 2017).  Romero et al. (2014) 

state that knowledge of the domain area is important to ascertain whether the outlier is a real 

possibility (e.g., an excellent student standing out from the rest of the class) or whether the outlier 

is a typographical error that needs to be corrected/removed.    

 

2.5.4.  Feature selection 

Feature selection is the process of selecting relevant attributes from all available attributes.  This 

task is necessary to remove attributes that are redundant or do not contribute to analysis or 

prediction techniques (Romero et al., 2014).  Feature selection is said to be an important task in 

data preparation as it can improve accuracy (by reducing overfitting of a model, i.e. where the 

generated model works only for the data that was used to generate that model) and computation 

time (by removing unnecessary attributes) (Alexandropoulos et al., 2019; Romero et al., 2014).   

 

2.5.5.  Normalization and derivation 

Normalization is a data transformation process where a data value is scaled to within a defined 

range.  This range is usually from -1.0 to 1.0 or from 0.0 to 1.0 depending on the context of the 

problem being addressed.  Normalization is said to potentially improve prediction accuracy and 



38 
 

efficiency of data mining algorithms by reducing the distance between maximum and minimum 

values (Romero et al., 2014).   

 

Derivation is the process of creating new attributes from existing attributes.  The attributes are 

usually achieved by applying some formula to other attributes that results in the new attribute 

value.  This could be in the form of conversions, summations or count of values in other attributes 

(Romero et al., 2014).   

 

2.5.6.  Dealing with imbalanced datasets 

Data that is continuously generated in real time is often prone to suffering from data imbalance 

(Madasamy & Ramaswami, 2017).  This is a potential issue in the case of educational data.  A 

dataset can be described to be imbalanced when the quantity of one of the classes (attribute values) 

is much greater than that of another class within the same attribute.  The class that has a high 

representation is known as the majority class while the converse is referred to as the minority class 

(Madasamy & Ramaswami, 2017).  From an educational perspective, an example of an imbalanced 

dataset would be one that has an extremely high proportion of students that have passed a course 

(majority class) compared to the proportion that failed (minority class).  As stated by Kaur, Pannu 

and Malhi (2019), the process of classification of imbalanced datasets is a major problem in all 

domain areas (such as fraud and intrusion detection, image processing and medical science) and 

will result in reduced predictive performance of the generated model.  This is because the model 

tends to display a stronger bias toward the class that has the majority instances (Bekkar & 

Alitouche, 2013; Madasamy & Ramaswami, 2017). 

 

Common ways to address imbalanced datasets are from a data level or an algorithmic level (Bekkar 

& Alitouche, 2013).  From a data level perspective, the sampling-based techniques of 

oversampling and undersampling are described as an effective way of dealing with data imbalance 

(Ghorbani & Ghousi, 2020).  Oversampling is the process of increasing the number of instances 

of the minority class with the objective of reducing the imbalance.  This is accomplished by 

duplicating minority class instances (Ghorbani & Ghousi, 2020).  The disadvantages identified by 

oversampling, besides the increase in computational time, is a resultant bias or increased weighting 

towards minority class instances (Fernández, Garcia, Herrera & Chawla, 2018).  Undersampling, 
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on the other hand, is the process of removing the number of instances in the majority class so that 

the imbalance is reduced.  The advantage of this technique is that of reduced computational cost.  

However, the removal of instances to improve balance also results in reduced variance in the 

dataset.  Furthermore, instances that may be useful for classification could also be removed 

(Fernández et al., 2018). 

 

An additional sampling technique used is the synthetic minority oversampling technique or 

SMOTE.  Unlike oversampling, SMOTE creates new instances of the minority class rather than 

duplicating minority class instances (Thai-Nghe, Busche & Schmidt-Thieme, 2009).  The new 

instances are created based on variations of instances within the minority class (Fernández et al., 

2018).  While seen as a more effective sampling-based technique than oversampling and 

undersampling (Ghorbani & Ghousi, 2020), it has been noted that SMOTE can result in the 

generation of more unhelpful instances as well as results in the generation of noisy data (Jiang, 

Pan, Zhang & Yang, 2021). 

 

From an algorithmic level, ensemble classifier algorithms or weight allocation have also been used 

to address the data imbalance problem (Bekkar & Alitouche, 2013).  Ensemble classifiers are 

described as a combination of multiple learning algorithms (Madasamy & Ramaswami, 2017).  

While being a fairly new learning technique, ensemble classifiers have been seen to perform better 

in prediction accuracy than individual learning classifiers (Madasamy & Ramaswami, 2017).  With 

regard to the weight allocation approach, a cost or weighting is allocated to individual instances or 

groups of instances.  With this approach, the importance of specific instances (most likely in the 

minority class) are considered during the learning process.  Identification of these instances and 

the exact weighting or cost requires understanding of the dataset and its context (Krawczyk, 2016).   

 

2.5.7.  Data formatting 

Data formatting relates to the process of transforming data from its original form to a format that 

allows for it to be processed or analyzed by another application (Gao et al., 2016; Romero et al., 

2014).  Since data comes from various sources with different formats (most likely), it is necessary 

to ensure that a mechanism is in place to ensure that different representations of the same data are 

identified as one and the same, e.g., different date formats need to be made consistent to allow for 
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correct age calculations, naming conventions of data within files, file names and file extensions 

etc. (Hershkovitz & Alexandron, 2020). 

 

In addition, formatting also deals with the conversion of the data file into a format that can be 

accepted by the application used for analysis.  For example, the WEKA application accepts files 

in .arff format or as comma separated files (.csv).  Without formatting, the application will not be 

able to distinguish between data attributes, rows or values, resulting in incorrect interpretation of 

the data. 

 

Once the data has been prepared, the next stage is that of using the data for analysis and prediction, 

which is discussed next. 

 

2.6.  Data analysis and prediction in Learning Analytics 

Learning Analytics requires the processing of large amounts of academic data, thus relying on a 

variety of techniques.  Some of these techniques include classification/prediction, clustering, 

relationship and text mining, outlier detection process mining, statistics and visualization (Hooda 

& Rana, 2020; Kumar & Salal, 2019; Romero & Ventura, 2020).  The techniques require the 

application of individual or combinations of algorithms in order to effectively analyze the data 

and/or make predictions.  These algorithms can be classified either as supervised or unsupervised 

learning algorithms. 

 

According to Berry, Mohamed and Yap (2019), supervised learning is the ability of a technique or 

algorithm to generalize knowledge from the provided data with labeled (known) instances.  From 

this knowledge, the technique or algorithm would be able to predict target values for new or unseen 

instances.  With supervised learning, the input dataset is divided into two parts: the training dataset 

and the test dataset.  The selected supervised learning algorithm attempts to identify patterns using 

the training dataset.  This is followed by applying these patterns to the test dataset with the 

objective of predicting an attribute value (Alloghani, Al-Jumeily, Mustafina, Hussain & Aljaaf, 

2020).  Examples of techniques using supervised learning include Decision Trees, Naïve Bayes 

and support vector machines (Alloghani et al., 2020; Limbu & Sah, 2019).  Limbu and Sah (2019) 
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also identify neural networks, K-nearest neighbor algorithms and linear regression as being 

supervised learning algorithms.   

 

On the other hand, unsupervised learning is the process of receiving unlabeled cases (instances) 

and the algorithm must learn or identify patterns in order to generate labels for these cases (Jain, 

Murty & Flynn, 1999).  The algorithm accomplishes this by determining relationships from the 

available data and groups the data with similar features or characteristics (Berry et al., 2019).  With 

regard to unsupervised learning algorithms, Limbu and Sah (2019) identify clustering algorithms 

(such as K-means and Gaussian Mixture models) as the most commonly used form of unsupervised 

learning. 

 

The following subsections 2.6.1 to 2.6.6 cover commonly used algorithms identified in the 

literature that are applied to educational data for analysis or prediction purposes.   

 

2.6.1.  Clustering 

According to Jain et al. (1999), clustering is an unsupervised learning algorithm that divides a set 

of observations or data items into groups referred to as clusters.  Similarly, Hooda and Rana (2020) 

describe it as the process of identifying data items that are similar to each other, allowing for better 

decision making with regard to understanding the similarities and differences between datasets.  

Unlike classification, clustering is regarded as unsupervised learning in that no training set is 

provided.  In addition, no labels are given to the data items.  Rather, the learning process of 

clustering places data items into different groups (clusters) depending on the characteristics 

identified within each of these groups (clusters).  Each group (cluster) represents different labels 

that have been generated based on what has been learnt (Jain et al., 1999).  Clustering is used for 

pattern-analysis, grouping, document segmentation and pattern classification amongst others (Jain 

et al., 1999).  From an LA perspective, Leitner et al. (2017) describes clustering as a grouping of 

similar material or students based on their learning and interaction patterns.  This technique can 

be used to detect early drop-out of students, to better understand student interaction and 

engagement in the learning process. 
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A number of clustering algorithms exist, such as hierarchical clustering, K-means and fuzzy 

clustering amongst others.  Clustering is also a commonly identified technique in the LA domain, 

the more recent studies of which are listed in Table 2.4.  Hierarchical and K-means are identified 

as the most commonly used clustering algorithms.  With the K-means clustering algorithm, objects 

are divided into an unknown number (k) of groups.  An iterative process is often implemented in 

order to determine the ideal k value (Asif, Merceron, et al., 2017).  With hierarchical clustering, 

all objects are initially their own cluster.  The algorithm then identifies two objects with similar 

characteristics and merges these clusters.  This continues until a diagram (called a dendogram) of 

a hierarchical series of nested clusters are formed.  These are clusters of merged or broken up 

objects (Jain et al., 1999). 

 

Table 2.4:  Studies that used clustering with study objectives 

Clustering Objective Clustering algorithm References 

Health effect on academic 

performance 

Hierarchical Preetha (2021) 

MOOC session analysis K-means de Barba et al. (2020) 

Categorizing students based on 

marks 

Hierarchical Limbu and Sah (2019)  

K-means Razaque et al. (2017) 

Online interaction effect on 

engagement, literacy and 

performance 

Hierarchical and non-

hierarchical 

Avcı and Ergün (2019) 

 

K-means Khalil and Ebner (2017) 

Categorizing students as 

procrastinators or not 

K-means Hooshyar, Pedaste and Yang 

(2019) 

K-means Akram et al. (2019) 

Determining attributes for 

underperforming students 

Not specified Ekubo and Esiefarienrhe 

(2019) 

Determining at-risk status Progressive Mahzoon et al. (2018) 

Identify learning strategies Not specified Gašević et al. (2017) 

Identification of high, medium 

and low performing students 

K-means Asif, Merceron, et al. (2017) 

Student drop-out analysis K-means Iam-On and Boongoen (2017) 

 

2.6.2.  Neural networks 

A neural network is composed of an interconnected set of elements (known as neurons).  The 

algorithm learns by adjusting the connections (referred to as weights) between the neurons, 

allowing for the neural network to perform a specific task or solve a problem (Beale, Hagan & 

Demuth, 2010).  Typically, an input value(s) is provided into the neural network and the weights 
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are adjusted, resulting in an output value.  Neural networks are useful for pattern discovery as well 

for classification problems (Adejo & Connolly, 2018; Beale et al., 2010).  Recent studies that used 

neural networks, along with the study objectives and accuracy achieved, are listed in Table 2.5. 

 

Table 2.5:  Studies that used neural networks with objectives and accuracy achieved 

Objective Reference Accuracy 

Performance 

prediction 

Bawah and Ussiph (2018) 

Ha, Loan, Giap and Huong (2020) 

Olive, Huynh, Reynolds, Dougiamas and Wiese (2019) 

Umar (2019) 

Adejo and Connolly (2018) 

Asif, Hina and Haque (2017) 

Asif, Merceron, et al. (2017) 

Taodzera, Twala and Carroll (2017) 

90.4% 

86.1% 

71.1 - 81.6% 

73.6% 

35 - 73.1% 

70.4% 

62.5% 

60.2% 

Predicting 

procrastination 

Hooshyar et al. (2019) 88.1 % - 99.5 % 

 

2.6.3.  Naïve Bayes 

The Naïve Bayes algorithm assumes that all attributes in a dataset are independent of each other 

given a specific value (class).  Using this assumption, the algorithm attempts to assign a value to 

a target attribute of a given instance (Rish, 2001).  Based on the exact nature of the probability 

model, the dataset is then trained by the Naïve Bayes algorithm in a supervised learning setting.  

Despite the unlikely assumption of feature independence, Naïve Bayes has been noted to work 

effectively in solving many complex real-world problems.  The benefits of using Naïve Bayes is 

reduced training time as well as removal of irrelevant features to improve classification 

performance (Kavipriya & Karthikeyan, 2019).  A list of recent studies covering the Naïve Bayes 

algorithm is shown in Table 2.6. 

Table 2.6:  List of recent studies using Naïve Bayes algorithm with objective and accuracy 

Objective Reference Accuracy 

Performance prediction Silva et al. (2022) 

Ha et al. (2020) 

Ndou, Ajoodha and Jadhav (2020) 

Asif, Merceron, et al. (2017) 

Asif, Hina and Haque (2017) 

Taodzera et al. (2017) 

88.1% 

86.1% 

83.4 – 84.4% 

83.6% 

75.6% 

63.4% 

Predicting procrastination Hooshyar et al. (2019) 80.5 – 99.4 % 

Algorithm comparison Fynn and Adamiak (2018) 59.4 – 90.2 %  

(different faculties) 

Enrollment prediction Wanjau and Muketha (2018) 72 % 
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2.6.4.  Support Vector Machine 

Support vector machines (SVM) are learning algorithms that are commonly used for pattern 

recognition, prediction tasks and data analysis.  Assuming a given set of labeled instances 

(examples) belonging to one of two classes, the algorithm develops a linear model that is capable 

of assigning class values to unseen instances.  When learning, a model (referred to as a hyperplane) 

is developed that separates the instances of the two different classes.  According to Adejo and 

Connolly (2018), SVM can learn a greater number of patterns quickly and is more accurate in 

generalization because of its errors minimization capacity. In addition, it has the ability to update 

training patterns dynamically as more data instances are made available.  

 

Some of the studies that applied SVM with the objective to predict performance accuracy are listed 

in Table 2.7. 

 

Table 2.7:  Accuracy achieved for prediction studies using SVM 

Reference Accuracy 

  

Ha et al. (2020) 85.6 % 

Ndou et al. (2020) 84.4 – 89.2 % 

Eddin, Khodeir and Elnemr (2018) 49.2 % 

Hooshyar et al. (2019) 71.9 – 99.6 % 

Taodzera et al. (2017) 64.6 % 

 

2.6.5.  Random Forest 

The Random Forest algorithm falls under the category of ensemble algorithms, which can be 

defined as a combination of classifiers into a meta classifier.  It is a process of utilizing multiple 

algorithms with the objective of obtaining better predictions when compared to using just a single 

classifier algorithm (Madasamy & Ramaswami, 2017).  In the case of Random Forest, Kovanović 

et al. (2018) describe it as a combination of a large number of Decision Trees with the final 

classification model being obtained via a voting mechanism built into the algorithm.  Each 

constructed Decision Tree is based on population sub-sample referred to as a bootstrap.  These 

bootstraps contain random instances with some of these instances being duplicated.  The resultant 

tree is then evaluated against a sample of instances that were not part of the bootstrap.  Further to 

this, each Decision Tree is created using only a subset of the features (attributes) of the dataset 

(Kovanović et al., 2018).  Ensemble algorithms have been noted to produce models with greater 
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accuracy and higher generalization capacity (Kovanović et al., 2018).  The success of the algorithm 

is further justified by Batool et al. (2023) who conducted a literature survey study of 260 articles 

and identified Random Forest as one of the most commonly used and successful algorithms for 

performance prediction. 

 

A number of studies covering the Random Forest algorithm are covered in the literature.  These 

studies are listed in Table 2.8: 

 

Table 2.8:  Objectives of studies using Random Forest algorithm with accuracy achieved 

Objective Reference Accuracy 

Performance prediction Silva et al. (2022) 

Akram et al. (2019) 

Ndou et al. (2020) 

Sandoval, Gonzalez, Alarcon, 

Pichara and Montenegro (2018) 

Adejo and Connolly (2018) 

Ha et al. (2020) 

Eddin et al. (2018) 

Asif, Merceron, et al. (2017) 

Asif, Hina and Haque (2017) 

97.5% 

87.2 – 95.4% 

93 – 95% 

 

82 – 86.1% 

73.1 – 81.6% 

80.7% 

72.8% 

71.1% 

69.5% 

Predicting procrastination Hooshyar et al. (2019) 86.8 – 99.5% 

Understand student self- reflection Kovanović et al. (2018) 87% 

 

2.6.6.  Decision Tree algorithms 

According to Nudelman et al. (2019), Decision Tree algorithms apply the concept of information 

entropy to divide the classification process into smaller sub-problems which are easier to solve.  

As the name states, the algorithm represents a tree structure made up of nodes and branches.  Each 

node represents an attribute of the dataset and a number of branches stem from the node, where 

each branch represents a value that the attribute can take (Alloghani et al., 2020).  A node in a 

Decision Tree is continuously divided into sub-nodes via its descendants.  A node with zero (0) 

descendants indicates a prediction has been made.  Nudelman et al. (2019) states that an attribute’s 

influence is determined by its place in the Decision Tree: the higher the node (attribute), the greater 

the influence the attribute has in predicting a value. 

 

Decision tree algorithms are one of the most commonly used algorithms for performing 

educational prediction or classification (Kumar & Salal, 2019; Wise, 2019).  Table 2.9 lists recent 
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studies that have implemented Decision Tree algorithms grouped by the main objective of each of 

the studies.  The majority of studies focused on accuracy as the primary measure for performance, 

although other performance measures were also reported upon (discussed further in chapter 7).  

Thus, the accuracy of each study is also included in Table 2.9. 

 

Table 2.9:  Objectives for studies using Decision Tree algorithms 

Objective (number of 

studies) 

Reference Accuracy 

Performance prediction 

(21) 

Bawah and Ussiph (2018) 

Saheed, Oladele, Akanni and Ibrahim (2018) 

Akram et al. (2019) 

Nudelman et al. (2019) 

Ndou et al. (2020) 

Agrawal, Vishwakarma and Sharma (2017) 

Hasan et al. (2020) 

Sunday et al. (2020) 

Khakata, Omwenga and Msanjila (2019) 

Abaah Jnr (2019) 

Tegegne and Alemu (2018) 

Adejo and Connolly (2018) 

Silva et al. (2022);  

Asif, Hina and Haque (2017) 

Jalota and Agrawal (2019) 

Ha et al. (2020) 

Taodzera et al. (2017) 

Olaniyi et al. (2017) 

Hasan et al. (2018) 

Hamoud, Hashim and Awadh (2018) 

Kumar and Singh (2017) 

100% 

98.3% 

94.5% 

92% 

91.4% 

90% 

87% 

87% 

84.6% 

82% 

81.4% 

78% 

77.5% 

74.7% 

73.6% 

73.4% 

65.8% 

65.7% 

63.6% 

63.4% 

61.4% 

 

At-risk prediction (2) Ribot et al. (2020) 

Al luhaybi et al. (2018) 

92.1% 

84% 

 

Procrastination 

prediction (1) 

Hooshyar et al. (2019) 

 

99.6% 

Enrollment prediction 

(1) 

Wanjau and Muketha (2018) 

 

84% 

Drop-out prediction (1) Viloria et al. (2020) 79.8% 

 

Algorithm comparisons 

(3) 

Fynn and Adamiak (2018) 

Eddin et al. (2018) 

Asif, Merceron, et al. (2017) 

90.5% 

72.5% 

69.2% 
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A commonly identified advantage of using a Decision Tree algorithm is that the model created is 

usually easy to understand by the analyst and end user (Yusuf & Lawan, 2018).  From an 

implementation standpoint, Decision Tree algorithms are flexible enough to handle different input 

data types, namely text, numeric and nominal data types.  Decision tree algorithms are also able to 

process erroneous or missing data values by creating branches specifically for these problematic 

values.  Finally, Decision Tree algorithms are known to be implemented fairly quickly with 

minimal time to create the model (Hamoud et al., 2018). 

 

In order to conduct the analysis described in this section, various software or tools are available.  

Some of the more common tools are described in the next section. 

 

2.7.  Common tools or applications used for Learning Analytics 

This section describes common tools or applications used for LA tasks.  These tools relate to 

commonly identified software applications aimed at applying different algorithms and functions 

to user datasets with the objective of data cleaning, preparation, analysis and prediction of 

student’s learning interaction and performance. 

 

2.7.1.  WEKA 

The Waikato Environment for Knowledge Analysis (WEKA) tool is an open-source application 

that can be used for various data mining tasks and is an accepted tool for performing student 

prediction tasks (Batool et al., 2023).  To accomplish these tasks, the application is constituted of 

a number of algorithms and functions that can be used for preprocessing, classification, clustering 

and attribute selection, amongst others (Vambe & Sibanda, 2017).  WEKA is developed using the 

Java programming language and is available for use on most operating systems.  WEKA accepts 

data as a single flat file specified in .arff (Attribute-Relation File Format) format as well as .csv 

format amongst others.   

 

Advantages of WEKA, according to Abaah Jnr (2019) is that it is open-source and freely available, 

platform independent, and can be easily used by non-data mining specialists.  Salihoun (2020) also 

stated the availability of online support via WEKA mailing lists, tutorials, wikis and bug reports.  
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WEKA also allows for the addition of user created algorithms or downloading of algorithms and 

functions created by others in the online analytics community. 

 

2.7.2.  KNIME 

According to Berthold et al. (2009), the Konstanz Information Miner (KNIME) is a modular 

environment that allows for visual assembly and interactive execution of a data mining task.  The 

tool is open-source and allows for both data mining and reporting tasks similar to that of WEKA 

(Salihoun, 2020).  Also, similar to WEKA, KNIME incorporates integration of user created 

algorithms and tools for data mining purposes.  The modular nature of KNIME allows for the 

ability to incorporate a number of different data sources in different formats such as database files, 

MS-Excel files, .csv files, .arff files etc. 

 

A KNIME workflow is created using a combination of nodes, with each node performing a specific 

function such as pre-processing, analysis, colour allocation, machine learning application, graph 

display, etc. (Berthold et al., 2009).  Connections are formed between the nodes, indicating the 

transport of data between two nodes.  An advantage of this approach is that the workflow node 

stores the result permanently and can be stopped at any time to be resumed later.  A user can then 

adjust the nodes and the entire workflow need not be started from the beginning (Berthold et al., 

2009).   

 

2.7.3.  R 

R is an open-source programming language as well as a data analysis environment.  As with 

WEKA and KNIME, being open-source allows for the development of new techniques and 

functions that can be incorporated into the R environment for use by data scientists (Patil, 2016).  

The common version of R consists of an Integrated Development Environment (IDE) consisting 

of a console window, workspace view and data editor. 

 

R provides a wide variety of statistical, graphical and machine learning techniques.  It has several 

built-in functions to allow for data extraction, data preparation, statistical analysis, predictive 

modelling and data visualization.  It is one of the more popular tools used in industry and has a 

growing online community support that updates and adds new functionality consistently (Prajapati, 

2013). 
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2.7.4.  Python and Jupyter notebook 

Python is a programming language that allows for the manipulation of data and engineering of 

various techniques and functions.  Salihoun (2020) states that Python with Jupyter Notebook is an 

interactive environment with features for the creation and sharing of documents as well as data 

cleaning and transformation, simulation, modeling, visualization and machine learning.  Besides 

this, one of its main functions is to keep track of the research process (Randles, Pasquetto, Golshan 

& Borgman, 2017).  From an academic perspective, keeping track of the steps of the research 

process allows for better reproduction or replication of any experiments undertaken in the research 

(Randles et al., 2017). 

 

Jupyter notebook allows for storage of data within online repositories that can be easily accessed 

by a variety of research objects.  Jupyter notebook also has the advantage of being both machine 

and human-readable, allowing for interoperability with other compatible applications as well as 

for academic communication (Randles et al., 2017). 

 

2.7.5.  RapidMiner 

RapidMiner is another popular tool used in analytics due to its easy to learn user interface 

(Prekopcsak, Makrai, Henk & Gaspar-Papanek, 2011).  It is a data science software platform that 

allows for data preparation, machine learning as well as predictive analytics.  The tool contains a 

number of built-in algorithms for handling classification, clustering, rule mining, regression and 

others (Salihoun, 2020).  Similar to WEKA and KNIME, it also allows for the addition of user 

created extensions that can provide additional statistical, analytical and machine learning functions 

(Prekopcsak et al., 2011).  RapidMiner is free and open-source and a number of tutorials are 

available to assist new users (Salihoun, 2020). 

 

2.8.  Identification of potential gaps in the literature 

This literature review chapter outlines the influence of LA within the higher education 

environment.  The general definition of LA is given, followed by how it fits into the world of Big 

Data in higher education.  The most common aspects of the LA process are discussed, these being 

data acquisition, data preparation, algorithms applied to the data, and commonly used tools for LA 

application studies.  From an algorithm perspective, the most commonly used algorithms in recent 
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literature were Decision Trees, clustering, Naïve Bayes, Neural Networks and Random Forest 

algorithms. 

 

After reviewing the literature found, LA or EDM research is being conducted in numerous 

countries, with the majority of studies emanating from the first world countries such as those in 

Europe, the United States and Australasia.  From a developing country perspective, there is slow 

progress in the development of LA within the African continent (Prinsloo & Kaliisa, 2022b).  In a 

2023 literature survey study by Sghir, Adadi and Lahmer (2023), out of 74 studies identified 

between 2012 and 2022, the majority of studies emanated from the United Kingdom, USA, India 

and Spain with only one (1) study identified from Africa.  Table 2.10 outlines studies that were 

found relating to LA or EDM that involved countries in Africa from 2017 to 2022 (six years). 

 

Table 2.10:  Recent LA/EDM application studies conducted in Africa 

LA/EDM applications (19) LA implementation research (2) 

Olaniyi et al. (2017); Mwalumbwe and Mtebe 

(2017); Taodzera et al. (2017); Vambe and 

Sibanda (2017); Oloruntoba and Akinode 

(2017); Bawah and Ussiph (2018); Saheed et 

al. (2018); Tegegne and Alemu (2018); 

Wanjau and Muketha (2018); Kritzinger, 

Lemmens and Potgieter (2018); Popoola et al. 

(2018); Gulint and Adam (2019); Khakata et 

al. (2019); Nudelman et al. (2019); Adekitan 

and Salau (2019); Ogunde and Ajibade (2019); 

Umar (2019); Ndou et al. (2020); Sunday et al. 

(2020) 

Prinsloo and Slade (2017); Okewu and 

Daramola (2017);  

LA/EDM overviews (1) 

Maphosa and Maphosa (2020) 

Performance comparisons (1) Challenges for adoption (6) 

Fynn and Adamiak (2018) Prinsloo (2018); Prinsloo, Slade and Khalil 

(2018); Ngqulu (2018); Olivier (2020); 

Prinsloo and Kaliisa (2022b); Prinsloo and 

Kaliisa (2022a) 

 

As can be seen in Table 2.10, only 29 articles over six (6) years were identified, indicating the lack 

of research related to LA within the African continent.  The lack of LA or EDM research was also 

observed by both Prinsloo and Kaliisa (2022b) and Maphosa and Maphosa (2020) respectively.  

Table 2.11 outlines a summary of the characteristics of the LA/EDM application studies conducted 

in Africa. 
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Table 2.11:  LA/EDM Africa-based application studies with problem characteristics 

Study Country Data Source No. of 

students 

in study 

Technique 

Mwalumbwe and 

Mtebe (2017) 

Tanzania LMS (2 Courses) 171 Correlation 

Regression 

Taodzera et al. (2017) South 

Africa 

Demographics 

School marks 

School details 

1366 SVM 

Neural network 

Decision tree 

Regression 

Naïve Bayes 

Olaniyi et al. (2017) Nigeria Past university marks 

Course activities 

285 BFTree 

CART 

Decision tree 

Vambe and Sibanda 

(2017) 

South 

Africa 

Past university marks 476 Decision tree 

Oloruntoba and 

Akinode (2017) 

Nigeria School marks 

Past university marks 

89 SVM 

Neural network 

Decision tree 

Regression 

Bawah and Ussiph 

(2018) 

Ghana School marks 

School details 

Past university marks 

525 Neural network 

Decision tree 

K-nearest neighbour 

Saheed et al. (2018) Nigeria Demographics 

Financial 

Lecture attendance 

234 Decision tree 

Regression trees 

Tegegne and Alemu 

(2018) 

Ethiopia School marks 

Entry exam marks 

Choice of degree 

1st year marks 

5729 Decision tree 

Fynn and Adamiak 

(2018) 

South 

Africa 

Demographic 

Registration 

School marks 

Past university marks 

186 174 

instances 

ZeroR 

OneR 

Naïve Bayes 

Regression 

Decision tree 

Wanjau and Muketha 

(2018) 

Kenya School marks 

Financial 

Opinion 

Demographics 

209 Decision tree 

Naïve Bayes 

Regression trees 

Kritzinger et al. 

(2018) 

South 

Africa 

Demographics 

School marks 

Past university marks 

Learning strategies 

 

1084 ANOVA 

CHAID analysis 

Continued on next page… 
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Table 2.11 continued 

 

Study Country Data Source No. of 

students 

in study 

Technique 

Popoola et al. (2018) Nigeria Past university marks 1841 Descriptive statistics 

Frequency distribution 

ANOVA 

Post-hoc tests 

Gulint and Adam 

(2019) 

Ethiopia Opinion 5454 

instances 

Association rules 

 

Khakata et al. (2019) Kenya Opinion 747 Decision tree 

Adekitan and Salau 

(2019) 

Nigeria Past university marks 1841 -  

Same as 

Popoola et 

al. (2018) 

Neural network 

Random Forest 

Decision trees 

Naïve bayes 

Tree ensemble 

Regression 

Ogunde and Ajibade 

(2019) 

Nigeria Past university marks 

 

10601 

instances 

K-nearest neighbour 

 

Nudelman et al. 

(2019) 

South 

Africa 

School marks 

Demographics 

Registration 

783 Random Forest 

Decision Tree 

Naïve Bayes 

Bayesian Network 

Umar (2019) Nigeria Demographics 

School marks 

61 Neural Network 

Ndou et al. (2020) South 

Africa 

School marks 

Demographics 

 

2000 Decision Trees 

Naïve Bayes 

Random Forest 

SMO 

Regression 

Logistic Model Trees 

Sunday et al. (2020) Nigeria Past university marks 

Course activities 

239 Decision Tree 

 

The dataset by Ndou et al. (2020) was a synthetically created dataset (based on SA student data) 

of 50000 students with 2000 students sampled for the purposes of the study.  This dataset is the 

only publicly available dataset.  The other datasets identified either focus on an individual course, 

a small number of courses, or are a collection of students from a variety of degrees or colleges.  

Many studies, for example Fynn and Adamiak (2018), consider the student instances and attributes 

as a whole rather than based on the degrees that they are doing or the courses that they are 

registered for.  It cannot be assumed that all colleges and degrees are the same and that the same 



53 
 

attributes can be applied for prediction.  For example, a student’s mathematics result may be a 

better predictor at a Science-based college than at an Arts college.   

 

2.9  Chapter Summary 

The chapter provided an overview of LA, first covering the concepts (Section 2.2) and then 

different processes involved in LA (Sections 2.3 to 2.6).  Section 2.7 covered the most commonly 

identified tools used for LA based on a survey of the literature.   

 

One of the key points noted was the lack of LA/EDM studies conducted in Africa when compared 

to the rest of the world.  It was evident and noted by other authors that Africa has been slow to 

take advantage of the benefits of LA, however this has been due to other challenges such as lack 

of technological infrastructure. 

 

The development of datasets and making them available would further encourage application and 

evidence-based research in LA.  This would then allow for further research on LA implementation 

studies within HEIs in Africa.   

 

All studies identified have individually focused on specific aspects of LA such as ethical issues, 

data preparation, pre-processing or learning algorithm application.  No studies were identified that 

systematically cover the full LA process from the data acquisition (including ethical clearance, 

data collection, preparation and preprocessing) to application of learning algorithms and artificial 

intelligence techniques with discussion of results. 

 

The next chapter covers the research methodology for this research, including the adopted LA 

research model that covers the entire LA process, aspects of data acquisition, and choice of 

application that will be used to further the knowledge in the LA field. 
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3.2.  Research philosophies 

According to Žukauskas, Vveinhardt and Andriukaitienė (2018), the research philosophy can 

guide the researcher towards choosing the most appropriate strategy, problem formulation, mode 

of data collection, processing and analysis  This section, therefore, covers four commonly 

identified research philosophies, that being positivist, interpretivist, realistic, and pragmatic 

philosophies. 

 

The positivist research philosophy assumes that the world can be viewed objectively and the 

researcher can work independently and not be biased (Žukauskas et al., 2018).  The opposite of 

positivism is the interpretivist/constructivist philosophy where it is understood that the world 

position is subjective in nature (Žukauskas et al., 2018).  A pragmatic research philosophy is one 

that is dependent on the research problem where the researcher approaches the problem in the best 

manner required to solve the problem (Žukauskas et al., 2018).  Finally, the realistic research 

philosophy is one that combines the positivist and interpretivist philosophies.  Table 3.1, adapted 

from Žukauskas et al. (2018), outlines the research philosophy as well as the procedure and tools 

used for data collection. 

 

Table 3.1:  Philosophies, research methods and suggested instruments 

Research philosophy Research method Research instrument examples 

Positivism Quantitave Experiments 

Tests 

Scales 

 

Interpretivism Qualitative Interview 

Observation 

Document/file study 

Image data analysis 

 

Pragmatism Qualitative and/or  

qualitative 

Instruments from positivism as well 

as interpretivism 

 

Realism Qualitative,  

quantitative and  

mixed methods 

Variety of measures to reduce bias 

 

As can be seen in Table 3.1, with a positivist viewpoint, a quantitative research approach is 

generally preferred as only quantifiable data is considered as evidence (Giddings & Grant, 2006).  



57 
 

A large amount of data collected is preferable in order to improve the likelihood of statistical 

significant correlation (Giddings & Grant, 2006).  With regard to the interpretevist viewpoint, a 

qualitative research method is preferred where the data collected is in the form of perspective.  A 

number of different perspectives, in combination with the researcher’s perspective, allows for a 

more holistic truth of the subject of study (Giddings & Grant, 2006).  The viewpoint of the realist 

would result in following a combination of qualitative, quantitative and mixed methods as this 

would depend on contextual and historical factors (Žukauskas et al., 2018).  Finally, a pragmatic 

viewpoint will follow a methodology dependent on what is required to solve the problem 

(Žukauskas et al., 2018). 

 

With the research philosophies described above, the next section discusses an area that LA falls 

under, that being Information Systems research. 

 

3.3.  Information Systems research 

The objective of IS within an organization is to ensure the continuous improvement of efficiency 

and effectiveness of processes within that organization (Hevner et al., 2004).  Thus, the objective 

of any research endeavor in IS is to improve the body of knowledge that assists in the improvement 

in the application of Information Technology in the relevant organization (Hevner et al., 2004).  

The research paradigms of behavioural science and design science play a role in improving the IS 

body of knowledge (Hevner & Chatterjee, 2010). 

 

Behavioural Science stems from the methods used for natural science research.  From an IS 

perspective, this research paradigm is used when testing and/or justifying theories in order to 

explain the IS related activities (analysis, design, implementation and/or use) within an 

organization (Hevner & Chatterjee, 2010).  The importance of this area of research is that it 

provides practitioners with relevant information regarding the actions of people, technology and 

organizations and how these actions should be managed to improve efficiency and effectiveness 

(Hevner & Chatterjee, 2010).  In fact, according to Hevner and Chatterjee (2010), this form of 

research has been dominant in the IS discipline where the majority of studies try to understand the 

impact of artefacts (for example design models and technology) and its effect on people and 

organizations. 
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positivism, post modernism or critical realism) that would best allow for the requirements of the 

objectives to be met (Saunders, Lewis & Thornhill, 2019).  There are two main objectives in 

Design Science, these being the development of an artefact(s) as well as the evaluation and fitting 

of the artefact(s) to solve the problem (Cronholm & Göbel, 2016).   

 

To assist with carrying out of Design Science research, Hevner et al. (2004) provided a set of seven 

(7) guidelines.  These guidelines, when followed with an appropriate Design Science methodology, 

will allow for the implementation of an effective research project.  The guidelines are summarized 

in the table below: 

 

Table 3.2:  Design Science guidelines by Hevner et al. (2004) 

Guideline Description 

1.  Design as an artefact The Design Science research project must produce a 

complete, usable artefact. 

 

2.  Relevence to the problem The Design Science research project must result in 

the development of a solution to the relevent 

problem. 

 

3.  Evaluation of the design The usability and quality of the developed artefact 

must be determined through demonstration and 

compared against some performance criteria 

 

4.  Contribution of the research The Design Science research conducted must have a 

significant and verifiable contribution towards the 

artefact, its design or developments as well as the 

methodologies used. 

 

5.  Research rigor Methodologies used must be carried out in a 

disciplined manner during both the development and 

the evaluation of the artefact. 

 

6.  Design as a search process The development of a viable, quality artefact 

requires the effective use of any or all legal resources 

available. 

 

7.  Research communication The Design Science research implemented must be 

effectively presented to all relevant stakeholders. 
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There are a number of methodology models identified for Design Science research.  This includes 

the Design Science Research Model (DSRM) by Peffers, Tuunanen, Rothenberger and Chatterjee 

(2007), the Design Science Research Process Model by Vaishnavi, Kuechler and Petter (2004), 

the Design Science Research method for Decision Support Systems development (Arnott, 2006), 

Soft Design Science Methodology (Baskerville, Pries-Heje & Venable, 2009) and the Learning 

Analytics Information Systems (LAIS) Design Methodology by (Nguyen, Gardner & Sheridan, 

2020).  Each of these models have similar activities such as identification of the problem, 

suggesting of solutions, development of an artefact and evaluation or comparison of the artefacts 

 

For this research, the DSRM as proposed by Peffers et al. (2007) was followed when developing 

the artefact.  While the other models had similar stages, the model by Peffers et al. (2007) suggests 

an iterative approach, thus allowing for a pragmatic philosophy being adopted.  A pragmatic 

philosophy was also suggested Hevner et al. (2004) in terms of guidelines 6 (see Table 3.2).  The 

LAIS proposed by Nguyen et al. (2020) also follows an iterative approach but is more focused on 

LA implementation at an institutional level and includes architectural and service based activities 

that are outside the scope of this study.  Thus, the DSRM model by Peffers et al. (2007) is well 

suited due to its ability to work through what can be classified as a practical, real-world problem.  

The iterative nature of the model (as shown in Figure 3.4), allows for the development of effective 

artefacts that can be used by teaching staff to improve teaching and learning outcomes (Chatti et 

al., 2012).   

 

The DSRM is made up of six (6) main activities.  The authors of the DSRM identified these 

activities based on common steps followed by leading design science researchers.  The description 

of these activities as well as how they relates to this research is described in subsections 3.4.1 to 

3.4.6. 
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The motivation for this study, as described in Section 1.7, is to better use the large amounts of data 

continuously stored at higher education institutions with the objective of better understanding and 

predicting student academic performance, thereby improving student learning outcomes. 

 

3.4.2.  Defining the objectives for a solution 

From the problem statement, the objectives of the study are conceptualized (Section 1.5).  The 

objectives to the solution can be quantitative, such as measures that could determine when a 

solution is better than the current scenario, or qualitative in nature, such as how the new solution 

would solve the current problem scenario (Peffers et al., 2007).  This stage was also referred to as 

“Suggestion” (Arnott, 2006; Vaishnavi et al., 2004). 

 

Peffers et al. (2007) note that the objectives for a Design Science research study focus on design 

and development.  In the context of this study, the research objectives also focus on design and 

development, which when completed, will result in the completion of the artefact.  The research 

objectives for this study (from Section 1.5) are listed below: 

 

1. To integrate the relevant university data sources in preparation for classification. 

To achieve this objective, an artefact is developed that guides the collection and organization of 

the data in a form such that the data can be applied to machine learning algorithms and/or artificial 

intelligence techniques. 

 

2. To extract, clean and classify the integrated data. 

In order to address this objective, aspects of data preparation are addressed.  This includes dealing 

with the removal of redundant or duplicate data as well as converting the data into an appropriate 

format in order to ensure effective processing and prediction.   

 

3. To train the data in order to determine patterns and useful information for student 

performance prediction.   

This objective is addressed by utilizing feature selection in combination with machine learning 

and/or artificial intelligence methods in order to develop prediction models.   
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4. To determine the effectiveness of the training techniques by evaluating their accuracy in 

terms of how they predict student performance. 

This will be accomplished by performing a comparison between the results of the artefact with 

data and results that have already been generated to determine how accurately the artefact can 

make predictions. 

 

5. To evaluate the results generated by the artefact against other similar artefacts. 

This will be accomplished by comparing the performance of the model generated through the 

artefact against that of other LA studies in the literature based on accuracy and other assessment 

metrics. 

 

3.4.3.  Design and development 

This activity involves the creation of the artefact.  As described in the previous section, an artefact 

can be a construct, model, method, instance or any technical resource or information that 

contributes towards enhancing the function, effectiveness and/or efficiency of an organization, 

team or people involved in Information Systems (Peffers et al., 2007).  This activity also includes 

determining the functionality of the artefact and the use of resources required to develop the 

artefact.  These resources include the knowledge base that can be used to develop the artefact.  

Table 3.3 provides the most common artefact types that result from Design Science research 

(Vaishnavi et al., 2004). 
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Table 3.3:  List of potential types of artefacts (Vaishnavi et al., 2004) 

Artefact type Description 

1.  Constructs Theoretical concepts within the domain of study 

 

2.  Models Set of relationships between constructs 

 

3.  Frameworks Output to support or guide through a process 

 

4.  Architectures High level system structures 

 

5.  Design principles Core rules or philosophies to guide through a design process 

 

6.  Methods Step-by-step guide to follow for task completion 

 

7.  Instantations Output that is the result of implementing other artefacts such as 

methods, frameworks, models, design principles or constructs 

 

8.  Design theories Combination of one or more artefacts that results in prescriptive 

statements for meeting an objective 

 

From the perspective of this study, one of the artefacts developed was a process model, outlining 

the steps required to analyze and predict student academic performance based on the data sources 

provided.  This process model combines the characteristics of artefact type 6 and artefact type 3 

(see Table 3.3) in that it provides a step by step process to guide LA researchers.  The process 

model is presented in Section 3.5 while the aspects considered during the design and development 

of this model are covered in the next three chapters.  Chapter 4 covers the data collection, cleaning 

and preparation stages.  Chapter 5 and Chapter 6 cover the description of the machine learning and 

artificial intelligence techniques used in this study to develop and test the student academic 

performance prediction models.  In this case, the techniques are the Decision Tree and Random 

Forest algorithms (machine learning techniques) as well as the Genetic Algorithm and Optimized 

Forest algorithm (artificial intelligence). 

 

In addition, a further artefact developed from this study was in the form of a dataset.  In the case 

of Table 3.3, this artefact would fall under artefact type 7 where the data collected in this study 

was anonymized, cleaned and formatted for use for analytics.  Future LA researchers may use this 

dataset as part of testing for new techniques or algorithms to improve student performance 

analysis. 
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3.4.4.  Demonstration 

This activity involves application of the artefact to solve the problem.  This stage can be perceived 

as part of the testing of the artefact to determine how well it solves the problem.  Demonstration 

can involve the use of case studies, experiments, simulations or any other activity (Peffers et al., 

2007).   

 

The implementation or application of the artefact, together with the techniques used to anonymize 

data as well as the algorithms used for prediction are covered in Chapters 4, 5 and 6.  In Chapter 

4, the data collection process is described as well as what techniques are used to effectively 

anonymize, clean and prepare the data for prediction or classification.  Chapter 5 and Chapter 6 

cover the demonstration of the Decision Tree, Random Forest, Genetic and Optimized Forest 

algorithms and how these algorithms performed when applied to the UKZN ISTN dataset. 

 

3.4.5.  Evaluation 

This activity involves measuring how well or to what extent the artefact solves the problem.  This 

can be accomplished by comparing the objectives of the study against observed results from the 

previous activity (Demonstration).  This activity requires knowledge of evaluation techniques and 

relevant metrics.  Evaluation can be in the form of a document outlining how the objectives have 

been met, quantitative evaluations such as statistics and graphs, or quantifiable measures such as 

response times.   

 

In the case of this study, two forms of evaluation were considered.  Firstly, the prediction models 

developed by the process model was tested against unseen data instances, and these evaluations 

are discussed in Chapter 5 and Chapter 6.  Secondly, Chapter 7 covers a comparison of the best 

performance measure values obtained in this study against performance measure values reported 

in other learning analytics or electronic data mining studies identified in the literature.   

 

3.4.6.  Communication 

The final activity of the DSRM is to convey the details of the artefact and its importance.  These 

details include the results of demonstration and evaluation, and the benefits of the artefact to 

researchers and other relevant stakeholders.  This dissertation, in addition to two research outputs 

(see page iii), formed the communication medium for the artefact, its importance and relevance to 
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information.  In the case of LA, this information relates to student academic performance with the 

intention to identify student weaknesses and provide feedback to students and relevant 

stakeholders (Haggag et al., 2018).  For stage three, a model can be defined using a researcher’s 

preferred technique.  The model may incorporate a number of variables or data attributes from the 

data set and each variable can be associated with weightings based on its importance to predicting 

the target value.  This model can then be tested to determine its accuracy of how the model predicts 

the target value (Haggag et al., 2018).  The intervention stage (stage four) involves the teaching 

staff taking action with students that have been predicted to struggle and intervening by changing 

their learning habits (Haggag et al., 2018).  Finally, stage 5 (refining the model) involves assessing 

all aspects of the LA initiative and seeking improvements for future iterations.  This includes 

looking at the data sources and how data is represented and captured, evaluating the techniques 

used for information generation, and identifying improvements to the prediction model based on 

importance of variables/attributes (Haggag et al., 2018). 

 

3.5.1.2.  Sequence model for learning analytics (Mahzoon et al., 2018) 

In the study by Mahzoon et al. (2018), each student is represented as a sequence of nodes (see 

Figure 3.6).  The initial node contains the student’s demographic data which includes their age, 

gender, and employment status, amongst others.  The subsequent nodes respectively represent the 

set of activities performed by a student during a semester.  The number of subsequent nodes in this 

case is the total number of semesters that a student is part of.  The final node is an outcome node 

that contains the final status of the student (such as graduated, inactive or withdrawing, as well as 

the date of this outcome).  Mahzoon et al. (2018) identified the benefits of this model as being a 

greater focus on time-based events, separation of events (in this case by semester), as well as 

improved story telling. 
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stage of action involves the relevant administration or teaching staff to implement changes as per 

the interpretation of the analysis and visualization stages.  This may include interventions, resource 

management, optimizations and system improvement, amongst others.  The final component is the 

inclusion of the data loop which incorporates the team of individuals that may be involved in the 

learning analytics initiative (Siemens, 2013). 

 

3.5.1.5.  Learning analytics models and frameworks that focus on conceptual and physical 

implementation 

While this is not the focus of this study, for the sake of completeness and an appreciation of LA-

based frameworks and models, this section describes the most commonly identified models that 

are aimed at conceptual and physical implementation of learning analytics at academic institutions. 

 

The reference model proposed by Chatti et al. (2012) is aimed at providing a classification schema 

of LA initiatives.  The reference model is made up of four dimensions covering data source 

requirements (what?), individuals and stakeholders (who?), purpose and objective of LA 

implementation (why?), and finally, the techniques required to implement the LA project (how?).   

 

A similar framework is proposed by Greller and Drachsler (2012) but also includes two additional 

dimensions, these being internal and external limitations.  These limitations are aspects that may 

affect how the LA initiative is carried out and the scope of its functions (Greller & Drachsler, 

2012).  The external limitations refer to the aspects around the environment that may affect the 

implementation, such as the ethical and privacy aspects of storing, using and disseminating digital 

data, as well as local and international laws regarding data regulation.  In terms of the internal 

limitations, the authors identify human-related factors within the organization, for example the 

competency of individuals and their ability to use the LA system as well as interpret the results 

produced by the system.  Competency can also affect acceptance of the system.  A poor 

understanding of LA could result in users rejecting the initiative.  Greller and Drachsler (2012) 

emphasize the importance of behavioural science and propose an updated Technology Acceptance 

Model (TAM) that should be used to evaluate the use and acceptance of LA initiatives. 

 

The original ROMA framework was used to assist in strategic and policy development in the field 

of international development.  This framework was adapted by Ferguson et al. (2014) to assist in 
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the implementation of LA based initiatives.  The framework consists of seven steps that include: 

defining a clear set of policy objectives; identifying barriers to LA implementation; identifying 

stakeholders; identifying and understanding the purpose behind the LA initiatives; developing 

strategies for meeting LA requirements; considering capacity and ability of staff; and developing 

and evaluating the LA initiative.  Once LA has been implemented, the system must be monitored 

and adjusted in order to maintain its effectiveness and to improve the system for the future 

(Ferguson et al., 2014).   

 

The Let’s Talk Framework was introduced by West et al. (2016) with the objective of providing 

guidance to institutions of higher education with regard to implementation of an LA initiative.  The 

first aspect (domain) of the framework is to provide the institutional parameters that will dictate 

what is feasible or unfeasible for implementation at the institution.  Some of these parameters may 

include location, size or structure of the institution as well as student and staff demographics (West 

et al., 2016).  The remaining five domains are transitional institutional elements (culture, size, 

demographic and strategy considerations), LA infrastructure (technology and expertise), 

transitional retention elements (LA effect on current institutional policies), LA for student 

retention discussion, and intervention and reflection.   

 

The objective of the Personalization and Learning Analytics (PERLA) framework is to guide the 

development of an effective LA system that is capable of determining effective indicators for 

personalization learning (Chatti & Muslim, 2019).  The framework is made up of two layers with 

the inner layer based on the LA reference model discussed above and an outer layer representing 

the process of identifying indicators for personalized learning. 

 

3.5.1.6.  Learning analytics model adopted for this study 

The LA model shown below is influenced by the model proposed by Siemens (2013) described in 

Section 3.5.1.4.  The model adopted for this study is illustrated in Figure 3.9 below: 
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the creation of labels of the classes for each of the split datasets (in this case, pass or fail).  The 

data anonymization, cleaning and preparation processes are discussed in Chapter 4.  Process 4 

results in the integrated dataset being split into individual course datasets. 

 

Each course dataset is split into a training data-subset (all data before 2021) and a validation data-

subset (2021 data) with the training dataset being input for process 5 (Develop Prediction Model) 

and the validation dataset being input for process 6 (Validate model).  The training dataset 

undergoes the processes of sampling (process 5.1 that is covered in Chapter 5) and feature selection 

(process 5.2 that is covered in Chapters 5 and 6).  Process 5.3 covers the application of 

classification technique(s), discussed in Chapter 5 and Chapter 6 that are applied to the sampled 

(or non-sampled) dataset resulting in the development of a prediction model.  This prediction 

model serves as input to process 6 which involves the application of the model to the validation 

data-subset.  Here, the objective is to compare the accuracy obtained during process 5 with the 

accuracy of the resultant prediction model when applied to an unseen dataset. 

 

This model is similar to those described in sections 3.5.1.1 to 3.5.1.5 in that all the models have 

similar processes (such as data collection, pre-processing and analysis).  The model in this study, 

through the use of dataflow diagram (level-0) notation, shows how the data is transformed between 

processes.  Furthermore, the model in this study includes a notation to specify which techniques 

are applied within each process.  Level-1 dataflow diagrams were not considered due to the 

potential increase in complexity of the diagram through the addition of further processes and 

dataflows. 

 

3.6.  Data collection 

This section outlines the steps taken to collect data required for the study.  Before any study relating 

to data use can be conducted at UKZN, ethical clearance must first be granted.  This aspect is 

covered in section 3.6.1.  Section 3.6.2 describes the final datasets used for the study.  Section 

3.6.3 discusses the data validity and reliability. 
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3.6.1.  Ethical clearance 

Ethical clearance (EC) was applied for with the intention of acquiring student biographical and 

past academic data as well as Moodle LMS interaction data from the UKZN Institutional 

Intelligence (II) division.  As part of the EC process, a gatekeeper letter was obtained from the 

UKZN registrar.  The ethical clearance letter is included in Appendix A. 

 

The data was approved to be released by both II and the registrar on condition that the data was 

anonymized in accordance with the POPI act introduced in South Africa.  To facilitate the 

acquisition of the data as well as meeting the requirements specified by POPIA, a non-disclosure 

agreement (NDA) was signed between the researcher and UKZN.  This NDA stated that the data 

would be anonymized and only available to authorized individuals involved in the study at UKZN. 

 

3.6.2.  Data used for the study 

The data obtained for this research is secondary data in the form of a dataset of UKZN students 

from the discipline of IS&T.  The data for the study was initially made up of three datasets.  The 

first dataset contains student demographics, registration data and academic performance data.  The 

dataset (biographical, registration and assessment data) initially contained data related to 50 

courses and approximately 14000 students registered to ISTN courses from 2014 to 2021.  The 

second dataset contains student marks obtained in high school.  Both of these datasets were 

provided in MS-Excel format by the UKZN II division. 

 

The final dataset consists of student Moodle LMS interactions with the different IS&T courses that 

they were registered for.  Access to each Moodle site was obtained by permission of the respective 

course co-ordinators and was manually downloaded by going to the moodle site and downloading 

the data (in MS-Excel format).  The Moodle interaction data was obtained from Moodle IS&T 

course sites from 2017 through to 2021.  Previous LMS course interaction data were no longer 

available for download.  The description of the datasets as well as the process of data 

anonymization, integration, cleaning and preparation is described in detail in the next chapter. 

 

3.6.3.  Reliability and validity 

Thanasegaran (2009) defines reliability as the degree to which measures are free from error and 

produce consistent results such that the results can be repeated or duplicated.  Validity is defined 
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as the degree or the extent to which a method measures what it is meant to be measuring 

(Thanasegaran, 2009). 

 

From the perspective of the study, the reliability of the data was addressed through the process of 

data cleaning and preparation (described in Chapter 4).  Further, the predictive validity of the 

model is determined by dividing the dataset for each course into two parts (George, Osinga, Lavie 

& Scott, 2016).  The first part is the training set and the second part is the validation dataset which 

the learning algorithm has not interacted with.  K-fold cross validation was used as part of the 

development of the predictive model and this model was then applied to the validation dataset to 

assess the capability of the model in making predictions on unseen data.  Validity is confirmed if 

the accuracy obtained by the model via the training dataset is equivalent when compared to the 

accuracy of the model applied to the validation dataset (George et al., 2016).  In addition, the 

validity of the predictive models is also determined using a set of commonly identified 

performance metrics.  These metrics are described in section 5.3.5. 

 

3.7.  Tools used for data analysis 

The raw datasets were integrated by linking each datafile based on the student number or in the 

case of the Moodle LMS interaction data, the name of the students.  The integration of the datasets 

was performed using Microsoft Excel. 

 

Data anonymization was performed using functions available in Microsoft Excel.  From the 

researcher’s perspective, this software was available and the researcher was familiar with the 

functions and process required to anonymize the data using this software.  Further details related 

to anonymization of the data is covered in Chapter 4.  Cleaning of the data was also performed 

using Microsoft Excel. 

 

Data preparation was performed using the filter function in MS-Excel to separate the dataset based 

on the different ISTN courses.  Labelling of data attribute values were also performed using MS-

Excel. 
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The WEKA (Waikato Environment for Knowledge Analysis) data mining tool was used to perform 

data analysis and prediction.  As stated in Section 2.7.1, WEKA is a Big Data analytical tool that 

has several pre-processing functions and machine learning algorithms to assist users in conducting 

analysis and prediction.  It is also one of the most commonly used applications for conducting LA 

studies.  The prediction models are then tested using unseen data instances using WEKA. 

 

3.8.  Chapter summary 

Methodology refers to the theoretical assumptions and principles that underpin a particular 

research approach.  It guides a research study on how to state the research questions as well as 

what processes and/or methods to use.  The details of the research methodology are important as 

they provide transparency to all the facets of the research being conducted.  From the perspective 

of this research study, this chapter covered the aspects of the methodology applied.  The study 

follows the Design Science research methodology that will result in the development of an artefact.  

This artefact is in the form of a process model that was introduced in Section 3.5.2.  The chapter 

also covered the data collection approach; in this case, the collection of data relating to student 

demographics, academic performance and LMS interaction.  The following Chapters 4 through to 

7 describe the execution of the described methodology with the next chapter covering the first 

aspect of data preparation. 
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attributes play a role in prediction of student academic performance.  In section 2.3, student 

demographics were commonly identified as attributes tested in LA or EDM studies in the past. 

 

Initially, the dataset was provided in MS-Excel format, consisting of 44106 rows with each row 

representing a student instance of their biographical data, registration for a course and the marks 

achieved for that course.  The dataset contains instances from registrations for 50 IS&T courses.  

These courses are from all levels of undergraduate (1st, 2nd and 3rd year of study) and honours 

study.  The Excel file provided was composed of the following attributes (features) listed in Table 

4.1. 

Table 4.1:  Attribute description for dataset DS1 

Attribute Description Data range 

YEAR Student year of registration 

for course. 

 

2014…2021 

BC Student semester of 

registration for course. 

1 – Semester 1 

2 – Semester 2 

0 – Both semesters 

 

OT, OTDESC and CAMP Campus abbreviation, 

campus name and campus 

code. 

HA – Howard College (1) 

PA – Pietermaritzburg (2) 

WA – Westville (4) 

 

COLL and COLLEGE College code and name. 24 – College of Law and 

Man Studies 

 

DEPT and DEPTNAME Department code and name. 2484 – School of Man 

Info Tech & Gov 

 

QUAL and QUALDESC Qualification that the 

student was doing when 

registered for the course. 

 

 

UGPG Whether the student falls 

under undergraduate and 

postgraduate. 

 

UG – Undergraduate 

PG – Postgraduate 

SELFFUNDED Whether the course is self-

funded or not. 

 

Y – Yes 

N – No 

Continued on next page… 
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Table 4.1 continued 

Attribute Description Data range 

STNO Unique student number 

created to distinguish one 

student from another.  

Required for associating a 

student record to their 

respective Moodle activity 

that was separately 

collected.   

 

 

BIRTHDATE Student date of birth in 

YYYY/MM/DD format . 

 

 

GENDER Gender of student. M – Male 

F – Female  

 

RACE The ethnic group that the 

student falls under.   

A – African 

C – Coloured 

I – Indian 

O – Other 

W – White 

 

ALIENYN This attribute indicates 

whether or not the student is 

from South Africa or not. 

 

Y – Yes 

N – No 

P – Permanent Residence 

RELIGIONDESC What religion the student 

falls under. 

 

 

COUNTRYCITZCODE AND 

COUNTRYCITZDESC 

The allocated code and 

country of origin. 

 

 

COUNTRYPERMCODE AND 

COUNTRYPERMDESC 

Permanent residence code 

and country of student. 

 

 

HOOMELANGCODE AND 

HOMELANGDESC 

Code and language spoken 

at home as specified in 

initial application. 

 

 

MARITALSTATUS Whether the student is 

married, single, divorced or 

widowed. 

 

S – Single 

M – Married 

D – Divorced 

W – Widowed 

 

Continued on next page… 
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Table 4.1 continued 

Attribute Description Data range 

MATRICTYPE, MATRICDATE, 

MATRICPOINTS, 

MATRICRANGE 

 

Matric type, date of matric, 

points achieved, and range 

 

QUINTILE South African government 

schools are placed into one 

of five quintiles, mainly for 

the purpose of financial 

resource allocation 

1…5 (1 being poorest 

quintile and 5 being least 

poor quintile) 

NA – Not applicable (in 

the case of private or 

overseas schools) 

 

SECONDARYSCHOOLCODE, 

SECONDARYSCHOOL 

Name of school that the 

student attended 

 

 

ADDRPCODE and AREA Code and name of area of 

residence 

 

 

RESYN Whether the student is in 

University or private 

accommodation (residence) 

 

Y – Yes 

N – No 

 

RESBLDNAME and 

RESBLDOWNER 

If RESYN is Y, then this 

indicates the residence code, 

residence name and owner 

 

 

BURSARYYN Whether the student has a 

bursary or not 

 

Y – Yes 

N – No 

COUNCILLOANYN Whether the student has 

been given a loan by some 

council 

 

Y – Yes 

N – No 

 

HIGHERDEGREEREMISSIONYN Whether the student has 

been provided with 

remission of fees 

 

Y – Yes 

N – No 

 

NSFASBURSARYYN Whether the student has 

been given a bursary 

through NSFAS 

 

Y – Yes 

N – No 

 

NSFASLOANYN Whether the student has 

been given a loan through 

NSFAS 

Y – Yes 

N – No 

 

Continued on next page… 
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Table 4.1 continued 

Attribute Description Data range 

SCHOLARSHIP Whether the student has 

been given a scholarship 

Y – Yes 

N – No 

 

UNCATEGORIZEDYN Whether the student has 

received some other form of 

funding 

 

Y – Yes 

N – No 

FUNDINGTOTALPAID Total amount of funding that 

has been paid for the given 

year 

 

 

SUBJ and SUBJDESC The course code and name 

that the student is registered 

for that year 

 

 

M_YMARK, M_EMARK, 

M_FMARK, M_ERES 

Year (class) mark, exam 

mark, final mark and result 

of the course for that student 

for that year. 

 

 

SUBJREGDATE When the student registered 

for the course in 

YYYY/MM/DD format 

 

 

SUBJCANCDATE, 

SUBJCANCREASON, 

SUBJCANCREASOND 

When the student cancelled 

their registration for the 

course and the reason for the 

cancellation (if applicable 

otherwise blank) 

 

 

EXEMPTYN Whether the student was 

given an exemption from 

doing the course 

Y – Yes 

N – No 

WEBREGYN Whether the student 

registered via the online 

registration system or not 

Y – Yes 

N – No 

 

SUPPREG Whether the student 

registered for a 

supplementary exam 

0 - No 

1 – Yes 

S_YMARK, S_EMARK, 

S_FMARK, S_ERES, 

SUBJFMARK, SUBJERES 

Related to Supplementary 

exams.  Year (class) mark, 

exam mark, final mark and 

result of course for that 

student for that year. 
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4.2.1.2.  Dataset consisting of high school marks (DS2) 

A separate file was provided containing the student high school data (DS2).  As described in 

Section 2.3, high school marks were identified by studies in the literature as factors that could 

contribute to performance prediction.  This MS-Excel file consisted of 112 773 rows with each 

row indicating the student and a high school subject that they did as well as the marks and/or 

grades achieved.  For this file, the following attributes were included (Table 4.2): 

 

Table 4.2:  Attribute description for dataset DS2 

Attribute Description 

STNO Unique student number created to distinguish 

one student from another.  Required for 

associating a student record to their respective 

Moodle activity that was separately collected.   

 

SUBJECT and SUBJDESC Matric subject code and name 

 

GR11GRADE, GR11PERC, GR11SYMBOL Level of subject (higher or standard), 

percentage obtained, symbol obtained for that 

grade 11 subject 

 

TRGRADE, TRPERC, TRSYMBOL Level of subject (higher or standard), 

percentage obtained, symbol obtained for 

matric trial examination for that subject 

 

MATRICGRADE, MATRICPERC, 

MATRICSYMBOL 

Level of subject (higher or standard), 

percentage obtained, symbol obtained for 

matric trial examination for that subject 

 
 

4.2.1.3.  Moodle LMS course data and activity completion datasets (DS3 and DS4) 

The datasets extracted from the Moodle LMS are the activity logs (DS3) and activity completion 

reports (DS4).  As noted in Section 2.3, student learning activities and participation is seen as an 

important factor in student academic prediction.  The attributes for the log files are listed in Table 

4.3 and the activity completion attributes are listed in Table 4.4.  With respect to Moodle logs, not 

all log data were available for all courses for all years.  The only complete log data that were 

available on the UKZN servers were from 2017 to 2021.  In terms of the activity completion 

reports, only 2020 and 2021 reports were used where available as the activity completion report 

feature was only implemented in the UKZN Moodle LMS from 2020.  
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Table 4.3:  Attributes and descriptions for dataset DS3 

Attribute Description 

Time Date and time of activity 

 

User full name Name of the individual performing the action 

 

Affected user Individual affected by action (if any) 

 

Event context Relates to an event that the student is 

participating in 

 

Component Category that the event context falls under 

 

Event name Name of the action that has occurred 

 

Description Description of the activity performed 

 

Origin Where the action originated from 

 

IP Address IP address where the action occurred 
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Table 4.4:  Attributes and descriptions for dataset DS4 

Attribute Description 

Student name (column not labelled in file) Name of individual 

 

Username (STNO) Individual (Staff or student) ID given by 

university during registration 

 

ID number (STNO) Individual (Staff or student) ID given by 

university during registration 

 

Email address University allocated email address 

 

Institution Campus that student resides in 

 

Activity 1 … N (multiple attributes) Set of activities specified in LMS course site 

and whether these are completed or not 

 

Activity completion date/time If the activity is completed, date and time of 

completion 

 
 

4.2.2.  Data anonymization 

The first step for the process of anonymization was to de-identify the data as required by POPIA 

(discussed in Section 2.4).  The datasets DS1 and DS2 supplied by the UKZN Institutional 

Intelligence department (II) did not contain any names to identify students but did contain the 

student’s university allocated student ID.  This student number is the common attribute that is used 

to uniquely identify a student’s biographical data, the academic performance data (high school 

marks and ISTN course marks) as well as the Moodle course activity completion reports.  While 

this provides some form of anonymity, an individual with access to the UKZN Student 

Management System (SMS) would still be able to view a student number in the dataset and access 

the SMS to get the student details.  Thus, the student number needed to be replaced with an 

alternative unique reference to ensure anonymity.  The technique of pseudonymization via 

hashing, as specified by Khalil and Ebner (2016), was used where the student number is replaced 

into a special key value.  Algorithm 4.1 was followed to anonymize all UKZN student numbers 

(attribute named STNO) in the student biographical and course registration dataset: 
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4.2.3.1.  Handling missing data 

This section describes how missing data items in respective attributes were handled.  As stated in 

section 2.5.1, this is an important aspect of the data preparation stage.  The attributes that needed 

to be addressed were only for the DS1 dataset.  These attributes as well as the action taken are 

described in Table 4.5. 

 

Table 4.5:  Addressing missing values in different attributes within the dataset 

Attribute/Feature Action taken with justification 

RELIGION It is assumed that where the input is blank, student chose not to divulge 

this information.  Blank values were replaced with the value “Not 

Specified” as it would be inappropriate to determine or guess these values 

for any individual students in the dataset.   

 

QUINTILE The value is left blank in the event that that the specified school does not 

fall under that of being an ordinary South African public school (such as 

schools outside South Africa or private funded schools).  In this case the 

blank value is replaced by “NA” (Not applicable). 

 

AREA 

 

Where the area of residence was not specified, a value of “Not specified” 

was used. 

 

RESBLDNAME 

AND 

RESBLDOWNER 

 

For students that were not in residences (i.e. staying in their own homes or 

private accommodation), a value of “NA” (Not applicable) was given. 

 

4.2.3.2.  Additional attributes for analysis and prediction purposes 

This section outlines additional attributes that were added to the datasets.  These attributes were 

included for the purposes of de-identification and/or to allow for improved analysis and prediction. 

 

According to Ali et al. (2013), age was a statistically significant factor that affected student 

academic performance.  Therefore, the student age was added as an attribute for analysis and 

prediction of student performance.  The age of a student is determined by subtracting the student’s 

date of birth from the year that the student registered for the course.  Based on the calculated age, 

the value is assigned based on one of two age classes (values) and is further elaborated upon in 

section 4.2.3.3. 
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To determine the role of computer science or technology-based subjects’ impact on academic 

performance, an attribute was created by checking whether students had chosen one or more 

computer science or technology subjects in school.  If a student did do this subject type, a value of 

Y was allocated, or else a value of N was allocated. 

 

The Moodle LMS used at UKZN keeps track of all user interactions in the form of logs.  To better 

understand if Moodle usage plays a role in student performance, the logs were summarized and 

resultant attributes were included that counted the total number of interactions performed by each 

student for the course for that year.  This approach was also adopted by Mwalumbwe and Mtebe 

(2017), who kept track of the number of student logins, items downloaded, peer and forum 

interactions and exercises performed. 

 

Each Moodle site can also be set up to keep track of specific activities that students have interacted 

with and completed via Activity Completion reports (DS4).  Activities on the course site are 

marked using a checkbox next to the activity.  Each activity can be marked as complete either 

manually by the student, or automatically based on the student performing a certain task(s).  In the 

case of courses run during the years 2020 and 2021, attributes were created to count the number 

of activities completed by students based on the activity completion report generated by Moodle 

for the different IS&T courses.  Three attributes were created, these being number of activities 

recorded as complete, the number of activities recorded as not complete, and the percentage of 

activities completed. 

 

Courses at 2nd and 3rd year level have pre-requisite requirements that must be met in order to be 

able to register for that course.  These pre-requisite requirements are in the form of previous year 

courses that a student is required to pass.  For the 2nd and 3rd year courses, the pre-requisite course 

symbols have also been included to determine the role that these courses play in whether the 

student will pass or fail that course. 

 

4.2.3.3.  Data discretization 

To assist with analysis and prediction as well as to further the process of data de-identification 

(Khalil & Ebner, 2016), the student age attribute has been categorized in two groups based on their 
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age (15-20, 21 and Above).  These two groups were chosen as the majority of students’ ages were 

in the ranges of either 15 to 20 or 21 and above. 

 

For attributes related to student marks, the mark range was narrowed down to symbols, thereby 

reducing the number of possible attribute values from one hundred (100) to five (5).  This is shown 

in Table 4.6. 

Table 4.6:  Ranges for marks 

Mark Range Symbol 

0 – 49 F 

50 – 59  D 

60 – 69  C 

70 – 79  B 

80 – 100 A 

 

For the AREA attribute, the initial values indicated specific areas where the student was from, e.g., 

Northern KwaZulu-Natal, Gauteng Pretoria Tshwane, KwaZulu-Natal Midlands, Eastern Free 

State, etc.  These values were summarized into the main provincial areas e.g. KZN, FS, EC, WC, 

etc., in order to reduce the number of nominal values for this attribute. 

 

4.2.3.4.  Removal of unnecessary attributes and instances 

As this study involves students and their interactions, log entries and attributes related to automated 

system events (for example, automated addition and removal of students from the course) and staff 

interactions (for example, adding lecture slides and content creation) were removed.   

 

Students that were withdrawn from courses as well as instances where students were given 

exemptions from courses were removed from the dataset.  This was done as students that withdrew 

from courses did not have complete results or data and student exemptions were just duplicated 

records for two different years.  This strategy was also adopted in previous studies relating to 

predicting student academic performance, such as Minaei-Bidgoli et al. (2003) as well as 

Waddington et al. (2016). 

 

From the perspective of the DS1 dataset, attributes where data was found to be duplicated (for 

example, country of origin and country of permanent residence) as well as attributes that were 

abbreviations of other attributes (e.g. campus name and campus code) were removed. 
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When downloaded, the Moodle log file (DS3) contains the time and date of the activity, the name 

of the individual that performed the activity (or to whom the activity is related to) and the type of 

activity performed.  As there is no student ID included in the downloaded file, there is no 

possibility to differentiate between students with identical names.  For example, if there are two 

or more students named Andile Dlamini, it is impossible to differentiate within the log file which 

Andile Dlamini is performing an activity recorded within a log file.  Thus, any activities involving 

students with duplicate names were not considered. 

 

Finally, records related to courses that were no longer offered in the discipline were not considered.  

These were mainly 3rd year courses that were eventually merged together as part of new university 

directives. 

 

When working with Activity Completion reports (DS4), a limitation noted was that the activity 

completion feature will only record the date and time that the requirements were completed for the 

activity and not the extent to which the student immersed themselves into the activity.  For 

example, Moodle will record a file access activity as complete when the student clicks on the file 

and it is viewed or downloaded.  The LMS cannot, however, determine whether or not the student 

has actually looked at the document and understood the content within. 

 

4.2.3.5.  Data integration 

As the WEKA application only accepts a single file, it was necessary to merge the DS1, DS2, DS3 

and DS4 datasets.  The Moodle logs (DS3) were added to the demographics and performance 

dataset (DS1) in the form of total clicks made by the student, as well as the number of times the 

student had interacted with different activities (such as files, folders, quizzes, H5P videos etc.).  In 

terms of DS4, a record was made of the count and percentage of activities completed. 

 

Further to the above, the merged data file was separated into multiple files based on courses (i.e., 

each file contained instances of registration for each of the courses offered in the IS&T discipline).  

This was done as each course is run independently of the other.  In addition, each course data file 

was divided into three file variations based on date.  The first file variation (VAR1) contained data 

with no Moodle activity as Moodle activity was only available from 2019 onwards.  The second 
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file variation (VAR2) consisted of only instances that had Moodle data, i.e., data from 2019 

onwards.  The final file variation (VAR3) only contained 2020 and 2021 data as these courses 

were taught during the COVID-19 lockdown and all the content was taught online. 

 

WEKA only accepts files in .arff or .csv formats.  Microsoft Excel has a facility to convert 

data from the standard MS-Excel format (.xls) to .csv format.  Further, WEKA has built in 

functionality to convert .csv files to .arff files that the application (WEKA) prefers to use.  As 

WEKA cannot distinguish between commas used to separate attributes and commas within text 

values (for example:  “Durban, KZN”), this needed to be addressed.  WEKA has a similar issue 

with quotation marks and apostrophes. 

 

Once the files have been converted to .arff format, the file is ready to be applied to the WEKA 

application. 

 

4.3.  Chapter summary 

This chapter addressed the first two research questions, i.e. integrating the data sources into a 

dataset and then preparing the dataset for analysis and prediction purposes.  The data sources were 

initially identified.  As per the requirements set by the UKZN registrar, POPIA and II, the data 

was then anonymized by creating a new student identifier as well as categorizing certain attributes.  

The dataset was also cleaned by removing unnecessary attributes, providing values for missing 

data that was not available or specified, and performing discretization to certain numeric and string 

attributes.  Finally, the Moodle log data (DS3) and activity completion reports (DS4) were 

summarized, in terms of number of times certain items were accessed and number of activities 

completed, respectively.  These summary attributes were merged with the DS1 and DS2 datasets 

resulting in each row indicating the student, their demographics, the details regarding their 

registration for a particular IS&T course (including their performance for that course) as well as a 

summary of their Moodle interactions for that course (the Moodle interaction details and activities 

completed where applicable).  Now that the data was prepared for analysis and prediction, it could 

be applied to the selected tools.  This is discussed in the next chapter.  As a summary, the 

specification table of the dataset is provided in the Table 4.7. 
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5.2.  Course dataset description 

This section describes each of the course datasets that were used as input into the WEKA 

application.  Section 5.2.1 covers the division of each course dataset into variations based on the 

data available while Section 5.2.2 covers separating the dataset into training data and validation 

data.  Validation is necessary in order to test the performance of the prediction models generated 

in each of the experiments.  Section 5.2.3 covers the section on dealing with data imbalance for 

each of the course datasets.  Finally, a description of each of the courses as well as their level of 

imbalance are described in section 5.2.4.     

 

5.2.1.  Testing variations of the course datasets 

During training, three variations of the course dataset were considered.  The first variation, referred 

to as Variation 1 (VAR1), tested just the demographic and assessment data.  Variation 2 (VAR2) 

is a dataset variation with demographic, assessment data and Moodle interaction data.  The above 

two variations are considered to better understand the impact of including LMS interaction data 

when attempting to predict academic performance. 

 

The third and final variation, Variation 3 (VAR3), contains only 2020 demographic, assessment 

data and 2020 Moodle interaction data.  VAR3 relates to data collected during the COVID-19 

pandemic and a move from face-to-face learning to online learning.  It was observed during the 

administration of these courses that working with LMS data during COVID-enforced online 

learning greatly differed when working with LMS data during the pre-COVID era. 

 

5.2.2.  Establishment of the training and validation sets 

In order for a learning algorithm to be effective, it must be provided with a sufficient set of 

examples or cases.  The set of examples is referred to as the training set (Smith & Frank, 2016).  

The learning algorithm then learns from the training set, resulting in the development of a model.  

In order to test this model, a separate set of examples or cases must be used where predictions are 

made and compared to what results are known.  This set of examples is referred to as the test or 

validation set (Smith & Frank, 2016). 

 

Smith and Frank (2016) identify four (4) techniques to establish the training and validation 

datasets.  The first technique is to use the entire dataset for training as well as validation.  While 
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this strategy makes most use of the available data and may lead to a more representative evaluation, 

it is not preferable as the model developed would be specific for that set of data and may not fit 

any other dataset (Smith & Frank, 2016).  Another technique, commonly known as the holdout 

method, is to keep the training set and test set separate while the most common technique is to use 

a single dataset and split the dataset into training and test subsets (Ghorbani & Ghousi, 2020).  

When splitting the data into training and test data, the researcher must specify the percentage split, 

for example, 70% of the data is used for training and the remaining 30% to be used for testing 

(Smith & Frank, 2016).   The final technique is commonly referred to as k-fold validation.  Here, 

the data is divided into a set of k subsets of equal size.  A single fold occurs when a single subset 

is used as test data while the other subsets are used to train the data.  This occurs k times with each 

subset being given a chance to be the test data while the other subsets are used to as the training 

dataset.    This is widely regarded as the most reliable method of establishing training and test 

datasets (Gudivada et al., 2017) as each data instance is allowed to be in the test dataset at least 

once.  The disadvantage of this method is the increase in computation time when compared to the 

holdout method. 

 

For this study, a combination of the holdout method and k-fold validation was used.  The most 

recent data acquired for this study is that for the year 2021.  This portion of the dataset was held 

back and used as the validation dataset in order to understand how well the models obtained during 

training performed against unseen data.  A similar approach was followed by Gray, McGuinness, 

Owende and Hofmann (2016) where the most recent set of data was used for testing while data 

from the subsequent years was used for training.  For the remaining data used for training, WEKA 

applied 10-fold validation and a resultant model was developed and assessed.  The model was then 

tested against the unseen validation dataset. 

 

5.2.3.  Dealing with imbalanced dataset 

As discussed in Section 2.5.6, imbalanced datasets are a major challenge with regard to any 

analytics initiative.  In the case of the UKZN ISTN dataset, there is a significantly larger portion 

of students that have passed than that of students that have failed.  Imbalance can be measured by 

using equation 5.1 (Madasamy & Ramaswami, 2017): 
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𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =  
𝑁𝑚𝑎𝑗𝑜𝑟

𝑁𝑚𝑖𝑛𝑜𝑟
                           (𝟓. 𝟏) 

 

where, 𝑁𝑚𝑎𝑗𝑜𝑟 represents the number of major class instances and 𝑁𝑚𝑖𝑛𝑜𝑟 represents the number 

of minor class instances.  According to Ortigosa-Hernández, Inza and Lozano (2017), the 

imbalance measurement formula (equation 5.1) is suitable for datasets with only two classes (in 

this case, pass and fail).  A greater imbalance value indicates a more complex dataset. 

 

The issue of data imbalance can be addressed from a data perspective as well as an algorithmic 

perspective.  From a data perspective, four sampling techniques were used and assessed, that being 

no sampling, undersampling, oversampling and the synthetic minority oversampling technique 

(SMOTE).  Section 2.5.6 described the characteristics of the latter three sampling techniques.  The 

preprocessing filter function in WEKA allows for these three sampling techniques to be applied to 

the training dataset.  Addressing the data imbalance problem from an algorithmic perspective is 

discussed in Chapter 6. 

 

5.2.4.  Course descriptions, characteristics and imbalance levels 

This section describes the characteristics for each of the courses of the UKZN ISTN dataset.  Table 

5.1 provides the course code and semester when it is offered, the title of the course and a general 

background to the course.  Understanding of these course details provides context for the course, 

enabling better understanding of the course dataset. 
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In terms of training of the data, two machine learning algorithms were chosen based on their 

success in other studies.  The Decision Tree (DT) algorithm was used for this study as it was found 

to be one of the most commonly used and successful algorithms from the literature, specifically 

for performance prediction (see Table 2.9).  In addition, the advantages of this algorithm include 

fast computation time and a generated model that is easy to understand and follow.  The second 

algorithm used was an ensemble algorithm that has been used previously for addressing the dataset 

imbalance problem.  In the case of this study, the Random Forest (RF) ensemble algorithm was 

tested as it had also been used successfully in the literature (see Table 2.8).  Each of these 

algorithms are discussed in sections 5.3.2 and 5.3.3 respectively. 

 

5.3.1.  Feature selection 

According to Zaffar, Hashmani and Savita (2017), feature selection algorithms analyze data with 

the objective of removing irrelevant data attributes to improve the performance of classifier 

algorithms.  In addition, feature selection reduces the complexity of learned results (Zaffar et al., 

2017).   

 

The WEKA WrapperSubsetEval function was used for feature selection using best first-

forward and best first-backward search methods respectively.  This function ran multiple iterations 

of the specified algorithm to determine the combination of attributes that produce the best 

accuracy.  Once the attributes were identified, the learning algorithm was executed using only the 

specified attributes.  Salal et al. (2019) also followed this approach of performing feature selection 

followed by the application of a learning algorithm using the identified attributes. 

 

5.3.2.  Decision Tree algorithm 

A Decision Tree is a model that can be followed sequentially, usually in a top to bottom approach.  

It is created by combining a number of logic tests where each test compares a numeric value against 

a group of ranges or a nominal value against a group of possible values (Kotsiantis, 2013).  An 

example of a Decision Tree model with the relevant terminology is shown in Figure 5.3.   
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Table 5.3:  WEKA Filter functions and parameters used for sampling techniques 

Resample – used for oversampling 

biasToUniformClass A value of 0 leaves the class distribution as 

is.  For this study, the value 1 was used when 

oversampling was applied and the class 

distributions were the same. 

 
sampleSizePercent The subsample size as a percentage of the 

original set.  This value is set to Y*2 where 

Y is the percentage proportion of instances 

that belong to the majority class. 

 

SpreadSubSample – used for undersampling 

DistributionSpread Indicates the maximum class distribution 

spread.  This value was set to 1 to ensure a 

uniform distribution with the minority class, 

thus resulting in undersampling being 

applied. 

 
SMOTE 

Percentage The percentage value to increase the 

minority class by.  For this study, the value 

varied for each dataset variation and the aim 

was to get as close as possible to uniform 

distribution. 

 

Feature selection was accomplished using the WrapperSubsetEval function.  This function 

evaluates sets of attributes with the objective of finding the best accuracy.  

WrapperSubserEval is based on the approach used by Kohavi and John (1997) and 

determines the most useful attributes based on the classifier provided.  The function searches 

through a feature (attribute) search space by iteratively applying a classifier using a subset of 

features.  The number of attributes used for each classifier is determined by a best-first search 

engine.  This search can operate in a forward or backward manner.  A forward search begins with 

an empty set of attributes and every iteration result in the addition of attribute(s) to find the ideal 

set of attributes that produces the best accuracy.  With a backward search, all the attributes of the 

problem are included and each iteration results in the removal of attributes(s) with the objective of 

producing the best accuracy (Kohavi & John, 1997).  The important parameters for this function 

are listed in the Table 5.4: 
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Table 5.4:  WEKA WrapperSubsetEval parameters 

Parameters Description 
Classifier This parameter specifies the learning 

algorithm that will be used when determining 

the best attribute set. 

 
Folds Number of folds required when 

implementing k-fold validation when 

running each classifier.  For all experiments, 

the number of folds is set to 10. 

 

Search Method Direction Forward search or Backward search 

 

As described earlier in the section 5.3 introduction, the J48 decision tree (DT) algorithm and the 

Random Forest (RF) algorithm were used for this study. 

 

5.3.5.  Assessment metrics 

In order to understand how well the algorithm performs against the UKZN ISTN dataset, 

assessment metrics were used to determine the ability of the generated models to make predictions.  

The most commonly used assessment metrics are discussed in the following subsections. 

 

5.3.5.1.  Accuracy 

The most common method of determining how well a model performs is the accuracy, which is 

defined as the count of the number of objects that have been correctly predicted by the model (Asif, 

Merceron, et al., 2017).  This is the most commonly identified method of measuring the 

performance of the algorithm.  The equation to calculate accuracy is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                           (𝟓. 𝟐) 

 

In equation 5.2, 𝑇𝑃 (True Positive) and 𝑇𝑁 (True Negative) are counts of the number of correct 

classifications for each of the respective classes while 𝐹𝑃 (False Positive) and 𝐹𝑁 (False Negative) 

are the counts of incorrect classifications for each of the respective classes (Anuradha & 

Velmurugan, 2016).  While popular due to its simplicity, accuracy cannot be the only measure for 

model performance as it does not consider correct predictions that occur by chance (Ben-David, 

2008). 
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5.3.5.2.  Kappa statistic 

Another performance measure that was identified in the literature was the Kappa statistical value.  

Kappa was used as a performance measure by Anuradha and Velmurugan (2016), Asif, Merceron, 

et al. (2017), as well as Adekitan and Salau (2019).  The Kappa value indicates the probability of 

whether or not the prediction occurs by chance, i.e., the chances of the algorithm guessing the class 

value.  A recent study by Delgado and Tibau (2019), however, found that the Kappa statistic 

exhibits abnormal behaviour, especially when imbalanced datasets are taken into consideration 

and thus should not be considered as a measure for model performance, especially when other 

more reliable measures are available. 

 

5.3.5.3.  Receiver operator characteristics (ROC) 

The ROC curve is also commonly used to measure the predictive performance of a classifying 

algorithm (Jayaprakash et al., 2014).  Davis and Goadrich (2006) stated that it is commonly used 

to assess performance in binary decision problems.  This performance measure was used by 

Jayaprakash et al. (2014), Hashim, Talab, Satty and Talab (2015), Kumar and Singh (2017), as 

well as Umar (2019).  The ROC curve is a graph that displays and compares the number of 

correctly classified instances against the number of incorrectly classified instances, respectively, 

determined by the learning algorithm (Davis & Goadrich, 2006).  Related to the ROC curve is the 

area under the ROC curve, a value in the range of 0 to 1, where the closer the value is to 1, the 

better the performance of the algorithm, i.e., a generated model that can make an accurate 

prediction (Mandrekar, 2010). 

 

5.3.5.4.  Precision, recall and F-measure 

Another common measure for performance assessment is that of precision, recall and F-measure.  

This was included in algorithm performance analysis in studies by Algur et al. (2016), Hamoud et 

al. (2018), Jalota and Agrawal (2019), Ribot et al. (2020), as well as Silva et al. (2022), amongst 

others.  In this context, precision is defined as the proportion of instances that have been correctly 

classified as positive while recall is defined as the proportion of only positive instances that are 

correctly classified (Abdullah, Malibari & Alkhozae, 2014).  While both precision and recall have 

been identified as performance measures for learning algorithms, Ma and He (2013) state that the 

goal of maximizing recall and precision can often be conflicting objectives (for example, an 

increase in true positives – increased recall - may also result in an increase in false positives – 
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reduced precision).  As a result, the F-measure was introduced as a metric that combines precision 

and recall into a single score  (Sandoval et al., 2018).  With the UKZN ISTN dataset being an 

imbalanced dataset, it should be noted that both Ma and He (2013) as well as Davis and Goadrich 

(2006) identified precision and recall as being more reliable in measuring the performance of an 

algorithm than the ROC curve.  The equations for precision, recall and F-measure are shown as 

equations 5.3, 5.4 and 5.5 respectively: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                           (𝟓. 𝟑) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                           (𝟓. 𝟒) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹1) =  
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                           (𝟓. 𝟓) 

 

Precision and recall have also been plotted on a graph similar to ROC, resulting in the Precision 

Recall Curve (PRC).  PRC values (also identified as AUC-PRC values) can also be used to evaluate 

the performance of an algorithm and are commonly used as a measure for imbalanced datasets 

(Saito & Rehmsmeier, 2015).  Similar to the ROC value, a PRC value is in the range 0 to 1, with 

0.5 indicating that the algorithm is guessing.  No studies have identified an acceptable range of 

values for PRC as this is context-dependent, depending on whether the objective is consistency 

(recall) or accuracy (precision). 

 

5.3.5.5.  Assessment metrics used for this study 

Based on the discussions in sections 5.3.5.1 to 5.3.5.4, the performance measures and acceptance 

criteria used for this study are summarized in Table 5.5. 
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dataset was divided based on the IS&T courses that are required for the main ISTN major.  Each 

of the subsections 5.4.1 to 5.4.10 covers experiments conducted on each course dataset.  Figure 

5.5 shows the format used for labeling each of the experiments.   

 

Figure 5.5:  Experiment notation 

In Figure 5.5, CDE represents the last three characters of the course dataset.  For example, 

Experiment-101 indicates that the experiments are being conducted on the ISTN101 course 

dataset.  [TYPE] indicates the type of sampling that will be applied in the experiment, either no 

sampling ([None]), undersampling ([US]), oversampling ([OS]) or [SMOTE].  Finally, the 

experiment notation ends by indicating the dataset variation being used (VAR1, VAR2 or VAR3). 

 

An example of how the assessment metrics are presented in a tabular format is shown in Figure 

5.6.  The analysis generated when applying the DT algorithm is shown in the top half of the table, 

while the results of the RF algorithm are shown in blue section of the table (bottom half).  The 

column labelled “10-Fold” relates to the analysis from training using 10-fold validation.  The 

resultant model generated is then applied to the validation dataset and the analysis for this is shown 

in the column labelled “Validation”.  A “?” value indicates that a value for this assessment metric 

could not be calculated. 
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Figure 5.6:  Table format for presenting performance analysis 

 

5.4.1.  Experiments for the ISTN100 dataset 

For the ISTN100 course, the Moodle interaction (log) data was not available for any years and 

thus was not included.  As a result, only VAR1 is considered for the experiments for the ISTN100 

dataset. 

 

5.4.1.1.  Experiment-100-Sampling [None] 

For both the DT AND RF algorithms, WrapperSubsetEval was applied for feature selection 

in WEKA using both the forward and backward searches respectively.  A summary of the 

performances is shown in Table 5.6. 

 

Table 5.6:  Summary analysis for RF generated model – Experiment-100-Sampling [None]-

VAR1 

 

 

For the DT algorithm, feature selection yielded no specific attributes for either search, and the best 

accuracy obtained was 86%.  The resultant DT model was composed of a single leaf (terminal) 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search

Backward 

Search

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search

Backward 

Search

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 86 83.8 0.49 0.5 0.76 0.72 0.74 ? 0.86 0.83 0.79 ?

Backward 

Search
None 86 83.8 0.49 0.5 0.76 0.72 0.74 ? 0.86 0.83 0.79 ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 86.4 83.8 0.53 0.5 0.78 0.73 0.85 ? 0.86 0.83 0.8 ?

Backward 

Search
28 85.8 83.8 0.6 0.7 0.82 0.85 0.82 0.79 0.85 0.83 0.82 0.79

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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node, i.e., “P” (pass).  This is due to the imbalance of the ISTN100 course data where the majority 

class is “P”.  The precision and F-measure values that could not be calculated also suggest that the 

generated prediction model would not be useful. 

 

Applying the RF algorithm yields a similar analysis in terms of the assessment metrics.  While 

feature selection did identify a set of attributes, an accuracy of 86.4% and 85.8% is similar to that 

of the model produced by the DT algorithm.  For the forward search, precision and F-measure 

values could not be calculated, while for the backward search, an acceptable model was found. 

 

5.4.1.2.  Experiment-100-Sampling [US] 

In this experiment, undersampling using the spreadSubSample filter was applied to the dataset 

with the objective of mitigating the imbalance issue.  Instances were removed from the majority 

class resulting in an equal number of instances that have passed (“P”) and failed (“F”) the course.  

Once again, feature selection via WrapperSubsetEval was applied, followed by application 

of the respective learning algorithms.  The analysis of each algorithm is shown in Table 5.7.  For 

these experiments, the DistributionSpread parameter is set to 1, thus applying 

undersampling to the dataset. 

 

Table 5.7:  Summary analysis for RF generated model – Experiment-100-Sampling [US]-

VAR1 

 

 

Both algorithms exhibit models with poor accuracy, with 49.8% and 66% for DT algorithm and 

RF algorithm, respectively.  Similar to Experiment-100-Sampling [None], the DT algorithm 

generated model was composed of a single terminal leaf that represents the “P” class.  In addition, 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 49.8 83.8 0.5 0.5 0.5 0.72 0.49 ? 0.49 0.83 0.49 ?

Backward 

Search
None 49.8 83.8 0.5 0.5 0.5 0.72 0.49 ? 0.49 0.83 0.49 ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
11 66 59.6 0.67 0.62 0.64 0.79 0.66 0.76 0.66 0.59 0.66 0.65

Backward 

Search
18 66.4 53.2 0.68 0.6 0.65 0.78 0.66 0.77 0.66 0.53 0.66 0.59

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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the ROC values indicate poor predictive capability from the generated models.  While the model 

generated by the RF algorithm is slightly better according to ROC value, the accuracy obtained 

indicates that undersampling did not improve the performance of the algorithms. 

 

5.4.1.3.  Experiment-100-Sampling [OS] 

For this experiment, oversampling was applied using the Resample filter method.  Feature 

selection was then applied to determine the optimal attributes to use when applying the learning 

algorithms.  For oversampling to be applied to this dataset, the biasToUniformClass 

parameter was set to 1 and the sampleSizePercent parameter was set to 172 as the proportion 

of passes was calculated to 86% (see ISTN100 data in Table 5.2 and sampleSizePercent 

formula in Table 5.3).  Once the two algorithms were applied to the oversampled dataset using the 

specified attributes, the following analysis was generated (Table 5.8): 

 

Table 5.8:  Summary analysis for RF generated model – Experiment-100-Sampling [OS]-

VAR1 

 

 

The accuracy achieved by the algorithms is better when oversampling was applied to the dataset 

during the training phase.  There was, however, a reduction in accuracy when the generated DT 

and RF models were applied to the unseen validation dataset.  This can also be verified when 

seeing the difference between the ROC, PRC, Precision, recall and F-Measure values (10-fold vs 

validation), thus confirming that the generated models do not fit when applied to unseen data. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
14 91.6 80.6 0.96 0.62 0.94 0.78 0.92 0.79 0.91 0.8 0.91 0.8

Backward 

Search
14 91.7 80.6 0.96 0.62 0.94 0.78 0.92 0.79 0.91 0.8 0.91 0.8

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
16 90.9 62.9 0.98 0.69 0.98 0.82 0.91 0.77 0.9 0.62 0.9 0.67

Backward 

Search
28 92.2 64.5 0.9 0.6 0.98 0.79 0.92 0.75 0.92 0.64 0.92 0.68

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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5.4.1.4.  Experiment-100-Sampling [SMOTE] 

For this experiment, the SMOTE filter was applied to the data, followed by application of feature 

selection and the learning algorithms based on the attributes identified.  Table 5.9 summarizes the 

analysis of the models generated by the DT and RF algorithms when applied to the SMOTE 

sampled dataset.  For these experiments, the Percentage value parameter (see Table 5.3 for 

SMOTE) was set to 515. 

 

Table 5.9:  Summary analysis for RF generated model – Experiment-100-Sampling 

[SMOTE]-VAR1 

 

 

In this experiment, the accuracy obtained after training the algorithms are similar, ranging from 

87.4% to 89.8%.  It would appear, however, that the model generated using the DT algorithm was 

a better fit for the validation data than the RF generated model.  The precision, recall and F-

measure are all in the acceptable range while the ROC value generated during validation is slightly 

less than the acceptable value of 0.7 specified in Table 5.5. 

 

5.4.1.5.  Analysis of experiments conducted 

When no sampling was used, the only viable prediction model was generated when the RF 

algorithm was used.  When undersampling was used, poor prediction models were generated with 

prediction accuracy of less than 70%.  This was due to the removal of a large number of instances 

that could have been useful in predicting student performance.   

 

On the other hand, the use of oversampling resulted in acceptable accuracies greater than 90%, but 

similar accuracy could not be replicated for the validation dataset, where the accuracy obtained 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
11 89.3 84.6 0.9 0.6 0.86 0.78 0.89 0.82 0.89 0.84 0.89 0.82

Backward 

Search
16 89.1 83.8 0.9 0.6 0.87 0.79 0.89 0.81 0.89 0.83 0.89 0.82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 87.4 77.4 0.94 0.6 0.93 0.79 0.87 0.76 0.87 0.77 0.87 0.76

Backward 

Search
29 89.8 80.6 0.9 0.6 0.94 0.82 0.89 0.77 0.89 0.8 0.89 0.78

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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was about 80% (DT algorithm model) and 62% (RF algorithm model) respectively.  As described 

in section 2.5.6, increasing the number of instances from the minority class (failure instances) 

removed the imbalance problem but caused a resultant bias towards the number of failures, and 

the model could not adequately predict unseen instances (as seen with the validation accuracy). 

 

Finally, as seen in section 5.4.1.4, the use of SMOTE resulted in the best performance of the 

algorithms where three of the four experiments conducted yielded viable prediction models.  The 

DT algorithm using forward search feature selection had the closest difference in accuracy, as well 

as acceptable precision, recall and F-measure values.  The SMOTE method of creating synthesized 

instances of the minority class resulted in a balanced dataset with less bias than when using 

oversampling. 

 

5.4.2.  Experiments for the ISTN101 dataset 

Unlike the experiments run on the ISTN100 dataset, the Moodle activity log data was made 

available for this course and thus the three variations (VAR1, VAR2, VAR3) discussed in section 

5.2.1 are considered in the experiments. 

 

5.4.2.1.  Experiment-101-Sampling [None] 

When no sampling was used, the model generated by the DT algorithm was a tree with a single 

terminal leaf (“P”), resulting in the accuracy produced being the same as the percentage of students 

that passed the course.  This, along with undefined precision and F-measure values indicate an 

unacceptable model. 

 

The performance measures for the model generated by the RF algorithm are shown in Table 5.10.  

Feature selection using forward search for RF algorithm identified three attributes.  The RF model 

generated from the 24 attributes (backward search) had a better ROC value, indicating a better 

model than the RF algorithm generated using only three attributes.  The F-measure and PRC areas 

were also better with the RF generated model.  However, the validation accuracy of 98.1% falls 

outside the acceptable range for this study. 

 



121 
 

Table 5.10:  Summary analysis for RF generated model – Experiment-101-Sampling [None]-

VAR1 

 

 

An improvement in performances of both the algorithms was observed when they were applied to 

the VAR2 dataset (see the performance measures in Table 5.11).  The resultant analysis showed 

an improvement in accuracy, PRC value and F-Measure when compared to the performance 

measures of the algorithms applied to the VAR1 dataset (Table 5.10). 

 

Table 5.11:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [None]-VAR2 

 

 

The VAR3 dataset contains data collected during the first year of the COVID-19 pandemic where 

teaching and learning had moved to an online learning platform using the Moodle LMS.  The 

analysis of models generated when the learning algorithms were applied to the VAR3 dataset is 

shown in Table 5.12.   

 

 

 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 85.2 91.3 0.56 0.5 0.76 0.83 0.85 0.92 0.85 0.91 0.78 0.87

Backward 

Search
24 83.4 98.1 0.66 0.99 0.81 0.99 0.78 0.98 0.83 0.98 0.8 0.98

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

  

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 88.8 92.1 0.62 0.58 0,83 0.86 0,86 0.92 0,88 0.92 0,85 0.89

Backward 

Search
14 89 92 0.63 0.58 0.84 0.86 0.87 0.92 0.89 0.92 0.85 0.88

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
32 88.6 91.5 0.77 0.84 0.77 0.93 0.85 0.92 0.88 0.91 0.84 0.88

Backward 

Search
29 88.7 91.5 0.76 0.83 0.88 0.92 0.86 0.9 0.88 0.91 0.84 0.88

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.12:  Summary Analysis for RF and DT generated models – Experiment101-

Sampling [None]-VAR3 

 

 

Once again, the DT model generated was just a single terminal leaf (“P”).  The improved accuracy 

obtained was due to the higher pass rate (during COVID-19) when compared to the other two 

variations.  This is due to the movement to the online mode of assessments where students could 

use their downloaded lecture content and communicate with other students during assessments.  

The high pass rates resulted in a greater dataset imbalance with respect to the number of passes 

and failures.  The PRC values of the RF generated model (backward search) are better than that of 

the DT generated model, indicating a more reliable model when using the RF algorithm.  As seen 

in the literature, the Random Forest algorithm is also known to provide better models when applied 

to imbalanced datasets than when using decision tree algorithms (Bekkar & Alitouche, 2013).   

 

5.4.2.2.  Experiment-101-Sampling [US] 

For the next three experiments, the process of undersampling was applied to the three dataset 

variations.  Feature selection was then applied and using the specified attributes, the two learning 

algorithms (DT and RF) were applied to the undersampled data. 

 

For VAR1, the model performance measures were poor with an accuracy of below 70% when 

using the test data (see Table 5.13). 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 94.9 91 0.49 0.5 0.9 0.83 ? ? 0.95 0.91 ? ?

Backward 

Search
None 94.9 91 0.49 0.5 0.9 0.83 ? ? 0.95 0.91 ? ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
38 94.9 91 0.76 0.84 0.93 0.92 ? ? 0.95 0.91 ? ?

Backward 

Search
9 95.3 92.6 0.75 0.8 0.94 0.93 0.94 0.92 0.95 0.92 0.93 0.9

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.13:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [US]-VAR1 

 

 

When the learning algorithms were applied to VAR2, an improvement in accuracy, while still 

below 80%, was achieved (see Table 5.14).  Applying the resultant model to the validation data 

achieved an accuracy score of about 93%.  However, the difference between accuracy for the 

validation and 10-fold (training) of between 17% to 20% indicates that the model would be 

unpredictable when applied to unseen data instances. 

 

Table 5.14:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [US]-VAR2 

 

 

For VAR3, the difference between validation and testing (10-fold) was about 10% to 12% (see 

Table 5.15).  The model produced using RF (backward best-first search) was the only model with 

close accuracy between training and validation datasets. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 66.4 71.3 0.7 0.72 0.68 0.89 0.66 0.87 0.66 0.71 0.66 0.77

Backward 

Search
18 66 68.9 0.68 0.77 0.65 0.9 0.66 0.9 0.66 0.68 0.66 0.75

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 65.3 80.2 0.68 0.73 0.66 0.89 0.65 0.88 0.65 0.8 0.65 0.83

Backward 

Search
22 64.9 70.9 0.69 0.95 0.67 0.96 0.65 0.93 0.64 0.7 0.64 0.77

 

 

 

 

 

 

 

 

 

 

 

 

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 74.25 93.2 0.71 0.75 0.67 0.9 0.75 0.92 0.74 0.93 0.73 0.92

Backward 

Search
19 76.59 93 0.78 0.73 0.74 0.91 0.76 0.92 0.76 0.93 0.76 0.92

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
16 76.3 93.6 0.8 0.81 0.79 0.93 0.76 0.93 0.76 0.93 0.76 0.92

Backward 

Search
23 73.1 90.9 0.78 0.86 0.76 0.93 0.73 0.9 0.73 0.9 0.73 0.9

 

 

 

 

 

 

  

  

 

  

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.15:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [US]-VAR3 

 

 

All the experiments discussed in this section did not produce prediction models with acceptable 

accuracy for both training and validation. 

 

5.4.2.3.  Experiment-101-Sampling [OS] 

This section covers the analysis generated when the two learning algorithms were applied to the 

three dataset variations with oversampling applied to address the class imbalance issue.  VAR1 

analysis is shown in Table 5.16.  For VAR1, the sampleSizePercent parameter value is 170 

in order to increase the number of instances from the minority class. 

 

Table 5.16:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [OS]-VAR1 

 

 

With oversampling, a vast improvement in accuracy was noted when compared to the 

undersampled variations and was similar to that of when no sampling was used.  In this case 

 

 

 

 

 

 

 

 

 

 

 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 74,48 86,85 0,65 0,77 0,6 0,89 0,74 0,91 0,74 0,86 0,74 0,88

Backward 

Search
5 80,6 70 0,83 0,65 0,8 0,87 0,8 0,87 0,8 0,7 0,8 0,76

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 75,5 63,95 0,65 0,61 0,61 0,85 0,75 0,86 0,75 0,64 0,75 0,71

Backward 

Search
26 81.6 79.1 0.87 0.83 0,85 0,92 0,81 0,89 0,81 0,79 0,81 0,83

  

  

 

  

  

  

Precision Recall F-Measure
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Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
18 89.2 84 0.94 0.96 0,92 0,96 0,89 0,94 0,89 0,84 0,89 0,87

Backward 

Search
22 89.4 84.4 0.94 0.96 0,92 0,96 0,9 0,94 0,89 0,84 0,89 0,87

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
16 94 91.3 0.99 1 0,98 1 0,94 0,95 0,94 0,91 0,94 0,92

Backward 

Search
27 94.5 92.6 0.99 1 0,99 1 0,94 0,96 0,94 0,92 0,94 0,93

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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however, the ROC, PRC and F-Measure values indicate that the models generated are better than 

the respective values generated using no sampling and undersampling, respectively. 

 

In the second oversampling experiment, the learning algorithms were applied to the oversampled 

VAR2 dataset.  As with the experiments using VAR1, for VAR2, models have been generated that 

produced acceptable accuracy with both the training and validation datasets.  The results are shown 

in Table 5.17.  For VAR2 experiments, the sampleSizePercent parameter value is 196. 

 

Table 5.17:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [OS]-VAR2 

 

 

Overall, the RF generated model produces accuracy of over 98% with models that fit well with the 

validation dataset.  This is confirmed by the high ROC, PRC and F-measure values.  In the case of 

the models generated by the RF algorithms, as the accuracy falls outside the acceptance criteria, 

the models were not accepted. 

 

The third experiment focused on the application of DT and RF algorithms to the oversampled 

VAR3 data (with feature selection).  The analysis of the model performance measures is shown in 

Table 5.18.  The sampleSizePercent value for the VAR3 experiments is 194. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 92.9 82.2 0.97 0.63 0,96 0,86 0,93 0,85 0,93 0,82 0,93 0,83

Backward 

Search
23 95.8 84.5 0.97 0.64 0,96 0,86 0,96 0,87 0,95 0,84 0,95 0,85

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
19 98.8 92 1 0.73 1 0,9 0,98 0,92 0,98 0,92 0,98 0,88

Backward 

Search
28 98.4 92.6 1 0.8 1 0,93 0,98 0,93 0,98 0,92 0,98 0,9

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.18:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [OS]-VAR3 

 

 

As with the previous two experiments on oversampling, high accuracy is achieved for the COVID-

19 dataset of 2020 (VAR3) and the resultant models were also able to perform predictions with a 

high degree of accuracy for the validation dataset as well.  This is confirmed with high ROC, PRC 

and F-Measure values.  The accuracy produced, however, falls outside the acceptable range and 

thus the models were not acceptable. 

 

5.4.2.4.  Experiment-101-Sampling [SMOTE] 

The final three experiments applied for this course dataset covered the application of SMOTE to 

the three variations.  Once applied, feature selection determined the best attributes to use and the 

learning algorithms were applied to only these attributes of the dataset.  The prediction model 

analysis generated when applying the algorithms to VAR1 is shown in Table 5.19.  In order to 

implement SMOTE, the Percentage parameter (see Table 5.3) is set to 475. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 98.6 91.4 0.99 0.65 0,98 0,87 0,98 0,9 0,98 0,91 0,98 0,9

Backward 

Search
27 98.2 89.8 0.98 0.49 0,98 0,83 0,98 0,82 0,98 0,89 0,98 0,86

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
26 81.6 79.1 0.87 0.83 0,85 0,92 0,81 0,89 0,81 0,79 0,81 0,83

Backward 

Search
8 99.6 93.3 1 0.79 1 0,92 0,99 0,93 0,99 0,93 0,99 0,91

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.19:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [SMOTE]-VAR1 

 

 

The accuracy, while acceptable, is not as high as when oversampling was applied to this variation.  

The other measures (ROC, PRC, Precision, Recall and F-Measure) used for assessing the quality 

of the model indicate that the resultant model from both the DT algorithm and the RF algorithm 

are useful for making good predictions. 

 

From the observation of the results obtained from the VAR2 and VAR3 (Table 5.20) experiments, 

it once again appears that the inclusion of the Moodle interaction data enhanced the ability of the 

algorithm to generate models that can predict student performance with an acceptable accuracy.  

For VAR2 and VAR3 experiments, the Percentage parameter was set to 650 and 1750 

respectively. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
25 84.6 83 0.88 0.79 0,88 0,92 0,84 0,87 0,84 0,83 0,84 0,85

Backward 

Search
11 86.8 88.5 0.88 0.91 0,85 0,95 0,86 0,91 0,86 0,88 0,86 0,89

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
16 87.3 98.9 0.94 0.99 0,93 0,98 0,87 0,99 0,87 0,98 0,87 0,99

Backward 

Search
27 87.6 98.1 0.94 0.99 0,94 0,99 0,87 0,98 0,87 0,98 0,87 0,98

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.20:  Summary analysis for RF and DT generated models – Experiment-101-

Sampling [SMOTE]-VAR2 and Experiment-101-Sampling [SMOTE]-VAR3 

 

 

5.4.2.5.  Analysis of experiments conducted 

From the experiments conducted in sections 5.4.2.1 to 5.4.2.4, three models were identified as the 

best performing models from no sampling, oversampling and SMOTE datasets, respectively.  

When undersampling was used, no viable models were generated by either of the algorithms.  This 

was mostly likely due to reducing the number of instances to match the minor class (Fail) resulting 

in the loss of useful instances that would have contributed to better prediction.  This is a common 

issue with undersampling and thus was noted as a potential disadvantage by Fernández et al. 

(2018). 

 

All three of the models were generated using the Random Forest algorithm and are listed in Table 

5.21.  The first model (named VAR3-None), was generated using the VAR3 dataset with no 

sampling.  The VAR1-OS model was generated using the oversampled VAR1 dataset.  Finally, 

the VAR2-SMOTE model was developed using the VAR2 dataset with SMOTE applied. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 91.6 85.7 0.91 0.67 0,89 0,87 0,91 0,86 0,91 0,85 0,91 0,86

Backward 

Search
27 89.5 76.8 0.91 0.65 0,88 0,87 0,89 0,86 0,89 0,76 0,89 0,8

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 89.2 81.7 0.93 0.6 0,92 0,86 0,89 0,84 0,89 0,81 0,89 0,82

Backward 

Search
27 92.4 90.9 0.97 0.76 0,97 0,9 0,92 0,88 0,92 0,9 0,92 0,88

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 96.8 79.5 0.96 0.61 0,95 0,86 0,96 0,84 0,96 0,79 0,96 0,81

Backward 

Search
13 96.4 89,56 0,97 0,63 0.96 0,63 0,96 0,86 0,96 0,86 0,96 0,87

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 96.5 86.3 0.97 0.6 0,97 0,87 0,96 0,85 0,96 0,86 0,96 0,85

Backward 

Search
30 97.5 89 0.99 0.8 0,99 0,91 0,97 0,84 0,97 0,89 0,97 0,86

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

V
ar
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n 

2
V
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3

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.22:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [None]-VAR2 

 
 

With the results from VAR3 (Table 5.23), the observation was made that the performance 

measures between the training data and validation data were closer to each other than when 

compared to that of the measures seen for VAR1 and VAR2.  The PRC and F-measure values also 

indicate that the models were good at making predictions despite the imbalance of the dataset. 

 

Table 5.23:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [None]-VAR3 

 

 

5.4.3.2.  Experiment-103-Sampling [US] 

The learning algorithms were applied to the undersampled variations.  For VAR1, the generated 

models from both algorithms yielded poor accuracy (ranging from 63% to 67%).  Accuracy was 

found to have improved when the algorithms were applied to the VAR2 dataset.  However, when 

applied to the validation dataset, a difference of about 20% between training and validation 

accuracies indicate that the model would be unreliable when applied to unseen instances.   For 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 85,1 95,6 0,77 0,84 0,83 0,94 0,84 0,95 0,85 0,95 0,83 0,95

Backward 

Search
24 84,4 94,3 0,7 0,72 0,79 0,91 0,83 0,93 0,84 0,94 0,82 0,93

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 80,8 93,3 0,68 0,83 0,78 0,93 0,77 0,92 0,8 0,93 0,77 0,92

Backward 

Search
24 84,5 95,8 0,83 0,91 0,88 0,96 0,83 0,95 0,84 0,95 0,82 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 93,1 94,5 0,73 0,82 0,88 0,93 0,93 0,94 0,93 0,95 0,92 0,94

Backward 

Search
14 93,1 95,5 0,72 0,74 0,88 0,91 0,93 0,95 0,93 0,95 0,92 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
10 93 95,5 0,81 0,89 0,91 0,96 0,92 0,95 0,93 0,95 0,92 0,95

Backward 

Search
32 92,6 95,9 0,86 0,9 0,93 0,96 0,92 0,95 0,92 0,95 0,91 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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VAR3, while there was better alignment in accuracy between the training and validation dataset, 

the accuracies indicated were between 76.5% and 83%.  As a result, no acceptable models were 

generated when undersampling was applied to the dataset variations. 

 

5.4.3.3.  Experiment-103-Sampling [OS] 

When oversampling is applied to VAR1 (with a sampleSizePercent value of 166), the 

resultant models generated by the learning algorithms for training were in the range of 86.4% to 

93.5%.  However, when applied to the unseen data, accuracies were in the range 63.3% to 69.7% 

(see Table 5.24).  This indicates overfitting of the models to the training data and predictions 

cannot be made for unseen data instances. 

 

Table 5.24:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [OS]-VAR1 

 
 

An improvement in performance was shown when Moodle interaction data was included, as shown 

by the performance of the algorithms when applied to the VAR2 dataset using a 

sampleSizePercent of 160 (Table 5.25).  This once again, re-emphasizes the role of student 

interactions when predicting student performance.  The accuracy difference for the models 

generated by the DT algorithm were greater than 10, meaning that these models are unacceptable.  

The RF algorithm generated models were better with close accuracy between training and 

validation data.  The acceptable performance measures (ROC, PRC, precision, recall and F-

measure) also confirm the reliability of the models generated by the RF algorithm. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
17 88,4 69,2 0,93 0,61 0,92 0,86 0,88 0,87 0,88 0,69 0,88 0,75

Backward 

Search
24 86,4 63,3 0,93 0,62 0,92 0,86 0,87 0,88 0,86 0,63 0,86 0,71

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 93,1 68,8 0,98 0,71 0,98 0,89 0,93 0,88 0,93 0,68 0,93 0,75

Backward 

Search
26 93,5 69,7 0,98 0,75 0,98 0,9 0,94 0,88 0,93 0,69 0,93 0,76

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.25:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [OS]-VAR2 

 
 

The performance measures for the models generated when the algorithms were applied to the 

oversampled VAR3 dataset (using sampleSizePercent of 176) are shown in Table 5.26.  The 

training accuracy for the RF generated models is greater than 98%, indicating that the models are 

not acceptable based on the acceptance criteria of the study.  The backward search DT algorithm 

did produce an acceptable model in terms of all the performance measurements. 

 

Table 5.26:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [OS]-VAR3 

 
 

5.4.3.4.  Experiment-103-Sampling [SMOTE] 

The results of the three experiments are shown in the tables starting with Table 5.27 covering 

VAR1.  Here, the Percentage parameter value is set to 400. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 95,3 80,8 0,98 0,69 0,98 0,88 0,95 0,87 0,95 0,8 0,95 0,83

Backward 

Search
30 97,3 85,1 0,97 0,78 0,96 0,91 0,97 0,91 0,97 0,85 0,97 0,87

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
12 96,5 95,8 0,99 0,9 0,99 0,96 0,96 0,95 0,96 0,95 0,96 0,95

Backward 

Search
21 96,8 95,6 0,99 0,89 0,99 0,96 0,96 0,95 0,96 0,95 0,96 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 91,5 79,7 0,92 0,59 0,89 0,86 0,91 0,86 0,91 0,79 0,91 0,82

Backward 

Search
30 89,4 88,3 0,91 0,85 0,89 0,93 0,89 0,92 0,89 0,88 0,89 0,89

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 99,5 94,2 0,99 0,84 0,99 0,95 0,99 0,94 0,99 0,94 0,99 0,94

Backward 

Search
29 99,5 94,8 1 0,89 1 0,96 0,99 0,94 0,99 0,94 0,99 0,94

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.27:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [SMOTE]-VAR1 

 
 

The RF generated model performed better than the DT generated model in terms of all the 

performance measures when applied to the VAR1 dataset.  Improved models were generated once 

again when the Moodle interaction data was included as shown in Table 5.28 (VAR2 – 

Percentage parameter value is 300) and Table 5.29 (VAR3 – Percentage parameter value 

is 650). 

 

Table 5.28:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [SMOTE]-VAR2 

 
 

In the case of VAR2, all four experiments yielded acceptable prediction models with the DT 

generated models having better accuracy difference.  In terms of the other assessment measures, 

the models generated using the RF algorithms were deemed to be more reliable models. 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 84,5 79 0,87 0,56 0,83 0,86 0,84 0,85 0,84 0,79 0,84 0,82

Backward 

Search
14 83,9 76,9 0,88 0,6 0,85 0,86 0,84 0,86 0,83 0,77 0,83 0,8

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 86,2 80 0,93 0,73 0,93 0,9 0,86 0,88 0,86 0,8 0,86 0,83

Backward 

Search
25 86,8 79,5 0,93 0,72 0,93 0,9 0,86 0,87 0,86 0,79 0,86 0,83

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 85,6 85,1 0,86 0,69 0,82 0,88 0,85 0,88 0,85 0,85 0,85 0,86

Backward 

Search
20 85,8 90,4 0,87 0,83 0,84 0,93 0,85 0,92 0,85 0,9 0,85 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 81,5 91,2 0,83 0,76 0,81 0,91 0,83 0,9 0,81 0,91 0,81 0,9

Backward 

Search
28 89 95,5 0,95 0,92 0,95 0,97 0,89 0,95 0,89 0,95 0,89 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.29:  Summary analysis for RF and DT generated models – Experiment-103-

Sampling [SMOTE]-VAR3 

 
 

The accuracies produced by the models generated using oversampled VAR3 were better than those 

when oversampled VAR2 was used.  The RF backward search generated model performed best in 

terms of all the assessment measures. 

 

5.4.3.5.  Analysis of experiments conducted 

As with the ISTN101 dataset, the use of undersampling did not produce any valid models from the 

experiments conducted and described in Section 5.4.3.2.  The best model identified when the other 

sampling techniques were used are listed in Table 5.30.  All three models were generated using 

the RF algorithm, although the DT algorithm also managed to produce acceptable models. 

 

Table 5.30:  Best three models generated from Experiment-103 

 

 

In terms of accuracy, all the models produce more than 90% accuracy when training and similar 

accuracy was obtained when the models were applied to the validation dataset.  The VAR2-OS 

model appears to be the best model in terms of accuracy and closeness (see Figure 5.9). 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 92,3 83,3 0,93 0,59 0,9 0,86 0,92 0,86 0,92 0,83 0,92 0,84

Backward 

Search
21 89,2 91,5 0,91 0,84 0,9 0,93 0,89 0,93 0,89 0,91 0,89 0,92

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 92,2 26,9 0,95 0,76 0,94 0,91 0,92 0,92 0,92 0,26 0,92 0,32

Backward 

Search
17 95,6 93,8 0,98 0,85 0,98 0,93 0,95 0,93 0,95 0,93 0,95 0,93

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Variation and 

Sampling

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

VAR3 - None 93 95,5 0,81 0,89 0,91 0,96 0,92 0,95 0,93 0,95 0,92 0,95

VAR2 - OS 96,5 95,8 0,99 0,9 0,99 0,96 0,96 0,95 0,96 0,95 0,96 0,95

VAR3 - SMOTE 95,6 93,8 0,98 0,85 0,98 0,93 0,95 0,93 0,95 0,93 0,95 0,93

F-MeasureAccuracy ROC PRC Area Precision Recall
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Table 5.31:  Summary analysis for RF and DT generated models – Experiment-2IP-

Sampling [None]-VAR1 

 
 

By including Moodle interaction data (VAR2), there appeared to be an improvement in the models 

developed by the two algorithms.  This is evident by viewing not only the accuracy, but the PRC 

and F-Measure values (see Table 5.32).  For both forward search algorithms, the viability of the 

models cannot be accepted as the precision and F-measure values could not be calculated. 

 

Table 5.32:  Summary analysis for RF and DT generated models – Experiment-2IP-

Sampling [None]-VAR2 

 
 

When analyzing the algorithms applied to the COVID-19 dataset (VAR3), the RF generated 

models performed better than the DT generated models in terms of closeness between the accuracy 

of the training dataset (10-fold) and the validation dataset.  The PRC, precision, recall and F-

measure values from both algorithms fall within the acceptance criteria. 

 

 

 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 80 91,6 0,64 0,79 0,75 0,89 0,78 0,92 0,8 0,91 0,72 0,88

Backward 

Search
23 79 85,3 0,6 0,59 0,73 0,86 0,74 0,84 0,79 0,85 0,74 0,85

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

  

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 84 90,9 0,64 0,5 0,77 0,83 0,84 ? 0,81 0,9 0,84 ?

Backward 

Search
2 84,9 92,3 0,65 0,61 0,79 0,87 0,83 0,92 0,84 0,92 0,81 0,89

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 82,6 90,9 0,61 0,76 0,75 0,88 0,81 ? 0,82 0,9 0,75 ?

Backward 

Search
28 85,4 90,9 0,8 0,87 0,86 0,94 0,84 0,87 0,85 0,9 0,82 0,87

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.33:  Summary analysis for RF and DT generated models – Experiment-2IP-

Sampling [None]-VAR3 

 
 

5.4.4.2.  Experiment-2IP-Sampling [US] 

For VAR1 and VAR2, the DT and RF algorithms developed models with an unacceptable accuracy 

(less than 80% accuracy observed during training of the algorithms).  The model produced using 

the VAR3 dataset did produce acceptable accuracy (90.9%) when applied to the validation data, 

however, the difference between the training and validation accuracy is more than 20%, indicating 

that the model cannot be guaranteed to perform well against unseen data.  For VAR3, the models 

developed are suitable, specifically for the training data (overfitting), with almost thirty percent 

difference in accuracy between application of the training data and the validation data. 

 

5.4.4.3.  Experiment-2IP-Sampling [OS] 

Table 5.34 shows the analysis of the models generated using the learning algorithms when applied 

to the oversampled VAR1 dataset.  For this experiment, the sampleSizePercent parameter 

value is 158. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
38 94,4 85,3 0,7 0,59 0,9 0,85 0,94 0,96 0,94 0,85 0,94 0,86

Backward 

Search
3 95,8 79,7 0,79 0,59 0,92 0,85 0,95 0,88 0,95 0,79 0,95 0,83

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

Backward 

Search
14 94,4 88,1 0,78 0,66 0,93 0,87 0,94 0,82 0,94 0,88 0,92 0,85

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.34:  Summary analysis for RF and DT generated models – Experiment-2IP-

Sampling [OS]-VAR1 

 
 

The accuracy obtained when training the dataset exceeds 87% for the DT algorithm and exceeds 

95% for the RF algorithm.  However, the accuracy obtained when the respective models are 

applied to the validation dataset was at least 15% less than that of the training accuracy.  By 

observing the recall value, it appeared that the algorithm could not produce consistent accuracy 

when applied to unseen data. 

 

In Table 5.35, when including the Moodle interaction data (VAR2), an improvement was noted in 

terms of accuracy difference when compared to the analysis for Experiment-2IP-Sampling [OS]-

VAR1.  In the case of the VAR2 dataset (using sampleSizePercent value of 164), the RF 

algorithm generated acceptable prediction models while the DT algorithm was not able to. 

 

Table 5.35:  Summary analysis for RF and DT generated models – Experiment-2IP-

Sampling [OS]-VAR2 

 
 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 87,9 72 0,94 0,52 0,93 0,84 0,88 0,84 0,88 0,72 0,88 0,77

Backward 

Search
19 89,5 74,8 0,94 0,6 0,93 0,85 0,89 0,88 0,89 0,74 0,89 0,79

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
20 95,3 79 0,99 0,7 0,99 0,89 0,95 0,88 0,95 0,79 0,95 0,82

Backward 

Search
23 96,3 80,4 0,99 0,69 0,99 0,89 0,96 0,86 0,96 0,8 0,96 0,83

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 88,3 74,8 0,89 0,68 0,85 0,88 0,88 0,87 0,88 0,74 0,88 0,79

Backward 

Search
13 82,8 79 0,84 0,68 0,8 0,88 0,83 0,85 0,82 0,79 0,82 0,81

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
12 97,6 88,8 0,99 0,75 0,98 0,9 0,97 0,88 0,97 0,88 0,97 0,88

Backward 

Search
24 97,2 89,5 0,99 0,89 0,99 0,93 0,97 0,89 0,97 0,89 0,97 0,89

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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For the COVID-19 dataset (VAR3), it appears that the generated model overfits on the training 

dataset, resulting in poorer accuracy when the model is applied to the validation dataset.  For this 

course, the pass rate was much higher for the years 2020 and 2021 than when the course was run 

before COVID-19.  A greater number of instances with improved diversity with respect to attribute 

values may assist in improving the performances of the algorithms should this course continue 

with an online model in the future. 

 

5.4.4.4.  Experiment-2IP-Sampling [SMOTE] 

When SMOTE is applied to the VAR1 dataset (using a Percentage parameter value of 275), 

the resultant training accuracy is not as good as when oversampling was used.  The accuracy 

between training and validation is, however, much closer than when compared to the oversampled 

variations.  Valid models are found for the backward search DT and RF models respectively.   

 

Table 5.36:  Summary analysis for RF and DT generated models – Experiment-2IP-

Sampling [SMOTE]-VAR1 

 
 

For VAR2, accuracy for training was in an acceptable range of 85.9% to 90.3% for each of the 

learning algorithms (DT and RF).  However only the model generated using the RF algorithm 

(backward search) produced similar accuracies for both training (90.3%) and validation datasets 

(87.4%).  The ROC (0.96 and 0.82), PRC (0.96 and 0.91), F-measure (0.9 and 0.87), precision (0.9 

and 0.87) and recall values (0.9 and 0.87) were also close, indicating that the model could be used 

to predict performance for unseen instances. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 86,3 76,9 0,85 0,57 0,81 0,86 0,86 0,84 0,86 0,76 0,86 0,8

Backward 

Search
16 82,6 81,8 0,86 0,77 0,82 0,89 0,82 0,89 0,82 0,81 0,82 0,84

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 85,7 65,7 0,89 0,63 0,87 0,86 0,85 0,87 0,85 0,65 0,85 0,73

Backward 

Search
22 85,9 81,8 0,92 0,65 0,92 0,86 0,86 0,86 0,86 0,81 0,86 0,84

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.38:  Summary analysis for RF generated models – Experiment-211-Sampling 

[None]-VAR1 and Experiment-211-Sampling [None]-VAR2 and Experiment-211-Sampling 

[None]-VAR3 

 
 

As seen in Table 5.38, the accuracies between training and validation are similar, as are the 

precision, recall, PRC and F-Measure values.  The only exception is the forward search RF 

algorithm (applied to VAR1) where the precision and F-measure could not be calculated.  As stated 

earlier, the ROC values cannot be relied upon in the case of these imbalanced variations. 

 

5.4.5.2.  Experiment-211-Sampling [US] 

Both learning algorithms (DT and RF) performed poorly in generating valid models when 

undersampling was applied to any of the three variations.  For VAR3, training accuracy achieved 

was 88.8% and 94.4% for the models generated using the DT and RF algorithms respectively.  

However, when either of these models were applied to the validation datasets, accuracy of less 

than 43% was obtained. 

 

5.4.5.3.  Experiment-211-Sampling [OS] 

When oversampling is applied to the datasets, only the forward search DT algorithm when applied 

to VAR1 resulted in the generation of an acceptable model.  In the case of the reverse search DT 

algorithm, the accuracy difference was greater than 10% (97.6% - 83.7%) and thus the model does 

not fit the acceptance criteria. 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 95,5 94,4 0,7 0,72 0,93 0,92 0,94 ? 0,95 0.94 0,93 ?

Backward 

Search
25 95,4 93,5 0,71 0,54 0,94 0,9 0,94 0,89 0,95 0,93 0,94 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 95,5 94,1 0,71 0,57 0,93 0,9 0,95 0,89 0,95 0,94 0,93 0,91

Backward 

Search
18 95,5 93,5 0,59 0,47 0,92 0,89 0,95 0,89 0,95 0,93 0,93 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 97 91,1 0,72 0,63 0,95 0,91 0,97 0,89 0,97 0,91 0,96 0,9

Backward 

Search
7 97,4 95,4 0,82 0,75 0,96 0,94 0,97 0,95 0,97 0,95 0,96 0,93
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Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure



144 
 

 

For VAR2 and VAR3, the training accuracies are above the acceptable range of 98% for the 

models generated by both the learning algorithms. 

 

5.4.5.4.  Experiment-211-Sampling [SMOTE] 

The performance measures of the algorithms when SMOTE is applied to each of the dataset 

variations are similar to that of when oversampling was used.  The accuracy obtained during 

training ranged above 96% for all variations.  Table 5.39 shows the algorithms applied to VAR1 

with SMOTE applied.  For the experiments listed, the Percentage parameter value was set to 

1900 to ensure the creation of sufficient instances for the minority class to match the number of 

instances from the majority class. 

 

Table 5.39:  Summary analysis for RF and DT generated models – Experiment-211-

Sampling [SMOTE]-VAR1 

 
 

The accuracy values for VAR1 were within the acceptable range for both training and validation.  

Further, the PRC, precision, recall and F-measure values also fall within the acceptable range 

targeted for this study.  The only exception is the ROC value for validation, where it appears that, 

for the validation dataset, the model predictions are similar to that of guesswork. 

 

Table 5.40 shows the analysis of the prediction models for VAR2.  For all four experiments, a 

Percentage parameter value of 1750 was used and a training accuracy was in the range 96% to 

97.2%.  The forward search RF algorithm generated a model that did not fit for the validation data 

while the other algorithms yielded similar accuracy to training. 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 96,9 92,6 0,97 0,5 0,96 0,89 0,96 0,9 0,96 0,92 0,96 0,91

Backward 

Search
22 95,6 93,2 0,97 0,63 0,96 0,91 0,95 0,91 0,95 0,93 0,95 0,92

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 96,9 91,7 0,98 0,52 0,98 0,89 0,97 0,89 0,97 0,91 0,97 0,9

Backward 

Search
24 97,1 92,3 0,98 0,53 0,98 0,89 0,97 0,89 0,97 0,92 0,97 0,9

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.40:  Summary analysis for RF and DT generated models – Experiment-211-

Sampling [SMOTE]-VAR2 

 
 

As with the analysis for VAR1, the PRC, precision, recall and F-measure values all fall within an 

acceptable range for both training and validation data.  In terms or ROC validation, the model 

generated using the backward search DT algorithm was closest to falling in an acceptable range 

(0.69).  For VAR3, the analysis is listed in Table 5.41.  The Percentage parameter was set to a 

value of 2500 for these experiments. 

 

Table 5.41:  Summary analysis for RF and DT generated models – Experiment-211-

Sampling [SMOTE]-VAR3 

 
 

For VAR3, the accuracy achieved for the training dataset is greater than 98% and thus these models 

are not considered valid for this study.  The assessment measures for the models generated using 

the DT algorithm indicate that the models are reliable.  However, as with the VAR1 and VAR2 

variants, the ROC values for the model when applied to the validation dataset are less than 0.5, 

possibly indicating an unreliable model when applied to unseen data. 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 97 93 0,97 0,46 0,96 0,89 0,97 0,89 0,97 0,93 0,97 0,91

Backward 

Search
12 97 90 0,97 0,69 0,97 0,91 0,97 0,89 0,97 0,9 0,97 0,89

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 96,7 56,8 0,97 0,46 0,97 0,89 0,96 0,89 0,96 0,56 0,96 0,68

Backward 

Search
27 97,2 92,6 0,99 0,62 0,99 0,92 0,97 0,89 0,97 0,92 0,97 0,9

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 97,6 91,7 0,98 0,38 0,97 0,88 0,97 0,89 0,97 0,91 0,97 0,9

Backward 

Search
4 97,8 90,2 0,97 0,45 0,96 0,88 0,97 0,9 0,97 0,9 0,97 0,9

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
11 98,4 92,6 0,98 0,57 0,98 0,9 0,98 0,89 0,98 0,92 0,98 0,9

Backward 

Search
36 98,4 92,3 0,99 0,64 0,99 0,92 0,98 0,89 0,98 0,92 0,98 0,9

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.43:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [None]-VAR1 

 
 

For the VAR2 dataset, performance measures obtained for the learning algorithms are better than 

that obtained using VAR1 dataset (Table 5.44). 

 

Table 5.44:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [None]-VAR2 

 
 

 

As can be seen in Table 5.44, accuracy achieved using either of the algorithms was above 89%.  

Furthermore, when the generated models were applied to the validation dataset, accuracy of 95% 

to 96% was achieved.  The other performance measures also indicated that the models generated 

were of a good quality in making predictions for any other unseen instances.  The same can be said 

for VAR3 (see Table 5.45) where good accuracies were obtained by both algorithms for training 

as well as for unseen instances (validation dataset). 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 80.7 95,6 0,49 0,5 0,68 0,91 ? ? 0,8 0,95 ? ?

Backward 

Search
22 81.9 90,2 0,69 0,68 0,77 0,93 0,79 0,93 0,82 0,9 0,8 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 82,4 88,5 0,75 0,61 0,81 0,92 0,81 0,92 0,82 0,88 0,81 0,9

Backward 

Search
23 80,6 94,6 0,71 0,76 0,8 0,94 0,77 0,92 0,8 0,94 0,78 0,93

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 89,4 96,6 0,64 0,61 0,83 0,93 0,89 0,96 0,89 0,96 0,86 0,95

Backward 

Search
7 89 96,6 0,63 0,61 0,82 0,93 0,88 0,96 0,89 0,96 0,86 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
12 91,2 95,6 0,85 0,89 0,92 0,97 0,9 0,94 0,91 0,95 0,9 0,94

Backward 

Search
18 89,8 95,9 0,86 0,94 0,92 0,97 0,88 0,95 0,89 0,96 0,88 0,94

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.45:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [None]-VAR3 

 
 

 

5.4.6.2.  Experiment-212-Sampling [US] 

For the VAR1 and the VAR3 datasets, no models were generated that fit the acceptance criteria 

for the study.  The analysis for VAR2 is shown in Table 5.46.  Three out of the four experiments 

resulted in acceptable models with the accuracy of the RF generated models being better than that 

of the DT generated models.  The remaining performance measures for the RF generated model 

were also in the acceptable range. 

 

Table 5.46:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [US]-VAR2 

 
 

5.4.6.3.  Experiment-212-Sampling [OS] 

For this section, oversampling was applied to the dataset variations, followed by the application 

of the learning algorithms.  The performance measures for the resultant models when using the 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 97,9 94,2 0,68 0,73 0,95 0,94 0,98 0,95 0,98 0,94 0,97 0,94

Backward 

Search
16 97,1 89,2 0,69 0,73 0,95 0,93 0,96 0,93 0,97 0,89 0,96 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 97,1 96,6 0,58 0,82 0,94 0,96 0,97 0,96 0,97 0,96 0,96 0,95

Backward 

Search
9 97,1 95,9 0,73 0,8 0,95 0,96 0,97 0,96 0,97 0,96 0,96 0,96

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 80,1 87,2 0,79 0,71 0,77 0,93 0,82 0,94 0,8 0,87 0,79 0,9

Backward 

Search
14 79,5 91,2 0,79 0,85 0,75 0,95 0,79 0,93 0,79 0,91 0,79 0,92

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
10 84,1 92,5 0,9 0,89 0,9 0,96 0,84 0,95 0,84 0,92 0,84 0,93

Backward 

Search
10 83,6 92,2 0,89 0,92 0,89 0,96 0,83 0,95 0,83 0,92 0,83 0,93

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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VAR1 dataset are shown in Table 5.47.  For these experiments, the sampleSizePercent 

parameter value was set to 161. 

 

Table 5.47:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [OS]-VAR1 

 
 

As seen above, the accuracy for the oversampled VAR1 training dataset is 87.6% and 94.5% for 

the DT algorithms and RF algorithms respectively.  However, it appears that the model overfits 

the training data as seen by the accuracy when the models are applied to the validation dataset.  

The models generated when the algorithms are applied to oversampled VAR2 are far closer in 

terms of accuracy, as shown in the performance measures in Table 5.48.  For these experiments, 

the sampleSizePercent parameter value was 173.   

 

In the case of the RF algorithm, the training accuracy falls outside the acceptable range for this 

study (greater than 98% accuracy).  For the DT algorithm (backward search), the generated model 

accuracies are acceptable in terms of being in an acceptable range as well as the accuracy 

difference being less than 10%. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
17 87,6 76,7 0,91 0,67 0,89 0,93 0,88 0,93 0,87 0,76 0,87 0,83

Backward 

Search
17 87,6 72 0,92 0,54 0,9 0,91 0,87 0,93 0,87 0,72 0,87 0,8

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 94,5 77,4 0,98 0,68 0,98 0,94 0,94 0,93 0,94 0,77 0,94 0,83

Backward 

Search
21 94,5 82,1 0,98 0,65 0,98 0,93 0,94 0,92 0,94 0,82 0,94 0,86

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.48:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [OS]-VAR2 

 
 

For VAR3, the algorithms exhibited near perfect accuracy (above 98%) and thus above the 

acceptable range for this study.  The generated models, when applied to the validation dataset, also 

resulted in high accuracy (in the range of 91% to 95%).  It should be noted, however, that the pass 

rate for VAR3 was very high and thus further instances should be obtained for both training and 

testing datasets to better evaluate how the learning algorithms predict performance for this course. 

 

5.4.6.4.  Experiment-212-Sampling [SMOTE] 

When SMOTE is applied to the VAR1 dataset (using a Percentage parameter value of 315), 

the learning algorithms produced accuracy in the range of 84% to 87%.  The resultant prediction 

models were applied to the validation dataset and with the exception of the DT backward search 

model, the accuracy obtained was very close to the training dataset.  The ROC, PRC and F-

Measure values were also high, indicating that good models have been generated. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 94,9 84,8 0,97 0,54 0,97 0,92 0,95 0,92 0,94 0,84 0,94 0,88

Backward 

Search
17 96,2 90,9 0,97 0,66 0,97 0,93 0,96 0,93 0,96 0,9 0,96 0,92

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 98,3 96,6 0,99 0,88 0,99 0,97 0,98 0,96 0,98 0,96 0,98 0,95

Backward 

Search
23 98,8 95,6 1 0,93 1 0,97 0,98 0,94 0,98 0,95 0,98 0,94

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.49:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [SMOTE]-VAR1 

 
 

The performance of the algorithms when applied to VAR2 (Percentage parameter value was 

550) appeared to be better than when compared to VAR1 as seen in Table 5.50.  The accuracy 

achieved from training ranges from 89.4% to 94.1%, and when the models are applied to the 

unseen dataset, equivalent accuracy is achieved.  The only exception is the forward search RF 

algorithm where overfitting was observed. 

 

Table 5.50:  Summary analysis for RF and DT generated models – Experiment-212-

Sampling [SMOTE]-VAR2 

 
 

The application of the algorithms to VAR3 yielded almost perfect accuracy (above 98%).  Similar 

to the conclusion found with oversampling, further instances should be collected to gain a better 

understanding of how the algorithms perform with the attributes of the dataset. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 84,1 90,5 0,87 0,8 0,84 0,94 0,84 0,93 0,84 0,9 0,84 0,92

Backward 

Search
20 86,1 63,9 0,88 0,52 0,85 0,91 0,86 0,91 0,86 0,64 0,86 0,74

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 86,4 89,8 0,93 0,77 0,93 0,94 0,86 0,94 0,86 0,89 0,86 0,91

Backward 

Search
23 87,4 90,2 0,94 0,69 0,93 0,94 0,87 0,92 0,87 0,9 0,87 0,91

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 89,4 89,5 0,92 0,64 0,91 0,93 0,89 0,93 0,89 0,89 0,89 0,91

Backward 

Search
14 93,1 93,9 0,93 0,79 0,9 0,94 0,93 0,92 0,93 0,93 0,93 0,93

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 90,6 51,8 0,92 0,62 0,9 0,93 0,9 0,93 0,9 0,51 0,9 0,64

Backward 

Search
22 94,1 95,2 0,98 0,91 0,98 0,96 0,94 0,94 0,94 0,95 0,94 0,94

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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thus resulting in the poor performance of the model when applied to the validation dataset.  In the 

case of VAR3, poor performance is due to the pass rate of 99% and only 2 failures in the course, 

respectively.  With only two instances resulting in a fail class value, more instances are required 

to better study the inclusion of Moodle data, demographics and registration data for predictive 

purposes (for this course).   

 

5.4.7.2.  Experiment-3SA-Sampling [US] 

When undersampling is applied to VAR1 and VAR2, poor training accuracy of less than 80% is 

obtained for both algorithms.  During the year 2020 (online teaching due to COVID-19), only two 

(2) students had failed.  Undersampling removes instances from the major class to match the 

number of instances of the minor class.  As WEKA requires a minimum of 10 instances per class 

in order to train the algorithms, no analysis was performed for VAR3. 

 

5.4.7.3.  Experiment-3SA-Sampling [OS] 

Table 5.53 shows the performance measures for the models generated by the DT algorithm and 

RF algorithm (the sampleSizePercent parameter value was set to 182) when each were 

applied to the oversampled VAR1 dataset.  The training accuracy achieved was above 92% and 

both algorithms produced models that manage to achieve similar accuracy for the validation 

dataset.  While the performance of the models can be verified by the PRC and F-measure values, 

only the forward search RF algorithm (forward search) produced acceptable ROC values. 

 

Table 5.53:  Summary analysis for RF and DT generated models – Experiment-3SA-

Sampling [OS]-VAR1 

 
 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 92 91,7 0,97 0,49 0,97 0,96 0,92 0,97 0,92 0,91 0,92 0,94

Backward 

Search
18 94,8 73 0,96 0,54 0,96 0,96 0,95 0,96 0,94 0,73 0,94 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 97,6 90,8 0,99 0,73 0,99 0,98 0,97 0,97 0,97 0,9 0,97 0,93

Backward 

Search
24 98,2 96,5 0,99 0,58 0,99 0,97 0,98 0,97 0,98 0,96 0,98 0,96

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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For the performance measures of the models for Experiment-3SA-Sampling [OS]-VAR2, the RF 

algorithm produced about 98% training accuracy while the DT algorithm produced models with 

about 95.8% and 96.8% training accuracy (sampleSizePercent value is 178).  The models, 

when applied to the validation dataset, also produced acceptable accuracy of 86% and 93% 

respectively (see Table 5.54). 

 

Table 5.54:  Summary analysis for RF and DT generated models – Experiment-3SA-

Sampling [OS]-VAR2 

 
 

Both algorithms’ resultant models produced 100% prediction when training on oversampled 

VAR3.  As stated earlier, with only 2 fail class instances, there is insufficient variety with number 

of failures.  Acquiring more of this course data in the future will allow for more failing instances 

required in order for training to be more effective and understanding how well the algorithms 

perform on this 3rd year course dataset. 

 

5.4.7.4.  Experiment-3SA-Sampling [SMOTE] 

For the VAR1 dataset with SMOTE applied (a Percentage parameter value of 900 was used), 

the algorithms were able to produce models with training accuracy of 92% to 94% (Table 5.55).  

With regard to the validation data, the accuracy of the models generated using the DT algorithms 

as well as the backward search RF were within 10% of the training accuracies.  The ROC, PRC 

and F-measures also indicate that the models are reliable for making predictions for unseen 

instances. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 95,8 93 0,97 0,82 0,96 0,98 0,96 0,97 0,95 0,93 0,95 0,94

Backward 

Search
12 96,8 86 0,97 0,57 0,97 0,96 0,97 0,96 0,96 0,86 0,96 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
13 98,8 96,9 1 0,71 1 0,97 0,98 0,96 0,98 0,97 0,98 0,96

Backward 

Search
17 98,7 96,5 1 0,79 1 0,98 0,98 0,97 0,98 0,96 0,98 0,96

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure



157 
 

Table 5.55:  Summary analysis for RF and DT generated models – Experiment-3SA-

Sampling [SMOTE]-VAR1 

 
 

For VAR2, the performance of the algorithms appears better than that of VAR1.  For all 

experiments in this case (Percentage parameter value was set to 725), training accuracy of 

above 91% was achieved (see Table 5.56).  When the models are applied to the validation datasets, 

equivalent accuracy is produced. 

 

Table 5.56:  Summary analysis for RF and DT generated models – Experiment-3SA-

Sampling [SMOTE]-VAR2 

 
 

In the case of VAR3, accuracy neared 100%.  As observed in Sections 5.4.7.1 (no sampling) and 

5.4.7.3 (oversampling), an insufficient number of failures in this dataset contributes to the 100% 

accuracy.  Acquiring more failing instances in future iterations of this course is required in order 

for training to be more effective. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 92 87,3 0,93 0,52 0,91 0,96 0,92 0,96 0,92 0,87 0,92 0,91

Backward 

Search
12 92,7 93,9 0,97 0,7 0,96 0,97 0,92 0,97 0,92 0,93 0,92 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 92 79,1 0,94 0,6 0,93 0,97 0,92 0,96 0,92 0,79 0,92 0,86

Backward 

Search
26 94 96 0,97 0,75 0,96 0,98 0,94 0,97 0,94 0,96 0,94 0,96

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 91,8 96 0,9 0,58 0,87 0,97 0,91 0,97 0,91 0,96 0,91 0,96

Backward 

Search
17 91,7 95,2 0,93 0,7 0,9 0,97 0,91 0,97 0,91 0,95 0,91 0,96

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
27 93,9 96,9 0,97 0,77 0,97 0,98 0,94 0,97 0,93 0,97 0,93 0,97

Backward 

Search
23 94,2 96,9 0,97 0,78 0,97 0,98 0,94 0,97 0,94 0,97 0,94 0,97

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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precision, recall and F-measure values were all above 0.87, indicating reliable models.  However, 

the ROC validation value of 0.48 may indicate an element of guessing when the model is applied 

to unseen data and was thus deemed as unacceptable.  However, the validation dataset is very 

imbalanced (31.43) with only seven (7) instances labelled as “Fail”.  For the VAR2 and VAR3 

dataset variations, training accuracy achieved was at least 99.2% for both algorithms. 

 

In the case of SMOTE sampling, for all variations, both the learning algorithms were not able to 

produce acceptable models that satisfy the acceptance criteria for this study.  All training 

accuracies achieved were in the range 98.7% to 100%.  This indicates overfitting of the model to 

the training data. 

 

5.4.8.4.  Analysis of experiments conducted 

For this course, no acceptable prediction models could be generated by either algorithm for any of 

the variations.  The reason for this would be the high number of pass instances when compared to 

the number of fail instances.  In the six years of data captured for this course, 23 students had failed 

while 1054 students passed. 

 

The nature of the course must also be taken into consideration.  As described in Table 5.1, the 

majority of the course and a large portion of the assessment focuses on a project and the 

development of a front-end (Windows-based) application.  This differs from other IS&T courses 

where the assessments are predominantly individual-based.  For this course, the presentations 

revolving around the group project is the predominant form of assessment with no examination.  

Further to this, all students in their group obtain the same mark (unless disputes are made), thus 

resulting in a large number of students passing this course as long as the group that they are in are 

organized and meets the minimum requirements of their project submissions.  In addition, the 

activities for this course are group based and not recorded by the Moodle LMS. 

 

5.4.9.  Experiments for the ISTN3SI dataset 

This section focuses on the ISTN3SI course dataset.  As discussed in Table 5.1, this course is a 

continuation of the ISTN3AS course discussed in section 5.4.8. 
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5.4.9.1.  Experiment-3SI-Sampling [None] 

The DT algorithm could not produce a viable model when applied to the VAR1 dataset.  For the 

RF algorithm, the performance measures when applied to the VAR1 dataset are shown in Table 

5.58.  The accuracy achieved through training is similar to that of when the models are applied to 

the validation datasets and is above 95%, indicating reliable predictions. 

 

Table 5.58:  Summary analysis for RF generated model – Experiment-3SI-Sampling [None]-

VAR1 

 
 

For the VAR2 dataset, the performance of the models generated by the learning algorithms are 

shown in Table 5.59.  The accuracies for both training and validation are within the acceptable 

range for this study.  The accuracy difference is also less than 10%, which is an acceptable range 

for this study.  As no sampling is used in this case and the dataset is imbalanced, the ROC value 

is not considered when determining the suitability of the prediction model.  The PRC, precision, 

recall and F-measure values are also greater than 0.8 and within the acceptable range for this study. 

 

Table 5.59:  Summary analysis for RF and DT generated models – Experiment-3SI-

Sampling [None]-VAR2 

 
 

The DT algorithm was not able to produce an acceptable model for the VAR3 dataset (the model 

generated was a single leaf “P”).  For the RF algorithm, models were generated for both 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 95,4 96,4 0,63 0,58 0,92 0,94 0,94 0,95 0,95 0,96 0,93 0,95

Backward 

Search
12 94,9 96,4 0,62 0,49 0,92 0,95 0,9 0,95 0,95 0,96 0,92 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 95,8 97,7 0,7 0,64 0,92 0,96 0,95 0,97 0,95 0,97 0,95 0,97

Backward 

Search
6 94,8 96,4 0,7 0,72 0,91 0,95 0,94 0,95 0,94 0,96 0,93 0,96

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 96,2 94,6 0,81 0,69 0,95 0,95 0,96 0,95 0,96 0,94 0,95 0,95

Backward 

Search
12 95,4 97,3 0,79 0,88 0,94 0,97 0,95 0,96 0,95 0,97 0,94 0,96

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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experiments with accuracy of 95.1% and 96.1% respectively.  The PRC and F-measure values 

were also good and accuracy of 94.6% and 98.2% (outside acceptable range) were respectively 

observed when the models were applied to the validation datasets (Table 5.60). 

 

Table 5.60:  Summary analysis for RF generated models – Experiment-3SI-Sampling 

[None]-VAR3 

 
 

5.4.9.2.  Experiment-3SI-Sampling [US] 

As with most experiments on undersampling, the removal of the majority of instances from the 

pass class resulted in unacceptable accuracy (less than or equal to 80% training accuracy).  Only a 

single experiment using the RF algorithm applied to the VAR3 dataset provided a 90% training 

accuracy and 82% validation dataset accuracy. 

 

5.4.9.3.  Experiment-3SI-Sampling [OS] 

When oversampling is applied to the three variations, the algorithms accuracy exceeds 97% for all 

experiments.  The models also exhibit high accuracy when applied to the validation dataset (in the 

range 86% to 98%).  Only one model was deemed acceptable based on the acceptance criteria for 

this study, that being the DT algorithm model when applied to VAR1. 

 

As with the ISTN3AS course, the high pass rate of the course results in potential overfitting of the 

model to the training data, resulting in the almost 100% accuracies.  Future data acquisition for 

this course will allow for generation of better models with regard to this course. 

 

5.4.9.4.  Experiment-3SI-Sampling [SMOTE] 

The performances for the learning algorithms when applied to VAR1 with SMOTE is shown in 

Table 5.61.  For these experiments, the Percentage parameter value was set to 1900.  The 

accuracy achieved through training ranges from 95.2% to 96.4% and similar accuracy is obtained 

when the resultant models are applied to the validation datasets. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 96,1 96,4 0,74 0,76 0,94 0,96 0,96 0,95 0,96 0,96 0,95 0,95

Backward 

Search
6 95,1 98,2 0,62 0,77 0,92 0,97 0,95 0,98 0,95 0,98 0,93 0,97

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.61:  Summary analysis for RF and DT generated models – Experiment-3SI-

Sampling [SMOTE]-VAR1 

 
 

With the VAR2 dataset (Percentage parameter value equaled 1250), 94.1% to 97.1% accuracy 

is achieved for all experiments when training.  For both forward searches, only two attributes are 

identified for features selection and the resultant models do not fit the validation dataset.  The 

backward searches for both algorithms produced prediction models that result in similar accuracy 

to the training data (see Table 5.62). 

 

Table 5.62:  Summary analysis for RF and DT generated models – Experiment-3SI-

Sampling [SMOTE]-VAR2 

 
 

Similar to VAR1 and VAR2, high training accuracy as well as validation accuracy was achieved 

for all experiments for the VAR3 dataset (a Percentage value of 1700 was used).  As seen in 

Table 5.63, only the RF generated models have ROC values that are above 0.7.  The PRC and F-

Measure values were also high, indicating acceptable models have been generated. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
13 96,3 94,6 0,97 0,59 0,95 0,94 0,96 0,94 0,96 0,94 0,96 0,94

Backward 

Search
13 96,4 95,5 0,97 0,58 0,95 0,94 0,96 0,94 0,96 0,95 0,96 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 95,2 92,8 0,98 0,52 0,98 0,94 0,95 0,94 0,95 0,92 0,95 0,93

Backward 

Search
20 96,2 96,4 0,98 0,57 0,98 0,95 0,96 0,95 0,96 0,96 0,96 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 94,7 74,6 0,93 0,56 0,9 0,94 0,94 0,94 0,94 0,74 0,94 0,82

Backward 

Search
14 95,5 95,1 0,96 0,55 0,93 0,94 0,95 0,94 0,95 0,95 0,95 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 94,1 72,8 0,96 0,53 0,95 0,94 0,94 0,94 0,94 0,72 0,94 0,81

Backward 

Search
27 97,1 96 0,99 0,7 0,99 0,95 0,97 0,95 0,97 0,96 0,97 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.63:  Summary analysis for RF and DT generated models – Experiment-3SI-

Sampling [SMOTE]-VAR3 

 
 

5.4.9.5.  Analysis of experiments conducted 

Unlike the ISTN3AS course dataset, the application of this course dataset did result in prediction 

models that met the acceptance criteria for this study.  When comparing the imbalance level of this 

course to that of the ISTN3AS course, it was noted that the ISTN3SI course was less imbalanced 

with more fail instances in the dataset.  The assessment form for this ISTN3SI course is similar to 

that of the ISTN3AS course in that the predominant mode of assessment is the group project 

presentations.  The increased number of failures can be attributed to web-based programming and 

development that students have not previously experienced in other IS&T courses.  The web-based 

programming and development is prone to a greater number of potential errors and mistakes when 

compared to windows-based development done in ISTN3AS. 

 

Thus, four models were identified from the experiments described in Sections 5.4.9.1 to 5.4.9.4.  

The performance measures for these models are listed in Table 5.64.  Three of the models (VAR2-

None, VAR3-US and VAR2-SMOTE) were generated using the RF algorithm and one model 

(VAR1-OS) was generated using the DT algorithm. 

 

Table 5.64:  Best four models for Experiment-3SI 

 
 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 95,7 96,8 0,96 0,61 0,95 0,95 0,95 0,95 0,95 0,96 0,95 0,96

Backward 

Search
17 95,4 95,1 0,95 0,45 0,93 0,94 0,95 0,93 0,95 0,95 0,95 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 96,8 92,4 0,98 0,74 0,99 0,96 0,96 0,93 0,96 0,92 0,96 0,93

Backward 

Search
29 97,7 95,5 0,99 0,75 0,99 0,96 0,97 0,93 0,97 0,95 0,97 0,94

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Variation and 

Sampling

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

VAR2-None 95,4 97,3 0,79 0,88 0,94 0,97 0,95 0,96 0,95 0,97 0,94 0,96

VAR3-US 90 82,2 0,83 0,68 0,81 0,95 0,91 0,95 0,9 0,82 0,89 0,87

VAR1-OS 97,4 88,4 0,98 0,41 0,98 0,93 0,97 0,94 0,97 0,88 0,97 0,91

VAR2-SMOTE 97,1 96 0,99 0,7 0,99 0,95 0,97 0,95 0,97 0,96 0,97 0,95

F-MeasureAccuracy ROC PRC Area Precision Recall
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5.4.10.  Experiments for the ISTN3ND dataset 

This section covers the experiments related to the ISTN3ND dataset. 

 

5.4.10.1.  Experiment-3ND-Sampling [None] 

The DT algorithm, when applied to VAR1 did not produce a viable model.  The RF algorithm 

(forward search), however, did produce a viable model as shown in Table 5.65.  The model 

generated by the backward search RF algorithm has an accuracy difference of 13.6%, which is 

outside the range for an acceptable model for this study. 

 

Table 5.65:  Summary analysis for RF generated model – Experiment-3ND-Sampling 

[None]-VAR1 

 
 

For VAR2, neither of the algorithms were able to generate acceptable models.  In the case of the 

forward search RF algorithm, the accuracy difference was greater than 10% while the DT 

algorithms and backward search RF algorithm resulted in validation accuracy of greater than 98%. 

 

For VAR3, only 5 failing instances for the validation dataset resulted in near 100% accuracy 

achieved by both algorithms’ models for training and validation datasets.  Future dataset instances 

with a greater number of fail class instances would assist in better analysis of this dataset variation. 

 

5.4.10.2.  Experiment-3ND-Sampling [US] 

For the VAR1 dataset with undersampling applied, the training accuracy for both algorithms was 

poor, ranging from 68% to 71% with poor accuracy for the validation dataset (40% to 64% range). 

 

For the algorithms applied to the VAR2 dataset, the validation dataset did not fit the models 

generated during training of either of the algorithms.  This is shown by the more than 10% 

differences between training accuracy and validation accuracy (Table 5.67). 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 82,3 88,8 0,64 0,46 0,77 0,95 0,79 0,95 0,82 0,88 0,77 0,92

Backward 

Search
22 80,3 93,9 0,68 0,71 0,79 0,97 0,78 0,96 0,8 0,94 0,79 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.66:  Summary analysis for RF and DT generated models – Experiment-3ND-

Sampling [US]-VAR2 

 
 

For VAR3, the difference in accuracies between training and validation is closer (see Table 5.67).  

However, when undersampling was applied, there were only 10 total instances to train on and thus 

future data acquisition will help better understand the effect of application of these learning 

algorithms in producing accurate predictions.  Despite the small number of instances for training, 

the DT algorithms and the backward search RF algorithm were able to generate prediction models 

whose performance measures are acceptable for this study. 

 

Table 5.67:  Summary analysis for RF and DT generated models – Experiment-3ND-

Sampling [US]-VAR3 

 
 

5.4.10.3.  Experiment-3ND-Sampling [OS] 

For the VAR1 dataset, the RF algorithm produces high training accuracy (93.6%) but the model 

overfits the training data and similar accuracy cannot be obtained when the model is applied to the 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 85,7 98,2 0,85 0,99 0,8 0,99 0,85 0,99 0,85 0,98 0,85 0,98

Backward 

Search
8 84,4 98,2 0,84 0,99 0,8 0,99 0,84 0,99 0,84 0,98 0,84 0,98

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 85,7 97,8 0,91 0,99 0,91 0,99 0,85 0,98 0,85 0,97 0,85 0,98

Backward 

Search
23 83,6 97,8 0,9 0,99 0,9 0,99 0,83 0,98 0,83 0,97 0,83 0,98

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 90 89,2 0,8 0,84 0,86 0,97 0,91 0,97 0,9 0,89 0,89 0,92

Backward 

Search
1 90 96,1 0,9 0,98 0,86 0,98 0,91 0,98 0,91 0,96 0,9 0,97

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 100 95,2 1 0,99 1 0,99 1 0,98 1 0,95 1 0,96

Backward 

Search
8 90 94,8 1 0,98 1 0,99 0,91 0,98 0,9 0,94 0,89 0,96

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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validation data (sampleSizePercent was set to 163).  The accuracies are closer when looking 

at the analysis of the DT algorithm (see Table 5.68) 

 

Table 5.68:  Summary analysis for RF and DT generated models – Experiment-3ND-

Sampling [OS]-VAR1 

 
 

The performance of both algorithms was much better when applied to VAR2 than when applied 

to VAR1 (for VAR2, a sampleSizePercent of 160 was used).  Both accuracies obtained 

when training were in the range of 95.9% to 97.2%, with similar accuracy when the models are 

applied to the validation dataset (see Table 5.69).  The good performance is confirmed by the ROC, 

PRC, precision, recall and F-Measure values. 

 

Table 5.69:  Summary analysis for RF and DT generated models – Experiment-3ND-

Sampling [OS]-VAR2 

 

 

The performances of the algorithms when applied to the VAR3 dataset resulted in models with at 

least 99.7% accuracy for the experiments.  When the models were applied to the validation dataset, 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 88,9 80,2 0,94 0,44 0,92 0,95 0,89 0,95 0,89 0,8 0,88 0,87

Backward 

Search
8 88,9 80,2 0,94 0,44 0,92 0,95 0,89 0,95 0,89 0,8 0,88 0,87

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 93,6 64,8 0,96 0,58 0,96 0,96 0,94 0,96 0,93 0,64 0,93 0,76

Backward 

Search
21 93,6 66 0,97 0,58 0,96 0,96 0,94 0,96 0,93 0,66 0,93 0,77

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
12 96 93,9 0,96 0,88 0,95 0,98 0,96 0,97 0,96 0,94 0,96 0,95

Backward 

Search
17 95,9 94,4 0,97 0,78 0,96 0,97 0,96 0,97 0,95 0,94 0,95 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 97,2 98,7 0,98 0,97 0,98 0,99 0,97 0,98 0,97 0,98 0,97 0,98

Backward 

Search
24 96,4 97,8 0,99 0,98 0,99 0,99 0,96 0,96 0,96 0,97 0,96 0,98

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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accuracy of at least 97.4% was achieved.  As with previous experiments, more instances are 

required to better understand the performance of the algorithms when applied to this dataset. 

 

5.4.10.4.  Experiment-3ND-Sampling [SMOTE] 

The learning algorithms, when applied to VAR1 using SMOTE (with a Percentage value of 

350), produced models with acceptable accuracy in the range 84% to 86.7%.  The models, when 

applied to the validation dataset, achieved similar accuracy (with the exception of the forward 

search RF algorithm).  The performance of algorithms when oversampling (described in the 

previous section) is used perform better than when the algorithms are applied using SMOTE for 

VAR1. 

 

Table 5.70:  Summary analysis for RF and DT generated models – Experiment-3ND-

Sampling [SMOTE]-VAR1 

 
 

For the VAR2 experiments (Percentage parameter value was set to 300), better performance 

was achieved for both algorithms with accuracy in the range of 85% to 90%.  When applied to the 

validation dataset, near 100% accuracy was achieved for three of the four experiment variations 

(see Table 5.71).  The difference in accuracies between training and validation were much closer 

when using the RF algorithm than when using the DT algorithm. 

 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 86,7 87,5 0,85 0,46 0,81 0,95 0,86 0,96 0,86 0,87 0,86 0,91

Backward 

Search
15 84,2 83,6 0,86 0,79 0,82 0,97 0,84 0,97 0,84 0,83 0,84 0,89

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 84,5 68,2 0,92 0,56 0,91 0,96 0,84 0,96 0,84 0,68 0,84 0,79

Backward 

Search
20 85,7 82,8 0,93 0,76 0,93 0,97 0,85 0,97 0,85 0,82 0,85 0,88

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 5.71:  Summary analysis for RF and DT generated models – Experiment-3ND-

Sampling [SMOTE]-VAR2 

 

 

The performances of the models when the algorithms are applied to VAR3 produce near 100% 

accuracy for both training and validation datasets.  As with previous experiments using VAR3, 

more instances are required to better assess how these algorithms perform with this dataset. 

 

5.4.10.5.  Analysis of experiments conducted 

Four models were identified from each of the experiments described from section 5.4.10.1 to 

5.4.10.4.  The assessment measures for each of these models are listed in Table 5.72.   

 

Table 5.72:  Performance measures for best four models for Experiment-3ND 

 
 

Three of the models selected were generated using the RF algorithm, that being the VAR1-None, 

VAR3-US and VAR2-OS models while the VAR1-SMOTE model was generated using the DT 

algorithm.  All models’ accuracy falls within the acceptable range for this study and the accuracy 

differences fall to within 10%.  Figure 5.20 (Accuracy comparison) shows that the VAR2-OS has 

the best training and validation accuracy while the VAR1-SMOTE had the closest accuracy 

difference. 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
14 88,2 98,7 0,9 0,89 0,87 0,98 0,88 0,98 0,88 0,98 0,88 0,98

Backward 

Search
11 88,2 99,1 0,89 0,89 0,86 0,99 0,88 0,99 0,88 0,99 0,88 0,99

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 85,2 94,8 0,89 0,42 0,88 0,95 0,85 0,96 0,85 0,94 0,85 0,95

Backward 

Search
30 90,7 98,7 0,96 1 0,96 1 0,9 0,98 0,9 0,98 0,9 0,98

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Variation and 

Sampling

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation
VAR1-None 82,3 88,8 0,64 0,46 0,77 0,95 0,79 0,95 0,82 0,88 0,77 0,92

VAR3-US 90 94,8 1 0,98 1 0,99 0,91 0,98 0,9 0,94 0,89 0,96

VAR2-OS 96,4 97,8 0,99 0,98 0,99 0,99 0,96 0,96 0,96 0,97 0,96 0,98

VAR1-SMOTE 84,2 83,6 0,86 0,79 0,82 0,97 0,84 0,97 0,84 0,83 0,84 0,89

F-MeasureAccuracy ROC PRC Area Precision Recall
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5.5.  Chapter summary 

This chapter described experiments covering the application of two learning algorithms to the 

course datasets in the UKZN ISTN dataset.  A summary of the best algorithms (and corresponding 

accuracies) are listed in Table 5.73.  These results are based on a combination of closeness between 

validation and training accuracy as well as overall accuracy for the training and validation datasets 

(with the exception of ISTN100). 

 

Table 5.73:  Best performing algorithms for each course based on accuracy 

Dataset VAR Sampling Algorithm Training 

accuracy 

% 

Validation 

accuracy 

% 

Accuracy 

difference 

       

ISTN100 1 SMOTE DT 89.3 84.6 4.7 

ISTN101 1 OS RF 94.5 92.6 1.9 

ISTN103 2 OS RF 96.5 95.8 0.7 

ISTN2IP 2 SMOTE RF 90.3 87.4 2.9 

ISTN211 3 None RF 97.4 95.4 2 

ISTN212 3 None RF 97.1 95.9 1.2 

ISTN3SA 2 SMOTE RF 94.2 96.9 2.7 

ISTN3AS No viable model found 

ISTN3SI 2 SMOTE RF 97.1 96 1.1 

ISTN3ND 2 OS RF 96.4 97.8 1.4 

 

Of the two learning algorithms used, the RF algorithm was noted to have performed better than 

the DT algorithm.  From the models identified in Table 5.73, 8 of the 10 models were generated 

using the RF algorithm.  This confirms the ability of the RF algorithm to better handle imbalanced 

data (Bekkar & Alitouche, 2013) in the case of the 2nd year courses (ISTN2IP, ISTN211 and 

ISTN212) where all three models listed were generated without sampling.  Furthermore, the 

bagging procedure and random feature selection of the RF algorithm assisted in the development 

of viable, more generalizable models (Kovanović et al., 2018), unlike the DT algorithm which was 

prone to overfitting and development of unusable single node decision trees. 

 

The ISTN100 course, while having acceptable accuracy and accuracy difference, did not meet the 

acceptance criteria for the ROC value when the model was applied to the validation dataset (0.6).  

The values for the other performance measures were acceptable for this study.  Thus, a model with 

an improved ROC value would be preferred. 



173 
 

In the case of the ISTN2IP dataset, the accuracies for both training and validation are within the 

acceptable range for this study.  However, it would be preferable if the validation accuracy was 

greater than 90% and thus an alternate approach was used (explained in Chapter 6) to find a better 

model. 

 

No viable model was found for the ISTN3AS course.  The difficulty in obtaining a model could 

be attributed to a very high imbalance characteristic.  Furthermore, the course follows a different 

assessment format (the major project) that formed a large part of the student final mark.  Students 

within each project group attained the same mark in most cases, possibly allowing for an increased 

number of student passes.  As explained in section 5.4.9.5, while the ISTN3SI course follows a 

similar assessment format to that of ISTN3AS, the increase in the number of failures was due to 

increased difficulty in the course. 

 

In terms of answering the research questions RQ3 and RQ4, standard learning algorithms were 

applied to the datasets.  These algorithms were able to establish patterns to predict student 

academic performance.  The performances of these algorithms were verified by applying the 

patterns to unseen data.  The prediction accuracies as well as other performance measures achieved 

were within the ranges of the acceptance criteria specified in section 5.3.5.  The standard learning 

algorithms performed well when applied to all but one dataset (ISTN3AS). 

 

In the event that standard learning algorithms do not provide sufficient or acceptable solutions, the 

inclusion of artificial intelligence techniques are known to assist in this regard.  Thus, in the next 

chapter, the area of Artificial Intelligence was investigated in an attempt to find better prediction 

models for the cases of ISTN100, ISTN2IP and ISTN3AS. 
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AI technique, and according to Minaei-Bidgoli and Punch (2003), GAs have the potential to 

improve accuracy by 10% to 12% when compared to non-GA classifiers.   

 

For this study, two (2) GA-based approaches were identified, these being the use of the GA as part 

of the classifier as well as the use of the GA as an optimization tool with regard to feature selection 

for other classifiers.  For the former approach, Romero, González, Ventura, Del Jesús and Herrera 

(2009) used an evolutionary algorithm to build rules for the discovery of relationships between 

student Moodle usage and academic performance.  The latter, where GAs are used as a part of 

feature selection, was an approach followed by Lakshmi, Martin and Venkatesan (2013) and 

Preetha (2021), amongst others, to identify the most suitable set of features to use for different 

learning algorithms. 

 

In Chapter 5, the experiments conducted yielded acceptable prediction models for all but three of 

the courses in the UKZN ISTN dataset.  Where acceptable prediction models were found, the 

performance measures were all within the acceptance criteria and the accuracies were above 90%.  

As a pragmatic research paradigm is being followed, there is no need to use AI techniques to find 

prediction models for courses where acceptable models with at least 90% accuracy have already 

been found. 

 

Thus, in this chapter, both GA-based approaches described above are applied to try to find better 

models for three courses in the UKZN ISTN dataset.  Experiments are conducted in order to find 

better prediction models for the ISTN100 and ISTN2IP datasets, as well as finding an appropriate 

model for the ISTN3AS dataset.  For the case of the ISTN100 and ISTN2IP datasets, the objective 

is to try to obtain an accuracy of above 90% (and less than 98% as per the acceptance criteria) 

while also having acceptable values for other performance measures.  For the ISTN3AS dataset, 

no model could be found that meets the acceptance criteria in Chapter 5 so the GA is incorporated 

to attempt to find an acceptable model. 

 

From the perspective of the DSRM described in Chapter 3, this chapter continues the focus on the 

design and development of the artefact.  Chapter 5 focused on applying learning algorithms to the 

now prepared dataset with the objective of predicting student performance.  Chapter 6 continues 





177 
 

The ISTN100 course was the only course with only one variation due to the Moodle data not being 

available for collection.  Section 5.4.1 outlined the experiments conducted using the DT and RF 

algorithms for the ISTN100 course.  The best model from these experiments was the DT algorithm.   

The performance measures for this algorithm were shown in Table 5.9, and for convenience, are 

shown in Table 6.1.  As can be seen in Table 6.1, the model met all the acceptance criteria with 

the exception of the Receiver Operator Characteristic (ROC) value.  The accuracy for training and 

validation were 89.3% and 84.6% respectively.  As seven (7) of the ten (10) courses in this study 

achieved accuracy (training and validation) of above 90%, the objective was to then find an 

improved model through the use of artificial intelligence techniques. 

 

Table 6.1:  Prediction performance for DT algorithm extracted from Table 5.9 for 

ISTN100 course 

 

 

Similarly, the assessment measures for the ISTN2IP course also met the acceptance criteria for 

this study (Table 6.2 shows the RF generated model performance extracted from Table 5.33).  The 

best model using the RF algorithm obtained a training accuracy of 92.9% and a validation accuracy 

of 88.1%.  As this model was generated on a dataset with no sampling, the ROC value of 0.66 was 

not considered as violating the acceptance criteria.  The objective was to find a model where the 

validation accuracy is also above 90% (and less than 98%). 

 

Table 6.2:  Prediction performance for RF algorithm extracted from Table 5.33 for 

ISTN2IP course 

 

 

In the case of the ISTN3AS course, no suitable model was found using the DT or RF algorithms.  

Thus, the objective was to use artificial intelligence techniques to attempt to find a prediction 

model for this course dataset that meets the acceptance criteria for this study. 

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
11 89.3 84.6 0.9 0.6 0.86 0.78 0.89 0.82 0.89 0.84 0.89 0.82

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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6.3.  An overview of genetic algorithms 

Genetic algorithms are a rapidly developing area within AI and is based on theories of biological 

evolution such as natural selection and genetic inheritance (Obitko, 1998).  Genetic algorithms are 

commonly used to solve combinatorial optimization problems.  For this study, two GA alternatives 

were used.  When being used for feature selection, the GA used was similar to the initial GA 

proposed by Golberg (1989) and is described in Section 6.3.1.  Similarly, when using the GA as 

part of classification, the GA proposed by Golberg (1989) was also used with the exception that 

an elitist approach was followed (discussed in Section 6.3.2). 

 

6.3.1.  Genetic algorithm used for feature selection 

A GA begins with the creation of a population of individuals, referred to as the initial population.  

Each individual is a string containing a randomly chosen set of selected features from the 

integrated dataset.  Each individual in the population is then evaluated based on a fitness function.  

In this case, the fitness function is the accuracy obtained when the selected algorithm has been 

applied to the dataset using only that individual’s set of features.  A selection process is then 

undertaken where individuals of this initial population are selected to become parents.  Copies of 

the parents are made, followed by the application of genetic operators (in this case, crossover and 

mutation) to the copies.  These copies are then referred to as the offspring and are added as 

individuals to a new population.  This process of evaluation, selection and creation of a new 

generation of offspring continues until some termination criteria has been met.  Termination 

criteria depends on the type of problem being addressed and may include reaching a generational 

limit or an ideal solution has been obtained (Golberg, 1989).  In the case of this study, the GA 

terminates when the maximum specified number of generations is reached (see Section 6.3.3) and 

the set of features to be used is that of the individual with the best fitness function (accuracy).  The 

GA used in this study is described in Algorithm 6.1. 
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Parent A 5, 7, 8, 12, 17, 23, 25, 26, 28 

Parent B 1, 4, 7, 12, 13, 16, 22, 24, 27, 30 

Resultant Offspring C 5, 7, 8, 12, 13, 16, 22, 24, 27, 30 

Resultant Offspring D 1, 4, 7, 12, 17, 23, 25, 26, 28 

Figure 6.3:  Crossover example and resultant offspring 

 

In Figure 6.3, assume that each number represents a selected feature.  For example, 5 represents 

the ISTN212 mark, 8 is the student QUAL, 12 is the Age Category and so on.  In the example 

shown in Figure 6.1, the crossover operator is applied where parts of each of the parents are taken 

and combined to form a resultant offspring.  Here, the features 5, 7, 8 and 12 from Parent A are 

combined with the group of features 13, 16, 22, 24, 27 and 30 from Parent B, resulting in Offspring 

C.  The other set of features from the parents are combined resulting in Offspring D. 

 

For mutation, selected points (feature) in the individual are changed.  In the case of Figure 6.4, 

feature 15 is replaced by feature 19. 

 

Parent C 2, 4, 7, 8, 12, 15, 18, 20 

Resultant Offspring 2, 4, 7, 8, 12, 18, 19, 20 

Figure 6.4:  Mutation Example 

 

The newly created offspring are then added to the population of a new generation and evaluated.  

In the case of this study, the resultant offspring is a combination of features from both the parents 

(crossover) as well as after mutation has been applied.  Once individuals of a new generation have 

all been created and evaluated, new generations of individuals are created continuously until the 

maximum number of generations have been met.  The individual in the final generation with the 

set of attributes that produces the best predictive model (based on accuracy) is chosen and that 

model is applied to the validation dataset. 

 

6.3.2.  Optimized forest (OF) algorithm 

The OF algorithm is an adapted Random Forest algorithm developed by Adnan and Islam (2016).  

In this case, rather than using an exhaustive search for the optimal decision tree, a genetic algorithm 



181 
 

is used to select the best performing decision trees with the objective of improving the final 

outcome or accuracy produced by a Random Forest algorithm.  In terms of this algorithm, the GA 

described is also similar to that described in Algorithm 6.1.  The only exception is that the genetic 

operators are applied with the concept of elitism, where the offspring is only accepted if it is 

evaluated as being better than the parent.  If it is not, then the offspring is rejected and the parent 

becomes the offspring (Adnan & Islam, 2016). 

 

6.3.3.  Performance measures and parameters 

The same performance measures from Section 5.3.5 were used, that being the accuracy, ROC, 

PRC (Precision Recall Curve), precision, recall and F-Measure values.  The main acceptance 

criteria for the models were also the same as that described in Table 5.5., i.e., accuracy in the range 

between 80% and 98% and acceptable values for the PRC, ROC and F-measure values where 

required.   

 

In WEKA, and as with Section 5.3.4, WrapperSubsetEval was used as the attribute evaluator 

with the classifier property being either the RF algorithm or the J48 DT algorithm.  The number 

of folds was set to 10.  Unlike the experiments conducted in the previous chapter, the search 

method that was used was the genetic search (described in Algorithm 6.1) rather than forward or 

backward searches.   

 

With regard to the OF algorithm, the algorithm was tested using all attributes (no feature selection) 

as well as attributes obtained using genetic search RF, forward search RF and backward search RF 

respectively.  The default parameter values were used. 

 

In terms of GA parameters, the probability of the crossover operator occurring was set to 60%, 

mutation probability was 3.3%, the maximum number of generations was 20, and the population 

size was 20.  These were the default parameters set by WEKA. 

 

6.4.  Results of genetic based experiments conducted 

This section describes the results achieved when the learning algorithms were applied to the 

ISTN100, ISTN2IP and ISTN3AS course datasets.  Here, GAs were used for feature selection.  
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The section also covers the performance when the OF algorithm was applied to the datasets.  The 

experiments include whether the variations have had any sampling techniques applied or not. 

 

6.4.1.  Experiments for the ISTN100 dataset 

This section covers the genetic algorithm-based experiments for the ISTN100 course dataset. 

6.4.1.1.  Experiment-100-FS [Genetic] 

Table 6.3 presents the performance measures obtained for the ISTN100 prediction models 

generated when using genetic search for feature selection.  The row labelled 1 (line 1), highlighted 

in green, indicates the performance measures for the best model for this course listed in Table 6.1. 

 

Table 6.3:  Summary analysis for RF and DT algorithms – Experiment-100-FS [Genetic] 

 
 

In terms of the None-Genetic-DT (line 3) and None-Genetic-RF (line 2) algorithms, the models 

generated do produce acceptable accuracy but it was not as good as the best model achieved in 

Chapter 5.  As with Experiment-100-Sampling [US] covered in Section 5.4.1.2, the use of 

undersampling results in models with unacceptable accuracy.  For oversampling (OS), the training 

accuracy of the generated models was greater than 90% but the difference between the resultant 

validation accuracy is greater than 10% and thus the models are not acceptable.  When SMOTE is 

applied, the training accuracy is similar to the best model from Chapter 5 (line 1) but the validation 

accuracy is lower. 

 

6.4.1.2.  Experiment-100-Algorithm [OF] 

The OF algorithm is applied to the ISTN100 dataset using different sampling techniques and 

different attributes determined using different feature selection techniques.  The performance 

measures obtained for each experiment are listed in Table 6.4. 

 

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 SMOTE Forward Search DT 11 89,3 84,6 0,9 0,6 0,86 0,78 0,89 0,82 0,89 0,84 0,89 0,82

2 None Genetic RF 8 86,4 83 0,61 0,64 0,8 0,79 0,83 0,7 0,86 0,83 0,81 0,76

3 Genetic DT 9 86,2 83,8 0,5 0,5 0,76 0,72 0,85 ? 0,86 0,83 0,8 ?

4 US Genetic RF 13 64,3 55,6 0,67 0,67 0,66 0,82 0,64 0,79 0,64 0,55 0,64 0,61

5 Genetic DT 13 65,4 65,3 0,66 0,78 0,63 0,83 0,65 0,84 0,65 0,65 0,65 0,69

6 OS Genetic RF 25 95,5 74,1 0,99 0,69 0,99 0,82 0,95 0,78 0,95 0,74 0,95 0,75

7 Genetic DT 16 91,6 80,6 0,96 0,61 0,94 0,78 0,92 0,79 0,91 0,8 0,91 0,8

8 SMOTE Genetic RF 26 89,6 79 0,95 0,65 0,94 0,82 0,89 0,77 0,89 0,79 0,89 0,78

9 Genetic DT 15 89,2 82,2 0,89 0,59 0,86 0,77 0,89 0,78 0,89 0,82 0,89 0,79

F-MeasureAccuracy % ROC PRC Area Precision Recall
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Table 6.4:  Summary analysis for OF algorithm – Experiment-100-Algorithm [OF] 

 
 

The OF algorithm, when applied to the dataset, did not find any better models than that generated 

using the forward search DT algorithm (line 1 in Table 6.4).  When no sampling is used, the models 

generated have assessment measure values similar to, but slightly lower than that of the best model 

generated by the forward search DT algorithm.  The models, when undersampling was used, were 

not acceptable.  In the case of oversampling and SMOTE, the models generated were noted to 

overfit onto the training data and similar accuracy for the validation dataset was not achieved. 

 

Thus, the use of genetic algorithms, either for feature selection or as part of the OF algorithm, 

could not find a better model than the one generated by the forward search DT algorithm.  The use 

of LMS interaction data was shown to improve accuracy for the other datasets, thus future research 

should look into the acquisition of LMS interaction data for the ISTN100 course. 

 

6.4.2.  Experiments for the ISTN2IP dataset 

This section covers the genetic algorithm-based experiments for the ISTN2IP course dataset. 

 

6.4.2.1.  Experiment-2IP-FS [Genetic] 

For VAR1, using a GA for feature selection did not yield any better models as shown in Table 6.5.  

The undersampling results have been removed as these results did not meet the acceptance criteria.  

The OS-Genetic-RF algorithm (line 5) produced the highest training accuracy (96%) but the model 

did not yield an equivalent accuracy when applied to the validation dataset (81.8%) where a 

difference of 14.2% was observed.  The SMOTE-Genetic-DT (line 6) model produced similar 

Sampling
Feature Selection 

Search Type
Algorithm

Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 SMOTE Forward Search DT 11 89,3 84,6 0,9 0,6 0,86 0,78 0,89 0,82 0,89 0,84 0,89 0,82

2 None All attributes OF 30 85,8 83,8 0,66 0,71 0,82 0,83 0,82 0,79 0,85 0,83 0,85 0,79

3 RF Forward Search OF 6 86,3 83,8 0,51 0,5 0,76 0,72 0,84 ? 0,86 0,83 0,8 ?

4 RF Backward Search OF 28 88,5 83,8 0,87 0,74 0,91 0,83 0,87 0,83 0,88 0,77 0,86 0,77

5 Genetic OF 9 86,4 83,8 0,52 0,52 0,77 0,73 0,85 ? 0,86 0,83 0,81 ?

6 US All attributes OF 30 62,5 45,9 0,68 0,67 0,67 0,82 0,62 0,81 0,62 0,46 0,62 0,51

7 RF Forward Search OF 16 62,8 50 0,67 0,71 0,67 0,83 0,62 0,8 0,62 0,5 0,62 0,55

8 RF Backward Search OF 19 66,1 54,8 0,69 0,61 0,66 0,79 0,66 0,76 0,66 0,54 0,66 0,6

9 Genetic OF 14 64,3 47,5 0,7 0,66 0,68 0,81 0,64 0,78 0,64 0,47 0,64 0,53

10 OS All attributes OF 30 89,6 68,5 0,98 0,68 0,98 0,81 0,9 0,8 0,89 0,68 0,89 0,72

11 RF Forward Search OF 16 89,8 67,7 0,98 0,69 0,97 0,82 0,9 0,79 0,89 0,67 0,89 0,71

12 RF Backward Search OF 28 91,7 61,2 0,98 0,62 0,97 0,79 0,92 0,76 0,91 0,61 0,91 0,62

13 Genetic OF 26 89,7 64,5 0,98 0,69 0,98 0,82 0,9 0,78 0,89 0,64 0,89 0,69

14 SMOTE All attributes OF 30 88,5 75,8 0,95 0,65 0,94 0,81 0,88 0,74 0,88 0,75 0,88 0,75

15 RF Forward Search OF 8 87,1 77,4 0,94 0,59 0,94 0,8 0,87 0,76 0,87 0,77 0,87 0,76

16 RF Backward Search OF 29 88,9 75,8 0,95 0,62 0,94 0,81 0,89 0,74 0,89 0,75 0,89 0,75

17 Genetic OF 26 90,2 77,4 0,94 0,59 0,92 0,76 0,9 0,77 0,9 0,77 0,9 0,77

F-MeasureAccuracy % ROC PRC Area Precision Recall



184 
 

accuracy for both training and validation datasets, but the accuracy is lower when compared to the 

forward search RF algorithm obtained in Chapter 5 (line 1). 

 

Table 6.5:  Summary analysis for RF and DT algorithms – Experiment-2IP-FS [Genetic] – 

VAR1 

 
 

With the VAR2 dataset, the SMOTE-Genetic-RF model (line 7 on Table 6.6) had the closest 

accuracy difference of 2.1% between training and validation datasets.  However, the accuracy 

produced for both training and validation is less than that of the accuracies obtained for the forward 

search RF algorithm obtained in Chapter 5 (see line 1 on Table 6.6). 

 

Table 6.6:  Summary analysis for RF and DT algorithms – Experiment-2IP-FS [Genetic] – 

VAR2 

 
 

The performance measures when the genetic search was used for VAR3 is shown in Table 6.7. 

The use of the genetic search as part of feature selection did not result in models that were better 

than the model produced by the forward search RF algorithm from Chapter 5 (line 1).  The 

accuracy differences for the experiments with no sampling and oversampling were not acceptable 

(greater than 10%).  When SMOTE sampling was used, the accuracy difference is acceptable but 

the accuracies are not as good as the forward search RF algorithm model’s accuracy. 

 

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Forward Search RF 4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

2 None Genetic DT 2 79,2 90,9 0,49 0,5 0,66 0,83 ? ? 0,79 0,9 ? ?

3 Genetic RF 7 80,2 90,9 0,66 0,72 0,76 0,88 0,78 ? 0,8 0,9 0,73 ?

4 OS Genetic DT 15 87,8 71,3 0,94 0,56 0,93 0,85 0,88 0,85 0,87 0,71 0,87 0,76

5 Genetic RF 19 96 81,8 0,99 0,66 0,98 0,89 0,96 0,87 0,96 0,81 0,96 0,84

6 SMOTE Genetic DT 16 84,9 88,1 0,86 0,74 0,82 0,89 0,84 0,88 0,84 0,88 0,84 0,88

7 Genetic RF 15 85,7 79 0,91 0,59 0,9 0,85 0,85 0,84 0,85 0,79 0,85 0,81

F-MeasureAccuracy % ROC PRC Area Precision Recall

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Forward Search RF 4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

2 None Genetic DT 11 85,7 90,9 0,66 0,81 0,78 0,9 0,84 ? 0,85 0,9 0,83 ?

3 Genetic RF 18 85,7 90,9 0,82 0,88 0,88 0,94 0,84 0,87 0,85 0,9 0,83 0,87

4 OS Genetic DT 19 94,1 74,8 0,95 0,78 0,94 0,89 0,94 0,91 0,94 0,74 0,94 0,8

5 Genetic RF 16 97,4 70,6 0,98 0,68 0,98 0,88 0,97 0,85 0,97 0,7 0,97 0,76

6 SMOTE Genetic DT 8 89,3 79,7 0,89 0,61 0,86 0,86 0,89 0,84 0,89 0,79 0,89 0,82

7 Genetic RF 21 89,5 87,4 0,96 0,85 0,96 0,92 0,89 0,88 0,89 0,87 0,89 0,87

Accuracy % ROC PRC Area Precision Recall F-Measure
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Table 6.7:  Summary analysis for RF and DT algorithms – Experiment-2IP-FS [Genetic] – 

VAR3 

 
 

6.4.2.2.  Experiment-2IP-Algorithm [OF] 

When the OF algorithm was applied to the VAR1 dataset, acceptable models were identified.  

However, the difference between training accuracy and validation accuracy were either greater 

than 10% or the accuracy achieved was not as good as the forward search RF algorithm’s 

performance found in Chapter 5 (see line 1 on Table 6.8).  This was especially noted for the 

oversampled dataset where the accuracies for training were all in the range of 93.6% to 96.7%.  

The resultant models could not produce similar accuracy for the validation dataset. 

 

Table 6.8:  Summary analysis for OF algorithm – Experiment-2IP-Algorithm [OF] – VAR1 

 
 

When the OF algorithm was applied to the VAR2 dataset, four generated models were identified 

as shown in Table 6.9.  The OS-All-OF model (line 6) had the same accuracy difference but both 

accuracy values were greater than that of the forward search RF algorithm.  The OS-Rf Bkwd 

Search-OF model (line 8) also had both testing and validation accuracy above 90% with an 

accuracy difference of 5.8%.  The SMOTE-All-OF model (line 10) produced an accuracy 

difference of 0.2% between training and validation datasets.  However, the training accuracy was 

4.3% lower than that of the forward search RF algorithm. 

 

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Forward Search RF 4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

2 None Genetic DT 2 79,2 90,9 0,49 0,5 0,66 0,83 ? ? 0,79 0,9 ? ?

3 Genetic RF 7 80,2 90,9 0,66 0,72 0,76 0,88 0,78 ? 0,8 0,9 0,73 ?

4 OS Genetic DT 15 87,8 71,3 0,94 0,56 0,93 0,85 0,88 0,85 0,87 0,71 0,87 0,76

5 Genetic RF 19 96 81,8 0,99 0,66 0,98 0,89 0,96 0,87 0,96 0,81 0,96 0,84

6 SMOTE Genetic DT 16 84,9 88,1 0,86 0,74 0,82 0,89 0,84 0,88 0,84 0,88 0,84 0,88

7 Genetic RF 15 85,7 79 0,91 0,59 0,9 0,85 0,85 0,84 0,85 0,79 0,85 0,81

Accuracy % ROC PRC Area Precision Recall F-Measure

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Forward Search RF 4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

2 None All OF 29 78,1 88,1 0,6 0,66 0,73 0,87 0,72 0,85 0,78 0,88 0,72 0,86

3 RF Fwd Search OF 4 80 91,6 0,52 0,47 0,68 0,83 0,78 0,92 0,8 0,91 0,72 0,88

4 RF Bkwd Search OF 24 79,6 86,7 0,58 0,58 0,72 0,85 0,75 0,85 0,79 0,86 0,74 0,85

5 Genetic OF 7 80,2 90,9 0,53 0,46 0,68 0,82 0,78 ? 0,8 0,9 0,73 ?

6 OS All OF 29 93,6 78,3 0,99 0,76 0,99 0,9 0,94 0,88 0,93 0,78 0,93 0,82

7 RF Fwd Search OF 21 94,1 76,2 0,99 0,73 0,99 0,9 0,94 0,89 0,94 0,76 0,94 0,8

8 RF Bkwd Search OF 24 96,7 80,4 0,99 0,72 0,99 0,9 0,96 0,88 0,96 0,8 0,96 0,83

9 Genetic OF 19 95,5 80,4 0,98 0,68 0,98 0,89 0,95 0,86 0,95 0,8 0,95 0,83

10 SMOTE All OF 29 84,1 81,1 0,92 0,67 0,91 0,88 0,84 0,86 0,84 0,81 0,84 0,84

11 RF Fwd Search OF 3 85,8 70 0,89 0,67 0,87 0,88 0,85 0,87 0,85 0,7 0,85 0,76

12 RF Bkwd Search OF 24 84,5 83,9 0,92 0,72 0,92 0,89 0,84 0,87 0,84 0,83 0,84 0,84

13 Genetic OF 17 83,7 89,5 0,9 0,81 0,89 0,92 0,83 0,9 0,83 0,89 0,83 0,9

F-MeasureAccuracy % ROC PRC Area Precision Recall
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Table 6.9:  Summary analysis for OF algorithm – Experiment-2IP-Algorithm [OF] – VAR2 

 
 

When the OF algorithm was applied to VAR3, two models were generated with the performances 

close to that of the forward search RF algorithm.  These were the None-RF Fwd Search-OF model 

(line 3) as well as the None-RF Bkwd Search-OF model (line 4).  In these cases, the accuracy 

differences were 4.2% and 5.6% respectively (see Table 6.10).   

 

Table 6.10:  Summary analysis for OF algorithm – Experiment-2IP-Algorithm [OF] – VAR3 

 
 

Thus, the use of genetic algorithms as part of the OF algorithm did result in predictive models that 

were better than or competitive with the best model obtained in Chapter 5 for this course (line 1 

on Table 6.9).  In this case, the models were the OS-All-OF model (line 6 on Table 6.9) and the 

OS-RF Bkwd Search-OF model for the VAR2 dataset (line 8 on Table 6.9).  Both accuracies 

(training and validation) obtained were above 90% with the other performance measures also 

falling within an acceptable range.  An accuracy comparison between these two models and the 

best model obtained in Chapter 5 is illustrated in the Figure 6.5 bar-chart. 

 

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Forward Search RF 4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

2 None All OF 34 82,4 90,2 0,75 0,79 0,84 0,9 0,78 0,82 0,82 0,9 0,75 0,86

3 RF Fwd Search OF 2 82,6 90,9 0,52 0,5 0,71 0,83 0,81 ? 0,82 0,9 0,75 ?

4 RF Bkwd Search OF 29 85,4 90,9 0,8 0,87 0,86 0,93 0,84 0,87 0,85 0,9 0,82 0,87

5 Genetic OF 18 86 90,9 0,81 0,87 0,87 0,93 0,85 0,87 0,86 0,9 0,83 0,87

6 OS All OF 34 95,7 90,9 0,99 0,9 0,99 0,93 0,95 0,9 0,95 0,9 0,95 0,9

7 RF Fwd Search OF 13 97,6 89,5 0,99 0,75 0,98 0,89 0,97 0,89 0,97 0,89 0,97 0,89

8 RF Bkwd Search OF 25 96,7 90,9 0,99 0,9 0,99 0,93 0,96 0,9 0,96 0,9 0,96 0,9
9 Genetic OF 16 97,4 67,8 0,98 0,66 0,98 0,88 0,97 0,85 0,97 0,67 0,97 0,74

10 SMOTE All OF 34 88,6 88,8 0,96 0,84 0,96 0,92 0,88 0,91 0,88 0,88 0,88 0,89

11 RF Fwd Search OF 3 88,8 49,6 0,91 0,53 0,89 0,85 0,89 0,86 0,88 0,49 0,88 0,59

12 RF Bkwd Search OF 26 89 86,7 0,96 0,84 0,96 0,92 0,89 0,88 0,89 0,86 0,89 0,87

13 Genetic OF 21 88,1 86 0,96 0,86 0,96 0,93 0,88 0,88 0,88 0,86 0,88 0,87

Recall F-MeasureAccuracy % ROC PRC Area Precision

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Forward Search RF 4 92,9 88,1 0,66 0,78 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

2 None All OF 39 92,3 88,8 0,7 0,77 0,9 0,9 ? 0,82 0,92 0,88 ? 0,85

3 RF Fwd Search OF 5 92,3 88,1 0,66 0,79 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85

4 RF Bkwd Search OF 15 94,4 88,8 0,79 0,67 0,93 0,87 0,94 0,84 0,94 0,88 0,92 0,86

5 Genetic OF 11 93,7 86,7 0,83 0,68 0,94 0,87 0,92 0,85 0,93 0,86 0,92 0,85

6 OS All OF 39 98,8 85,3 1 0,63 1 0,86 0,98 0,85 0,98 0,85 0,98 0,85

7 RF Fwd Search OF 5 99,2 82,5 1 0,57 1 0,85 0,99 0,83 0,99 0,82 0,99 0,82

8 RF Bkwd Search OF 21 99,6 81,1 1 0,61 1 0,86 0,99 0,83 0,99 0,81 0,99 0,82
9 Genetic OF 11 100 83,2 1 0,82 1 0,91 1 0,89 1 0,83 1 0,85

10 SMOTE All OF 39 96,9 84,6 0,99 0,58 0,99 0,85 0,97 0,84 0,97 0,84 0,97 0,84

11 RF Fwd Search OF 9 96,5 81,8 0,98 0,63 0,98 0,87 0,96 0,84 0,96 0,81 0,96 0,82

12 RF Bkwd Search OF 36 98,4 86 0,99 0,63 0,99 0,86 0,98 0,83 0,98 0,86 0,98 0,84

13 Genetic OF 21 96,9 83,2 0,99 0,58 0,99 0,85 0,97 0,82 0,97 0,83 0,97 0,82

Recall F-MeasureAccuracy % ROC PRC Area Precision
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Table 6.11:  Summary analysis for RF and DT algorithms – Experiment-3AS-FS [Genetic] – 

VAR1 

 
 

Similarly, for VAR2, the training accuracy for each of the models was greater than 98.1% and 

hence outside the range for this study (Table 6.12). 

 

Table 6.12:  Summary analysis for RF and DT algorithms – Experiment-3AS-FS [Genetic] – 

VAR2 

 
 

For VAR3, only one model (None-Genetic-DT) had training and validation accuracy within the 

acceptable range for this study (see Table 6.13).  The PRC and Recall values were also acceptable 

but the precision and F-measure values could not be calculated.  The reason for this is that the 

resultant decision tree consisted of a single leaf “P” and thus the model was not acceptable. 

 

Table 6.13:  Summary analysis for RF and DT algorithms – Experiment-3AS-FS [Genetic] – 

VAR3 

 
 

6.3.3.2.  Experiment-3AS-Algorithm [OF] 

For the OF algorithm, the experimental results were similar to that of the experiments described 

in Section 5.4.8.  When the OF algorithm is applied to VAR1, the training accuracies were all 

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Genetic DT 2 98,1 96,9 0,42 0,5 0,94 0,94 ? ? 0,96 0,96 ? ?

2 Genetic RF 5 98,4 94,7 0,73 0,43 0,97 0,94 0,98 0,93 0,98 0,94 0,98 0,94

3 OS Genetic DT 18 99,1 92,5 0,99 0,54 0,99 0,94 0,99 0,94 0,99 0,92 0,99 0,93

4 Genetic RF 21 99,8 95,5 1 0,69 1 0,95 0,99 0,93 0,99 0,95 0,99 0,94

5 SMOTE Genetic DT 3 99,3 94,7 0,99 0,41 0,99 0,93 0,99 0,93 0,99 0,94 0,99 0,94

6 Genetic RF 20 99,2 95,5 0,99 0,68 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94

Accuracy % ROC PRC Area Precision Recall F-Measure

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Genetic DT 2 98,1 97,3 0,58 0,74 0,96 0,96 0,98 0,97 0,98 0,97 0,97 0,96

2 Genetic RF 8 98,1 97,3 0,76 0,48 0,97 0,94 0,98 0,97 0,98 0,97 0,97 0,96

3 OS Genetic DT 10 99,5 76,6 0,99 0,7 0,99 0,95 0,99 0,96 0,99 0,76 0,99 0,84

4 Genetic RF 12 100 96,9 1 0,78 1 0,96 1 0,95 1 0,96 1 0,96

5 SMOTE Genetic DT 17 98,3 95,1 0,97 0,46 0,96 0,93 0,98 0,94 0,98 0,95 0,98 0,95

6 Genetic RF 16 99 96,4 0,99 0,84 0,99 0,97 0,99 0,96 0,99 0,96 0,99 0,96

Accuracy % ROC PRC Area Precision Recall F-Measure

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None Genetic DT 2 97,8 96,9 0,19 0,5 0,94 0,94 ? ? 0,97 0,96 ? ?

2 Genetic RF 8 99,4 96 0,99 0,55 0,99 0,94 0,99 0,93 0,99 0,96 0,99 0,95

3 OS Genetic DT 7 100 89,8 1 0,46 1 0,93 1 0,93 1 0,89 1 0,91

4 Genetic RF 6 100 81,4 1 0,78 1 0,96 1 0,95 1 0,81 1 0,87

5 SMOTE Genetic DT 14 99,1 95,5 0,99 0,47 0,98 0,93 0,99 0,93 0,99 0,95 0,99 0,94

6 Genetic RF 19 100 95,1 1 0,76 1 0,96 1 0,93 1 0,95 1 0,94

Accuracy % ROC PRC Area Precision Recall F-Measure
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found to be greater than 98.1% and thus outside the acceptable range for this study.  This was also 

the case for oversampling and SMOTE and when no sampling was applied. 

 

For the experiments using VAR2 (see Table 6.14), the None-All-OF model (line 1) achieved the 

closest to an acceptable model.  In this case, the training accuracy achieved is 97.5%, with the 

validation accuracy being 96.9%.  The ROC values are above 0.7, with the PRC and Recall values 

also indicating a good model.  In the case of the precision and F-Measure, the values are good for 

training but not determined for the validation dataset.  This indicates that the prediction model was 

not able to predict any instances as a fail (correctly or incorrectly).  Thus, based on the precision 

and F-Measure formulae (see formulae 5.3 and 5.5 in Chapter 5), these values cannot be 

determined as the denominator values are zero (formula 5.3) or undefined (formula 5.5).  It should 

be noted that this course is dominated by assessments in the form of project work and thus further 

investigation is required in terms of better understanding the data requirements for conducting 

predictive analysis for this course.   

 

Table 6.14:  Summary analysis for OF algorithm – Experiment-3AS-Algorithm [OF] – 

VAR2 

 
 

For VAR3, two models were noted to have acceptable accuracy, these being the None-All-OF 

model (line 1 on Table 6.15) and the None-RF Bkwd Search-OF model (line 3 on Table 6.15).  

However, similar to VAR2, the precision and F-measure values could not be calculated either for 

both training and validation (None-All-OF) or just for training (None-RF Bkwd Search-OF).  

 

Table 6.15:  Summary analysis for OF algorithm – Experiment-3AS-Algorithm [OF] – 

VAR3 

 
 

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None All OF 35 97,5 96,9 0,76 0,71 0,97 0,95 0,97 ? 0,97 0,96 0,97 ?

2 RF Fwd Search OF 4 98,1 96,9 0,8 0,69 0,97 0,95 0,97 0,95 0,98 0,96 0,98 0,96

3 RF Bkwd Search OF 31 98,1 97,3 0,72 0,64 0,96 0,95 0,98 0,97 0,98 0,97 0,97 0,96

4 Genetic OF 8 98,1 96,9 0,72 0,48 0,96 0,94 0,98 ? 0,98 0,96 0,97 ?

Recall F-MeasureAccuracy % ROC PRC Area Precision

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

1 None All OF 38 97,8 96,9 0,92 0,85 0,97 0,96 ? ? 0,97 0,96 ? ?

2 RF Fwd Search OF 4 99,4 93,8 0,86 0,74 0,98 0,96 0,99 0,94 0,99 0,93 0,99 0,94

3 RF Bkwd Search OF 6 97,8 90,7 0,79 0,41 0,97 0,93 ? 0,93 0,97 0,9 ? 0,92

4 Genetic OF 8 99,4 96 0,99 0,54 0,99 0,94 0,99 0,93 0,99 0,96 0,99 0,95

Recall F-MeasureAccuracy % ROC PRC Area Precision
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6.5.  Chapter summary 

In the event that routine learning algorithms are not able to produce acceptable models, researchers 

and analysts often turn to the area of artificial intelligence as a means of improving current 

processes or finding better alternative processes.  In Chapter 5, the DT and RF learning algorithms 

were able to develop acceptable prediction models for all but one of the courses in the UKZN 

ISTN dataset, i.e., the ISTN3AS dataset.  It was also noted that better models may be possible for 

the ISTN100 and ISTN2IP datasets.  In this chapter, the use of genetic algorithms was proposed 

as a means to find a prediction model for the ISTN3AS course and to find better models for the 

ISTN100 and ISTN2IP models. 

 

Two approaches were used, these being the use of genetic algorithms as a part of feature selection 

and genetic algorithms as part of the classification process through the use of an optimized forest 

(OF) algorithm.  For the ISTN100 course, neither approach was able to find a better model than 

that generated by the DT algorithm described in Chapter 5.  As concluded in Chapter 5, the 

inclusion of LMS data may have assisted in the development of a prediction model as was shown 

with other courses.   

 

With regard to ISTN2IP, an improved model was found using the OF algorithm whereby both the 

training and validation accuracy increased, with the accuracy difference remaining the same.   

 

Finally, for the ISTN3AS course, the OF algorithm was able to create models with high accuracy 

for both training and validation datasets.  However, the precision and F-measure values could not 

be calculated (“?” values as seen in Table 6.14 and Table 6.15) and thus the validity of the models 

was questioned.  It was concluded that the nature of assessment in the course (presentations for 

group projects) led to extremely high pass rates where for the majority of cases, alternative 

attributes outside the LMS need to be considered and included when performing predictions for 

this course.  These alternate attributes should revolve around the groupwork involved in the major 

project assessment such as the number of meetings between group members, interactions between 

members, individual activities or responsibilities within the group, group dynamics and 

presentation skills amongst others. 
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Table 6.16 provides an updated version of Table 5.73, listing the best models identified for each 

of the courses in the UKZN ISTN dataset.  Only the ISTN2IP model was generated using the OF 

algorithm.  The model achieved accuracy of greater than 90% for both training and validation 

while the other performance measures were also within an acceptable range. 

 

Table 6.16:  Best models from Chapter 5 and Chapter 6 experiments 

Dataset VAR Sampling Algorithm Training 

Accuracy 

% 

Validation 

Accuracy 

% 

Accuracy 

Difference 

       

ISTN100 1 SMOTE DT 89.3 84.6 4.7 

ISTN101 1 OS RF 94.5 92.6 1.9 

ISTN103 2 OS RF 96.5 95.8 0.7 

ISTN2IP 2 OS OF 95.7 90.9 4.8 

ISTN211 3 None RF 97.4 95.4 2 

ISTN212 3 None RF 97.1 95.9 1.2 

ISTN3SA 2 SMOTE RF 94.2 96.9 2.7 

ISTN3AS No viable model found 

ISTN3SI 2 SMOTE RF 97.1 96 1.1 

ISTN3ND 2 OS RF 96.4 97.8 1.4 

 

Thus, in Chapter 5 and Chapter 6, learning algorithms and artificial intelligence techniques were 

applied to the UKZN ISTN dataset for the purpose of training and identifying learning patterns (as 

per research questions RQ3 and RQ4).  These patterns were then applied to unseen course datasets 

and were able to predict student performance at an acceptable rate.  In Chapter 7, the question of 

evaluating the predictive performance of the artefact will be answered by comparing the 

performance of the generated models against that of other LA/EDM studies in the literature. 
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number of variations in not only the algorithms and the parameters used but also the characteristics 

of the datasets and the categories of data used in these datasets.  However, a comparison of this 

nature is useful in understanding where the study stands in terms of acceptable performance 

measures as well as how the dataset compares to others identified in the literature.  Table 7.1 

provides the comparison strategy that is followed in the chapter. 

 

Table 7.1:  Comparison strategy 

Section Description 

7.2 This section provides an overview of the studies that are compared.  This 

includes the algorithms used as well as the number of students or instances within 

the datasets for these studies. 

 

7.3 This section provides a comparison of the performance measures between the 

prediction models generated for the UKZN ISTN 1st year courses against other 

studies in the literature that focused on 1st year courses. 

 

7.4 A comparison is made of the performance measures between the prediction 

models generated for the UKZN ISTN 2nd year courses against other studies in 

the literature covering 2nd year courses. 

 

7.5 This section covers comparisons between the prediction models generated for 

the UKZN ISTN 3rd year courses against other studies in the literature covering 

3rd year courses. 

 

7.6 In this section, the performance of the prediction models generated for the UKZN 

ISTN courses are compared against that of other studies that focused on 

technology related courses.  In this context, technology related courses relate to 

the teaching of a variety of subjects related to technology such as programming, 

networking, computer engineering, IT literacy and e-commerce. 

 

7.7 The performances of the prediction models generated from this study are 

compared to other studies that also applied decision tree, Random Forest and 

other algorithms. 

 

7.8 This section focuses on a comparison of the accuracies generated using this study 

(both training and test/validation) against those of studies that also reported 

training and test/validation accuracies. 

 
 

7.2.  Studies for comparison 

Forty-three (43) studies were identified as classification studies ranging from years 2013 to 2022.  

These studies focused on LA or EDM applications that were applied to a variety of student groups 
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As with the previous sections, it is evident that the performance measures obtained for this study 

are competitive with the studies by Mahzoon et al. (2018) and Maraza-Quispe et al. (2022).  In the 

case of these studies as well as other studies discussed in previous sections where accuracy is 

greater than 90%, there is no indication of how the generated models would fare against unseen 

data instances.  The next section discusses studies that have included performance measures for 

both training and test/validation datasets. 

 

7.8.  Performance comparison with studies that show training and testing accuracy 

The majority of studies identified in the literature did not separately report the performance 

measures obtained for training and test datasets.  Rather, a single value for accuracy, precision, 

recall or other performance measures were reported.  There are studies that have reported different 

training performance measures and test or validation dataset measures when models are applied to 

the test or validation datasets.  These studies, in comparison with the performance measures of this 

study, are discussed in this section and listed in Table 7.12.  It should be noted that the model 

described for ISTN3AS was the closest model in terms of meeting the acceptance criteria for this 

study.  For the ISTN3AS model, the precision and F-measure values could not be calculated and 

thus the model was not accepted. 
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from the current study in that the resultant regression model generated after training was applied 

to various colleges.  The accuracy varied depending on the college, with the best college 

(Redwoods) best fitting the training model with 85.6% accuracy (Jayaprakash et al., 2014). 

 

Based on the limited studies available, the artefact fares well in terms of the generated prediction 

models fitting to unseen data instances.  All differences between training and validation accuracy 

are less than 10% and the accuracy achieved range from 84% to 97.8%. 

 

7.9.  Chapter summary 

This chapter focused on addressing the fifth research question where a comparison is made 

between the performance of this artefact against the performances of other LA or EDM studies 

identified in the literature.  An exact comparison cannot be made due to differing dataset 

characteristics and different techniques used.  However, a comparison of the performance 

measures of this study against those of other studies is useful in understanding how the artefact 

model performs and whether these performance measures are acceptable or not. 

 

The characteristics of the UKZN ISTN dataset was first compared in terms of the student and 

attribute count.  The UKZN ISTN dataset was found to have one of the greatest number of students 

in terms of count, falling in the category of 10 000 or more students.  With a maximum of 40 

possible attributes, the UKZN ISTN dataset was also seen as complex dataset when compared to 

other datasets. 

 

The respective 1st, 2nd and 3rd year courses in the UKZN ISTN dataset were compared to respective 

1st year, 2nd year and 3rd year courses identified in the literature.  From this year by year perspective, 

the performance measures were acceptable when compared to that of the literature. 

 

The courses in the UKZN ISTN dataset were also compared to other courses that taught 

technology-based topics such as engineering, e-commerce, end user computing and programming.  

The performance measures, in most cases, were higher than the performance measures for other 

prediction models applied to datasets in this category (technology courses).  The same was found 
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when the performance measures of models generated from the DT and RF algorithms were 

compared to the performance measures of other studies that used DT and RF algorithms. 

 

Finally, a comparison was made against studies that reported both training and testing accuracies.  

The majority of best models for each of the courses in the UKZN ISTN dataset had accuracies of 

more than 90% for both training and validation accuracy, with an accuracy difference being less 

than 10%.  The training accuracies, validation accuracies and accuracy differences were found to 

be better than most of the studies that reported training and test accuracies. 

 

Thus, the prediction models generated by the artefact for this study performed well and were of a 

good standard when compared to other studies.  The intention of this study is to report these 

performance measures and make the anonymized UKZN ISTN dataset available for other LA 

practitioners.  These practitioners can then apply their own algorithms or research artefacts and 

compare their results against that of this study.  

 

In the next and final chapter, a discussion is provided in terms of the objectives of the study, how 

the LA process can be improved within the discipline of IS&T at UKZN, and how this study can 

evolve in terms of future research.  
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provides some recommendations to HEIs in order to further research on LA in the higher education 

domain.  Section 8.6 covers the contributions of the study to the body of knowledge within LA 

and Section 8.7 describes the limitations of the study.  Section 8.8 proposes future work that can 

arise from this study.  Section 8.9 concludes the chapter and the research study. 

 

8.2.  Major findings of the literature review chapter 

The literature review chapter provided an overview of LA, with the key findings being that Africa 

has been slow to undertake LA projects.  As technology and infrastructure becomes available, it is 

imperative that African higher education institutions begins to better take advantage of the large 

amount of data being stored on a daily basis. 

 

From a LA process perspective, the majority of studies focused on either data analysis (including 

prediction) or data preparation stages such as ethical and privacy issues, or data preparation 

techniques.  No studies looked at the full coverage of LA from data acquisition to data analysis. 

 

From the above findings, it was determined that the LA study must focus on data from an African 

university, (in this case, UKZN), and that the study cover the entire LA process from data 

acquisition to performance prediction. 

 

8.3.  Discussion of the research questions and objectives 

By following a design science research methodology (described in Section 3.4), an artefact was 

developed in order to meet the objectives of the research discussed in Section 1.5.  Sections 8.2.1 

to 8.2.5 respectively discuss each research question and how it was addressed in the study, as well 

as the extent to which the objective was met. 

 

8.3.1.  How can the data from the relevant data sources (SMS, Moodle logs, registers etc.) be 

integrated? 

This research question addressed the concept of data collection and integration of data sources.  In 

order to meet the objectives to answer this question, ethical clearance was required, with the 

researcher having to gain a gatekeeper’s letter from the registrar as well as sign a non-disclosure 

agreement.  This process took longer than anticipated as all individuals were required to ensure 
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that the research complied with all aspects of POPIA, which had recently been introduced.  The 

discussion on this can be found in Section 3.6.1.  

 

Student demographics and performance data were acquired via a single MS-Excel file.  Data from 

the Moodle LMS was acquired by downloading the relevant data files in .csv format.  Section 4.2.1 

describes the datasets and the attributes for each of these datasets. 

 

The data was mapped to the files based on the student number.  Activities of each student were 

recorded based on counting the number of times students performed different activities on the 

LMS (described in Section 4.2.3.2).  Once integrated, student numbers were removed and replaced 

by a unique identifier to ensure anonymization (described in Section 4.2.2). 

 

8.3.2.  How can the integrated data be organized in preparation for data analysis? 

The literature covered a number of techniques that can be used to integrate data and prepare it for 

data analysis (Section 2.5).  Influenced by these techniques, the instances from the integrated 

dataset were grouped based on the courses that they originated from.  Duplicate instances such as 

exemptions, instances with incomplete attribute values, and instances of student de-registrations 

were some of the instances that were removed (Section 4.2.3.4).  Duplicate instances increase bias 

towards those instances during the learning process while instances with incomplete or missing 

data can adversely affect prediction capability.   

 

To further assist with anonymization, some attributes were categorized (Section 4.2.3.3).  

Categorisation also improves comprehension and interpretation, as was stated by Khalil and Ebner 

(2016). 

 

Thus, the first two research objectives have been addressed.  Figure 8.3 is extracted from Figure 

3.11 and represents the processes discussed in Chapter 4.   
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The literature had shown that artificial intelligence (AI) algorithms were becoming more popular 

to assist in establishing prediction models for complex learning situations.  Chapter 6 covered the 

application of AI algorithms to the ISTN100, ISTN2IP and ISTN3AS models in order to find better 

prediction models than those found in the respective Chapter 5 experiments.  Genetic algorithms 

(GAs) were previously used in LA/EDM studies with success by Minaei-Bidgoli and Punch 

(2003), Romero et al. (2009), Lakshmi et al. (2013), and Preetha (2021).  Two approaches were 

followed, these being using GAs for feature selection (Section 6.3.1) and using a GA as part of the 

training process (Section 6.3.2).  The genetic algorithm was able to find a better prediction model 

for the ISTN2IP course (Section 6.4.2).  It was determined that the inclusion of Moodle data for 

the ISTN100 course (Section 6.4.1) would play a role in the development of a prediction model 

for the course.  For the ISTN3AS course (Section 6.4.3), an alternate strategy for data collection 

would be required in the form of student activities and participation (not recorded by Moodle). 

 

8.3.4.  How can the trained data be used to predict student academic performance? 

The prediction models acquired through training of the algorithms are applied to the validation 

datasets (unseen data instances).  Based on the performance measures, models were found whose 

performance, when applied to the validation dataset, was similar to that of the performance 

obtained during training.  The other performance measures such as precision, recall, F-measure, 

ROC and PRC also indicated that the models were of an acceptable quality.  The performances of 

the prediction models against validation data was covered in Section 5.4 for each of the courses as 

well as in Section 6.4 for the ISTN100, ISTN2IP and ISTN3AS courses.  

 

The aspects for meeting the requirements of the research questions stated in 8.3.3 and 8.3.4 are 

represented in the artefact.  Figure 8.4 is an extraction of Figure 3.11 and represents the processes 

for training and validation of prediction models for the UKZN ISTN dataset. 

 





223 
 

8.4.  Discussion:  How effective are the predictions in influencing or enabling 

monitoring of student academic behaviour? 

Based on the five research objectives, the study has shown that using the artefact would result in 

the development of models that can predict whether a student is going to pass or fail a course from 

the IS&T discipline with a minimum of 89% accuracy, with the ISTN3AS course being the only 

exception.  Thus, the predictions have great potential in enabling monitoring of student academic 

behaviour and addressing student issues before potential failure occurs.  This was also seen in the 

ability of the prediction models to predict unseen data instances (via the validation dataset). 

 

The resultant artefact created from the study falls under the LA application of early warning 

systems (discussed in Section 2.2.3.2).  With a prediction accuracy that is comparable to that of 

other studies, the discipline of IS&T can use the prediction models to identify students that could 

potentially struggle at 1st, 2nd and 3rd year levels. 

 

The inclusion of feature selection can also play a role in influencing monitoring of student 

academic behaviour.  By identifying the most influential set of attributes (Romero et al., 2014), 

staff are able to identify groups of students that could potentially struggle based on attributes.  For 

example, both the QUINTILE and CompTechSchoolYN were identified as predictive attributes 

for programming related courses (ISTN2IP, ISTN3AS, ISTN3SI).  By analysing these attributes 

in more detail, students from lower quintile schools (where computer programming is not 

available) may require more assistance with programming.  Furthermore, the use of feature 

selection reduces the complexity of prediction models (Kavipriya & Karthikeyan, 2019), and in 

the case of decision trees or optimized forest algorithms, allows for staff to better understand and 

evaluate these models. 

 

Table 8.1 outlines the list of features identified in the best prediction models for each of the courses 

(Table 6.16).  Column 2 to column 11 indicate the courses of the UKZN ISTN dataset.  Rows A, 

B and C indicate the sampling, variation and algorithm, respectively, used to produce the best 

prediction model.   

 

Rows 1 to 48 indicate each of the features identified in the UKZN ISTN dataset.  A star (*) within 

the cell indicates that the feature was required to predict student performance in the prediction 
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model for that course.  The blacked-out cells indicate features that were not considered, either due 

to the type of variation used, or the courses were not seen as prerequisites.  The blue coloured 

features indicate course features that were seen as prerequisites.  The features in the green section 

were obtained from student demographic and registration data, while the orange section indicates 

features obtained from the Moodle LMS.  The last column is a count of the number of times each 

feature was included for the prediction models for each of the ten (10) undergraduate courses.  The 

last row of the table indicates the number of features used to develop the prediction model for each 

course. 
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Table 8.1:  Identified attributes per course 

 

Course --> ISTN 100 101 103 2IP 211 212 3SA 3AS 3SI 3ND

A Sampling SMOTE OS OS OS None None SMOTE None SMOTE OS

B Variation 1 1 2 2 3 3 2 2 2 2

C Algorithm DT RF RF OF RF RF RF OF RF RF

1 ISTN101 * 1

2 ISTN102/3 * * 2

3 ISTN2IP * * * * 4

4 ISTN211 * * 2

5 ISTN212 * * * 3

6 BC * * 2

7 OT * * * * * * * 7

8 QUAL * * * * * 5

9 QUALCAT * * * 3

10 SUBCAT * * * * * 5

11 SELFFUNDED 0

12 Age Category * * * * * * * 7

13 GENDER * * * * * * * * * 9

14 RACE * * * * * * 6

15 RELIGIONDESC * * * * 4

16 ALIENYN * * * * * 5

17 COUNTRYCITZDESC * * * * * * * 7

18 HOMELANGDESC * * * * * 5

19 MARITALSTATUS * * * * * 5

20 MATRICTYPEDESC * * * * * * 6

21 MATRICRANGE * * * * 4

22 CompTechSchool? * * * * * 5

23 QUINTILE * * * * * * * 7

24 SECONDARYSCHOOL * * * * 4

25 AREA * * * * 4

26 RESYN * * * * * * * 7

27 RESBLDOWNER * * * * * * 6

28 BURSARYYN * * * * * * * 7

29 COUNCILLOANYN * 1

30 NSFASBURSARYYN * * * * * * 6

31 NSFASLOANYN * * * * 4

32 SCHOLARSHIPYN * * * * * * 6

33 FUNDINGTOTALPAID * * * * * * * * 8

34 WEBREGYN * * * * * * * * 8

35 No of total clicks * * * * * 5

36 File * * * * * * 6

37 Folder * * * * * 5

38 Forum * * * * * * 6

39 Quiz * * 2

40 System * * * * * * * 7

41 URL * 1

42 Assignment * * * 3

43 Kaltura Video Resource 0

44 Zoom meeting 0

45 H5P * 1

46 Completed Activities * 1

47 Activities Not Completed 0

48 % Completed * 1

Attributes per course 10 26 12 33 5 9 23 34 27 24

Attribute 

Count



226 
 

Table 8.2 lists the number of times each of the attributes appeared in the best prediction models 

identified at the end of Chapter 6 (Table 6.16).  The LMS attributes introduced during the 

COVID19 pandemic (Variation 3) appeared the least in the identified prediction models (along 

with other attributes such as COUNCILLOAN, ISTN101, SELFFUNDED and URL).  It should 

be noted that the Kultura video resource and Zoom meetings were not automatically recorded in 

all cases as this option was not available on Moodle.  At the end of the table, it was noted that 

demographic and registration data such as OT, Age Category, COUNTRYCITZDESC, 

QUINTILE and others appear the most times in the best prediction models.  Thus, these factors 

should be studied in greater detail as they are able to play a significant role in identifying struggling 

students. 

 

Table 8.2:  Number of occurrences of parameters in best prediction models from Table 6.16 

Attributes Number of occurrences 

SELFFUNDED, Kultura Video Resource, 

zoom meeting, Activities not completed 

0 

ISTN101, COUNCILLOAN, URL, H5P, 

Completed Activities, % Completed 

1 

ISTN102/3, ISTN211, BC, Quiz 2 

ISTN212, QUALCAT, Assignment 3 

ISTN2IP, RELIGIONDESC, 

MATRICRANGE, 

SECONDARYSCHOOL, AREA, 

NSFASLOANYN 

4 

QUAL, SUBCAT, ALIENYN, 

HOMELANGDESC, MARITALSTATUS, 

CompTechSchool?, No of Total Clicks, 

Folder 

5 

RACE, MATRICTYPEDESC, 

RESBLDOWNER, NSFASBURSARYYN, 

SCHOLARSHIPYN, File, Forum 

6 

OT, Age Category, COUNTRYCITZDESC, 

QUINTILE, RESYN, BURSARYYN, 

System 

7 

FUNDINGTOTALPAID, WEBREGYN 8 

GENDER 9 

 

Thus, a conclusion can be made that due to the high prediction accuracy of the models and the 

identification of attributes that play a role in prediction, the artefact has the potential to assist in 
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tracking or monitoring student academic performance.  However, a number of challenges are still 

present that must be addressed, and these are discussed in the next section on recommendations. 

 

8.5.  Recommendations 

As stated, Africa is fairly new to the area of LA and while the study has produced a useful artefact 

to develop prediction models, the following recommendations have been identified in order to 

further the knowledge and application base for LA.  These recommendations are described below. 

 

8.5.1.  Effective data acquisition and management 

A key challenge covered in Section 2.2.5 (Challenges of learning analytics) was that of data 

collection.  Firstly, in terms of data acquisition, future researchers must be made aware that not 

only is the mandatory ethical clearance required, but also the gatekeeper letter that must be specific 

to the requirements of the study.  In other words, a general statement outlining that data can be 

acquired from university servers is not sufficient, because of the identifying characteristics of the 

data that needs to be used in a study of this nature for effective training.  This may require 

researchers to conduct meetings with university data custodians in regard to what exactly is 

required for the research.  This is necessary in order for the data guardians to understand what data 

the researcher requires for the LA study (Hernández-de-Menéndez, Morales-Menendez, Escobar 

& Ramírez Mendoza, 2022). 

 

Secondly, the addition of POPIA means that students’ privacy is of the utmost importance and the 

data must be anonymized.  In the case of this study, two separate sources of data were considered, 

these being the student biographical and registration data from UKZN Institutional Intelligence 

(II) as well as Moodle LMS interaction data.  In order to effectively apply LA while ensuring that 

POPIA rules are maintained, both data sources must be anonymized in unison.  This mean linking 

both sources of data, which inevitably increases the complexity of data entities and their 

relationships.  Future researchers should be made aware of the requirements of POPIA from the 

outset of the research project and training or assistance must be provided where necessary.  Efforts 

have been made in this regard by USAf (2020) but greater awareness is still required. 
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Once the areas of ethical clearance and POPIA were addressed, the data was provided by II to the 

researcher.  However, as stated earlier (Section 4.2), the data sources were not associated or related 

to each other from a database perspective.  Institutional Intelligence and ICS were not in the 

position to download and organize the Moodle LMS data and thus the researcher was required to 

request access from the relevant lecturers and manually download the Moodle logs and reports for 

each of the courses covered in this study.  Thus, a recommendation would be for the availability 

of sufficient staff to assist researchers in data related research.  The staff must be trained in areas 

of big data analytics in order to understand the requirements of the researcher and to assist with 

data management and knowledge discovery (Avella et al., 2016).  This is a critical requirement if 

HEIs wish to take full advantage of the benefits of LA. 

 

8.5.2.  Better use of learning management systems 

While collecting data from the Moodle LMS, it was observed that the course sites were mainly 

used as a content repository.  Other features available on Moodle, such as activity completion and 

tracking, quizzes, assignment submission areas and other activities, were rarely utilized, resulting 

in reduced ability to better track student activities.  The continued use of the LMS in this manner 

will reduce the effectiveness of any LA application.  A recommendation is to train staff to better 

understand and apply the features of Moodle to better fit the needs and learning objectives of the 

course.  Alternatively, the hiring of an LMS administrator is necessary for a course or for the 

discipline to advise and assist in management of LMS course sites.  The administrator should be 

aware of the features of Moodle, and working with lecturing staff, should develop course sites to 

maximise the potential of Moodle and its ability to collect data related to students’ Moodle 

interaction.  The LMS administrator should also have data analytics experience in order to extract 

data requested for future LA research.  This challenge of staff training and specialisation in data 

analytics was echoed by Prinsloo and Kaliisa (2022b). 

 

In addition, from a data perspective, there should be a movement to align assessment data with 

student activities to better understand the impact of how student interaction with course content 

affects their academic performance with respect to particular topics covered in the course. 
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8.5.3.  Improved communication of analytical findings between student and lecturer 

Students and lecturers are key stakeholders in higher educational institutions and thus for LA to 

be effectively used for monitoring student academic performance, students and lecturers must be 

consulted on the manner in which data is presented to them.  This could be in terms of frequency, 

type of data, as well as presentation of data.  Better understanding and appreciation of the LA 

process by stakeholders will no doubt improve the probability of LA acceptance within UKZN.  

This was also noted by Guzmán-Valenzuela et al. (2021) but is seen as a challenge still to be 

addressed in the African context (Prinsloo & Kaliisa, 2022b). 

 

8.6.  Contributions of the study 

There are several contributions that this study makes.  However, the three main contributions are 

the development of a dataset that has a specific context (1st to 3rd year courses in the IS&T 

discipline), the LA process model, and the contribution to basic and applied research. 

 

8.6.1.  Development of a dataset 

The literature review study by Romero and Ventura (2020) identified a total of 13 publicly 

available datasets.  From the datasets listed, only eight (8) were still available for access.  Of the 

eight datasets, four (4) were school-based and two (2) were MOOC-based.  The research conducted 

in this study resulted in the development of an integrated dataset for a discipline from an HEI.  The 

dataset is of a challenging complexity and can allow future researchers to continuously evolve the 

area of LA.  The UKZN ISTN dataset consists of over 37000 instances with 65 attributes over ten 

(10) undergraduate courses.  The dataset is divided into groups based on the courses, these being 

three (3) first year courses, three (3) second year courses and four (4) third year courses.  When 

comparing this to 43 other datasets in the literature (Section 7.2), it was found that this dataset had 

one of the greatest number of students, attributes and registration instances.   

 

The majority of the courses are imbalanced in terms of the number of passes and the number of 

failures, thus making the dataset more challenging in terms of finding a reliable prediction model 

(Ghorbani & Ghousi, 2020; Kaur et al., 2019).  Unlike other datasets in the literature, the 

complexity of each of the courses based on imbalance level were also reported (Table 5.2) using 

the imbalance formula (see formula 5.1. in Section 5.2.3). 
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followed by label identification where the student final performance is converted to pass or fail 

class values (Process 4.2).  For each of the individual courses, the data is divided into training and 

validation datasets (data obtained during 2021).  The training data enters process five where 

sampling is applied (Process 5.1) to the dataset, feature selection is applied to determine the most 

effective attributes for prediction (Process 5.2), and a learning algorithm is applied to the training 

data (Process 5.3).  The resultant prediction model generated from Process five is then applied to 

the validation dataset in Process six to validate the model. 

 

The process model can be used as a guide for LA practitioners.  Starting from data acquisition, a 

researcher can follow the steps of the model and understand how data moves from one process to 

another.  Within each process, the researcher can then determine the ideal steps to clean, transform, 

train or validate the data, resulting in a prediction model.  At each process, the researcher can 

choose techniques to apply based on what is available for them to implement. 

 

8.6.3.  Addition of learning analytics research within South Africa and the African 

continent 

According to a literature survey study conducted by Guzmán-Valenzuela et al. (2021), the SciELO 

and WoScc research databases only identified 10 publications with 1st authors from African 

countries between 2013 and 2019.  Waheed, Hassan, Aljohani and Wasif (2018) identified 19 

publications from South Africa and 32 from Africa.  Hooda and Rana (2020) identified active LA 

initiatives across the USA, Netherlands, UK and Australia with smaller case studies being 

conducted in South American, Asian and smaller European countries but did not indicate any 

Africa-based LA projects.  Dhankhar and Solanki (2020) also did not identify any studies from the 

African continent.  The most recent study related to Africa was an overview by Prinsloo and 

Kaliisa (2022b) who stated that African studies within the SoLAR community totalled to 15 

studies.  They further state that LA research in Africa is still in its infancy.  Thus, this research, 

with the addition of the UKZN ISTN dataset and the LA process model artefact, improves the 

body of knowledge of LA for those interested in the subject for the continent of Africa. 

 

In addition, the study serves as a valuable source of information that brings to light the changing 

nature of the data within the African continent. Also, it combines both basic and applied research. 

As applied research, it solves a problem of identifying students at risk early, with the potential to 
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assist and monitor performance.  As basic research, the study reveals how datasets can be 

developed contextually, as well as the value of design science methodology in IS research, 

specifically in the learning analytics context.  This suggest that the process model is generally 

applicable in this field. 

 

8.7.  Limitations 

As with any research project, the limitations faced by the researcher must be acknowledged, and 

this is covered in this section.  Three main limitations for this study are identified, these being the 

scope of the study, the limitations observed when working with Moodle data, and the ISTN100 as 

well as the ISTN3AS course.  These three limitations are elaborated upon in the following 

subsections. 

 

8.7.1.  Scope of the study 

In terms of the scope of the study, the initial objective was to obtain all student data from UKZN.  

However, the difficulty faced by II in providing this meant that the scope was narrowed to just the 

discipline of IS&T.  Further to this, each course within UKZN follows different approaches in 

terms of teaching and learning; for example, some courses may be application-based while others 

are more theoretical.  Furthermore, the teaching pedagogy and assessment methods will differ from 

one course to the next.  Thus, the artefact generated cannot be generalised to all courses within 

UKZN and will require application to datasets in other disciplines in order to ascertain its 

effectiveness. 

 

8.7.2.  Working with Moodle data 

From the perspective of the Moodle LMS, a number of limitations were acknowledged due to the 

inherent functionality of Moodle and the options available to UKZN.  Firstly, Moodle allows for 

the tracking of whether students have opened files (such as lecture slides) or not.  However, the 

LMS cannot determine the extent to which students have studied with that file and thus the 

assumption was made that students that completed this activity have, at the very least, read the 

content in the file.  Secondly, it was noted that log data reflected the name of the student and which 

LMS action he or she has performed.  Thus, students with the same name and surname could not 

be distinguished between each other, and thus the rows for both these students were removed (see 

Section 4.2.3.4).  Thirdly, some courses did not make use of the activity tracing feature on Moodle 
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as they were not aware of its usefulness and how to incorporate it into their course.  In these cases, 

it was uncertain if these activities were truly accomplished or not. 

 

8.7.3.  Availability of data sources for ISTN100 and ISTN3AS courses 

The final limitation relates to the ISTN100 course and the ISTN3AS course.  For ISTN100, 

Moodle data was not made available to the researcher and thus was not included in the analysis 

(see Section 5.2.4).  In the case of ISTN3AS, students conduct interviews with possible clients, 

and are part of a team that undertakes tasks involved in project management, analysis, design and 

programming.  While there are files that teach various programming concepts, the tasks focused 

around the development of the project are not recorded.  Thus, this is seen as a limitation that 

should be addressed in the future. 

 

8.8.  Directions for future work 

With the conclusion of the study, future research must be considered for the inevitable evolution 

of LA.  This section looks at areas of future research with regard to this study. 

 

Firstly, this research focused more on the development of a model and the use of machine learning 

techniques to predict student academic performance.  However, the models, statistics and 

generated data or information may not be understood by users without required data analytics 

knowledge.  Focus for future research must now move to the development of data visualisation to 

better inform students and/or staff about the analysis and prediction.  The use of dashboards and 

summarized information will better inform individuals on progress so that intervention methods 

can be implemented, if required, to improve student progress (Sievert, 2020). 

 

Secondly, for this study the data was stored within a relational database framework.  In the research 

by Knight, Wise and Chen (2017) as well as Mahzoon et al. (2018), the use of a temporal model 

has the potential for improving personalised learning and to better understand a student’s learning 

process over time.  In the case of Mahzoon et al. (2018), the use of a temporal model was shown 

to improve accuracy by nine percent.  In order to accomplish this, data must be available in the 

form of activities as well as time stamps of these activities.  The Moodle LMS does offer activity 
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tracking but this must also be linked to activities outside the LMS environment, such as lecture 

attendance and test dates. 

 

Thirdly, all the learning algorithms have a number of parameters that can be adjusted.  For training, 

the number of folds was set to the default value of 10, but other values should be investigated for 

each course in the future.  The decision trees allow for maximising the depth the tree can have as 

well as whether the tree should be pruned or not, amongst others.  In the case of the Random Forest 

algorithm, parameters include the number of decision trees in the forest and the number of features 

(attributes) considered by each tree, amongst others.  Parameter tuning is also important for 

artificial intelligence techniques such as genetic algorithms where parameter values such as 

population size, number of generations and genetic operator proportions need to be adjusted for 

improved algorithm performance.  Future research requires that parameter tuning be implemented 

in order to improve the effectiveness of the learning algorithms and feature selection techniques. 

 

Fourthly, as stated in Section 8.5, the ISTN3AS course, which focuses on project work in the field, 

needs to be studied further in terms of data requirements for predictive analysis.  This includes 

resolving the issue of capturing of data for conducting interviews with possible clients, analysis 

and design tasks, as well as activities related to programming of the final solution for the project.  

These activities are not logged via the LMS and thus future research needs to delve further into 

capturing these activities for predictive purposes.  Capturing this form of data would require 

questionnaires, observations and feedback techniques and the analytics would be qualitative in 

nature.   Challenges associated with this include time taken to collect, capture and analyse the data 

sources. 

 

8.9.  Chapter summary 

The objective of this study was to emphasise the potential of learning analytics, an area that is 

fairly new to the African continent.  The research questions and objectives have been recalled and 

discussed in terms of what was covered in each of the chapters (Section 8.2).  From the discussion 

in Section 8.2.6, the study has shown the potential of learning analytics and its capability in terms 

of predicting student performance.  With high prediction accuracy and an indication of the models 

being reliable for both training and validation data, a conclusion can be made that the artefact has 
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the potential to predict student academic performance and potentially intercept students that could 

potentially fail courses in the discipline of IS&T. 

 

Further to this, it was found that there is potential for improved prediction models when using 

artificial intelligence techniques.  In this case, the use of genetic algorithms allowed for the 

generation of improved prediction models.  From a perspective of LA, this provides an alternative 

avenue for practitioners to pursue in the event that the standard machine learning algorithms are 

not successful or if practitioners are searching for better solutions. 

 

As discussed in Section 8.4.1, the dataset contributes to the LA community by allowing researchers 

to apply their LA or EDM technique against data from a real world higher educational institution.  

The dataset offers complexity in the form of a large number of student and registration instances 

as well being an imbalanced dataset.  The dataset has already been anonymized, thereby allowing 

researchers to focus on the aspect of analytics. 

 

Finally, the process model artefact (Figure 8.3) provides LA practitioners with a guide on 

conducting LA initiatives starting from data acquisition to data cleaning, preparation, training and 

finally, validation.  The model allows for customisation by allowing the research to choose 

techniques for cleaning and preparation, machine learning techniques to apply, and division of 

data into training and validation. 

 

The chapter concludes by outlining issues that need to be addressed in the form of 

recommendations (Section 8.3).  This includes streamlining the data collection process through 

improved understanding of POPIA, ethical and privacy aspects, better training of staff to assist in 

data collection and use of the preferred LMS.  Some of these recommendations are suggested as 

these were limitations experienced by the research when conducting this research (Section 8.5).  

Section 8.4 covers the key contributions of this research to the body of knowledge, these being the 

development of the process model and dataset as well as knowledge contribution to LA for the 

continent of Africa.  Finally, the chapter covers future directions (Section 8.6) for this research in 

terms of visualisation, choice of data model to use, parameter tuning and finding of prediction 

models for the ISTN100 and ISTN3AS courses. 
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Appendix A – Experimental results not listed in Chapter 5 
 

Experiment-101-Sampling [None]-VAR1 – Decision tree (J48) 

 

Experiment-103-Sampling [None]-VAR1 

 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 85.2 91.2 0.49 0.5 0.74 0.83 ? ? 0.85 0.91 ? ?

Backward 

Search
None 85.2 91.2 0.49 0.5 0.74 0.83 ? ? 0.85 0.91 ? ?

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 83.4 91,6 0,49 0,5 0,72 0,84 ? ? 0,83 0,91 ? ?

Backward 

Search
None 83.4 91,6 0,49 0,5 0,72 0,84 ? ? 0,83 0,91 ? ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 83,5 91,6 0,63 0,59 0,78 0,87 0,8 ? 0,83 0,91 0,76 ?

Backward 

Search
27 82,2 88,1 0,65 0,74 0,79 0,9 0,78 0,87 0,82 0,88 0,79 0,87

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-103-Sampling [US]-All Variations 

 

Experiment-2IP-Sampling [None]-VAR1 – Decision tree (J48) 

 

 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 66,9 40,8 0,66 0,6 0,63 0,87 0,67 0,9 0,66 0,4 0,66 0,5

Backward 

Search
14 66,8 46,9 0,67 0,67 0,63 0,88 0,66 0,89 0,66 0,47 0,66 0,56

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 66,6 48,9 0,68 0,7 0,67 0,89 0,67 0,9 0,66 0,49 0,66 0,58

Backward 

Search
22 63,2 51,1 0,68 0,72 0,67 0,9 0,63 0,9 0,63 0,51 0,63 0,6

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 73,7 95,5 0,72 0,78 0,67 0,92 0,74 0,95 0,73 0,95 0,73 0,95

Backward 

Search
15 73,2 95 0,73 0,78 0,69 0,92 0,73 0,94 0,73 0,95 0,73 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
10 72,8 95,5 0,71 0,78 0,66 0,92 0,73 0,95 0,72 0,95 0,72 0,95

Backward 

Search
25 72,5 91,6 0,8 0,9 0,8 0,96 0,72 0,93 0,72 0,91 0,72 0,92

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 78,1 78,2 0,75 0,82 0,73 0,93 0,78 0,91 0,78 0,78 0,78 0,82

Backward 

Search
6 76,5 83,7 0,76 0,84 0,72 0,93 0,77 0,92 0,76 0,83 0,76 0,86

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
10 80,8 79,3 0,82 0,82 0,8 0,94 0,81 0,9 0,8 0,79 0,8 0,83

Backward 

Search
35 78,1 80,8 0,85 0,9 0,86 0,96 0,78 0,92 0,78 0,8 0,78 0,84
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Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 79,2 90,9 0,49 0,5 0,66 0,83 ? ? 0,79 0,9 ? ?

Backward 

Search
None 79,2 90,9 0,49 0,5 0,66 0,83 ? ? 0,79 0,9 ? ?

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-2IP-Sampling [US]-All 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 70,7 78,3 0,69 0,8 0,66 0,9 0,71 0,9 0,7 0,78 0,7 0,82

Backward 

Search
12 70,2 78,3 0,69 0,87 0,69 0,92 0,71 0,91 0,7 0,78 0,69 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 74,7 76,2 0,72 0,66 0,68 0,87 0,75 0,86 0,74 0,76 0,74 0,8

Backward 

Search
20 73,2 82,5 0,79 0,81 0,78 0,9 0,73 0,91 0,73 0,82 0,73 0,85

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 71,8 90,9 0,65 0,5 0,61 0,83 0,72 ? 0,71 0,9 0,71 ?

Backward 

Search
12 66,4 92,3 0,65 0,57 0,63 0,86 0,68 0,91 0,66 0,92 0,65 0,9

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 78,1 82,5 0,8 0,69 0,78 0,86 0,78 0,89 0,78 0,82 0,78 0,85

Backward 

Search
13 78,9 79 0,82 0,76 0,8 0,9 0,78 0,88 0,78 0,79 0,78 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 90,9 60,1 0,86 0,59 0,83 0,85 0,9 0,85 0,9 0,6 0,9 0,68

Backward 

Search
2 90,9 59,4 0,85 0,6 0,83 0,85 0,9 0,86 0,9 0,59 0,9 0,68

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 90,9 58,7 0,88 0,61 0,86 0,85 0,9 0,86 0,9 0,58 0,9 0,67

Backward 

Search
30 72,7 48,2 0,79 0,66 0,8 0,87 0,73 0,89 0,72 0,48 0,72 0,57
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Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-2IP-Sampling [OS]-VAR3 

 

Experiment-2IP-Sampling [SMOTE]-VAR2 

 

Experiment-2IP-Sampling [SMOTE]-VAR3 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 97,3 86,7 0,99 0,4 0,99 0,81 0,97 0,82 0,97 0,86 0,97 0,84

Backward 

Search
6 99,2 90,2 0,99 0,49 0,98 0,83 0,99 0,82 0,99 0,9 0,99 0,86

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 99,2 85,5 1 0,57 1 0,85 0,99 0,83 0,99 0,82 0,99 0,82

Backward 

Search
20 100 81,1 1 0,62 1 0,86 1 0,83 1 0,81 1 0,82

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 89,1 68,5 0,89 0,61 0,86 0,86 0,89 0,84 0,89 0,68 0,89 0,74

Backward 

Search
17 85,9 79 0,88 0,74 0,85 0,89 0,86 0,89 0,85 0,79 0,85 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 88,8 48,9 0,91 0,64 0,88 0,87 0,88 0,87 0,88 0,49 0,88 0,58

Backward 

Search
25 90,3 87,4 0,96 0,82 0,96 0,91 0,9 0,87 0,9 0,87 0,9 0,87

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 95,4 82,5 0,94 0,5 0,91 0,83 0,95 0,83 0,95 0,82 0,95 0,82

Backward 

Search
12 94,3 72 0,97 0,59 0,95 0,85 0,94 0,87 0,94 0,72 0,94 0,77

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 96,5 81,8 0,98 0,63 0,98 0,87 0,96 0,84 0,96 0,81 0,96 0,82

Backward 

Search
35 98,1 86,7 0,99 0,63 0,99 0,86 0,98 0,82 0,98 0,86 0,98 0,84

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-211-Sampling [None]-All – Decision tree (J48) 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 95,2 94,4 0,48 0,5 0,9 0,89 ? ? 0,95 0,94 ? ?

Backward 

Search
None 95,2 94,4 0,48 0,5 0,9 0,89 ? ? 0,95 0,94 ? ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 95 94,4 0,47 0,5 0,9 0,89 ? ? 0,95 0,94 ? ?

Backward 

Search
None 95 94,4 0,47 0,5 0,9 0,89 ? ? 0,95 0,94 ? ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 95,3 94,4 0,47 0,5 0,92 0,89 0,92 ? 0,95 0,94 0,93 ?

Backward 

Search
None 95,3 94,4 0,47 0,5 0,92 0,89 0,92 ? 0,95 0,94 0,93 ?
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3

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Precision Recall F-Measure
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2

Decision Tree (J48)

Accuracy % ROC PRC Area

V
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n 

1

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-211-Sampling [US]-All 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 69,3 60,2 0,65 0,63 0,72 0,91 0,72 0,92 0,69 0,6 0,68 0,7

Backward 

Search
14 68,6 56,2 0,64 0,65 0,65 0,92 0,71 0,93 0,68 0,56 0,67 0,67

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 72,6 59 0,72 0,67 0,68 0,92 0,72 0,92 0,72 0,59 0,72 0,69

Backward 

Search
25 72 56,5 0,74 0,51 0,73 0,9 0,72 0,9 0,72 0,56 0,72 0,68

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 73,6 78,2 0,63 0,75 0,62 0,92 0,73 0,93 0,73 0,78 0,73 0,83

Backward 

Search
3 76,3 78,2 0,69 0,71 0,66 0,92 0,76 0,93 0,76 0,78 0,76 0,83

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 75 74,9 0,66 0,75 0,64 0,92 0,75 0,92 0,75 0,74 0,75 0,81

Backward 

Search
25 67,1 74 0,69 0,67 0,69 0,92 0,67 0,91 0,67 0,74 0,67 0,8

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 88,8 42,8 0,83 0,64 0,85 0,91 0,9 0,93 0,88 0,42 0,88 0,54

Backward 

Search
1 88,8 42,8 0,83 0,64 0,85 0,91 0,9 0,93 0,88 0,42 0,88 0,54

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 94,4 37 0,91 0,71 0,91 0,92 0,95 0,93 0,94 0,37 0,94 0,48

Backward 

Search
2 94,4 37 0,91 0,71 0,91 0,92 0,95 0,93 0,94 0,37 0,94 0,48
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2
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3

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-211-Sampling [OS]-VAR1 

 

Experiment-211-Sampling [OS]-VAR2 

 

Experiment-211-Sampling [OS]-VAR3 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 96,6 87,4 0,99 0,36 0,99 0,88 0,96 0,88 0,96 0,87 0,96 0,88

Backward 

Search
21 97,6 83,7 0,98 0,57 0,97 0,9 0,97 0,9 0,97 0,83 0,97 0,86

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 98 86,5 0,99 0,4 0,99 0,88 0,98 0,88 0,98 0,86 0,98 0,87

Backward 

Search
25 99,5 90,2 1 0,51 1 0,89 0,99 0,89 0,99 0,9 0,99 0,89

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 98,7 88,3 0,99 0,47 0,99 0,89 0,98 0,89 0,98 0,88 0,98 0,88

Backward 

Search
14 98 88,3 0,99 0,54 0,98 0,9 0,98 0,9 0,98 0,88 0,98 0,89

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 99,9 93,2 1 0,48 1 0,88 0,99 0,89 0,99 0,93 0,99 0,91

Backward 

Search
24 99,7 92,6 1 0,54 1 0,9 0,99 0,9 0,99 0,92 0,99 0,91

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 100 82,2 1 0,56 1 0,9 1 0,9 1 0,82 1 0,86

Backward 

Search
6 99,5 93,5 0,99 0,49 0,99 0,89 0,99 0,89 0,99 0,93 0,99 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
6 100 91,4 1 0,68 1 0,92 1 0,9 1 0,91 1 0,9

Backward 

Search
5 100 78,2 1 0,75 1 0,93 1 0,91 1 0,78 1 0,83

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-212-Sampling [US]-VAR1 

 

Experiment-212-Sampling [US]-VAR3 

 

Experiment-212-Sampling [OS]-VAR3 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
8 76,3 67,3 0,73 0,66 0,69 0,93 0,76 0,93 0,76 0,67 0,76 0,77

Backward 

Search
11 75,4 71 0,74 0,67 0,69 0,93 0,75 0,93 0,75 0,71 0,75 0,79

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 75,6 79,7 0,78 0,75 0,75 0,94 0,75 0,93 0,75 0,79 0,75 0,85

Backward 

Search
9 75,9 62,2 0,79 0,61 0,75 0,93 0,76 0,91 0,76 0,62 0,76 0,73

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 95 77,7 0,95 0,75 0,93 0,94 0,95 0,94 0,95 0,77 0,95 0,84

Backward 

Search
1 75 76,4 0,73 0,39 0,75 0,9 0,83 0,91 0,75 0,76 0,73 0,83

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 85 48,8 0,76 0,42 0,76 0,91 0,88 0,9 0,85 0,48 0,84 0,62

Backward 

Search
19 80 64,9 0,75 0,7 0,77 0,94 0,85 0,93 0,8 0,65 0,79 0,75

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 99,3 91,58 1 0,66 1 0,93 0,99 0,93 0,99 0,91 0,99 0,92

Backward 

Search
8 99,3 91,9 0,99 0,74 0,99 0,94 0,99 0,94 0,99 0,91 0,99 0,93

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 100 92,2 1 0,74 1 0,94 1 0,93 1 0,92 1 0,92

Backward 

Search
12 99,7 95,9 1 0,81 1 0,96 0,99 0,96 0,99 0,96 0,99 0,96

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-212-Sampling [SMOTE]-VAR3 

 

Experiment-3SA-Sampling [None]-VAR1 – Decision tree (J48) 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 98,3 94,9 0,98 0,73 0,98 0,94 0,98 0,95 0,98 0,94 0,98 0,95

Backward 

Search
5 97,4 92,2 0,97 0,6 0,96 0,92 0,97 0,91 0,97 0,92 0,97 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 98 54,5 0,99 0,55 0,99 0,91 0,98 0,92 0,98 0,54 0,98 0,66

Backward 

Search
23 98,7 94,6 0,99 0,82 0,99 0,95 0,98 0,93 0,98 0,94 0,98 0,93

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 91,06 98,2 0,49 0,5 0,83 0,96 ? ? 0,91 0,98 ? ?

Backward 

Search
None 91,06 98,2 0,49 0,5 0,83 0,96 ? ? 0,91 0,98 ? ?

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3SA-Sampling [US]-All 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 73,4 63,4 0,73 0,56 0,72 0,96 0,75 0,97 0,73 0,63 0,72 0,76

Backward 

Search
9 78,4 72,1 0,81 0,64 0,79 0,97 0,78 0,97 0,78 0,72 0,78 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 74 69,5 0,75 0,68 0,71 0,97 0,74 0,97 0,74 0,69 0,73 0,8

Backward 

Search
7 76,5 68,6 0,79 0,75 0,77 0,97 0,76 0,97 0,76 0,68 0,76 0,79

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 73,4 63,4 0,73 0,56 0,72 0,96 0,75 0,97 0,73 0,63 0,72 0,76

Backward 

Search
9 78,4 72,1 0,81 0,64 0,79 0,97 0,78 0,97 0,78 0,72 0,78 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 74 69,5 0,75 0,68 0,71 0,97 0,74 0,97 0,74 0,69 0,73 0,8

Backward 

Search
7 76,5 68,6 0,79 0,75 0,77 0,97 0,76 0,97 0,76 0,68 0,76 0,79

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 73,4 63,4 0,73 0,56 0,72 0,96 0,75 0,97 0,73 0,63 0,72 0,76

Backward 

Search
9 78,4 72,1 0,81 0,64 0,79 0,97 0,78 0,97 0,78 0,72 0,78 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 74 69,5 0,75 0,68 0,71 0,97 0,74 0,97 0,74 0,69 0,73 0,8

Backward 

Search
7 76,5 68,6 0,79 0,75 0,77 0,97 0,76 0,97 0,76 0,68 0,76 0,79

ROC PRC Area Precision Recall F-Measure
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3

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy %

Accuracy % ROC PRC Area Precision Recall F-Measure
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1
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2

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3SA-Sampling [OS]-VAR3 

 

Experiment-3SA-Sampling [SMOTE]-VAR3 

 

Experiment-3AS-Sampling [None]-VAR1 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 100 97,3 1 0,49 1 0,96 1 0,96 1 0,97 1 0,97

Backward 

Search
2 100 98,2 1 0,5 1 0,96 1 ? 1 0,98 1 ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 100 97,3 1 0,47 1 0,96 1 0,96 1 0,97 1 0,97

Backward 

Search
2 100 98,2 1 0,5 1 0,96 1 ? 1 0,98 1 ?

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 99,4 97,3 0,99 0,74 0,99 0,97 0,99 0,97 0,99 0,97 0,99 0,97

Backward 

Search
1 99,4 98,2 0,99 0,5 0,98 0,96 0,99 ? 0,99 0,98 0,99 ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 100 98,2 1 0,5 1 0,96 1 ? 1 0,98 1 ?

Backward 

Search
2 100 98,2 1 0,49 1 0,96 1 ? 1 0,98 1 ?

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 98,1 96,9 0,42 0,5 0,96 0,94 ? ? 0,98 0,96 ? ?

Backward 

Search
None 98,1 96,9 0,42 0,5 0,96 0,94 ? ? 0,98 0,96 ? ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 98,5 94,7 0,74 0,46 0,97 0,94 0,98 0,93 0,98 0,94 0,98 0,94

Backward 

Search
13 98,5 96 0,82 0,73 0,98 0,96 0,98 0,93 0,98 0,96 0,98 0,95

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3AS-Sampling [None]-VAR2 

 

Experiment-3AS-Sampling [None]-VAR3 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 98,1 97,3 0,58 0,74 0,96 0,96 0,98 0,97 0,98 0,97 0,97 0,96

Backward 

Search
1 98,1 97,3 0,58 0,74 0,96 0,96 0,98 0,97 0,98 0,97 0,97 0,96

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 98,1 96,9 0,79 0,69 0,97 0,95 0,97 0,95 0,98 0,96 0,98 0,96

Backward 

Search
30 98,1 97,3 0,71 0,63 0,96 0,95 0,98 0,97 0,98 0,97 0,97 0,96

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 97,2 96,9 0,29 0,5 0,95 0,94 0,95 ? 0,97 0,96 0,96 ?

Backward 

Search
None 97,2 96,9 0,29 0,5 0,95 0,94 0,95 ? 0,97 0,96 0,96 ?

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 99,4 93,3 0,97 0,71 0,99 0,95 0,99 0,94 0,99 0,93 0,99 0,94

Backward 

Search
5 97,8 90,7 0,8 0,46 0,97 0,94 ? 0,93 0,97 0,9 ? 0,92

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3AS-Sampling [US]-VAR1 and VAR2 (VAR3 – Too few instances) 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 84,3 72,6 0,73 0,73 0,72 0,95 0,84 0,96 0,84 0,72 0,84 0,81

Backward 

Search
1 84,3 72,6 0,73 0,73 0,72 0,95 0,84 0,96 0,84 0,72 0,84 0,81

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 84,3 78,4 0,76 0,73 0,71 0,96 0,84 0,94 0,84 0,78 0,84 0,85

Backward 

Search
22 90,6 67,4 0,89 0,73 0,89 0,96 0,9 0,95 0,9 0,67 0,9 0,77

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 76,9 72,6 0,72 0,73 0,71 0,95 0,76 0,96 0,76 0,72 0,76 0,81

Backward 

Search
5 73 78,8 0,73 0,82 0,71 0,96 0,74 0,96 0,73 0,78 0,72 0,85

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 84,6 67,4 0,82 0,64 0,82 0,94 0,88 0,95 0,84 0,67 0,84 0,77

Backward 

Search
31 65,3 55 0,79 0,89 0,82 0,97 0,65 0,97 0,65 0,55 0,65 0,68
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Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3AS-Sampling [OS]-All 

 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 96,8 87,6 0,99 0,48 0,99 0,93 0,97 0,93 0,96 0,87 0,96 0,9

Backward 

Search
13 99,2 91,1 0,99 0,53 0,99 0,94 0,99 0,94 0,99 0,91 0,99 0,92

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 99,7 94,2 0,99 0,5 0,99 0,94 0,99 0,93 0,99 0,94 0,99 0,94

Backward 

Search
24 100 96 1 0,61 1 0,94 1 0,93 1 0,96 1 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 99,6 96,9 0,99 0,56 0,99 0,94 0,99 0,95 0,99 0,96 0,99 0,96

Backward 

Search
8 99,5 89,4 0,99 0,52 0,99 0,94 0,99 0,94 0,99 0,89 0,99 0,91

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 100 97,3 1 0,56 1 0,94 1 0,97 1 0,97 1 0,96

Backward 

Search
7 100 96,4 1 0,78 1 0,95 1 0,93 1 0,96 1 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 100 92 1 0,54 1 0,94 1 0,94 1 0,92 1 0,93

Backward 

Search
7 100 94,7 1 0,55 1 0,94 1 0,94 1 0,94 1 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 100 92,5 1 0,58 1 0,94 1 0,94 1 0,92 1 0,93

Backward 

Search
5 100 94,2 1 0,67 1 0,95 1 0,93 1 0,94 1 0,94

ROC PRC Area Precision Recall F-Measure
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Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy %

Precision Recall F-Measure

Random Forest
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Decision Tree (J48)

Accuracy % ROC PRC Area
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Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy %
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Experiment-3AS-Sampling [SMOTE]-All 

 

Experiment-3SI-Sampling [None]-VAR1 – Decision tree (J48) 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 99,3 94,7 0,99 0,41 0,99 0,93 0,99 0,93 0,99 0,94 0,99 0,94

Backward 

Search
23 99,2 94,2 0,99 0,68 0,99 0,95 0,99 0,93 0,99 0,94 0,99 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 99,3 94,7 0,99 0,48 0,99 0,94 0,99 0,93 0,99 0,94 0,99 0,94

Backward 

Search
23 99,2 94,2 0,99 0,68 0,99 0,95 0,99 0,93 0,99 0,94 0,99 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 98,7 94,2 0,98 0,44 0,98 0,93 0,98 0,93 0,98 0,94 0,98 0,94

Backward 

Search
8 98,5 95,5 0,98 0,5 0,97 0,94 0,98 0,94 0,98 0,95 0,98 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 98,7 94,2 0,99 0,49 0,98 0,94 0,98 0,93 0,98 0,94 0,98 0,94

Backward 

Search
23 99,1 95,5 0,99 0,65 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 99,1 95,5 0,99 0,45 0,99 0,93 0,99 0,93 0,99 0,95 0,99 0,94

Backward 

Search
4 99,1 94,7 0,99 0,48 0,99 0,94 0,99 0,93 0,99 0,94 0,99 0,94

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 99,1 95,5 0,99 0,49 0,99 0,94 0,99 0,93 0,99 0,95 0,99 0,94

Backward 

Search
23 100 96,9 1 0,71 1 0,96 1 ? 1 0,96 1 ?
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Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy %

Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

ROC PRC Area Precision Recall F-Measure
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2

Decision Tree (J48)

Accuracy % ROC PRC Area

V
ar

ia
ti

o
n 

1

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy %

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 95,1 96,8 0,48 0,5 0,9 0,94 ? ? 0,95 0,96 ? ?

Backward 

Search
None 95,1 96,8 0,48 0,5 0,9 0,94 ? ? 0,95 0,96 ? ?

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3SI-Sampling [None]-VAR3 – Decision tree (J48) 

 

Experiment-3SI-Sampling [US]-All 

 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 93,4 96,8 0,47 0,5 0,89 0,94 0,89 ? 0,93 0,96 0,91 ?

Backward 

Search
None 93,4 96,8 0,47 0,5 0,89 0,94 0,89 ? 0,93 0,96 0,91 ?

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 74,3 78,6 0,71 0,45 0,68 0,93 0,75 0,94 0,74 0,78 0,74 0,85

Backward 

Search
1 73,1 72 0,62 0,54 0,6 0,93 0,75 0,95 0,72 0,72 0,72 0,81

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 75,6 71,1 0,68 0,52 0,67 0,94 0,78 0,95 0,75 0,71 0,75 0,8

Backward 

Search
26 69,5 66,6 0,77 0,49 0,78 0,93 0,69 0,94 0,69 0,66 0,69 0,77

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 76,4 72 0,67 0,54 0,64 0,93 0,78 0,95 0,76 0,72 0,76 0,81

Backward 

Search
1 76,4 72 0,67 0,54 0,64 0,93 0,78 0,95 0,76 0,72 0,76 0,81

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 77,9 48,4 0,76 0,58 0,72 0,94 0,8 0,94 0,77 0,48 0,77 0,62

Backward 

Search
32 73,5 73,3 0,8 0,73 0,79 0,95 0,73 0,95 0,73 0,73 0,73 0,82

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 80 72 0,68 0,57 0,68 0,94 0,81 0,94 0,8 0,72 0,79 0,81

Backward 

Search
1 80 72 0,68 0,57 0,68 0,94 0,81 0,94 0,8 0,72 0,79 0,81

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
5 90 82,2 0,83 0,68 0,81 0,95 0,91 0,95 0,9 0,82 0,89 0,87

Backward 

Search
27 75 84 0,83 0,64 0,83 0,95 0,77 0,94 0,75 0,84 0,74 0,88
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Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)
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Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3SI-Sampling [OS]-All 

 

Experiment-3ND-Sampling [None]-VAR1 – Decision tree (J48) 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
7 97,4 88,4 0,98 0,41 0,98 0,93 0,97 0,94 0,97 0,88 0,97 0,91

Backward 

Search
21 97,1 86,2 0,98 0,51 0,97 0,94 0,97 0,94 0,97 0,86 0,97 0,89

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
15 98,8 89,7 0,99 0,48 0,99 0,94 0,98 0,94 0,98 0,89 0,98 0,91

Backward 

Search
23 99,5 93,3 0,99 0,63 0,99 0,95 0,99 0,94 0,99 0,93 0,99 0,93

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 98,7 91,5 0,93 0,59 0,99 0,94 0,98 0,95 0,98 0,91 0,98 0,93

Backward 

Search
10 99 96,8 0,99 0,85 0,98 0,97 0,99 0,97 0,99 0,96 0,99 0,97

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
9 99,5 96,8 1 0,67 1 0,96 0,99 0,96 0,99 0,96 0,99 0,96

Backward 

Search
15 99,7 96 1 0,83 1 0,97 0,99 0,95 0,99 0,96 0,99 0,95

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 99,4 92 0,99 0,74 0,99 0,95 0,99 0,96 0,99 0,92 0,99 0,93

Backward 

Search
6 100 96,4 1 0,77 1 0,96 1 0,96 1 0,96 1 0,96

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 100 90,2 1 0,76 1 0,96 1 0,95 1 0,9 1 0,92

Backward 

Search
6 100 96,4 1 0,73 1 0,96 1 0,96 1 0,96 1 0,96
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Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy %

Precision Recall F-Measure

Random Forest
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Decision Tree (J48)

Accuracy % ROC PRC Area

V
ar
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Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy %

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
None 81,5 97,8 0,49 0,5 0,69 0,95 ? ? 0,81 0,97 ? ?

Backward 

Search
None 81,5 97,8 0,49 0,5 0,69 0,95 ? ? 0,81 0,97 ? ?

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure
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Experiment-3ND-Sampling [US]-VAR1 

 

Experiment-3ND-Sampling [OS]-VAR3 

 

Experiment-3ND-Sampling [SMOTE]-VAR3 

 

  

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
2 71 40,7 0,71 0,69 0,68 0,96 0,72 0,96 0,71 0,4 0,7 0,55

Backward 

Search
16 68,8 48 0,71 0,54 0,67 0,95 0,69 0,96 0,68 0,48 0,68 0,63

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
4 70,7 64,8 0,72 0,66 0,71 0,96 0,7 0,96 0,7 0,64 0,7 0,76

Backward 

Search
17 71,6 56,6 0,75 0,67 0,73 0,97 0,71 0,96 0,71 0,56 0,71 0,56

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 100 97,4 1 0,69 1 0,96 1 0,97 1 0,97 1 0,97

Backward 

Search
4 100 98,7 1 0,7 1 0,97 1 0,98 1 0,98 1 0,98

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
1 100 97,4 1 0,78 1 0,97 1 0,97 1 0,97 1 0,97

Backward 

Search
4 99,7 99,1 1 0,99 1 0,99 0,99 0,99 0,99 0,99 0,99 0,99

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 98,7 98,2 0,98 0,69 0,97 0,97 0,98 0,98 0,98 0,98 0,98 0,98

Backward 

Search
3 99 95,2 0,98 0,87 0,98 0,97 0,99 0,97 0,99 0,95 0,99 0,96

Attribute 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

Forward 

Search
3 99 98,7 0,99 0,89 0,99 0,99 0,99 0,98 0,99 0,98 0,99 0,98

Backward 

Search
30 99,5 98,2 1 0,98 1 0,99 0,99 0,98 0,99 0,98 0,99 0,97

Decision Tree (J48)

Accuracy % ROC PRC Area Precision Recall F-Measure

Random Forest

Accuracy % ROC PRC Area Precision Recall F-Measure
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Appendix B – Experimental results not listed in Chapter 6 
 

Experiment-2IP-FS [Genetic] – VAR1 

 

Experiment-2IP-Algorithm [OF] – VAR1 

 

Experiment-2IP-FS [Genetic] – VAR2 

 

Experiment-2IP-Algorithm [OF] – VAR2 

 

Experiment-2IP-FS [Genetic] – VAR3 

 

Experiment-2IP-Algorithm [OF] – VAR3 

 

Experiment-3AS-FS [Genetic] – VAR1 

 

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US Genetic DT 10 74,75 68,5 0,73 0,62 0,69 0,86 0,74 0,86 0,74 0,68 0,74 0,75

Genetic RF 17 75,24 73,42 0,77 0,77 0,76 0,89 0,75 0,89 0,75 0,73 0,75 0,78

F-MeasureAccuracy % ROC PRC Area Precision Recall

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US All OF 29 63,86 69,2 0,66 0,77 0,64 0,9 0,64 0,9 0,63 0,69 0,63 0,75

RF Fwd Search OF 8 72,27 75,52 0,71 0,66 0,67 0,87 0,72 0,85 0,72 0,75 0,72 0,79

RF Bkwd Search OF 21 74,25 81,1 0,8 0,81 0,79 0,9 0,74 0,91 0,74 0,81 0,74 0,84

Genetic OF 17 74,75 76,2 0,76 0,77 0,75 0,89 0,74 0,89 0,74 0,76 0,74 0,8

Recall F-MeasureAccuracy % ROC PRC Area Precision

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US Genetic DT 8 71,87 88,8 0,74 0,84 0,7 0,93 0,72 0,91 0,71 0,88 0,71 0,89

Genetic RF 15 72,65 80,4 0,76 0,7 0,74 0,88 0,72 0,89 0,72 0,8 0,72 0,83

F-MeasureAccuracy % ROC PRC Area Precision Recall

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US All OF 34 70,3 76,2 0,74 0,81 0,73 0,91 0,7 0,89 0,7 0,76 0,7 0,8

RF Fwd Search OF 8 78,1 83,2 0,81 0,72 0,79 0,89 0,78 0,89 0,78 0,83 0,78 0,85

RF Bkwd Search OF 14 77,3 78,3 0,81 0,76 0,8 0,9 0,77 0,88 0,77 0,78 0,77 0,82

Genetic OF 15 71,8 81,8 0,76 0,71 0,74 0,88 0,72 0,89 0,71 0,81 0,71 0,84

Recall F-MeasureAccuracy % ROC PRC Area Precision

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US Genetic DT 7 90,9 59,4 0,85 0,6 0,83 0,85 0,9 0,86 0,9 0,59 0,9 0,68

Genetic RF 15 81,8 44,7 0,81 0,63 0,8 0,85 0,82 0,88 0,81 0,44 0,81 0,54

Accuracy % ROC PRC Area Precision Recall F-Measure

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US All OF 39 72,7 50,3 0,75 0,64 0,74 0,87 0,73 0,86 0,72 0,5 0,72 0,6

RF Fwd Search OF 4 90,9 58,7 0,89 0,6 0,87 0,85 0,9 0,86 0,9 0,58 0,9 0,67

RF Bkwd Search OF 31 68,1 46,1 0,75 0,65 0,77 0,87 0,68 0,88 0,68 0,46 0,68 0,55

Genetic OF 15 81,8 48,2 0,82 0,62 0,81 0,85 0,82 0,89 0,81 0,48 0,81 0,57

F-MeasureAccuracy % ROC PRC Area Precision Recall

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US Genetic DT 7 84,3 72,6 0,73 0,73 0,72 0,95 0,84 0,96 0,84 0,72 0,84 0,81

Genetic RF 32 87,5 65,1 0,9 0,7 0,89 0,95 0,88 0,96 0,87 0,76 0,87 0,76

F-MeasureAccuracy % ROC PRC Area Precision Recall
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Experiment-3AS-Algorithm [OF] – VAR1 

 

Experiment-3AS-FS [Genetic] – VAR2 

 

Experiment-3AS-Algorithm [OF] – VAR2 

 

Experiment-3AS-FS [Genetic] – VAR3 – Not enough samples for US 

Experiment-3AS-Algorithm [OF] – VAR3 – Not enough samples for US 

 

  

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

None All OF 29 98,1 96,4 0,71 0,49 0,97 0,94 0,97 0,93 0,98 0,96 0,97 0,95

RF Fwd Search OF 4 98,5 94,7 0,68 0,48 0,97 0,93 0,98 0,93 0,98 0,94 0,98 0,94

RF Bkwd Search OF 14 98,4 96 0,77 0,48 0,97 0,93 0,98 0,93 0,98 0,96 0,98 0,95

Genetic OF 5 98,4 94,7 0,67 0,47 0,97 0,93 0,98 0,93 0,98 0,94 0,98 0,94

OS All OF 29 99,6 94,7 1 0,71 1 0,95 0,99 0,93 0,99 0,94 0,99 0,94

RF Fwd Search OF 8 99,7 94,2 0,99 0,63 0,99 0,95 0,99 0,93 0,99 0,94 0,99 0,94

RF Bkwd Search OF 25 99,8 96 1 0,62 1 0,95 0,99 0,93 0,99 0,96 0,99 0,95
Genetic OF 21 99,8 95,5 1 0,67 1 0,95 0,99 0,93 0,99 0,95 0,99 0,94

SMOTE All OF 29 99 95,1 0,99 0,69 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94

RF Fwd Search OF 3 99,3 94,7 0,99 0,47 0,99 0,94 0,99 0,93 0,99 0,94 0,99 0,94

RF Bkwd Search OF 24 99,2 93,8 0,99 0,71 0,99 0,95 0,99 0,93 0,99 0,93 0,99 0,93

Genetic OF 20 99,2 95,5 0,99 0,7 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94

US All OF 29 75 65,1 0,78 0,71 0,77 0,95 0,75 0,95 0,75 0,65 0,75 0,76

RF Fwd Search OF 4 84,3 78,4 0,77 0,71 0,73 0,95 0,84 0,94 0,84 0,78 0,84 0,85

RF Bkwd Search OF 23 84,3 69,6 0,88 0,71 0,88 0,96 0,84 0,95 0,84 0,69 0,84 0,79

Genetic OF 14 87,5 67,4 0,88 0,71 0,85 0,95 0,88 0,96 0,87 0,67 0,87 0,77

Recall F-MeasureAccuracy % ROC PRC Area Precision

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

US Genetic DT 3 76,9 78,8 0,66 0,82 0,67 0,96 0,84 0,96 0,76 0,78 0,75 0,85

Genetic RF 9 84,6 50,2 0,86 0,87 0,86 0,97 0,85 0,97 0,84 0,5 0,84 0,63

F-MeasureAccuracy % ROC PRC Area Precision Recall

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

OS All OF 35 99,8 96,4 1 0,87 1 0,97 0,99 0,95 0,99 0,96 0,99 0,95
RF Fwd Search OF 4 100 97,3 1 0,57 1 0,94 1 0,97 1 0,97 1 0,96

RF Bkwd Search OF 8 100 96,4 1 0,8 1 0,96 1 0,93 1 0,96 1 0,95

Genetic OF 12 100 96,9 1 0,8 1 0,96 1 0,95 1 0,96 1 0,96

SMOTE All OF 35 98,7 95,5 0,99 0,75 0,99 0,96 0,98 0,93 0,98 0,95 0,98 0,94

RF Fwd Search OF 3 98,7 94,2 0,99 0,51 0,98 0,94 0,98 0,93 0,98 0,94 0,98 0,94

RF Bkwd Search OF 24 99,1 95,5 0,99 0,68 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94

Genetic OF 16 98,8 96,4 0,99 0,84 0,99 0,97 0,98 0,96 0,98 0,96 0,98 0,96

US All OF 35 69,2 55,5 0,7 0,93 0,71 0,97 0,69 0,97 0,69 0,55 0,69 0,68

RF Fwd Search OF 4 84,6 67,4 0,84 0,66 0,82 0,94 0,88 0,95 0,84 0,67 0,84 0,77

RF Bkwd Search OF 32 69,2 55,9 0,79 0,89 0,82 0,97 0,69 0,97 0,69 0,55 0,69 0,68

Genetic OF 9 80,7 50,6 0,83 0,88 0,84 0,97 0,82 0,97 0,8 0,5 0,8 0,64

F-MeasureAccuracy % ROC PRC Area Precision Recall

Sampling

Feature 

Selection 

Search Type

Algorithm
Parameter 

Count

10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation 10-Fold Validation

OS All OF 38 100 94,7 1 0,79 1 0,96 1 0,93 1 0,94 1 0,94

RF Fwd Search OF 4 100 92 1 0,58 1 0,94 1 0,94 1 0,92 1 0,93

RF Bkwd Search OF 6 100 93,8 1 0,66 1 0,95 1 0,93 1 0,93 1 0,93

Genetic OF 6 100 81,4 1 0,77 1 0,96 1 0,95 1 0,81 1 0,87

SMOTE All OF 38 98,8 96 1 0,79 1 0,96 0,98 0,93 0,98 0,96 0,98 0,95

RF Fwd Search OF 19 100 95,1 0,99 0,49 0,99 0,94 0,99 0,93 0,99 0,95 0,99 0,94

RF Bkwd Search OF 24 100 96,4 1 0,68 1 0,95 1 0,93 1 0,96 1 0,95

Genetic OF 19 100 95,1 1 0,8 1 0,96 1 0,93 1 0,95 1 0,94

F-MeasureAccuracy % ROC PRC Area Precision Recall










